Clustering algorithms Konstantinos Koutroumbas

<u>Unit 2</u>

Proximity measures between vectors and sets
Cluster (point) representatives

Proximity measures: Definitions

(B) Between sets

Let $D_i \subset X$, i = 1, ..., k, and $U = \{D_1, ..., D_k\}$. A **proximity measure** (similarity or dissimilarity) \mathscr{D} on U is a function $\mathscr{D}: U \times U \to \Re$ For dissimilarity measure the following properties should hold

1. $\exists d_0 \in \Re: 0 \leq d_0 \leq d(D_i, D_i) < +\infty, \forall D_i, D_i \in X$

$$2. \quad d(D_i, D_i) = d_0, \forall D_i \in X$$

3.
$$d(D_i, D_j) = d(D_j, D_i), \forall D_i, D_j \in X$$

If in addition:

$$4. \quad d(D_i, D_j) = d_0 \Leftrightarrow D_i = D_j$$

5.
$$d(D_i, D_k) \le d(D_i, D_j) + d(D_j, D_k), \forall D_i, D_j, D_k \in X$$

d is called **metric** dissimilarity measure.

Question: What is the definition when \wp stands for a similarity measure?

Proximity functions between a point and a set

Remark: Having in mind that a cluster is actually a set C, a proximity function between a point x and a set C actually **quantifies** the resemblance/relation of x with the cluster C.

Let
$$X = \{x_1, ..., x_N\}$$
 and $x \in X, C \subset X$
Definitions of $\wp(x, C)$:

(a) All points of *C* contribute to the definition of $\mathcal{P}(x, C)$.

Proximity functions between a point and a set

Definitions of $\wp(x, C)$ (cont.):

(b) A representative of C, r_{c} contributes to the definition of $\mathscr{P}(x, C)$.

In this case $\mathscr{P}(\mathbf{x}, C) = \mathscr{P}(\mathbf{x}, r_C)$

Typical **point** representatives are:

- The mean vector

$$m_p = \frac{1}{n_C} \sum_{y \in C} y$$
 n_c is the cardinality of C .

- The mean center

$$m_C \in C: \sum_{y \in C} d(m_C, y) \le \sum_{y \in C} d(z, y), \forall z \in C$$

- The median center
- The median center

 $\boldsymbol{m}_{med} \in C: med(d(\boldsymbol{m}_{med}, \boldsymbol{y}) | \boldsymbol{y} \in C) \leq med(d(\boldsymbol{z}, \boldsymbol{y}) | \boldsymbol{y} \in C), \forall \boldsymbol{z} \in C$

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain applications (e.g., object identification using clustering techniques).

Proximity functions between two sets

Remark: Having in mind that a cluster is actually a set *C*, a proximity function between two sets actually **quantifies** the resemblance/relation between two clusters.

Let $X = \{x_1, ..., x_N\}$ and $D_i, D_j \subset X$ with $n_i = |D_i|, n_j = |D_j|$. **Definitions** of $\mathcal{O}(D_i, D_j)$:

(a) All points of each set **contribute** to the definition of $\mathcal{P}(D_i, D_j)$.

- Max proximity function

$$\wp^{ss}_{max}(D_i, D_j) = max_{x \in D_i, y \in D_j} \&(x, y)$$

$$s^{ss}_{max}(D_i, D_j) = max_{x \in D_i, y \in D_j} \&(x, y)$$
- Min proximity function

$$\wp^{ss}_{min}(D_i, D_j) = min_{x \in D_i, y \in D_j} \&(x, y)$$

$$s^{ss}_{min}(D_i, D_j) = min_{x \in D_i, y \in D_j} \&(x, y)$$

$$d^{ss}_{avg}(D_i, D_j) = min_{x \in D_i, y \in D_j} \&(x, y)$$

$$d^{ss}_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} \&(x, y)$$

$$\wp^{ss}_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} \&(x, y)$$

$$s^{ss}_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} \&(x, y)$$

Proximity functions between two sets

- **Definitions** of $\mathscr{P}(D_i, D_j)$ (cont.):
- (b) Each set D_i is **represented** by a point representative m_i .
- Mean proximity function

$$\wp^{ss}_{mean}(D_i, D_j) = \wp(\boldsymbol{m}_i, \boldsymbol{m}_j)$$

$$d^{ss}_{mean}(D_i, D_j) = d(\boldsymbol{m}_i, \boldsymbol{m}_j)$$

$$s^{ss}_{mean}(D_i, D_j) = s(\boldsymbol{m}_i, \boldsymbol{m}_j)$$

$$n_i = |D_i|$$

$$n_j = |D_j|$$

$$d^{ss}_e(D_i, D_j) = \sqrt{\frac{n_i n_j}{n_i + n_j}} \wp(\boldsymbol{m}_i, \boldsymbol{m}_j) = \sqrt{\frac{n_i n_j}{n_i + n_j}} d(\boldsymbol{m}_i, \boldsymbol{m}_j)$$

$$s^{ss}_e(D_i, D_j) = \sqrt{\frac{n_i n_j}{n_i + n_j}} s(\boldsymbol{m}_i, \boldsymbol{m}_j)$$

NOTE: Proximity functions between a vector x and a set C may be derived from the above functions if we set $D_i = \{x\}$.

In the sequel we consider the cases:

- (A) Real-valued vectors dissimilarity measures (DMs)
- (B) Real-valued vectors similarity measures (SMs)
- (C) Discrete-valued vectors **similarity-dissimilarity** measures
- (D) Mixed-valued vectors **dissimilarity** and **similarity** measures

NOTE: Some of the measures below may seem "weird". However, they have been tailored for certain types of applications.

(A) Real-valued vectors – dissimilarity measures (DMs)

• Weighted l_p metric DMs

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^l w_i |x_i - y_i|^p\right)$$

Interesting instances are obtained for:

 $p = 1 \rightarrow d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^l w_i |x_i - y_i|$ (l_1 or Manhattan or city block dist.)

$$p = 2 \rightarrow d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^l w_i (x_i - y_i)^2}$$
 (l_2 or Euclidean distance)

 $p = \infty \rightarrow d_{\infty}(\mathbf{x}, \mathbf{y}) = max_{i=1,\dots,l}w_i|x_i - y_i|$ (l_{∞} or maximum distance)

NOTES:

✓ For $w_i = 1$, we obtain the unweighted versions of the l_p metrics.

✓ It holds: $d_{\infty}(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le d_1(\mathbf{x}, \mathbf{y})$

 $\boldsymbol{x} = [x_1, \dots, x_l]^T$ $\boldsymbol{y} = [y_1, \dots, y_l]^T$

 $^{1}/p$

(A) Real-valued vectors – dissimilarity measures (DMs)

Mahalanobis distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T B(\mathbf{x} - \mathbf{y})}$$

 $\boldsymbol{x} = [x_1, \dots, x_l]^T$ $\boldsymbol{y} = [y_1, \dots, y_l]^T$

B is symmetric, positive definite matrix • <u>Other measures</u> $-d_G(\mathbf{x}, \mathbf{y}) = -log_{10} \left(1 - \frac{1}{l} \sum_{i=1}^{l} \frac{|x_i - y_i|}{|b_i - a_i|} \right)$ • Features may take positive and/or negative values • Normalization per feature: $0 \le \frac{|x_i - y_i|}{|b_i - a_i|} \le 1$

where b_i and a_i are the maximum and the minimum values of the *i*-th feature, among the vectors of X (dependence on the current data set)

Cosine similarity measure

$$s_{cosine}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}^T \boldsymbol{y}}{||\boldsymbol{x}|| \cdot ||\boldsymbol{y}||}$$

where
$$||\mathbf{x}|| = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{\sum_{i=1}^l x_i^2}$$
 and $||\mathbf{y}|| = \sqrt{\mathbf{y}^T \mathbf{y}} = \sqrt{\sum_{i=1}^l y_i^2}.$ ¹⁰

- (B) Real-valued vectors -similarity measures (SMs)
- Pearson's correlation coefficient

$$r_{Pearson}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x_d}^T \boldsymbol{y_d}}{||\boldsymbol{x_d}|| \cdot ||\boldsymbol{y_d}||} \in [-1, 1]$$

where
$$\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$$
, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\bar{x} = \frac{1}{l} \sum_{i=1}^{l} x_{i}$ and $\bar{y} = \frac{1}{l} \sum_{i=1}^{l} y_{i}$, respectively.
A related dissimilarity measure:
 $\mathbf{x}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{x}, ..., x_{l} - \bar{x}]^{T}$, $\mathbf{y}_{d} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$ with
 $\mathbf{x}_{d} = [x_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T}$

$$D(\boldsymbol{x}, \boldsymbol{y}) = \frac{1 - r_{Pearson}(\boldsymbol{x}, \boldsymbol{y})}{2} \in [0, 1]$$

- (B) Real-valued vectors –similarity measures (SMs)
- Tanimoto distance

Algebraic manipulations give

NOTE: $s_T(x, y)$ is inversely proportional to the Euclidean distance and proportional to the inner product.

 $s_T(x, y) = \frac{x^T y}{||x||^2 + ||y||^2 - x^T y}$

 $s_T(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{1 + \frac{(\boldsymbol{x} - \boldsymbol{y})^T (\boldsymbol{x} - \boldsymbol{y})}{\boldsymbol{x}^T \boldsymbol{y}}}$

• <u>Other measure:</u>

$$s_{C}(x, y) = 1 - \frac{\sqrt{(x - y)^{T}(x - y)}}{||x|| + ||y||} \in [0, 1]$$

 $\boldsymbol{x} = [x_1, \dots, x_l]^T$ $\boldsymbol{y} = [y_1, \dots, y_l]^T$

The larger the

agreement between

x, y, the larger the

 $s_T(x, y)$.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) Let F_i be the discrete set of values the *i*-th feature (nominal/categorical attribute) can take $x = [x_1, ..., x_l]^T$

and n_i be its cardinality, i = 1, ..., l.

 $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$

Consider two *l*-dimensional vectors

$$\boldsymbol{x} = [x_1, x_2, \dots, \boldsymbol{x_k}, \dots, \boldsymbol{x_l}]^T \in F_1 \times F_2 \times \dots \times F_k \times \dots \times F_l$$
$$\boldsymbol{y} = [y_1, y_2, \dots, \boldsymbol{y_k}, \dots, \boldsymbol{y_l}]^T \in F_1 \times F_2 \times \dots \times F_k \times \dots \times F_l$$

The similarity measure s(x, y) is defined as

$$s(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{l} w_k s_k(x_k, y_k)$$

where $s_k(x_k, y_k)$ is the **feature** similarity measure between the values x_k, y_k of the *k*-th feature.

Thus, in order to define s(x, y), we need to **define** $s_k(x_k, y_k)$.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) Example: Let *l*=3 and

$$F_{1} = \{a, b, c\}$$
$$F_{2} = \{1, 2, 3, 4\}$$
$$F_{3} = \{A, B, C\}$$

$$\boldsymbol{x} = [x_1, \dots, x_l]^T$$
$$\boldsymbol{y} = [y_1, \dots, y_l]^T$$

14

Consider the vectors:

$$\mathbf{x} = [x_1, x_2, x_3]^T = [a, 2, A]^T$$

 $\mathbf{y} = [y_1, y_2, y_3]^T = [a, 3, B]^T$

That is,
$$x_1 = a, y_1 = a,$$

 $x_2 = 2, y_2 = 3,$
 $x_3 = A, y_3 = B.$

Thus

$$s_1(x_1, y_1) = s_1(a, a)$$

$$s_2(x_2, y_2) = s_2(2, 3)$$

$$s_3(x_3, y_3) = s_3(A, B)$$

and

$$s(\mathbf{x}, \mathbf{y}) = w_1 \cdot s_1(a, a) + w_2 \cdot s_2(2, 3) + w_3 \cdot s_3(A, B)$$

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) Let F_i be the **discrete** set of values the *i*-th (nominal/categorical) feature can take $\boldsymbol{x} = [x_1, \dots, x_l]^T$ $\boldsymbol{y} = [y_1, \dots, y_l]^T$

and n_i be its cardinality, i=1,...,l.

Recall that, in order to define s(x, y), we need to **define** $s_k(x_k, y_k)$.

Each $s_k(\cdot, \cdot)$ is completely **defined** by the associated similarity matrix.

If $F_k = \{1, 2, \dots, q\}$, the similarity matrix associated with the k-th feature is

	1	2		q
1	$s_k(1,1)$	$s_k(1,2)$		$s_k(1,q)$
2	$s_k(2,1)$	$s_k(2,2)$		$s_k(2,q)$
			•.	
q	$s_k(q,1)$	$s_k(q,2)$		$s_k(q,q)$

NOTE: (a) The similarity matrix is completely defined if all of its entries are defined. (b) Such a similarity matrix is associated with a similarity measure for a **single** discrete-valued feature.

 $s(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{l} w_k s_k(x_k, y_k)$

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs)
- There are **plenty** of **similarity measures** for single discrete-valued features. **Defining** such a **similarity measure** \Leftrightarrow **filling** the **entries** of the **similarity matrix**. The entries filling may be carried out by utilizing:
- Simply 0 and 1 entries
- The size of the data set *N*
- The number of attributes *n* involved in the current problem
- The cardinality of F_q , n_q .
- The number of times, $f_k(j)$, the *j*-th symbol is encountered as *k*-th feature in the data set
- The frequency of occurrence of the *j*-th symbol as *k*-th feature in the data set, defined as $\hat{p}_k(j) = f_k(j)/N$, or, in some cases, $p_k^2(j) = \frac{f_k(j)(f_k(j)-1)}{N(N-1)}$

	1	2		q
1	$s_k(1,1)$	$s_k(1,2)$		$s_k(1,q)$
2	$s_k(2,1)$	$s_k(2,2)$		$s_k(2,q)$
			•.	
q	$s_k(q,1)$	$s_k(q,2)$		$s_k(q,q)$

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) These similarity measures can be categorized in terms of:
- ✓ The way they fill the entries of the similarity matrix
 - I. Fill the diagonal entries only
 - **II.** Fill the non-diagonal entries only
 - III. Fill both diagonal and non-diagonal entries
- ✓ The <u>arguments they use to define the measure</u> (information theoretic, probabilistic etc).

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) Indicative measures from category I: Fill the diagonal entries only.

Goodall3 measure

$$s_{k}(x_{k}, y_{k}) = \begin{cases} 1 - p_{k}^{2}(x_{k}), & \text{if } x_{k} = y_{k} \\ 0, & \text{otherwise} \end{cases}, \quad w_{k} = \frac{1}{l} \\ \circ & \circ \\ s_{k}(x_{k}, y_{k}) \in [0, 1 - \frac{2}{N(N-1)}] \end{cases}$$

Comment: It **assigns** a high similarity if the matching values are infrequent regardless of the frequencies of the other values.

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) Indicative measures from category II: Fill the non-diagonal entries only.
- Eski

Eskin measure

$$s_k(x_k, y_k) = \begin{cases} 1, & \text{if } x_k = y_k \\ \frac{n_k^2}{n_k^2 + 2}, & \text{otherwise} \end{cases}, \quad w_k = \frac{1}{l}$$

Comments:

- It **gives** more weight to mismatches for attributes that take **many** values.
- It has been used for record-based network intrusion detection data.

Comments:

- It **assigns** lower similarity to mismatches on **more frequent** values..
- It is related to the concept of inverse document frequency which comes from information retrieval, where it is used to signify the relative number of documents that contain a specific word. 19

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) Indicative measures from category III: Fill both diagonal & non-diagonal entries
- Lin measure

$$s_k(x_k, y_k) = \begin{cases} 2 \cdot \log \hat{p}_k(x_k), & \text{if } x_k = y_k \\ 2 \cdot \log(\hat{p}_k(x_k) + \hat{p}_k(y_k)), & \text{otherwise'} \end{cases}$$

 $w_k = \frac{1}{\sum_{i=1}^{l} (\log \hat{p}_i(x_i) + \log \hat{p}_i(y_i))}$

$$s_k(x_k, y_k) \in [-2logN, 0]$$
 for match
 $s_k(x_k, y_k) \in [-2log\frac{N}{2}, 0]$ for mismatch

Comments:

It gives

- higher weight to matches on frequent values, and
- lower weight to mismatches on infrequent values.

It has been **used** in word similarity procedure.

(*) S. Boriah, V. Chandola, and V. Kumar, "Similarity measures for categorical data: A Comparative Evaluation," in *Proc. SDM*, pp. 243-254, 2008.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs				
	Feat. 1	Feat. 2	Feat. 3	Exercise 1: Consider the data set X given in the
x_1	а	1	А	adjacent table.
<i>x</i> ₂	b	4	В	Determine the similarity between the vectors
x_3	а	3	В	$\boldsymbol{x} = [\boldsymbol{a}, \boldsymbol{2}, \boldsymbol{A}]^T$ and
x_4	С	2	А	$\mathbf{y} = [\mathbf{a}, 3, \mathbf{B}]^T$ utilizing
x_5	а	2	А	
x_6	а	2	В	(a) The overlap measure
x_7	b	1	В	(b) The Goodall3 measure
x_8	С	1	А	(c) The Eskin measure
x_9	b	1	А	(d) The IOF measure
x_{10}	, a	3	В	(e) The Lin measure.
<i>x</i> ₁₁	а	4	А	Exercise 2: Define corresponding dissimilarity
<i>x</i> ₁₂	b b	4	С	measures for the above defined similarity
<i>x</i> ₁₃	b b	3	А	measures.
x_{14}	L C	2	А	
x_{15}	; a	2	С	21

(D) Mixed-valued vectors –similarity measures (SMs) Here some coordinates of the feature vectors are

real-valued, while others are discrete-valued.

How to **measure** the **proximity** between *x* and *y*?

- Adopt a proximity measure suitable for real-valued vectors (only for ordinal discrete-valued features).
- Convert the real-valued features to discrete-valued ones (e.g., via quantization) and employ a discrete proximity measure (again, only for ordinal discrete-valued features).
- For the more general case where nominal, ordinal, interval-scaled and ratioscaled features co-exist, we treat each one of them separately, as follows:

(D) Mixed-valued vectors -similarity measures (SMs)

The similarity between x and y is defined as:

$$s(\boldsymbol{x}, \boldsymbol{y}) = \frac{\sum_{k=1}^{l} s_k(x_k, y_k)}{\sum_{k=1}^{l} w_k}$$

where:

- $w_k = 0$, if **at least one** of x_k and y_k is **undefined** or (optionally) both x_k and y_k are equal to 0. Otherwise $w_k = 1$.
- If x_k and y_k are **binary**, $s_k(x_k, y_k) = \begin{cases} 1, & if x_k = y_k = 1 \ (or \ x_k = y_k) \\ 0, & otherwise \end{cases}$
- If x_k and y_k are nominal or ordinal, $s_k(x_k, y_k) = \begin{cases} 1, & x_k = y_k \\ 0, & otherwise \end{cases}$
- If x_k and y_k are **interval** or **ratio scaled**-valued

 $s_k(x_k, y_k) = 1 - \frac{|x_k - y_k|}{r_k}$ This is the overlap measure. Other options can also be used.

 $\boldsymbol{x} = [x_1, \dots, x_l]^T$ $\boldsymbol{y} = [y_1, \dots, y_l]^T$

where r_k is the width of the interval where the k-th coordinates of the vectors of X lie.

(D) Mixed-valued vectors –similarity measures (SMs)

Exercise 2: Consider the data set given in the following table. Each row corresponds to a vector and each column to a feature. The first three features are ratio scaled, the 4th one is nominal and the 5th one is ordinal. Utilizing the previous similarity measure, compute the similarities between any pair of feature vectors.

Company	1 st year budget	2 nd year budget	3 rd year budget	Activity abroad	Rate of services 0: not good 1: good 2: very good
$1(x_1)$	1.2	1.5	1.9	0	1
2 (x ₂)	0.3	0.4	0.6	0	0
3 (x ₃)	10	13	15	1	2
$4(x_4)$	6	6	7	1	1

Fuzzy measures – an alternative perspective

- Let $x \in [0,1]^l$.
- In this context, x_k is not the outcome of a measuring device.

- Rather, it **indicates** the degree to which x possesses the k-th characteristic.
- The closer the x_k to 1 (0), the **more likely** is that x possesses (does not possess) the k-th characteristic.
- As x_k approaches 0.5, the certainty about the possession or not of the *i*-th feature from x decreases.

• Let

$$\mathbf{x} = [x_1, x_2, \dots, x_k, \dots, x_l]^T \in [0, 1]^l \mathbf{y} = [y_1, y_2, \dots, y_k, \dots, y_l]^T \in [0, 1]^l$$

• A measure of similarity between x_k and y_k is the following

$$s(x_k, y_k) = \max(\min(1 - x_k, 1 - y_k), \min(x_k, y_k))$$

Then, as measure of similarity between x and y we can use the following

$$s^{q}(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{l} s(x_{k}, y_{k})^{q}\right)^{1/q}, q \in [1, +\infty)$$
 ²⁵

Fuzzy measures – an alternative perspective

Exercise 3: Let l = 3 and q = 1.

(a) Consider the vectors $\mathbf{x}_1 = [1,1,1]^T$, $\mathbf{x}_2 = [0,0,1]^T$, $\mathbf{x}_3 = [\frac{1}{2}, \frac{1}{3}, \frac{1}{4}]^T$, $\mathbf{x}_4 = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]^T$. Determine the similarities $s^1(\mathbf{x}_i, \mathbf{x}_i)$, i = 1,2,3,4.

(b) Consider the vectors $\boldsymbol{y}_1 = [\frac{3}{4}, \frac{3}{4}, \frac{3}{4}]^T$, $\boldsymbol{y}_2 = [1, 1, 1]^T$, $\boldsymbol{y}_3 = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}]^T$, $\boldsymbol{y}_4 = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]^T$. Determine the similarities $s^1(\boldsymbol{y}_i, \boldsymbol{y}_j)$, $i, j = 1, 2, 3, 4, i \neq j$.

(c) Draw your conclusions.