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CONTENT-DEPENDENT CLASSIFICATION
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MARKOV CHAINS

❖Consider a system which at any time t is in one of a set of N 
distinct states                           .

❖At regularly spaced discrete times, the system undergoes a 
change of state, according to a set of probabilities associated 
with the state. 

❖In Markovian processes, the probability of state transition 
depends only on the current and the previous state. Therefore 
we can adopt a diagram like in the following transparency for 
the transitions, where the a’s represent the probabilities of 
transition between states:

❖Note: Each state corresponds to a physical (observable) 
event.
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Example: Weather sequences

❖ State 1: Rain or snow

❖ State 2: Cloudy weather

❖ State 3: Sunny weather
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❖ Question: Given that on day 1 the weather is sunny, what is the 
probability of having the sequence:

Sun-sun-rain-rain-sun-cloud-sun in the next 7 days?

❖ Answer: Observation sequence: 32311333 SSSSSSSSO =
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❖ Remember: Bayes rule

❖ We will assume that the training vectors
occur in sequence, one after the other

and we will refer to them as observations
❖ There is a strong dependence among classes (of a

stochastic nature): Classes do not succeed each other
at random, but there are specific probabilities for the
succession of a class by another

❖ This interrelation demands the classification to be
performed simultaneously for all available feature
vectors and in the order that they appear as
observations
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CONTEXT DEPENDENT CLASSIFICATION-
OBSERVED MARKOV MODEL
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❖ The Context Dependent Bayesian Classifier

➢ Let

➢ Let

➢ Let      be a sequence of classes, that is

There are MN of those

➢ Thus, the Bayesian rule can equivalently be stated 
as

❖ Markov Chain Models (for class dependence)
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N: Number of time steps

M: Number of classes
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❖ NOW remember:

or

❖ Assume:

➢ statistically mutually independent 

➢ The pdf in one class independent of the others, 
then
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❖ From the above, the Bayes rule is readily seen 
to be equivalent to:

that is, it rests on

❖ To find the above maximum in brute-force task 
we need Ο(NMΝ ) operations!!
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❖ The Viterbi Algorithm
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➢ Thus, each Ωi corresponds to one path through the trellis
diagram. One of them is the optimum (e.g., black). The
classes along the optimal path determine the classes to
which ωi are assigned.

➢ To each transition corresponds a cost.  For our case
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• Equivalently

where,

• Define the cost up to a node ,k,
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➢ Bellman’s principle now states

➢ The optimal path terminates at 

• Complexity O (NM2)
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LOCAL COST:
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❖ Channel Equalization

➢ The problem

➢ Recovering a transmitted sequence of information bits 
after they have been corrupted by the transmission 
channel and noise sources. 
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➢ Example

•

•

• In xk three input symbols are involved:

Ik, Ik-1, Ik-2
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Ik Ik-1 Ik-2 xk xk-1

0 0 0 0 0 ω1

0 0 1 0 1 ω2

0 1 0 1 0.5 ω3

0 1 1 1 1.5 ω4

1 0 0 0.5 0 ω5

1 0 1 0.5 1 ω6

1 1 0 1.5 0.5 ω7

1 1 1 1.5 1.5 ω8

without noise

with noise
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➢Not all transitions are allowed

•

• Then

•
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• In this context, ωi are related to states.

Given the current state and the transmitted
bit, Ik, we determine the next state. The
probabilities P(ωi|ωj) define the state

dependence model.

➢Assuming Gaussian noise, the transition cost

•

for all allowable transitions
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Possible observations and allowable transitions between state

With this formulation, given a sequence of N observation 
vectors, we use the context dependent classifier to classify 
them in a sequence of clusters                 . This automatically 
classifies each  vector, which is equivalent to deciding 
whether each     is 0 or 1.kI
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➢ In the channel equalization problem, the states are
observable and can be “learned” during the
training period

➢ Now we shall assume that states are not
observable and can only be inferred from the
training data

➢ Applications:

• Speech and Music Recognition

• OCR

• Blind Equalization

• Bioinformatics

HIDDEN MARKOV MODELS
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➢ An HMM is a stochastic finite state automaton, that
generates the observation sequence, x1, x2,…, xN

➢We assume that: The observation sequence is
produced as a result of successive transitions
between states, upon arrival at a state:
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➢ There is an underlying stochastic process which
determines the transitions between states as before,
but this process in not observable.

➢ It can only be inferred indirectly by the observation
of another sets of stochastic processes that produce
the sequence of observations.
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➢Examples of HMM:

• The single coin case: Assume a coin that is tossed
behind a curtain. All it is available to us is the
outcome, i.e., H or T. Assume the two states to be:

S = 1→H

S = 2→T

This is also an example of a random experiment
with observable states. The model is characterized
by a single parameter, e.g., P(H). Note that

P(1|1) = P(H)

P(2|1) = P(T) = 1 – P(H)
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• The two-coins case: For this case, we observe a
sequence of H or T. However, we have no access to

know which coin was tossed. Identify one state for
each coin. This is an example where states are not
observable. H or T can be emitted from either

state. The model depends on four parameters.

P1(H), P2(H),

P(1|1), P(2|2)
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• The three-coins case example is shown below:

• Note that in all previous examples, specifying the
model is equivalent to knowing:

– The probability of each observation (H,T) to be emitted

from each state.

– The transition probabilities among states: P(i|j).
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URN AND BALL MODEL

❖ Balls of different colours are drawn out of one urn at a time

❖ The urn from which we draw at each time is decided by a 
Markovian process
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➢ A general HMM model is characterized by the
following set of parameters

• Κ, number of states

• M, number of observations symbols per state

•

•

•
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THE THREE BASIC PROBLEMS OF HMMs

➢ Evaluation: Given observation sequence ,
and the HMM model S, compute , i.e. the probability
of the observation sequence, given the model

➢ Discovery: Given observation sequence , and
the model S, choose a state sequence ,
which is optimal, i.e. it explains the observations in the best
possible way

➢ Training: Given a set of observations, adjust the model
parameters S to maximize

➢ Problem 1 is also related to recognition: given an
observation sequence and L different HMMs (each
corresponding to a category), choose the HMM for which
is maximum .

➢ We will first see that problem 2 is also related to
recognition, though in a suboptimal way.
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Probability of a given observation sequence:
Similar to the observed Markov process, but now we must 

sum over all possible states:
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RECOGNITION: BEST PATH METHOD (PROBLEM 2)

❖ Suboptimal approach. 

❖ For a given observation sequence, we compute the most 
probable (best) path of states sequence, for each of the 
reference HMMs. 

❖ The search of the optima is performed using directly the 
Viterbi algorithm with cost:
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RECOGNITION: ANY PATH METHOD (PROBLEM 1)

• Assume the L models to be known (L classes).

• A sequence of observations, X, is given.

• Assume observations to be emissions upon
the arrival on successive states

• Decide in favor of the model S* (from the L

available) according to the Bayes rule

for equiprobable patterns
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❖ For the efficient computation of                 define:

❖ Note that then:

❖ To get A at time slice k, we must sum over possible states 
occuring at time slice k-1:
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Therefore, each A at the next time slice is computed from all As 
in the previous time slice by a constructive procedure.          
calculations are enough to achieve the whole computation.
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• Some more quantities
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➢ Training

• The philosophy:

Given a training set X, known to belong to the 

specific model, estimate the unknown 
parameters of S, so that the output of the 

model, e.g.

to be maximized

➢ This is a ML estimation problem with missing data
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➢ Assumption:  Data x discrete 

➢ Definitions:

•

•
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➢ The Algorithm:

• Initial conditions for all the unknown parameters.

• Step 1:  From the current estimates of the model 
parameters reestimate the new model S from
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• Step 3:  Compute
go to step 2.  Otherwise stop

• Remarks:

– Each iteration improves the model 

– The algorithm converges to a maximum (local 
or global)

– The algorithm is an implementation of the EM 
algorithm
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