CONTENT-DEPENDENT CLASSIFICATION

MARKOV CHAINS

*Consider a system which at any time t is in one of a set of N distinct states

$$
s_{1}, s_{2}, \ldots, s_{\mathrm{N}}
$$

*At regularly spaced discrete times, the system undergoes a change of state, according to a set of probabilities associated with the state.

* In Markovian processes, the probability of state transition depends only on the current and the previous state. Therefore we can adopt a diagram like in the following transparency for the transitions, where the a's represent the probabilities of transition between states:

$$
a_{i j}=P\left(q_{t}=s_{j} \mid q_{t-1}=s_{i}\right)
$$

* Note: Each state corresponds to a physical (observable) event.

Example: Weather sequences

* State 1: Rain or snow
* State 2: Cloudy weather
* State 3: Sunny weather

$$
A=\left\{a_{i j}\right\}=\left[\begin{array}{lll}
0,4 & 0,3 & 0,3 \\
0,2 & 0,6 & 0,2 \\
0,1 & 0,1 & 0,8
\end{array}\right]
$$

* Question: Given that on day 1 the weather is sunny, what is the probability of having the sequence:

Sun-sun-rain-rain-sun-cloud-sun in the next 7 days?

* Answer: Observation sequence: $O=S_{3} S_{3} S_{3} S_{1} S_{1} S_{3} S_{2} S_{3}$
$P(O \mid$ Model $)=$
$P\left(S_{3}, S_{3}, S_{3}, S_{1}, S_{1}, S_{3}, S_{2}, S_{3} \mid\right.$ Model $)=$
$P\left(S_{3}\right) P\left(S_{3} \mid S_{3}\right) P\left(S_{3} \mid S_{3}\right) P\left(S_{1} \mid S_{3}\right)$
$P\left(S_{1} \mid S_{1}\right) P\left(S_{3} \mid S_{1}\right) P\left(S_{2} \mid S_{3}\right) P\left(S_{3} \mid S_{2}\right)=$
$\pi_{3} a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23}=$
$1 * 0,8 * 0,8 * 0,1 * 0,4 * 0,3 * 0,1 * 0,2=1,536 * 10^{-4}$

CONTEXT DEPENDENT CLASSIFICATIONOBSERVED MARKOV MODEL

* Remember: Bayes rule

$$
P\left(\omega_{i} \mid \underline{x}\right)>P\left(\omega_{j} \mid \underline{x}\right), \forall j \neq i
$$

* We will assume that the training vectors $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}$ occur in sequence, one after the other and we will refer to them as observations
* There is a strong dependence among classes (of a stochastic nature): Classes do not succeed each other at random, but there are specific probabilities for the succession of a class by another
* This interrelation demands the classification to be performed simultaneously for all available feature vectors and in the order that they appear as observations
* The Context Dependent Bayesian Classifier
$>$ Let $X:\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}\right\}$
$>$ Let $\omega_{i}, i=1,2, \ldots, M$
N : Number of time steps
M : Number of classes
$>$ Let Ω_{i} be a sequence of classes, that is

$$
\Omega_{i}: \omega_{i 1} \omega_{i 2} \ldots \omega_{i N}
$$

There are M^{N} of those
> Thus, the Bayesian rule can equivalently be stated as

$$
X \rightarrow \Omega_{i}: P\left(\Omega_{i} \mid X\right)>P\left(\Omega_{j} \mid X\right) \forall i \neq j, i, j=1,2, \ldots, M^{N}
$$

* Markov Chain Models (for class dependence)

$$
P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}, \omega_{i_{k-2}-2}, \ldots, \omega_{i_{1}}\right)=P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}\right)
$$

* NOW remember:

$$
\begin{aligned}
P\left(\Omega_{i}\right) & =P\left(\omega_{i_{1}}, \omega_{i_{2}}, \ldots, \omega_{i_{N}}\right)= \\
& =P\left(\omega_{i_{N}} \mid \omega_{i_{N-1}}, \ldots, \omega_{i_{1}}\right) \\
& P\left(\omega_{i_{N-1}} \mid \omega_{i_{N-2}}, \ldots, \omega_{i_{1}}\right) \ldots P\left(\omega_{i_{1}}\right)
\end{aligned}
$$

or

$$
P\left(\Omega_{i}\right)=\left(\prod_{k=2}^{N} P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}\right)\right) P\left(\omega_{i_{1}}\right)
$$

* Assume:
$>\underline{x}_{i}$ statistically mutually independent
$>$ The pdf in one class independent of the others, then

$$
p\left(X \mid \Omega_{i}\right)=\prod_{k=1}^{N} p\left(\underline{x}_{k} \mid \omega_{i_{k}}\right)
$$

* From the above, the Bayes rule is readily seen to be equivalent to:

$$
\begin{aligned}
& P\left(\Omega_{i} \mid X\right)(><) P\left(\Omega_{j} \mid X\right) \\
& P\left(\Omega_{i}\right) p\left(X \mid \Omega_{i}\right)(><) P\left(\Omega_{j}\right) p\left(X \mid \Omega_{j}\right)
\end{aligned}
$$

that is, it rests on

$$
\begin{aligned}
& p\left(X \mid \Omega_{i}\right) P\left(\Omega_{i}\right)=P\left(\omega_{i_{1}}\right) p\left(\underline{x}_{1} \mid \omega_{i_{1}}\right) . \\
& \prod_{k=2}^{N} P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}\right) p\left(\underline{x}_{k} \mid \omega_{i_{k}}\right)
\end{aligned}
$$

* To find the above maximum in brute-force task we need $\mathrm{O}\left(N M^{N}\right)$ operations!!
* The Viterbi Algorithm

$>$ Thus, each Ω_{i} corresponds to one path through the trellis diagram. One of them is the optimum (e.g., black). The classes along the optimal path determine the classes to which ω_{i} are assigned.

$$
p\left(X \mid \Omega_{i}\right) P\left(\Omega_{i}\right)=P\left(\omega_{i_{1}}\right) p\left(\underline{x}_{1} \mid \omega_{i_{1}}\right) \cdot \prod_{k=2}^{N} P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}\right) p\left(\underline{x}_{k} \mid \omega_{i_{k}}\right)
$$

> To each transition corresponds a cost. For our case
$\cdot \hat{d}\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)=P\left(\omega_{i_{k}} \mid \omega_{i_{k-1}}\right) \cdot p\left(\underline{x}_{k} \mid \omega_{i_{k}}\right)$

- $\hat{d}\left(\omega_{i_{1}}, \omega_{i_{0}}\right) \equiv P\left(\omega_{i_{1}}\right) p\left(\underline{x}_{i} \mid \omega_{i_{1}}\right)$
- $\hat{D}=\prod_{k=1}^{N} \hat{d}\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)=p\left(X \mid \Omega_{i}\right) P\left(\Omega_{i}\right)$
- Equivalently

$$
\ln \hat{D}=\sum_{k=1}^{N} \ln \hat{d}(., .) \equiv D=\sum_{k=1}^{N} d(., .)
$$

where,

$$
d\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)=\ln \hat{d}\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)
$$

- Define the cost up to a node,k,

$$
D\left(\omega_{i_{k}}\right)=\sum_{r=1}^{k} d\left(\omega_{i_{r}}, \omega_{i_{r-1}}\right)
$$

> Bellman's principle now states

$$
\begin{aligned}
& D_{\max }\left(\omega_{i_{k}}\right)=\max _{i_{k-1}}\left[D_{\max }\left(\omega_{i_{k-1}}\right)+d\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)\right] \\
& i_{k}, i_{k-1}=1,2, \ldots, M
\end{aligned}
$$

$$
D_{\max }\left(\omega_{i_{0}}\right)=0
$$

$>$ The optimal path terminates at $\omega_{i N}^{*}$:
$\omega_{i_{N}}^{*}=\arg \max _{\omega_{i_{N}}} D_{\max }\left(\omega_{i_{N}}\right)$

- Complexity $O\left(N M^{2}\right)$

LOCAL COST:
$\ln P\left(\omega_{M-1} \mid \omega_{2}\right)+\ln p\left(x_{3} \mid \omega_{M-1}\right)$

Channel Equalization

> The problem
> Recovering a transmitted sequence of information bits after they have been corrupted by the transmission channel and noise sources.

- $\quad x_{k}=f\left(I_{k}, I_{k-1}, \ldots, I_{k-n+1}\right)+n_{k}$
- $\quad \underline{x}_{k} \equiv\left[x_{k}, x_{k-1}, \ldots, x_{k-l+1}\right]^{T}$
- $\quad \underline{x}_{k} \rightarrow$ equalizer $\rightarrow \hat{I}_{k-r}$

> Example

- $x_{k}=0.5 I_{k}+I_{k-1}+n_{k}$
- $\underline{x}_{k}=\left[\begin{array}{c}x_{k} \\ x_{k-1}\end{array}\right], l=2$
- In \underline{x}_{k} three input symbols are involved:

$$
I_{k}, I_{k-1}, I_{k-2}
$$

$>$ Not all transitions are allowed

- $\left(I_{k}, I_{k-1}, I_{k-2}\right)=(0,0,1)$
- Then

- In this context, ω_{i} are related to states. Given the current state and the transmitted bit, $I_{k^{\prime}}$ we determine the next state. The probabilities $P\left(\omega_{i} \mid \omega_{j}\right)$ define the state dependence model.
$>$ Assuming Gaussian noise, the transition cost
- $d\left(\omega_{i_{k}}, \omega_{i_{k-1}}\right)=d_{\omega_{i_{k}}}(\underline{x})$

$$
=\left\|\underline{x}_{k}-\underline{\mu}_{i k}\right\|=\left(\left(\underline{x}_{k}-\underline{\mu}_{i_{k}}\right)^{T} \sum_{i_{k}}^{-1}\left(\underline{x}_{k}-\underline{\mu}_{i_{k}}\right)\right)^{\frac{1}{2}}
$$

for all allowable transitions

Possible observations and allowable transitions between state

With this formulation, given a sequence of N observation vectors, we use the context dependent classifier to classify them in a sequence of clusters $\omega_{i_{1}}, \omega_{i_{2}}, \ldots, \omega_{i_{N}}$ This automatically classifies each vector, which is equivalent to deciding whether each I_{k} is 0 or 1 .

HIDDEN MARKOV MODELS

$>$ In the channel equalization problem, the states are observable and can be "learned" during the training period
> Now we shall assume that states are not observable and can only be inferred from the training data
> Applications:

- Speech and Music Recognition
- OCR
- Blind Equalization
- Bioinformatics
$>$ An HMM is a stochastic finite state automaton, that generates the observation sequence, $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}$
$>$ We assume that: The observation sequence is produced as a result of successive transitions between states, upon arrival at a state:

> There is an underlying stochastic process which determines the transitions between states as before, but this process in not observable.
$>$ It can only be inferred indirectly by the observation of another sets of stochastic processes that produce the sequence of observations.

> Examples of HMM:
- The single coin case: Assume a coin that is tossed behind a curtain. All it is available to us is the outcome, i.e., H or T. Assume the two states to be:

$$
\begin{aligned}
& S=1 \rightarrow H \\
& S=2 \rightarrow T
\end{aligned}
$$

This is also an example of a random experiment with observable states. The model is characterized by a single parameter, e.g., $P(H)$. Note that

- The two-coins case: For this case, we observe a sequence of H or T. However, we have no access to know which coin was tossed. Identify one state for each coin. This is an example where states are not observable. H or T can be emitted from either state. The model depends on four parameters.

$$
\begin{aligned}
& P_{1}(H), P_{2}(H), \\
& P(1 \mid 1), P(2 \mid 2)
\end{aligned}
$$

(b)

- The three-coins case example is shown below:

- Note that in all previous examples, specifying the model is equivalent to knowing:
- The probability of each observation (H, T) to be emitted from each state.
- The transition probabilities among states: $P(i \mid j)$.

URN AND BALL MODEL

$P($ red $) \quad=b_{1}(1) P($ red $) \quad=b_{2}(1) \quad P($ red $) \quad=b_{N}(1)$
$\mathrm{P}($ green $)=b_{1}(2) P($ green $)=b_{2}(2) \quad P($ green $)=b_{N}(2)$
$\mathrm{P}($ yellow $)=b_{1}(3) \mathrm{P}($ yellow $)=b_{2}(3) \quad \mathrm{P}$ (yellow) $=\mathrm{b}_{\mathrm{N}}(3)$
$\mathrm{P}($ black $)=b_{1}(4) P($ black $)=b_{2}(4) \quad P($ black $)=b_{N}(4)$
$\mathrm{P}(\dddot{\text { orange }})=\mathrm{b}_{1}(\mathrm{M}) \mathrm{P}($ orange $)=\mathrm{b}_{2}(\mathrm{M}) \mathrm{P}($ orange $)=\mathrm{b}_{\mathrm{N}}(\mathrm{M})$

* Balls of different colours are drawn out of one urn at a time
* The urn from which we draw at each time is decided by a Markovian process
> A general HMM model is characterized by the following set of parameters
- K, number of states
- M, number of observations symbols per state
- $P(i \mid j), i, j=1,2, \ldots, K \longrightarrow a_{j i}$
- $p(\underline{x} \mid i), i=1,2, \ldots, K \longrightarrow b_{i}(x)$
- $P(i), i=1,2, \ldots, K, \quad \pi_{i}$ initial state probabilities

THE THREE BASIC PROBLEMS OF HMMs

$>$ Evaluation: Given observation sequence $X=\underline{x}_{1} \underline{x}_{2} \underline{x}_{3} \cdots \underline{x}_{N}$, and the HMM model S, compute $P(X \mid S)$, i.e. the probability of the observation sequence, given the model
$>$ Discovery: Given observation sequence $X=\underline{x}_{1} \underline{x}_{2} \underline{x}_{3} \cdots \underline{x}_{N}$, and the model S , choose a state sequence $Q=q_{1} q_{2} q_{3} \ldots q_{N}$ which is optimal, i.e. it explains the observations in the best possible way
> Training: Given a set of observations, adjust the model parameters S to maximize $P(X \mid S)$
> Problem 1 is also related to recognition: given an observation sequence and L different HMMs (each corresponding to a category), choose the HMM for which is maximum $P(X \mid S)$.
$>$ We will first see that problem 2 is also related to recognition, though in a suboptimal way.

Probability of a given observation sequence:

Similar to the observed Markov process, but now we must sum over all possible states:

$$
\begin{gathered}
P(X \mid S)=\sum_{\text {all } \mathrm{Q}} P(X \mid Q, S) P(Q, S) \\
P(X \mid Q, S)=\prod_{k=1}^{N} P\left(\underline{x}_{k} \mid q_{k}, S\right) \\
P(X \mid Q, S)=b_{q_{1}}\left(\underline{x}_{1}\right) b_{q_{2}}\left(\underline{x}_{2}\right) . . b_{q_{N}}\left(\underline{x}_{N}\right) \\
P(Q, S)=\pi_{q_{1}} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \ldots a_{q_{N-1} q_{N}} \\
P(X \mid S)=\sum_{\text {all } Q} \pi_{q_{1}} b_{q_{1}}\left(\underline{x}_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(\underline{x}_{2}\right) a_{q_{2} q_{3}} \ldots a_{q_{N-1} q_{N}} b_{q_{N}}\left(\underline{x}_{N}\right)
\end{gathered}
$$

RECOGNITION: BEST PATH METHOD (PROBLEM 2)

* Suboptimal approach.
* For a given observation sequence, we compute the most probable (best) path of states sequence, for each of the reference HMMs.
* The search of the optima is performed using directly the Viterbi algorithm with cost:

$$
\begin{aligned}
& D=\sum_{k=1}^{N} d\left(q_{k}, q_{k-1}\right) \\
& d\left(q_{k}, q_{k-1}\right)=\ln P\left(q_{k} \mid q_{k-1}\right)+\ln p\left(x_{k} \mid q_{k}\right) \\
& =\ln a_{q_{k-1} q_{k}}+\ln b_{q_{k}}\left(x_{k}\right)
\end{aligned}
$$

RECOGNITION: ANY PATH METHOD (PROBLEM 1)

- Assume the L models to be known (L classes).
- A sequence of observations, X, is given.
- Assume observations to be emissions upon the arrival on successive states
- Decide in favor of the model S^{*} (from the L available) according to the Bayes rule

$$
S^{*}=\arg \max _{S} P(S \mid X)
$$

for equiprobable patterns

$$
S^{*}=\arg \max _{S} p(X \mid S)
$$

* For the efficient computation of $P(X \mid S)$ define:

$$
\begin{aligned}
& A\left(q_{k}\right)=P\left(\underline{x}_{1} \underline{x}_{2} \ldots \underline{x}_{k}, q_{k} \mid S\right) \longrightarrow P(X \mid S)=\sum_{q_{N}=1}^{K} A\left(q_{N}\right) \\
& * \text { Note that then: }
\end{aligned}
$$

$$
P(X \mid S)=\sum_{q_{N}=1}^{K} A\left(q_{N}\right)
$$

* To get A at time slice k, we must sum over possible states occuring at time slice $k-1$:

$$
A\left(q_{k}\right)=\sum_{i_{k-1}} A\left(q_{k-1}\right) P\left(q_{k} \mid q_{k-1}\right) P\left(\underline{x}_{k} \mid q_{k}\right)=
$$

History

$$
=\sum_{i_{k-1}} A\left(q_{k-1}\right) a_{q_{k-1} q_{k}} b_{q_{k}}\left(\underline{x}_{k}\right) \underbrace{}_{\text {Local activity }}
$$

Therefore, each A at the next time slice is computed from all As in the previous time slice by a constructive procedure. $K^{2} N$ calculations are enough to achieve the whole computation.

- Some more quantities

$$
\begin{aligned}
-\quad B\left(q_{k}\right) & =p\left(\underline{x}_{k+1}, \underline{x}_{k+2}, \ldots, \underline{x}_{N} \mid q_{k}, S\right) \\
& =\sum_{q_{k+1}} B\left(q_{k+1}\right) P\left(q_{k+1} \mid q_{k}\right) p\left(\underline{x}_{k+1} \mid q_{k+1}\right) \\
-\quad \Gamma\left(q_{k}\right) & =p\left(\underline{x}_{1}, \ldots, \underline{x}_{N}, q_{k} \mid S\right) \\
& =\mathrm{A}\left(q_{k}\right) \mathrm{B}\left(q_{k}\right)
\end{aligned}
$$

$>$ Training

- The philosophy:

Given a training set X, known to belong to the specific model, estimate the unknown parameters of S, so that the output of the model, e.g.

$$
P(X \mid S)=\sum_{q_{N}=1}^{K} A\left(q_{N}\right)
$$

to be maximized
$>$ This is a ML estimation problem with missing data
> Assumption: Data \underline{x} discrete

$$
\underline{x} \in\{1,2, \ldots, r\} \Rightarrow p(\underline{x} \mid i) \equiv P(\underline{x} \mid i)
$$

> Definitions:

- $\xi_{k}(i, j)=\frac{A\left(i_{k}=i\right) P(j \mid i) P\left(\underline{x}_{k+1} \mid j\right) B\left(i_{k+1}=j\right)}{P(X \mid S)}$
- $\Gamma_{k}(i)=\frac{A\left(i_{k}=i\right) B\left(i_{k}=i\right)}{P(X \mid S)}$
> The Algorithm:
- Initial conditions for all the unknown parameters. Compute $P(X \mid S)$
- Step 1: From the current estimates of the model parameters reestimate the new model S from

$$
\begin{gathered}
-\bar{P}(j \mid i)=\frac{\sum_{k=1}^{N-1} \xi_{k}(i, j)}{\sum_{k=1}^{N-1} \Gamma_{k}(i)} \quad\left(=\frac{\# \text { of transitions from } i \text { to } j}{\# \text { of transitions from } i}\right) \\
-\bar{P}_{\underline{x}}(r \mid i)=\frac{\sum_{k=1 \text { and } \underline{x} \rightarrow r)}^{N} \Gamma_{k}(i)}{\sum_{k=1}^{N} \Gamma_{k}(i)} \quad\left(=\frac{\text { at state } i \text { and } \underline{x}=r}{\neq \text { of being at state } i}\right) \\
-\bar{P}(i)=\Gamma_{1}(i)
\end{gathered}
$$

- Step 3: Compute $P(X \mid \bar{S})$. If $P(X \mid \bar{S})-P(X \mid S)>\varepsilon, S=\bar{S}$ go to step 2. Otherwise stop
- Remarks:
- Each iteration improves the model

$$
\bar{S}: P(X \mid \bar{S})>P(X \mid S)
$$

- The algorithm converges to a maximum (local or global)
- The algorithm is an implementation of the EM algorithm

