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Abstract—Software-defined Network (SDN) is a new 
architectural framework for networking that decouples control 
plane from data plane and provides a programmatic interface to 
network control. SDN enables innovations of networking 
technologies for Internet and data centers today in order to ease 
the management of the highly dynamic and complex 
infrastructure, to support the fine-grained traffic engineering, 
and to better address the mobility of virtual machines, services, 
and end-points. However, SDN itself opens many unanswered 
questions regarding reliability, performance, and security. 
Controller placement is a critical problem in SDN that may affect 
many aspects of SDN. This work introduces the use of 
interdependence network analysis to study the controller 
placement for network resilience, designs a new resilience metric, 
and proposes a solution to improve resilience. 

Keywords—Controller Placement, Network Resilience, 
Software-defined Network 

I. INTRODUCTION 
Software-defined Network (SDN) is a recent architectural 

framework for networking, which decouples the network 
control plane from the data plane at physical topology and 
provides a programmatic interface to network control.  SDN 
has the potential in simplifying the network management, 
improving the efficiency of network utilization, and enabling 
network innovations. A well-known implementation of SDN is 
OpenFlow [1], which arises from an academic research project 
and has now gained increasing adoptions in the industry, e.g., 
by Google, NEC, HP, etc. SDN enables innovations of 
networking technologies for data centers in order to ease the 
management of the highly dynamic and complex infrastructure, 
to support the fine-grained traffic engineering, and to better 
address the mobility of virtual machines, services, and end-
points. However, the SDN itself open many unanswered 
questions regarding reliability, scalability, performance, and 
security.  

Controller placement is one of the critical problems in SDN 
design that studies how to select the best k nodes in a SDN for 
placing controllers in order to maximize an objective function. 
Placement problems appear in many contexts and have 
received extensive studies in literature. They are usually 
variants of the facility location problem and are NP-hard 
problems in general [2]. In addition, most of the placement 

problems study the placement for improving performance, e.g., 
latency minimization; few investigate the placement for 
reliability and security.  

The research on controller placement in SDN has begun 
very recently. Heller et al. [2] study the placement of 
controllers in SDN with the objective to minimize average or 
worst-case latency. Zhang et al. [3] initiate the study of 
controller placement for resilience and propose a min-cut based 
algorithm for network partition and controller placement. Hu et 
al. [4] study the placement problem for reliability and propose 
a greedy algorithm for efficient placement with good 
reliability. Beheshti and Zhang [5] study how to place a 
controller in a routing tree for fast failover. All these efforts 
show that intelligent controller placement contributes to better 
SDN design and performance.  

This work focuses on the controller placement for network 
resilience improvement in SDN and makes the following 
contributions: 1) analyzing the impact of controller placement 
on SDN resilience from the perspective of interdependent 
networks; 2) defining a new resilience metric based on the 
cascading failure analysis on the interdependence graph; and 3) 
proposing a partition and selection approach to controller 
placement for improving the resilience. 

II. AN INTERDEPENDENT NETWORK APPROACH TO 
NETWORK RESILIENCE ANALYSIS 

The core concept of SDN is the separation of control plane 
from data plane and thus centralizes the control logic. This 
centralization can benefit network resilience by reducing the 
reliance on short-live control messages, which are more likely 
to be affected by network failures [6]. However, this 
centralization also introduces resilience threat to SDN itself, 
that is the proper functioning of a SDN depends on the proper 
functioning of two interdependent networks: the switch-switch 
network (SS) for data forwarding, and the controller-switch 
network (CS) for network control. 

Based on this observation, we extend the model of 
interdependence graph in [7] to analyze the impact of 
controller placement on SDN network resilience. The 
interdependence graph enables the analysis of cascading failure 
in multiple networks due to node dependence relationships.  
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For better illustration of how the interdependence graphs 
between SS and CS can be constructed and how they can be 
used for analyzing the network resilience, we present the 
concepts and analysis using an example network, with the 
German Backbone Network Topology from [8], as shown in 
Fig. 1(a).  
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(a) (b)  
Fig. 1. Example Topology. (a) German Backbone Network Topology [8]; (b) 
A shortest path routing tree for in-band controller-switch communication on 
the example topology when node 1 are the controllers and others are 
switches. 
  

A. SS-CS Interdependence Graph 
Let G=(V, E) denotes a SDN topology, in which the set of 

nodes V consists of the switches and controllers in SDN, and 
the set of edges E is comprised of the links between switches, 
the links between controllers and switches, and the links 
between controllers.  

We define an interdependence graph between SS and CS of 
an SDN as a 5-tuple H=(Vs, Es, Vc, Ec, Ecs): 

• Vs �� V denotes the set of nodes in G that perform 
switch functions in SS network, such as originating, 
responding, and forwarding packets; for example the 
nodes under the label “SS” in Fig. 2; 

• Es � E denotes the set of links that form the 
communication paths for  Vs  in SS; for example the 
edges under the label “SS” in Fig. 2; 

• Vc  �� V denotes the set of nodes in G that perform 
functions in CS network, such as the switches 
registering themselves to controllers and forwarding 
packets to the controllers when there are no processing 
rules for the packets, and the controllers generating 
packet processing rules and writing rules to switches; 
for example the nodes under the label “CS” in Fig. 2; 

• Ec � E denotes the set of links that form the 
communication paths for  Vc  in CS network; for 
example the edges under the label “CS” in Fig. 2;  

• Ecs denotes the set of dependence relations between Vs 
and Vc. The dependence relations are directed. A 
dependence relation from node α in network Α to node 
β in network Β denotes that α depends on β, which 
means that the proper functioning of α in Α depends 

on the proper functioning of β in Β. In Fig. 2(a), node 
1 in SS depends on node 1 in CS, node 3 in SS and 
node 3 in CS are mutual dependent, and there is no 
dependence relation between node 4 in SS and node 4 
in CS. 

Multiple dependence relations for a node can form an 
AND-Dependence-Set, an OR-Dependence-Set, or a hybrid set. 
Informally, a node with AND-Dependence-Set fails if any one 
of its dependent nodes fails; and a node with OR-Dependence-
Set fails if all of its dependent nodes fail. In Fig. 2(b), the 
dependence relations between node 1 and 2 in SS and node 1 in 
CS form an OR-Dependence-Set (represented using the “OR 
gate” symbol from Digital Logic), which means that the proper 
functioning of node 1 in CS depends on both the proper 
functioning of node 1 and node 2 in SS; on the other hand, the 
dependence relations between node 3 and 4 in SS and node 3 in 
CS form an AND-Dependence-Set (represented using the 
“AND gate” symbol), which means that the proper functioning 
of node 3 in CS depends on either the proper functioning of 
node 3 in SS or the proper functioning of node 4 in SS. 

By using the combinations of AND-Dependence-Set and 
OR-Dependence-Set, the interdependence graph can capture 
both simple interdependent relationship between the SS and CS 
networks, e.g., single path routing, and complex 
interdependence, e.g., multipath routing or service redundancy. 
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Fig. 2. Example SS-CS Interdependence Graphs. 

Given the network topology of an SDN, the number and the 
locations of the controllers, an SS-CS interdependence graph 
can be constructed after specifying the controller-switch 
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communication strategies, such as the type of communication 
channels (out-of-band or in-band) and the routing protocols 
(e.g., single-path or multi-path routing). Fig. 2(c) presents a SS-
CS interdependence graph for the example topology with node 
1 as a controller and in-band controller-switch communication 
via single shortest paths (Fig. 1(b)). Nodes in SS and CS in Fig. 
2(c) are mutual dependent. Fig. 2(d) presents another SS-CS 
interdependence graph for the example topology when the 
controller-switch channels are fully out-of-band and node 1 
only plays the role of a controller in the CS network. The 
proper functioning of switches (nodes) in the SS network 
depends on their proper functioning in the CS network. 

B. Failure Cascading on the SS-CS Interdependence Graphs 
This subsection presents the use of SS-CS interdependence 

graph for cascading failure analysis.  Similar to [3], we assume 
a static binding between controllers and switches. Switches are 
only controlled by a single assigned controller. When the 
connection between a switch and its controller fails, before a 
backup path is built and used, the switch fails and drop all 
packets. We consider the following failures: 

• Link failure: a link failure indicates that all traffic 
passing through a link will be dropped. It can occur in 
a link in SS or in CS. 

• Node failure: a node failure indicates that the node 
cannot be proper functioning in SS and/or CS 
networks. It can be a switch that becomes unable to 
originate or forward packets. It can also be a controller 
that fails to process packets or managing rules. Node 
failures can be caused by software bugs, malicious 
attacks, misconfigurations, hardware failures, power 
outage, etc.  

In the following, we define the process of a failure 
cascading on the SS-CS interdependence graph. 

• The process starts with a link failure or a node failure 
in either SS or CS network. 

• The failure propagates iteratively between SS and CS 
networks based on their dependence relations.  

In CS network, a node is affected by the faillure if its 
dependent nodes in SS are affected by the failure or it 
is  disconnected from its assigned controller; a link is 
affected by the failure if any node that it connects with 
is affected by the failure. 

In SS network, a node is affected by the faillure if its 
dependent nodes in CS are affected by the failure or all 
its links in SS are affected by the failure; a link is 
affected by the failure if any node that it connects with 
is affected by the failure. 

• The failure cascading reaches its steady stage if no 
more nodes/links can be affected by the failure or all 
the nodes and links are affected by the failure. 

Fig. 3 demonstrates a failure cascading on the example SS-
CS interdependence graph presented in Fig. 2(c). The failure 
starts at node 7 in SS, and thus all its associated links in SS are 
affected (Fig. 3(a)). Due to the mutual dependence, the failure 

propagates to node 7 in CS, as well as its associated links in CS 
(Fig. 3(b)). Because of the failure of node 7 in CS, node 10, 11, 
12, 13, 14 in CS are disconnected from the controller (node 1 
in CS), and thus the failure propagates to those nodes and their 
associated links (Fig. 3(c)). Due to mutual dependence, the 
failure continues to affect the nodes 10, 11, 12, 13, 14 in SS 
and the associated links in CS (Fig. 3(d)). After this iteration, 
no more nodes or links will be affected, so the propagation 
stops, and the failure cascading reaches a steady stage.   
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Fig. 3. An example cascading failure on SS-CS interdependence graph. (Links 
are removed if they are affected by the failure; nodes are colored in grey if they 
are affected by the failure.)    

C. Impact of Controller Placement on Network Resilience 
Based on the analysis above, the resilience of a network is 

closely related to the number of nodes survived in the steady 
stage of the cascading of a failure. The more the fraction of 
nodes survived at the steady stage, the better the network 
resilient to the failure. To investigate the impact of controller 
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placement on the network resilience, we use the same SDN 
topology and controller-switch communication strategies as the 
ones use in Fig. 3 to construct SS-CS interdependence graphs 
based on different controller placement, and then repeat the 
cascading failure analysis on the interdependence graphs 
starting from a failure at node 7 in SS network. Fig. 4 shows 
the steady stage of the cascading failure analysis. We can see 
that, by selecting node 10 as the controller, more nodes 
survived at the steady stage (Fig. 4(a)). By increasing the 
number of controllers to two and placing them on node 1 and 
node 10, the failure at node 7 does not affect other nodes. The 
results in Fig. 4 exemplifies the impact of controller placement 
on the network resilience.      
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Fig. 4. The steady stage of the cascading of a failure on two SS-CS 
interdependence graphs. (a) The steady stage of the cascading failure analysis 
with one controller at node 10; (b) The steady stage of the cascading failure 
analysis with two controllers at node 1 and node 10. 

III. CONTROLLER PLACEMENT FOR IMPROVING RESILIENCE 
Given an SDN network topology G=(V,E), the number of 

controllers k, the locations of the controllers L�V, and the 
controller-switch communication strategy ψ, an SS-CS 
interdependence graph H can be constructed and a cascading 
failure analysis can be performed on the graph. H, k, L, ψ, and 
the probability distribution of link and node failures Δ all have 
direct impacts on the survival nodes at the steady stage of the 
cascading failure analysis.  

A. Resilience Metric 
Given k, L, ψ and Δ, we define the resilience of H as 

follows:  

 [ ]� −+�∗Δ∗−= ∈ =Hi
ik

j
i
j

i f
H

))1(
||

11 1 μααφ  (1) 

where:  

• i is a node or a link in SS or CS of H for cascading 
failure analysis; || H  denotes the total number of 
nodes and links for cascading failure analysis; 

• iΔ  is the probability of failure at i; ]1,0[∈Δi ; 
• i

jf  is the fraction of nodes assigned to controller j but 
not in the mutually connected cluster of j at the steady 
stage of the cascading of a failure at i on H;  

• μi denotes the fraction of nodes in the largest mutually 
connected cluster at the steady stage of the cascading 
of a failure at i on H;   

• α controls the tradeoff between the resilience of the 
sub-networks controlled by individual controllers and 
the resilience of the network as a whole; ]1,0[∈α . 

Let VV j ⊆  be the set of switches assigned to controller j, 
jj

s VV ⊆  denote the nodes in the SS network of H that are 
controlled by j, and jj

c VV ⊆  be the set of nodes in the CS 
network of H that are controlled by j. ij

sV ,  denotes the set of 
nodes in the SS that (1) are survived at the steady stage of the 
cascading of a failure at i and (2) are in the same connected 
component of SS at the steady stage. ij

cV ,  denotes the set of 
nodes in the SS that (1) are survived at the steady stage of the 
cascading of a failure at i and (2) are in the same connected 
component of CS at the steady stage with j. We define 

),( ,, ij
c

ij
s VV  as a mutual connected cluster for j if (1) no other 

nodes from j
sV  or j

cV  can be added and the new pair of sets 
still satisfies the connectivity requirements and (2) ij

c
ij

s VV ,, = , 
which means that they are correspondent to the same set of 
nodes in G. Buldrey et al. [8] states that only the mutual 
connected clusters are potentially functional. Therefore, we 
measure the resilience by taking into consideration the 
expected fraction of nodes survived in the mutual connected 
cluster for each controller. The largest mutual connected 
cluster is formed by the largest possible union of mutual 
connected clusters for individual controllers as long as the 
union satisfies the requirements of mutual connected cluster.  

B. Controller Placement Algorithm for Improving Resilience  
The controller placement problem in SDN is to find the 

best L that maximizes φ. As the problem is NP-Hard, we 
propose a partition and selection approach to determine the 
placement of controllers for improving φ.  

The definition of network resilience in (1) is essentially a 
weighted average of the mean resilience of the sub-networks 
controlled by individual controllers and the resilience of the 
network as a whole. Therefore, our Algorithm 1 for controller 
placement is designed as follows: (1) given G and k, the 
algorithm first finds communities in G using the greedy 
modularity optimization method described in [9] and partitions 
the generated hierarchical tree of nodes into k clusters, each of 
which will be a sub-network managed by a controller; and then 
(2) in each sub-network, the algorithm selects a node with the 
maximal closeness centrality to all the other nodes in the sub-
network for placing the controller for the sub-network. The 
output of Algorithm 1 is L, the locations of the k controllers. 
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Fig. 5. Resilience with different probability of failure.   

  

Fig. 6. Comparison of Algorithm 1 and random placement. (All networks 
consist of 50 nodes and three controllers. The controller-switch communication 
strategy is in-band via single shortest path. Line 1 is the result of using 
Algorithm 1 on ring topology, Line 2 is the result of using random placement 
on ring topology, Line 3 is the result of using Algorithm 1 on binary tree 
topology, Line 4 is the result of using random placement on binary tree 
topology, Line 5 is the result of using Algorithm 1 on random topology, and 
Line 6 is the result of using random placement on random network topology.) 

C. Numerical Analysis 
In the following, we present the numerical analysis of 

Algorithm1. We used igraph library [10] to generate three 
types of network topologies for analysis, include ring topology, 
binary tree topology, and Erdos-Renyi random network 
topology. In the generated random networks, the probability of 
an edge between arbitrary two vertices was set to 0.4; therefore 
those random networks were mostly dense networks with small 
average path length. The generated ring networks had the 
largest average path length among the three types of 
topologies; while the average path length in binary tree 
networks was in the between. α was set to 0.5 in all the 
analysis and all the experiments were repeated 100 times.   

Fig. 5 shows the expected network resilience changes as the 
failure probability of nodes. All the nodes were subject to a 
common probability of failure. Fifty nodes were used to 

generate the three types of networks; Algorithm 1 was utilized 
to determine the placement of three controllers in each 
network. The controller-switch communication strategy is in-
band via single shortest path. The results show that the 
expected network resilience is inverse proportional to the 
average path length of the network topology; and thus random 
networks perform best and ring networks are least resilient. 

Fig. 6 shows the comparison of Algorithm 1 and random 
placement. The resilience of ring networks is not affected by 
the placement. The average improvement of Algorithm 1 is 
1.8% compared to the random placement on random network 
topology and 2.4% compared to the random placement on 
binary tree topology. The improvement is not so significant. 
One reason for this can be that the resilience metric in (1) only 
takes the node loss into account; and thus it is less sensitive to 
the loss in the links and the pairwise connectivity loss. 

IV. CONCLUSION 
This work introduces the use of interdependence graph and 

cascading failure analysis to analyze of the impact of controller 
placement on network resilience, designs a new resilience 
metric, and proposes an approach to improve the resilience. 
The interdependent network analysis is a useful tool that can 
benefit many aspects of the architectural design of SDN. In the 
future, we plan to investigate the integration of pairwise 
connectivity loss into the resilience metric. We also plan to 
perform more comprehensive evaluation using Mininet [11] 
and using real-world software-defined network testbeds. 
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