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Data 

𝑋 =  {𝒙𝑗 ∈  𝑅𝑙, 𝑗 = 1,… ,𝑁} 

Basic parameters - notation 

 Θ =  {𝜽𝑗, 𝑗 = 1,… ,𝑚} (𝜽𝑗 is the representative of cluster 𝐶𝑗). 

• Proximity between 𝒙𝑖 and 𝐶𝑗: 𝑑(𝒙𝑖, 𝜽𝑗) 
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Basic parameters – notation (cont.) 

 

   

 

• 𝑢𝑖𝑗  [0,1] quantifies the “relation” between 𝒙𝑖 and 𝐶𝑗. 

• “Large” (“small”) 𝑢𝑖𝑗 values indicate close (loose) relation   
 between 𝒙𝑖 and 𝐶𝑗.  

 
 
• 𝒖𝑖 : vector containing the 𝑢𝑖𝑗’s  of 𝒙𝑖 with all clusters. 

----- 
(*) Unless otherwise stated, the case where cluster representatives are used is 
considered. 

  𝑢𝑖𝑗 varies inversely proportional wrt 𝑑(𝒙𝑖, 𝜽𝑗). 

In the probabilistic case 
𝑢𝑖𝑗 stands for 𝑃(𝑗|𝒙𝑖) 

𝑈 =

𝑢11 𝑢12
𝑢21 𝑢22

⋯ 𝑢1𝑚
⋯ 𝑢2𝑚

⋮ ⋮
𝑢𝑁1 𝑢𝑁2

⋱ ⋮
⋯ 𝑢𝑁𝑚

≡

𝒖1

𝒖2

⋮
𝒖𝑁
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Aim: 
 To place the representatives into dense in data regions (physical 

clusters). 

How this is achieved: 
 Via the minimization of the following type of cost function (wrt 𝛩, 𝑈) 

 s.t. some constraints on 𝑈, 𝐶(𝑈). 

Intuition: 
 For fixed 𝜽𝑗’s,  𝐽(𝛩, 𝑈) is a weighted sum of fixed distances 𝑑(𝒙𝑖, 𝜽𝑗). 

  Minimization of 𝐽(𝛩, 𝑈) wrt 𝑢𝑖𝑗 instructs for large weights (𝑢𝑖𝑗) for 
small distances 𝑑(𝒙𝑖, 𝜽𝑗). 

(𝑞 ≥ 1) 

 For fixed 𝑢𝑖𝑗’s, minimization of 𝐽(𝛩, 𝑈) wrt 𝜽𝑗’s leads 𝜽𝑗’s closer to 
their most relative data points. 

For the probabilistic 
case 𝑑(𝒙𝑖 , 𝜽𝑗) is 

embedded in the log-
likelihood of suitably 
defined  exponential 

distributions 

𝐽 𝛩, 𝑈 =   𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑚

𝑗=1

𝑁

𝑖=1
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Partition  
matrix 

Basic types of algorithms: Constraints on 𝑈 = [𝑢𝑖𝑗] 

Hard: 
•𝑢𝑖𝑗 ∈ {0, 1} 

 
•  𝑢𝑖𝑗

𝑚
𝑗=1 = 1 

Fuzzy: 
•𝑢𝑖𝑗 ∈  (0,1) 

 
•  𝑢𝑖𝑗

𝑚
𝑗=1 = 1 

Possibilistic (>1 choices): 
•𝑢𝑖𝑗 ∈ (0, 1] 

𝛩 = {𝜽𝑗, 𝑗 = 1,… ,𝑚} 

Point 

k-dim. lin. manifold 
Compact set in k-
dim. lin. manifold 

Line Plane Line segment Polygon .  .  . .  .  . 

k-dim. nonlinear 
manifold 

k-means 
PCM 

FCM FCL FCV 

APCH 

Membership matrix Compatibility matrix 
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“Array of CFO algorithms” 
𝐶(𝑈) 

𝜽
𝑗 

algorithm 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

There are several unexplored areas (groups of algorithms) in this array. 
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General cost function opt. (CFO) scheme: 
 Initialize 𝛩 = 𝛩 0  

 
 𝑡 = 0 

 
 Repeat 

 
• 𝑈(𝑡)  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑈  𝐽(𝛩(𝑡), 𝑈) , s.t. 𝐶(𝑈(𝑡)) 

 
• 𝑡 = 𝑡 + 1 

 
• 𝛩(𝑡)  =  𝑎𝑟𝑔𝑚𝑖𝑛Θ  𝐽(𝛩, 𝑈(𝑡 − 1)) 
 

 Until convergence 
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Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

“Array of CFO algorithms” 
𝐶(𝑈) 
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“Array of CFO algorithms” 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

𝐶(𝑈) 

𝜽
𝑗 

c-means scheme 

c-lines scheme 

c-hyperellipsoids scheme 

c-hyperplanes scheme 
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CFO clustering algorithms: A loose presentation 

Constraints on 𝑈 

Type of 𝜽𝑗 

Type of 𝑑(𝒙𝑖, 𝜽𝑗) 

Hard 

Fuzzy 

Possibilistic 

Possibilistic + sparse 

.  
.  

. 

Po
in

t  

Li
n

e
ar

 M
an

if
o

ld
 

C
o

m
p

ac
t 

Se
t  

N
o

n
lin

e
ar

 M
an

if
o

ld
 

E.g.:If 𝜽𝑗 is a point, 
𝑑(𝒙𝑖, 𝜽𝑗) may be 
•Sq. Euclidean 
•𝑙𝑝 norm 
•Mahalanobis Subspace clustering 
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Hard clustering algorithms: 
Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁  be a set of data points. 
 
Each vector belongs exclusively to a single cluster. 
 
Each cluster is represented by a representative 𝜽𝑗 (point repr., hyperplane…). 

Let 𝛩 = {𝜽1, 𝜽2, … , 𝜽𝑚} 
 

Define 𝑢𝑖𝑗 =  
1, 𝑖𝑓 𝒙𝑖 ∈ 𝐶𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            and 𝑈 = 𝑢𝑖𝑗 𝑁𝑥𝑚
 

 
It is            𝑢𝑖𝑗 = 1𝑚

𝑗=1 , 𝑖 = 1, … ,𝑁 

 
Define the cost function  

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 =   𝑑(𝒙𝑖 , 𝜽𝑗)

𝒙𝑖∈𝐶𝑗

𝑚

𝑗=1
 

When 𝐽 𝑈, 𝛩  is minimized? 
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𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 =   𝑑(𝒙𝑖 , 𝜽𝑗)

𝒙𝑖∈𝐶𝑗

𝑚

𝑗=1
 

 
For fixed 𝜽𝒋‘s: When, for each 𝒙𝑖, only its distance from its closest 

representative is taken into account. 
 

This suggests to define 𝑢𝑖𝑗 =  
1, 𝑖𝑓 𝑑(𝒙𝒊, 𝜽𝑗) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑(𝒙𝒊, 𝜽𝑞)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
For fixed 𝑢𝑖𝑗‘s: Solve the following 𝑚 independent problems 

𝑚𝑖𝑛𝜽𝑗  𝑑(𝒙𝑖 , 𝜽𝑗)
𝒙𝑖∈𝐶𝑗

≡ 𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗
𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗  

 
Thus, the Generalized Hard Algorithmic Scheme (GHAS) is given below 



Generalized Hard Algorithmic Scheme (GHAS) 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, j=1,…,m. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of the partition 
o For 𝑗 = 1 to 𝑚 

                                    𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 𝑑(𝒙𝒊, 𝜽𝑗(𝑡)) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑(𝒙𝒊, 𝜽𝑞(𝑡))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-𝑗} 
 End {For-𝑖} 

 
𝑡 = 𝑡 + 1 

 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗(𝑡 − 1)
𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 , 𝑗 = 1, … ,𝑚 

 
 End {For-𝑗} 

 
• Until a termination criterion is met. 

CFO hard clustering algorithms  
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Generalized Hard Algorithmic Scheme (GHAS) 
Remarks: 
• In the update of each 𝜽𝑗, only the vectors 𝒙𝑖 for which 𝑢𝑖𝑗 𝑡 − 1 = 1 are 

used. 
 

• GHAS may terminate when either 
 ||𝛩(𝑡) − 𝛩(𝑡 − 1)|| < 𝜀  or 
 𝑈 remains unchanged for two successive iterations. 
 

• The two-step optimization procedure in GHAS does not necessarily lead to a 
local minimum of 𝐽(𝑈, 𝛩). 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
General comments 
• It is a special case of GHAS where 

Point representatives are used. 
The squared Euclidean distance is employed. 
 

• The cost function 𝐽 𝑈, 𝛩  becomes now 

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

• Applying GHAS in this case, it turns out that it converges to a minimum of 
the cost function. 
 

• Isodata recovers clusters that are as compact as possible. 
 

• For other choices of the distance (including the Euclidean), the algorithm 
converges but not necessarily to a minimum of 𝐽 𝑈, 𝛩 . 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
• Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, j=1,…,m. 
• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of the partition 
o For j=1 to 𝑚 

𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 ||𝒙𝒊 − 𝜽𝑗(𝑡)||

2 = 𝑚𝑖𝑛𝑞=1,…,𝑚||𝒙𝒊 − 𝜽𝑞(𝑡)||
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-𝑗} 
 End {For-𝑖} 
 𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 𝑡 =
 𝑢𝑖𝑗(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗(𝑡 − 1) 𝑁
𝑖=1

, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
• Until no change in 𝜽𝑗’ s occurs between two successive iterations 
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The k-means case. 
Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, 𝑗 = 1,… ,𝑚. 
Repeat 

 For 𝑖 = 1 to 𝑁  Partition determination 
o Determine the closest representative, say 𝜽𝑗, for 𝒙𝑖 
o Set 𝑢𝑖𝑗 = 1 and 𝑢𝑖𝑞 = 0, 𝑞 = 1,… ,𝑚, 𝑞𝑗. 

 End {For} 
 For 𝑗 = 1 to 𝑚  Parameter updating 

o Determine 𝜽𝑗 as the mean of the vectors 𝒙𝑖𝑋 with 𝑢𝑖𝑗 = 1. 
 End {For} 

Until no change in 𝜽j’ s occurs between two successive iterations 
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Remarks 
It is a batch, single clustering algorithm 
It is a hard clustering algorithm that uses point representatives 𝜽𝑗 for the 
clusters 𝐶𝑗. 
It results from the optimization of the following cost function 

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

    where 𝑈 = [𝑢𝑖𝑗] and 𝛩 = {𝜽1, … , 𝜽𝑚} 
It is of iterative nature. 
Initially it places the representatives 𝜽𝑗  at random positions in space. 
It gradually moves the representatives towards the centers of the true 
clusters. 
In practice, its time complexity is 𝑂(𝑞 ∙ 𝑚 ∙ 𝑁) (𝑞 is the number of iterations). 
It requires the number of clusters 𝑚 to be known a priori. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
Example 1: (a) Consider three two-dimensional normal distributions with mean 
values: 
                              𝝁1 = 1,1 𝑇,  𝝁2 = 3.5,3.5 𝑇,  𝝁3 = 6,1 𝑇  
and respective covariance matrices 

𝛴1 =
1 −0.3

−0.3 1
, 𝛴2 =

1 0.3
0.3 1

, 𝛴3 =
1 0.7
0.7 1

 

 
Generate a group of 100 vectors from each distribution. These form the data 
set 𝑋. 
 Confusion matrix for the 

results of k-means. 

Α =
94 3 3
0 100 0
9 0 91
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Example 2: (i) Consider two 2-dimensional Gaussian distributions 𝑁(𝝁1, 𝛴1), 
𝑁(𝝁2, 𝛴2), with 𝝁1 = [1, 1]𝑇, 𝝁2 = [8, 1]𝑇, Σ1 = 1.5𝐼 and Σ2 = 𝐼. (ii) Generate 
300 points from the 1st distribution and 10 points from the 2nd distribution. (iii) 
Set 𝑚 = 2 and initialize randomly 𝜽𝑗’s (𝜽𝑗𝝁𝑗). 
 
 After convergence the large group has been split into two clusters. 
 Its right part has been assigned to the same cluster with the points of the 

small group (see figure below). 
 This indicates that k-means cannot deal accurately with clusters having 

significantly different sizes. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
Remarks: 
• 𝑘-means recovers compact clusters. 
• The computational complexity of the 𝑘-means is 𝑂(𝑁𝑚𝑞), where q is the 

number of iterations required for convergence. In practice, 𝑚 and 𝑞 are 
significantly less than 𝑁, thus, 𝑘-means becomes eligible for processing 
large data sets. 

•  Sequential (online) versions of the 𝑘-means, where the updating of the 
representatives takes place immediately after the identification of the 
representative that lies closer to the current input vector 𝒙𝑖, have also been 
proposed. 

• A variant of the 𝑘-means results if the number of vectors in each cluster is 
constrained a priori. 

 
Further remarks: 
Some drawbacks of the original 𝑘-means accompanied with the variants of the 
𝑘-means that deal with them are discussed next. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 1: Different initial partitions may lead 𝑘-means to produces 
    different final clusterings, each one corresponding to a different local 

minimum. 
Strategies for facing drawback 1: 
• Single run methods 

Use a sequential algorithm (discussed previously) to produce initial 
estimates for 𝜽𝑗’s. 
Partition randomly the data set into m subsets and use their means as 

initial estimates for 𝜽𝑗’ s. 
• Multiple run methods 

Create different partitions of 𝑋, run 𝑘-means for each one of them and 
select the best result.  

• Utilization of tools from stochastic optimization techniques (simulated 
annealing, genetic algorithms etc). 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 2: Knowledge of the number of clusters 𝑚 is required a priori. 
 
Strategies for facing drawback 2: 
• Employ splitting, merging and/or discarding operations of the clusters 

resulting from 𝑘-means. 
 

• Estimate m as follows: 
Run a sequential algorithm many times for different thresholds of 

dissimilarity 𝛩. 
Plot 𝛩 versus the number of clusters and identify the largest plateau in 

the graph and set 𝑚 equal to the value that corresponds to this plateau. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 2: Knowledge of the number of clusters 𝑚 is required a priori. 
Strategies for facing drawback 2 (cont.): 
• Estimate 𝑚 as follows: 

Run the 𝒌-means algorithm for different values of the number of clusters 
𝑚. 
  For each of the resulting clusterings compute the value of 𝐽. 
Plot 𝐽 versus the number of clusters 𝑚 and identify the most significant 

knee in the graph. Its position indicates the number of physical clusters. 

Clustered data 

Non-clustered 
data 



CFO hard clustering algorithms  

26 

Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 3: 𝑘-means is sensitive to outliers and noise.  
 
Strategies for facing drawback 3: 
• Discard all “small” clusters (they are likely to be formed by outliers). 
• Use a 𝑘-medoids algorithm (see below), where a cluster is represented by 

one of its points. 
 
Drawback 4: 𝑘-means is not suitable for data with nominal (categorical) 
coordinates.  
 
Strategies for facing drawback 4: 
• Use a 𝑘-medoids algorithm. 
 


