
OpenNet: A Simulator for
Software-Defined Wireless Local Area Network

Min-Cheng Chan1, Chien Chen1, Jun-Xian Huang1, Ted Kuo2, Li-Hsing Yen3 and Chien-Chao Tseng1

Dept. Computer Science

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.1

Global Strategy Office
D-Link Systems, Inc.

Santa Clara, California, U.S.A.2

Dept. Computer Science and Information
Engineering

National University of Kaohsiung
Kaohsiung, Taiwan, R.O.C.3

Abstract—This study is motivated by a plan to install a
software-defined wireless local area network (SDWLAN) on
campus, which possesses a desired property that both data flow
and device behaviors can be software-definable. Because the
installation involves hundreds of access points, we must conduct
simulations beforehand to verify the design and scalability of the
target system. However, existing SDN simulator like Mininet
does not support modeling of wireless channel and mobility. On
the other hand, common network simulator like ns-3 only has
limited support for software-defined controllers and does not
fully implement handover process. We thus develop OpenNet,
which connects Mininet to ns3 to enjoy both Mininet’s advantage
of controller compatibility and ns-3’s ability in the
wireless/mobility modeling. OpenNet also complements ns-3 by
adding probe mechanism, which is missing in the current ns-3
implementation. Our simulation result demonstrates the
effectiveness of OpenNet.

Index Terms—Software-defined network, wireless local area
network and simulator.

I. INTRODUCTION

Wi-Fi access points (APs) deployment and management on
campus networks present constant challenges to the IT staffs.
Unplanned or uncoordinated Wi-Fi AP installations, which are
common on campus, cause mutual interference and throughput
degradation. Besides, traffic from APs installed for
experimental purpose is often mixed up with regular traffic,
resulting in an unstable wireless environment.

Concerning the problems caused by legacy APs, we
envision software-defined wireless local area network
(SDWLAN) that applies the idea of software-defined network
(SDN) to wireless local area network (WLAN). SDN provides
a centralized and flexible network by applying different rules
to different data flows. In the envisioned SDWLAN, not only
rules for data flow but also behaviors (operating channel,
access control, etc.) of devices (more specifically, APs) can be
software-definable. Several advantages of SDWLAN have
been envisioned:
 Low cost. To manage numerous APs in a traditional

WLAN, commercial wireless-management products
(e.g. [1]) demand specialized APs to interwork with,
which incurs high cost when numerous APs are
involved. In SDWLAN, OpenFlow-enabled APs follow
the OpenFlow standard to provide a unified interface.
The price of OpenFlow-enabled APs is much

reasonable than specialized APs and thus we are able to
manage the SDWLAN with lower cost.

 Flexible management. Several studies have shown
significant handover performance improvement using a
centralize controller that knows the entire network
topology [2]. SDN controller can obtain information
such as the neighbor list of each OpenFlow-enabled AP.
With that information, it is possible to reduce the
interference of adjacent APs by power control.

 Traffic isolation. SDN provides wireless resource
virtualization and slicing that can be used to isolate
certain type of traffic from others for better network
stability. Deep packet inspectors can also cooperate
with SDN to identify, isolate and redirect malicious
traffic flow for further inspection in real-time.

 Link layer mobility management. Mobile devices in a
traditional WLAN usually need to change their IP
address when moving to a different sub-net. SDN
controller is able to track the location of each mobile
device and thereby redirect packets to the current
location of mobile device without changes of IP
addresses. This ability avoids performance bottleneck
incurred by conventional network-layer handover
procedure [3]. SDN can also provide seamless handover
by n-casting [9]. Moreover, SDN can make multiple
APs act as single big virtual AP to avoid unnecessary
link-layer disconnections [4].

An increasing number of universities and enterprises plan
to deploy SDN as an evolution of their network environment.
We believe that SDWLAN will be soon applied to campus
networks. However, since the SDN deployment involves
hundreds of APs, we must conduct simulations beforehand to
verify the design and scalability of the target system. The
simulator under consideration must meet the following
requirements:

Wireless functionality support. The simulator must be able
to simulate the nature of mobile devices such as AP scanning,
modeling of wireless channel and moving trajectory.

Controller compatibility. The simulator must be able to
connect to and receive command from any type of OpenFlow
controller. With this property, we need not modify existing
controllers to be used in the simulation environment.

Extendibility. Some experimental actions such as change of
vlan tag are not defined in the OpenFlow specification.

This work was sponsored in part by D-Link Systems, Inc.

3374

Fortunately, the specification allows us to implement vendor-
specific actions on OpenFlow-enabled APs. The simulator
must be easily modified and deployed at the experiment
SDWLAN.

We have investigated three most popular simulators used in

SDN: Mininet, ns-3 and EstiNet. Mininet does not support
modeling of wireless channel and mobility. Ns-3 has limited
support for software-defined controllers and does not fully
implement handover process. EstiNet is a commercial
simulator and thus does not provide the flexibility of source-
code level modification and extension. The result of
investigation leads to a conclusion that existing simulators are
not suitable for SDWLAN study in terms of wireless
functionality support, controller compatibility and extensibility.
We therefore propose an open-source [10] simulator OpenNet
based on Mininet and ns-3. It connects Mininet to ns3 to enjoy
both Mininet’s advantage of controller compatibility and ns-3’s
ability in the wireless/mobility modeling. OpenNet also
complements ns-3 by adding channel-scanning mechanism
which is missing in the current ns-3 implementation.

The rest of this paper is arranged as follows. The next
section briefs three existing simulators that support OpenFlow
and exhibit the need of a new simulator. We highlight the
contribution of proposed system, OpenNet, in Section III and
detail the implementation in Section IV. In Section V, we
demonstrate the usage of OpenNet and illustrate a simple
evaluation. Finally, Section VI concludes this paper with a
discussion of future works.

II. EXISTING SIMULATORS

Mininet [5], a BSD licensed open-source project, has been
widely used as a simulator for SDN. It is based on Linux
container, a lightweight virtualization feature supported by
Linux kernel version 2.2.26 and above. Linux container
provides each individual processes with separate network
interfaces, routing tables and ARP tables. Mininet provides a
simple and inexpensive network testbed for OpenFlow
applications, which supports up to 4096 hosts and switches.
Mininet is also compatible with real network and various
controllers. However, Mininet does not support the modeling
of either wireless channel or mobility. Consequently,
simulating entire handover procedure in SDWLAN, which is
important in our study, is simply impossible.

Ns-3 [6] is a GPLv2 licensed open-source discrete-event
network simulator for Internet systems. It is well documented
and highly modularized and thus can be easily modified or
extended. Ns-3 includes simulation tools for wireless channel
and mobility modeling. However, the latest version of ns-3
does not yet implement scan mechanism which is necessary for
layer-2 handover. This limitation makes the simulation of a
complete layer-2 handover procedure in ns-3 impossible.
Moreover, simulating OpenFlow behavior in ns-3 demands an
implementation of OpenFlow controller inside ns-3 (as an
extension of ns-3 object ofi::Controller). This requirement
makes a testing of existing controller difficult.

EstiNet [7] are commercial simulation and emulation tools
for OpenFlow networks. Unlike above-mentioned simulators,
EstiNet allows not only observation but also configuration
through a GUI. User can easily setup network entities and
topology using drag-and-drop. It also supports wireless
channel modeling and the simulation of OpenFlow switches.
The main benefit of EstiNet is that it modifies some time-
related functions in Linux kernel and provides more
performance fidelity for users who want to evaluate system
performance by simulation. However, since EstiNet is not a
complete open-sourced solution, it cannot be easily extended
even if we can obtain part of the source codes after purchasing
it.

The comparison among these simulators is
summarized in Table 1. We conclude that these simulators
are not suitable for SDWLAN in terms of compatibility and
flexibility. We therefore propose a new simulation system,
OpenNet, which takes Mininet’s advantage of controller
compatibility and the wireless/mobility modeling ability of ns-
3.

III. CONTRIBUTION

 OpenNet is a simulator for SDWLAN that is built on top
of Mininet and ns-3. These two simulators by itself have high
flexibility to develop and deploy new experimental protocols.
Additionally, OpenNet inherits the backward compatibility
from ns-3 and controller compatibility from Mininet.

OpenNet supports all simulation types supported by
Mininet and ns-3, including the simulation of OpenFlow-
enabled APs. In addition to putting Mininet and ns-3 together,
OpenNet also augments ns-3 by implementing Wi-Fi scan
mechanism, which enables the simulation of layer-2 handover
of mobile nodes between two OpenFlow-enabled APs that
operate on two different channels.

TABLE I. Comparison between Existing Simulators and OpenNet
Simulator Mininet Ns-3 EstiNet OpenNet

OpenFlow Version 1.3.1 0.8.9 1.3.1 1.3.1
Simulation/Emulation E S/E S/E S/E

Wireless Functionality No Scan V V
Controller Compatibility V V V

Extendibility V V V

IV. IMPLEMENTATION

A. Connecting Mininet to ns-3

To use ns-3 to model link layer behavior of Mininet,
OpenNet needs to bridge Mininet with ns-3. Figure 1 shows
how OpenNet uses a technique named "TAP device" to
achieve the goal. First, for each node in Mininet, we create a
corresponding WifiNetDevice, which is a simulated wireless
network device in ns-3. This simulated device could be an AP
or station (mobile node) depends on what kind of link layer
module it uses. Here we use ApWifiMac and StaWifiMac to
simulate the link layer behaviors of AP and station,
respectively. WifiPhy is used to simulate the physical layer
behavior of both AP and station. (WifiNetDevice, ApWifiMac,
StaWifiMac and WifiPhy are all provided by the original ns-3.)
All WifiNetDevices connect with each other by an emulated

3375

ns-3 Wi-Fi channel. In a traditional ns-3 simulation, the upper
layer of WifiNetDevice is directly connected to a network
layer module (e.g. IP). However, in OpenNet, it is connected
to the IP layer of the Mininet node.

Second, we create a TAP device for each node at the
Mininet side. TAP device is a virtual network interface
supported by Linux kernel that simulates a link layer device. It
is widely used to bridge one user-space program with another.
Ns-3 provides a module named TapBridge that can connect
the simulation environment with a TAP device, which is used
by OpenNet to connect WifiNetDevice in ns-3 to a proper TAP
device in Mininet.

An alternative open-source project in [8] uses a similar
approach. That project modifies TapBridge in ns-3 for the
connection with Mininet. At the Mininet side, a new module is
written to generate corresponding TapDevice to connect with
ns-3 through TapBridge.

B. Implementing scan mechanism in ns-3

Wi-Fi stations in ns-3 do not perform automatic AP
scanning among different channels, which is fine if all APs
operate on the same channel. However, in real-world wireless
environment, adjacent APs usually operate on different
channels to avoid co-channel interference. To simulate a
handover procedure between two APs that operate on different
channels, we have made the following modifications on ns-3
which conform to IEEE 802.11 specification.

1) Adding scan-related attributes
a) In wifi/bindings, we have added the enumeration of

MacScanType: NOTSUPPORT, ACTIVE and PASSIVE.

 NOTSUPPORT
Wi-Fi station does not support scan and acts exactly
the same as in the original ns-3.

 ACTIVE
Wi-Fi station supports active scan. When a station no
longer associates with any AP, it broadcasts Probe
Request proactively on each channel.

 PASSIVE
Wi-Fi station supports passive scan. When a station
no longer associates with any AP, it passively listens
to beacons on each channel.

b) In wifi/model/sta-wifi-mac, we have added three scan-
related attributes.

 MaxScanningChannelNumber
The maximum number of channels to be scanned.

 MaxChannelTime
The maximum scanning time spent in one channel.

 MinChannelTime
The minimum scanning time spent in one channel.

2) Adding scan-related states into state machine
Figure 2 shows the original state machine of StaWifiMac

module in ns-3. When a specific number of beacons get lost
and the beacon watchdog timer eventually expires, station
changes state from Associated to Beacon Missed. In Beacon
Missed state, station sends probe requests with original SSID or
listens to beacons only on the original channel.

Figure 3 shows the state machine modified by OpenNet.
When beacon watchdog expires, station first checks the
MacScanType attribute. For NOTSUPPORT type, the state
transits to original Beacon Missed state followed by the
original ns-3 reconnection behavior without performing a
cross-channel scan. For the ACTIVE type, station first switches
to a specific channel and attempts accessing the medium using
distributed coordination function (DCF) before sending a probe

Fig. 1. How OpenNet connects Mininet with ns-3

Fig. 2. Original State Machine of StaWifiMac in ns-3

Fig. 3. Modified State Machine of StaWifiMac in OpenNet

3376

request. If the medium is never busy during MinChannelTime
(which indicates that it is likely no one communicates on this
channel), station continues probing the next channel. Otherwise
it waits for probe response until MaxChannelTime. For the
PASSIVE type, station switches from channels to channels to
listen to beacons.

3) Obtaining SNR information
After station discovers an available AP (by either active or

passive scan), it decides which AP to connect based on Signal
to Noise Ratio (SNR) of the beacon. We use SNR instead of
RSSI since SNR can reflect the noise ratio and thus react to
collision and retransmission. In the real world, SNR can be
obtained from driver if supported. In ns-3, a slight modification
is required to obtain SNR. Figure 4 shows the block diagram of
station’s MAC layer in ns-3. In the original implementation,
SNR information is only stored in MacLow. Since the state
machine as well as the scan procedure is located in StaWifiMac,
we have modified both MacLow and MacRxMiddle to let SNR
information be forwarded to StaWifiMac.

For handover policy, OpenNet currently chooses the
candidate AP with the highest SNR. We can modify the state
machine to implement other AP selection rules or even pre-
scan mechanism that selects new AP before disconnection of
current link to further shorten handover latency.

V. DEMONSTRATION AND EVALUATION

Running simulations on OpenNet demands a simulation
script that specifies location/connection of network entities,
and the mobility model of stations. The script can also set delay
and loss models in the simulation. OpenNet users can load
topology files in JSON format that can be bulk generated
outside OpenNet. OpenNet is able to bridge a real network
with a simulated network and thus switches can connect to
controllers either inside or outside OpenNet through normal
TCP/IP connections.

We ran OpenNet to confirm the effectiveness of our design.
Our demonstration script deploys seven OpenFlow-enabled
APs s1-s7 as shown in Figure 5. Each AP has several Ethernet
interfaces and one Wi-Fi interface and is connected to a real
OpenFlow controller that is omitted in the figure. In this
demonstration, APs act like layer-2 learning switches. One
mobile node h1 roams from switch s1 straightly toward s3

while another station h2 stays stationary at s3 as a
corresponding node. H1 keeps sending ICMP echo requests to
h2 during the whole procedure. Latency is set to 2 ms for all
wired link and 200 ms for the wireless links.

OpenNet logs simulation events and generates an XML file
as a result. A GUI provided by ns-3 named NetAnim can use
the XML file to render an animation for the whole simulation.
Table 2 shows a simplified simulation log.

A. Before handover (Packets 1-3)

Before the handover, the first ICMP packet went through
h1, s1, and s3 to h2. Table 2 shows that the latency between
packet 1 and packet 2 is 350 ms. Except for 200 ms wireless
transmission latency, there is an extra 150 ms latency since s1
did not know where to forward the very first packet and asked
the controller for direction.

B. During handover (Packets 6-11)

During the handover, only s2, s3, and s4 received requests
sent by h1 since other APs were out of h1’s communication
range. Packets 6 and 7 were actually sent at the same time
since s2 and s4 used the same channel. H1 finally associated
with s3 because s3 had the best SNR at the location of h1.

C. After handover (Packets 12-13)

We will discuss the location update procedure in two cases:

a) Mobile node proactively sends data after handover

In this case, the new AP does not know how to process
the packet and thus forward it to the controller. The
controller soon realizes that this packet is sent from mobile
node (by analyzing its source MAC address) and then
updates forwarding table of all switches to redirect packets
destined for the mobile node.

b) Mobile node reactively receives data after handover

In this case, the new AP must inform the controller of
h1's new location when the mobile node attaches to the
new AP.

Mobility management in case b requires some
modifications to the behavior of APs, which remains to be our
future work.

Our example verifies that OpenNet can simulate the

roaming and scanning behaviors of mobile nodes and can
interact with OpenFlow controller.

Fig. 4. Block diagram of StaWifiMac in ns-3 Fig. 5. Simulation Topology

3377

TABLE II. Simplified Simulation Log
Packet No. Tx Time (s) From To Type

Before Handover
1 0.2659 h1 s1 Wi-Fi data
2 0.6158 s1 s3 Ethernet data
3 0.8150 s3 h2 Wi-Fi data

During Handover
4 21.2702 h1 s3 Probe request
5 21.2706 s3 h1 Probe response
6 21.3715 h1 s2 Probe request
7 21.3715 h1 s4 Probe request
8 21.3721 s2 h1 Probe response
9 21.3749 s4 h1 Probe response
10 21.4243 h1 s3 Association request
11 21.4253 s3 h1 Association response

After Handover
12 21.546 h1 s3 Wi-Fi data
13 21.747 s3 h2 Wi-Fi data

VI. CONCLUSION AND FUTURE WORKS

In this paper, we first discuss the benefits of SDWLAN and
the need for a SDWLAN simulator. We point out that existing
network simulators do not fulfill our needs. Specifically,
Mininet does not support modeling of wireless channel and
mobility; ns-3 has limited support for OpenFlow controllers
and does not fully implement handover process; and EstiNet
does not enable source-code level modification or extension.
We propose OpenNet, which is an open-source simulator based
on Mininet and ns-3. OpenNet connects Mininet to ns3 to
enjoy both Mininet’s advantage of controller compatibility and
ns-3’s ability in the wireless/mobility modeling. OpenNet also
complements ns-3 by adding channel scan mechanism. Our
preliminary experiment shows that 1) OpenNet can correctly
simulate an SDWLAN in which controllers can communicate
with OpenFlow-enabled APs and 2) wireless station in
OpenNet can successfully handover to another AP by scanning
and switching to another channel.

In the future, we shall focus on the performance evaluation
and enhancement of large-scale simulation in OpenNet. In
addition, we shall study possible solutions for network-assisted
mobility management by implementing wireless access
controller (WAC) over SDWLAN controller. The WAC will
manage resource allocation, association, authentication and
even pre-authentication, providing comprehensive information
for Wi-Fi stations to make handover decisions.

REFERENCES

[1] Aruba Mobility Controller, available at
http://www.arubanetworks.com/products/mobility-controllers/

[2] Chien-Chao Tseng et al. “Topology-aided cross-layer fast
handoff designs for IEEE 802.11/Mobile IP
environments,” IEEE Communications, Vol. 43, No. 12, pp.
156-163, 2005.

[3] Ki-Sik Kong et al. “Handover latency analysis of a network-
based localized mobility management protocol”, IEEE ICC,
2008.

[4] Lalith Suresh et al. “Towards programmable enterprise WLANs
with Odin.” Hot Topics in Software Defined Networking, 2012.

[5] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in
a Laptop: Rapid Prototyping for Software-Defined Networks.”
9th ACM Workshop on Hot Topics in Networks, 2010.

[6] ns-3 OpenFlow switch support in version 3.18, available at
http://www.nsnam.org/docs/release/3.18/models/html/openflow-
switch.html

[7] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang.
“EstiNet OpenFlow network simulator and emulator.” IEEE
Communication Magazine, Vol. 51, Issue 9, 2013.

[8] Link modeling using ns-3, available at
https://github.com/mininet/mininet/wiki/Link-modeling-using-
ns-3

[9] Kok-Kiong Yap et al. “OpenRoads: Empowering Research in
Mobile Networks.” ACM SIGCOMM Computer
Communication Review archive, Vol. 40, Issue 1, pp. 125-126,
2010.

[10] Source code of OpenNet, available at
http://github.com/dlinknctu/OpenNet.

3378

