Composition of Post classes and normal forms of Boolean functions

Miguel Couceiro ${ }^{\text {a }, 1}$, Stephan Foldes ${ }^{\text {b }}$, Erkko Lehtonen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Statistics and Philosophy, University of Tampere, FI-33014 Tampereen yliopisto, Finland
${ }^{\mathrm{b}}$ Institute of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland

Received 23 March 2005; received in revised form 12 May 2006; accepted 25 June 2006
Available online 6 September 2006

Abstract

The class composition $\mathscr{C} \circ \mathscr{K}$ of Boolean clones, being the set of composite functions $f\left(g_{1}, \ldots, g_{n}\right)$ with $f \in \mathscr{C}, g_{1}, \ldots, g_{n} \in \mathscr{K}$, is investigated. This composition $\mathscr{C} \circ \mathscr{K}$ is either the join $\mathscr{C} \vee \mathscr{K}$ in the Post Lattice or it is not a clone, and all pairs of clones \mathscr{C}, \mathscr{K} are classified accordingly.

Factorizations of the clone Ω of all Boolean functions as a composition of minimal clones are described and seen to correspond to normal form representations of Boolean functions. The median normal form, arising from the factorization of Ω with the clone $S M$ of self-dual monotone functions as the leftmost composition factor, is compared in terms of complexity with the well-known DNF, CNF, and Zhegalkin (Reed-Muller) polynomial representations, and it is shown to provide a more efficient normal form representation.

© 2006 Elsevier B.V. All rights reserved.

MSC: 06E30; 08A70
Keywords: Function class composition; Clones; Boolean functions; Post classes; Class factorization; Normal forms; DNF; CNF; Zhegalkin polynomial; Reed-Muller polynomial; Formulas; Efficient representations; Complexity; Median; Ternary majority

1. Introduction and notation

Let $\mathbb{B}=\{0,1\}$. A Boolean function is a map $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$, for some positive integer n called the arity of f. Because we only discuss Boolean functions, we refer to them simply as functions. A class of functions is a subset $\mathscr{C} \subseteq \bigcup_{n \geqslant 1} \mathbb{B}^{\mathbb{B}^{n}}$. For a fixed arity n, the n different projection maps $\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{i}, 1 \leqslant i \leqslant n$, are also called variables, denoted x_{1}, \ldots, x_{n}, where the arity is clear from the context.

If f is an n-ary function and g_{1}, \ldots, g_{n} are all m-ary functions, then the composition $f\left(g_{1}, \ldots, g_{n}\right)$ is an m-ary function, and its value on $\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{B}^{m}$ is $f\left(g_{1}\left(a_{1}, \ldots, a_{m}\right), \ldots, g_{n}\left(a_{1}, \ldots, a_{m}\right)\right)$. Let \mathscr{I} and \mathscr{J} be classes of functions. The composition of \mathscr{I} with \mathscr{F}, denoted $\mathscr{I} \circ \mathscr{f}$ (or sometimes, when the context is clear, just $\mathscr{I} \mathscr{F}$),

[^0]

Fig. 1. Post Lattice.
is defined as

$$
\mathscr{I} \circ \mathscr{I}=\left\{f\left(g_{1}, \ldots, g_{n}\right): n, m \geqslant 1, f n \text {-ary in } \mathscr{I}, g_{1}, \ldots, g_{n} m \text {-ary in } \mathscr{f}\right\} .
$$

A clone is a class \mathscr{C} of functions that contains all projections and satisfies $\mathscr{C} \mathscr{C} \subseteq \mathscr{C}$ (or equivalently, $\mathscr{C} \mathscr{C}=\mathscr{C}$).
The clones of Boolean functions, originally described by Post [14] (see [16,18,22]) for shorter recent proofs), form an algebraic lattice, where the lattice operations are the following: meet is the intersection, join is the smallest clone that contains the union. The greatest element is the clone Ω of all Boolean functions; the least element is the clone I_{c} of all projections. These clones and the lattice are often called the Post classes and the Post Lattice, respectively. For the nomenclature of the Post classes, see Appendix. The Post Lattice is illustrated in Fig. 1.

The set \mathbb{B}^{n} is a Boolean (distributive and complemented) lattice of 2^{n} elements under the component-wise order of vectors. We will write simply $\mathbf{a} \preccurlyeq \mathbf{b}$ to denote comparison in this lattice. The complement of a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is defined as $\overline{\mathbf{a}}=\left(1-a_{1}, \ldots, 1-a_{n}\right)$. We denote $\mathbf{0}=(0, \ldots, 0), \mathbf{1}=(1, \ldots, 1)$. Vectors are also called points.

The set $\mathbb{B}^{\mathbb{B}^{n}}$ is a Boolean lattice of $2^{2^{n}}$ elements under the point-wise ordering of functions. Both \mathbb{B}^{n} and $\mathbb{B}^{\mathbb{B}^{n}}$ are vector spaces over the two-element field $\mathrm{GF}(2)=\mathbb{B}$.

For a function f, the dual of f is defined as $f^{\mathrm{d}}(\mathbf{a})=\overline{f(\overline{\mathbf{a}})}$ for all \mathbf{a}. For a class \mathscr{C}, the dual of \mathscr{C} is defined as $\mathscr{C}^{\mathrm{d}}=\left\{f^{\mathrm{d}}: f \in \mathscr{C}\right\}$. The dual of a clone is a clone, and it is well-known that dualization gives the only nontrivial order-automorphism of the Post Lattice.

We also denote by $\mathbf{0}$ and $\mathbf{1}$ the constant functions of any arity having value 0 and 1 , respectively, everywhere. We denote the ternary majority function $x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$ by μ and the ternary triple sum $x_{1}+x_{2}+x_{3}$ by τ.

We say that f is a subfunction of g if $f \in\{g\} \circ I_{\mathrm{c}}$. The subfunction relation is a preorder (i.e., a reflexive and transitive relation) on the set of functions. We say that functions f and g are equivalent, denoted $f \equiv g$, if they are subfunctions of each other. This is commonly described as follows: functions f and g are equivalent if there is a function that can be obtained from both f and g by repeated cylindrification and permutation of variables. For any functions f_{1}, \ldots, f_{n}, we denote $\left[f_{1}, \ldots, f_{n}\right]=\left\{f: f \equiv f_{i}\right.$ for some $\left.i=1, \ldots, n\right\}$.

The plan of the paper is as follows. In Section 2 we restate a lemma on the associativity of function class composition, and state and prove a general sufficient condition for the composition of clones to be a clone. In Section 3 we completely classify those pairs of Boolean clones whose class composition is a clone (Section 3.1), and those pairs whose composition is not a clone (Section 3.2), and we summarize this classification in the two theorems of Section 3.3-from the direct point of view of compositions in Theorem 2 and from the reverse point of view of decompositions or factorizations of a given clone in Theorem 3. In Section 4 we consider certain factorizations of the clone Ω of all Boolean functions which correspond to normal form representations of functions such as disjunctive normal form (DNF), conjunctive normal form (CNF), and Zhegalkin or Reed-Muller polynomial representations. We conclude by showing that the representation using the ternary median (majority) function, based on the factorization of Ω with the clone $S M$ of self-dual monotone functions as the leftmost factor, is asymptotically more efficient than the more classical DNF, CNF, and polynomial representations which use Boolean lattice or Boolean ring operations.

2. General rules and auxiliary theorems

Let us restate the Associativity Lemma of [4], particularized to Boolean functions.

Lemma 1 (Associativity Lemma). Let $\mathscr{A}, \mathscr{B}, \mathscr{C}$ be classes of Boolean functions:

(i) $(\mathscr{A} \mathscr{B}) \mathscr{C} \subseteq \mathscr{A}(\mathscr{B} \mathscr{C})$,
(ii) if $\mathscr{B} \circ I_{\mathrm{c}} \subseteq \mathscr{B}$, then $(\mathscr{A} \mathscr{B}) \mathscr{C}=\mathscr{A}(\mathscr{B} \mathscr{C})$.

Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}, \mathscr{C}_{4}, \mathscr{C}$ be clones. The following hold and will be used repeatedly:

- Associativity: $\mathscr{C}_{1}\left(\mathscr{C}_{2} \mathscr{C}_{3}\right)=\left(\mathscr{C}_{1} \mathscr{C}_{2}\right) \mathscr{C}_{3}$.
- $\mathscr{C}_{1} \cup \mathscr{C}_{2} \subseteq \mathscr{C}_{1} \mathscr{C}_{2} \subseteq \mathscr{C}_{1} \vee \mathscr{C}_{2}$. The class composition $\mathscr{C}_{1} \mathscr{C}_{2}$ is a clone if and only if $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{1} \vee \mathscr{C}_{2}$.
- If $\mathscr{C}_{1} \subseteq \mathscr{C}_{2}$, then $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{2}$ and $\mathscr{C}_{2} \mathscr{C}_{1}=\mathscr{C}_{2}$.
- If $\mathscr{C}_{1} \subseteq \mathscr{C}_{2}$ and $\mathscr{C}_{3} \subseteq \mathscr{C}_{4}$, then $\mathscr{C}_{1} \mathscr{C}_{3} \subseteq \mathscr{C}_{2} \mathscr{C}_{4}$.
- If $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}, \mathscr{C}_{1} \subseteq \mathscr{C}_{3} \subseteq \mathscr{C}$, and $\mathscr{C}_{2} \subseteq \mathscr{C}_{4} \subseteq \mathscr{C}$, then $\mathscr{C}_{3} \mathscr{C}_{4}=\mathscr{C}$.
- If $\mathscr{C}_{1} \mathscr{C}_{2}$ is not a clone, i.e., $\mathscr{C}_{1} \mathscr{C}_{2} \neq \mathscr{C}_{1} \vee \mathscr{C}_{2}$, and $\mathscr{C}_{3} \subseteq \mathscr{C}_{1}, \mathscr{C}_{4} \subseteq \mathscr{C}_{2}, \mathscr{C}_{3} \vee \mathscr{C}_{4}=\mathscr{C}_{1} \vee \mathscr{C}_{2}$, then $\mathscr{C}_{3} \mathscr{C}_{4}$ is not a clone, i.e., $\mathscr{C}_{3} \mathscr{C}_{4} \neq \mathscr{C}_{3} \vee \mathscr{C}_{4}=\mathscr{C}_{1} \vee \mathscr{C}_{2}$.
- Duality: $\mathscr{C}_{1}^{\mathrm{d}} \mathscr{C}_{2}^{\mathrm{d}}=\left(\mathscr{C}_{1} \mathscr{C}_{2}\right)^{\mathrm{d}}$.
- If $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{2} \mathscr{C}_{1}$, then $\mathscr{C}_{1} \mathscr{C}_{2}$ is a clone.

As we shall see, it is not always true that $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{2} \mathscr{C}_{1}$. If $\mathscr{C}_{1} \mathscr{C}_{2} \neq \mathscr{C}_{2} \mathscr{C}_{1}$, then either one of $\mathscr{C}_{1} \mathscr{C}_{2}$ and $\mathscr{C}_{2} \mathscr{C}_{1}$ is a clone while the other is not, or neither is a clone.

Theorem 1. Let \mathscr{G} and \mathscr{H} be classes of Boolean functions, and let \mathscr{C} and \mathscr{K} be the clones generated by \mathscr{G} and \mathscr{H}, respectively. If $\left(\mathscr{G} \cup I_{\mathrm{c}}\right) \circ I_{\mathrm{c}} \subseteq \mathscr{G},\left(\mathscr{H} \cup I_{\mathrm{c}}\right) \circ I_{\mathrm{c}} \subseteq \mathscr{H}$, and $\mathscr{G} \mathscr{H} \subseteq \mathscr{K} \mathscr{G}$, then $\mathscr{K} \mathscr{C}$ is a clone.

Proof. We first prove two Claims.
Claim 1. $\mathscr{G} \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$.
To prove this claim, denote by $\mathscr{H}^{i}, i \geqslant 1$, the composition $\mathscr{H} \ldots \mathscr{H}$ of the class \mathscr{H} with itself i times. (Parentheses are not necessary, because $\mathscr{H} \circ I_{\mathrm{c}} \subseteq \mathscr{H}$.) Observe that $\mathscr{H}^{i} \subseteq \mathscr{H}^{i+1}$ for every $i \geqslant 1$, and

$$
\mathscr{K}=\bigcup_{i} \mathscr{H}^{i}, \quad \mathscr{G} \mathscr{K}=\bigcup_{i} \mathscr{G} \mathscr{H}^{i}, \quad \mathscr{K} \mathscr{G}=\bigcup_{i} \mathscr{H}^{i} \mathscr{G} .
$$

Thus it is sufficient to show, by induction on i, that $\mathscr{G} \mathscr{H}^{i} \subseteq \mathscr{K} \mathscr{G}$ for all $i \geqslant 1$. For $i=1$, this is part of the hypothesis in the statement of the theorem. The inductive step is accomplished by assuming $\mathscr{G} \mathscr{H}^{i} \subseteq \mathscr{K} \mathscr{G}$ and observing that $\mathscr{G} \mathscr{H}^{i+1}=\mathscr{G}\left(\mathscr{H}^{i} \mathscr{H}\right)=\left(\mathscr{G}_{\mathscr{H}} \mathscr{H}^{i}\right) \mathscr{H}$, because $\mathscr{H} \circ I_{\mathrm{c}} \subseteq \mathscr{H}$ and $\mathscr{H}^{i} \circ I_{\mathrm{c}} \subseteq \mathscr{H}^{i}$, and

$$
\left(\mathscr{G}_{\mathscr{H}} \mathscr{H}^{i} \mathscr{H} \subseteq(\mathscr{K} \mathscr{G}) \mathscr{H}=\left(\bigcup_{j} \mathscr{H}^{j} \mathscr{G}\right) \mathscr{H}=\bigcup_{j}\left(\mathscr{H}^{j} \mathscr{G}\right) \mathscr{H}\right.
$$

by the inductive hypothesis. For every $j,\left(\mathscr{H}^{j} \mathscr{G}\right) \mathscr{H} \subseteq \mathscr{H}^{j}(\mathscr{G} \mathscr{H})$ by the Associativity Lemma, and

$$
\mathscr{H}^{j}(\mathscr{G} \mathscr{H}) \subseteq \mathscr{H}^{j}\left(\bigcup_{i} \mathscr{H}^{i} \mathscr{G}\right)
$$

by the hypothesis of the theorem. Furthermore, since every \mathscr{H}^{i} contains all projections and $\mathscr{H}=\mathscr{H}^{1} \subseteq \mathscr{H}^{2} \subseteq \cdots$,

$$
\mathscr{H}^{j}\left(\bigcup_{i} \mathscr{H}^{i} \mathscr{G}\right) \subseteq \bigcup_{i}\left(\mathscr{H}^{j} \mathscr{H}^{i}\right) \mathscr{G} \subseteq \mathscr{K} \mathscr{G}
$$

which shows that $\mathscr{G} \mathscr{H}^{i+1} \subseteq \mathscr{K} \mathscr{G}$, completing the proof of Claim 1 .
Claim 2. $\mathscr{C} \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$.
Let $\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i}, i \geqslant 1$, denote the composition $\left(\mathscr{G} \cup I_{\mathrm{c}}\right) \cdots\left(\mathscr{G} \cup I_{\mathrm{c}}\right)$ of $\mathscr{G} \cup I_{\mathrm{c}}$ with itself i times. (We can omit parentheses by the Associativity Lemma.) We have $\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i} \subseteq\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i+1}$ for all $i \geqslant 1$ and

$$
\mathscr{C}=\bigcup_{i}\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i}, \quad \mathscr{C} \mathscr{K}=\bigcup_{i}\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i} \mathscr{K} .
$$

We show by induction on i that $\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i} \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$. For $i=1$ this is true because

$$
\left(\mathscr{G} \cup I_{\mathrm{c}}\right) \mathscr{K}=\mathscr{G} \mathscr{K} \cup I_{\mathrm{c}} \circ \mathscr{K}=\mathscr{G} \mathscr{K} \cup \mathscr{K} \subseteq \mathscr{K} \mathscr{C} \cup \mathscr{K} \mathscr{C}=\mathscr{K} \mathscr{C} .
$$

Assuming it is true for i,

$$
\begin{aligned}
\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i+1} \mathscr{K} & =\left(\mathscr{G} \cup I_{\mathrm{c}}\right)\left[\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i} \mathscr{K}\right] \subseteq\left(\mathscr{G} \cup I_{\mathrm{c}}\right)(\mathscr{K} \mathscr{C}) \\
& =\left[\left(\mathscr{G} \cup I_{\mathrm{c}}\right) \mathscr{K}\right] \mathscr{C}=\left(\mathscr{G} \mathscr{K} \cup I_{\mathrm{c}} \circ \mathscr{K}\right) \mathscr{C}=(\mathscr{G} \mathscr{K}) \mathscr{C} \cup\left(I_{\mathrm{c}} \circ \mathscr{K}\right) \mathscr{C}=(\mathscr{G} \mathscr{K}) \mathscr{C} \cup \mathscr{K} \mathscr{C} .
\end{aligned}
$$

By Claim 1, $\mathscr{G} \mathscr{K} \subseteq \mathscr{K} \mathscr{G}$, and therefore, still using the Associativity Lemma,

$$
(\mathscr{G} \mathscr{K}) \mathscr{C} \cup \mathscr{K} \mathscr{C} \subseteq(\mathscr{K} \mathscr{G}) \mathscr{C} \cup \mathscr{K} \mathscr{C} \subseteq \mathscr{K}(\mathscr{G} \mathscr{C}) \cup \mathscr{K} \mathscr{C}=\mathscr{K} \mathscr{C},
$$

yielding $\left(\mathscr{G} \cup I_{\mathrm{c}}\right)^{i+1} \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$ and completing the proof of Claim 2 .
Using Claim 2 and associativity, we have

$$
(\mathscr{K} \mathscr{C})(\mathscr{K} \mathscr{C}) \subseteq \mathscr{K}(\mathscr{C} \mathscr{K}) \mathscr{C} \subseteq \mathscr{K}(\mathscr{K} \mathscr{C}) \mathscr{C}=(\mathscr{K} \mathscr{K})(\mathscr{C} \mathscr{C})=\mathscr{K} \mathscr{C},
$$

establishing the result that $\mathscr{K} \mathscr{C}$ is a clone.
Whenever we apply Theorem 1, we just mention the generating functions g_{1}, \ldots, g_{m} and h_{1}, \ldots, h_{n} of the clones \mathscr{C} and \mathscr{K}, respectively, and we let $\mathscr{G}=\left[g_{1}, \ldots, g_{m}, x_{1}\right], \mathscr{H}=\left[h_{1}, \ldots, h_{n}, x_{1}\right]$.

Let f be an n-ary function, and denote by T_{f} the set of true points of f, i.e., $T_{f}=\{\mathbf{a}: f(\mathbf{a})=1\}$. Let $T_{f}^{\mathrm{M}}=\{\mathbf{b} \in$ $\mathbb{B}^{n}: \mathbf{a} \preccurlyeq \mathbf{b}$ for some $\left.\mathbf{a} \in T_{f}\right\}$. The monotone closure of f, denoted by f^{M}, is defined as the n-ary function whose true points are the members of T_{f}^{M}.

By definition, $f^{\mathrm{M}} \in M$. We observe that if $f \in T_{0}$, then $f^{\mathrm{M}} \in M_{0}$; if $f \in T_{\mathrm{c}}$, then $f^{\mathrm{M}} \in M_{\mathrm{c}}$; and for $m=2, \ldots, \infty$, if $f \in T_{\mathrm{c}} U_{m}$, then $f^{\mathrm{M}} \in M_{\mathrm{c}} U_{m}$. Also, if $f(\mathbf{a})=1$ for some a, then $f^{\mathrm{M}}(\mathbf{a})=1$; and if $f^{\mathrm{M}}(\mathbf{a})=1$ for some \mathbf{a}, then there exists $\mathbf{b} \preccurlyeq \mathbf{a}$ such that $f(\mathbf{b})=1$.

3. Compositions of clones

It is a well-known fact that every Boolean function can be represented by DNF and CNF expressions. This fact can be restated as $\Omega=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}$. It is also known that $M_{\mathrm{c}}=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}$, so the previous equalities can be written as $\Omega=M_{\mathrm{c}} \circ I^{*}$.
We also know that every Boolean function is represented by a unique multilinear polynomial over $\mathrm{GF}(2)$, called the Zhegalkin or Reed-Muller polynomial or Boolean ring representation (see [3,12,15,21]). This fact can be restated as $\Omega=L_{\mathrm{c}} \circ \Lambda$. Allowing only constant-preserving linear functions is not really a restriction, because $\mathbf{0}$ can be substituted for a variable if necessary.

These facts will be used in what follows. We will present various propositions on whether the composition of two clones is a clone or not. The cases when the composition is a clone and the cases when the composition is not a clone are grouped in Sections 3.1 and 3.2, respectively. For general background, see, e.g., [3,6,11,13].

3.1. Cases when the composition of clones is a clone

We now establish a number of equalities of the form $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{3}$. The inclusions $\mathscr{C}_{1} \mathscr{C}_{2} \subseteq \mathscr{C}_{3}$ are obvious in each case from the inclusions in the Post Lattice. It only remains to prove the converse inclusions. We only provide a proof for one of $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{3}$ and $\mathscr{C}_{1}^{\mathrm{d}} \mathscr{C}_{2}^{\mathrm{d}}=\mathscr{C}_{3}^{\mathrm{d}}$; the other equality follows by duality.

Proposition 1. $I_{0} \circ I_{1}=I_{1} \circ I_{0}=I, I \circ I^{*}=\Omega(1), I^{*} \circ I_{0}=I^{*} \circ I_{1}=\Omega(1), L_{\mathrm{c}} \circ I_{0}=L_{0}, L_{\mathrm{c}} \circ I_{1}=L_{1}, L_{\mathrm{c}} \circ I=L$, $I^{*} \circ L_{\mathrm{c}}=L_{\mathrm{c}} \circ I^{*}=L S$.

Proof. Straightforward verification.
Proposition 2. $U_{\infty} \circ I_{1}=\Omega, T_{\mathrm{c}} U_{\infty} \circ I_{1}=T_{1}, M U_{\infty} \circ I_{1}=M, M_{\mathrm{c}} U_{\infty} \circ I_{1}=M_{1}, U_{\infty} \circ V_{\mathrm{c}}=T_{0}, T_{\mathrm{c}} U_{\infty} \circ V_{\mathrm{c}}=T_{\mathrm{c}}$. Dually, $W_{\infty} \circ I_{0}=\Omega, T_{\mathrm{c}} W_{\infty} \circ I_{0}=T_{0}, M W_{\infty} \circ I_{0}=M, M_{\mathrm{c}} W_{\infty} \circ I_{0}=M_{0}, W_{\infty} \circ \Lambda_{\mathrm{c}}=T_{1}, T_{\mathrm{c}} W_{\infty} \circ \Lambda_{\mathrm{c}}=T_{\mathrm{c}}$.

Proof. Let $f \in \Omega$ be n-ary. Define the $(n+1)$-ary function f^{\prime} as $f^{\prime}=f\left(x_{1}, \ldots, x_{n}\right) \wedge x_{n+1}$. We observe that $f^{\prime} \in U_{\infty}$ and $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, \mathbf{1}\right)$. Since $f^{\prime} \in U_{\infty}$ and $\mathbf{1} \in I_{1}$, we have that $U_{\infty} \circ I_{1}=\Omega$.

If $f \in T_{1}$, then $f^{\prime} \in T_{\mathrm{c}} U_{\infty}$. If $f \in M$, then $f^{\prime} \in M U_{\infty}$. If $f \in M_{1}$, then $f^{\prime} \in M_{\mathrm{c}} U_{\infty}$. Hence, we have that $T_{\mathrm{c}} U_{\infty} \circ I_{1}=T_{1}, M U_{\infty} \circ I_{1}=M, M_{\mathrm{c}} U_{\infty} \circ I_{1}=M_{1}$.

If $f \in T_{0}$, then $f^{\prime} \in U_{\infty}$. Since in this case $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, x_{1} \vee \cdots \vee x_{n}\right)$ and all disjunctions belong to V_{c}, we have that $U_{\infty} \circ V_{\mathrm{c}}=T_{0}$. If $f \in T_{\mathrm{c}}$, then $f^{\prime} \in T_{\mathrm{c}} U_{\infty}$, and we have that $T_{\mathrm{c}} U_{\infty} \circ V_{\mathrm{c}}=T_{\mathrm{c}}$.

Proposition 3. For $m=2, \ldots, \infty, T_{\mathrm{c}} U_{\infty} \circ M_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{m}$ and, dually, $T_{\mathrm{c}} W_{\infty} \circ M_{\mathrm{c}} W_{m}=T_{\mathrm{c}} W_{m}$.
Proof. Let $f \in T_{\mathrm{c}} U_{m}$ be n-ary. Define the $(n+1)$-ary function f^{\prime} as $f^{\prime}=f\left(x_{1}, \ldots, x_{n}\right) \wedge x_{n+1}$. We observe that $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, f^{\mathrm{M}}\right)$, where f^{M} is the monotone closure of f. Because $f^{\prime} \in T_{\mathrm{c}} U_{\infty}$, and $f^{\mathrm{M}} \in M_{\mathrm{c}} U_{m}$, it follows that $T_{\mathrm{c}} U_{\infty} \circ M_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{m}$.

Proposition 4. $V_{\mathrm{c}} \circ U_{\infty}=T_{0}, V_{\mathrm{c}} \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}}$. Dually, $\Lambda_{\mathrm{c}} \circ W_{\infty}=T_{1}, \Lambda_{\mathrm{c}} \circ T_{\mathrm{c}} W_{\infty}=T_{\mathrm{c}}$.
Proof. Let $f \in T_{0}$ be n-ary. For $i=1, \ldots, n$, define the n-ary function f_{i} as $f_{i}=f \wedge x_{i}$. We observe that $f_{i} \in U_{\infty}$ and $f=f_{1} \vee \cdots \vee f_{n}$. Hence, $V_{\mathrm{c}} \circ U_{\infty}=T_{0}$. If $f \in T_{\mathrm{c}}$, then $f_{i} \in T_{\mathrm{c}} U_{\infty}$, so we have that $V_{\mathrm{c}} \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}}$.

Proposition 5. For $m=2, \ldots, \infty, M_{\mathrm{c}} U_{m} \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}} U_{m}$ and, dually, $M_{\mathrm{c}} W_{m} \circ T_{\mathrm{c}} W_{\infty}=T_{\mathrm{c}} W_{m}$.
Proof. Let $f \in T_{\mathrm{c}} U_{m}$ be n-ary. For $i=1, \ldots, n$, define the function f_{i} as $f_{i}=f \wedge x_{i}$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$. We observe that if $a_{i}=0$ then $f_{i}(\mathbf{a})=0$ and if $a_{i}=1$ then $f_{i}(\mathbf{a})=f(\mathbf{a})$. Therefore, the mapping $\mathbf{a} \mapsto\left(f_{1}(\mathbf{a}), \ldots, f_{n}(\mathbf{a})\right)$ keeps the true points of f fixed and maps the false points to $\mathbf{0}$.

Because $f \leqslant f^{\mathrm{M}}$ and $f^{\mathrm{M}}(\mathbf{0})=0$, we have that $f=f^{\mathrm{M}}\left(f_{1}, \ldots, f_{n}\right)$. Because $f^{\mathrm{M}} \in M_{\mathrm{c}} U_{m}$ and $f_{1}, \ldots, f_{n} \in T_{\mathrm{c}} U_{\infty}$, we have that $M_{\mathrm{c}} U_{m} \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}} U_{m}$.

Proposition 6. For $m=2, \ldots, \infty, T_{\mathrm{c}} U_{m} \circ I_{0}=U_{m}$ and, dually, $T_{\mathrm{c}} W_{m} \circ I_{1}=W_{m}$.
Proof. Let $f \in U_{m}$ be n-ary. Define the $(n+1)$-ary function f^{\prime} as

$$
f^{\prime}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)= \begin{cases}f\left(a_{1}, \ldots, a_{n}\right) & \text { if } a_{n+1}=0 \\ 1 & \text { if } a_{n+1}=1\end{cases}
$$

We observe that $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, \mathbf{0}\right)$. Since $f^{\prime} \in T_{\mathrm{c}} U_{m}$ and $\mathbf{0} \in I_{0}$, we have that $T_{\mathrm{c}} U_{m} \circ I_{0}=U_{m}$.
Proposition 7. $S \circ I_{0}=\Omega$. Dually, $S \circ I_{1}=\Omega$.
Proof. Let $f \in \Omega$ be n-ary. Define the $(n+1)$-ary function f^{\prime} as

$$
f^{\prime}=f\left(x_{1}+x_{n+1}, \ldots, x_{n}+x_{n+1}\right)+x_{n+1} .
$$

We observe that $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, \mathbf{0}\right)$. Since $f^{\prime} \in S$ and $\mathbf{0} \in I_{0}$, we have that $S \circ I_{0}=\Omega$.
Proposition 8. $S_{\mathrm{c}} \circ I=\Omega$.
Proof. Let $f \in \Omega$ be n-ary. Define the $(n+2)$-ary function f^{\prime} as

$$
f^{\prime}=\left(x_{n+1}+x_{n+2}\right) \wedge\left(f\left(x_{1}+x_{n+2}, \ldots, x_{n}+x_{n+2}\right)+x_{n+1}+x_{n+2}\right)+x_{n+1} .
$$

We observe that $f=f^{\prime}\left(x_{1}, \ldots, x_{n}, \mathbf{1}, \mathbf{0}\right)$. Since $f^{\prime} \in S_{\mathrm{c}}$ and $\mathbf{0}, \mathbf{1} \in I$, we have that $S_{\mathrm{c}} \circ I=\Omega$.
Proposition 9. $M_{\mathrm{c}} \circ I^{*}=\Omega$.
Proof. Let $f \in \Omega$ be n-ary, and let T be the set of true points of f. Let g be the $2 n$-ary function whose set of true points is $\left\{(\mathbf{a}, \overline{\mathbf{a}}) \in \mathbb{B}^{2 n}: \mathbf{a} \in T\right\} \cup\{\mathbf{1}\}$. For all $\mathbf{a} \in \mathbb{B}^{n}, f(\mathbf{a})=g(\mathbf{a}, \overline{\mathbf{a}})=g^{\mathrm{M}}(\mathbf{a}, \overline{\mathbf{a}})$, because the values of g remain unchanged in the antichain $\left\{(\mathbf{a}, \overline{\mathbf{a}}) \in \mathbb{B}^{2 n}: \mathbf{a} \in \mathbb{B}^{n}\right\}$ when forming the monotone closure. Therefore, $f=g^{\mathrm{M}}\left(x_{1}, \ldots, x_{n}, \overline{x_{1}}, \ldots, \overline{x_{n}}\right)$. Since $g^{\mathrm{M}} \in M_{\mathrm{c}}$ and $x_{i}, \overline{x_{i}} \in I^{*}$, we conclude that $M_{\mathrm{c}} \circ I^{*}=\Omega$.

Proposition 10. $I^{*} \circ T_{0}=\Omega, I^{*} \circ S_{\mathrm{c}}=S$. Dually, $I^{*} \circ T_{1}=\Omega$.
Proof. Let $f \in \Omega$. If $f \in T_{0}$, then clearly $f \in I^{*} \circ T_{0}$. If $f \notin T_{0}$, then $\bar{f} \in T_{0}$, and so $f=\overline{\bar{f}}$. Because $\overline{x_{1}} \in I^{*}$, we have that $I^{*} \circ T_{0}=\Omega$.

Let then $f \in S$. If $f \in S_{\mathrm{c}}$, then clearly $f \in I^{*} \circ S_{\mathrm{c}}$. If $f \notin S_{\mathrm{c}}$, then $\bar{f} \in S_{\mathrm{c}}$, and we conclude that $f \in I^{*} \circ S_{\mathrm{c}}$ also in this case. Thus, $I^{*} \circ S_{\mathrm{c}}=S$.

Proposition 11. $I^{*} \circ L_{0}=L_{0} \circ I^{*}=L, L_{0} \circ I_{1}=L, L S \circ I_{0}=L$. Dually, $I^{*} \circ L_{1}=L_{1} \circ I^{*}=L, L_{1} \circ I_{0}=L$, $L S \circ I_{1}=L$.

Proof. Let $f=a_{0} \mathbf{1}+a_{1} x_{1}+\cdots+a_{n} x_{n} \in L$. If $a_{0}=0$, then $f \in L_{0}$, and so $f \in I^{*} \circ L_{0}, f \in L_{0} \circ I^{*}$, and $f \in L_{0} \circ I_{1}$. If $a_{0}=1$, then $\bar{f} \in L_{0}$, and so $f=\overline{\bar{f}} \in I^{*} \circ L_{0}$. Furthermore, the ($n+2$)-ary function $f_{1}=a_{1} x_{1}+\cdots+a_{n} x_{n}+x_{n+1}+x_{n+2}$ is in L_{0}, and $f=f_{1}\left(x_{1}, \ldots, x_{n}, x_{1}, \overline{x_{1}}\right) \in L_{0} \circ I^{*}$. Also the $(n+1)$-ary function $f_{2}=a_{1} x_{1}+\cdots+a_{n} x_{n}+x_{n+1}$ is in L_{0}, and $f=f_{2}\left(x_{1}, \ldots, x_{n}, \mathbf{1}\right) \in L_{0} \circ I_{1}$. Hence, $I^{*} \circ L_{0}=L, L_{0} \circ I^{*}=L$, and $L_{0} \circ I_{1}=L$.

If an odd number of the coefficients $a_{i}, i \geqslant 1$, are equal to 1 , then $f \in L S$. Otherwise, the ($n+1$)-ary function $f_{3}=a_{0} \mathbf{1}+a_{1} x_{1}+\cdots+a_{n} x_{n}+x_{n+1}$ is in $L S$ and $f=f_{3}\left(x_{1}, \ldots, x_{n}, \mathbf{0}\right) \in L S \circ I_{0}$. Thus, $L S \circ I_{0}=L$.

Proposition 12. $I_{0} \circ M_{\mathrm{c}}=M_{0}, I \circ M_{\mathrm{c}}=M, I_{0} \circ M_{1}=M, I_{0} \circ \Lambda_{\mathrm{c}}=\Lambda_{0}, I_{1} \circ \Lambda_{\mathrm{c}}=\Lambda_{1}, I \circ \Lambda_{\mathrm{c}}=\Lambda, I_{0} \circ \Lambda_{1}=\Lambda$, $I_{1} \circ \Lambda_{0}=\Lambda$. For $m=2, \ldots, \infty, I_{0} \circ M_{\mathrm{c}} U_{m}=M U_{m}$. Dually, $I_{1} \circ M_{\mathrm{c}}=M_{1}, I_{1} \circ M_{0}=M, I_{1} \circ V_{\mathrm{c}}=V_{1}, I_{0} \circ V_{\mathrm{c}}=V_{0}$, $I \circ V_{\mathrm{c}}=V, I_{1} \circ V_{0}=V, I_{0} \circ V_{1}=V$. For $m=2, \ldots, \infty, I_{1} \circ M_{\mathrm{c}} W_{m}=M W_{m}$.

Proof. The first eight equalities follow by the definition of the clones $M_{\mathrm{c}}, M_{0}, M, \Lambda_{\mathrm{c}}, \Lambda_{0}, \Lambda_{1}, \Lambda$ and the fact that for any class \mathscr{C} of functions, $I_{0} \circ \mathscr{C}=\mathscr{C} \cup[\mathbf{0}], I_{1} \circ \mathscr{C}=\mathscr{C} \cup[\mathbf{1}]$, and $I \circ \mathscr{C}=\mathscr{C} \cup[\mathbf{0}, \mathbf{1}]$. We also observe that for $m=2, \ldots, \infty$,

$$
I_{0} \circ M_{\mathrm{c}} U_{m}=M_{\mathrm{c}} U_{m} \cup[\mathbf{0}]=\left(M_{\mathrm{c}} \cap U_{m}\right) \cup[\mathbf{0}]=M_{0} \cap U_{m}=M \cap U_{m}=M U_{m},
$$

where the penultimate equality holds because $\mathbf{1} \notin U_{m}$.
Proposition 13. $M_{\mathrm{c}} \circ I_{0}=M_{0}, M_{\mathrm{c}} \circ I=M, M_{0} \circ I_{1}=M, \Lambda_{\mathrm{c}} \circ I_{0}=\Lambda_{0}, \Lambda_{\mathrm{c}} \circ I_{1}=\Lambda_{1}, \Lambda_{\mathrm{c}} \circ I=\Lambda, \Lambda_{0} \circ I_{1}=\Lambda$, $\Lambda_{1} \circ I_{0}=\Lambda$. For $m=2, \ldots, \infty, M_{\mathrm{c}} U_{m} \circ I_{0}=M U_{m}$. Dually, $M_{\mathrm{c}} \circ I_{1}=M_{1}, M_{1} \circ I_{0}=M, V_{\mathrm{c}} \circ I_{1}=V_{1}, V_{\mathrm{c}} \circ I_{0}=V_{0}$, $V_{\mathrm{c}} \circ I=V, V_{1} \circ I_{0}=V, V_{0} \circ I_{1}=V$. For $m=2, \ldots, \infty, M_{c} W_{m} \circ I_{1}=M W_{m}$.

Proof. By definition, $M_{0} \backslash M_{\mathrm{c}}=[\mathbf{0}], M \backslash M_{\mathrm{c}}=[\mathbf{0}, \mathbf{1}], M \backslash M_{0}=[\mathbf{1}], \Lambda_{0} \backslash \Lambda_{\mathrm{c}}=[\mathbf{0}], \Lambda_{1} \backslash \Lambda_{\mathrm{c}}=[\mathbf{1}], \Lambda \backslash \Lambda_{\mathrm{c}}=[\mathbf{0}, \mathbf{1}], \Lambda \backslash \Lambda_{0}=[\mathbf{1}]$, $\Lambda \backslash \Lambda_{1}=[\mathbf{0}]$. Also, by the observation in the proof of Proposition 12, $M U_{m} \backslash M_{\mathrm{c}} U_{m}=[\mathbf{0}]$. The constant functions can be obtained by composing x_{1} with $\mathbf{0} \in I_{0}, I, \mathbf{1} \in I_{1}, I$.

Proposition 14. $S M \circ V_{\mathrm{c}}=V_{\mathrm{c}} \circ S M=M_{\mathrm{c}} W_{2}$. Dually, $S M \circ \Lambda_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ S M=M_{\mathrm{c}} U_{2}$.
Proof. Since the functions μ and $x_{1} \vee x_{2}$ generate $S M$ and V_{c}, respectively, and

$$
\begin{aligned}
& \mu(x \vee y, a, b)=\mu(x, a, b) \vee \mu(y, a, b), \\
& \mu(x, y, z) \vee a=\mu(x \vee a, y \vee a, z \vee a),
\end{aligned}
$$

it follows from Theorem 1 that $V_{\mathrm{c}} \circ S M$ and $S M \circ V_{\mathrm{c}}$ are clones, and hence they are equal to $M_{\mathrm{c}} W_{2}$.
Proposition 15. $L_{\mathrm{c}} \circ S M=S M \circ L_{\mathrm{c}}=S_{\mathrm{c}}$.
Proof. The functions μ and τ are generators of $S M$ and L_{c}, respectively, and

$$
\begin{aligned}
& \mu(\tau(x, y, z), a, b)=\tau(\mu(x, a, b), \mu(y, a, b), \mu(z, a, b)), \\
& \tau(\mu(x, y, z), a, b)=\mu(\tau(x, a, b), \tau(y, a, b), \tau(z, a, b)) .
\end{aligned}
$$

Theorem 1 implies that $L_{\mathrm{c}} \circ S M$ and $S M \circ L_{\mathrm{c}}$ are clones. Hence, $L_{\mathrm{c}} \circ S M=S M \circ L_{\mathrm{c}}=S_{\mathrm{c}}$.
Proposition 16. $S M \circ I^{*}=S$.
Proof. The functions $\overline{x_{1}}$ and μ are generators of I^{*} and $S M$, respectively, and $\overline{\mu(x, y, z)}=\mu(\bar{x}, \bar{y}, \bar{z})$. Theorem 1 implies that $S M \circ I^{*}$ is a clone. Hence, $S M \circ I^{*}=S$.

Proposition 17. $S M \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}} U_{\infty} \circ S M=T_{\mathrm{c}} U_{2}$. Dually, $S M \circ T_{\mathrm{c}} W_{\infty}=T_{\mathrm{c}} W_{\infty} \circ S M=T_{\mathrm{c}} W_{2}$.
Proof. The functions μ and $x_{1}\left(x_{2} \vee \overline{x_{3}}\right)$ are generators of $S M$ and $T_{\mathrm{c}} U_{\infty}$, respectively. We have that

$$
\begin{aligned}
& \mu(x, y, z)(a \vee \bar{b})=\mu(x(a \vee \bar{b}), y(a \vee \bar{b}), z(a \vee \bar{b})), \\
& a(\mu(x, y, z) \vee \bar{b})=\mu(a(x \vee \bar{b}), a(y \vee \bar{b}), a(z \vee \bar{b})), \\
& a(b \vee \overline{\mu(x, y, z)})=\mu(a(b \vee \bar{x}), a(b \vee \bar{y}), a(b \vee \bar{z})) .
\end{aligned}
$$

Theorem 1 implies that $S M \circ T_{\mathrm{c}} U_{\infty}$ is a clone.
We observe that for any function $g, \mu(x g(\mathbf{a}), y, z)=\mu(x, y, z) \mu(g(\mathbf{a}), y, z)$ and $\mu\left(g, x_{i}, x_{j}\right) \in T_{1}$ for any variables x_{i}, x_{j}. In particular, $\mu(x(y \vee \bar{z}), a, b)=\mu(x, a, b) \mu(y \vee \bar{z}, a, b)$. If $f \in T_{1}$, then $x_{i} \wedge f \in T_{\mathrm{c}} U_{\infty}$ for any variable x_{i}, and so we conclude that $\left[\mu, x_{1}\right] \circ\left[x_{1}\left(x_{2} \vee \overline{x_{3}}\right), x_{1}\right] \subseteq T_{\mathrm{c}} U_{\infty} \circ\left[\mu, x_{1}\right]$. Theorem 1 implies that $T_{\mathrm{c}} U_{\infty} \circ S M$ is a clone.

Proposition 18. $M_{\mathrm{c}} \circ L_{\mathrm{c}}=T_{\mathrm{c}}$.

Proof. The clone L_{c} is generated by τ, and the functions $x_{1} \vee x_{2}$ and $x_{1} \wedge x_{2}$ generate M_{c}. We have that

$$
\begin{aligned}
& \tau(a \vee b, c, d)=(a \wedge \tau(a, b, c)) \vee(b \wedge \tau(b, c, d)) \vee(\tau(a, c, d) \wedge \tau(b, c, d)), \\
& \tau(a \wedge b, c, d)=(a \vee \tau(a, c, d)) \wedge(b \vee \tau(b, c, d)) \wedge(\tau(a, c, d) \vee \tau(b, c, d)) .
\end{aligned}
$$

Theorem 1 implies that $M_{\mathrm{c}} \circ L_{\mathrm{c}}$ is a clone, and it must be T_{c}.
Proposition 19. $M_{\mathrm{c}} U_{\infty} \circ L_{1}=T_{1}$. Dually, $M_{\mathrm{c}} W_{\infty} \circ L_{0}=T_{0}$.
Proof. Let l_{1}, \ldots, l_{m} be the $m=2^{n} n$-ary functions of L_{1} in any fixed order. Define the function $\lambda: \mathbb{B}^{n} \rightarrow \mathbb{B}^{m}$ as $\lambda(\mathbf{v})=\left(l_{1}(\mathbf{v}), \ldots, l_{m}(\mathbf{v})\right)$. If $\mathbf{a}, \mathbf{b} \in \mathbb{B}^{n}$ are incomparable, then $\lambda(\mathbf{a}), \lambda(\mathbf{b}) \in \mathbb{B}^{m}$ are incomparable as well, because all projections are in L_{1}. If $\mathbf{a} \prec \mathbf{b} \prec \mathbf{1}$, then there are integers $i, j \in\{1, \ldots, n\}$ such that $a_{i}=b_{i}=0, a_{j}=0, b_{j}=1$. Consider the n-ary functions $\phi_{1}=x_{j}, \phi_{2}=x_{i}+x_{j}+\mathbf{1}$. We have that $\phi_{1}, \phi_{2} \in L_{1}$, and $\phi_{1}(\mathbf{a})=0, \phi_{1}(\mathbf{b})=1, \phi_{2}(\mathbf{a})=1$, $\phi_{2}(\mathbf{b})=0$, so $\lambda(\mathbf{a})$ and $\lambda(\mathbf{b})$ are incomparable also in this case. We conclude that the range of λ consists of an antichain A and $\lambda(\mathbf{1})=\mathbf{1}$.

Let $f \in T_{1}$ be n-ary. Let h be the $(m+1)$-ary function for which $h(\mathbf{w})=1$ if and only if there is an n-vector \mathbf{v} with $f(\mathbf{v})=1$ and $\lambda(\mathbf{v})=\mathbf{w}$. We see that $f(\mathbf{v})=h(\lambda(\mathbf{v}))=h^{\mathrm{M}}(\lambda(\mathbf{v}))$. In any true vector of h, the coordinate corresponding to the constant function 1 equals 1 by definition, and the same holds for h^{M}, so we have that $h^{\mathrm{M}} \in U_{\infty}$. Because $f \in T_{1}$, we also have that $h^{\mathrm{M}} \in M_{\mathrm{c}}$.

Therefore $f=h^{\mathrm{M}}\left(l_{1}, \ldots, l_{m}\right)$, where $h^{\mathrm{M}} \in M_{\mathrm{c}} U_{\infty}$ and $l_{1}, \ldots, l_{m} \in L_{1}$, so we conclude that $M_{\mathrm{c}} U_{\infty} \circ L_{1}=T_{1}$.
Proposition 20. $\Lambda_{0} \circ S M=M U_{2}, S M \circ \Lambda_{1}=M_{1}$. Dually, $V_{1} \circ S M=M W_{2}, S M \circ V_{0}=M_{0}$.
Proof. It follows from Propositions 2, 12-14 that

$$
\begin{aligned}
& \Lambda_{0} \circ S M=I_{0} \circ \Lambda_{\mathrm{c}} \circ S M=I_{0} \circ M_{\mathrm{c}} U_{2}=M U_{2}, \\
& S M \circ \Lambda_{1}=S M \circ \Lambda_{\mathrm{c}} \circ I_{1}=M_{\mathrm{c}} U_{2} \circ I_{1}=M_{1} .
\end{aligned}
$$

Proposition 21. $S M \circ I_{0}=M U_{2}, S M \circ I=M$. Dually, $S M \circ I_{1}=M W_{2}$.
Proof. By setting $n-1$ variables to 0 in the majority function of arity $2 n-1$, we get the n-ary conjunction; and by setting all variables to 0 , we get the constant function $\mathbf{0}$. Therefore, $\Lambda_{0} \subseteq S M \circ I_{0}$, so $S M \circ \Lambda_{0} \subseteq S M \circ S M \circ I_{0}=S M \circ I_{0}$. Since $I_{0} \subseteq \Lambda_{0}$, we also have that $S M \circ I_{0} \subseteq S M \circ \Lambda_{0}$. Thus, $S M \circ I_{0}=S M \circ \Lambda_{0}=M U_{2}$, by Proposition 20. By a similar argument, we can also show that $S M \circ I=M$.

Proposition 22. For $m=2, \ldots, \infty, T_{\mathrm{c}} U_{\infty} \circ M U_{m}=U_{m}, U_{\infty} \circ M_{\mathrm{c}} U_{m}=M_{\mathrm{c}} U_{m} \circ U_{\infty}=U_{m}$ and, dually, $T_{\mathrm{c}} W_{\infty} \circ$ $M W_{m}=W_{m}, W_{\infty} \circ M_{\mathrm{c}} W_{m}=M_{\mathrm{c}} W_{m} \circ W_{\infty}=W_{m}$.

Proof. By Propositions 3, 5, 6, 12 and 13, we have that

$$
\begin{aligned}
& T_{\mathrm{c}} U_{\infty} \circ M U_{m}=T_{\mathrm{c}} U_{\infty} \circ M_{\mathrm{c}} U_{m} \circ I_{0}=T_{\mathrm{c}} U_{m} \circ I_{0}=U_{m}, \\
& U_{\infty} \circ M_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{\infty} \circ I_{0} \circ M_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{\infty} \circ M U_{m}=U_{m}, \\
& M_{\mathrm{c}} U_{m} \circ U_{\infty}=M_{\mathrm{c}} U_{m} \circ T_{\mathrm{c}} U_{\infty} \circ I_{0}=T_{\mathrm{c}} U_{m} \circ I_{0}=U_{m} .
\end{aligned}
$$

Proposition 23. $L \circ \Lambda_{\mathrm{c}}=L_{0} \circ \Lambda_{1}=L_{1} \circ \Lambda_{0}=\Omega$. Dually, $L \circ V_{\mathrm{c}}=L_{1} \circ V_{0}=L_{0} \circ V_{1}=\Omega$.
Proof. From the Zhegalkin polynomial representation and Propositions 1, 12 and 13, it follows that

$$
\begin{aligned}
\Omega & =L_{\mathrm{c}} \circ \Lambda=L_{\mathrm{c}} \circ I \circ \Lambda_{\mathrm{c}}=L \circ \Lambda_{\mathrm{c}} \\
& =L_{\mathrm{c}} \circ I_{0} \circ I_{1} \circ \Lambda_{\mathrm{c}}=L_{0} \circ \Lambda_{1} \\
& =L_{\mathrm{c}} \circ I_{1} \circ I_{0} \circ \Lambda_{\mathrm{c}}=L_{1} \circ \Lambda_{0} .
\end{aligned}
$$

Proposition 24. $L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=T_{\mathrm{c}}, L_{\mathrm{c}} \circ \Lambda_{0}=T_{0}, L_{\mathrm{c}} \circ \Lambda_{1}=T_{1}, L_{0} \circ \Lambda_{\mathrm{c}}=T_{0}, L_{1} \circ \Lambda_{\mathrm{c}}=T_{1}, L S \circ \Lambda_{0}=\Omega, L S \circ \Lambda_{1}=\Omega$. Dually, $L_{\mathrm{c}} \circ V_{\mathrm{c}}=T_{\mathrm{c}}, L_{\mathrm{c}} \circ V_{1}=T_{1}, L_{\mathrm{c}} \circ V_{0}=T_{0}, L_{1} \circ V_{\mathrm{c}}=T_{1}, L_{0} \circ V_{\mathrm{c}}=T_{0}, L S \circ V_{1}=\Omega, L S \circ V_{0}=\Omega$.

Proof. If $f \in T_{\mathrm{c}}$, then there is no constant term in the Zhegalkin polynomial of f, so in fact $f=g\left(h_{1}, \ldots, h_{n}\right)$, where $g \in L_{\mathrm{c}}$ and $h_{i} \in \Lambda_{\mathrm{c}}(i=1, \ldots, n)$, so $L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=T_{\mathrm{c}}$.

By Propositions 2 and 13 and the equality established above, we also have that

$$
\begin{aligned}
& L_{\mathrm{c}} \circ \Lambda_{0}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0}=T_{\mathrm{c}} \circ I_{0}=T_{0}, \\
& L_{\mathrm{c}} \circ \Lambda_{1}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1}=T_{\mathrm{c}} \circ I_{1}=T_{1} .
\end{aligned}
$$

Furthermore, by applying these equalities and Propositions 1, 10 and 12, we have

$$
\begin{aligned}
& L_{0} \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ I_{0} \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{0}=T_{0}, \\
& L_{1} \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ I_{1} \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{1}=T_{1}, \\
& L S \circ \Lambda_{0}=I^{*} \circ L_{\mathrm{c}} \circ \Lambda_{0}=I^{*} \circ T_{0}=\Omega, \\
& L S \circ \Lambda_{1}=I^{*} \circ L_{\mathrm{c}} \circ \Lambda_{1}=I^{*} \circ T_{1}=\Omega .
\end{aligned}
$$

Proposition 25. $S M \circ \Omega(1)=\Omega, S M \circ U_{\infty}=U_{\infty} \circ S M=U_{2}, L S \circ S M=S, S_{\mathrm{c}} \circ I_{0}=T_{0}, S M \circ L_{0}=T_{0}$. Dually, $S M \circ W_{\infty}=W_{\infty} \circ S M=W_{2}, S_{\mathrm{c}} \circ I_{1}=T_{1}, S M \circ L_{1}=T_{1}$.

Proof. It follows from Propositions 1, 6, 10, 15, 17, 20-22 and 24 that

$$
\begin{aligned}
& S M \circ \Omega(1)=S M \circ I \circ I^{*}=M \circ I^{*}=\Omega, \\
& S M \circ U_{\infty}=S M \circ T_{\mathrm{c}} U_{\infty} \circ I_{0}=T_{\mathrm{c}} U_{2} \circ I_{0}=U_{2}, \\
& U_{\infty} \circ S M=T_{\mathrm{c}} U_{\infty} \circ \Lambda_{0} \circ S M=T_{\mathrm{c}} U_{\infty} \circ M U_{2}=U_{2}, \\
& L S \circ S M=I^{*} \circ L_{\mathrm{c}} \circ S M=I^{*} \circ S_{\mathrm{c}}=S, \\
& S_{\mathrm{c}} \circ I_{0}=L_{\mathrm{c}} \circ S M \circ I_{0}=L_{\mathrm{c}} \circ M U_{2}=T_{0}, \\
& S M \circ L_{0}=S M \circ L_{\mathrm{c}} \circ I_{0}=S_{\mathrm{c}} \circ I_{0}=T_{0} .
\end{aligned}
$$

For the very last equality, we applied one of the previously established equalities.
Proposition 26. $V_{0} \circ \Lambda_{1}=M, V_{1} \circ \Lambda_{0}=M, V_{\mathrm{c}} \circ \Lambda_{0}=M_{0}, V_{\mathrm{c}} \circ \Lambda_{1}=M_{1}, V_{0} \circ \Lambda_{\mathrm{c}}=M_{0}, V_{1} \circ \Lambda_{\mathrm{c}}=M_{1}, V_{\mathrm{c}} \circ \Lambda=M$, $V \circ \Lambda_{\mathrm{c}}=M$. Dually, $\Lambda_{1} \circ V_{0}=M, \Lambda_{0} \circ V_{1}=M, \Lambda_{\mathrm{c}} \circ V_{1}=M_{1}, \Lambda_{\mathrm{c}} \circ V_{0}=M_{0}, \Lambda_{1} \circ V_{\mathrm{c}}=M_{1}, \Lambda_{0} \circ V_{\mathrm{c}}=M_{0}, \Lambda_{\mathrm{c}} \circ V=M$, $\Lambda \circ V_{\mathrm{c}}=M$.

Proof. From the fact that $V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=M_{\mathrm{c}}$ and Propositions 12 and 13, it follows that
$V_{0} \circ \Lambda_{1}=I_{0} \circ V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1}=I_{0} \circ M_{\mathrm{c}} \circ I_{1}=M_{0} \circ I_{1}=M$,
$V_{1} \circ \Lambda_{0}=I_{1} \circ V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0}=I_{1} \circ M_{\mathrm{c}} \circ I_{0}=M_{1} \circ I_{0}=M$,
$V_{\mathrm{c}} \circ \Lambda_{0}=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0}=M_{\mathrm{c}} \circ I_{0}=M_{0}$,
$V_{\mathrm{c}} \circ \Lambda_{1}=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1}=M_{\mathrm{c}} \circ I_{1}=M_{1}$,
$V_{0} \circ \Lambda_{\mathrm{c}}=I_{0} \circ V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=I_{0} \circ M_{\mathrm{c}}=M_{0}$,
$V_{1} \circ \Lambda_{\mathrm{c}}=I_{1} \circ V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=I_{1} \circ M_{\mathrm{c}}=M_{1}$,
$V_{\mathrm{c}} \circ \Lambda=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I=M_{\mathrm{c}} \circ I=M$,
$V \circ \Lambda_{\mathrm{c}}=I \circ V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=I \circ M_{\mathrm{c}}=M$.
Proposition 27. $T_{\mathrm{c}} U_{\infty} \circ I=\Omega, M_{\mathrm{c}} U_{\infty} \circ I=M, T_{\mathrm{c}} U_{\infty} \circ V_{0}=T_{0}, M_{\mathrm{c}} U_{\infty} \circ \Omega(1)=\Omega$. Dually, $T_{\mathrm{c}} W_{\infty} \circ I=\Omega$, $M_{\mathrm{c}} W_{\infty} \circ I=M, T_{\mathrm{c}} W_{\infty} \circ \Lambda_{1}=T_{1}, M_{\mathrm{c}} W_{\infty} \circ \Omega(1)=\Omega$.

Proof. It follows from Propositions 1, 2, 9 and 13 that

$$
\begin{aligned}
& T_{\mathrm{c}} U_{\infty} \circ I=T_{\mathrm{c}} U_{\infty} \circ I_{1} \circ I_{0}=T_{1} \circ I_{0}=\Omega, \\
& M_{\mathrm{c}} U_{\infty} \circ I=M_{\mathrm{c}} U_{\infty} \circ I_{1} \circ I_{0}=M_{1} \circ I_{0}=M, \\
& T_{\mathrm{c}} U_{\infty} \circ V_{0}=T_{\mathrm{c}} U_{\infty} \circ V_{\mathrm{c}} \circ I_{0}=T_{\mathrm{c}} \circ I_{0}=T_{0}, \\
& M_{\mathrm{c}} U_{\infty} \circ \Omega(1)=M_{\mathrm{c}} U_{\infty} \circ I_{1} \circ I_{0} \circ I^{*}=M_{1} \circ I_{0} \circ I^{*}=M \circ I^{*}=\Omega .
\end{aligned}
$$

Some of these composition results were presented without proof in [5].

3.2. Cases when the composition of clones is not a clone

Proposition 28. $I_{0} \circ I^{*}=I^{*} \cup[\mathbf{0}], I_{1} \circ I^{*}=I^{*} \cup[\mathbf{1}], I \circ L_{0}=L_{0} \cup[\mathbf{1}], I \circ L_{1}=L_{1} \cup[\mathbf{0}], \Omega(1) \circ L S=L S \cup[\mathbf{0}, \mathbf{1}] ;$ these are not clones.

Proof. Straightforward verification.
Proposition 29. $\Omega(1) \circ M \neq \Omega, \Omega(1) \circ T_{\mathrm{c}} \neq \Omega, I_{0} \circ T_{\mathrm{c}} \neq T_{0}, I_{0} \circ L_{\mathrm{c}} \neq L_{0}, I^{*} \circ S M \neq S$. For $m=2, \ldots, \infty$, $I_{0} \circ T_{\mathrm{c}} U_{m} \neq U_{m} .\left(\right.$ But $\left.\Omega(1) \vee M=\Omega, \Omega(1) \vee T_{\mathrm{c}}=\Omega, I_{0} \vee T_{\mathrm{c}}=T_{0}, I_{0} \vee L_{\mathrm{c}}=L_{0}, I^{*} \vee S M=S, I_{0} \vee T_{\mathrm{c}} U_{m}=U_{m}.\right)$ Dually, $I_{1} \circ T_{\mathrm{c}} \neq T_{1}, I_{1} \circ L_{\mathrm{c}} \neq L_{1}$, For $m=2, \ldots, \infty, I_{1} \circ T_{\mathrm{c}} W_{m} \neq W_{m}$.

Proof. The function $x_{1}+x_{2} \in L_{0}$ is not constant, monotone, the negation of a monotone function, constant-preserving, nor the negation of a constant-preserving function. Therefore, $\Omega(1) \circ M \neq \Omega, \Omega(1) \circ T_{\mathrm{c}} \neq \Omega, I_{0} \circ T_{\mathrm{c}} \neq T_{0}, I_{0} \circ L_{\mathrm{c}} \neq L_{0}$.

The function $x_{1}+x_{2}+x_{3} \in S$ is not monotone nor the negation of a monotone self-dual function. Therefore, $I^{*} \circ S M \neq S$.
The function $\left(x_{1}+x_{2}\right) x_{3} \in U_{m}$, for any $m=2, \ldots, \infty$, is not constant-preserving nor $\mathbf{0}$. Therefore, $I_{0} \circ$ $T_{\mathrm{c}} U_{m} \neq U_{m}$.

Proposition 30. $M \circ T_{0} \neq \Omega$ (but $M \vee T_{0}=\Omega$). Dually, $M \circ T_{1} \neq \Omega$.
Proof. The only unary functions in T_{0} are $\mathbf{0}$ and x_{1}. These are monotone, so any function in M composed with unary functions in T_{0} will be in M. Thus, $\overline{x_{1}} \notin M \circ T_{0}$, and so $M \circ T_{0} \neq \Omega$.

Proposition 31. $L \circ S \neq \Omega$ (but $L \vee S=\Omega$).
Proof. The binary self-dual functions are variables and negations of variables. These are linear, so $L \circ S \neq \Omega$.
Proposition 32. $I_{0} \circ S M \neq M U_{2}, I_{0} \circ S_{\mathrm{c}} \neq T_{0}$ (but $I_{0} \vee S M=M U_{2}, I_{0} \vee S_{\mathrm{c}}=T_{0}$). Dually, $I_{1} \circ S M \neq M W_{2}$, $I_{1} \circ S_{\mathrm{c}} \neq T_{1}$.

Proof. Since in the chains $S M \subset M_{\mathrm{c}} U_{2} \subset M U_{2}, S_{\mathrm{c}} \subset T_{\mathrm{c}} \subset T_{0}$ all subset inclusions are proper, we must have that $I_{0} \circ S M=S M \cup[\mathbf{0}] \neq M U_{2}, I_{0} \circ S_{\mathrm{c}}=S_{\mathrm{c}} \cup[\mathbf{0}] \neq T_{0}$.

Proposition 33. $S \circ T_{\mathrm{c}} \neq \Omega$ (but $S \vee T_{\mathrm{c}}=\Omega$).
Proof. Let $f \in S$ be n-ary, and let $g_{1}, \ldots, g_{n} \in T_{\mathrm{c}}$ be m-ary. Now $f(\mathbf{0}) \neq f(\mathbf{1})$ and for all $i=1, \ldots, n, g_{i}(\mathbf{0})=0$, $g_{i}(\mathbf{1})=1$, so we have that

$$
f\left(g_{1}(\mathbf{0}), \ldots, g_{n}(\mathbf{0})\right)=f(\mathbf{0}) \neq f(\mathbf{1})=f\left(g_{1}(\mathbf{1}), \ldots, g_{n}(\mathbf{1})\right) .
$$

Therefore, there are functions that are not in $S \circ T_{\mathrm{c}}$, e.g., all constant functions.
Proposition 34. $U_{2} \circ I^{*} \neq \Omega$ (but $U_{2} \vee I^{*}=\Omega$). Dually, $W_{2} \circ I^{*} \neq \Omega$.

Proof. We show that $\mathbf{1} \notin U_{2} \circ I^{*}$. Let $f \in U_{2}$ be m-ary and let $g_{1}, \ldots, g_{m} \in I^{*}$ be n-ary variables or negations of variables. Then

$$
\begin{aligned}
& f\left(g_{1}(\mathbf{0}), \ldots, g_{n}(\mathbf{0})\right)=f\left(a_{1}, \ldots, a_{n}\right), \\
& f\left(g_{1}(\mathbf{1}), \ldots, g_{n}(\mathbf{1})\right)=f\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)
\end{aligned}
$$

cannot both be equal to 1 , because $\left(a_{1}, \ldots, a_{n}\right) \wedge\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)=\mathbf{0}$. Therefore, $f\left(g_{1}, \ldots, g_{n}\right) \neq \mathbf{1}$, and so $U_{2} \circ I^{*} \neq \Omega$.

Proposition 35. $U_{2} \circ S \neq \Omega$ (but $U_{2} \vee S=\Omega$). Dually, $W_{2} \circ S \neq \Omega$.
Proof. The unary constant function $\mathbf{1}$ is not in $U_{2} \circ S$: there cannot exist unary $s_{1}, \ldots, s_{n} \in S$ and $f \in U_{2}$ such that $f\left(s_{1}, \ldots, s_{n}\right)=\mathbf{1}$, because the unary functions in S are exactly those in I^{*}, and for every function $f \in U_{2}$ it holds that if $f(\mathbf{a})=1$, then $f(\overline{\mathbf{a}})=0$. Hence, $U_{2} \circ S \neq \Omega$.

Proposition 36. $\Lambda \circ L \neq \Omega, \Lambda_{0} \circ L_{0} \neq T_{0}, \Lambda_{1} \circ L_{1} \neq T_{1}, \Lambda \circ S \neq \Omega$ (but $\Lambda \vee L=\Omega, \Lambda_{0} \vee L_{0}=T_{0}, \Lambda_{1} \vee L_{1}=T_{1}$, $\Lambda \vee S=\Omega$). Dually, $V \circ L \neq \Omega, V_{1} \circ L_{1} \neq T_{1}, V_{0} \circ L_{0} \neq T_{0}, V \circ S \neq \Omega$.

Proof. Consider the 4 -ary function $\phi=x_{1} x_{2}+x_{3} x_{4}$. We show that $\phi \notin \Lambda \circ L$. Assume, on the contrary, that there exists an n-ary function $f \in \Lambda$ and quaternary functions $g_{1}, \ldots, g_{n} \in L$ such that $\phi=f\left(g_{1}, \ldots, g_{n}\right)$. Since ϕ is not a constant function, f is not a constant function but rather a conjunction. We can assume, without loss of generality, that $f=x_{1} \wedge \cdots \wedge x_{n}$.

Therefore, if for some $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right), \phi(\mathbf{a})=1$, then for all $1 \leqslant i \leqslant n, g_{i}(\mathbf{a})=1$. Also, if $\phi(\mathbf{a})=0$, then for some $1 \leqslant i \leqslant n, g_{i}(\mathbf{a})=0$. It follows that there exists $i \in\{1, \ldots, n\}$ such that $g_{i}(1,1,0,0)=g_{i}(1,1,0,1)=g_{i}(1,1,1,0)=1$, $g_{i}(1,1,1,1)=0$. But we see that it is not possible that g_{i} be linear, a contradiction. Hence, $\Lambda \circ L \neq \Omega$.
We note also that $\phi \in T_{0}$ and $\bar{\phi} \in T_{1}$. A similar argument shows that $\phi \notin \Lambda_{0} \circ L_{0}$ and $\bar{\phi} \notin \Lambda_{1} \circ L_{1}$. Hence, $\Lambda_{0} \circ L_{0} \neq T_{0}$ and $\Lambda_{1} \circ L_{1} \neq T_{1}$.

A similar argument shows also that $\phi \notin \Lambda \circ S$. Assume, on the contrary, that there exists an n-ary function $f \in \Lambda$ and quaternary functions $g_{1}, \ldots, g_{n} \in S$ such that $\phi=f\left(g_{1}, \ldots, g_{n}\right)$. We conclude that there exists a self-dual function g_{i} such that $g_{i}(0,0,0,0)=g_{i}(1,1,1,1)=0$, a contradiction. Hence, $\Lambda \circ S \neq \Omega$.

Proposition 37. $U_{3} \circ L_{0} \neq T_{0}$ (but $U_{3} \vee L_{0}=T_{0}$). Dually, $W_{3} \circ L_{1} \neq T_{1}$.
Proof. Consider the binary function $\phi=x_{1} \vee x_{2}$. We see that $\phi \in T_{0}$ but $\phi \notin U_{3}, L_{0}$. Suppose, on the contrary, that $U_{3} \circ L_{0}=T_{0}$. Then $\phi=f\left(g_{1}, \ldots, g_{m}\right)$, where $f \in U_{3}$ is m-ary for some m and $g_{1}, \ldots, g_{m} \in L_{0}$ are binary. The binary functions in L_{0} are $\mathbf{0}, x_{1}, x_{2}, x_{1}+x_{2}$. With some identification of variables, permutation of variables, and addition of inessential variables, we can assume that f is 4 -ary and $g_{1}=\mathbf{0}, g_{2}=x_{1}, g_{3}=x_{2}, g_{4}=x_{1}+x_{2}$. Then we have that

$$
\begin{aligned}
& 0=\phi(0,0)=f\left(g_{1}, g_{2}, g_{3}, g_{4}\right)(0,0)=f(0,0,0,0), \\
& 1=\phi(0,1)=f\left(g_{1}, g_{2}, g_{3}, g_{4}\right)(0,1)=f(0,0,1,1), \\
& 1=\phi(1,0)=f\left(g_{1}, g_{2}, g_{3}, g_{4}\right)(1,0)=f(0,1,0,1), \\
& 1=\phi(1,1)=f\left(g_{1}, g_{2}, g_{3}, g_{4}\right)(1,1)=f(0,1,1,0) .
\end{aligned}
$$

But now $(0,0,1,1) \wedge(0,1,0,1) \wedge(0,1,1,0)=(0,0,0,0)$, a contradiction with the fact that $f \in U_{3}$ and so the set $\{(0,0,1,1),(0,1,0,1),(0,1,1,0)\}$ should be 1 -separating.

Proposition 38. $T_{\mathrm{c}} U_{2} \circ S_{\mathrm{c}} \neq T_{\mathrm{c}}$ (but $T_{\mathrm{c}} U_{2} \vee S_{\mathrm{c}}=T_{\mathrm{c}}$). Dually, $T_{\mathrm{c}} W_{2} \circ S_{\mathrm{c}} \neq T_{\mathrm{c}}$.
Proof. Consider the binary function $\phi=x_{1} \vee x_{2}$. We see that $\phi \in T_{\mathrm{c}}$ but $\phi \notin T_{\mathrm{c}} U_{2}, S_{\mathrm{c}}$. The binary functions in S_{c} are just variables, but these are also in $T_{\mathrm{c}} U_{2}$, so a composition of any function in $T_{\mathrm{c}} U_{2}$ with binary functions in S_{c} belongs to $T_{\mathrm{c}} U_{2}$. Therefore, we conclude that $\phi \notin T_{\mathrm{c}} U_{2} \circ S_{\mathrm{c}}$. Thus $T_{\mathrm{c}} U_{2} \circ S_{\mathrm{c}} \neq T_{\mathrm{c}}$.

Proposition 39. If \mathscr{C} is a proper subclone of T_{0} or T_{1}, then $\Omega(1) \circ \mathscr{C} \neq \Omega$.

Proof. Since for every function f either $f \in T_{0}$ or $\bar{f} \in T_{0},\left\{T_{0}, \overline{T_{0}}\right\}$ is a partition of Ω (we denote $\overline{\mathscr{C}}=\{f: \bar{f} \in \mathscr{C}\}$), and so for any proper subset \mathscr{C} of T_{0}, we have that $\mathscr{C} \cup \overline{\mathscr{C}} \neq \Omega$. If \mathscr{C} is in addition a clone, then there are several non-constant functions that are in T_{0} but not in \mathscr{C}, so it is easily seen that $\Omega(1) \circ \mathscr{C}=\mathscr{C} \cup \overline{\mathscr{C}} \cup[\mathbf{0}, \mathbf{1}] \neq \Omega$.

Similarly, we can prove that if \mathscr{C} is a proper subclone of T_{1}, then $\Omega(1) \circ \mathscr{C} \neq \Omega$.
Proposition 39 implies in particular that $\Omega(1) \circ T_{\mathrm{c}}, \Omega(1) \circ M_{0}, \Omega(1) \circ M_{1}, \Omega(1) \circ U_{2}, \Omega(1) \circ W_{2}$ are not clones.
Proposition 40. If \mathscr{C} is a proper subclone of M and $\mathscr{C} \neq M_{0}, M_{1}, M_{\mathrm{C}}$, then $I \circ \mathscr{C} \neq M$. If \mathscr{C} is a proper subclone of M_{0} and $\mathscr{C} \neq M_{\mathrm{c}}$, then $I_{0} \circ \mathscr{C} \neq M_{0}$.

Proof. The equality $I \circ \mathscr{C}=\mathscr{C} \cup[\mathbf{0}, \mathbf{1}]=M$ holds only if $\mathscr{C} \in\left\{M, M_{0}, M_{1}, M_{\mathrm{c}}\right\}$. The equality $I_{0} \circ \mathscr{C}=\mathscr{C} \cup[\mathbf{0}]=M_{0}$ holds only if $\mathscr{C} \in\left\{M_{0}, M_{\mathrm{c}}\right\}$.

Proposition 40 implies in particular that $I \circ M U_{2}, I_{1} \circ M_{\mathrm{c}} U_{2}$ are not clones. Dually, $I \circ M W_{2}, I_{0} \circ M_{\mathrm{c}} W_{2}$ are not clones.

Proposition 41. $\Lambda_{1} \circ M_{\mathrm{c}} U_{2} \neq M_{1}, \Lambda \circ M U_{2} \neq M, M_{0} \circ T_{\mathrm{c}} \neq T_{0}$. For $n=2, \ldots, \infty, M U_{n} \circ T_{\mathrm{c}} U_{n} \neq U_{n}$. (But $\left.\Lambda_{1} \vee M_{\mathrm{c}} U_{2}=M_{1}, \Lambda \vee M U_{2}=M, M_{0} \vee T_{\mathrm{c}}=T_{0}, M U_{n} \vee T_{\mathrm{c}} U_{n}=U_{n}.\right) D$ ually, $V_{0} \circ M_{\mathrm{c}} W_{2} \neq M_{0}, V \circ M W_{2} \neq M$, $M_{1} \circ T_{\mathrm{c}} \neq T_{1}$. For $n=2, \ldots, \infty, M W_{n} \circ T_{\mathrm{c}} W_{n} \neq W_{n}$.

Proof. By Proposition 12, we have that

$$
\begin{aligned}
& \Lambda_{1} \circ M_{\mathrm{c}} U_{2}=I_{1} \circ \Lambda_{\mathrm{c}} \circ M_{\mathrm{c}} U_{2}=I_{1} \circ M_{\mathrm{c}} U_{2} \neq M_{1}, \\
& \Lambda \circ M U_{2}=I \circ \Lambda_{\mathrm{c}} \circ M U_{2}=I \circ M U_{2} \neq M, \\
& M_{0} \circ T_{\mathrm{c}}=I_{0} \circ M_{\mathrm{c}} \circ T_{\mathrm{c}}=I_{0} \circ T_{\mathrm{c}} \neq T_{0}, \\
& M U_{n} \circ T_{\mathrm{c}} U_{n}=I_{0} \circ M_{\mathrm{c}} U_{n} \circ T_{\mathrm{c}} U_{n}=I_{0} \circ T_{\mathrm{c}} U_{n} \neq U_{n} .
\end{aligned}
$$

The inequalities follow from Propositions 29 and 40.
Proposition 42. $L_{0} \circ S_{\mathrm{c}} \neq T_{0}, U_{2} \circ S_{\mathrm{c}} \neq T_{0}, \Lambda_{\mathrm{c}} \circ S_{\mathrm{c}} \neq T_{\mathrm{c}}, T_{\mathrm{c}} U_{3} \circ L_{\mathrm{c}} \neq T_{\mathrm{c}}\left(\right.$ but $L_{0} \vee S_{\mathrm{c}}=T_{0}, U_{2} \vee S_{\mathrm{c}}=T_{0}$, $\Lambda_{\mathrm{c}} \vee S_{\mathrm{c}}=T_{\mathrm{c}}, T_{\mathrm{c}} U_{3} \vee L_{\mathrm{c}}=T_{\mathrm{c}}$). Dually, $L_{1} \circ S_{\mathrm{c}} \neq T_{1}, W_{2} \circ S_{\mathrm{c}} \neq T_{1}, V_{\mathrm{c}} \circ S_{\mathrm{c}} \neq T_{\mathrm{c}}, T_{\mathrm{c}} W_{3} \circ L_{\mathrm{c}} \neq T_{\mathrm{c}}$.

Proof. Suppose, on the contrary, that $L_{0} \circ S_{\mathrm{c}}=T_{0}, U_{2} \circ S_{\mathrm{c}}=T_{0}, \Lambda_{\mathrm{c}} \circ S_{\mathrm{c}}=T_{\mathrm{c}}$, or $T_{\mathrm{c}} U_{3} \circ L_{\mathrm{c}}=T_{\mathrm{c}}$. It follows from Propositions 1, 2, 9-11, 16, 31, 35-37 that

$$
\begin{aligned}
& \Omega \neq L \circ S_{\mathrm{c}}=I^{*} \circ L_{0} \circ S_{\mathrm{c}}=I^{*} \circ T_{0}=\Omega, \\
& \Omega \neq U_{2} \circ S=U_{2} \circ S_{\mathrm{c}} \circ I^{*}=T_{0} \circ I^{*}=\Omega, \\
& \Omega \neq \Lambda_{\mathrm{c}} \circ S=\Lambda_{\mathrm{c}} \circ S_{\mathrm{c}} \circ I^{*}=T_{\mathrm{c}} \circ I^{*}=\Omega, \\
& T_{0} \neq T_{\mathrm{c}} U_{3} \circ L_{0}=T_{\mathrm{c}} U_{3} \circ L_{\mathrm{c}} \circ I_{0}=T_{\mathrm{c}} \circ I_{0}=T_{0} .
\end{aligned}
$$

We have reached a contradiction in each case.

3.3. Clone composition theorems

Based on the previous two sections, one can construct a clone composition table which indicates for all clones \mathscr{C}_{1}, \mathscr{C}_{2} whether the composition $\mathscr{C}_{1} \mathscr{C}_{2}$ is a clone or not, see Table 1 . The correctness of the table can be verified by drawing obvious consequences of each of the Propositions using the general rules of Section 2.

Theorem 2 summarizes the composition table. For each clone \mathscr{C} that is the composition of two proper subclones, Theorem 3 then gives the possible decompositions $\mathscr{C}=\mathscr{C}_{1} \mathscr{C}_{2}$. The correctness of Theorems 2 and 3 can be verified making use of the clone composition table and the Post Lattice, and cross-checking. (Use of a coloured pencil and a photocopier recommended.)

Let $\mathscr{C}_{1}, \ldots, \mathscr{C}_{n}, \mathscr{D}_{1}, \ldots, \mathscr{D}_{m}$ be Post classes. As usual, $\left[\mathscr{C}_{i}, \mathscr{D}_{j}\right]$ denotes the set of Post classes \mathscr{C} with $\mathscr{C}_{i} \subseteq \mathscr{C} \subseteq \mathscr{D}_{j}$. The union $\bigcup_{i, j}\left[\mathscr{C}_{i}, \mathscr{D}_{j}\right]$ is denoted by $\left[\left\{\mathscr{C}_{1}, \ldots, \mathscr{C}_{n}\right\},\left\{\mathscr{D}_{1}, \ldots, \mathscr{D}_{m}\right\}\right]$, where the set braces are omitted when $n=1$ or $m=1$.

Theorem 2. Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be Post classes. If for some $i \in\{1, \ldots, 10\}, \mathscr{C}_{1} \in A_{i}$ and $\mathscr{C}_{2} \in B_{i}$ or $\mathscr{C}_{1}^{\mathrm{d}} \in A_{i}$ and $\mathscr{C}_{2}^{\mathrm{d}} \in B_{i}$, where the sets A_{i}, B_{i} are given below, then $\mathscr{C}_{1} \mathscr{C}_{2}$ and $\mathscr{C}_{1}^{\mathrm{d}} \mathscr{C}_{2}^{\mathrm{d}}$ are not clones. Otherwise, $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}_{1} \vee \mathscr{C}_{2}$ and $\mathscr{C}_{1}^{\mathrm{d}} \mathscr{C}_{2}^{\mathrm{d}}=\mathscr{C}_{1}^{\mathrm{d}} \vee \mathscr{C}_{2}^{\mathrm{d}}$ are clones.

- $A_{1}=\left[\left\{I_{0}, \Lambda_{\mathrm{c}}\right\},\left\{\Omega(1), \Lambda, U_{2}\right\}\right], B_{1}=\left[L_{\mathrm{c}}, S\right]$;
- $A_{2}=\left[I^{*}, \Omega(1)\right], B_{2}=\left[\Lambda_{\mathrm{c}},\left\{U_{2}, M, T_{\mathrm{c}}\right\}\right] ;$
- $A_{3}=[L S, S], B_{3}=\left[\Lambda_{\mathrm{c}}, T_{\mathrm{c}}\right]$;
- $A_{4}=\left[\Lambda_{\mathrm{c}}, \Lambda\right], B_{4}=\left[\left\{I^{*}, L_{\mathrm{c}}\right\},\{L, S\}\right]$;
- $A_{5}=\left[I_{0},\{L, V\}\right], B_{5}=[S M, S]$;
- $A_{6}=\left[I_{0}, M\right], B_{6}=\left[\left\{L_{\mathrm{c}}, T_{\mathrm{c}} U_{\infty}, T_{\mathrm{c}} W_{\infty}\right\}, T_{1}\right]$;
- $A_{7}=\left[I_{1}, \Lambda\right], B_{7}=\left[M_{\mathrm{c}} U_{\infty}, M U_{2}\right]$;
- $A_{8}=\left[M_{\mathrm{c}} U_{\infty}, U_{3}\right], B_{8}=\left\{L_{0}\right\}$;
- $A_{9}=\left[\left\{I_{0}, \Lambda_{\mathrm{c}}\right\}, U_{2}\right], B_{9}=\left\{I^{*}\right\}$;
- $A_{10}=\left\{I^{*}\right\}, B_{10}=\{S M\}$.

For a given clone \mathscr{C}, there are generally several factorizations of the form $\mathscr{C}=\mathscr{C}_{1} \mathscr{C}_{2}$, where \mathscr{C}_{1} and \mathscr{C}_{2} are also clones. We say that $\mathscr{C}_{1} \mathscr{C}_{2}$ is a minimal factorization of \mathscr{C} into two clones if $\mathscr{C}_{1} \mathscr{C}_{2}=\mathscr{C}$ and for all subclones $\mathscr{C}_{1}^{\prime} \subseteq \mathscr{C}_{1}$ and $\mathscr{C}_{2}^{\prime} \subseteq \mathscr{C}_{2}$, whenever at least one of the subset inclusions is proper, we have that $\mathscr{C}_{1}^{\prime} \mathscr{C}_{2}^{\prime} \neq \mathscr{C}$.

It is customary to call the clones covering I_{c} minimal. The minimal clones are $I_{0}, I_{1}, I^{*}, \Lambda_{\mathrm{c}}, V_{\mathrm{c}}, L_{\mathrm{c}}, S M$. We say that a clone is prime if it is not a composition of two proper subclones. The prime clones are the seven minimal ones and $T_{\mathrm{c}} U_{\infty}, T_{\mathrm{c}} W_{\infty}, M_{\mathrm{c}} U_{n}, M_{\mathrm{c}} W_{n}$ for $n=3, \ldots, \infty$.

Theorem 3. The following list of minimal factorizations of each non-prime clone into two clones is complete up to duality. That is, whenever we have listed a minimal factorization $\mathscr{C}=\mathscr{C}_{1} \mathscr{C}_{2}$, we also have the minimal factorization $\mathscr{C}^{\mathrm{d}}=\mathscr{C}_{1}^{\mathrm{d}} \mathscr{C}_{2}^{\mathrm{d}}$. Furthermore, for each clone \mathscr{C} and subclones \mathscr{D}_{1} and \mathscr{D}_{2} of $\mathscr{C}, \mathscr{C}=\mathscr{D}_{1} \mathscr{D}_{2}$ if and only if there is a minimal factorization $\mathscr{C}=\mathscr{C}_{1} \mathscr{C}_{2}$ such that $\mathscr{C}_{1} \subseteq \mathscr{D}_{1}$ and $\mathscr{C}_{2} \subseteq \mathscr{D}_{2}$.

- $\Omega=M_{\mathrm{c}} \circ I^{*}=S \circ I_{0}=S_{\mathrm{c}} \circ I=S M \circ \Omega(1)=L \circ \Lambda_{\mathrm{c}}=L_{0} \circ \Lambda_{1}=L_{1} \circ \Lambda_{0}=L S \circ \Lambda_{0}=L S \circ \Lambda_{1}=L_{\mathrm{c}} \circ \Lambda=$ $U_{\infty} \circ I_{1}=T_{\mathrm{c}} U_{\infty} \circ I=M_{\mathrm{c}} U_{\infty} \circ \Omega(1)=I^{*} \circ T_{0} ;$
- $T_{0}=S_{\mathrm{c}} \circ I_{0}=S M \circ L_{0}=L_{0} \circ \Lambda_{\mathrm{c}}=L_{0} \circ V_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{0}=L_{\mathrm{c}} \circ V_{0}=V_{\mathrm{c}} \circ U_{\infty}=U_{\infty} \circ V_{\mathrm{c}}=T_{\mathrm{c}} U_{\infty} \circ V_{0}=T_{\mathrm{c}} W_{\infty} \circ I_{0}=M_{\mathrm{c}} W_{\infty} \circ L_{0}$;
- $T_{\mathrm{c}}=M_{\mathrm{c}} \circ L_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=V_{\mathrm{c}} \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}} U_{\infty} \circ V_{\mathrm{c}}$;
- $M=M_{\mathrm{c}} \circ I=S M \circ I=\Lambda \circ V_{\mathrm{c}}=\Lambda_{0} \circ V_{1}=\Lambda_{1} \circ V_{0}=\Lambda_{\mathrm{c}} \circ V=M U_{\infty} \circ I_{1}=M_{\mathrm{c}} U_{\infty} \circ I=I \circ M_{\mathrm{c}}=I_{0} \circ M_{1}$;
- $M_{0}=S M \circ V_{0}=\Lambda_{0} \circ V_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ V_{0}=V_{0} \circ \Lambda_{\mathrm{c}}=V_{\mathrm{c}} \circ \Lambda_{0}=M_{\mathrm{c}} W_{\infty} \circ I_{0}=I_{0} \circ M_{\mathrm{c}}$;
- $M_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}$;
- $S=S M \circ I^{*}=L S \circ S M=I^{*} \circ S_{\mathrm{c}}$;
- $S_{\mathrm{c}}=S M \circ L_{\mathrm{c}}=L_{\mathrm{c}} \circ S M$;
- $L=L_{0} \circ I_{1}=L_{0} \circ I^{*}=L S \circ I_{0}=L_{\mathrm{c}} \circ I=I^{*} \circ L_{0}$;
- $L_{0}=L_{\mathrm{c}} \circ I_{0}$;
- $L S=L_{\mathrm{c}} \circ I^{*}=I^{*} \circ L_{\mathrm{c}}$;
- $U_{2}=S M \circ U_{\infty}=U_{\infty} \circ S M$;
- $U_{m}=U_{\infty} \circ M_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{m} \circ I_{0}=T_{\mathrm{c}} U_{\infty} \circ M U_{m}=M_{\mathrm{c}} U_{m} \circ U_{\infty}$;
- $M U_{2}=S M \circ I_{0}=\Lambda_{0} \circ S M$;
- $M U_{m}=I_{0} \circ M_{\mathrm{c}} U_{m}=M_{\mathrm{c}} U_{m} \circ I_{0}$;
- $T_{\mathrm{c}} U_{2}=S M \circ T_{\mathrm{c}} U_{\infty}=T_{\mathrm{c}} U_{\infty} \circ S M$;
- $T_{\mathrm{c}} U_{m}=T_{\mathrm{c}} U_{\infty} \circ M_{\mathrm{c}} U_{m}=M_{\mathrm{c}} U_{m} \circ T_{\mathrm{c}} U_{\infty}$;
- $M_{\mathrm{c}} U_{2}=S M \circ \Lambda_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ S M$;
- $\Lambda=\Lambda_{0} \circ I_{1}=\Lambda_{1} \circ I_{0}=\Lambda_{\mathrm{c}} \circ I=I \circ \Lambda_{\mathrm{c}}=I_{0} \circ \Lambda_{1}=I_{1} \circ \Lambda_{0}$;
- $\Lambda_{0}=\Lambda_{\mathrm{c}} \circ I_{0}=I_{0} \circ \Lambda_{\mathrm{c}} ;$
- $\Lambda_{1}=\Lambda_{\mathrm{c}} \circ I_{1}=I_{1} \circ \Lambda_{\mathrm{c}}$;
- $\Omega(1)=I \circ I^{*}=I^{*} \circ I_{0}$;
- $I=I_{0} \circ I_{1}$.

4. Normal forms

It follows from Theorem 3 that every clone can be represented as a product of prime clones. In fact, the clone Ω can be represented as a product of minimal clones. (By a product, we mean a composition of $0,1,2,3$, or more clones. We adopt the convention that an empty composition of clones equals I_{c}.)

Note that each of the seven minimal clones is generated by a single function. We refer to the minimum arity of such a generating function as the arity of the clone. For each of the minimal clones, there is a unique generating function of minimum arity. The minimal clones, their generating functions of minimum arity, and their arities are the following: $S M, \mu, 3 ; L_{\mathrm{c}}, \tau, 3 ; \Lambda_{\mathrm{c}}, x_{1} \wedge x_{2}, 2 ; V_{\mathrm{c}}, x_{1} \vee x_{2}, 2 ; I^{*}, \overline{x_{1}}, 1 ; I_{0}, \mathbf{0}, 1 ; I_{1}, \mathbf{1}, 1$.

In order to develop the concept of well-behaved factorization, we impose two simple conditions on the factorization $\mathscr{C}=\mathscr{C}_{1} \cdots \mathscr{C}_{n}$ of a clone \mathscr{C} into minimal clones.

Condition 1. The factors occur in descending order of arity with no repetitions of factors.
Condition 2. For any factorization $\mathscr{C}=\mathscr{D}_{1} \cdots \mathscr{D}_{m}$ of \mathscr{C} into minimal clones satisfying Condition 1 , there are no integers i, j, k, l with $0 \leqslant i \leqslant j \leqslant n, 0 \leqslant k \leqslant l \leqslant m$, such that

$$
\begin{aligned}
& \mathscr{D}_{1} \cdots \mathscr{D}_{k} \subseteq \mathscr{C}_{1} \cdots \mathscr{C}_{i}, \\
& \mathscr{D}_{k+1} \cdots \mathscr{D}_{l} \subset \mathscr{C}_{i+1} \cdots \mathscr{C}_{j}, \\
& \mathscr{D}_{l+1} \cdots \mathscr{D}_{m} \subseteq \mathscr{C}_{j+1} \cdots \mathscr{C}_{n} .
\end{aligned}
$$

Note that Condition 2 implies in particular that no factor can be dropped off. We say that a factorization satisfying Condition 1 is redundant, if it does not satisfy Condition 2.

A descending irredundant factorization of the clone \mathscr{C} is a factorization of \mathscr{C} into minimal clones that satisfies Conditions 1 and 2.

Theorem 4. The descending irredundant factorizations of Ω are exactly the following:

$$
\begin{aligned}
& S M \circ I^{*} \circ I_{0}, \quad S M \circ I^{*} \circ I_{1}, \quad L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1}, \quad L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1} \circ I_{0}, \\
& L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{0} \circ I_{1}, \quad L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{1} \circ I_{0}, \quad \Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}, \quad V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*} .
\end{aligned}
$$

Proof. Consider a descending irredundant factorization $\Omega=\mathscr{C}_{1} \cdots \mathscr{C}_{n}$. It is obvious that $n \geqslant 3$, because Ω is not a minimal clone nor a product of two minimal clones.
\mathscr{C}_{1} cannot be I^{*}, I_{0} or I_{1}; otherwise we could only obtain a subclass of $\Omega(1)$.
Consider the case that $\mathscr{C}_{1}=\Lambda_{\mathrm{c}}$. It is not possible that $\mathscr{C}_{2}=I^{*}, I_{0}, I_{1}$, because then we could only obtain a subclass of $\Lambda_{\mathrm{c}} \circ \Omega(1) \neq \Omega$. If $\mathscr{C}_{2}=V_{\mathrm{c}}$ (note that $\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}=M_{\mathrm{c}}$), then we could have the factorization $\Omega=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}$; but if \mathscr{C}_{3} were I_{0} or I_{1}, then we would still need the factor I^{*} in order to obtain Ω, and then the factorization would become redundant.

By duality, if $\mathscr{C}_{1}=V_{\mathrm{c}}$, then the only possible factorization is $\Omega=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}$.
Consider the case that $\mathscr{C}_{1}=L_{\mathrm{c}}$. It is not possible that $\mathscr{C}_{2}=I^{*}, I_{0}, I_{1}$; otherwise we could only obtain a subclass of $L=L_{\mathrm{c}} \circ \Omega(1)$. If $\mathscr{C}_{2}=\Lambda_{\mathrm{c}}$ (note that $L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=T_{\mathrm{c}}$), then \mathscr{C}_{3} cannot be V_{c} because then the factorization becomes redundant ($L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=T_{\mathrm{c}}$). If $\mathscr{C}_{3}=I^{*}$, then we would have the factorization $\Omega=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}$, which satisfies Condition 1; but it does not satisfy Condition 2, because we also have that $\Omega=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}$ and $V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=M_{\mathrm{c}} \subset T_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}$. If $\mathscr{C}_{3}=I_{0}, I_{1}$, then we have the factorizations $\Omega=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1} \circ I_{0} ;$ any I^{*} occurring after \mathscr{C}_{3} would give rise to a redundant factorization. By duality, the only possible factorizations with $\mathscr{C}_{2}=V_{\mathrm{c}}$ are $\Omega=L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{0} \circ I_{1}=L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{1} \circ I_{0}$. We will discuss later the case that $\mathscr{C}_{1}=L_{\mathrm{c}}$ and $\mathscr{C}_{2}=S M$.

Consider the case that $\mathscr{C}_{1}=S M$. If $\mathscr{C}_{2}=I^{*}, I_{0}, I_{1}$, then we could have the factorizations $\Omega=S M \circ I^{*} \circ I_{0}=S M \circ$ $I^{*} \circ I_{0}=S M \circ I_{0} \circ I_{1} \circ I^{*}=S M \circ I_{1} \circ I_{0} \circ I^{*}$. But the last two do not satisfy Condition 2, because we also have that $\Omega=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}$ and $\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}=M_{\mathrm{c}} \subset M=S M \circ I_{0} \circ I_{1}=S M \circ I_{1} \circ I_{0}$.

It is not possible that $\mathscr{C}_{1}=S M$ and $\mathscr{C}_{2}=\Lambda_{\mathrm{c}}$ (note that $S M \circ \Lambda_{\mathrm{c}}=M_{\mathrm{c}} U_{2}$). If $\mathscr{C}_{3}=V_{\mathrm{c}}$, then Condition 2 is not satisfied, because $S M \circ \Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}=M_{\mathrm{c}}=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}}$. If $\mathscr{C}_{3}=I^{*}, I_{0}, I_{1}$, then we could obtain the factorizations:

$$
\Omega=S M \circ \Lambda_{\mathrm{c}} \circ I^{*} \circ I_{0}=S M \circ \Lambda_{\mathrm{c}} \circ I^{*} \circ I_{1}=S M \circ \Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1} \circ I^{*}=S M \circ \Lambda_{\mathrm{c}} \circ I_{1} \circ I_{0} \circ I^{*},
$$

but here we also have redundancy because of the factorizations mentioned in the previous paragraph. By duality, it is not possible that $\mathscr{C}_{1}=S M$ and $\mathscr{C}_{2}=V_{c}$.

Consider then the case that $\mathscr{C}_{1}=S M, \mathscr{C}_{2}=L_{\mathrm{c}}$, or that $\mathscr{C}_{1}=L_{\mathrm{c}}, \mathscr{C}_{2}=S M$ (note that $S M \circ L_{\mathrm{c}}=L_{\mathrm{c}} \circ S M=S_{\mathrm{c}}$). Because $S_{\mathrm{c}} \circ I=\Omega$ is a minimal factorization of Ω into two factors, we could have the factorizations:

$$
\Omega=S M \circ L_{\mathrm{c}} \circ I_{0} \circ I_{1}=S M \circ L_{\mathrm{c}} \circ I_{1} \circ I_{0}=L_{\mathrm{c}} \circ S M \circ I_{0} \circ I_{1}=L_{\mathrm{c}} \circ S M \circ I_{1} \circ I_{0} .
$$

But these do not satisfy Condition 2, because we also have that $\Omega=S M \circ I^{*} \circ I_{0}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1}$, and $I^{*} \circ I_{0}=\Omega(1) \subset$ $L=L_{\mathrm{c}} \circ I_{0} \circ I_{1}=L_{\mathrm{c}} \circ I_{1} \circ I_{0}$ and $\Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1}=\Lambda \subset M=S M \circ I_{0} \circ I_{1}=S M \circ I_{1} \circ I_{0}$. If $\mathscr{C}_{3}=\Lambda_{\mathrm{c}}$ or $\mathscr{C}_{3}=V_{\mathrm{c}}$, then Condition 2 is not satisfied, because

$$
S M \circ L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=S M \circ L_{\mathrm{c}} \circ V_{\mathrm{c}}=L_{\mathrm{c}} \circ S M \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ S M \circ V_{\mathrm{c}}=T_{\mathrm{c}}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}}=L_{\mathrm{c}} \circ V_{\mathrm{c}} .
$$

If $\mathscr{C}_{3}=I^{*}$, then Condition 2 is not satisfied, because

$$
S M \circ L_{\mathrm{c}} \circ I^{*}=L_{\mathrm{c}} \circ S M \circ I^{*}=S=S M \circ I^{*} .
$$

Thus, we only have the eight factorizations:

$$
\begin{aligned}
\Omega & =\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{0} \circ I_{1} \circ L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I_{1} \circ I_{0} \\
& =L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{0} \circ I_{1}=L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I_{1} \circ I_{0}=S M \circ I^{*} \circ I_{0}=S M \circ I^{*} \circ I_{1}
\end{aligned}
$$

that clearly satisfies Condition 1. It is straightforward to verify that these do not violate Condition 2.
Replacing the sequence of unary clones by their composition in the eight descending irredundant factorizations of Theorem 4 , we get the following five factorizations of Ω :

$$
\begin{align*}
& \Omega=V_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I^{*}, \tag{1}\\
& \Omega=\Lambda_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I^{*}, \tag{2}\\
& \Omega=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I, \tag{3}\\
& \Omega=L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I, \tag{4}\\
& \Omega=S M \circ \Omega(1) . \tag{5}
\end{align*}
$$

Factorizations (1) and (2) express the representability of every Boolean function in DNF and CNF, respectively. Factorization (3) expresses the existence of the Zhegalkin polynomial representation for every function. We shall see that the other two factorizations express representability of functions in other normal forms.
The factorization $\Omega=L_{\mathrm{c}} \circ V_{\mathrm{c}} \circ I$ relates to $\Omega=L_{\mathrm{c}} \circ \Lambda_{\mathrm{c}} \circ I$ in the same way as CNF relates to DNF. Essentially the same as Factorization (4) is expressed by $\Omega=L \circ V_{\mathrm{c}}=L_{0} \circ V_{1}$. These latter factorizations express the fact that every function can be represented as a sum of terms, where each term is a disjunction or $\mathbf{1}$. It is not difficult to prove that this representation is unique up to permutation and repetition of terms and permutation and repetition of variables within terms.

The factorization $\Omega=S M \circ \Omega(1)$ expresses the fact that every function can be expressed by repeated applications of the ternary majority function μ to variables, negated variables, and constants. (For early research on the role of ternary majority (median) and a related ternary rejection in Boolean algebra, see [2,8,9,17,20].)

To make a formal comparison between the various expressions of functions corresponding to these factorizations, we need the following definitions.

Let $\Omega=\mathscr{C}_{1} \cdots \mathscr{C}_{k-1} \mathscr{C}_{k}$ be a factorization into clones. Let \mathscr{C}_{k} contain only variables, negated variables, or constant functions. Let $\mathscr{C}_{1}, \ldots, \mathscr{C}_{k-1}$ be generated by single functions $\gamma_{1}, \ldots, \gamma_{k-1}$, where the γ_{i} 's are pairwise distinct and none of them is in \mathscr{C}_{k}. The pair of sequences $\mathscr{C}_{1}, \ldots, \mathscr{C}_{k}$ and $\gamma_{1}, \ldots, \gamma_{k-1}$ is called a normal form system. In this case, $\mathscr{C}_{1}^{\mathrm{d}}, \ldots, \mathscr{C}_{k}^{\mathrm{d}}$ and $\gamma_{1}^{\mathrm{d}}, \ldots, \gamma_{k-1}^{\mathrm{d}}$ also constitute a normal form system called the dual system and the factorization
$\Omega=\mathscr{C}_{1}^{\mathrm{d}} \ldots \mathscr{C}_{k}^{\mathrm{d}}$ is called the dual factorization. Note that (1) and (3) are dual to (2) and (4), respectively, and that (5) is self-dual. An n-ary formula corresponding to the system $\mathscr{C}_{1}, \ldots, \mathscr{C}_{k}$ and $\gamma_{1}, \ldots, \gamma_{k-1}$ is defined as a string over $\mathscr{C}_{k}^{(n)} \cup\left\{\gamma_{1}, \ldots, \gamma_{k-1}\right\}$, where $\mathscr{C}_{k}^{(n)}$ denotes the set of the n-ary functions of \mathscr{C}_{k}, by the following recursion:
(1) The elements in $\mathscr{C}_{k}^{(n)}$ are n-ary formulas.
(2) If γ_{i} is m-ary and a_{1}, \ldots, a_{m} are n-ary formulas and none of the a_{i} 's starts with γ_{j} with $i>j$, then $\gamma_{i} a_{1} \cdots a_{m}$ is an n-ary formula.
By a formula corresponding to the system we mean an n-ary formula for some n, and the length of a formula f as a string of symbols is denoted by $|f|$. If the generators $\gamma_{1}, \ldots, \gamma_{k-1}$ are clear from the context, then we only refer to the factorization $\mathscr{C}_{1} \cdots \mathscr{C}_{k}$ and to formulas corresponding to $\mathscr{C}_{1} \cdots \mathscr{C}_{k}$.

Clearly every n-ary formula represents an n-ary function, and every n-ary function is represented by an n-ary formula.
For illustration, we consider representations of the n-ary function $\overline{x_{i}}$ by formulas of different lengths corresponding to various factorizations $\Omega=\mathscr{C}_{1} \cdots \mathscr{C}_{k}$. If \mathscr{C}_{k} contains negated variables, as in Factorizations (1), (2), (5), then the function $\overline{x_{i}}$ can be represented by the formula $\overline{x_{i}}$ of length 1 . On the other hand, if one of the clones $\mathscr{C}_{1}, \ldots, \mathscr{C}_{k-1}$ is generated by a negated variable, i.e., it is the clone I^{*}, then the function $\overline{x_{i}}$ can be represented by the formula $\neg x_{i}$ of length 2 , where \neg denotes the unary function $0 \mapsto 1,1 \mapsto 0$. Finally, $\overline{x_{i}}$ can be represented by the formula $\tau \mathbf{0 1} x_{i}$ of length 4 corresponding to Factorizations (3) and (4) (τ generates L_{c} and $\left.\mathbf{0}, \mathbf{1}, x_{i} \in I\right)$.

Factorizations (1)-(5) together with the generators \vee, \wedge, τ, μ for the clones $V_{\mathrm{c}}, \Lambda_{\mathrm{c}}, L_{\mathrm{c}}, S M$ will be called disjunctive, conjunctive, polynomial, dual polynomial, and median normal form systems, denoted $\mathbf{D}, \mathbf{C}, \mathbf{P}, \mathbf{P}^{\mathrm{d}}, \mathbf{M}$, respectively, and the corresponding formulas will be called disjunctive, conjunctive, polynomial, dual polynomial, and median formulas. The term median is motivated by the fact that (\mathbb{B}, μ) is the only possible median algebra on the two-element set \mathbb{B}, see, e.g., $[1,10,19]$.

Representation of functions by disjunctive and conjunctive formulas are just variants of the well-known DNF and CNF representations. Polynomial formulas are just variants of Zhegalkin polynomial representations. Representation by dual polynomial formulas relates to polynomial formulas just as CNF relates to DNF. In the remainder of this paper, we will compare the efficiency of these five formula representations, and we will show that median formulas are in some sense more efficient than the others.

For a normal form system A, denote by F_{A} the set of formulas corresponding to A. For a function $f \in \Omega$, we define the A-complexity of f, denoted $C_{A}(f)$, as

$$
\min \left\{|\Phi|: \Phi \in F_{A}, \Phi \text { represents } f\right\}
$$

For normal form systems A and B, we say that A is polynomially as efficient as B, denoted $A \preccurlyeq B$, if there is a polynomial p with integer coefficients such that $C_{A}(f) \leqslant p\left(C_{B}(f)\right)$ for all $f \in \Omega$. Indeed, the relation "polynomially as efficient as" is a preorder on any set of normal form systems. In fact (Theorem 5, below) it is also anti-symmetric on $\left\{\mathbf{D}, \mathbf{C}, \mathbf{P}, \mathbf{P}^{\mathrm{d}}, \mathbf{M}\right\}$, and thus it is a partial order on that set. If neither $A \preccurlyeq B$ nor $B \preccurlyeq A$ holds, we say that A and B are uncomparable or, to be more descriptive, that A and B provide representations of uncomparable complexity. In the case of $A \preccurlyeq B$ but $B \npreceq A$, we say that A is polynomially more efficient than B, or that A provides a representation of lower complexity than B.

Theorem 5. The disjunctive, conjunctive, polynomial, and dual polynomial normal form systems provide representations of pairwise uncomparable complexity. The median normal form system \mathbf{M} provides representations of lower complexity than the other four normal form systems $\mathbf{D}, \mathbf{C}, \mathbf{P}, \mathbf{P}^{\mathrm{d}}$.

Proof. We shall make use of the basic theory of disjunctive and conjunctive normal forms and implicants and implicata.
To prove that $\mathbf{D} \npreceq \mathbf{C}$, let n be an even positive integer and let f_{n} be the n-ary Boolean function

$$
\left(x_{1} \vee x_{2}\right) \wedge \cdots \wedge\left(x_{2 i-1} \vee x_{2 i}\right) \wedge \cdots \wedge\left(x_{n-1} \vee x_{n}\right)
$$

The \mathbf{C}-complexity of f_{n} is less than $3 n$. But f_{n} has $2^{n / 2}$ prime implicants and each has to appear as a separate term in any DNF. Since each implicant has $n / 2$ variables, $C_{\mathbf{D}}\left(f_{n}\right) \geqslant(n / 2) 2^{n / 2}$. Therefore, there can be no polynomial p such that $C_{\mathbf{D}}\left(f_{n}\right) \leqslant p\left(C_{\mathbf{C}}\left(f_{n}\right)\right)$ would hold for all f_{n} 's. The proof of $\mathbf{C} \npreceq \mathbf{D}$ is similar but based on the dual family of
functions

$$
\left(x_{1} \wedge x_{2}\right) \vee \cdots \vee\left(x_{2 i-1} \wedge x_{2 i}\right) \vee \cdots \vee\left(x_{n-1} \wedge x_{n}\right)
$$

Next we show that $\mathbf{D} \npreceq \mathbf{P}, \mathbf{P}^{\mathrm{d}}$ and $\mathbf{C} \npreceq \mathbf{P}, \mathbf{P}^{\mathrm{d}}$. For each odd $n \geqslant 1$, consider the n-ary function

$$
f_{n}=x_{1}+\cdots+x_{n} .
$$

Both the \mathbf{P} - and \mathbf{P}^{d}-complexities of f_{n} are less than $2 n$. However, f_{n} has 2^{n-1} prime implicants, each of which is a product of n variables or negated variables. Therefore, $C_{\mathbf{D}}\left(f_{n}\right) \geqslant n 2^{n-1}$. This shows that $\mathbf{D} \notin \mathbf{P}, \mathbf{P}^{\mathrm{d}}$. Similarly, $C_{\mathbf{C}}\left(f_{n}\right) \geqslant n 2^{n-1}$, which shows that $\mathbf{C} \npreceq \mathbf{P}, \mathbf{P}^{\mathbf{d}}$.

To see that $\mathbf{P} \npreceq \mathbf{D}, \mathbf{C}, \mathbf{P}^{\mathrm{d}}$, consider for each $n \geqslant 2$ the n-ary function

$$
f_{n}=x_{1} \vee \cdots \vee x_{n}
$$

The \mathbf{D}-, \mathbf{C} - and \mathbf{P}^{d}-complexities of f_{n} are less than $2 n$. However, the (unique) Zhegalkin polynomial of f_{n} is the sum of all $2^{n}-1$ non-constant monomials in n indeterminates. This implies that the \mathbf{P}-complexity of f_{n} is at least $2^{n}-1$. The proof of $\mathbf{P}^{\mathrm{d}} \npreceq \mathbf{D}, \mathbf{C}, \mathbf{P}$ is similarly based on the dual family of functions $f_{n}=x_{1} \wedge \cdots \wedge x_{n}$.

Next we show that $\mathbf{D}, \mathbf{C}, \mathbf{P}, \mathbf{P}^{\mathrm{d}} \npreceq \mathbf{M}$. For each $k \geqslant 1$, let $n=2 k+1$, and consider the n-ary self-dual monotone function f_{k} defined inductively as follows:

$$
\begin{aligned}
f_{1} & =\mu\left(x_{1}, x_{2}, x_{3}\right) \\
& =\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{1}\right)=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right) \\
& =\left(x_{1} \wedge x_{2}\right)+\left(x_{2} \wedge x_{3}\right)+\left(x_{3} \wedge x_{1}\right)=\left(x_{1} \vee x_{2}\right)+\left(x_{2} \vee x_{3}\right)+\left(x_{3} \vee x_{1}\right), \\
f_{k+1} & =\mu\left(f_{k^{\prime}}, x_{2 k+1}, x_{2 k+3}\right),
\end{aligned}
$$

where $f_{k^{\prime}}$ denotes the $(2 k+3)$-ary cylindrification of f_{k}. The \mathbf{M}-complexity of f_{k} is at most $3 k+1$. By induction we see that the number of prime implicants is $2^{k+1}-1$, which is also the number of prime implicata. Thus, the \mathbf{D} - and \mathbf{C} complexities of f_{n} are at least $2^{k+1}-1$, from which it follows that $\mathbf{D}, \mathbf{C} \npreceq \mathbf{M}$. Also by induction, the Zhegalkin polynomial of f_{k} has $2^{k+1}-1$ terms and thus $C_{\mathbf{P}}\left(f_{k}\right) \geqslant 2^{k+1}-1$, and hence $\mathbf{P} \npreceq \mathbf{M}$. Similarly, we can see that $C_{\mathbf{P}^{\mathbf{d}}}\left(f_{k}\right) \geqslant 2^{k+1}-1$, and hence $\mathbf{P}^{\mathrm{d}} \npreceq \mathbf{M}$.

To see that $\mathbf{M} \preccurlyeq \mathbf{D}$, let us define the map $T: F_{\mathbf{D}} \rightarrow F_{\mathbf{M}}$ recursively as follows:
(1) $T(a)=a$, whenever a is a variable or a negated variable,
(2) $T(\wedge \Phi \Psi)=\mu T(\Phi) T(\Psi) \mathbf{0}$, for $\Phi, \Psi, \wedge \Phi \Psi \in F_{\mathbf{D}}$, and $T(\vee \Phi \Psi)=\mu T(\Phi) T(\Psi) \mathbf{1}$, for $\Phi, \Psi, \vee \Phi \Psi \in F_{\mathbf{D}}$.

Clearly, for every $\Phi \in F_{\mathbf{D}}, T(\Phi) \in F_{\mathbf{M}}$ represents the same function as Φ, and by induction it follows that $|T(\Phi)|<2|\Phi|$. This shows that $\mathbf{M} \preccurlyeq \mathbf{D}$. Similarly, it follows that $\mathbf{M} \preccurlyeq \mathbf{C}$.

Finally, we show that $\mathbf{M} \preccurlyeq \mathbf{P}, \mathbf{P}^{d}$. For $n \geqslant 0$, consider the functions

$$
f_{n}=x_{1}+\cdots+x_{3^{n}} .
$$

We define the median formulas Φ_{n} for $n \geqslant 0$ recursively as follows: $\Phi_{0}=x_{1}$, and for $n \geqslant 0$, we obtain Φ_{n+1} by substituting

$$
\mu \overline{x_{3 i-2}} x_{3 i-1} x_{3 i} \mu x_{3 i-2} \overline{\bar{x}_{3 i-1}} x_{3 i} \mu x_{3 i-2} x_{3 i-1} \overline{x_{3 i}}
$$

and

$$
\mu \mu x_{3 i-2} \overline{x_{3 i-1}} \overline{x_{3 i}} \mu \overline{x_{3 i-2}} x_{3 i-1} \overline{x_{3 i}} \mu \overline{x_{3 i-2}} \overline{x_{3 i-1}} x_{3 i}
$$

for each occurrence of x_{i} and $\overline{x_{i}}$ in Φ_{n}, respectively. It is easy to prove by induction that Φ_{n} represents f_{n}, because $\overline{\mu(x, y, z)}=\mu(\bar{x}, \bar{y}, \bar{z})$ and

$$
\tau(x, y, z)=\mu(\mu(\bar{x}, y, z), \mu(x, \bar{y}, z), \mu(x, y, \bar{z})) .
$$

Denote by $|\Phi|_{a}$ the number of occurrences of the symbol a in the formula Φ, and for any variable x_{i}, denote $|\Phi| \widetilde{x}_{i}=$ $|\Phi|_{x_{i}}+|\Phi|_{\overline{x_{i}}}$. We prove by induction on n that $\left|\Phi_{n}\right| \widetilde{x}_{i}=3^{n}$ for $i=1, \ldots, 3^{n}$ and $\left|\Phi_{n}\right|_{\mu}=\left(3^{2 n}-1\right) / 2$. It is clear that
the claim holds for Φ_{0}. Assume that it holds for Φ_{n}, and then consider Φ_{n+1}. By the inductive hypothesis, $\left|\Phi_{n}\right| \widetilde{x}_{i}=3^{n}$ for $i=1, \ldots, 3^{n}$, and so $\left|\Phi_{n+1}\right| \widetilde{x}_{i}=3^{n+1}$ for $i=1, \ldots, 3^{n+1}$ and $\left|\Phi_{n+1}\right|_{\mu}=\left|\Phi_{n}\right|_{\mu}+4 \cdot 3^{2 n}=\left(3^{2 n+2}-1\right) / 2$. We also conclude that $\left|\Phi_{n}\right|=\left(3^{2 n+1}-1\right) / 2$.

Let $f \in \Omega$ and let Θ be the shortest polynomial formula representing f. Then f is a sum of $m=1+2|\Theta|_{\tau}$ monomial terms. For $i=1, \ldots, m$, let Θ_{i} be the polynomial formula (occurring as a substring of Θ) that represents the i th monomial term. Since the monomial terms are conjunctions of variables, each Θ_{i} is in fact a disjunctive formula, and by the previous proof that $\mathbf{M} \preccurlyeq \mathbf{D}$, there is a median formula Ξ_{i} representing the i th monomial term such that $\left|\Xi_{i}\right|<2\left|\Theta_{i}\right|$.

For any median formula Γ, denote by Γ^{\prime} the median formula obtained from Γ by substituting $\overline{x_{i}}$ for x_{i}, x_{i} for $\overline{x_{i}}, \mathbf{0}$ for $\mathbf{1}$, and $\mathbf{1}$ for $\mathbf{0}$. It is clear that $|\Gamma|=\left|\Gamma^{\prime}\right|$, and Γ^{\prime} represents the negation of the function represented by Γ. Hence, the \mathbf{M}-complexity of any function is equal to the \mathbf{M}-complexity of its negation.

Let n be the smallest integer such that $m \leqslant 3^{n}$. For $i=m+1, \ldots, 3^{n}$, let $\Xi_{i}=\Theta_{i}=\mathbf{0}$. Now, we can construct a median formula Ξ that represents f by substituting Ξ_{i} for x_{i} and Ξ_{i}^{\prime} for $\overline{x_{i}}$ in Φ_{n} for $i=1, \ldots, 3^{n}$. We have that

$$
\begin{aligned}
C_{\mathbf{M}}(f) & \leqslant|\Xi|=\left|\Phi_{n}\right|_{\mu}+\sum_{i=1}^{3^{n}}\left|\Phi_{n}\right| \tilde{x}_{i}\left|\Xi_{i}\right| \\
& <\frac{3^{2 n}-1}{2}+\sum_{i=1}^{3^{n}} 3^{n} \cdot 2\left|\Theta_{i}\right|=\frac{3^{2 n}-1}{2}+2 \cdot 3^{n} \sum_{i=1}^{m}\left|\Theta_{i}\right|+2 \cdot 3^{n} \sum_{i=m+1}^{3^{n}}|\boldsymbol{0}| \\
& \leqslant \frac{3^{2 n}-1}{2}+2 \cdot 3^{n} \sum_{i=1}^{m}\left|\Theta_{i}\right|+2 \cdot 3^{n} \cdot 3^{n}=\frac{5 \cdot 3^{2 n}-1}{2}+2 \cdot 3^{n} \sum_{i=1}^{m}\left|\Theta_{i}\right| .
\end{aligned}
$$

If $|\Theta|_{\tau} \neq 0$, then using

$$
C_{\mathbf{P}}(f)=|\Theta|=|\Theta|_{\tau}+\sum_{i=1}^{m}\left|\Theta_{i}\right|
$$

and $|\Theta|_{\tau} \geqslant 3^{n-1} / 2$, we have that

$$
\begin{aligned}
\left(C_{\mathbf{P}}(f)\right)^{2} & =\left(|\Theta|_{\tau}\right)^{2}+2|\Theta|_{\tau} \sum_{i=1}^{m}\left|\Theta_{i}\right|+\left(\sum_{i=1}^{m}\left|\Theta_{i}\right|\right)^{2} \geqslant\left(|\Theta|_{\tau}\right)^{2}+2|\Theta|_{\tau} \sum_{i=1}^{m}\left|\Theta_{i}\right| \\
& \geqslant \frac{3^{2 n-2}}{4}+3^{n-1} \sum_{i=1}^{m}\left|\Theta_{i}\right|=\frac{5 \cdot 3^{2 n}}{180}+\frac{2 \cdot 3^{n}}{6} \sum_{i=1}^{m}\left|\Theta_{i}\right|
\end{aligned}
$$

and so

$$
C_{\mathbf{M}}(f)<\frac{5 \cdot 3^{2 n}}{2}+2 \cdot 3^{n} \sum_{i=1}^{m}\left|\Theta_{i}\right| \leqslant 180\left(C_{\mathbf{P}}(f)\right)^{2} .
$$

Also, if $|\Theta|_{\tau}=0$, then clearly $C_{\mathbf{M}}(f) \leqslant 180\left(C_{\mathbf{P}}(f)\right)^{2}$. We conclude that $\mathbf{M} \preccurlyeq \mathbf{P}$. A similar argument proves that $\mathbf{M} \preccurlyeq \mathbf{P}^{\mathrm{d}}$.

The above proof of Theorem 5 actually provides algorithms for converting DNF, CNF, and Zhegalkin (Reed-Muller) representations into a generally more efficient median normal form.

Appendix A. Post classes

We make use of notations and terminology appearing in [7] and in [11].

- Ω denotes the clone of all Boolean functions;
- T_{0} and T_{1} denote the clones of 0 - and 1-preserving functions, respectively, i.e., $T_{0}=\{f \in \Omega: f(0, \ldots, 0)=0\}$, $T_{1}=\{f \in \Omega: f(1, \ldots, 1)=1\} ;$
- T_{c} denotes the clone of constant-preserving functions, i.e., $T_{\mathrm{c}}=T_{0} \cap T_{1}$.
- M denotes the clone of all monotone functions, i.e., $M=\{f \in \Omega: f(\mathbf{a}) \leqslant f(\mathbf{b})$, whenever $\mathbf{a} \preccurlyeq \mathbf{b}\}$;
- $M_{0}=M \cap T_{0}, M_{1}=M \cap T_{1}, M_{\mathrm{c}}=M \cap T_{\mathrm{c}}$;
- S denotes the clone of all self-dual functions, i.e., $S=\left\{f \in \Omega: f^{\mathrm{d}}=f\right\}$;
- $S_{\mathrm{c}}=S \cap T_{\mathrm{c}}, S M=S \cap M$;
- L denotes the clone of all linear functions, i.e., $L=\left\{f \in \Omega: f=c_{0} \mathbf{1}+c_{1} x_{1}+\cdots+c_{n} x_{n}\right.$ for some n and $\left.c_{0}, \ldots, c_{n} \in \mathbb{B}\right\} ;$
- $L_{0}=L \cap T_{0}, L_{1}=L \cap T_{1}, L S=L \cap S, L_{\mathrm{c}}=L \cap T_{\mathrm{c}}$.

Let $a \in\{0,1\}$. A set $A \subseteq\{0,1\}^{n}$ is said to be a-separating if there is $i, 1 \leqslant i \leqslant n$, such that for every $\left(a_{1}, \ldots, a_{n}\right) \in A$ we have $a_{i}=a$. A function f is said to be a-separating if $f^{-1}(a)$ is a-separating. A function f is said to be a-separating of rank $k \geqslant 2$ if every subset $A \subseteq f^{-1}(a)$ of size at most k is a-separating.

- For $m \geqslant 2, U_{m}$ and W_{m} denote the clones of all 1- and 0 -separating functions of rank m, respectively;
- U_{∞} and W_{∞} denote the clones of all 1- and 0 -separating functions, respectively, i.e., $U_{\infty}=\bigcap_{k \geqslant 2} U_{k}$ and $W_{\infty}=$ $\bigcap_{k \geqslant 2} W_{k}$;
- $T_{\mathrm{c}} U_{m}=T_{\mathrm{c}} \cap U_{m}$ and $T_{\mathrm{c}} W_{m}=T_{\mathrm{c}} \cap W_{m}$, for $m=2, \ldots, \infty$;
- $M U_{m}=M \cap U_{m}$ and $M W_{m}=M \cap W_{m}$, for $m=2, \ldots, \infty$;
- $M_{\mathrm{c}} U_{m}=M_{\mathrm{c}} \cap U_{m}$ and $M_{\mathrm{c}} W_{m}=M_{\mathrm{c}} \cap W_{m}$, for $m=2, \ldots, \infty$;
- Λ denotes the clone of all conjunctions and constants, i.e., $\Lambda=\left\{f \in \Omega: f=\mathbf{0}, \mathbf{1}, x_{i_{1}} \wedge \cdots \wedge x_{i_{n}}\right.$ for some $n \geqslant 1$ and i_{j} 's\};
- $\Lambda_{0}=\Lambda \cap T_{0}, \Lambda_{1}=\Lambda \cap T_{1}, \Lambda_{\mathrm{c}}=\Lambda \cap T_{\mathrm{c}}$;
- V denotes the clone of all disjunctions and constants, i.e., $V=\left\{f \in \Omega: f=\mathbf{0}, \mathbf{1}, x_{i_{1}} \vee \ldots \vee x_{i_{n}}\right.$ for some $n \geqslant 1$ and i_{j} 's\};
- $V_{0}=V \cap T_{0}, V_{1}=V \cap T_{1}, V_{\mathrm{c}}=V \cap T_{\mathrm{c}}$;
- $\Omega(1)$ denotes the clone of all variables, negated variables, and constants;
- I^{*} denotes the clone of all variables and negated variables;
- I denotes the clone of all variables and constants;
- $I_{0}=I \cap T_{0}, I_{1}=I \cap T_{1}$;
- I_{c} denotes the smallest clone containing only variables, i.e., $I_{\mathrm{c}}=I \cap T_{\mathrm{c}}$.

References

[1] H.-J. Bandelt, J. Hedlíková, Median algebras, Discrete Math. 45 (1983) 1-30.
[2] G. Birkhoff, S.A. Kiss, A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947) 749-752.
[3] F.M. Brown, Boolean Reasoning: The Logic of Boolean Equations, second ed., Dover, Mineola, NY, 2003.
[4] M. Couceiro, S. Foldes, Function class composition, relational constraints and stability under compositions with clones, RUTCOR Research Report 22-2004, Rutgers University, 2004, available at 〈http://rutcor.rutgers.edu/~rrr/〉.
[5] M. Couceiro, S. Foldes, E. Lehtonen, On compositions of clones of Boolean functions, in: T. Simos, G. Maroulis (Eds.), International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004), VSP/Brill, Utrecht, 2004, pp. 849-851.
[6] K. Denecke, S.L. Wismath, Hyperidentities and Clones, Gordon and Breach, London, 2000.
[7] S. Foldes, G.R. Pogosyan, Post classes characterized by functional terms, Discrete Appl. Math. 142 (2004) 35-51.
[8] A.A. Grau, Ternary Boolean algebra, Bull. Amer. Math. Soc. 53 (1947) 567-572.
[9] J. Hashimoto, A ternary operation in lattices, Math. Japon. 2 (1951) 49-52.
[10] J.R. Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980) 319-362.
[11] S.W. Jablonski, G.P. Gawrilow, W.B. Kudrjawzew, Boolesche Funktionen und Postsche Klassen, Vieweg, Braunschweig, 1970.
[12] D.E. Muller, Application of Boolean algebra to switching circuit design and to error correction, IRE Trans. Electron. Comput. 3 (3) (1954) 6-12.
[13] N. Pippenger, Theories of Computability, Cambridge University Press, Cambridge, 1997.
[14] E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematical Studies, vol. 5, Princeton University Press, Princeton, NJ, 1941.
[15] I.S. Reed, A class of multiple-error-correcting codes and the decoding scheme, IRE Trans. Inf. Theory 4 (4) (1954) 38-49.
[16] M. Reschke, K. Denecke, Ein neuer Beweis für die Ergebnisse von E.L. Post über abgeschlossene Klassen Boolescher Funktionen, Elektronische Informationsverarbeitung Kybernetik 25 (7) (1989) 361-380.
[17] M. Sholander, Postulates for distributive lattices, Canad. J. Math. 3 (1951) 28-30.
[18] A.B. Ugol'nikov, On closed Post classes, Izv. Vyssh. Uchebn. Zaved. Mat. 7 (314) (1988) 79-88 (in Russian); translated in Soviet Math. 32(7) (1988) 131-142.
[19] M.L.J. van de Vel, Theory of Convex Structures, Elsevier, Amsterdam, 1993.
[20] A. Whiteman, Postulates for Boolean algebra in terms of ternary rejection, Bull. Amer. Math. Soc. 43 (1937) 293-298.
[21] I.I. Zhegalkin, On the calculation of propositions in symbolic logic, Math. Sbornik 34 (1927) 9-28.
[22] I.E. Zverovich, Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes, Discrete Appl. Math. 149 (2005) 200-218.

[^0]: * Corresponding author.

 E-mail addresses: miguel.couceiro@uta.fi (M. Couceiro), stephan.foldes@tut.fi (S. Foldes), erkko.lehtonen@tut.fi (E. Lehtonen).
 ${ }^{1}$ Research partially supported by the Graduate School in Mathematical Logic MALJA and by grant \#28139 from the Academy of Finland.

