
Protothreads: Simplifying Event-Driven Programming of
Memory-Constrained Embedded Systems

Adam Dunkels†, Oliver Schmidt, Thiemo Voigt†, Muneeb Ali‡∗
†Swedish Institute of Computer Science, Box 1263, SE-16429 Kista, Sweden

‡TU Delft, Mekelweg 4, 2628 CD Delft,The Netherlands

adam@sics.se, oliver@jantzer-schmidt.de, thiemo@sics.se, m.ali@tudelft.nl

Abstract
Event-driven programming is a popular model for writ-

ing programs for tiny embedded systems and sensor network
nodes. While event-driven programming can keep the mem-
ory overhead down, it enforces a state machine programming
style which makes many programs difficult to write, main-
tain, and debug. We present a novel programming abstrac-
tion called protothreads that makes it possible to write event-
driven programs in a thread-like style, with a memory over-
head of only two bytes per protothread. We show that pro-
tothreads significantly reduce the complexity of a number of
widely used programs previously written with event-driven
state machines. For the examined programs the majority of
the state machines could be entirely removed. In the other
cases the number of states and transitions was drastically de-
creased. With protothreads the number of lines of code was
reduced by one third. The execution time overhead of pro-
tothreads is on the order of a few processor cycles.
Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Pro-
gramming
General Terms

Design, Experimentation, Measurement, Performance
Keywords

Wireless sensor networks, Embedded systems, Threads
1 Introduction

Event-driven programming is a common programming
model for memory-constrained embedded systems, includ-
ing sensor networks. Compared to multi-threaded systems,
event-driven systems do not need to allocate memory for per-
thread stacks, which leads to lower memory requirements.
For this reason, many operating systems for sensor networks,

∗Work done at the Swedish Institute of Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’06, November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00

including TinyOS [19], SOS [17], and Contiki [12] are based
on an event-driven model. According to Hill et al. [19]: “In
TinyOS, we have chosen an event model so that high levels
of concurrency can be handled in a very small amount of
space. A stack-based threaded approach would require that
stack space be reserved for each execution context.” Event-
driven programming is also often used in systems that are
too memory-constrained to fit a general-purpose embedded
operating system [28].

An event-driven model does not support a blocking wait
abstraction. Therefore, programmers of such systems fre-
quently need to use state machines to implement control flow
for high-level logic that cannot be expressed as a single event
handler. Unlike state machines that are part of a system spec-
ification, the control-flow state machines typically have no
formal specification, but are created on-the-fly by the pro-
grammer. Experience has shown that the need for explicit
state machines to manage control flow makes event-driven
programming difficult [3, 25, 26, 35]. With the words of
Levis et al. [26]: “This approach is natural for reactive pro-
cessing and for interfacing with hardware, but complicates
sequencing high-level operations, as a logically blocking se-
quence must be written in a state-machine style.” In addition,
popular programming languages for tiny embedded systems
such as the C programming language and nesC [15] do not
provide any tools to help the programmer manage the imple-
mentation of explicit state machines.

In this paper we study how protothreads, a novel pro-
gramming abstraction that provides a conditional blocking
wait operation, can be used to reduce the number of ex-
plicit state machines in event-driven programs for memory-
constrained embedded systems.

The contribution of this paper is that we show that pro-
tothreads simplify event-driven programming by reducing
the need for explicit state machines. We show that the pro-
tothreads mechanism is simple enough that a prototype im-
plementation of the protothreads mechanism can be done
using only C language constructs, without any architecture-
specific machine code. We have previously presented the
ideas behind protothreads in a position paper [13]. In this
paper we significantly extend our previous work by refining
the protothreads mechanism as well as quantifying and eval-
uating the utility of protothreads.

To evaluate protothreads, we analyze a number of widely
used event-driven programs by rewriting them using pro-

29

tothreads. We use three metrics to quantify the effect of pro-
tothreads: the number of explicit state machines, the number
of explicit state transitions, and lines of code. Our mea-
surements show that protothreads reduce all three metrics
for all the rewritten programs. For most programs the ex-
plicit state machines can be entirely removed. For the other
programs protothreads significantly reduce the number of
states. Compared to a state machine, the memory overhead
of protothreads is a single byte. The memory overhead of
protothreads is significantly lower than for traditional multi-
threading. The execution time overhead of protothreads over
a state machine is a few processor cycles.

We do not advocate protothreads as a general replace-
ment for state machines. State machines are a powerful tool
for designing, modeling, and analyzing embedded systems.
They provide a well-founded formalism that allows reason-
ing about systems and in some cases can provide proofs of
the behavior of the system. There are, however, many cases
where protothreads can greatly simplify the program without
introducing any appreciable memory overhead. Specifically,
we have seen many programs for event-driven systems that
are based on informally specified state machines. The state
machines for those programs are in many cases only visible
in the program code and are difficult to extract from the code.

We originally developed protothreads for managing the
complexity of explicit state machines in the event-driven uIP
embedded TCP/IP stack [10]. The prototype implementa-
tions of protothreads presented in this paper are also used
in the Contiki operating system [12] and have been used
by at least ten different third-party embedded developers for
a range of different embedded devices. Examples include
an MPEG decoding module for Internet TV-boxes, wireless
sensors, and embedded devices collecting data from charge-
coupled devices. The implementations have also been ported
by others to C++ [30] and Objective C [23].

The rest of the paper is structured as follows. Sec-
tion 2 describes protothreads and shows a motivating exam-
ple. In Section 3 we discuss the memory requirements of
protothreads. Section 4 shows how state machines can be
replaced with protothreads. Section 5 describes how pro-
tothreads are implemented and presents a prototype imple-
mentation in the C programming language. In Section 6 we
evaluate protothreads, followed by a discussion in Section 7.
We review of related work in Section 8. Finally, the paper is
concluded in Section 9.

2 Protothreads
Protothreads are a novel programming abstraction

that provides a conditional blocking wait statement,
PT WAIT UNTIL(), that is intended to simplify event-
driven programming for memory-constrained embedded sys-
tems. The operation takes a conditional statement and blocks
the protothread until the statement evaluates to true. If the
conditional statement is true the first time the protothread
reaches the PT WAIT UNTIL() the protothread continues to
execute without interruption. The PT WAIT UNTIL() con-
dition is evaluated each time the protothread is invoked. The
PT WAIT UNTIL() condition can be any conditional state-
ment, including complex Boolean expressions.

A protothread is stackless: it does not have a history of
function invocations. Instead, all protothreads in a system
run on the same stack, which is rewound every time a pro-
tothread blocks.

A protothread is driven by repeated calls to the function
in which the protothread runs. Because they are stackless,
protothreads can only block at the top level of the function.
This means that it is not possible for a regular function called
from a protothread to block inside the called function - only
explicit PT WAIT UNTIL() statements can block. The ad-
vantage of this is that the programmer always is aware of
which statements that potentially may block. Nevertheless,
it is possible to perform nested blocking by using hierarchi-
cal protothreads as described in Section 2.5.

The beginning and the end of a protothread are declared
with PT BEGIN and PT END statements. Protothread state-
ments, such as the PT WAIT UNTIL() statement, must be
placed between the PT BEGIN and PT END statements. A
protothread can exit prematurely with a PT EXIT statement.
Statements outside of the PT BEGIN and PT END state-
ments are not part of the protothread and the behavior of such
statements are undefined.

Protothreads can be seen as a combination of events and
threads. From threads, protothreads have inherited the block-
ing wait semantics. From events, protothreads have inher-
ited the stacklessness and the low memory overhead. The
blocking wait semantics allow linear sequencing of state-
ments in event-driven programs. The main advantage of
protothreads over traditional threads is that protothreads are
very lightweight: a protothread does not require its own
stack. Rather, all protothreads run on the same stack and
context switching is done by stack rewinding. This is advan-
tageous in memory constrained systems, where a thread’s
stack might use a large part of the available memory. For
example, a thread with a 200 byte stack running on an
MS430F149 microcontroller uses almost 10% of the entire
RAM. In contrast, the memory overhead of a protothread is
as low as two bytes per protothread and no additional stack
is needed.

2.1 Scheduling
The protothreads mechanism does not specify any spe-

cific method to invoke or schedule a protothread; this is de-
fined by the system using protothreads. If a protothread is
run on top of an underlying event-driven system, the pro-
tothread is scheduled whenever the event handler containing
the protothread is invoked by the event scheduler. For exam-
ple, application programs running on top of the event-driven
uIP TCP/IP stack are invoked both when a TCP/IP event oc-
curs and when the application is periodically polled by the
TCP/IP stack. If the application program is implemented as
a protothread, this protothread is scheduled every time uIP
calls the application program.

In the Contiki operating system, processes are imple-
mented as protothreads running on top of the event-driven
Contiki kernel. A process’ protothread is invoked whenever
the process receives an event. The event may be a message
from another process, a timer event, a notification of sensor
input, or any other type of event in the system. Processes

30

state: {ON, WAITING, OFF}

radio wake eventhandler:
if (state = ON)

if (expired(timer))
timer← tsleep
if (not communication complete())

state← WAITING
wait timer← twait max

else
radio off()
state← OFF

elseif (state = WAITING)
if (communication complete() or

expired(wait timer))
state← OFF
radio off()

elseif (state = OFF)
if (expired(timer))

radio on()
state← ON
timer← tawake

Figure 1. The radio sleep cycle implemented with events,
in pseudocode.

may wait for incoming events using the protothread condi-
tional blocking statements.

The protothreads mechanism does not specify how mem-
ory for holding the state of a protothread is managed. As
with the scheduling, the system using protothreads decides
how memory should be allocated. If the system will run a
predetermined amount of protothreads, memory for the state
of all protothreads can be statically allocated in advance.
Memory for the state of a protothread can also be dynami-
cally allocated if the number of protothreads is not known in
advance. In Contiki, the memory for the state of a process’
protothread is held in the process control block. Typically, a
Contiki program statically allocates memory for its process
control blocks.

In general, protothreads are reentrant. Multiple pro-
tothreads can be running the same piece of code as long as
each protothread has its own memory for keeping state.
2.2 Protothreads as Blocking Event Handlers

Protothreads can be seen as blocking event handlers in
that protothreads can run on top of an existing event-based
kernel, without modifications to the underlying event-driven
system. Protothreads running on top of an event-driven sys-
tem can use the PT WAIT UNTIL() statement to block con-
ditionally. The underlying event dispatching system does not
need to know whether the event handler is a protothread or a
regular event handler.

In general, a protothread-based implementation of a pro-
gram can act as a drop-in replacement a state machine-based
implementation without any modifications to the underlying
event dispatching system.
2.3 Example: Hypothetical MAC Protocol

To illustrate how protothreads can be used to replace state
machines for event-driven programming, we consider a hy-
pothetical energy-conserving sensor network MAC protocol.

radio wake protothread:
PT BEGIN
while (true)

radio on()
timer← tawake
PT WAIT UNTIL(expired(timer))
timer← tsleep
if (not communication complete())

wait timer← twait max
PT WAIT UNTIL(communication complete() or

expired(wait timer))
radio off()
PT WAIT UNTIL(expired(timer))

PT END

Figure 2. The radio sleep cycle implemented with pro-
tothreads, in pseudocode.

One of the tasks for a sensor network MAC protocol is to al-
low the radio to be turned off as often as possible in order to
reduce the overall energy consumption of the device. Many
MAC protocols therefore have scheduled sleep cycles when
the radio is turned off completely.

The hypothetical MAC protocol used here is similar to the
T-MAC protocol [34] and switches the radio on and off at
scheduled intervals. The mechanism is depicted in Figure 3
and can be specified as follows:

1. Turn radio on.

2. Wait until t = t0 + tawake.

3. Turn radio off, but only if all communication has com-
pleted.

4. If communication has not completed, wait until it has
completed or t = t0 + tawake + twait max.

5. Turn the radio off. Wait until t = t0 + tawake + tsleep.

6. Repeat from step 1.
To implement this protocol in an event-driven model, we

first need to identify a set of states around which the state
machine can be designed. For this protocol, we can quickly
identify three states: ON – the radio is on, WAITING – wait-
ing for remaining communication to complete, and OFF –
the radio is off. Figure 4 shows the resulting state machine,
including the state transitions.

To implement this state machine, we use an explicit state
variable, state, that can take on the values ON, WAITING,
and OFF . We use an if statement to perform different actions
depending on the value of the state variable. The code is

Radio ON

awake

t
0

tawake tsleept
0

+ +

tsleep

twait_max

keep on if communication

off if
no
comm.

Radio OFF

t

Figure 3. Hypothetical sensor network MAC protocol.

31

Timer expired

ON

WAITING

OFF

Remaining communication

Timer expired

Timer expired

Figure 4. State machine realization of the radio sleep cy-
cle of the example MAC protocol.

placed in an event handler function that is called whenever
an event occurs. Possible events in this case are an expiration
of a timer and the completion of communication. To simplify
the code, we use two separate timers, timer and wait timer, to
keep track of the elapsed time. The resulting pseudocode is
shown in Figure 1.

We note that this simple mechanism results in a fairly
large amount of code. The code that controls the state ma-
chine constitutes more than one third of the total lines of
code. Also, the six-step structure of the mechanism is not
immediately evident from the code.

When implementing the radio sleep cycle mechanism
with protothreads we can use the PT WAIT UNTIL() state-
ment to wait for the timers to expire. Figure 2 shows the
resulting pseudocode code. We see that the code is shorter
than the event-driven version from Figure 1 and that the code
more closely follows the specification of the mechanism.

2.4 Yielding Protothreads
Experience with rewriting event-driven state machines to

protothreads revealed the importance of an unconditional
blocking wait, PT YIELD(). PT YIELD() performs an sin-
gle unconditional blocking wait that temporarily blocks the
protothread until the next time the protothread is invoked. At
the next invocation the protothread continues executing the
code following the PT YIELD() statement.

With the addition of the PT YIELD() operation, pro-
tothreads are similar to stackless coroutines, much like co-
operative multi-threading is similar to stackful coroutines.

2.5 Hierarchical Protothreads
While many programs can be readily expressed with a

single protothread, more complex operations may need to
be decomposed in a hierarchical fashion. Protothreads sup-
port this through an operation, PT SPAWN(), that initializes
a child protothread and blocks the current protothread until
the child protothread has either ended with PT END or ex-
ited with PT EXIT. The child protothread is scheduled by
the parent protothread; each time the parent protothread is
invoked by the underlying system, the child protothread is
invoked through the PT SPAWN() statement. The memory
for the state of the child protothread typically is allocated in
a local variable of the parent protothread.

As a simple example of how hierarchical protothreads
work, we consider a hypothetical data collection protocol
that runs in two steps. The protocol first propagates data
interest messages through the network. It then continues to
propagate data messages back to where the interest messages
came from. Both interest messages and data messages are
transmitted in a reliable way: messages are retransmitted un-
til an acknowledgment message is received.

reliable send(message):
rxtimer: timer
PT BEGIN
do

rxtimer← tretransmission
send(message)
PT WAIT UNTIL(ack received() or expired(rxtimer))

until (ack received())
PT END

data collection protocol
child state: protothread state
PT BEGIN
while (running)

while (interests left to relay())
PT WAIT UNTIL(interest message received())
send ack()
PT SPAWN(reliable send(interest), child state)

while (data left to relay())
PT WAIT UNTIL(data message received())
send ack()
PT SPAWN(reliable send(data), child state)

PT END

Figure 5. Hypothetical data collection protocol imple-
mented with hierarchical protothreads, in pseudocode.

Figure 5 shows this protocol implemented using hierar-
chical protothreads. The program consists of a main pro-
tothread, data collection protocol, that invokes a child pro-
tothread, reliable send, to do transmission of the data.

2.6 Local Continuations
Local continuations are the low-level mechanism that un-

derpins protothreads. When a protothread blocks, the state
of the protothread is stored in a local continuation. A lo-
cal continuation is similar to ordinary continuations [31] but,
unlike a continuation, a local continuation does not capture
the program stack. Rather, a local continuation only captures
the state of execution inside a single function. The state of
execution is defined by the continuation point in the func-
tion where the program is currently executing and the values
of the function’s local variables. The protothreads mecha-
nism only requires that those variables that are actually used
across a blocking wait to be stored. However, the current C-
based prototype implementations of local continuations de-
part from this and do not store any local variables.

A local continuation has two operations: set and resume.
When a local continuation is set, the state of execution is
stored in the local continuation. This state can then later be
restored with the resume operation. The state captured by a
local continuation does not include the history of functions
that have called the function in which the local continuation
was set. That is, the local continuation does not contain the
stack, but only the state of the current function.

A protothread consists of a function and a single local
continuation. The protothread’s local continuation is set be-
fore each PT WAIT UNTIL() statement. If the condition is
false and the wait is to be performed, the protothread is sus-
pended by returning control to the function that invoked the
protothread’s function. The next time the protothread func-

32

1

protothreads
Events, Threads

Stack size
32 2 31

Figure 6. The stack memory requirements for three event
handlers, the three event handlers rewritten with pro-
tothreads, and the equivalent functions running in three
threads. Event handlers and protothreads run on the
same stack, whereas each thread runs on a stack of its
own.

tion is invoked, the protothread resumes the local continua-
tion. This effectively causes the program to execute a jump
to the conditional blocking wait statement. The condition is
reevaluated and either blocks or continues its execution.

3 Memory Requirements
Programs written with an event-driven state machine need

to store the state of the state machine in a variable in mem-
ory. The state can be stored in a single byte unless the state
machine has more than 256 states. While the actual program
typically stores additional state as program variables, the sin-
gle byte needed for storing the explicit state constitutes the
memory overhead of the state machine. The same program
written with protothreads also needs to store the same pro-
gram variables, and will therefore require exactly the same
amount memory as the state machine implementation. The
only additional memory overhead is the size of the continu-
ation point. For the prototype C-based implementations, the
size of the continuation point is two bytes on the MSP430
and three bytes for the AVR.

In a multi-threading system each thread requires its own
stack. Typically, in memory-constrained systems this mem-
ory must be statically reserved for the thread and cannot be
used for other purposes, even when the thread is not currently
executing. Even for systems with dynamic stack memory al-
location, thread stacks usually are over-provisioned because
of the difficulties of predicting the maximum stack usage of
a program, For example, the default stack size for one thread
in the Mantis system [2] is 128 bytes, which is a large part of
the memory in a system with a few kilobytes of RAM.

In contrast to multi-threading, for event-driven state ma-
chines and protothreads all programs run on the same stack.
The minimum stack memory requirement is therefore the
same as the maximum stack usage of all programs. The mini-
mum memory requirement for stacks in a multi-threaded sys-
tem, however, is the sum of the maximum stack usage of all
threads. This is illustrated in Figure 6.

4 Replacing State Machines with
Protothreads

We analyzed a number of existing event-driven programs
and found that most control-flow state machines could be
decomposed to three primitive patterns: sequences, itera-
tions, and selections. While our findings hold for a number

of memory-constrained sensor network and embedded pro-
grams, our findings are not new in general; Behren et al. [35]
found similar results when examining several event-driven
systems. Figure 7 shows the three primitives. In this sec-
tion, we show how these state machine primitives map onto
protothread constructs and how those can be used to replace
state machines.

Figures 8 and 9 show how to implement the state machine
patterns with protothreads. Protothreads allow the program-
mer to make use of the control structures provided by the
programming language: the selection and iteration patterns
map onto if and while statements.

To rewrite an event-driven state machine with pro-
tothreads, we first analyse the program to find its state ma-
chine. We then map the state machine patterns from Figure 7
onto the state machine from the event-driven program. When
the state machine patterns have been identified, the program
can be rewritten using the code patterns in Figures 8 and 9.

As an illustration, Figure 10 shows the state machine from
the radio sleep cycle of the example MAC protocol in Sec-
tion 2.3, with the iteration and sequence state machine pat-
terns identified. From this analysis the protothreads-based
code in Figure 2 can be written.

5 Implementation
We have developed two prototype implementations of

protothreads that use only the C preprocessor. The fact
that the implementations only depend on the C preproces-
sor adds the benefit of full portability across all C compil-
ers and of not requiring extra tools in the compilation tool
chain. However, the implementations depart from the pro-
tothreads mechanism in two important ways: automatic lo-
cal variables are not saved across a blocking wait statement
and C switch and case statements cannot be freely intermixed
with protothread-based code. These problems can be solved
by implementing protothreads as a special precompiler or
by integrating protothreads into existing preprocessor-based
languages and C language extensions such as nesC [15].

5.1 Prototype C Preprocessor
Implementations

In the prototype C preprocessor implementation of pro-
tothreads the protothread statements are implemented as C
preprocessor macros that are shown in Figure 11. The pro-
tothread operations are a very thin layer of code on top of
the local continuation mechanism. The set and resume op-
erations of the local continuation are implemented as an
LC SET() and the an LC RESUME() macro. The proto-
type implementations of LC SET() and LC RESUME() de-
part from the mechanism specified in Section 2.6 in that auto-

cond2

a) b)

cond1cond1

c)

condition

cond2bcond2a

Figure 7. Two three primitive state machines: a) se-
quence, b) iteration, c) selection.

33

a sequence:
PT BEGIN
(* ... *)
PT WAIT UNTIL(cond1)
(* ... *)
PT END

an iteration:
PT BEGIN
(* ... *)
while (cond1)

PT WAIT UNTIL(cond1 or
cond2)

(* ... *)
PT END

Figure 8. Pseudocode implementation of the sequence
and iteration patterns with protothreads.

a selection:
PT BEGIN
(* ... *)
if (condition)

PT WAIT UNTIL(cond2a)
else

PT WAIT UNTIL(cond2b)
(* ... *)
PT END

Figure 9. Pseudocode implementation of the selection
pattern with a protothread.

matic variables are not saved, but only the continuation point
of the function.

The PT BEGIN() statement, which marks the start of a
protothread, is implemented with a single LC RESUME()
statement. When a protothread function is invoked, the
LC RESUME() statement will resume the local continuation
stored in the protothread’s state structure, thus performing an
unconditional jump to the last place where the local contin-
uation was set. The resume operation will not perform the
jump the first time the protothread function is invoked.

The PT WAIT UNTIL() statement is implemented with a
LC SET() operation followed by an if statement that per-
forms an explicit return if the conditional statement eval-
uates to false. The returned value lets the caller know that
the protothread blocked on a PT WAIT UNTIL() statement.
PT END() and PT EXIT() immediately return to the caller.

To implement yielding protothreads, we need to change
the implementation of PT BEGIN() and PT END() in ad-

Sequence

Remaining communication

Timer expired

Timer expiredTimer expired

Iteration

Selection

Figure 10. The state machine from the example radio
sleep cycle mechanism with the iteration and sequence
patterns identified.

struct pt { lc_t lc };
#define PT_WAITING 0
#define PT_EXITED 1
#define PT_ENDED 2
#define PT_INIT(pt) LC_INIT(pt->lc)
#define PT_BEGIN(pt) LC_RESUME(pt->lc)
#define PT_END(pt) LC_END(pt->lc); \

return PT_ENDED
#define PT_WAIT_UNTIL(pt, c) LC_SET(pt->lc); \

if(!(c)) \
return PT_WAITING

#define PT_EXIT(pt) return PT_EXITED

Figure 11. C preprocessor implementation of the main
protothread operations.

#define PT_BEGIN(pt) { int yielded = 1; \
LC_RESUME(pt->lc)

#define PT_YIELD(pt) yielded = 0; \
PT_WAIT_UNTIL(pt, yielded)

#define PT_END(pt) LC_END(pt->lc); \
return PT_ENDED; }

Figure 12. Implementation of the PT YIELD() operation
and the updated PT BEGIN() and PT END() statements.

dition to implementing PT YIELD(). The implementation
of PT YIELD() needs to test whether the protothread has
yielded or not. If the protothread has yielded once, then the
protothread should continue executing after the PT YIELD()
statement. If the protothread has not yet yielded, it should
perform a blocking wait. To implement this, we add an
automatic variable, which we call yielded for the pur-
pose of this discussion, to the protothread. The yielded
variable is initialized to one in the PT BEGIN() state-
ment. This ensures that the variable will be initialized ev-
ery time the protothread is invoked. In the implementation
of PT YIELD(), we set the variable to zero, and perform
a PT WAIT UNTIL() that blocks until the variable is non-
zero. The next time the protothread is invoked, the condi-
tional statement in the PT WAIT UNTIL() is reevaluated.
Since the yielded variable now has been reinitialized to one,
the PT WAIT UNTIL() statement will not block. Figure 12
shows this implementation of PT YIELD() and the updated
PT BEGIN() and PT END() statements.

The implementation of PT SPAWN(), which is used to
implement hierarchical protothreads, is shown in Figure 13.
It initializes the child protothread and invokes it every time
the current protothread is invoked. The PT WAIT UNTIL()
blocks until the child protothread has exited or ended.

We now discuss how the local continuation functions
LC SET() and LC RESUME() are implemented.

#define PT_SPAWN(pt, child, thread) \
PT_INIT(child); \
PT_WAIT_UNTIL(pt, thread != PT_WAITING)

Figure 13. Implementation of the PT SPAWN() opera-
tion

34

typedef void * lc_t;
#define LC_INIT(c) c = NULL
#define LC_RESUME(c) if(c) goto *c
#define LC_SET(c) { __label__ r; r: c = &&r; }
#define LC_END(c)

Figure 14. Local continuations implemented with the
GCC labels-as-values C extension.

typedef unsigned short lc_t;
#define LC_INIT(c) c = 0
#define LC_RESUME(c) switch(c) { case 0:
#define LC_SET(c) c = __LINE__; case __LINE__:
#define LC_END(c) }

Figure 15. Local continuations implemented with the C
switch statement.

5.1.1 GCC C Language Extensions
The widely used GCC C compiler provides a special C

language extension that makes the implementation of the lo-
cal continuation operations straightforward. The C exten-
sion, called labels-as-values, makes it possible to save the
address of a C label in a pointer. The C goto statement can
then be used to jump to the previously captured label. This
use of the goto operation is very similar to the unconditional
jump most machine code instruction sets provide.

With the labels-as-values C extension, a local continua-
tion simply is a pointer. The set operation takes the address
of the code executing the operation by creating a C label and
capturing its address. The resume operation resumes the lo-
cal continuation with the C goto statement, but only if the
local continuation previously has been set. The implemen-
tation of local continuations with C macros and the labels-
as-values C language extension is shown in Figure 14. The
LC SET() operation uses the GCC label extension to de-
clare a C label that is local in scope. It then defines the label
and stores the address of the label in the local continuation
by using the GCC double-ampersand extension.
5.1.2 C Switch Statement

The main problem with the GCC C extension-based im-
plementation of local continuations is that it only works with
a single C compiler: GCC. We next show an implementa-
tion using only standard ANSI C constructs which uses the
C switch statement in a non-obvious way.

Figure 15 shows local continuations implemented using
the C switch statement. LC RESUME() is an open switch
statement, with a case 0: immediately following it. The
case 0: makes sure that the code after the LC RESUME()
statement is always executed when the local continuation
has been initialized with LC INIT(). The implementation
of LC SET() uses the standard LINE macro. This macro
expands to the line number in the source code at which the
LC SET() macro is used. The line number is used as a
unique identifier for each LC SET() statement. The imple-
mentation of LC END() is a single right curly bracket that
closes the switch statement opened by LC RESUME().

To better illustrate how the C switch-based implementa-
tion works, Figure 16 shows how a short protothreads-based

1 int sender(pt) {
2 PT_BEGIN(pt);
3
4 /* ... */
5 do {
6
7 PT_WAIT_UNTIL(pt,
8 cond1);
9
10 } while(cond);
11 /* ... */
12 PT_END(pt);
13
14 }

int sender(pt) {
switch(pt->lc) {
case 0:
/* ... */
do {
pt->lc = 8;

case 8:
if(!cond1)
return PT_WAITING;

} while(cond);
/* ... */

}
return PT_ENDED;

}

Figure 16. Expanded C code with local continuations im-
plemented with the C switch statement.

program is expanded by the C preprocessor. We see that the
resulting code is fairly similar to how the explicit state ma-
chine was implemented in Figure 1. However, when looking
closer at the expanded C code, we see that the case 8: state-
ment on line 7 appears inside the do-while loop, even though
the switch statement appears outside of the do-while loop.
This does seem surprising at first, but is in fact valid ANSI
C code. This use of the switch statement is likely to first
have been publicly described by Duff as part of Duff’s De-
vice [8]. The same technique has later been used by Tatham
to implement coroutines in C [33].

5.2 Memory Overhead
The memory required for storing the state of a pro-

tothread, implemented either with the GCC C extension or
the C switch statement, is two bytes; the C switch statement-
based implementation requires two bytes to store the 16-
bit line number identifier of the local continuation. The C
extension-based implementation needs to store a pointer to
the address of the local continuation. The size of a pointer is
processor-dependent but on the MSP430 a pointer is 16 bits,
resulting in a two byte memory overhead. A pointer on the
AVR is 24 bits, resulting in three bytes of memory overhead.
However, the memory overhead is an artifact of the proto-
type implementations; a precompiler-based implementation
would reduce the overhead to one byte.

5.3 Limitations of the Prototype
Implementations

The two implementations of the local continuation mech-
anism described above introduce the limitation that auto-
matic variables are not saved across a blocking wait. The
C switch-based implementation also limits the use of the C
switch statement together with protothread statements.

5.3.1 Automatic Variables
In the C-based prototype implementations, automatic

variables—variables with function-local scope that are au-
tomatically allocated on the stack—are not saved in the local
continuation across a blocking wait. While automatic vari-
ables can still be used inside a protothread, the contents of
the variables must be explicitly saved before executing a wait
statement. Many C compilers, including GCC, detect if auto-

35

matic local variables are used across a blocking protothreads
statement and issues a warning message.

While automatic variables are not preserved across a
blocking wait, static local variables are preserved. Static lo-
cal variables are variables that are local in scope but allocated
in the data section of the memory rather than on the stack.
Since static local variables are not placed on the stack, they
are not affected by the use of blocking protothreads state-
ments. For functions that do not need to be reentrant, static
local variables allow the programmer to use local variables
inside the protothread.

For reentrant protothreads, the limitation on the use of
automatic variables can be handled by using an explicit state
object, much in the same way as is commonly done in purely
event-driven programs. It is, however, the responsibility of
the programmer to allocate and maintain such a state object.
5.3.2 Constraints on Switch Constructs

The implementation of protothreads using the C switch
statements imposes a restriction on programs using pro-
tothreads: programs cannot utilize switch statements to-
gether with protothreads. If a switch statement is used by
the program using protothreads, the C compiler will in some
cases emit an error, but in most cases the error is not detected
by the compiler. This is troublesome as it may lead to unex-
pected run-time behavior which is hard to trace back to an
erroneous mixture of one particular implementation of pro-
tothreads and switch statements. We have not yet found a
suitable solution for this problem other than using the GCC
C extension-based implementation of protothreads.
5.3.3 Possible C Compiler Problems

It could be argued that the use of a non-obvious, though
standards-compliant, C construct can cause problems with
the C compiler because the nested switch statement may not
be properly tested. We have, however, tested protothreads
on a wide range of C compilers and have only found one
compiler that was not able to correctly parse the nested C
construct. In this case, we contacted the vendor who was
already aware of the problem and immediately sent us an
updated version of the compiler. We have also been in touch
with other C compiler vendors, who have all assured us that
protothreads work with their product.
5.4 Alternative Approaches

In addition to the implementation techniques described
above, we examine two alternative implementation ap-
proaches: implementation with assembly language and with
the C language functions setjmp and longjmp.
5.4.1 Assembly Language

We have found that for some combinations of processors
and C compilers it is possible to implement protothreads and
local continuations by using assembly language. The set of
the local continuations is then implemented as a C function
that captures the return address from the stack and stores it in
the local continuation, along with any callee save registers.
Conversely, the resume operation would restore the saved
registers from the local continuation and perform an uncon-
ditional jump to the address stored in the local continuation.
The obvious problem with this approach is that it requires a
porting effort for every new processor and C compiler. Also,

since both a return address and a set of registers need to be
stored in the local continuation, its size grows. However,
we found that the largest problem with this approach is that
some C compiler optimizations will make the implementa-
tion difficult. For example, we were not able to produce a
working implementation with this method for the Microsoft
Visual C++ compiler.
5.4.2 With C setjmp and longjmp Functions

While it at first seems possible to implement the local con-
tinuation operations with the setjmp and longjmp functions
from the standard C library, we have seen that such an imple-
mentation causes subtle problems. The problem is because
the setjmp and longjmp function store and restore the stack
pointer, and not only the program counter. This causes prob-
lems when the protothread is invoked through different call
paths since the stack pointer is different with different call
paths. The resume operation would not correctly resume a
local continuation that was set from a different call path.

We first noticed this when using protothreads with the
uIP TCP/IP stack. In uIP application protothreads are in-
voked from different places in the TCP/IP code depending
on whether or not a TCP retransmission is to take place.
5.4.3 Stackful Approaches

By letting each protothread run on its own stack it would
be possible to implement the full protothread mechanism,
including storage of automatic variables across a blocking
wait. With such an implementation the stack would be
switched to the protothread’s own stack by the PT BEGIN
operation and switched back when the protothread blocks or
exits. This approach could be implemented with a coroutine
library or the multi-threading library of Contiki. However,
this implementation would result in a memory overhead sim-
ilar to that of multi-threading because each invocation of a
protothread would require the same amount of stack mem-
ory as the equivalent protothread running in a thread of its
own due to the stack space required by functions called from
within the protothread.

Finally, a promising alternative method is to store a copy
the stack frame of the protothread function in the local con-
tinuation when the protothread blocks. This saves all auto-
matic variables of the protothread function across a blocking
wait, including variables that are not used after the blocking
wait. Since all automatic variables are saved, this approach
have a higher memory overhead. Furthermore, this approach
requires both C compiler-specific and CPU architecture-
specific code, thus reducing the portability of the implemen-
tation. However, the extra porting effort may be outweighed
by the benefits of storing automatic variables across blocking
waits. We will continue to pursue this as future work.

6 Evaluation
To evaluate protothreads we first measure the reduction

in code complexity that protothreads provide by reimple-
menting a set of event-driven programs with protothreads
and measure the complexity of the resulting code. Sec-
ond, we measure the memory overhead of protothreads com-
pared to the memory overhead of an event-driven state ma-
chine. Third, we compare the execution time overhead of
protothreads with that of event-driven state machines.

36

6.1 Code Complexity Reduction
To measure the code complexity reduction of protothreads

we reimplement parts of a number of event-driven appli-
cations with protothreads: XNP [20], the previous default
over-the-air programming program from TinyOS; the buffer
management module of TinyDB [27], a database engine for
TinyOS; radio protocol drivers for the Chipcon CC1000 and
RF Monolithics TR1001 radio chips; the SMTP client in the
uIP embedded TCP/IP stack and a code propagation program
from the Contiki operating system. The state machines in
XNP, TinyDB, and the CC1000 drivers were rewritten by
applying the method for replacing state machines with pro-
tothreads from Section 4 whereas the TR1001 driver, the uIP
SMTP client and the Contiki code propagation were rewrit-
ten from scratch.

We use three metrics to measure the complexity of the
programs we reimplemented with protothreads: the number
of explicit states, the number of explicit state transitions, as
well as the lines of code of the reimplemented functions.

All reimplemented programs consist of complex state ma-
chines. Using protothreads, we were able to entirely remove
the explicit state machines for most programs. For all pro-
grams, protothreads significantly reduce the number of state
transitions and lines of code.

The reimplemented programs have undergone varying
amounts of testing. The Contiki code propagation, the
TR1001 low-level radio driver, and the uIP SMTP client are
well tested and are currently used on a daily basis in live sys-
tems, XNP and TinyDB have been verified to be working but
not heavily tested, and the CC1000 drivers have been tested
and run in simulation.

Furthermore, we have anecdotal evidence to support
our hypothesis that protothreads are an alternative to state
machines for embedded software development. The pro-
tothreads implementations have for some time been available
as open source on our web page [9]. We know that at least ten
embedded systems developers have successfully used pro-
tothreads to replace state machines for embedded software
development. Also, our protothreads code have twice been
recommended by experienced embedded developers in Jack
Ganssle’s embedded development newsletter [14].
6.1.1 XNP

XNP [20] is one of the in-network programming proto-
cols used in TinyOS [19]. XNP downloads a new system
image to a sensor node and writes the system image to the
flash memory of the device. XNP is implemented on top of
the event-driven TinyOS. Therefore, any operations in XNP
that would be blocking in a threaded system have to be im-
plemented as state machines. We chose XNP because it is a
relatively complex program implemented on top of an event-
driven system. The implementation of XNP has previously
been analyzed by Jeong [20], which assisted us in our anal-
ysis. The implementation of XNP consists of a large switch
statement with 25 explicit states, encoded as defined con-
stants, and 20 state transitions. To analyze the code, we iden-
tified the state transitions from manual inspection of the code
inside the switch statement.

Since the XNP state machine is implemented as one large
switch statement, we expected it to be a single, complex state

machine. But, when drawing the state machine from analysis
of the code, it turned out that the switch statement in fact
implements five different state machines. The entry points
of the state machines are not immediately evident from the
code, as the state of the state machine was changed in several
places throughout the code.

The state machines we found during the analysis of the
XNP program are shown in Figure 17. For reasons of pre-
sentation, the figure does not show the IDLE and ACK states.
Almost all states have transitions to one of these states. If
an XNP operation completes successfully, the state machine
goes into the ACK state to transmit an acknowledgment over
the network. The IDLE state is entered if an operation ends
with an error, and when the acknowledgment from the ACK
state has been transmitted.

In the figure we clearly see many of the state machine pat-
terns from Figure 7. In particular, the sequence pattern is evi-
dent in all state machines. By using the techniques described
in Section 4 we were able to rewrite all state machines into
protothreads. Each state machine was implemented as its
own protothread.

The IDLE and ACK states are handled in a hierarchical
protothread. A separate protothread is created for sending
the acknowledgment signal. This protothread is spawned
from the main protothread every time the program logic dic-
tates that an acknowledgment should be sent.

6.1.2 TinyDB
TinyDB [27] is a small database engine for the TinyOS

system. With TinyDB, a user can query a wireless sen-
sor network with a database query language similar to SQL.
TinyDB is one of the largest TinyOS programs available.

In TinyOS long-latency operations are split-phase [15].
Split-phase operations consist of two parts: a request and a
completion event. The request completes immediately, and
the completion event is posted when the operation has com-
pleted. TinyDB contains a large number of split-phase oper-
ations. Since programs written for TinyOS cannot perform a
blocking wait, many complex operations in TinyDB are en-
coded as state machines.

To the state machines in TinyDB we analyze the TinyDB
buffer management module, DBBufferC. DBBufferC uses
the MemAlloc module to allocate memory. Memory alloca-
tion requests are performed from inside a function that drives
the state machine. However, when the request is completed,
the allocComplete event is handled by a different function.
This event handler must handle the event different depending
on the state of the state machine. In fact, the event handler
itself implements a small piece of the entire state machine.
The fact that the implementation of the state machine is dis-
tributed across different functions makes the analysis of the
state machine difficult.

From inspection of the DBBufferC code we found the
three state machines in Figure 18. We also found that there
are more state machines in the code, but we were not able
to adequately trace them because the state transitions were
scattered around the code. By rewriting the discovered state
machines with protothreads, we were able to completely re-
move the explicit state machines.

37

DL_START0

ISP_REQ

ISP_REQ1

DL_END

DL_END_SIGNAL

UP_SRECWRITEDL_SRECWRITE

EEFLASH_WRITE

EEFLASH_WRITEDONE

REQ_CIDMISSING

GET_CIDMISSING

GETNEXTCID

GET_DONE

DL_START

DL_FAIL

DL_FAIL_SIGNAL

DL_START2

DL_START1

Figure 17. XNP state machines. The names of the states are from the code. The IDLE and ACK states are not shown.

loadBufferTask

ALLOC_FIELD_DATA

WRITING_LENGTHS

WRITING_NAME

WRITING_QUERY

WRITING_BUFFER

WRITE_FIELD_LEN

WRITE_NEXT_BUFFER

WRITE_FIELD_DATA

READ_ROW

READING_LENGTH

ALLOC_FOR_READ

READING_DATA

READING_DATA

READ_OPEN

READ_LENGTHS

ALLOC_NAME

ALLOC_QUERY

READ_QUERY

READ_BUFFER

READ_FIELD_LEN

READ_FIELD_DATA

READ_NAME
SKIP_BYTES

appendBufferTask readEEPROMRow

Figure 18. Three state machines from TinyDB.

6.1.3 Low Level Radio Protocol Drivers
The Chipcon CC1000 and RF Monolithics TR1001 ra-

dio chips are used in many wireless sensor network devices.
Both chips provide a very low-level interface to the radio.
The chips do not perform any protocol processing them-
selves but interrupt the CPU for every incoming byte. All
protocol functionality, such as packet framing, header pars-
ing, and MAC protocol must be implemented in software.

We analyze and rewrite CC1000 drivers from the Mantis
OS [2] and from SOS [17], as well as the TR1001 driver from
Contiki [12]. All drivers are implemented as explicit state
machines. The state machines run in the interrupt handlers
of the radio interrupts.

The CC1000 driver in Mantis has two explicit state ma-
chines: one for handling and parsing incoming bytes and
one for handling outgoing bytes. In contrast, both the SOS
CC1000 driver and the Contiki TR1001 drivers have only
one state machine that parses incoming bytes. The state ma-
chine that handles transmissions in the SOS CC1000 driver
is shown in Figure 19. The structures of the SOS CC1000
driver and the Contiki TR1001 driver are very similar.

With protothreads we could replace most parts of the state
machines. However, for both the SOS CC1000 driver and
the Contiki TR1001 drivers, we kept a top-level state ma-
chine. The reason for this is that those state machines were
not used to implement control flow. The top-level state ma-
chine in the SOS CC1000 driver controlled if the driver was
currently transmitting or receiving a packet, or if it was find-
ing a synchronization byte.

TXSTATE_DONE

TXSTATE_PREAMBLE

TXSTATE_SYNC

TXSTATE_PREHEADER

TXSTATE_HEADER

TXSTATE_DATA

TXSTATE_CRC

TXSTATE_FLUSH

TXSTATE_WAIT_FOR_ACK

TXSTATE_READ_ACK

Figure 19. Transmission state machine from the SOS
CC1000 driver.

6.1.4 uIP TCP/IP Stack
The uIP TCP/IP stack [10] is designed for memory-

constrained embedded systems and therefore has a very low
memory overhead. It is used in embedded devices from well
over 30 companies, with applications ranging from pico-
satellites to car traffic monitoring systems. To reduce the
memory overhead uIP follows the event-driven model. Ap-
plication programs are implemented as event handlers and

38

Code size, Code size,
before after

Program (bytes) (bytes) Increase
XNP 931 1051 13%
TinyDB DBBufferC 2361 2663 13%
Mantis CC1000 994 1170 18%
SOS CC1000 1912 2165 13%
Contiki TR1001 823 836 2%
uIP SMTP 1106 1901 72%
Contiki code prop. 1848 1426 -23%

Table 2. Code size before and after rewriting with pro-
tothreads.

to achieve blocking waits, application programs need to be
written as explicit state machines. We have rewritten the
SMTP client in uIP with protothreads and were able to com-
pletely remove the state machines.
6.1.5 Contiki

The Contiki operating system [12] for wireless sensor net-
works is based on an event-driven kernel, on top of which
protothreads provide a thread-like programming style. The
first version of Contiki was developed before we introduced
protothreads. After developing protothreads, we found that
they reduced the complexity of writing software for Contiki.

For the purpose of this paper, we measure the implemen-
tation of a distribution program for distributing and receiving
binary code modules for the Contiki dynamic loader [11].
The program was initially implemented without protothreads
but was later rewritten when protothreads were introduced to
Contiki. The program can be in one of three modes: (1) re-
ceiving a binary module from a TCP connection and loads it
into the system, (2) broadcasting the binary module over the
wireless network, and (3) receiving broadcasts of a binary
module from a nearby node and loading it into memory.

When rewriting the program with protothreads, we re-
moved most of the explicit state machines, but kept four
states. These states keep track in which mode the program
is: if it is receiving or broadcasting a binary module.
6.1.6 Results

The results of reimplementing the programs with pro-
tothreads are presented in Table 1. The lines of code reported
in the table are those of the rewritten functions only. We
see that in all cases the number of states, state transitions,
and lines of code were reduced by rewriting the programs
with protothreads. In most cases the rewrite completely re-
moved the state machine. The total average reduction in
lines of code is 31%. For the programs rewritten by applying
the replacement method from Section 4 (XNP, TinyDB, and
the CC1000 drivers) the average reduction is 23% and for
the programs that were rewritten from scratch (the TR1001
driver, the uIP SMTP client, and the Contiki code propaga-
tion program) the average reduction is 41%.

Table 2 shows the compiled code size of the rewritten
functions when written as a state machine and with pro-
tothreads. We see that the code size increases in most cases,
except for the Contiki code propagation program. The av-
erage increase for the programs where the state machines
were replaced with protothreads by applying the method

State Proto-
machine thread Thread

Contiki TR1001 driver 1 2 18
Contiki code propagation 1 2 34

Table 3. Memory overhead in bytes for the Contiki
TR1001 driver and the Contiki code propagation on
the MSP430, implemented with a state machine, a pro-
tothread, and a thread.

from Section 4 is 14%. The Contiki TR1001 driver is only
marginally larger when written with protothreads. The uIP
SMTP client, on the other hand, is significantly larger when
written with protothreads rather than with a state machine.
The reason for this is that the code for creating SMTP mes-
sage strings could be optimized through code reuse in the
state machine-based implementation, something which was
not possible in the protothreads-based implementation with-
out significantly sacrificing readability. In contrast with the
uIP SMTP client, the Contiki code propagation program is
significantly smaller when written with protothreads. Here,
it was possible to optimize the protothreads-based code by
code reuse, which was not readily possible in the state
machine-based implementation.

We conclude that protothreads reduce the number of
states and state transitions and the lines of code, at the price
of an increase in code size. The size of the increase, however,
depends on the properties of the particular program rewritten
with protothreads. It is therefore not possible to draw any
general conclusions from measured increase in code size.

6.2 Memory Overhead
We measured the stack size required for the Contiki

TR1001 driver and the Contiki code propagation mechanism
running on the MSP430 microcontroller. We measure the
stack usage by filling the stack with a known byte pattern,
running the TR1001 driver, and inspecting the stack to see
how much of the byte pattern that was overwritten.

Neither the Contiki code propagation mechanism nor the
Contiki TR1001 driver use the stack for keeping state in pro-
gram variables. Therefore the entire stack usage of the two
programs when running as threads is overhead.

We compare the memory overhead of the Contiki TR1001
driver and the Contiki code propagation running as threads
with the memory overhead of a state machine and pro-
tothreads in Table 3.

6.3 Run-time Overhead
To evaluate the run-time overhead of protothreads we

counted the machine code instruction overhead of pro-
tothreads, compared to a state machine, for the MSP430 and
the AVR microcontrollers. Furthermore, we measured the
execution time for the driver for the TR1001 radio chip from
Contiki, implemented both as a state machine and as a pro-
tothread. We also compare the numbers with measurements
on a cooperative multi-threading implementation of said pro-
gram. We used the cooperative user space multi-threading li-
brary from Contiki [12] which is a standard stack-switching
multi-threading library.

39

States, States, Transitions, Transitions, Lines of Lines of Reduction,
Program before after before after code, before code, after percentage
XNP 25 - 20 - 222 152 32%
TinyDB 23 - 24 - 374 285 24%
Mantis CC1000 driver 15 - 19 - 164 127 23%
SOS CC1000 driver 26 9 32 14 413 348 16%
Contiki TR1001 driver 12 3 32 3 152 77 49%
uIP SMTP client 10 - 10 - 223 122 45%
Contiki code propagation 6 4 11 3 204 144 29%

Table 1. The number of explicit states, explicit state transitions, and lines of code before and after rewriting with
protothreads.

State Proto- Yielding
machine thread protothread

MSP430 9 12 17
AVR 23 34 45

Table 4. Machine code instructions overhead for a state
machine, a protothread, and a yielding protothread.

6.3.1 Machine Code Instruction Overhead
To analyze the number of additional machine code in-

structions in the execution path for protothreads compared to
state machines, we compiled our program using the GCC C
compiler version 3.2.3 for the MSP430 microcontroller and
GCC version 3.4.3 for the AVR microcontroller.

With manual inspection of the generated object machine
code we counted the number of machine code instructions
needed for the switch and case statements in a state machine
function and for the protothread operations in a protothread
function. The results are given in Table 4. The absolute over-
head for protothreads over the state machine is very small:
three machine code instructions for the MSP430 and 11 for
the AVR. In comparison, the number of instructions required
to perform a context switch in the Contiki implementation of
cooperative multi-threading is 51 for the MSP430 and 80 for
the AVR.

The additional instructions for the protothread in Table 4
are caused by the extra case statement that is included in the
implementation of the PT BEGIN operation.
6.3.2 Execution Time Overhead

To measure the execution time overhead of protothreads
over that of an event-driven state machine, we implemented
the low-level radio protocol driver for the RFM TR1001 ra-
dio chip from Contiki using both an event-driven state ma-
chine and a yielding protothread. We measured the execu-
tion time by feeding the driver with data from 1000 valid
radio packets and measured the average execution time of
the driver’s function. The time was measured using a pe-
riodic timer interrupt driven by the MSP430 timer A1 at a
rate of 1000 Hz. We set the clock speed of the MSP430
digitally controlled oscillator to 2.4576 MHz. For the
protothreads-based implementation we measured both the
GCC C extension-based and the C switch statement-based
implementations of the local continuations operations.

The measurement results are presented in Table 5. We see
that the average execution time overhead of protothreads is
low: only about five cycles per invocation for the GCC C

extension-based implementation and just over ten cycles per
invocation for the C switch-based implementation. The re-
sults are consistent with the machine code overhead in Ta-
ble 4. We also measured the execution time of the radio
driver rewritten with cooperative multi-threading and found
it to be approximately three times larger than that of the
protothread-based implementation because of the overhead
of the stack switching code in the multi-threading library.

Because of the low execution time overhead of pro-
tothreads we conclude that protothreads are usable even for
interrupt handlers with tight execution time constraints.

7 Discussion
We have been using the prototype implementations of

protothreads described in this paper in Contiki for two years
and have found that the biggest problem with the prototype
implementations is that automatic variables are not preserved
across a blocking wait. Our workaround is to use static local
variables rather than automatic variables inside protothreads.
While the use of static local variables may be problematic in
the general case, we have found it to work well for Contiki
because of the small scale of most Contiki programs. Also,
as many Contiki programs do not need to be reentrant, the
use of static local variables work well.

Code organization is different for programs written with
state machines and with protothreads. State machine-based
programs tend to consist either of a single large function
containing a large state machine or of many small functions
where the state machine is difficult to find. On the contrary,
protothreads-based programs tend to be based around a sin-
gle protothread function that contains the high-level logic
of the program. If the underlying event system calls differ-
ent functions for every incoming event, a protothreads-based
program typically consists of a single protothread function
and a number of small event handlers that invoke the pro-
tothread when an event occurs.

8 Related Work
Research in the area of software development for sensor

networks has led to a number of new abstractions that aim at
simplifying sensor network programming [1, 4]. Approaches
with the same goal include virtual machines [25] and macro-
programming of sensors [16, 29, 37]. Protothreads differ
from these sensor network programming abstractions in that
we target the difficulty of low-level event-driven program-
ming rather than the difficulty of developing application soft-
ware for sensor networks.

40

State Protothreads, Protothreads, C State Protothreads, Protothreads, C
Compiler machine GCC C extension switch statement machine GCC C extension switch statement
optimization (ms) (ms) (ms) (cycles) (cycles) (cycles)
Size (-Os) 0.0373 0.0397 0.0434 91.67 97.56 106.7
Speed (-O1) 0.0369 0.0383 0.0415 90.69 94.12 102.0

Table 5. Mean execution time in milliseconds and processor cycles for a single invocation of the TR1001 input driver
under Contiki on the MSP430 platform.

Kasten and Römer [21] have also identified the need
for new abstractions for managing the complexity of event-
triggered state machine programming. They introduce
OSM, a state machine programming model based on Harel’s
StateCharts[18] and use the Esterel language. The model re-
duces both the complexity of the implementations and the
memory usage. Their work is different from protothreads
in that they help programmers manage their state machines,
whereas protothreads are designed to reduce the number of
state machines. Furthermore, OSM requires support from
an external OSM compiler to produce the resulting C code,
whereas the prototype implementations of protothreads only
make use of the regular C preprocessor.

Simpson [32] describes a cooperative mini-kernel mech-
anism for C++ which is very similar to our protothreads in
that it was designed to replace state machines. Simpson’s
mechanism also uses a single stack. However, it needs to im-
plement its own stack to track the location of a yield point.
In contrast, protothreads do not use a stack, but hold all their
state in a 16-bit integer value.

Lauer and Needham [24] proved, essentially, that events
and threads are duals of each other and that the same pro-
gram can be written for either of the two systems. With
protothreads, we put this into practice by actually rewriting
event-driven programs with blocking wait semantics.

Protothreads are similar to coroutines [22] in the sense
that a protothread continues to execute at the point of the
last return from the function. In particular, protothreads
are similar to asymmetric coroutines [7], just as cooperative
multi-threading is similar to asymmetric coroutines. How-
ever, unlike coroutines and cooperative multi-threading, pro-
tothreads are stackless and can only block at the top level of
the protothread function.

Dabek et al. [6] present libasynch, a C++ library that as-
sists the programmer in writing event-driven programs. The
library provides garbage collection of allocated memory as
well as a type-safe way to pass state between callback func-
tions. However, the libasynch library does not provide se-
quential execution and software written with the library can-
not use language statements to control program flow across
blocking calls.

The Capriccio system by von Behren et al. [36] shows
that in a memory-rich environment, threads can be made as
memory efficient as events. This requires modification to
the C compiler so that it performs dynamic memory alloca-
tion of stack space during run-time. However, as dynamic
memory allocation quickly causes memory fragmentation in
the memory-constrained devices for which the protothreads
mechanism is designed, dynamic allocation of stack memory
is not feasible.

Cunningham and Kohler [5] develop a library to assist
programmers of event-driven systems in program analysis,
along with a tool for visualizing callback chains, as well as a
tool for verifying properties of programs implemented using
the library. Their work is different from ours in that they help
the programmer manage the state machines for event-driven
programs, whereas protothreads are designed to replace such
state machines.

Adya et al. [3] discuss the respective merits of event-
driven and threaded programming and present a hybrid ap-
proach that shows that the event-driven and multi-threaded
code can coexist in a unified concurrency model. The au-
thors have developed a set of adaptor functions that allows
event-driven code to call threaded code, and threaded code
to call event-driven code, without requiring that the caller
has knowledge about the callee’s approach.

State machines are a powerful tool for developing real-
time systems. Abstractions such as Harel’s StateCharts [18]
are designed to help developers to develop and manage state
machines and are very valuable for systems that are designed
as state machines. Protothreads, in contrast, are intended to
replace state machines with sequential C code. Also, pro-
tothreads do not provide any mechanisms for assisting de-
velopment of hard real-time systems.

9 Conclusions
We present protothreads, a novel abstraction for memory-

constrained embedded systems. Due to memory-constraints,
such systems are often based on an event-driven model. Ex-
perience has shown that event-driven programming is dif-
ficult because the lack of a blocking wait abstraction forces
programmers to implement control flow with state machines.

Protothreads simplify programming by providing a con-
ditional blocking wait operation, thereby reducing the need
for explicit state machines. Protothreads are inexpensive: the
memory overhead is only two bytes per protothread.

We develop two prototype protothreads implementations
using only C preprocessor and evaluate the usefulness of pro-
tothreads by reimplementing some widely used event-driven
programs using protothreads. Our results show that for most
programs the explicit state machines could be entirely re-
moved. Furthermore, protothreads significantly reduce the
number of state transitions and lines of code. The execu-
tion time overhead of protothreads is on the order of a few
processor cycles. We find the code size of a program writ-
ten with protothreads to be slightly larger than the equivalent
program written as a state machine.

Acknowledgments
This work was partly financed by VINNOVA, the

Swedish Agency for Innovation Systems, and the European

41

Commission under contract IST-004536-RUNES. Thanks go
to Kay Römer and Umar Saif for reading and suggesting im-
provements on drafts of this paper, and to our paper shepherd
Philip Levis for his many insightful comments that signifi-
cantly helped to improve the paper.

10 References
[1] T. Abdelzaher, J. Stankovic, S. Son, B. Blum, T. He, A. Wood, and

C. Lu. A communication architecture and programming abstractions
for real-time embedded sensor networks. In Workshop on Data Dis-
tribution for Real-Time Systems, Providence, RI, USA, May 2003.

[2] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,
J. Deng, and R. Han. Mantis: system support for multimodal networks
of in-situ sensors. In Proceedings of the 2nd ACM international con-
ference on Wireless sensor networks and applications, pages 50–59,
2003.

[3] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur.
Cooperative Task Management Without Manual Stack Management.
In Proceedings of the USENIX Annual Technical Conference, 2002.

[4] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A pro-
gramming model for event-driven embedded systems. In Proc. of the
18th Annual ACM Symposium on Applied Computing (SAC’03), Mel-
bourne, Florida, USA, March 2003.

[5] R. Cunningham and E. Kohler. Making events less slippery with eel.
In Proceedings of the 10th Workshop on Hot Topics in Operating Sys-
tems (HotOS-X), Santa Fee, New Mexico, June 2005. IEEE Computer
Society.

[6] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R. Morris.
Event-driven programming for robust software. In Proceedings of the
2002 SIGOPS European Workshop, Saint-Emilion, France, September
2002.

[7] A. L. de Moura and R. Ierusalimschy. Revisiting coroutines. MCC
15/04, PUC-Rio, Rio de Janeiro, RJ, June 2004.

[8] T. Duff. Unwinding loops. Usenet news article, net.lang.c, Message-
ID: <2748@alice.UUCP>, May 1984.

[9] A. Dunkels. Protothreads web site. Web page. Visited 2006-04-06.
http://www.sics.se/˜adam/pt/

[10] A. Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of
The First International Conference on Mobile Systems, Applications,
and Services (MobiSys ‘03), May 2003.

[11] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic
linking for reprogramming wireless sensor networks. In Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, SenSys 2006, Boulder, Colorado, USA, 2006.

[12] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings
of the First IEEE Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, November 2004.

[13] A. Dunkels, O. Schmidt, and T. Voigt. Using protothreads for sensor
node programming. In Proc. of the Workshop on Real-World Wireless
Sensor Networks (REALWSN’05), Stockholm, Sweden, June 2005.

[14] J. Ganssle. The embedded muse. Monthly newsletter.
http://www.ganssle.com/tem-back.htm

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Proceedings of the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementation, pages 1–11, 2003.

[16] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using kairos. In Proc. of Distributed Com-
puting in Sensor Systems (DCOSS)’05, Marina del Rey, CA, USA,
June 2005.

[17] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava.
Sos: A dynamic operating system for sensor networks. In MobiSys

’05: Proceedings of the 3rd international conference on Mobile sys-
tems, applications, and services, 2005.

[18] D. Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[19] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. Sys-
tem architecture directions for networked sensors. In Proceedings of
the 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, November 2000.

[20] J. Jeong. Analysis of xnp network reprogramming mod-
ule. Web page, October 2003. Visited 2006-04-06.
http://www.cs.berkeley.edu/˜jaein/cs294 1/xnp anal.htm

[21] O. Kasten and K. Römer. Beyond event handlers: Programming
wireless sensors with attributed state machines. In The Fourth Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), Los Angeles, USA, April 2005.

[22] D. E. Knuth. The art of computer programming, volume 1: fundamen-
tal algorithms (2nd edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1978.

[23] Framework Labs. Protothreads for Objective-C/Cocoa. Visited 2006-
04-06. http://www.frameworklabs.de/protothreads.html

[24] H. C. Lauer and R. M. Needham. On the duality of operating systems
structures. In Proc. Second International Symposium on Operating
Systems, October 1978.

[25] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor net-
works. In Proceedings of ASPLOS-X, San Jose, CA, USA, October
2002.

[26] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler. The Emergence of Networking Abstrac-
tions and Techniques in TinyOS. In Proc. NSDI’04, March 2004.

[27] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

[28] M. Melkonian. Get by Without an RTOS. Embedded Systems Pro-
gramming, 13(10), September 2000.

[29] R. Newton, Arvind, and M. Welsh. Building up to macroprogram-
ming: An intermediate language for sensor networks. In Proc.
IPSN’05, Los Angeles, CA, USA, April 2005.

[30] J. Paisley and J. Sventek. Real-time detection of grid bulk transfer
traffic. In Proceedings of the 10th IEEE/IFIP Network Operations
Management Symposium, 2006.

[31] J. C. Reynolds. The discoveries of continuations. Lisp Symbol. Com-
put., 6(3):233–247, 1993.

[32] Z. B. Simpson. State machines: Cooperative mini-kernels with yield-
ing. In Computer Game Developer’s Conference, Austin, TX, Novem-
ber 1999.

[33] S. Tatham. Coroutines in C. Web page, 2000.
http://www.chiark.greenend.org.uk/˜sgtatham/coroutines.html

[34] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of the first in-
ternational conference on Embedded networked sensor systems, pages
171–180, 2003.

[35] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea
(for high-concurrency servers). In Proceedings of the 9th Workshop
on Hot Topics in Operating Systems, May 2003.

[36] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.
Capriccio: scalable threads for internet services. In Proc. SOSP ’03,
pages 268–281, 2003.

[37] M. Welsh and G. Mainland. Programming sensor networks using ab-
stract regions. In Proc. USENIX/ACM NSDI’04, San Francisco, CA,,
March 2004.

42

