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CLASSIFIERS BASED ON 
BAYES DECISION THEORY
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CLASSIFIERS BASED ON BAYES DECISION 
THEORY

 Statistical nature of feature vectors

 Assign the pattern represented by feature vector 
to the most probable of the available classes

That is
maximum
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CLASSIFIERS BASED ON BAYES DECISION 
THEORY

Thomas Bayes (1707-1761)

Abraham Wald (1902-1950)
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 Computation of a-posteriori probabilities

 Assume known

• a-priori probabilities

•

This is  also known as the likelihood of 
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 The Bayes rule (Μ=2)

where
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 The Bayes classification rule (for two classes M=2)

 Given classify it according to the rule

 Equivalently:  classify according to the rule 

 For equiprobable classes the test becomes
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 Equivalently in words:  Divide space in two regions 

 Probability of error

 Total shaded area



 Bayesian classifier is OPTIMAL with respect to 
minimising the classification error probability!!!!
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 Indeed:  Moving the threshold the total shaded 
area INCREASES by the extra “grey” area.
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 The Bayes classification rule for many (M>2) classes:

 Given     classify it to      if:

Such a choice also minimizes the classification error 
probability

 Minimizing the average risk

 For each wrong decision, a penalty term is assigned since 
some decisions are more sensitive than others
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For M=2

• Define the loss matrix

• penalty term for deciding class        ,
although the pattern belongs to       ,  etc.
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Risk with respect to 



Average risk
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 Choose     and      so that r is minimized

 Then assign      to       if 

 Equivalently:

assign x in if

:  likelihood ratio
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 An example:
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Then the threshold value is:

Threshold for minimum r
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Thus       moves to the left of 

(WHY?)
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DISCRIMINANT FUNCTIONS 
DECISION SURFACES

 If are contiguous:

is the surface separating the regions.  On one side is 
positive (+), on the other is negative (-). It is known 
as  Decision Surface
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 If f(.) monotonic, the rule remains the same if we use:

 is a discriminant function

 In general, discriminant functions can be defined 
independent of the Bayesian rule.  They lead to 
suboptimal solutions, yet if chosen appropriately, can be 
computationally more tractable.
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BAYESIAN CLASSIFIER FOR NORMAL 
DISTRIBUTIONS

 Multivariate Gaussian pdf

called covariance matrix
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 is monotonic.  Define:
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That is, is quadratic and the surfaces  

quadrics, ellipsoids, parabolas, hyperbolas, 
pairs of lines.

For example:
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 Decision Hyperplanes

Quadratic terms:

If ALL (the same) the quadratic
terms are not of interest. They are not
involved in comparisons. Then, equivalently,
we can write:

Discriminant functions are LINEAR
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 Let in addition:
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Nondiagonal:

•

•

•

Decision hyperplane
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 Minimum Distance Classifiers

 equiprobable





Euclidean Distance:

smaller



Mahalanobis Distance:

smaller
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 CURSE OF DIMENSIONALITY

 In all the methods, so far, we saw that the highest
the number of points, N, the better the resulting 
estimate.

 If in the one-dimensional space an interval, filled 
with N points, is adequately (for good estimation), in 
the two-dimensional space the corresponding square 
will require N2 and in the ℓ-dimensional space the ℓ-
dimensional cube will require Nℓ points.

The exponential increase in the number of necessary 
points in known as the curse of dimensionality. This 
is a major problem one is confronted with in high 
dimensional spaces.
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 NAIVE – BAYES CLASSIFIER

Let           and the goal is to estimate 

i = 1, 2, …, M. For a “good” estimate of the pdf 
one would need, say, Nℓ points. 

Assume x1, x2 ,…, xℓ mutually independent. Then:

 In this case, one would require, roughly, N points 

for each pdf. Thus, a number of points of the 
order N·ℓ would suffice.

 It turns out that the Naïve – Bayes classifier 
works reasonably well even in cases that violate 
the independence assumption.
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 K Nearest Neighbor Density Estimation

 In Parzen:

• The volume is constant

• The number of points in the volume is varying

Now:

• Keep the number of points
constant

• Leave the volume to be varying
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 The Nearest Neighbor Rule

 Choose k out of the N training vectors, identify the k
nearest ones to x

 Out of these k identify ki that belong to class ωi



 The simplest version

k=1 !!!

 For large N this is not bad.  It can be shown that: 
if PB is the optimal Bayesian error probability, then:
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 Voronoi tesselation

 jixxdxxdxR jii   ),(),(:
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 Bayes Probability Chain Rule

Assume now that the conditional dependence for 
each xi is limited to a subset of the features 

appearing in each of the product terms. That is:

where

BAYESIAN NETWORKS
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For example, if ℓ=6, then we could assume:

Then:

The above is a generalization of the Naïve – Bayes. 
For the Naïve – Bayes the assumption is:

Ai = Ø, for i=1, 2, …, ℓ
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A graphical way to portray conditional dependencies
is given below 

According to this figure we 
have that:

• x6 is conditionally dependent on 
x4, x5.

• x5 on x4

• x4 on x1, x2

• x3 on x2

• x1, x2 are conditionally
independent on other variables.

For this case:
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 Bayesian Networks

Definition: A Bayesian Network is a directed acyclic
graph (DAG) where the nodes correspond to random 
variables. Each node is associated with a set of 
conditional probabilities (densities), p(xi|Ai), where xi

is the variable associated with the node and Ai is the 

set of its parents in the graph.

A Bayesian Network is specified by:

• The marginal probabilities of its root nodes.

• The conditional probabilities of the non-root nodes, 
given their parents, for ALL possible combinations.
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The figure below is an example of a Bayesian 
Network corresponding to a paradigm from the 
medical applications field.

This Bayesian network 
models conditional 
dependencies for an 
example concerning 
smokers (S), 
tendencies to develop 
cancer (C) and heart 
disease (H), together 
with variables 
corresponding to heart 
(H1, H2) and cancer 
(C1, C2) medical tests.
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Once a DAG has been constructed, the joint 
probability can be obtained by multiplying the 
marginal (root nodes) and the conditional (non-root 
nodes) probabilities.

Training: Once a topology is given, probabilities are 
estimated via the training data set. There are also 
methods that learn the topology.

Probability Inference: This is the most common task 
that Bayesian networks help us to solve efficiently. 
Given the values of some of the variables in the 
graph, known as evidence, the goal is to compute 
the conditional probabilities for some of the other 
variables, given the evidence.
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 Example:  Consider the Bayesian network of the 
figure:

a) If x is measured to be x=1 (x1), compute 
P(w=0|x=1) [P(w0|x1)].

b) If w is measured to be w=1 (w1) compute 
P(x=0|w=1) [ P(x0|w1)].
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For a), a set of calculations are required that 
propagate from node x to node w. It turns out that 
P(w0|x1) = 0.63.

For b), the propagation is reversed in direction. It 
turns out that P(x0|w1) = 0.4.

 In general, the required inference information is 
computed via a combined process of “message 
passing” among the nodes of the DAG.

Complexity:

For singly connected graphs, message passing 
algorithms amount to a complexity linear in the 
number of nodes.
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 0 = NO

 1 = YES VISIT TO COUNTRY: X

HIGH RISK AREA: Y

HAS DISEASE: Z

CLINICAL TEST: W

9,0)(

1,0)(

0

1





xP

xP

05,0)|(

3,0)|(

01

11





xyP

xyP

02,0)|(

5,0)|(

01

11





yzP

yzP

03,0)|(

95,0)|(

01

11





zwP

zwP

Example



45

Inference

Answer questions like:

 What is the probability of a person having caught the disease given 
that he/she has visited the high risk country?

 What is the probability of the clinical test of someone coming out 
positive, given that he/she has visited the high risk country?

 Given that the clinical test of a person has come out positive, what is 
the probability that he/she has visited the high risk country?

 Given that the clinical test of a person has come out positive, what is 
the probability that he/she has the disease?
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 0 = NO
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VISIT TO COUNTRY: X
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