
Controller Placement for Improving Resilience of
Software-defined Networks

Minzhe Guo
Dept. of Electrical Engineering and Computing Systems

University of Cincinnati
Cincinnati, OH USA
guome@mail.uc.edu

Prabir Bhattacharya
Dept. of Electrical Engineering and Computing Systems

University of Cincinnati
Cincinnati, OH USA

bhattapr@ucmail.uc.edu

Abstract—Software-defined Network (SDN) is a new
architectural framework for networking that decouples control
plane from data plane and provides a programmatic interface to
network control. SDN enables innovations of networking
technologies for Internet and data centers today in order to ease
the management of the highly dynamic and complex
infrastructure, to support the fine-grained traffic engineering,
and to better address the mobility of virtual machines, services,
and end-points. However, SDN itself opens many unanswered
questions regarding reliability, performance, and security.
Controller placement is a critical problem in SDN that may affect
many aspects of SDN. This work introduces the use of
interdependence network analysis to study the controller
placement for network resilience, designs a new resilience metric,
and proposes a solution to improve resilience.

Keywords—Controller Placement, Network Resilience,
Software-defined Network

I. INTRODUCTION
Software-defined Network (SDN) is a recent architectural

framework for networking, which decouples the network
control plane from the data plane at physical topology and
provides a programmatic interface to network control. SDN
has the potential in simplifying the network management,
improving the efficiency of network utilization, and enabling
network innovations. A well-known implementation of SDN is
OpenFlow [1], which arises from an academic research project
and has now gained increasing adoptions in the industry, e.g.,
by Google, NEC, HP, etc. SDN enables innovations of
networking technologies for data centers in order to ease the
management of the highly dynamic and complex infrastructure,
to support the fine-grained traffic engineering, and to better
address the mobility of virtual machines, services, and end-
points. However, the SDN itself open many unanswered
questions regarding reliability, scalability, performance, and
security.

Controller placement is one of the critical problems in SDN
design that studies how to select the best k nodes in a SDN for
placing controllers in order to maximize an objective function.
Placement problems appear in many contexts and have
received extensive studies in literature. They are usually
variants of the facility location problem and are NP-hard
problems in general [2]. In addition, most of the placement

problems study the placement for improving performance, e.g.,
latency minimization; few investigate the placement for
reliability and security.

The research on controller placement in SDN has begun
very recently. Heller et al. [2] study the placement of
controllers in SDN with the objective to minimize average or
worst-case latency. Zhang et al. [3] initiate the study of
controller placement for resilience and propose a min-cut based
algorithm for network partition and controller placement. Hu et
al. [4] study the placement problem for reliability and propose
a greedy algorithm for efficient placement with good
reliability. Beheshti and Zhang [5] study how to place a
controller in a routing tree for fast failover. All these efforts
show that intelligent controller placement contributes to better
SDN design and performance.

This work focuses on the controller placement for network
resilience improvement in SDN and makes the following
contributions: 1) analyzing the impact of controller placement
on SDN resilience from the perspective of interdependent
networks; 2) defining a new resilience metric based on the
cascading failure analysis on the interdependence graph; and 3)
proposing a partition and selection approach to controller
placement for improving the resilience.

II. AN INTERDEPENDENT NETWORK APPROACH TO
NETWORK RESILIENCE ANALYSIS

The core concept of SDN is the separation of control plane
from data plane and thus centralizes the control logic. This
centralization can benefit network resilience by reducing the
reliance on short-live control messages, which are more likely
to be affected by network failures [6]. However, this
centralization also introduces resilience threat to SDN itself,
that is the proper functioning of a SDN depends on the proper
functioning of two interdependent networks: the switch-switch
network (SS) for data forwarding, and the controller-switch
network (CS) for network control.

Based on this observation, we extend the model of
interdependence graph in [7] to analyze the impact of
controller placement on SDN network resilience. The
interdependence graph enables the analysis of cascading failure
in multiple networks due to node dependence relationships.

2013 Fourth International Conference on Networking and Distributed Computing

2165-4999/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNDC.2013.15

23

For better illustration of how the interdependence graphs
between SS and CS can be constructed and how they can be
used for analyzing the network resilience, we present the
concepts and analysis using an example network, with the
German Backbone Network Topology from [8], as shown in
Fig. 1(a).

1

2
3

4

75
6

8
9

10
11

12
13 14

1

2
3

4

75
6

8
9

10
11

12
13 14

(a) (b)
Fig. 1. Example Topology. (a) German Backbone Network Topology [8]; (b)
A shortest path routing tree for in-band controller-switch communication on
the example topology when node 1 are the controllers and others are
switches.

A. SS-CS Interdependence Graph
Let G=(V, E) denotes a SDN topology, in which the set of

nodes V consists of the switches and controllers in SDN, and
the set of edges E is comprised of the links between switches,
the links between controllers and switches, and the links
between controllers.

We define an interdependence graph between SS and CS of
an SDN as a 5-tuple H=(Vs, Es, Vc, Ec, Ecs):

• Vs �� V denotes the set of nodes in G that perform
switch functions in SS network, such as originating,
responding, and forwarding packets; for example the
nodes under the label “SS” in Fig. 2;

• Es � E denotes the set of links that form the
communication paths for Vs in SS; for example the
edges under the label “SS” in Fig. 2;

• Vc �� V denotes the set of nodes in G that perform
functions in CS network, such as the switches
registering themselves to controllers and forwarding
packets to the controllers when there are no processing
rules for the packets, and the controllers generating
packet processing rules and writing rules to switches;
for example the nodes under the label “CS” in Fig. 2;

• Ec � E denotes the set of links that form the
communication paths for Vc in CS network; for
example the edges under the label “CS” in Fig. 2;

• Ecs denotes the set of dependence relations between Vs
and Vc. The dependence relations are directed. A
dependence relation from node α in network Α to node
β in network Β denotes that α depends on β, which
means that the proper functioning of α in Α depends

on the proper functioning of β in Β. In Fig. 2(a), node
1 in SS depends on node 1 in CS, node 3 in SS and
node 3 in CS are mutual dependent, and there is no
dependence relation between node 4 in SS and node 4
in CS.

Multiple dependence relations for a node can form an
AND-Dependence-Set, an OR-Dependence-Set, or a hybrid set.
Informally, a node with AND-Dependence-Set fails if any one
of its dependent nodes fails; and a node with OR-Dependence-
Set fails if all of its dependent nodes fail. In Fig. 2(b), the
dependence relations between node 1 and 2 in SS and node 1 in
CS form an OR-Dependence-Set (represented using the “OR
gate” symbol from Digital Logic), which means that the proper
functioning of node 1 in CS depends on both the proper
functioning of node 1 and node 2 in SS; on the other hand, the
dependence relations between node 3 and 4 in SS and node 3 in
CS form an AND-Dependence-Set (represented using the
“AND gate” symbol), which means that the proper functioning
of node 3 in CS depends on either the proper functioning of
node 3 in SS or the proper functioning of node 4 in SS.

By using the combinations of AND-Dependence-Set and
OR-Dependence-Set, the interdependence graph can capture
both simple interdependent relationship between the SS and CS
networks, e.g., single path routing, and complex
interdependence, e.g., multipath routing or service redundancy.

(c)

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14
(d)

SS CS SS CS

1

2

4

3

1

2

4

3

1

2

4

3

1

4

3

SS CS SS CS

(a) (b)

2

Fig. 2. Example SS-CS Interdependence Graphs.

Given the network topology of an SDN, the number and the
locations of the controllers, an SS-CS interdependence graph
can be constructed after specifying the controller-switch

24

communication strategies, such as the type of communication
channels (out-of-band or in-band) and the routing protocols
(e.g., single-path or multi-path routing). Fig. 2(c) presents a SS-
CS interdependence graph for the example topology with node
1 as a controller and in-band controller-switch communication
via single shortest paths (Fig. 1(b)). Nodes in SS and CS in Fig.
2(c) are mutual dependent. Fig. 2(d) presents another SS-CS
interdependence graph for the example topology when the
controller-switch channels are fully out-of-band and node 1
only plays the role of a controller in the CS network. The
proper functioning of switches (nodes) in the SS network
depends on their proper functioning in the CS network.

B. Failure Cascading on the SS-CS Interdependence Graphs
This subsection presents the use of SS-CS interdependence

graph for cascading failure analysis. Similar to [3], we assume
a static binding between controllers and switches. Switches are
only controlled by a single assigned controller. When the
connection between a switch and its controller fails, before a
backup path is built and used, the switch fails and drop all
packets. We consider the following failures:

• Link failure: a link failure indicates that all traffic
passing through a link will be dropped. It can occur in
a link in SS or in CS.

• Node failure: a node failure indicates that the node
cannot be proper functioning in SS and/or CS
networks. It can be a switch that becomes unable to
originate or forward packets. It can also be a controller
that fails to process packets or managing rules. Node
failures can be caused by software bugs, malicious
attacks, misconfigurations, hardware failures, power
outage, etc.

In the following, we define the process of a failure
cascading on the SS-CS interdependence graph.

• The process starts with a link failure or a node failure
in either SS or CS network.

• The failure propagates iteratively between SS and CS
networks based on their dependence relations.

In CS network, a node is affected by the faillure if its
dependent nodes in SS are affected by the failure or it
is disconnected from its assigned controller; a link is
affected by the failure if any node that it connects with
is affected by the failure.

In SS network, a node is affected by the faillure if its
dependent nodes in CS are affected by the failure or all
its links in SS are affected by the failure; a link is
affected by the failure if any node that it connects with
is affected by the failure.

• The failure cascading reaches its steady stage if no
more nodes/links can be affected by the failure or all
the nodes and links are affected by the failure.

Fig. 3 demonstrates a failure cascading on the example SS-
CS interdependence graph presented in Fig. 2(c). The failure
starts at node 7 in SS, and thus all its associated links in SS are
affected (Fig. 3(a)). Due to the mutual dependence, the failure

propagates to node 7 in CS, as well as its associated links in CS
(Fig. 3(b)). Because of the failure of node 7 in CS, node 10, 11,
12, 13, 14 in CS are disconnected from the controller (node 1
in CS), and thus the failure propagates to those nodes and their
associated links (Fig. 3(c)). Due to mutual dependence, the
failure continues to affect the nodes 10, 11, 12, 13, 14 in SS
and the associated links in CS (Fig. 3(d)). After this iteration,
no more nodes or links will be affected, so the propagation
stops, and the failure cascading reaches a steady stage.

(a)

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14
(b)

(c)

SS CS
1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

SS CS

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

SS CS

(d)

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

SS CS

Fig. 3. An example cascading failure on SS-CS interdependence graph. (Links
are removed if they are affected by the failure; nodes are colored in grey if they
are affected by the failure.)

C. Impact of Controller Placement on Network Resilience
Based on the analysis above, the resilience of a network is

closely related to the number of nodes survived in the steady
stage of the cascading of a failure. The more the fraction of
nodes survived at the steady stage, the better the network
resilient to the failure. To investigate the impact of controller

25

placement on the network resilience, we use the same SDN
topology and controller-switch communication strategies as the
ones use in Fig. 3 to construct SS-CS interdependence graphs
based on different controller placement, and then repeat the
cascading failure analysis on the interdependence graphs
starting from a failure at node 7 in SS network. Fig. 4 shows
the steady stage of the cascading failure analysis. We can see
that, by selecting node 10 as the controller, more nodes
survived at the steady stage (Fig. 4(a)). By increasing the
number of controllers to two and placing them on node 1 and
node 10, the failure at node 7 does not affect other nodes. The
results in Fig. 4 exemplifies the impact of controller placement
on the network resilience.

(a)

1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14
(b)

SS CS
1

2

4

3

5

6

8

7

9

10

12

11

13

14

1

2

4

3

5

6

8

7

9

10

12

11

13

14

SS CS

Fig. 4. The steady stage of the cascading of a failure on two SS-CS
interdependence graphs. (a) The steady stage of the cascading failure analysis
with one controller at node 10; (b) The steady stage of the cascading failure
analysis with two controllers at node 1 and node 10.

III. CONTROLLER PLACEMENT FOR IMPROVING RESILIENCE
Given an SDN network topology G=(V,E), the number of

controllers k, the locations of the controllers L�V, and the
controller-switch communication strategy ψ, an SS-CS
interdependence graph H can be constructed and a cascading
failure analysis can be performed on the graph. H, k, L, ψ, and
the probability distribution of link and node failures Δ all have
direct impacts on the survival nodes at the steady stage of the
cascading failure analysis.

A. Resilience Metric
Given k, L, ψ and Δ, we define the resilience of H as

follows:

 []� −+�∗Δ∗−= ∈ =Hi
ik

j
i
j

i f
H

))1(
||

11 1 μααφ (1)

where:

• i is a node or a link in SS or CS of H for cascading
failure analysis; || H denotes the total number of
nodes and links for cascading failure analysis;

• iΔ is the probability of failure at i;]1,0[∈Δi ;
• i

jf is the fraction of nodes assigned to controller j but
not in the mutually connected cluster of j at the steady
stage of the cascading of a failure at i on H;

• μi denotes the fraction of nodes in the largest mutually
connected cluster at the steady stage of the cascading
of a failure at i on H;

• α controls the tradeoff between the resilience of the
sub-networks controlled by individual controllers and
the resilience of the network as a whole;]1,0[∈α .

Let VV j ⊆ be the set of switches assigned to controller j,
jj

s VV ⊆ denote the nodes in the SS network of H that are
controlled by j, and jj

c VV ⊆ be the set of nodes in the CS
network of H that are controlled by j. ij

sV , denotes the set of
nodes in the SS that (1) are survived at the steady stage of the
cascading of a failure at i and (2) are in the same connected
component of SS at the steady stage. ij

cV , denotes the set of
nodes in the SS that (1) are survived at the steady stage of the
cascading of a failure at i and (2) are in the same connected
component of CS at the steady stage with j. We define

),(,, ij
c

ij
s VV as a mutual connected cluster for j if (1) no other

nodes from j
sV or j

cV can be added and the new pair of sets
still satisfies the connectivity requirements and (2) ij

c
ij

s VV ,, = ,
which means that they are correspondent to the same set of
nodes in G. Buldrey et al. [8] states that only the mutual
connected clusters are potentially functional. Therefore, we
measure the resilience by taking into consideration the
expected fraction of nodes survived in the mutual connected
cluster for each controller. The largest mutual connected
cluster is formed by the largest possible union of mutual
connected clusters for individual controllers as long as the
union satisfies the requirements of mutual connected cluster.

B. Controller Placement Algorithm for Improving Resilience
The controller placement problem in SDN is to find the

best L that maximizes φ. As the problem is NP-Hard, we
propose a partition and selection approach to determine the
placement of controllers for improving φ.

The definition of network resilience in (1) is essentially a
weighted average of the mean resilience of the sub-networks
controlled by individual controllers and the resilience of the
network as a whole. Therefore, our Algorithm 1 for controller
placement is designed as follows: (1) given G and k, the
algorithm first finds communities in G using the greedy
modularity optimization method described in [9] and partitions
the generated hierarchical tree of nodes into k clusters, each of
which will be a sub-network managed by a controller; and then
(2) in each sub-network, the algorithm selects a node with the
maximal closeness centrality to all the other nodes in the sub-
network for placing the controller for the sub-network. The
output of Algorithm 1 is L, the locations of the k controllers.

26

Fig. 5. Resilience with different probability of failure.

Fig. 6. Comparison of Algorithm 1 and random placement. (All networks
consist of 50 nodes and three controllers. The controller-switch communication
strategy is in-band via single shortest path. Line 1 is the result of using
Algorithm 1 on ring topology, Line 2 is the result of using random placement
on ring topology, Line 3 is the result of using Algorithm 1 on binary tree
topology, Line 4 is the result of using random placement on binary tree
topology, Line 5 is the result of using Algorithm 1 on random topology, and
Line 6 is the result of using random placement on random network topology.)

C. Numerical Analysis
In the following, we present the numerical analysis of

Algorithm1. We used igraph library [10] to generate three
types of network topologies for analysis, include ring topology,
binary tree topology, and Erdos-Renyi random network
topology. In the generated random networks, the probability of
an edge between arbitrary two vertices was set to 0.4; therefore
those random networks were mostly dense networks with small
average path length. The generated ring networks had the
largest average path length among the three types of
topologies; while the average path length in binary tree
networks was in the between. α was set to 0.5 in all the
analysis and all the experiments were repeated 100 times.

Fig. 5 shows the expected network resilience changes as the
failure probability of nodes. All the nodes were subject to a
common probability of failure. Fifty nodes were used to

generate the three types of networks; Algorithm 1 was utilized
to determine the placement of three controllers in each
network. The controller-switch communication strategy is in-
band via single shortest path. The results show that the
expected network resilience is inverse proportional to the
average path length of the network topology; and thus random
networks perform best and ring networks are least resilient.

Fig. 6 shows the comparison of Algorithm 1 and random
placement. The resilience of ring networks is not affected by
the placement. The average improvement of Algorithm 1 is
1.8% compared to the random placement on random network
topology and 2.4% compared to the random placement on
binary tree topology. The improvement is not so significant.
One reason for this can be that the resilience metric in (1) only
takes the node loss into account; and thus it is less sensitive to
the loss in the links and the pairwise connectivity loss.

IV. CONCLUSION
This work introduces the use of interdependence graph and

cascading failure analysis to analyze of the impact of controller
placement on network resilience, designs a new resilience
metric, and proposes an approach to improve the resilience.
The interdependent network analysis is a useful tool that can
benefit many aspects of the architectural design of SDN. In the
future, we plan to investigate the integration of pairwise
connectivity loss into the resilience metric. We also plan to
perform more comprehensive evaluation using Mininet [11]
and using real-world software-defined network testbeds.

REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev. 38: 69-74,
2008.

[2] B. Heller, R. Sherwood, and N. McKeown, "The Controller Placement
Problem," The 1st Workshop on Hot topics in Software Defined
Networks (HotSDN '12), Helsinki, Finland, August 13-17, 2012.

[3] Y. Zhang, N. Beheshti, and M. Tatipamula, "On Resilience of Split-
Architecture Networks," GLOBECOM 2011, Huston, TX, 2011.

[4] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On the Placement of
Controllers in Software-defined Networks,” The J. of China Univ. of
Posts and Telecomm., Oct. 2012, 19 (Suppl. 2): 92-97.

[5] N. Beheshti and Y. Zhang, "Fast Failover for Control Traffic in
Software-defined Networks," GLOBECOM 2012, Anaheim, CA, 2012.

[6] P. Gill, N. Jain, and N. Nagappan, "Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications,"
SIGCOMM’11, August 15-19, 2011, Toronto, Ontario, Canada.

[7] S. V. Buldrey, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
"Catastrophic Cascade of Failures in Interdependent Networks," Nature
464, 1025-1028, April 15, 2010.

[8] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, “Fast
failure recovery for in-band OpenFlow networks,” 9th International
Conference on the Design of Reliable Communication Networks,
Budapest, Hungary, March 4-7, 2013.

[9] A. Clauset, M. E. J. Newman, C. Moore, "Finding Community Structure
in Very Large Networks, " Physical Review E, 70(6), Dec 2004.

[10] http://igraph.sourceforge.net/
[11] http://mininet.org.

27

