Linear Classification-
The Percepiron

Why Linear Classifiers?

2 class problem: If the number of patterns is less than the number of
features, there iIs always a hyperplane which separates the patterns
fully.

It follows that the linear classifiers are useful:
In tasks of very high dimensionality

In tasks of low dimensionality, where we have a relatively small
number of training patterns at our disposal.

Moreover, the number of features can be increased using new
components which are non-linear functions (e.g. Polynomials) of the
original features.

Example: Document classification

Representation of documents using vectors ,.weighing” different words :

«weight» of word i in document d:
Term Frequency — Inverse Document Frequency
W(i,d)=tf(i,d)/df(i)

o tf(i,d)=timesthe wordi appears in text d
(word 1 is important for document d if it appears frequently in that
document)

o df (i) = number of documents in which word i appears
(words appearing in many documents are less important overall, e.g.
stopwords)

o =,

From: xxx € sciences sdsu.adu

Newsgroups: comp.graphics

Subject: Head spaca on Apple QT

| naed ta get tha specs, or at least a o
very verbosa interpretation of the spacs,

for GuickTime. Tachnisal articl

MagazZinas an rancas to books would

b nica, toa.

O OO =+ Ol W O

| al2o nead tha spacs in & framat usah

ona Unixor WS-Das syster. | can't \

d much with the Gwckﬂw
have an ...
-

OIN O —

baseball
Specs
graphics
references
hockey
car

clinton

unix
space
quicktime
computer

Typical example: Identifying “spam’ messages
2 classes (spam and non-spam)

Typical size of training set: 10° messages
Typical size of patterns: 10%-10°components

The simple perceptron

o Architecture: Single layered network with N inputs and M neurons

arranged in a single layer. Synaptic connections link every neuron with
every input.

 Neurons: McCulloch-Pitts with hard limiter and adaptive activation
threshold -
Yi :Slgn(zwijxj _WOi)
j

o Given that the outputs are mutually independent, we can study them
Independently, considering each output neuron on its own:

y =sign(Q>_ w,x; —w,)
j

=sign(w-X—w,)

The problem: We are given a training set of patterns

x*, wu=12,.,P}cR"

split into 2 classes

C,={x*, u=12..,K} C,={x*, u=K+1,K+2,.,P}
which are linearly separable, meaning that there exists a vector W which satisfies:
W-x“—w, >0 Vx*eC

N

wW-X*—w, <0 Vx*eC,

We seek to find such a vector that linearly separates the two classes following an
iterative process.

The geometry of the problem

* Weight vector is perpendicular
to the separating hyperplane

* \Weight vector is directed
towards the positive semi-
hyperplane, where

W-X—wW, >0

* Distance of pattern x from the
separating hyperplane:

Trick:

By adding a feature equal to -1 for every pattern, we can incorporate
the threshold into the formalism:

X — (X,-1) y =sign(w - X)

Coding of outputs:

For the patterns of the two classes, we adopt ,,target outputs” :
t“= +1 for patterns in class C,

t« = -1 for patterns in class C,

Training phase: lterative update of the synaptic weights, so that all
outputs become equal to the desired target outputs.

Testing phase: Every new pattern x shown to the network is classified
In one of the two classes depending on the output of the network:

y =sign(w-X)=1=xeC,
y =sign(w-X)=-1=xeC,

The perceptron algorithm

*|nitialization: Zero initial synaptic weights.

*We present the training patterns to the network, one by one. For each
pattern, we ask if the output is equal to the desired output.

*|f it is equal, we do nothing.

*|f it is not equal, we add to each synaptic weight a quantity proportional
to the product of the input by the desired output.

W — W+ Aw

y* 14 = Aw = et“x”

vy =t"=Aw =0
*When all training patterns have been presented to the network, we
repeat the process by presenting the patterns again, one by one.

Termination: When, after a round of presentation of the training set, it is
found out that all patterns are correctly classified.

REMARK # 1.

The condition y* =t“, under which updating of the synaptic weights takes
place, is equivalent to the following:

(w-x)t* <0

REMARK # 2:

Updating takes place after presenting each wrongly classified pattern
(incremental mode).

In a variant of the algorithm (batch mode), updating takes place only after
presentation of all training pattens. Updates follow the rule:

W — W+ AW
AW :52 tHxH
x*eY

where Y is the set of the wrongly classified training patterns.

REMARK # 3:
Evidently, the weight vector at each iteration of the algorithm is a linear

combination of the training patterns:
w=> Xt
U

with positive coefficients /,. We may consider the 7, as the parameters that
we seek to find, instead of the synaptic weights w;. The 4, are called dual
variables with respect to the w; and vice versa.

w <« Dual variables — A

Dimension: Eqiual to the Dimension: 7Equa| to the total
dimension of each pattern number of patterns
REMARK # 4:

If we use the dual variables A, the network output becomes:
y = sign{z At (x* -x)}
U

The input data appear in this expression in the form of an inner product.

Example (modified OR problem)

Xy

ala | x; | X | X | tXp | X, | X

(-1,1) (1,1)
‘ ’ 1| 1|1 1] 1 1 1

X1
('1"1)

‘ ’ 41 111 21| 1| 1

Patterns 2,34 2> t=1

Pattern 1 2> t=-1

We , manufacture” the modified patterns x* by adding to all of them a
component equal to -1 in order to account for the influence of the threshold.

Progress of the perceptron algorithm (incremental mode) with ¢=1:

ala | w, | w, W, tx, tx, | tx, | twx Update Aw, | Aw, [Aw,
1 0 0 0 1 1 1 0 YES 1 1 1
2 1 1 1 1 -1 -1 -1 YES 1 1 -1
3 2 0 0 -1 1 =1 -2 YES ol 1 il
4 1 1 -1 1 1 -1 3 NO 0 0 0
1 1 1 =il 1 1 1 1 NO 0 0 0
2 1 1 -1 1 -1 -1 1 NO 0 0 0
3 1 1 -l =l 1 =1l 1 NO 0 0 0
4 1 1 -1 1 1 -1 3 NO 0 0 0
\ X X \ X
\ 4 \ 4 \ 4 \ 4

yl X1 \ X1
@) ¢ @) 4 o 4

p. /! \
Successive changes of the separating straight line are shown. The blue
arrow shows which pattern is responsible for the change.

Progress of the perceptron algorithm (batch mode) with =1

ala

tx,

—
x

NS
—
X

[

tw.X

Update

Aw,

Aw,

Aw,

YES

YES

YES

YES

rlwdmlRrlrlw || -

NO

NO

NO

1
1
1
1
1
1
1
1

S 0 SN AN N N N e
1 1 1 1 1 1
[I N Ll N S SN

DI NI N|INJO|O | O] O

NO

/

Convergence (incremental mode)

Let us assume that the set of patterns is linearly separable, meaning
that there exists a vector W, for which the inequality W-x“t“ >0 holds for
all patterns. In this case, the perceptron algorithm converges to a
solution that linearly separates the patterns in a finite number of
Iterations.

Taking account of the weight update rule, we observe that on
termination of the algorithm, all patterns are correctly classified.

It follows that, in order to demonstrate linear separability on
termination of the algorithm, it suffices to show that the number of
iterative steps is finite.

In each iteration, a specific training pattern is presented to the network.

According to the perceptron rule, presentation of a specific pattern u may
or may not trigger a weight update, depending on whether it is correctly
or wrongly classified.

Suppose that we have already performed N iterations.

Let N, be the number of iterations in which presentation of pattern p has
triggered weight updates.

N=>N,
Let us assume, for the sake of gimplicity, that the initial weights are all set
to zero. The perceptron rule yields:

W = gz N, Xx“t*
u

* Since we know that there exists a weight vector W that leads to total
separation of the two classes, it is reasonable to investigate how close
the vector that we seek to find is to this already known vector.

* Let us examine how the cosine of the angle formed by the two vectors
changes as the algorithm proceeds:

W - W
||

W COS @ =

W - W
0< ~

<1
; wilw]

> () because wy corresponds to the

separating hyperplane
* Numerator

W-W =) NA“X“ - W=ed N“min(t“x” - W)
M 7

= min(t”x” \7\/)2 N # “Distance” of closest pattern
y7]

from the separating
/ hyperplane

= &N min(t“x* - W) = &N |W| D(W)

The numerator increases at least linearly with the number of
Iterations.

e Denominator

We need to determine: how fast is the change of the weight vector
norm?

Denominator:

Consider the change in the norm of the weight vector, following the
update using a specific pattern:

A\W\Z _ ‘W+gtax“ NG

G

g \W\Z + thaw-x"‘)—\w\2

2 a2 a o
=g X% +2&t°wW-X

Since the weights were updated, it is evident that

t*w-x* <0and therefore:
(update using a specific
pattern)

A\w\z < %|x[’

We started from an initial weight vector equal to the zero vector.
Therefore, the final norm of the weight vector is given by:

N <N
Wi =Y AW <N
e (total update after

< gzNz‘Xur &N, f= Z‘Xﬂ‘z many iterations)
JZ u

[1s a known, constant quantity, depending only on the training patterns.

Lets return to the angle ¢ and take advantage of the bounds that we
already found:

w-Ww _ eN|W|D W
COS @ = — > —=D |[—
WIW| s yNBw| VB
However, cose@ <1 and therefore:

DN/B <1= N < 3/ D?

It follows that the number of steps are finite. Therefore, the algorithm
separates linearly the patterns after a finite number of iterations.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	The simple perceptron
	Slide Number 6
	The geometry of the problem�
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example (modified OR problem)�
	Slide Number 13
	Slide Number 14
	Convergence (incremental mode)�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

