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Isoform quantitation tools in the literature (Q3-2020) 

• 26 tools found in literature that support transcript DE
• 10 still active
• 6 user friendly enough for being used (!)

• open-source with source code released under a license

Name Since Citations

1 Tuxedo Suite 2012 5390

2 RSEM 2011 4068

3 New Tuxedo Suite 2016 215

4 sleuth 2017 169

5 BitSeq 2012 164

6 EBSeq 2015 4

(slide by A. Dimopoulos)



De-novo genome sequence assembly,
Genome-Based and Genome-Free Transcript 

Reconstruction and Analysis 
Using RNA-Seq Data

based on material from Mathias Haimel, EBI 
https://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/files/user/18/private/velvet_1.pdf

and Brian Haas
Broad Institute, modified by M. Reczko







De novo transcriptome assembly

No genome required

Empower studies of non-model organisms
– expressed gene content
– transcript abundance
– differential expression







http://feedthedatamonster.com/home/2014/12/24/three-billion-puzzle-pieces-insights-into-the-human-genome-project





The General Approach to 
De novo DNA/RNA-Seq Assembly

Using De Bruijn Graphs







































4 slides from: http://www.slideshare.net/aubombarely/genome-assembly2014













Contrasting Genome and Transcriptome Assembly

Genome Assembly Transcriptome Assembly

• Uniform coverage
• Single contig per locus
• Double-stranded

• Exponentially distributed coverage levels
• Multiple contigs per locus (alt splicing)
• Strand-specific



Trinity Aggregates Isolated Transcript Graphs

Genome Assembly
Single Massive Graph

Trinity Transcriptome Assembly
Many Thousands of Small Graphs

Ideally, one graph per expressed gene.Entire chromosomes represented.



Applied for: Olive fly Bactrocera oleae (dakos)

● Ordo: Diptera 
● Family: Tephritidae 
● Genus: Bactrocera

 
▪ Monophagous
▪ Production losses > 30% possible
▪ Affects quantity and quality

▪ Global economic damage estimated: 800.000.000 $

Collaborative effort of

Department of Biochemistry and Biotechnology
University of Thessaly

Laboratory of Mlecular Biology and Genomics

- K. Mathiopoulos,  E. Sagri

-  

- J. Ragoussis, M. Reczko , K. Salpea, V. Harokopos, A. Dimopoulos 



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



Inchworm Algorithm
Decompose all reads into overlapping Kmers (25-mers)

Extend kmer at 3’ end, guided by coverage.
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Remove assembled kmers from catalog, then repeat the entire process.

Report contig:      ….AAGATTACAGA…. 



Inchworm Contigs from Alt-Spliced Transcripts

Isoform A

Isoform B

Expressed isoforms



Inchworm Contigs from Alt-Spliced Transcripts

Isoform A

Isoform B

Graphical
representation

Expressed isoforms
(low)
(high)

Expression



Inchworm Contigs from Alt-Spliced Transcripts



Inchworm Contigs from Alt-Spliced Transcripts

+ No k-mers 
in common



Inchworm Contigs from Alt-Spliced Transcripts

+



Chrysalis Re-groups Related Inchworm Contigs

+

Chrysalis uses (k-1) overlaps and read 
support to link related Inchworm contigs



Chrysalis

Integrate isoforms
via k-1 overlaps Build de Bruijn Graphs

(ideally, one per gene)



Thousands of Chrysalis Clusters



(isoforms and paralogs)



Butterfly Example 1: 
Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome

(Reference structure)



Trinity output: A multi-fasta file



Trinity Demo



• http://www.fruitfly.org/GASP1/tutorial/presentation/sld082.htm                                                                                                         https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125259/

Prediction of coding potential

• Periodicity detection
– Coding sequences have an inherent periodicity of 

three
– Especially good on long coding sequences
– Auto-correlation

• Seeking the strongest response when shifted sequence is 
compared with original

• Michel (1986), J. Theor. Biol. 120, 223-236.
– Fourier transformation: Spectral analysis

• Detection of peak at position corresponding to 1/3 of the 
frequency 

• Silverman and Linsker (1986),  J. Theor. Biol. 118, 295-300.

http://www.fruitfly.org/GASP1/tutorial/presentation/sld082.htm


Expectation maximization used in gmap



Expectation maximization used in gmap



Expectation maximization used in gmap



Trinity transcripts aligned to genome scaffolds to examine intron/exon structures
(Trinity transcripts aligned using GMAP)



Trinity Demo

• Assemble RNA-Seq using Trinity
• Examine Trinity in context of a genome:

– Align Trinity transcripts to the genome using 
GMAP

– Align rna-seq reads to genome using Tophat
– Visualize all alignments using IGV



Improved reconstruction with deeper sequencing depth
and

Genome-based reconstruction is 
more sensitive than de novo methods

Cufflinks/Gsnap

Trinity

Million PE reads

# Genes w/ fully 
reconstructed 
transcripts

Mouse data



Summary of Key Points
• RNA-Seq is a versatile method for transcriptome analysis 

enabling quantification and novel transcript discovery.
• Genome-based and genome-free methods exist for transcript 

reconstruction
• Expression quantification is based on sampling and counting 

reads derived from transcripts
• Fold changes based on few read counts lack statistical 

significance.
• Multiple analysis frameworks are available – alternative and 

often complementary approaches to support biological 
investigations.



Software Links
• Tuxedo

– Bowtie: http://bowtie-bio.sourceforge.net/index.shtml
– Tophat: http://tophat.cbcb.umd.edu/
– Cufflinks: http://cufflinks.cbcb.umd.edu/

• Trinity
http://trinityrnaseq.sourceforge.net/

• IGV for Visualization
http://www.broadinstitute.org/igv/

• GMAP
http://research-pub.gene.com/gmap/

• Samtools
http://samtools.sourceforge.net/

http://bowtie-bio.sourceforge.net/index.shtml
http://tophat.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
http://trinityrnaseq.sourceforge.net/
http://www.broadinstitute.org/igv/
http://research-pub.gene.com/gmap/
http://samtools.sourceforge.net/


Papers of Interest

• Next generation transcriptome assembly
– http://www.nature.com/nrg/journal/v12/n10/full/nrg3068.html

• Tuxedo protocol
– http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334321/

• Trinity
– http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571712/
– http://www.nature.com/nprot/journal/v8/n8/full/nprot.2013.084.html

http://www.nature.com/nrg/journal/v12/n10/full/nrg3068.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334321/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571712/
http://www.nature.com/nprot/journal/v8/n8/full/nprot.2013.084.html


Single Cell Sequencing

Svensson et al. Nature Protocols 2018

Single Cell Sequencing - Eric Chow (UCSF) 
https://www.youtube.com/watch?v=k9VFNLLQP8c

Svensson et al. Nature Protocols 2018Svensson et al. Nature Protocols 2018

https://www.youtube.com/watch?v=k9VFNLLQP8c






Single Cell RNA Sequencing and its main applications

  Identification of new cell populations and subpopulations in complex tissues 
  Studying gene dynamics in developmental studies 
  Immune cell profiling 
  Cancer research 
  Personalized medicine

(slides by ITBI student Dimitra Panou)



scRNAseq pipeline

1. Quality Control & Cell selection

 Detect + remove low quality cells from downstream 
analysis

 Genes detected/cell 
 Total reads/cell
 % of reads in mitochondrial genome/cell 

Red lines show the filtering points

Cell x 
gene 

Matrix

Functional 
enrichment 

analysis



2. Normalization & Scaling
• Global normalization 

– Correcting for sequencing depth differences 
between cells

– Log transformation
• Detection of Highly variable genes

– Mean.var.plot method (mvp)  highly variable 
genes

– Scaling transformation
• Calculation of scaled values for all genes

– Scales + centers the genes in dataset

scRNAseq pipeline

3. Dimensional reduction

PCA analysis

Detection of most informative principal components
 Moving to PCA space can help reducing runtime of cell clustering 
 May fail to capture local patterns in scRNA data

Non linear methods

t-Distributed Stochastic Neighbor Embedding (t-SNE)
 Can capture subtle local patterns of expression in the data
 Places cells with similar local neighborhoods in high dimensional space together 

in low dimensional space
 It may fail to give a precise representation of clusters’ size and distances

Uniform Manifold Approximation and Projection (UMAP)
 Preserves better the global structure of the data
 Faster runtime than tSNE
 It may fail to illuminate the lineage structure of the data



4. Clustering analysis

 Creation of a Shared nearest neighbor graph

 Clusters represent 
 cell population 
 cell sub-population 
 cell state

scRNAseq pipeline
PCA

sNN graph

Clustering



5. Differential Expression Analysis
Design of the analysis

• Cells belonging to one cluster VS Cells
belonging to another

• Cells belonging to one cluster VS Cells
belonging to the rest of the clusters

Selection of D.E.A test
• Wilcoxon test, Student’s t-test, Poisson, MAST *

Marker gene analysis
• Identify marker genes per cluster
• Those genes can distinguish one cluster from the rest
• High average expression in cells of the cluster,

low in the other cells

 Wilcoxon test
 logFC >= 0.25
 Pval < 0.01
 Percentage of expression >= 25% 

Inspection of top marker genes
 Feature plots in UMAP space
 Color denotes normalized expression

scRNAseq pipeline
Differential expression analysis

Marker genes for each cluster

* MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing da
ta
 G Finak, A McDavid, M Yajima, J Deng, V Gersuk, AK Shalek, CK Slichter et al Genome biology 16 (1), 278

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0844-5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0844-5


6. Cluster annotation

• Compare cluster marker genes to canonical markers 
for different cell types from the literature

• Using computational methods, match cluster labels 
from a different dataset (e.g. a cell atlas of the 
studied organism) to your own clusters

scRNAseq pipeline

7. Trajectory-Pseudotime analysis

  Infer the lineage structure of the dataset
  Order the cells along the predicted topology

 PCs as input
 Output in UMAP plot

Minimum spanning tree

Pseudotime ordering



• Useful links
– Seurat - Guided Clustering Tutorial

https://satijalab.org/seurat/articles/pbmc3k_tutor
ial.html

Online scRNAseq analysis
– https://singlecell.usegalaxy.eu/
– http://scala.fleming.gr/app/scala
– https://crescent.cloud/

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://singlecell.usegalaxy.eu/
http://scala.fleming.gr/app/scala
https://crescent.cloud/
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