
© S. Perantonis 2004

Linear Classification-
The Perceptron

© S. Perantonis 2004

Why Linear Classifiers?

• 2 class problem: If the number of patterns is less than the number of
features, there is always a hyperplane which separates the patterns
fully.

• It follows that the linear classifiers are useful:
• In tasks of very high dimensionality
• In tasks of low dimensionality, where we have a relatively small

number of training patterns at our disposal.
• Moreover, the number of features can be increased using new

components which are non-linear functions (e.g. Polynomials) of the
original features.

© S. Perantonis 2004

Representation of documents using vectors „weighing” different words :

«weight» of word i in document d:

Term Frequency – Inverse Document Frequency

W(i , d) = tf (i , d) / df (i)

• tf (i , d) = times the word i appears in text d
(word i is important for document d if it appears frequently in that
document)

• df (i) = number of documents in which word i appears
(words appearing in many documents are less important overall, e.g.
stopwords)

Example: Document classification

© S. Perantonis 2004

Typical example: Identifying “spam” messages
2 classes (spam and non-spam)
Typical size of training set: 103 messages
Typical size of patterns: 104 -105 components

© S. Perantonis 2004

• Architecture: Single layered network with N inputs and Μ neurons
arranged in a single layer. Synaptic connections link every neuron with
every input.

• Neurons: McCulloch-Pitts with hard limiter and adaptive activation
threshold

• Given that the outputs are mutually independent, we can study them
independently, considering each output neuron on its own:

0sign()i ij j i
j

y w x w= −∑

x1

y
f=signΣ

w2

w1

wn

x2

xn
w0 -1

+1

The simple perceptron

0

0

sign()

sign()

j j
j

y w x w

w

= −

= ⋅ −

∑
w x

© S. Perantonis 2004

The problem: We are given a training set of patterns

split into 2 classes

which are linearly separable, meaning that there exists a vector which satisfies:

We seek to find such a vector that linearly separates the two classes following an
iterative process.

{ , 1, 2,..., } nPµ µ = ⊆x

1 2{ , 1, 2,..., } { , 1, 2,..., }C K C K K Pµ µµ µ= = = = + +x x
ŵ

0 1

0 2

ˆ 0
ˆ 0

w C

w C

µ µ

µ µ

⋅ − > ∀ ∈

⋅ − < ∀ ∈

w x x

w x x

© S. Perantonis 2004

• Weight vector is perpendicular
to the separating hyperplane

• Weight vector is directed
towards the positive semi-
hyperplane, where

• Distance of pattern x from the
separating hyperplane:

0w
D

⋅ −
=

w x
w

The geometry of the problem

x1

x2

w

D

w0 /w1

w0 /w2

x
0 0w⋅ − >w x

© S. Perantonis 2004

Trick:
• By adding a feature equal to -1 for every pattern, we can incorporate

the threshold into the formalism:

Coding of outputs:
• For the patterns of the two classes, we adopt „target outputs” :

tμ = +1 for patterns in class C1
tμ = -1 for patterns in class C2

Training phase: Iterative update of the synaptic weights, so that all
outputs become equal to the desired target outputs.
Testing phase: Every new pattern x shown to the network is classified
in one of the two classes depending on the output of the network:

(, 1) sign()y→ − = ⋅x x w x

1

2

sign() 1
sign() 1

y C
y C
= ⋅ = ⇒ ∈
= ⋅ = − ⇒ ∈

w x x
w x x

© S. Perantonis 2004

The perceptron algorithm

•Initialization: Zero initial synaptic weights.
•We present the training patterns to the network, one by one. For each
pattern, we ask if the output is equal to the desired output.
•If it is equal, we do nothing.
•If it is not equal, we add to each synaptic weight a quantity proportional
to the product of the input by the desired output.

•When all training patterns have been presented to the network, we
repeat the process by presenting the patterns again, one by one.
Termination: When, after a round of presentation of the training set, it is
found out that all patterns are correctly classified.

0
y t t
y t

µ µ µ µ

µ µ

ε

→ + ∆

≠ ⇒ ∆ =

= ⇒ ∆ =

w w w
w x
w

© S. Perantonis 2004

REMARK # 1:
The condition , under which updating of the synaptic weights takes
place, is equivalent to the following:

y tµ µ≠

() 0tµ µ⋅ ≤w x

REMARK # 2:
Updating takes place after presenting each wrongly classified pattern
(incremental mode).
In a variant of the algorithm (batch mode), updating takes place only after
presentation of all training pattens. Updates follow the rule:

where Υ is the set of the wrongly classified training patterns.
Y

t
µ

µ µε
∈

→ + ∆

∆ = ∑
x

w w w
w x

© S. Perantonis 2004

REMARK # 3:
Evidently, the weight vector at each iteration of the algorithm is a linear
combination of the training patterns:

with positive coefficients λμ. We may consider the λμ as the parameters that
we seek to find, instead of the synaptic weights wi. The λμ are called dual
variables with respect to the wi and vice versa.

tµ µ
µ

µ

λ=∑w x

Dual variables← →w λ

Dimension: Equal to the
dimension of each pattern

Dimension: Equal to the total
number of patterns

REMARK # 4:
If we use the dual variables λ, the network output becomes:

The input data appear in this expression in the form of an inner product.

()y sign tµ µ
µ

µ

λ

= ⋅

∑ x x

© S. Perantonis 2004

x1

x2

1 2

3

(-1,-1) (1,-1)

(1,1)(-1,1)
4

a/a x1 x2 x0 tx1 tx2 tx0

1 -1 -1 -1 1 1 1

2 1 -1 -1 1 -1 -1

3 -1 1 -1 -1 1 -1

4 1 1 -1 1 1 -1

Patterns 2,3,4 t = 1
Pattern 1 t = -1
We „manufacture” the modified patterns xμ by adding to all of them a
component equal to -1 in order to account for the influence of the threshold.

Example (modified OR problem)

© S. Perantonis 2004

a/a w1 w2 w0 tx1 tx2 tx0 tw.x Update Δw1 Δw2 Δw0

1 0 0 0 1 1 1 0 YES 1 1 1

2 1 1 1 1 -1 -1 -1 YES 1 -1 -1

3 2 0 0 -1 1 -1 -2 YES -1 1 -1

4 1 1 -1 1 1 -1 3 NO 0 0 0

1 1 1 -1 1 1 1 1 NO 0 0 0

2 1 1 -1 1 -1 -1 1 NO 0 0 0

3 1 1 -1 -1 1 -1 1 NO 0 0 0

4 1 1 -1 1 1 -1 3 NO 0 0 0

x1

x2

x1

x2

x1

x2

Progress of the perceptron algorithm (incremental mode) with ε=1:

Successive changes of the separating straight line are shown. The blue
arrow shows which pattern is responsible for the change.

© S. Perantonis 2004

a/a w1 w2 w0 tx1 tx2 tx0 tw.x Update Δw1 Δw2 Δw0

1 0 0 0 1 1 1 0 YES

2 2 -2

2 1 -1 -1 0 YES

3 -1 1 -1 0 YES

4 1 1 -1 0 YES

1 2 2 -2 1 1 1 2 NO

0 0 0

2 1 -1 -1 2 NO

3 -1 1 -1 2 NO

4 1 1 -1 6 NO

Progress of the perceptron algorithm (batch mode) with ε=1:

x1

x2

© S. Perantonis 2004

• Taking account of the weight update rule, we observe that on
termination of the algorithm, all patterns are correctly classified.

• It follows that, in order to demonstrate linear separability on
termination of the algorithm, it suffices to show that the number of
iterative steps is finite.

Convergence (incremental mode)
• Let us assume that the set of patterns is linearly separable, meaning

that there exists a vector , for which the inequality holds for
all patterns. In this case, the perceptron algorithm converges to a
solution that linearly separates the patterns in a finite number of
iterations.

ŵ ˆ 0tµ µ⋅ >w x

© S. Perantonis 2004

• In each iteration, a specific training pattern is presented to the network.
• According to the perceptron rule, presentation of a specific pattern μ may

or may not trigger a weight update, depending on whether it is correctly
or wrongly classified.

• Suppose that we have already performed Ν iterations.
• Let be the number of iterations in which presentation of pattern μ has

triggered weight updates.

• Let us assume, for the sake of simplicity, that the initial weights are all set
to zero. The perceptron rule yields:

Nµ

N Nµ
µ

=∑

N tµ µ
µ

µ

ε= ∑w x

© S. Perantonis 2004

ϕ

ˆ⋅w w
ŵ

w
ˆ

cos
ˆ

ϕ ⋅
=

w w
w w

ˆ
0 1

ˆ
⋅

≤ ≤
w w
w w

• Since we know that there exists a weight vector that leads to total
separation of the two classes, it is reasonable to investigate how close
the vector that we seek to find is to this already known vector.

• Let us examine how the cosine of the angle formed by the two vectors
changes as the algorithm proceeds:

ŵ

© S. Perantonis 2004

• Numerator

The numerator increases at least linearly with the number of
iterations.

ˆ ˆ ˆmin()

ˆmin()

ˆ ˆ ˆmin() ()

N t N t

t N

N t N D

µ µ µ µ µ µ

µ µ

µ µ µ

µ

µ µ

ε ε

ε

ε ε

⋅ = ⋅ ≥ ⋅

= ⋅

= ⋅ =

∑ ∑

∑

w w x w x w

x w

x w w w

• Denominator
We need to determine: how fast is the change of the weight vector
norm?

“Distance” of closest pattern
from the separating
hyperplane

0> because corresponds to the
separating hyperplane

ŵ

© S. Perantonis 2004

• Denominator:
Consider the change in the norm of the weight vector, following the
update using a specific pattern:

()2 22 2 2 22

22

2

2

a a

a

t t

t

α α α

α α

ε ε ε

ε ε

∆ = + − = + + ⋅ −

= + ⋅

w w x w x w w x w

x w x

We started from an initial weight vector equal to the zero vector.
Therefore, the final norm of the weight vector is given by:

0at α⋅ ≤w x

22 2 αε∆ ≤w x

Since the weights were updated, it is evident that
and therefore:

22 2 2

2 22 2 ,

N

N N

µ
µ

µ

µ µ

µ µ

ε

ε ε β β

= ∆ ≤

≤ = =

∑ ∑

∑ ∑

w w x

x x

(update using a specific
pattern)

(total update after
many iterations)

N Nµ ≤

© S. Perantonis 2004

β is a known, constant quantity, depending only on the training patterns.

Lets return to the angle φ and take advantage of the bounds that we
already found:

ˆˆ
cos

ˆ ˆ
N D ND
N

ε
ϕ

βε β
⋅

= ≥ =
ww w

w w w

However, and therefore:

It follows that the number of steps are finite. Therefore, the algorithm
separates linearly the patterns after a finite number of iterations.

cos 1ϕ ≤

2/ 1 /D N N Dβ β≤ ⇒ ≤

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	The simple perceptron
	Slide Number 6
	The geometry of the problem�
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example (modified OR problem)�
	Slide Number 13
	Slide Number 14
	Convergence (incremental mode)�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

