CONTENT-DEPENDENT CLASSIFICATION



MARKOV CHAINS

“+Consider a system which at any time t is in one of a set of N
distinct states SipSoi, S

“*At regularly spaced discrete times, the system undergoes a
change of state, according to a set of probabilities associated
with the state.

“In Markovian processes, the probability of state transition
depends only on the current and the previous state. Therefore
we can adopt a diagram like in the following transparency for
the transitions, where the a’s represent the probabilities of
transition between states:

q; = P(qt = 3j |Qt—1 :Si)

“*Note: Each state corresponds to a physical (observable)
event.



39

43

%)
2
®
A4
Y
() 4



Example: Weather sequences

< State 1: Rain or snow 04 03 03]

< State 2: Cloudy weather L i

< State 3: Sunny weather A _{aij}_ S AR U
_0,1 0,1 0,8_




% Question: Given that on day 1 the weather is sunny, what is the
probability of having the sequence:

Sun-sun-rain-rain-sun-cloud-sun in the next 7 days?

< Answer: Observation sequence: O = S,5,5,5,5,5,5,3S,

P(O | Model) =

P(S3’ SS’ SS! S]_! S]_v 83; Sz, 83 | MOdeI) =
Initial state
srobabity | P(S3)P(Ss | S5)P(S, | S,)P(S, |S,)

P(Sl | Sl)P(SS | Sl)P(SZ | Ss)P(Ss | Sz) e
33833051811 A1383,8y3 =

1*0,8*0,8*0,1*0,4*0,3*0,1*0,2 =1,536*10"*



CONTEXT DEPENDENT CLASSIFICATION-
OBSERVED MARKOV MODEL

% Remember: Bayes rule
P(a|x) > P(;]x), Vj#1

 We will assume that the training vectors
%11 X5, Xy oceur in sequence, one after the other
and we will refer to them as observations

% There is a strong dependence among classes (of a
stochastic nature?\: Classes do not succeed each other
at random, but there are specific probabilities for the
succession of a class by another

% This interrelation demands the classification to be
performed simultaneously for all available feature
vectors and in the order that they appear as
observations



% The Context Dependent Bayesian Classifier

A latr Tk LR e N oy

»Llet o, 1=12,...M

/N: Number of time steps
M- Number of classes

> Let Q. be a sequence of classes, that is

Q. 1w, @, ...

There are MN of those

» Thus, the Bayesian rule can equivalently be stated

dsS

X >Q: PQX)>P@Q[X) Vizj, i,j=12,..,M"
i i i

% Markov Chain Models (for class dependence)

P(w, ‘a)ik_l @, -0, ) = P(ao,

@,.,)




+* NOW remember:

P() =P(o,, ®@,,...0,) =
= P(a)iN a)iN—l’“.’a)il :
P(a)iN—l iN—Z’".’a)il)“.P(a)il)

or

P(€};) = (H F)(Cf)ik

o, ,))P(w;)

s» Assume:

» X; statistically mutually independent

» The pdf in one class independent of the others,
then

P(X|€2) = H p()_(k‘a)ik)




“ From the above, the Bayes rule is readily seen
to be equivalent to:

P(Q|X)(><)P(Q;|X)
P(Q,)p(X|2)(<)P@Q;) p(X|2))

that is, it rests on

P(X|Q)P(Q) = P(@,) p(xs, ).
H P(o, ‘a)ikl) p()_(k @, )

¢ To find the above maximum in brute-force task
we need O(NM?") operations!!



 The Viterbi Algorithm
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» Thus, each Q. corresponds to one path through the trellis
diagram. One of them is the optimum (e.g., black). The
classes along the optimal path determine the classes to
which w; are assigned.

P(X|Q)P(Q) = P(@,) p(x,}e,) ] | P(e,

o, )P(X |@,)

» To each transition corresponds a cost. For our case

: Ci(a)ik ’a)ik_l) ~ P(a)ik

@, )-P(X, ‘a)ik )

] Ci(a)il o, ) =P(w, ) p(X ‘a)il)

D :HdA(a)ik,a)ik_l) ~ p(X‘Qi)P(Qi)

k=1
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e Equivalently

N " N
IND=>Ind(.,.)=D=>d(.,.)
k=1 k=1
where,

d(w, o )=Ihd(® o )

e Define the cost up to a node Kk,

D(w, ) = Zk: d(w @ )
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» Bellman’s principle now states

max

b B

(o, ) = max[D

M

maX

(a)ik_l) +d (a)ik y Oy )J

max ( ) O

» The optimal path terminates at a):N

*

@

e Complexity O (NM?)

IN

=argmax D, (@, )
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.......... ©
x| o) *s i

LOCAL COST:
In P(wy,_, |@,)+1In p(X; | @y, _,)
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¢ Channel Equalization

» The problem

» Recovering a transmitted sequence of information bits
after they have been corrupted by the transmission
channel and noise sources.

. T A AT L [

L T
¥ X =X Xy Xepaal

C X, — equalizer —» 1, _,
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ol =10 Sl SSE At

org X A= ,|:2

e In x, three input symbols are involved:

Ik’ Ik-l’ Ik-2
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> Not all transitions are allowed

e (I, 4, 1,,)=(0,0,2)

e Then L.0,0)
32>
(Ik+1’|k’|k—1) \
(0,0, 0)
05 0.5,i=5,1
A pday="_
et ' - s
) 0, otherwise
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e In this context, w; are related to states.
Given the current state and the transmitted
bit, I,, we determine the next state. The
probabilities P(w;|w;) define the state
dependence model.

» Assuming Gaussian noise, the transition cost

e d (C()ik , C()ik_l) Y da)ik ()_()

4 H)—(k e ‘: ((%, v ik Z:L()_(k —H

for all allowable transitions
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Possible observations and allowable transitions between state

Wy Wy
&,
w, w,
15¢} + +
w( w()
| 2 9 W, w
0.5 ¥ 5 W, w,
0 0 ° W, W,
0.5 : : : : W, W,
-0.5 0 0.5 1 1.5« Y
W, W,

With this formulation, given a sequence of N observation
vectors, we use the context dependent classifier to classify
them in a sequence of clusters @, , @, ..., This automatically
classifies each vector, which is equivalent to deciding
whether each |, is 0 or 1. 20



HIDDEN MARKOV MODELS

> In the channel equalization problem, the states are
observable and can be “learned” during the
training period

» Now we shall assume that states are not
observable and can only be inferred from the
training data

> Applications:
e Speech and Music Recognition
e OCR
e Blind Equalization
e Bioinformatics

21



> An HMM is a stochastic finite state automaton, that
generates the observation sequence, Xy, X,, ..., Xy

» We assume that: The observation sequence is
produced as a result of successive transitions
between states, upon arrival at a state:

22



» There is an underlying stochastic process which
determines the transitions between states as before,
but this process in not observable.

» It can only be inferred indirectly by the observation
of another sets of stochastic processes that produce
the sequence of observations.

P(1]1) P(2[2) P(3]3)

\/ - _E\. {_,,..-"”_'_"‘*« \| [f/r _"”'\}

\‘~-.=_ .A/ AN " ! \\\P .‘/
P(2|1) P(3[2)

p(il) p(x|2) p(l3)

f'll \.\\ B \\., /N

Illllf \.\\.\ B | \ . L Hﬁ'\\h
x X



» Examples of HMM:

e The single coin case: Assume a coin that is tossed
behind a curtain. All it is available to us is the
outcome, i.e., Hor T. Assume the two states to be:

S=1->H
S =2 A
This is also an example of a random experiment

with observable states. The model is characterized
by a single parameter, e.g., P(H). Note that

P(1]1) = P(H)
P(2|1) =P(T)=1-P(H)
P(1{1)=P(H) P(2|12)=1-P(H)

P(112)=P(H)
P(H) [-P(H)

24
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e The two-coins case: For this case, we observe a
sequence of H or T. However, we have no access to
know which coin was tossed. Identify one state for
each coin. This is an example where states are not
observable. H or T can be emitted from either
state. The model depends on four parameters.

P,(H), P,(H),
P(1]1), P(22)

P(1]1) P(2]2)

P(1|2)=1-P(22)
P,(H) Py(H)

P(T)=1-F,(H) B(T)=1-P,

(b) =



e The three-coins case example is shown below:

11 P(2)2
P(1]1) PRI (212)

P(1]2)

P(2|3)

PG3[1)

P(1]3) P(3|2)

Py(H) Py(H) Py(H)

P(Ty=1-P\(H)  PT)=1-R(H)  P(T)=1-P(H)

e Note that in all previous examples, specifying the
model is equivalent to knowing:

— The probability of each observation (H,T) to be emitted
from each state.

— The transition probabilities among states: P(ilj).
26



URN AND BALL MODEL

URN 2

P(red) =b,(1) P(red) =b,(1) P(red) = by(1)
P(green) =Db,(2) P(green) =D0b,2) P(green) =Db(2)
P(yellow) =b,(3) P(yellow) =b,3) P(yellow) =b(3)
P(black) =Db,4) P(black) =b,(4) P(black) =Db4)

P(orange) = b,(M)P(orange) =b,(M) P(orange) = by(M)

«»» Balls of different colours are drawn out of one urn at a time

% The urn from which we draw at each time is decided by a
Markovian process
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» A general HMM model is characterized by the
following set of parameters

« K, number of states
e M, number of observations symbols per state

. PGl =12, K - 4
(X =12, K -b; (X)
¢ P(i),i=12,....K, . T,

|
Initial state probabilit ies

28



THE THREE BASIC PROBLEMS OF HMMs

» Evaluation: Given observation sequence X =X, X5 X500 Xy
and the HMM model S, computeP(X |S), i.e. the probablllty
of the observation sequence, given the model

> Discovery: Given observation sequence X =XiX,X;-Xy  and
the model S, choose a state sequence Q=0.0,0;--dv
which is optimal, i.e. it explains the observations in the best
possible way

» Training: Given a set of observations, adjust the model
parameters S to maximize P(X|S)

» Problem 1 is also related to recognition: given an
observation sequence and L different HMMs (each
corresponding to a category), choose the HMM for which
IS maximum P(X |S).

> We will first see that problem 2 is also related to
recognition, though in a suboptimal way.

29



Probability of a given observation sequence:
Similar to the observed Markov process, but now we must
sum over all possible states:

P(X[8)=2 P(X]Q,S)P(Q,s)

all Q

P(X IQ,S)=HP(XK |9, S)

P(X1Q,S) =b, (x,)b,, (X3)..1o, (Xy)

P(Q,S)=x,a _a a

Gi 0192 9203 " T ON-10N

P(X | S) 5 Zﬂ-%b% ()—(1)aQ1Q2 bCIz ()—(Z)a%% .“an—qu qu ()—(N )

all Q 30



RECOGNITION: BEST PATH METHOD (PROBLEM 2)

s+ Suboptimal approach.

% For a given observation sequence, we compute the most
probable (best) path of states sequence, for each of the
reference HMMs.

% The search of the optima is performed using directly the
Viterbi algorithm with cost:

N local cost
D= d(6,6.)
k=1

d (Qk 1 qk—l) =In P(qk ‘ qk—l) +1n p(xk ‘ Qk)

=lna, , +Inb, (x)
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RECOGNITION: ANY PATH METHOD (PROBLEM 1)
e Assume the L models to be known (L classes).
e A sequence of observations, X, is given.

e Assume observations to be emissions upon
the arrival on successive states

e Decide in favor of the model S* (from the L
available) according to the Bayes rule

S” =arg max P(S|X)

for equiprobable patterns

S” =arg max p(X S)

32



“ For the efficient computation of P(X |S) define:
A(qk) = P(>_<1§z--->_<k Uy |S) e ZA(qN)

Oy =1
+»» Note that then:

P(X|S) = ZA(QN)

% To get A at time slice k, we must sum over possible states
occuring at time slice k-1:

A(G) =D APy | ae) P(Xy [ 0) =

I
Hlstor 5

- TG )R 0 ()
L

1

ocal activity 33



i & ()

t+1

Therefore, each A at the next time slice is computed from2 all As
in the previous time slice by a constructive procedure. K°N
calculations are enough to achieve the whole computation.

34



e Some more quantities

—  B(0) = P(Ks1r Xirzrere Xy [Gis S)
= Z B(0.1)P (Ty.1 [0k ) p()_(k+1‘qk+1)

qk+1

NI (S BT 6]
E A(qk)B(qk)
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» Training
e The philosophy:

Given a training set X, known to belong to the
specific model, estimate the unknown
parameters of S, so that the output of the
model, e.g.

K
P(X[S)=) A@,)
Oy =l
to be maximized

» This is @ ML estimation problem with missing data

36



» Assumption: Data x discrete

xe{L2,...,r}= p(xli) = P(xli)

> Definitions:

A(ik T i)P(j‘i)P()_(kﬂ“)B(ikﬂ = J)

¢ &, ]))= P(X‘S)

. L) A, =i)B(i, =i)
N P(X|S)
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» The Algorithm:

e Initial conditions for all the unknown parameters.
Compute P( X|S)

e Step 1: From the current estimates of the model
parameters reestimate the new model S from

— P(jli) =
(J‘) N-1 # of transitions from |

ANO

N -1
Z‘fk (1, ]) (_ # of transitions from i to j]

N
L (i
2T (D) (_ atstateiand>_<:r)

b E rli) = k=land x—r) F _ _
x i) i # of being at state |

> L0)

- P(i) =T, (i) 3




e Step 3: Compute P(x\§). If P(X|S)-P(X|S)>¢, S=S
go to step 2. Otherwise stop

— Each iteration improves the model
S: P(x\§) > P(X|S)

— The algorithm converges to a maximum (local
or global)

— The algorithm is an implementation of the EM
algorithm

39



