Clustering algorithms Konstantinos Koutroumbas

<u>Unit 4</u>

- CFO clustering algorithms (k-means)

Data

$$X = \{ \boldsymbol{x}_j \in R^l, j = 1, \dots, \boldsymbol{N} \}$$

Basic parameters - notation

 $\checkmark \quad \Theta = \{\boldsymbol{\theta}_j, j = 1, \dots, \boldsymbol{m}\} \ (\boldsymbol{\theta}_j \text{ is the representative of cluster } C_j).$

• **Proximity** between x_i and C_j : $d(x_i, \theta_j)$

- $u_{ij} \in [0,1]$ quantifies the "relation" between x_i and C_j .
- "Large" ("small") u_{ij} values indicate close (loose) relation between x_i and C_j.

 $\Rightarrow u_{ii}$ varies inversely proportional wrt $d(x_i, \theta_i)$.

• u_i : vector containing the u_{ij} 's of x_i with all clusters.

^(*) Unless otherwise stated, the case where **cluster representatives** are used is considered.

Aim:

 \checkmark To place the representatives into dense in data regions (physical clusters).

How this is achieved:

 \checkmark Via the minimization of the following type of cost function (wrt Θ , U)

$$I(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) \ (q \ge 1)^{Q}$$

s.t. some **constraints** on U, C(U).

Intuition:

- ✓ For fixed θ_i 's, $J(\Theta, U)$ is a weighted sum of fixed distances $d(x_i, \theta_i)$.
- **Minimization** of $J(\Theta, U)$ wrt u_{ii} instructs for large weights (u_{ii}) for small distances $d(\mathbf{x}_i, \boldsymbol{\theta}_i)$.
- ✓ For fixed u_{ij} 's, minimization of $J(\Theta, U)$ wrt θ_{ij} 's leads θ_{ij} 's closer to their most relative data points.

For the probabilistic

case $d(x_i, \theta_i)$ is

embedded in the log-

likelihood of suitably

defined exponential

distributions

There are **several** unexplored areas (groups of algorithms) in this array.

General cost function opt. (CFO) scheme:

- $\checkmark \quad \text{Initialize } \Theta = \Theta(0)$
- \checkmark t = 0
- ✓ Repeat
 - $U(t) = argmin_U J(\Theta(t), U)$, s.t. C(U(t))
 - t = t + 1
 - $\Theta(t) = argmin_{\Theta} J(\Theta, U(t-1))$
- ✓ Until convergence

"Array of CFO algorithms"

θ		Hard Constr.	Fuzzy Constr.	Possib. Constr.	
	Point	Je	ne	ne	
	Line	chem	cher	chei	
	Hyperplane	FO SC	FO s	CFO	
	Hyperellipsoid	D P	ZZ	sib. (
		H	Fu	Pos	

"Array of CFO algorithms"

θ

	115	C(U)		
	Hard	Fuzzy	Possib.	
	Constr.	Constr.	Constr.	
Point	c-mea	ns sch	eme	
Line	c-line	s scher	ne	
Hyperplane	c-hyp	erplan	es sche	me
Hyperellipsoid	c-hyp	erellips	oids so	cheme

CFO clustering algorithms: A loose presentation

"Array of CFO algorithms"

$\boldsymbol{\theta}_{j}$		Hard Constr.	Fuzzy Constr.	Possib. Constr.	
	Point	Je			
	Line	chen		2	
	Hyperplane	FO s	5		
	Hyperellipsoid	rd C	0		
		H			

Cost function optimization (CFO) algorithms

Hard clustering algorithms:

Let $X = \{x_1, x_2, \dots, x_N\}$ be a set of data points.

Each vector belongs exclusively to a single cluster.

Each cluster is **represented** by a representative θ_j (point repr., hyperplane...). Let $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$

Define
$$u_{ij} = \begin{cases} 1, & \text{if } x_i \in C_j \\ 0, & \text{otherwise} \end{cases}$$
 and $U = [u_{ij}]_{Nxm}$

It is
$$\sum_{j=1}^m u_{ij} = 1$$
 , $i = 1, ..., N$

Define the cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_i, \boldsymbol{\theta}_j) = \sum_{j=1}^{m} \sum_{\mathbf{x}_i \in C_j} d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

When $J(U, \Theta)$ is **minimized**?

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_i, \boldsymbol{\theta}_j) = \sum_{j=1}^{m} \sum_{\mathbf{x}_i \in C_j} d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

For fixed θ_j 's: When, for each x_i , only its distance from its closest representative is taken into account.

This suggests to **define** $u_{ij} = \begin{cases} 1, & \text{if } d(x_i, \theta_j) = \min_{q=1,...,m} d(x_i, \theta_q) \\ 0, & \text{otherwise} \end{cases}$

For <u>fixed u_{ij} </u> Solve the following <u>m</u> independent problems $min_{\theta_j} \sum_{x_i \in C_j} d(x_i, \theta_j) \equiv min_{\theta_j} \sum_{i=1}^N u_{ij} d(x_i, \theta_j)$

Thus, the Generalized Hard Algorithmic Scheme (GHAS) is given below

Generalized Hard Algorithmic Scheme (GHAS)

- **Choose** $\theta_j(0)$ as initial estimates for θ_j , j=1,...,m.
- t = 0
- Repeat

- For
$$i = 1$$
 to N % Determination of the partition
o For $j = 1$ to m
 $u_{ij}(t) = \begin{cases} 1, & if \ d(x_i, \theta_j(t)) = min_{q=1,...,m} d(x_i, \theta_q(t)) \\ 0, & otherwise \end{cases}$
o End {For- j }
- End {For- i }

-t = t + 1

- For
$$j = 1$$
 to m % Parameter updating
o Set
 $\theta_j(t) = argmin_{\theta_j} \sum_{i=1}^N u_{ij}(t-1) d(x_i, \theta_j), j = 1, ..., m$
- End {For- j }

• Until a termination criterion is met.

Generalized Hard Algorithmic Scheme (GHAS)

Remarks:

- In the update of each θ_j , only the vectors x_i for which $u_{ij}(t-1) = 1$ are used.
- GHAS may terminate when either

$$-\left|\left| \varTheta(t) - \varTheta(t-1) \right|\right| < \varepsilon$$
 or

- U remains unchanged for two successive iterations.
- The two-step optimization procedure in GHAS does not necessarily lead to a local minimum of $J(U, \Theta)$.

<u>Generalized Hard Algorithmic Scheme (GHAS)</u> The Isodata or k-Means or c-Means algorithm General comments

- It is a special case of GHAS where
 - -Point representatives are used.

-The **squared** Euclidean distance is **employed**.

- The cost function $J(U, \Theta)$ becomes now $J(U, \Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||\mathbf{x}_i - \mathbf{\theta}_j||^2$
- Applying GHAS in this case, it turns out that it converges to a minimum of the cost function.
- Isodata **recovers clusters** that are as **compact** as possible.
- For other choices of the distance (including the Euclidean), the algorithm converges but not necessarily to a minimum of $J(U, \Theta)$.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

- Choose arbitrary initial estimates $\theta_j(0)$ for the θ_j' s, j=1,...,m.
- t = 0
- Repeat

- For i = 1 to N % Determination of the partition o For *j*=1 to *m* $u_{ij}(t) = \begin{cases} 1, & if ||x_i - \theta_j(t)||^2 = min_{q=1,\dots,m} ||x_i - \theta_q(t)||^2 \\ 0, & otherwise \end{cases}$ o End {For-*j*} $- \operatorname{End} \{\operatorname{For} -i\}$ -t = t + 1- For j = 1 to m % Parameter updating o Set $\boldsymbol{\theta}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}(t-1)\boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{ii}(t-1)}, j = 1, \dots, m$ End {For-*j*} **Until** no change in θ_i ' s occurs between two successive iterations

The k-means case.

Choose arbitrary initial estimates $\theta_j(0)$ for the θ_j' s, j = 1, ..., m. **Repeat**

- For i = 1 to N Partition determination

o Determine the closest representative, say $\boldsymbol{\theta}_i$, for \boldsymbol{x}_i

o Set
$$u_{ij} = 1$$
 and $u_{iq} = 0$, $q = 1, \dots, m, q \neq j$.

- End {For}

- For j = 1 to m Parameter updating

o Determine $\boldsymbol{\theta}_i$ as the mean of the vectors $\boldsymbol{x}_i \in X$ with $u_{ii} = 1$.

– End {For}

Until no change in θ_i s occurs between two successive iterations

Remarks

Ht is a batch, single clustering algorithm →

 \bowtie t is a hard clustering algorithm that uses point representatives θ_j for the clusters C_j .

Ht results from the optimization of the following cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||\mathbf{x}_i - \boldsymbol{\theta}_j||^2$$

where $U = [u_{ij}]$ and $\Theta = \{\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_m\}$

➤t is of iterative nature.

Anitially it places the representatives θ_j at random positions in space. At gradually moves the representatives towards the centers of the true clusters.

An practice, its time complexity is $O(q \cdot m \cdot N)$ (q is the number of iterations). At requires the number of clusters m to be known a priori.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Example 1: (a) Consider three two-dimensional normal distributions with mean values:

$$\boldsymbol{\mu}_1 = [1,1]^T, \ \boldsymbol{\mu}_2 = [3.5,3.5]^T, \ \boldsymbol{\mu}_3 = [6,1]^T$$

and respective covariance matrices

$$\Sigma_1 = \begin{bmatrix} 1 & -0.3 \\ -0.3 & 1 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}, \Sigma_3 = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$$

Generate a group of 100 vectors from each distribution. These form the data set X.

Confusion matrix for the results of k-means.

$$\mathbf{A} = \begin{bmatrix} 94 & 3 & 3\\ 0 & 100 & 0\\ 9 & 0 & 91 \end{bmatrix}$$

20

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Example 2: (i) Consider two 2-dimensional Gaussian distributions $N(\mu_1, \Sigma_1)$, $N(\mu_2, \Sigma_2)$, with $\mu_1 = [1, 1]^T$, $\mu_2 = [8, 1]^T$, $\Sigma_1 = 1.5I$ and $\Sigma_2 = I$. (ii) Generate 300 points from the 1st distribution and 10 points from the 2nd distribution. (iii) Set m = 2 and initialize randomly θ_i 's ($\theta_i \equiv \mu_i$).

- > After convergence *the large group has been split into two clusters*.
- Its right part has been assigned to the same cluster with the points of the small group (see figure below).
- This indicates that k-means cannot deal accurately with clusters having significantly different sizes.

21

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Remarks:

- *k*-means recovers compact clusters.
- The computational complexity of the *k*-means is *O(Nmq)*, where *q* is the number of iterations required for convergence. In practice, *m* and *q* are significantly less than *N*, thus, *k*-means becomes eligible for processing large data sets.
- Sequential (online) versions of the k-means, where the updating of the representatives takes place immediately after the identification of the representative that lies closer to the current input vector x_i, have also been proposed.
- A variant of the *k*-means results if the number of vectors in each cluster is constrained *a priori*.

Further remarks:

Some drawbacks of the original k-means accompanied with the variants of the k-means that deal with them are discussed next.

- Generalized Hard Algorithmic Scheme (GHAS)
- The Isodata or k-Means or c-Means algorithm
- **Drawback 1**: Different initial partitions may lead k-means to produces different final clusterings, each one corresponding to a different local minimum.
- Strategies for facing drawback 1:
- Single run methods
 - –Use a sequential algorithm (discussed previously) to produce initial estimates for θ_i 's.
 - -Partition randomly the data set into *m* subsets and use their means as initial estimates for θ_i ' s.
- Multiple run methods
 - –Create different partitions of X, run k-means for each one of them and select the best result.
- *Utilization of tools from stochastic optimization techniques* (simulated annealing, genetic algorithms etc).

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Drawback 2: Knowledge of the number of clusters m is required a priori.

- Strategies for facing drawback 2:
- Employ splitting, merging and/or discarding operations of the clusters resulting from *k*-means.
- Estimate *m* as follows:
 - -Run a **sequential** algorithm many times for different thresholds of dissimilarity Θ .
 - -Plot Θ versus the number of clusters and identify the largest plateau in the graph and set m equal to the value that corresponds to this plateau.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Drawback 2: *Knowledge of the number of clusters m is required a priori.* **Strategies for facing drawback 2 (cont.):**

- Estimate *m* as follows:
 - -Run the *k*-means algorithm for different values of the number of clusters m.
 - For each of the resulting clusterings compute the value of J.
 - -Plot J versus the number of clusters m and identify the most significant knee in the graph. Its position indicates the number of physical clusters.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Drawback 3: *k*-means is sensitive to outliers and noise.

Strategies for facing drawback 3:

- Discard all "small" clusters (they are likely to be formed by outliers).
- Use a k-medoids algorithm (see below), where a cluster is represented by one of its points.

Drawback 4: *k*-means is not suitable for data with nominal (categorical) coordinates.

Strategies for facing drawback 4:

• Use a *k*-medoids algorithm.