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CFO clustering algorithms: A unified view

Data
X = {xj € R,j= 1,..,N}
Basic parameters - notation
v 0 = {6,j=1,..,m}(0,is the representative of cluster C).

*  Proximity between x; and C;: d(x,,0,)
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Basic parameters — notation (cocr)1t.)

In the probabilistic case

O 'LLU stands for P(Jlxl)
U1 Uqo o Uim Uuq
Uyy Uy ot Usm Uu,
vou=|s . T E]
Uy, Unz o Unml Uy

* u; € [0,1] quantifies the “relation” between x; and C;.

e “Large” (“small”) u;; values indicate close (loose) relation
between x; and (.

= u;; varies inversely proportional wrt d(x;, 6).

* u,;:vector containing the u;’s of x; with all clusters.

(*) Unless otherwise stated, the case where cluster representatives are used is
considered.
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Aim:
v To place the representatives into dense in data regions (physical
clusters).

How this is achieved:
v" Via the minimization of the following type of cost function (wrt @, U)

For the probabilistic
case d(x;, 0;) is
embedded in the log-
likelihood of suitably
defined exponential
distributions

N m
jo. =), ) wdx6) Gz

s.t. some constraints on U, C(U).

Intuition:
v Forfixed 6,5, /(0,U) is a weighted sum of fixed distances d(x;, 0)).

= Minimization of /(@,U) wrt v, instructs for large weights (u;;) for
small distances d(x;, 8,).

v For fixed u;;’s, minimization of /(0,U) wrt 6/s leads 0,'s closer to

their most relative data points. \
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Basic types of algorithms: = b oinie on 17 = [u;]

Partition . .
e trix Membership matrix ibility matrix

Hard: Fuzzy: Possibilistic (>1 choices):
‘u; € {0,1} ‘u; € (0,1) ‘u; € (0,1]

Plane Line Point Line segment | | Polygon

Compact set in k-
dim. lin. manifold

k-dim. nonlinear k-dim. lin. manifold

manifold \

O={0,]=1,..,m}
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“Array of CFO algorithms” (V) /@
Hard JFZL(J)W Possib. || . .
Constr. nstr. | Constr.

Point / //

| i

= Hyperplane / l

Hyperellipsoid /

There are several unexplored areas (groups of algorithms) in this array. .
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General cost function opt. (CFO) scheme:
v’ Initialize ® = 0(0)

v'  Repeat
- U(t) = argmin, J(0(1),U),st. C(U(t))
« t=t+1
. 0(t) = argming J(O,U(t — 1))

v" Until convergence
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Array of CFO algorithms C(U)

Hard Fuzzy Possib.
Constr. | Constr. | Constr.

Point

Line

Hyperplane

Hyperellipsoid
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“Array of CFO algorithms”

C(U)
Hard Fuzzy Possib.
Constr. | Constr. | Constr.
Point |
Line
= Hyperplane |

Hyperellipsoid
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CFO clustering algorithms: A loose presentation

Constraintson U 4

Possibilistic + sparse

Possibilistic
Fuzzy
Hard
A >
= 2 Type of 0,
o [o L2 L
Type of d(x;,6)) [T § <
g £ 3
E.g.:If 0]- is a point, § S O
d(x; 6,) may be = %
*Sq. Euclidean 2
*l, norm
*Mahalanobis Subspace clustering
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Array of CFO algorithms C(U)

Hard Fuzzy Possib.
Constr. | Constr. | Constr.

Point

Line

Hyperplane

Hyperellipsoid
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Cost function optimization (CFO) algorithms

Hard clustering algorithms:
Let X = {x, X,, ..., Xy} be a set of data points.

Each vector belongs exclusively to a single cluster.

Each cluster is represented by a representative 6; (point repr., hyperplane...).
Let O = {01, 02, “ee ) Hm}

1, lf X (S C]

Define u;; = {
Y10, otherwise

and U = [uif]zvxm

It is Tzluij=1,i=1,...,N

Define the cost function

J(U,8) = zlivzlz:;uij d(x;,6;) = z;zxiecjd(xi, 9))

When J (U, ©) is minimized?
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CFO hard clustering algorithms
N m m
](U, @) = zi=1zj=1uij d(xi, 9]) = ijlzxiecjd(xi, 0])

For fixed 0;‘s: When, for each x;, only its distance from its closest
representative is taken into account.

1, if d(x; Bj) = MiNg=1,. md(x;,04)

This suggests to define u;; = {O otherwise

For fixed u;;‘s: Solve the following m independent problems

N
ming; Exiecjd(xi, 0;) = ming, 21’—1 u;; d(x;,0;)

Thus, the Generalized Hard Algorithmic Scheme (GHAS) is given below
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CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
* Choose 0,(0) as initial estimates for 8}, j=1,...,m.
e t=0
* Repeat
—Fori =1to N % Determination of the partition
oForj=1tom

gty = flv Y 4GOI () = minges. md (o (1)
Y 0, otherwise
o End {For-j}
— End {For-i}
—t=t+1

— For j = 1 to m % Parameter updating
o Set

N
Bj(t) = argmingj zi_luij(t — 1) d(xi,Hj),j = 1, e, M

— End {For-j}

e Until a termination criterion is met. 4
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Generalized Hard Algorithmic Scheme (GHAS)

Remarks:
* Inthe update of each 6}, only the vectors x; for which u;;(t — 1) = 1 are
used.

* GHAS may terminate when either
—1lO) =0t —-1)|| <e or
— U remains unchanged for two successive iterations.

* The two-step optimization procedure in GHAS does not necessarily lead to a
local minimum of J(U, @).
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CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm
General comments
* |tis aspecial case of GHAS where
—Point representatives are used.
—The squared Euclidean distance is employed.

* The cost function /(U, ©) becomes now

N m
JW,0) = E | E w ]| — 6512
1=1 Jj=1

* Applying GHAS in this case, it turns out that it converges to a minimum of
the cost function.

* Isodata recovers clusters that are as compact as possible.

* For other choices of the distance (including the Euclidean), the algorithm
converges but not necessarily to a minimum of J(U, ©).
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Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

* Choose arbitrary initial estimates 0; (0) for the 0, s, =1,....m.
e t=0

* Repeat

—Fori =1to N % Determination of the partition

oForj=ltom

N _ 1, if ”xi o j(t)llz — minqzl,...,m”xi o Oq(t)”z

u;j(t) = .
0, otherwise

o End {For-j}
— End {For-i}
—t=t+1
— For j = 1 to m % Parameter updating

o Set .
0,(t) = 5r D% g m
i=1 Uit —1)

— End {For-j}

* Until no change in ;" s occurs between two successive iterations
17



CFO hard clustering algorithms

The k-means case.
Choose arbitrary initial estimates 6,(0) forthe 8,"s,j =1, ..., m.
Repeat
— Fori =1to N Partition determination
o Determine the closest representative, say 0]-, for x;
oSetu,; =landuy,=0,q=1,..,m,q#.
— End {For}
— Forj = 1tom Parameter updating
o Determine 6, as the mean of the vectors x;€X with u;; = 1.
— End {For}
Until no change in 8" s occurs between two successive iterations
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CFO hard clustering algorithms

Remarks

Htis a batch, single clustering algorithm

Ht is a hard clustering algorithm that uses point representatives 9]- for the
clusters C;.

»t results from the optimization of the following cost function

(U, @)—Zl 12} il = 81

where U = [u;] and © = {6, ...
Ht is of iterative nature
Hnitially it places the representatives 6, at random positions in space.
»t gradually moves the representatives towards the centers of the true
clusters.
»n practice, its time complexity is O(q -m - N) (g is the number of iterations).
Ht requires the number of clusters m to be known a priori.
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Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm

Example 1: (a) Consider three two-dimensional normal distributions with mean
values:

H = [1’1]T’ H; = [35135]T1 U3 = [611]T
and respective covariance matrices

21 = [—(1).3 _2'3]'22: [0?3 Oﬂ'ZB: [0%7 Oﬂ

Generate a group of 100 vectors from each distribution. These form the data
set X.
6
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Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Example 2: (i) Consider two 2-dimensional Gaussian distributions N (u,, 2 ),
N(m,, 2,), with u; = [1,1]%, u, = [8,1]7, £, = 1.5] and X, = I. (ii) Generate
300 points from the 15t distribution and 10 points from the 2" distribution. (iii)
Set m = 2 and initialize randomly 6’s (0 =p,).

» After convergence the large group has been split into two clusters.

» Its right part has been assigned to the same cluster with the points of the
small group (see figure below).

» This indicates that k-means cannot deal accurately with clusters having
significantév different sizes.
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Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Remarks:

* k-means recovers compact clusters.

* The computational complexity of the k-means is O(Nmgq), where ( is the
number of iterations required for convergence. In practice, m and g are
significantly less than N, thus, k-means becomes eligible for processing
large data sets.

 Sequential (online) versions of the k-means, where the updating of the
representatives takes place immediately after the identification of the
representative that lies closer to the current input vector x;, have also been
proposed.

* Avariant of the k-means results if the number of vectors in each cluster is
constrained a priori.

Further remarks:
Some drawbacks of the original k-means accompanied with the variants of the
k-means that deal with them are discussed next. )
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Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm
Drawback 1: Different initial partitions may lead k-means to produces

different final clusterings, each one corresponding to a different local
minimum.

Strategies for facing drawback 1:
* Single run methods

—Use a sequential algorithm (discussed previously) to produce initial
estimates for 6's.

—Partition randomly the data set into m subsets and use their means as
initial estimates for 0’ s.
* Multiple run methods
—Create different partitions of X, run k-means for each one of them and
select the best result.
e Utilization of tools from stochastic optimization techniques (simulated
annealing, genetic algorithms etc).
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Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm
Drawback 2: Knowledge of the number of clusters m is required a priori.

Strategies for facing drawback 2:

* Employ splitting, merging and/or discarding operations of the clusters
resulting from k-means.

* Estimate m as follows:
—Run a sequential algorithm many times for different thresholds of
dissimilarity ©.
—Plot @ versus the number of clusters and identify the largest plateau in
the graph and set m equal to the value that corresponds to this plateau.
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Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm
Drawback 2: Knowledge of the number of clusters m is required a priori.
Strategies for facing drawback 2 (cont.):
 Estimate m as follows:
—Run the k-means algorithm for different values of the number of clusters
m.
— For each of the resulting clusterings compute the value of /.
—Plot / versus the number of clusters m and identify the most significant
knee in the graph. Its position indicates the number of physical clusters.

J
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Generalized Hard Algorithmic Scheme (GHAS)
The Isodata or k-Means or c-Means algorithm
Drawback 3: k-means is sensitive to outliers and noise.

Strategies for facing drawback 3:

e Discard all “small” clusters (they are likely to be formed by outliers).

 Use a k-medoids algorithm (see below), where a cluster is represented by
one of its points.

Drawback 4: k-means is not suitable for data with nominal (categorical)
coordinates.

Strategies for facing drawback 4:
 Use a k-medoids algorithm.
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