

DSDV

Destination-Sequenced Distance-Vector Routing Protocol

Outline

Introduction
 Distance-Vector
 DSDV Protocol
 Summary

Introduction

- The property of ad-hoc networks
 - Topology may be quite dynamic
 - No administrative host
 - Hosts with finite power

Introduction

- The properties of the ad-hoc network routing protocol
 - Simple
 - Less storage space
 - Loop free
 - Short control message (Low overhead)
 - Less power consumption
 - Multiple disjoint routes
 - Fast rerouting mechanism

Introduction

- Routing Protocol:
 - Table-driven (proactive)
 - Source-initiated on-demand (reactive)
 - Hybrid
- Routing Algorithm
 - Link-State algorithm:
 - Each node maintains a view of the network topology
 - Distance-Vector algorithm:
 - Every node maintains the distance of each destination

Link-State

- Like the shortest-path computation method
- Each node maintains a view of the network topology with a cost for each link
- Periodically broadcast link costs to its outgoing links to all other nodes such as flooding

Distance-Vector

- known also as Distributed Bellman-Ford or RIP (Routing Information Protocol)
- Every node maintains a routing table
 - all available destinations
 - the next node to reach to destination
 - the number of hops to reach the destination
- Periodically send table to all neighbors to maintain topology

Distance Vector (Tables)

Distance Vector (Broken Link)

Distance Vector (Count to Infinity)

Distance Vector

DV not suited for ad-hoc networks!

- Loops
- Count to Infinity
- New Solution -> DSDV Protocol

DSDV Protocol

- DSDV is Destination Based
- No global view of topology

DSDV Protocol

- DSDV is Proactive (Table Driven)
 - Each node maintains routing information for all known destinations
 - Routing information must be updated periodically
 - Traffic overhead even if there is no change in network topology
 - Maintains routes which are never used

DSDV Protocol

- Keep the simplicity of Distance Vector
- Guarantee Loop Freeness
 - New Table Entry for Destination Sequence Number
- Allow fast reaction to topology changes
 - Make immediate route advertisement on significant changes in routing table
 - but wait with advertising of unstable routes (damping fluctuations)

DSDV (Table Entries)

Destination	Next	Metric	Seq. Nr	Install Time	Stable Data
Α	Α	0	A-550	001000	Ptr_A
В	В	1	B-102	001200	Ptr_B
С	В	3	C-588	001200	Ptr_C
D	В	4	D-312	001200	Ptr_D

- Sequence number originated from destination. Ensures loop freeness.
- Install Time when entry was made (used to delete stale entries from table)
- Stable Data Pointer to a table holding information on how stable a route is. Used to damp fluctuations in network.

DSDV (Route Advertisements)

- Advertise to each neighbor own routing information
 - Destination Address
 - Metric = Number of Hops to Destination
 - Destination Sequence Number
- Rules to set sequence number information
 - On each advertisement increase own destination sequence number (use only even numbers)
 - If a node is no more reachable (timeout) increase sequence number of this node by 1 (odd sequence number) and set metric = ∞

DSDV (Route Selection)

- Update information is compared to own routing table
 - 1. Select route with higher destination sequence number (This ensure to use always newest information from destination)
 - 2. Select the route with better metric when sequence numbers are equal.

DSDV (Respond to Topology Changes)

Immediate advertisements

- Information on new Routes, broken Links, metric change is immediately propagated to neighbors.
- Full/Incremental Update:
 - Full Update: Send all routing information from own table.
 - Incremental Update: Send only entries that has changed. (Make it fit into one single packet)

DSDV (no loops, no count to infinity)

DSDV (Immediate Advertisement)

DSDV (Problem of Fluctuations)

What are Fluctuations

- Entry for D in A: [D, Q, 14, D-100]
- D makes Broadcast with Seq. Nr. D-102
- A receives from P Update (D, 15, D-102)
 -> Entry for D in A: [D, P, 15, D-102]
 A must propagate this route immediately.
- A receives from Q Update (D, 14, D-102)
 -> Entry for D in A: [D, Q, 14, D-102]
 A must propagate this route immediately.

This can happen every time D or any other node does its broadcast and lead to unnecessary route advertisements in the network, so called fluctuations.

DSDV (Damping Fluctuations)

How to damp fluctuations

- Record last and avg. Settling Time of every Route in a separate table. (Stable Data) Settling Time = Time between arrival of first route and the best route with a given seq. nr.
- A still must update his routing table on the first arrival of a route with a newer seq. nr., but he can wait to advertising it. Time to wait is proposed to be 2*(avg. Settling Time).
- Like this fluctuations in larger networks can be damped to avoid unececarry adverdisment, thus saving bandwith.

Summery

Advantages

- Simple (almost like Distance Vector)
- Loop free through destination seq. numbers
- No latency caused by route discovery

Disadvantages

- No sleeping nodes
- Overhead: most routing information never used