Clustering algorithms Konstantinos Koutroumbas

Unit 2

- Proximity measures between vectors and sets
- Cluster (point) representatives

Proximity measures: Definitions

(B) Between sets

Let $D_{i} \subset X, \quad i=1, \ldots, k$, and $U=\left\{D_{1}, \ldots, D_{k}\right\}$.
A proximity measure (similarity or dissimilarity) \wp on U is a function

$$
\wp: U \times U \rightarrow \Re
$$

For dissimilarity measure the following properties should hold 1. $\exists d_{0} \in \mathfrak{R}: 0 \leq d_{0} \leq d\left(D_{i}, D_{j}\right)<+\infty, \forall D_{i}, D_{j} \in X$
2. $d\left(D_{i}, D_{i}\right)=d_{0}, \forall D_{i} \in X$
3. $d\left(D_{i}, D_{j}\right)=d\left(D_{j}, D_{i}\right), \forall D_{i}, D_{j} \in X$

Question: What is the definition when \wp stands for a similarity measure?
If in addition:
4. $d\left(D_{i}, D_{j}\right)=d_{0} \Leftrightarrow D_{i}=D_{j}$
5. $d\left(D_{i}, D_{k}\right) \leq d\left(D_{i}, D_{j}\right)+d\left(D_{j}, D_{k}\right), \forall D_{i}, D_{j}, D_{k} \in X$
d is called metric dissimilarity measure.

Proximity functions between a point and a set

Remark: Having in mind that a cluster is actually a set C, a proximity function between a point x and a set C actually quantifies the resemblance/relation of x with the cluster C.
Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ and $x \in X, C \subset X$
Definitions of $\wp(x, C)$:
(a) All points of C contribute to the definition of $\wp(x, C)$.

$$
\begin{aligned}
& d^{p s}{ }_{\text {max }}(x, C)=\max _{y \in C} d(x, y) \\
& s^{p s}{ }_{\text {max }}(x, C)=\max _{y \in C} s(x, y)
\end{aligned}
$$

- Max proximity function

$$
\wp_{\max }^{p s}(\boldsymbol{x}, C)=\max _{\boldsymbol{y} \in C} \wp(\boldsymbol{x}, \boldsymbol{y})
$$

- Min proximity function

$$
\begin{aligned}
d^{p s}{ }_{\text {in }}(x, C) & =\min _{y \in C} d(x, y) \\
s^{p s}{ }_{\min }(x, C) & =\min _{y \in C} S(x, y)
\end{aligned}
$$

$$
\wp^{p s}{ }_{\min }(\boldsymbol{x}, C)=\min _{\boldsymbol{y} \in C} \wp(\boldsymbol{x}, \boldsymbol{y}){ }_{d^{p s}{ }_{\text {avg }}(x, C)=\frac{1}{n_{C}} \sum_{y \in C} d(x, y)}
$$

- Average proximity function

$$
\wp_{\text {avg }}^{p s}(\boldsymbol{x}, C)=\frac{1}{n_{C}} \sum_{\boldsymbol{y} \in C} \wp(\boldsymbol{x}, \boldsymbol{y}) \quad \begin{aligned}
& n_{C} \text { is the } \\
& \text { cardinality of } C_{3}
\end{aligned}
$$

Proximity functions between a point and a set

Definitions of $\wp(x, C)$ (cont.):
(b) A representative of C, r_{C}, contributes to the definition of $\wp(x, C)$. In this case $\wp(x, C)=\wp\left(x, r_{C}\right)$

Typical point representatives are:

- The mean vector

$$
\boldsymbol{m}_{p}=\frac{1}{n_{C}} \sum_{\boldsymbol{y} \in C} \boldsymbol{y} \quad \begin{aligned}
& n_{C} \text { is the } \\
& \text { cardinality of } C .
\end{aligned}
$$

- The mean center

$$
\boldsymbol{m}_{C} \in C: \sum_{\boldsymbol{y} \in C} d\left(\boldsymbol{m}_{\boldsymbol{C}}, \boldsymbol{y}\right) \leq \sum_{\boldsymbol{y} \in C} d(\boldsymbol{z}, \boldsymbol{y}), \forall \boldsymbol{z} \in C
$$

- The median center
d: dissimilarity measure.

$$
\boldsymbol{m}_{\text {med }} \in C: \operatorname{med}\left(d\left(\boldsymbol{m}_{\text {med }}, \boldsymbol{y}\right) \mid \boldsymbol{y} \in C\right) \leq \operatorname{med}(d(\boldsymbol{z}, \boldsymbol{y}) \mid \boldsymbol{y} \in C), \forall \mathbf{z} \in C
$$

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain applications (e.g., object identification using clustering techniques).

Proximity functions between two sets

Remark: Having in mind that a cluster is actually a set C, a proximity function between two sets actually quantifies the resemblance/relation between two clusters.
Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ and $D_{i}, D_{j} \subset X$ with $n_{i}=\left|D_{i}\right|, n_{j}=\left|D_{j}\right|$.
Definitions of $\wp\left(D_{i}, D_{j}\right)$:
(a) All points of each set contribute to the definition of $\wp\left(D_{i}, D_{j}\right)$.

- Max proximity function

$$
\text { unction } \wp^{s s}{ }_{\max }\left(D_{i}, D_{j}\right)=\max _{x \in D_{i}, \boldsymbol{y} \in D_{i}}^{\circ} \wp(\boldsymbol{x}, \boldsymbol{y})
$$

- Min proximity function

$$
\wp^{s s}{ }_{\text {min }}\left(D_{i}, D_{j}\right)=\min _{x \in D_{i}, \boldsymbol{y} \in D_{j}}^{\wp} \not(\boldsymbol{x}, \boldsymbol{y})
$$

- Average proximity function

$$
\wp_{a v g}^{s s}\left(D_{i}, D_{j}\right)=\frac{1}{n_{i} n_{j}} \sum_{x \in D_{i}} \sum_{y \in D_{j}} \wp(\boldsymbol{x}, \boldsymbol{y})
$$

Proximity functions between two sets

Definitions of $\wp\left(D_{i}, D_{j}\right)$ (cont.):
(b) Each set D_{i} is represented by a point representative \boldsymbol{m}_{i}.

- Mean proximity function

$$
\wp^{s s}{ }_{\text {mean }}\left(D_{i}, D_{j}\right)=\wp\left(\boldsymbol{m}_{i}, \boldsymbol{m}_{j}\right)
$$

NOTE: Proximity functions between a vector x and a set C may be derived from the above functions if we set $D_{i}=\{\boldsymbol{x}\}$.

Proximity measures between vectors

In the sequel we consider the cases:
(A) Real-valued vectors - dissimilarity measures (DMs $久 \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}$
(B) Real-valued vectors - similarity measures (SMs)
(C) Discrete-valued vectors - similarity-dissimilarity measures
(D) Mixed-valued vectors - dissimilarity and similarity measures

NOTE: Some of the measures below may seem "weird". However, they have been tailored for certain types of applications.

Proximity measures between vectors

(A) Real-valued vectors - dissimilarity measures (DMs)

- Weighted l_{p} metric DMs

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

$$
d_{p}(\boldsymbol{x}, \boldsymbol{y})=\left(\sum_{i=1}^{l} w_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

Interesting instances are obtained for:
$p=1 \rightarrow d_{1}(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{l} w_{i}\left|x_{i}-y_{i}\right|$ (l_{1} or Manhattan or city block dist.)
$p=2 \rightarrow d_{2}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{i=1}^{l} w_{i}\left(x_{i}-y_{i}\right)^{2}}$ (l_{2} or Euclidean distance)
$p=\infty \rightarrow d_{\infty}(\boldsymbol{x}, \boldsymbol{y})=\max _{i=1, \ldots, l} w_{i}\left|x_{i}-y_{i}\right|\left(l_{\infty}\right.$ or maximum distance $)$

NOTES:

\checkmark For $w_{i}=1$, we obtain the unweighted versions of the l_{p} metrics.
\checkmark It holds: $d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{2}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}(\boldsymbol{x}, \boldsymbol{y})$

Proximity measures between vectors

(A) Real-valued vectors - dissimilarity measures (DMs)

- Mahalanobis distance

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

B is symmetric, positive definite matrix

- Other measures
$-d_{G}(\boldsymbol{x}, \boldsymbol{y})=-\log _{10}\left(1-\frac{1}{l} \sum_{i=1}^{l} \frac{\left|x_{i}-y_{i}\right|}{\left|b_{i}-a_{i}\right|}\right) \infty$
- Features may take positive and/or negative values
- Normalization per feature:
where b_{i} and a_{i} are the maximum and the minimum values of the i-th feature, among the vectors of X (dependence on the current data set)
$-d_{Q}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\frac{1}{l} \sum_{i=1}^{l}\left(\frac{x_{i}-y_{i}}{x_{i}+y_{i}}\right)^{2}} \infty \quad \begin{gathered}\begin{array}{c}\text { Features may take only } \\ \text { non-negative values } \\ \\ \text { Normalization per feature: } \\ 0 \leq \frac{\left|x_{i}-y_{i}\right|}{x_{i}+y_{i}} \leq 1\end{array}\end{gathered}$

Proximity measures between vectors

(B) Real-valued vectors -similarity measures (SMs)

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

- Inner product

$$
\underbrace{}_{\text {inner }}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{y}=\sum_{i=1}^{l} x_{i} y_{i}
$$

- Cosine similarity measure

$$
s_{\text {cosine }}(x, y)=\frac{x^{\boldsymbol{T}} \boldsymbol{y}}{\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\|}
$$

where $||x||=\sqrt{\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{x}}=\sqrt{\sum_{i=1}^{l} x_{i}^{2}}$ and $\|\boldsymbol{y}\|=\sqrt{\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{y}}=\sqrt{\sum_{i=1}^{l} y_{i}^{2}}$.

Proximity measures between vectors

(B) Real-valued vectors -similarity measures (SMs)

- Pearson's correlation coefficient

$$
r_{\text {Pearson }}(x, y)=\frac{\boldsymbol{x}_{\boldsymbol{d}}{ }^{\boldsymbol{T}} \boldsymbol{y}_{\boldsymbol{d}}}{\left\|\boldsymbol{x}_{\boldsymbol{d}}\right\| \cdot\left\|\boldsymbol{y}_{\boldsymbol{d}}\right\|} \in[-1,1]
$$

where $\boldsymbol{x}_{d}=\left[x_{1}-\bar{x}, \ldots, x_{l}-\bar{x}\right]^{T}, y_{d}=\left[y_{1}-\bar{y}, \ldots, y_{l}-\bar{y}\right]^{T}$ with
$\bar{x}=\frac{1}{l} \sum_{i=1}^{l} x_{i}$ and $\bar{y}=\frac{1}{l} \sum_{i=1}^{l} y_{i}$, respectively.
A related dissimilarity measure:

$$
D(\boldsymbol{x}, \boldsymbol{y})=\frac{1-r_{\text {Pearson }}(\boldsymbol{x}, \boldsymbol{y})}{2} \in[0,1]
$$

Proximity measures between vectors

(B) Real-valued vectors -similarity measures (SMs)

- Tanimoto distance

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

Algebraic manipulations give

$$
s_{T}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{y})}{\boldsymbol{x}^{T} \boldsymbol{y}}}
$$

$$
s_{T}(x, y)=\frac{x^{T} y}{\|x\|^{2}+\|y\|^{2}-x^{T} y}
$$

NOTE: $s_{T}(\boldsymbol{x}, \boldsymbol{y})$ is inversely proportional to the Euclidean distance and proportional to the inner product.

- Other measure:

$$
s_{C}(\boldsymbol{x}, \boldsymbol{y})=1-\frac{\sqrt{(\boldsymbol{x}-\boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{y})}}{\|\boldsymbol{x}\|+\|\boldsymbol{y}\|} \in[0,1]
$$

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) Let F_{i} be the discrete set of values the i-th feature (nominal/categorical attribute) can take and n_{i} be its cardinality, $i=1, \ldots, l$.

Consider two l-dimensional vectors

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{l}\right]^{T} \in F_{1} \times F_{2} \times \ldots \mathrm{x} F_{k} \mathrm{x} \ldots \mathrm{x} F_{l} \\
& \boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{k}, \ldots, y_{l}\right]^{T} \in F_{1} \times F_{2} \times \ldots \mathrm{x} F_{k} \mathrm{x} \ldots \mathrm{x} F_{l}
\end{aligned}
$$

The similarity measure $s(\boldsymbol{x}, \boldsymbol{y})$ is defined as

$$
s(\boldsymbol{x}, \boldsymbol{y})=\sum_{k=1}^{l} w_{k} s_{k}\left(x_{k}, y_{k}\right)
$$

where $s_{k}\left(x_{k}, y_{k}\right)$ is the feature similarity measure between the values x_{k}, y_{k} of the k-th feature.

Thus, in order to define $s(\boldsymbol{x}, \boldsymbol{y})$, we need to define $s_{k}\left(x_{k}, y_{k}\right)$.

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs)

Example: Let $l=3$ and

$$
\begin{gathered}
F_{1}=\{a, b, c\} \\
F_{2}=\{1,2,3,4\} \\
F_{3}=\{A, B, C\}
\end{gathered}
$$

Consider the vectors:

$$
\begin{aligned}
& x=\left[x_{1}, x_{2}, x_{3}\right]^{T}=[a, 2, A]^{T} \\
& y=\left[y_{1}, y_{2}, y_{3}\right]^{T}=[a, 3, B]^{T}
\end{aligned}
$$

That is, $x_{1}=a, y_{1}=a$,

$$
\begin{aligned}
& x_{2}=2, y_{2}=3 \\
& x_{3}=A, y_{3}=B .
\end{aligned}
$$

Thus

$$
\begin{gathered}
s_{1}\left(x_{1}, y_{1}\right)=s_{1}(a, a) \\
s_{2}\left(x_{2}, y_{2}\right)=s_{2}(2,3) \\
s_{3}\left(x_{3}, y_{3}\right)=s_{3}(A, B)
\end{gathered}
$$

and

$$
s(\boldsymbol{x}, \boldsymbol{y})=w_{1} \cdot s_{1}(a, a)+w_{2} \cdot s_{2}(2,3)+w_{3} \cdot s_{3}(A, B)
$$

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) Let F_{i} be the discrete set of values the i-th (nominal/categorical) feature can take and n_{i} be its cardinality, $i=1, \ldots, l$.

Recall that, in order to define $s(\boldsymbol{x}, \boldsymbol{y})$, we need to define $s_{k}\left(x_{k}, y_{k}\right)$.
Each $s_{k}(\cdot, \cdot)$ is completely defined by the associated similarity matrix.
If $F_{k}=\{1,2, \ldots, q\}$, the similarity matrix associated with the k-th feature is

	1	2	\ldots	q
1	$s_{k}(1,1)$	$s_{k}(1,2)$	\ldots.	$s_{k}(1, q)$
2	$s_{k}(2,1)$	$s_{k}(2,2)$..	$s_{k}(2, q)$
...	\ddots	...
q	$s_{k}(q, 1)$	$s_{k}(q, 2)$.	.
$s_{k}(q, q)$				

NOTE: (a) The similarity matrix is completely defined if all of its entries are defined.
(b) Such a similarity matrix is associated with a similarity measure for a single discrete-valued feature.

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) There are plenty of similarity measures for single discrete-valued features. Defining such a similarity measure \Leftrightarrow filling the entries of the similarity matrix. The entries filling may be carried out by utilizing:

- Simply 0 and 1 entries
- The size of the data set N
- The number of attributes n involved in the current problem
- The cardinality of F_{q}, n_{q}.
- The number of times, $f_{k}(j)$, the j-th symbol is encountered as k-th feature in the data set
- The frequency of occurrence of the j-th symbol as k-th feature in the data set, defined as $\hat{p}_{k}(j)=f_{k}(j) / N$, or, in some cases, $p_{k}{ }^{2}(j)=\frac{f_{k}(j)\left(f_{k}(j)-1\right)}{N(N-1)}$

	1	2	\ldots	q
1	$s_{k}(1,1)$	$s_{k}(1,2)$	\ldots.	$s_{k}(1, q)$
2	$s_{k}(2,1)$	$s_{k}(2,2)$..	$s_{k}(2, q)$
...	\ddots	...
q	$s_{k}(q, 1)$	$s_{k}(q, 2)$.	.
$s_{k}(q, q)$				

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) These similarity measures can be categorized in terms of:
\checkmark The way they fill the entries of the similarity matrix
I. Fill the diagonal entries only
II. Fill the non-diagonal entries only
III. Fill both diagonal and non-diagonal entries
\checkmark The arguments they use to define the measure (information theoretic, probabilistic etc).

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) Indicative measures from category I: Fill the diagonal entries only.

- Overlap measure
$s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{ll}1, & \text { if } x_{k}=y_{k} \\ 0, & \text { otherwise }\end{array}, \quad w_{k}=\frac{1}{l}\right.$

- Goodall3 measure

$$
s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cl}
1-p_{k}^{2}\left(x_{k}\right), & \text { if } x_{k}=y_{k} \\
0, & \text { otherwise }
\end{array}, \quad w_{k}=\frac{1}{l}\right.
$$

Comment: It assigns a high similarity if the matching values are infrequent regardless of the frequencies of the other values.

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) Indicative measures from category II: Fill the non-diagonal entries onlv.

- Eskin measure

Eskin measure
$s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cl}1, & \text { if } x_{k}=y_{k} \\ \frac{n_{k}{ }^{2}}{n_{k}{ }^{2}+2}, & \text { otherwise }, \quad . \quad w_{k}=\frac{1}{l}\end{array}\right.$

Comments:

- It gives more weight to mismatches for attributes that take many values.
- It has been used for record-based network intrusion detection data.
- Inverse Occurrence Frequency (IOF) measure $s_{k}\left(x_{k}, y_{k}\right) \in\left[\frac{1}{1+\left(\log \frac{N}{2}\right)^{2}}, 1\right]$ $s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cl}1, & \text { if } x_{k}=y_{k} \\ \frac{1}{1+\log f_{k}\left(x_{k}\right) \cdot \log f_{k}\left(y_{k}\right)}, & \text { otherwise }\end{array}, \quad w_{k}=\frac{1}{l}\right.$

Comments:

- It assigns lower similarity to mismatches on more frequent values..
- It is related to the concept of inverse document frequency which comes from information retrieval, where it is used to signify the relative number of documents that contain a specific word.

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs) Indicative measures from category III: Fill both diagonal \& non-diagonal entries

- Lin measure

$$
\begin{aligned}
& s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cl}
2 \cdot \log \hat{p}_{k}\left(x_{k}\right), & \text { if } x_{k}=y_{k} \\
2 \cdot \log \left(\hat{p}_{k}\left(x_{k}\right)+\hat{p}_{k}\left(y_{k}\right)\right), & \text { otherwise }, \\
w_{k}=\frac{1}{\sum_{i=1}^{l}\left(\log \hat{p}_{i}\left(x_{i}\right)+\log \hat{p}_{i}\left(y_{i}\right)\right)}
\end{array},\right.
\end{aligned}
$$

Comments:

It gives

- higher weight to matches on frequent values, and
- lower weight to mismatches on infrequent values.

It has been used in word similarity procedure.
${ }^{(*)}$ S. Boriah, V. Chandola, and V. Kumar, "Similarity measures for categorical data: A Comparative Evaluation," in Proc. SDM, pp. 243-254, 2008.

Proximity measures between vectors

(C) Discrete-valued vectors - similarity \& dissimilarity measures (SMs-DMs)

	Feat. 1	Feat. 2	Feat. 3
\boldsymbol{x}_{1}	a	1	A
\boldsymbol{x}_{2}	b	4	B
\boldsymbol{x}_{3}	a	3	B
\boldsymbol{x}_{4}	c	2	A
\boldsymbol{x}_{5}	a	2	A
\boldsymbol{x}_{6}	a	2	B
\boldsymbol{x}_{7}	b	1	B
\boldsymbol{x}_{8}	c	1	A
\boldsymbol{x}_{9}	b	1	A
\boldsymbol{x}_{10}	a	3	B
\boldsymbol{x}_{11}	a	4	A
\boldsymbol{x}_{12}	b	4	C
\boldsymbol{x}_{13}	b	3	A
\boldsymbol{x}_{14}	c	2	A
\boldsymbol{x}_{15}	a	2	C

Exercise 1: Consider the data set X given in the adjacent table.
Determine the similarity between the vectors
$x=[a, 2, A]^{T}$ and
$y=[a, 3, B]^{T}$ utilizing
(a) The overlap measure
(b) The Goodall3 measure
(c) The Eskin measure
(d) The IOF measure
(e) The Lin measure.

Exercise 2: Define corresponding dissimilarity measures for the above defined similarity measures.

Proximity measures between vectors

(D) Mixed-valued vectors -similarity measures (SMs) Here some coordinates of the feature vectors are real-valued, while others are discrete-valued.

How to measure the proximity between \boldsymbol{x} and \boldsymbol{y} ?

- Adopt a proximity measure suitable for real-valued vectors (only for ordinal discrete-valued features).
- Convert the real-valued features to discrete-valued ones (e.g., via quantization) and employ a discrete proximity measure (again, only for ordinal discrete-valued features).
- For the more general case where nominal, ordinal, interval-scaled and ratioscaled features co-exist, we treat each one of them separately, as follows:

Proximity measures between vectors

(D) Mixed-valued vectors -similarity measures (SMs) The similarity between x and y is defined as:

$$
s(\boldsymbol{x}, \boldsymbol{y})=\frac{\sum_{k=1}^{l} s_{k}\left(x_{k}, y_{k}\right)}{\sum_{k=1}^{l} w_{k}}
$$

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

where:

- $w_{k}=0$, if at least one of x_{k} and y_{k} is undefined or (optionally) both x_{k} and y_{k} are equal to 0 . Otherwise $w_{k}=1$.
- If x_{k} and y_{k} are binary, $s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cc}1, & \text { if } x_{k}=y_{k}=1\left(\text { or } x_{k}=y_{k}\right) \\ 0, & \text { otherwise }\end{array}\right.$
- If x_{k} and y_{k} are nominal or ordinal, $s_{k}\left(x_{k}, y_{k}\right)=\left\{\begin{array}{cc}1, & x_{k}=y_{k} \\ 0, & \text { otherwise }\end{array}\right.$.
- If x_{k} and y_{k} are interval or ratio scaled-valued

$$
s_{k}\left(x_{k}, y_{k}\right)=1-\frac{\left|x_{k}-y_{k}\right|}{r_{k}}
$$

This is the overlap measure. Other options can also be used.
where r_{k} is the width of the interval where the k-th coordinates of the vectors of X lie.

Proximity measures between vectors

(D) Mixed-valued vectors -similarity measures (SMs)

Exercise 2: Consider the data set given in the following table. Each row corresponds to a vector and each column to a feature. The first three features are ratio scaled, the $4^{\text {th }}$ one is nominal and the $5^{\text {th }}$ one is ordinal. Utilizing the previous similarity measure, compute the similarities between any pair of feature vectors.

Company	$1^{\text {st }}$ year budget	$2^{\text {nd }}$ year budget	$3^{\text {rd }}$ year budget	Activity abroad	Rate of services 0: not good 1: good 2: very good
$1\left(\boldsymbol{x}_{1}\right)$	1.2	1.5	1.9	0	1
$2\left(\boldsymbol{x}_{2}\right)$	0.3	0.4	0.6	0	0
$3\left(\boldsymbol{x}_{3}\right)$	10	13	15	1	2
$4\left(\boldsymbol{x}_{4}\right)$	6	6	7	1	1

Proximity measures between vectors

Fuzzy measures - an alternative perspective

- Let $x \in[0,1]^{l}$.
- In this context, x_{k} is not the outcome of a measuring device.

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, \ldots, x_{l}\right]^{T} \\
& \boldsymbol{y}=\left[y_{1}, \ldots, y_{l}\right]^{T}
\end{aligned}
$$

- Rather, it indicates the degree to which x possesses the k-th characteristic.
- The closer the x_{k} to 1 (0), the more likely is that x possesses (does not possess) the k-th characteristic.
- As x_{k} approaches 0.5 , the certainty about the possession or not of the i-th feature from \boldsymbol{x} decreases.
- Let

$$
\begin{aligned}
& \boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{l}\right]^{T} \in[0,1]^{l} \\
& \boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{k}, \ldots, y_{l}\right]^{T} \in[0,1]^{l}
\end{aligned}
$$

- A measure of similarity between x_{k} and y_{k} is the following

$$
s\left(x_{k}, y_{k}\right)=\max \left(\min \left(1-x_{k}, 1-y_{k}\right), \min \left(x_{k}, y_{k}\right)\right)
$$

Then, as measure of similarity between x and y we can use the following

$$
s^{q}(x, y)=\left(\sum_{k=1}^{l} s\left(x_{k}, y_{k}\right)^{q}\right)^{1 / q}, q \in[1,+\infty)
$$

Proximity measures between vectors

Fuzzy measures - an alternative perspective
Exercise 3: Let $l=3$ and $q=1$.
(a) Consider the vectors $\boldsymbol{x}_{1}=[1,1,1]^{T}, \boldsymbol{x}_{2}=[0,0,1]^{T}, \boldsymbol{x}_{3}=\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right]^{T}$, $x_{4}=\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]^{T}$. Determine the similarities $s^{1}\left(x_{i}, x_{i}\right), i=1,2,3,4$.
(b) Consider the vectors $y_{1}=\left[\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right]^{T}, y_{2}=[1,1,1]^{T}, y_{3}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]^{T}$, $\boldsymbol{y}_{4}=\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]^{T}$. Determine the similarities $s^{1}\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right), i, j=1,2,3,4, i \neq j$.
(c) Draw your conclusions.

