

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 3223-3243

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Composition of Post classes and normal forms of Boolean functions

Miguel Couceiro^{a, 1}, Stephan Foldes^b, Erkko Lehtonen^{b,*}

^aDepartment of Mathematics, Statistics and Philosophy, University of Tampere, FI-33014 Tampereen yliopisto, Finland ^bInstitute of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland

> Received 23 March 2005; received in revised form 12 May 2006; accepted 25 June 2006 Available online 6 September 2006

Abstract

The class composition $\mathscr{C} \circ \mathscr{H}$ of Boolean clones, being the set of composite functions $f(g_1, \ldots, g_n)$ with $f \in \mathscr{C}, g_1, \ldots, g_n \in \mathscr{H}$, is investigated. This composition $\mathscr{C} \circ \mathscr{H}$ is either the join $\mathscr{C} \vee \mathscr{H}$ in the Post Lattice or it is not a clone, and all pairs of clones \mathscr{C}, \mathscr{H} are classified accordingly.

Factorizations of the clone Ω of all Boolean functions as a composition of minimal clones are described and seen to correspond to normal form representations of Boolean functions. The median normal form, arising from the factorization of Ω with the clone *SM* of self-dual monotone functions as the leftmost composition factor, is compared in terms of complexity with the well-known DNF, CNF, and Zhegalkin (Reed–Muller) polynomial representations, and it is shown to provide a more efficient normal form representation.

© 2006 Elsevier B.V. All rights reserved.

MSC: 06E30; 08A70

Keywords: Function class composition; Clones; Boolean functions; Post classes; Class factorization; Normal forms; DNF; CNF; Zhegalkin polynomial; Reed–Muller polynomial; Formulas; Efficient representations; Complexity; Median; Ternary majority

1. Introduction and notation

Let $\mathbb{B} = \{0, 1\}$. A *Boolean function* is a map $f : \mathbb{B}^n \to \mathbb{B}$, for some positive integer *n* called the *arity* of *f*. Because we only discuss Boolean functions, we refer to them simply as *functions*. A *class* of functions is a subset $\mathscr{C} \subseteq \bigcup_{n \ge 1} \mathbb{B}^{\mathbb{B}^n}$. For a fixed arity *n*, the *n* different *projection maps* $(a_1, \ldots, a_n) \mapsto a_i, 1 \le i \le n$, are also called *variables*, denoted x_1, \ldots, x_n , where the arity is clear from the context.

If f is an n-ary function and g_1, \ldots, g_n are all m-ary functions, then the *composition* $f(g_1, \ldots, g_n)$ is an m-ary function, and its value on $(a_1, \ldots, a_m) \in \mathbb{B}^m$ is $f(g_1(a_1, \ldots, a_m), \ldots, g_n(a_1, \ldots, a_m))$. Let \mathscr{I} and \mathscr{I} be classes of functions. The *composition of* \mathscr{I} with \mathscr{I} , denoted $\mathscr{I} \circ \mathscr{I}$ (or sometimes, when the context is clear, just $\mathscr{I}\mathscr{I}$),

^{*} Corresponding author.

E-mail addresses: miguel.couceiro@uta.fi (M. Couceiro), stephan.foldes@tut.fi (S. Foldes), erkko.lehtonen@tut.fi (E. Lehtonen).

¹ Research partially supported by the Graduate School in Mathematical Logic MALJA and by grant #28139 from the Academy of Finland.

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.06.014

Fig. 1. Post Lattice.

is defined as

 $\mathscr{I} \circ \mathscr{J} = \{f(g_1, \ldots, g_n) : n, m \ge 1, f \text{ n-ary in } \mathscr{I}, g_1, \ldots, g_n \text{ m-ary in } \mathscr{J}\}.$

A *clone* is a class \mathscr{C} of functions that contains all projections and satisfies $\mathscr{CC} \subseteq \mathscr{C}$ (or equivalently, $\mathscr{CC} = \mathscr{C}$).

The clones of Boolean functions, originally described by Post [14] (see [16,18,22]) for shorter recent proofs), form an algebraic lattice, where the lattice operations are the following: meet is the intersection, join is the smallest clone that contains the union. The greatest element is the clone Ω of all Boolean functions; the least element is the clone I_c of all projections. These clones and the lattice are often called the Post classes and the Post Lattice, respectively. For the nomenclature of the Post classes, see Appendix. The Post Lattice is illustrated in Fig. 1.

The set \mathbb{B}^n is a Boolean (distributive and complemented) lattice of 2^n elements under the component-wise order of vectors. We will write simply $\mathbf{a} \preccurlyeq \mathbf{b}$ to denote comparison in this lattice. The *complement* of a vector $\mathbf{a} = (a_1, \ldots, a_n)$ is defined as $\overline{\mathbf{a}} = (1 - a_1, \ldots, 1 - a_n)$. We denote $\mathbf{0} = (0, \ldots, 0)$, $\mathbf{1} = (1, \ldots, 1)$. Vectors are also called *points*. The set $\mathbb{B}^{\mathbb{B}^n}$ is a Boolean lattice of 2^{2^n} elements under the point-wise ordering of functions. Both \mathbb{B}^n and $\mathbb{B}^{\mathbb{B}^n}$

The set $\mathbb{B}^{\mathbb{B}^n}$ is a Boolean lattice of 2^{2^n} elements under the point-wise ordering of functions. Both \mathbb{B}^n and $\mathbb{B}^{\mathbb{B}^n}$ are vector spaces over the two-element field $GF(2) = \mathbb{B}$.

For a function f, the *dual* of f is defined as $f^{d}(\mathbf{a}) = \overline{f(\mathbf{a})}$ for all \mathbf{a} . For a class \mathscr{C} , the *dual* of \mathscr{C} is defined as $\mathscr{C}^{d} = \{f^{d} : f \in \mathscr{C}\}$. The dual of a clone is a clone, and it is well-known that dualization gives the only nontrivial order-automorphism of the Post Lattice.

We also denote by **0** and **1** the constant functions of any arity having value 0 and 1, respectively, everywhere. We denote the ternary majority function $x_1x_2 + x_1x_3 + x_2x_3$ by μ and the ternary triple sum $x_1 + x_2 + x_3$ by τ .

We say that *f* is a *subfunction* of *g* if $f \in \{g\} \circ I_c$. The subfunction relation is a preorder (i.e., a reflexive and transitive relation) on the set of functions. We say that functions *f* and *g* are *equivalent*, denoted $f \equiv g$, if they are subfunctions of each other. This is commonly described as follows: functions *f* and *g* are equivalent if there is a function that can be obtained from both *f* and *g* by repeated cylindrification and permutation of variables. For any functions f_1, \ldots, f_n , we denote $[f_1, \ldots, f_n] = \{f : f \equiv f_i \text{ for some } i = 1, \ldots, n\}$.

The plan of the paper is as follows. In Section 2 we restate a lemma on the associativity of function class composition, and state and prove a general sufficient condition for the composition of clones to be a clone. In Section 3 we completely classify those pairs of Boolean clones whose class composition is a clone (Section 3.1), and those pairs whose composition is not a clone (Section 3.2), and we summarize this classification in the two theorems of Section 3.3—from the direct point of view of compositions in Theorem 2 and from the reverse point of view of decompositions or factorizations of a given clone in Theorem 3. In Section 4 we consider certain factorizations of the clone Ω of all Boolean functions which correspond to normal form representations of functions such as disjunctive normal form (DNF), conjunctive normal form (CNF), and Zhegalkin or Reed–Muller polynomial representations. We conclude by showing that the representation using the ternary median (majority) function, based on the factorization of Ω with the clone *SM* of self-dual monotone functions as the leftmost factor, is asymptotically more efficient than the more classical DNF, CNF, and polynomial representations which use Boolean lattice or Boolean ring operations.

2. General rules and auxiliary theorems

Let us restate the Associativity Lemma of [4], particularized to Boolean functions.

Lemma 1 (Associativity Lemma). Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be classes of Boolean functions:

- (i) $(\mathscr{A}\mathscr{B})\mathscr{C} \subseteq \mathscr{A}(\mathscr{B}\mathscr{C}),$
- (ii) if $\mathscr{B} \circ I_{c} \subseteq \mathscr{B}$, then $(\mathscr{A}\mathscr{B})\mathscr{C} = \mathscr{A}(\mathscr{B}\mathscr{C})$.

Let $\mathscr{C}_1, \mathscr{C}_2, \mathscr{C}_3, \mathscr{C}_4, \mathscr{C}$ be clones. The following hold and will be used repeatedly:

- Associativity: $\mathscr{C}_1(\mathscr{C}_2\mathscr{C}_3) = (\mathscr{C}_1\mathscr{C}_2)\mathscr{C}_3.$
- $\mathscr{C}_1 \cup \mathscr{C}_2 \subseteq \mathscr{C}_1 \mathscr{C}_2 \subseteq \mathscr{C}_1 \vee \mathscr{C}_2$. The class composition $\mathscr{C}_1 \mathscr{C}_2$ is a clone if and only if $\mathscr{C}_1 \mathscr{C}_2 = \mathscr{C}_1 \vee \mathscr{C}_2$.
- If $\mathscr{C}_1 \subseteq \mathscr{C}_2$, then $\mathscr{C}_1 \mathscr{C}_2 = \mathscr{C}_2$ and $\mathscr{C}_2 \mathscr{C}_1 = \mathscr{C}_2$.
- If $\mathscr{C}_1 \subseteq \mathscr{C}_2$ and $\mathscr{C}_3 \subseteq \mathscr{C}_4$, then $\mathscr{C}_1 \mathscr{C}_3 \subseteq \mathscr{C}_2 \mathscr{C}_4$.
- If $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}, \ \mathscr{C}_1 \subseteq \mathscr{C}_3 \subseteq \mathscr{C}$, and $\mathscr{C}_2 \subseteq \mathscr{C}_4 \subseteq \mathscr{C}$, then $\mathscr{C}_3\mathscr{C}_4 = \mathscr{C}$.
- If $\mathscr{C}_1\mathscr{C}_2$ is not a clone, i.e., $\mathscr{C}_1\mathscr{C}_2 \neq \mathscr{C}_1 \lor \mathscr{C}_2$, and $\mathscr{C}_3 \subseteq \mathscr{C}_1$, $\mathscr{C}_4 \subseteq \mathscr{C}_2$, $\mathscr{C}_3 \lor \mathscr{C}_4 = \mathscr{C}_1 \lor \mathscr{C}_2$, then $\mathscr{C}_3\mathscr{C}_4$ is not a clone, i.e., $\mathscr{C}_3\mathscr{C}_4 \neq \mathscr{C}_3 \lor \mathscr{C}_4 = \mathscr{C}_1 \lor \mathscr{C}_2$.
- Duality: $\mathscr{C}_1^d \mathscr{C}_2^d = (\mathscr{C}_1 \mathscr{C}_2)^d$.
- If $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}_2\mathscr{C}_1$, then $\mathscr{C}_1\mathscr{C}_2$ is a clone.

As we shall see, it is not always true that $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}_2\mathscr{C}_1$. If $\mathscr{C}_1\mathscr{C}_2 \neq \mathscr{C}_2\mathscr{C}_1$, then either one of $\mathscr{C}_1\mathscr{C}_2$ and $\mathscr{C}_2\mathscr{C}_1$ is a clone while the other is not, or neither is a clone.

Theorem 1. Let \mathscr{G} and \mathscr{H} be classes of Boolean functions, and let \mathscr{C} and \mathscr{K} be the clones generated by \mathscr{G} and \mathscr{H} , respectively. If $(\mathscr{G} \cup I_c) \circ I_c \subseteq \mathscr{G}$, $(\mathscr{H} \cup I_c) \circ I_c \subseteq \mathscr{H}$, and $\mathscr{G}\mathscr{H} \subseteq \mathscr{K}\mathscr{G}$, then $\mathscr{K}\mathscr{C}$ is a clone.

Proof. We first prove two Claims.

Claim 1. $\mathcal{GK} \subseteq \mathcal{KC}$.

To prove this claim, denote by \mathscr{H}^i , $i \ge 1$, the composition $\mathscr{H} \cdots \mathscr{H}$ of the class \mathscr{H} with itself *i* times. (Parentheses are not necessary, because $\mathscr{H} \circ I_c \subseteq \mathscr{H}$.) Observe that $\mathscr{H}^i \subseteq \mathscr{H}^{i+1}$ for every $i \ge 1$, and

$$\mathcal{H} = \bigcup_{i} \mathcal{H}^{i}, \quad \mathcal{G}\mathcal{H} = \bigcup_{i} \mathcal{G}\mathcal{H}^{i}, \quad \mathcal{H}\mathcal{G} = \bigcup_{i} \mathcal{H}^{i}\mathcal{G}$$

Thus it is sufficient to show, by induction on *i*, that $\mathscr{GH}^i \subseteq \mathscr{KG}$ for all $i \ge 1$. For i = 1, this is part of the hypothesis in the statement of the theorem. The inductive step is accomplished by assuming $\mathscr{GH}^i \subseteq \mathscr{KG}$ and observing that $\mathscr{GH}^{i+1} = \mathscr{G}(\mathscr{H}^i \mathscr{H}) = (\mathscr{GH}^i) \mathscr{H}$, because $\mathscr{H} \circ I_c \subseteq \mathscr{H}$ and $\mathscr{H}^i \circ I_c \subseteq \mathscr{H}^i$, and

$$(\mathscr{G}\mathscr{H}^i)\mathscr{H} \subseteq (\mathscr{K}\mathscr{G})\mathscr{H} = \left(\bigcup_j \mathscr{H}^j \mathscr{G}\right)\mathscr{H} = \bigcup_j (\mathscr{H}^j \mathscr{G})\mathscr{H}$$

by the inductive hypothesis. For every j, $(\mathscr{H}^{j}\mathscr{G})\mathscr{H} \subseteq \mathscr{H}^{j}(\mathscr{G}\mathscr{H})$ by the Associativity Lemma, and

$$\mathscr{H}^{j}(\mathscr{GH}) \subseteq \mathscr{H}^{j}\left(\bigcup_{i} \mathscr{H}^{i}\mathscr{G}\right)$$

by the hypothesis of the theorem. Furthermore, since every \mathscr{H}^i contains all projections and $\mathscr{H} = \mathscr{H}^1 \subseteq \mathscr{H}^2 \subseteq \cdots$,

$$\mathscr{H}^{j}\left(\bigcup_{i}\mathscr{H}^{i}\mathscr{G}\right)\subseteq\bigcup_{i}(\mathscr{H}^{j}\mathscr{H}^{i})\mathscr{G}\subseteq\mathscr{K}\mathscr{G},$$

which shows that $\mathscr{GH}^{i+1} \subseteq \mathscr{KG}$, completing the proof of Claim 1.

Claim 2. $\mathcal{CH} \subseteq \mathcal{HC}$.

Let $(\mathscr{G} \cup I_c)^i$, $i \ge 1$, denote the composition $(\mathscr{G} \cup I_c) \cdots (\mathscr{G} \cup I_c)$ of $\mathscr{G} \cup I_c$ with itself *i* times. (We can omit parentheses by the Associativity Lemma.) We have $(\mathscr{G} \cup I_c)^i \subseteq (\mathscr{G} \cup I_c)^{i+1}$ for all $i \ge 1$ and

$$\mathscr{C} = \bigcup_{i} (\mathscr{G} \cup I_{c})^{i}, \quad \mathscr{CK} = \bigcup_{i} (\mathscr{G} \cup I_{c})^{i} \mathscr{K}$$

We show by induction on *i* that $(\mathscr{G} \cup I_c)^i \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$. For i = 1 this is true because

 $(\mathscr{G} \cup I_{c})\mathscr{K} = \mathscr{G}\mathscr{K} \cup I_{c} \circ \mathscr{K} = \mathscr{G}\mathscr{K} \cup \mathscr{K} \subset \mathscr{K}\mathscr{C} \cup \mathscr{K}\mathscr{C} = \mathscr{K}\mathscr{C}.$

Assuming it is true for *i*,

$$\begin{split} (\mathscr{G} \cup I_{\mathsf{c}})^{i+1}\mathscr{K} &= (\mathscr{G} \cup I_{\mathsf{c}})[(\mathscr{G} \cup I_{\mathsf{c}})^{i}\mathscr{K}] \subseteq (\mathscr{G} \cup I_{\mathsf{c}})(\mathscr{K}\mathscr{C}) \\ &= [(\mathscr{G} \cup I_{\mathsf{c}})\mathscr{K}]\mathscr{C} = (\mathscr{G}\mathscr{K} \cup I_{\mathsf{c}} \circ \mathscr{K})\mathscr{C} = (\mathscr{G}\mathscr{K})\mathscr{C} \cup (I_{\mathsf{c}} \circ \mathscr{K})\mathscr{C} = (\mathscr{G}\mathscr{K})\mathscr{C} \cup \mathscr{K}\mathscr{C}. \end{split}$$

By Claim 1, $\mathscr{GK} \subseteq \mathscr{KG}$, and therefore, still using the Associativity Lemma,

$$(\mathscr{G}\mathscr{K})\mathscr{C}\cup\mathscr{K}\mathscr{C}\subseteq(\mathscr{K}\mathscr{G})\mathscr{C}\cup\mathscr{K}\mathscr{C}\subseteq\mathscr{K}(\mathscr{G}\mathscr{C})\cup\mathscr{K}\mathscr{C}=\mathscr{K}\mathscr{C},$$

yielding $(\mathscr{G} \cup I_c)^{i+1} \mathscr{K} \subseteq \mathscr{K} \mathscr{C}$ and completing the proof of Claim 2.

Using Claim 2 and associativity, we have

$$(\mathscr{KC})(\mathscr{KC}) \subseteq \mathscr{K}(\mathscr{CK})\mathscr{C} \subseteq \mathscr{K}(\mathscr{KC})\mathscr{C} = (\mathscr{KK})(\mathscr{CC}) = \mathscr{KC},$$

establishing the result that $\mathscr{K}\mathscr{C}$ is a clone. \Box

Whenever we apply Theorem 1, we just mention the generating functions g_1, \ldots, g_m and h_1, \ldots, h_n of the clones \mathscr{C} and \mathscr{K} , respectively, and we let $\mathscr{G} = [g_1, \ldots, g_m, x_1], \mathscr{H} = [h_1, \ldots, h_n, x_1].$

Let f be an n-ary function, and denote by T_f the set of true points of f, i.e., $T_f = \{\mathbf{a} : f(\mathbf{a}) = 1\}$. Let $T_f^M = \{\mathbf{b} \in \mathbb{B}^n : \mathbf{a} \preccurlyeq \mathbf{b} \text{ for some } \mathbf{a} \in T_f\}$. The monotone closure of f, denoted by f^M , is defined as the n-ary function whose true points are the members of T_f^M .

By definition, $f^{M} \in M$. We observe that if $f \in T_{0}$, then $f^{M} \in M_{0}$; if $f \in T_{c}$, then $f^{M} \in M_{c}$; and for $m = 2, ..., \infty$, if $f \in T_{c}U_{m}$, then $f^{M} \in M_{c}U_{m}$. Also, if $f(\mathbf{a}) = 1$ for some \mathbf{a} , then $f^{M}(\mathbf{a}) = 1$; and if $f^{M}(\mathbf{a}) = 1$ for some \mathbf{a} , then there exists $\mathbf{b} \preccurlyeq \mathbf{a}$ such that $f(\mathbf{b}) = 1$.

3. Compositions of clones

It is a well-known fact that every Boolean function can be represented by DNF and CNF expressions. This fact can be restated as $\Omega = V_c \circ \Lambda_c \circ I^* = \Lambda_c \circ V_c \circ I^*$. It is also known that $M_c = V_c \circ \Lambda_c = \Lambda_c \circ V_c$, so the previous equalities can be written as $\Omega = M_c \circ I^*$.

We also know that every Boolean function is represented by a unique multilinear polynomial over GF(2), called the Zhegalkin or Reed–Muller polynomial or Boolean ring representation (see [3,12,15,21]). This fact can be restated as $\Omega = L_c \circ \Lambda$. Allowing only constant-preserving linear functions is not really a restriction, because **0** can be substituted for a variable if necessary.

These facts will be used in what follows. We will present various propositions on whether the composition of two clones is a clone or not. The cases when the composition is a clone and the cases when the composition is not a clone are grouped in Sections 3.1 and 3.2, respectively. For general background, see, e.g., [3,6,11,13].

3.1. Cases when the composition of clones is a clone

We now establish a number of equalities of the form $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}_3$. The inclusions $\mathscr{C}_1\mathscr{C}_2 \subseteq \mathscr{C}_3$ are obvious in each case from the inclusions in the Post Lattice. It only remains to prove the converse inclusions. We only provide a proof for one of $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}_3$ and $\mathscr{C}_1^d\mathscr{C}_2^d = \mathscr{C}_3^d$; the other equality follows by duality.

Proposition 1. $I_0 \circ I_1 = I_1 \circ I_0 = I$, $I \circ I^* = \Omega(1)$, $I^* \circ I_0 = I^* \circ I_1 = \Omega(1)$, $L_c \circ I_0 = L_0$, $L_c \circ I_1 = L_1$, $L_c \circ I = L$, $I^* \circ L_c = L_c \circ I^* = LS$.

Proof. Straightforward verification. \Box

Proposition 2. $U_{\infty} \circ I_1 = \Omega$, $T_c U_{\infty} \circ I_1 = T_1$, $MU_{\infty} \circ I_1 = M$, $M_c U_{\infty} \circ I_1 = M_1$, $U_{\infty} \circ V_c = T_0$, $T_c U_{\infty} \circ V_c = T_c$. *Dually*, $W_{\infty} \circ I_0 = \Omega$, $T_c W_{\infty} \circ I_0 = T_0$, $MW_{\infty} \circ I_0 = M$, $M_c W_{\infty} \circ I_0 = M_0$, $W_{\infty} \circ A_c = T_1$, $T_c W_{\infty} \circ A_c = T_c$.

Proof. Let $f \in \Omega$ be *n*-ary. Define the (n + 1)-ary function f' as $f' = f(x_1, \ldots, x_n) \wedge x_{n+1}$. We observe that $f' \in U_{\infty}$ and $f = f'(x_1, \ldots, x_n, \mathbf{1})$. Since $f' \in U_{\infty}$ and $\mathbf{1} \in I_1$, we have that $U_{\infty} \circ I_1 = \Omega$.

If $f \in T_1$, then $f' \in T_c U_\infty$. If $f \in M$, then $f' \in M U_\infty$. If $f \in M_1$, then $f' \in M_c U_\infty$. Hence, we have that $T_c U_\infty \circ I_1 = T_1$, $M U_\infty \circ I_1 = M$, $M_c U_\infty \circ I_1 = M_1$.

If $f \in T_0$, then $f' \in U_\infty$. Since in this case $f = f'(x_1, \ldots, x_n, x_1 \vee \cdots \vee x_n)$ and all disjunctions belong to V_c , we have that $U_\infty \circ V_c = T_0$. If $f \in T_c$, then $f' \in T_c U_\infty$, and we have that $T_c U_\infty \circ V_c = T_c$. \Box

Proposition 3. For $m = 2, ..., \infty$, $T_c U_{\infty} \circ M_c U_m = T_c U_m$ and, dually, $T_c W_{\infty} \circ M_c W_m = T_c W_m$.

Proof. Let $f \in T_c U_m$ be *n*-ary. Define the (n + 1)-ary function f' as $f' = f(x_1, \ldots, x_n) \land x_{n+1}$. We observe that $f = f'(x_1, \ldots, x_n, f^M)$, where f^M is the monotone closure of f. Because $f' \in T_c U_\infty$, and $f^M \in M_c U_m$, it follows that $T_c U_\infty \circ M_c U_m = T_c U_m$. \Box

Proposition 4. $V_c \circ U_{\infty} = T_0$, $V_c \circ T_c U_{\infty} = T_c$. Dually, $\Lambda_c \circ W_{\infty} = T_1$, $\Lambda_c \circ T_c W_{\infty} = T_c$.

Proof. Let $f \in T_0$ be *n*-ary. For i = 1, ..., n, define the *n*-ary function f_i as $f_i = f \land x_i$. We observe that $f_i \in U_\infty$ and $f = f_1 \lor \cdots \lor f_n$. Hence, $V_c \circ U_\infty = T_0$. If $f \in T_c$, then $f_i \in T_c U_\infty$, so we have that $V_c \circ T_c U_\infty = T_c$. \Box

Proposition 5. For $m = 2, ..., \infty$, $M_c U_m \circ T_c U_\infty = T_c U_m$ and, dually, $M_c W_m \circ T_c W_\infty = T_c W_m$.

Proof. Let $f \in T_c U_m$ be *n*-ary. For i = 1, ..., n, define the function f_i as $f_i = f \land x_i$. Let $\mathbf{a} = (a_1, ..., a_n)$. We observe that if $a_i = 0$ then $f_i(\mathbf{a}) = 0$ and if $a_i = 1$ then $f_i(\mathbf{a}) = f(\mathbf{a})$. Therefore, the mapping $\mathbf{a} \mapsto (f_1(\mathbf{a}), ..., f_n(\mathbf{a}))$ keeps the true points of f fixed and maps the false points to $\mathbf{0}$.

Because $f \leq f^{M}$ and $f^{M}(\mathbf{0}) = 0$, we have that $f = f^{M}(f_{1}, \ldots, f_{n})$. Because $f^{M} \in M_{c}U_{m}$ and $f_{1}, \ldots, f_{n} \in T_{c}U_{\infty}$, we have that $M_{c}U_{m} \circ T_{c}U_{\infty} = T_{c}U_{m}$. \Box

Proposition 6. For $m = 2, ..., \infty$, $T_c U_m \circ I_0 = U_m$ and, dually, $T_c W_m \circ I_1 = W_m$.

Proof. Let $f \in U_m$ be *n*-ary. Define the (n + 1)-ary function f' as

$$f'(a_1, \dots, a_n, a_{n+1}) = \begin{cases} f(a_1, \dots, a_n) & \text{if } a_{n+1} = 0, \\ 1 & \text{if } a_{n+1} = 1. \end{cases}$$

We observe that $f = f'(x_1, \ldots, x_n, \mathbf{0})$. Since $f' \in T_c U_m$ and $\mathbf{0} \in I_0$, we have that $T_c U_m \circ I_0 = U_m$. \Box

Proposition 7. $S \circ I_0 = \Omega$. Dually, $S \circ I_1 = \Omega$.

Proof. Let $f \in \Omega$ be *n*-ary. Define the (n + 1)-ary function f' as

 $f' = f(x_1 + x_{n+1}, \dots, x_n + x_{n+1}) + x_{n+1}.$

We observe that $f = f'(x_1, ..., x_n, \mathbf{0})$. Since $f' \in S$ and $\mathbf{0} \in I_0$, we have that $S \circ I_0 = \Omega$. \Box

Proposition 8. $S_c \circ I = \Omega$.

Proof. Let $f \in \Omega$ be *n*-ary. Define the (n + 2)-ary function f' as

$$f' = (x_{n+1} + x_{n+2}) \land (f(x_1 + x_{n+2}, \dots, x_n + x_{n+2}) + x_{n+1} + x_{n+2}) + x_{n+1}$$

We observe that $f = f'(x_1, \ldots, x_n, \mathbf{1}, \mathbf{0})$. Since $f' \in S_c$ and $\mathbf{0}, \mathbf{1} \in I$, we have that $S_c \circ I = \Omega$. \Box

Proposition 9. $M_{\rm c} \circ I^* = \Omega$.

Proof. Let $f \in \Omega$ be *n*-ary, and let *T* be the set of true points of *f*. Let *g* be the 2*n*-ary function whose set of true points is $\{(\mathbf{a}, \overline{\mathbf{a}}) \in \mathbb{B}^{2n} : \mathbf{a} \in T\} \cup \{\mathbf{1}\}$. For all $\mathbf{a} \in \mathbb{B}^n$, $f(\mathbf{a}) = g(\mathbf{a}, \overline{\mathbf{a}}) = g^{\mathbf{M}}(\mathbf{a}, \overline{\mathbf{a}})$, because the values of *g* remain unchanged in the antichain $\{(\mathbf{a}, \overline{\mathbf{a}}) \in \mathbb{B}^{2n} : \mathbf{a} \in \mathbb{B}^n\}$ when forming the monotone closure. Therefore, $f = g^{\mathbf{M}}(x_1, \ldots, x_n, \overline{x_1}, \ldots, \overline{x_n})$. Since $g^{\mathbf{M}} \in M_c$ and $x_i, \overline{x_i} \in I^*$, we conclude that $M_c \circ I^* = \Omega$. \Box

Proposition 10. $I^* \circ T_0 = \Omega$, $I^* \circ S_c = S$. Dually, $I^* \circ T_1 = \Omega$.

Proof. Let $f \in \Omega$. If $f \in T_0$, then clearly $f \in I^* \circ T_0$. If $f \notin T_0$, then $\overline{f} \in T_0$, and so $f = \overline{\overline{f}}$. Because $\overline{x_1} \in I^*$, we have that $I^* \circ T_0 = \Omega$.

Let then $f \in S$. If $f \in S_c$, then clearly $f \in I^* \circ S_c$. If $f \notin S_c$, then $\overline{f} \in S_c$, and we conclude that $f \in I^* \circ S_c$ also in this case. Thus, $I^* \circ S_c = S$. \Box

Proposition 11. $I^* \circ L_0 = L_0 \circ I^* = L$, $L_0 \circ I_1 = L$, $LS \circ I_0 = L$. Dually, $I^* \circ L_1 = L_1 \circ I^* = L$, $L_1 \circ I_0 = L$, $LS \circ I_1 = L$.

Proof. Let $f = a_0 \mathbf{1} + a_1 x_1 + \dots + a_n x_n \in L$. If $a_0 = 0$, then $f \in L_0$, and so $f \in I^* \circ L_0$, $f \in L_0 \circ I^*$, and $f \in L_0 \circ I_1$. If $a_0 = 1$, then $\overline{f} \in L_0$, and so $f = \overline{\overline{f}} \in I^* \circ L_0$. Furthermore, the (n+2)-ary function $f_1 = a_1 x_1 + \dots + a_n x_n + x_{n+1} + x_{n+2}$ is in L_0 , and $f = f_1(x_1, \dots, x_n, x_1, \overline{x_1}) \in L_0 \circ I^*$. Also the (n+1)-ary function $f_2 = a_1 x_1 + \dots + a_n x_n + x_{n+1}$ is in L_0 , and $f = f_2(x_1, \dots, x_n, \mathbf{1}) \in L_0 \circ I_1$. Hence, $I^* \circ L_0 = L$, $L_0 \circ I^* = L$, and $L_0 \circ I_1 = L$.

If an odd number of the coefficients a_i , $i \ge 1$, are equal to 1, then $f \in LS$. Otherwise, the (n + 1)-ary function $f_3 = a_0 \mathbf{1} + a_1 x_1 + \dots + a_n x_n + x_{n+1}$ is in LS and $f = f_3(x_1, \dots, x_n, \mathbf{0}) \in LS \circ I_0$. Thus, $LS \circ I_0 = L$. \Box

Proposition 12. $I_0 \circ M_c = M_0$, $I \circ M_c = M$, $I_0 \circ M_1 = M$, $I_0 \circ A_c = A_0$, $I_1 \circ A_c = A_1$, $I \circ A_c = A$, $I_0 \circ A_1 = A$, $I_1 \circ A_0 = A$. For $m = 2, ..., \infty$, $I_0 \circ M_c U_m = M U_m$. Dually, $I_1 \circ M_c = M_1$, $I_1 \circ M_0 = M$, $I_1 \circ V_c = V_1$, $I_0 \circ V_c = V_0$, $I \circ V_c = V$, $I_1 \circ V_0 = V$, $I_0 \circ V_1 = V$. For $m = 2, ..., \infty$, $I_1 \circ M_c W_m = M W_m$.

Proof. The first eight equalities follow by the definition of the clones M_c , M_0 , M, Λ_c , Λ_0 , Λ_1 , Λ and the fact that for any class \mathscr{C} of functions, $I_0 \circ \mathscr{C} = \mathscr{C} \cup [\mathbf{0}]$, $I_1 \circ \mathscr{C} = \mathscr{C} \cup [\mathbf{1}]$, and $I \circ \mathscr{C} = \mathscr{C} \cup [\mathbf{0}, \mathbf{1}]$. We also observe that for $m = 2, ..., \infty$,

$$I_0 \circ M_c U_m = M_c U_m \cup [\mathbf{0}] = (M_c \cap U_m) \cup [\mathbf{0}] = M_0 \cap U_m = M \cap U_m = M U_m$$

where the penultimate equality holds because $\mathbf{1} \notin U_m$. \Box

Proposition 13. $M_{c} \circ I_{0} = M_{0}, M_{c} \circ I = M, M_{0} \circ I_{1} = M, \Lambda_{c} \circ I_{0} = \Lambda_{0}, \Lambda_{c} \circ I_{1} = \Lambda_{1}, \Lambda_{c} \circ I = \Lambda, \Lambda_{0} \circ I_{1} = \Lambda, \Lambda_{1} \circ I_{0} = \Lambda$. For $m = 2, ..., \infty, M_{c}U_{m} \circ I_{0} = MU_{m}$. Dually, $M_{c} \circ I_{1} = M_{1}, M_{1} \circ I_{0} = M, V_{c} \circ I_{1} = V_{1}, V_{c} \circ I_{0} = V_{0}, V_{c} \circ I = V, V_{1} \circ I_{0} = V, V_{0} \circ I_{1} = V$. For $m = 2, ..., \infty, M_{c}W_{m} \circ I_{1} = MW_{m}$.

Proof. By definition, $M_0 \setminus M_c = [0]$, $M \setminus M_c = [0, 1]$, $M \setminus M_0 = [1]$, $\Lambda_0 \setminus \Lambda_c = [0]$, $\Lambda_1 \setminus \Lambda_c = [1]$, $\Lambda \setminus \Lambda_c = [0, 1]$, $\Lambda \setminus \Lambda_0 = [1]$, $\Lambda \setminus \Lambda_1 = [0]$. Also, by the observation in the proof of Proposition 12, $MU_m \setminus M_cU_m = [0]$. The constant functions can be obtained by composing x_1 with $0 \in I_0$, I, $1 \in I_1$, I. \Box

Proposition 14. $SM \circ V_c = V_c \circ SM = M_c W_2$. Dually, $SM \circ A_c = A_c \circ SM = M_c U_2$.

Proof. Since the functions μ and $x_1 \vee x_2$ generate *SM* and V_c , respectively, and

 $\mu(x \lor y, a, b) = \mu(x, a, b) \lor \mu(y, a, b),$

 $\mu(x, y, z) \lor a = \mu(x \lor a, y \lor a, z \lor a),$

it follows from Theorem 1 that $V_c \circ SM$ and $SM \circ V_c$ are clones, and hence they are equal to $M_c W_2$.

Proposition 15. $L_c \circ SM = SM \circ L_c = S_c$.

Proof. The functions μ and τ are generators of SM and L_c , respectively, and

$$\mu(\tau(x, y, z), a, b) = \tau(\mu(x, a, b), \mu(y, a, b), \mu(z, a, b)),$$

$$\tau(\mu(x, y, z), a, b) = \mu(\tau(x, a, b), \tau(y, a, b), \tau(z, a, b)).$$

Theorem 1 implies that $L_c \circ SM$ and $SM \circ L_c$ are clones. Hence, $L_c \circ SM = SM \circ L_c = S_c$. \Box

Proposition 16. $SM \circ I^* = S$.

Proof. The functions $\overline{x_1}$ and μ are generators of I^* and SM, respectively, and $\overline{\mu(x, y, z)} = \mu(\overline{x}, \overline{y}, \overline{z})$. Theorem 1 implies that $SM \circ I^*$ is a clone. Hence, $SM \circ I^* = S$. \Box

Proposition 17. $SM \circ T_c U_{\infty} = T_c U_{\infty} \circ SM = T_c U_2$. Dually, $SM \circ T_c W_{\infty} = T_c W_{\infty} \circ SM = T_c W_2$.

Proof. The functions μ and $x_1(x_2 \vee \overline{x_3})$ are generators of SM and $T_c U_{\infty}$, respectively. We have that

$$\mu(x, y, z)(a \lor \overline{b}) = \mu(x(a \lor \overline{b}), y(a \lor \overline{b}), z(a \lor \overline{b})),$$

$$a(\mu(x, y, z) \lor \overline{b}) = \mu(a(x \lor \overline{b}), a(y \lor \overline{b}), a(z \lor \overline{b})),$$

$$a(b \lor \overline{\mu(x, y, z)}) = \mu(a(b \lor \overline{x}), a(b \lor \overline{y}), a(b \lor \overline{z})).$$

Theorem 1 implies that $SM \circ T_c U_{\infty}$ is a clone.

We observe that for any function g, $\mu(xg(\mathbf{a}), y, z) = \mu(x, y, z)\mu(g(\mathbf{a}), y, z)$ and $\mu(g, x_i, x_j) \in T_1$ for any variables x_i, x_j . In particular, $\mu(x(y \lor \overline{z}), a, b) = \mu(x, a, b)\mu(y \lor \overline{z}, a, b)$. If $f \in T_1$, then $x_i \land f \in T_c U_\infty$ for any variable x_i , and so we conclude that $[\mu, x_1] \circ [x_1(x_2 \lor \overline{x_3}), x_1] \subseteq T_c U_\infty \circ [\mu, x_1]$. Theorem 1 implies that $T_c U_\infty \circ SM$ is a clone. \Box

Proposition 18. $M_c \circ L_c = T_c$.

Proof. The clone L_c is generated by τ , and the functions $x_1 \lor x_2$ and $x_1 \land x_2$ generate M_c . We have that

 $\tau(a \lor b, c, d) = (a \land \tau(a, b, c)) \lor (b \land \tau(b, c, d)) \lor (\tau(a, c, d) \land \tau(b, c, d)),$

 $\tau(a \wedge b, c, d) = (a \vee \tau(a, c, d)) \wedge (b \vee \tau(b, c, d)) \wedge (\tau(a, c, d) \vee \tau(b, c, d)).$

Theorem 1 implies that $M_c \circ L_c$ is a clone, and it must be T_c . \Box

Proposition 19. $M_c U_{\infty} \circ L_1 = T_1$. Dually, $M_c W_{\infty} \circ L_0 = T_0$.

Proof. Let l_1, \ldots, l_m be the $m = 2^n n$ -ary functions of L_1 in any fixed order. Define the function $\lambda : \mathbb{B}^n \to \mathbb{B}^m$ as $\lambda(\mathbf{v}) = (l_1(\mathbf{v}), \ldots, l_m(\mathbf{v}))$. If $\mathbf{a}, \mathbf{b} \in \mathbb{B}^n$ are incomparable, then $\lambda(\mathbf{a}), \lambda(\mathbf{b}) \in \mathbb{B}^m$ are incomparable as well, because all projections are in L_1 . If $\mathbf{a} \prec \mathbf{b} \prec \mathbf{1}$, then there are integers $i, j \in \{1, \ldots, n\}$ such that $a_i = b_i = 0, a_j = 0, b_j = 1$. Consider the *n*-ary functions $\phi_1 = x_j, \phi_2 = x_i + x_j + \mathbf{1}$. We have that $\phi_1, \phi_2 \in L_1$, and $\phi_1(\mathbf{a}) = 0, \phi_1(\mathbf{b}) = 1, \phi_2(\mathbf{a}) = 1, \phi_2(\mathbf{b}) = 0$, so $\lambda(\mathbf{a})$ and $\lambda(\mathbf{b})$ are incomparable also in this case. We conclude that the range of λ consists of an antichain A and $\lambda(\mathbf{1}) = \mathbf{1}$.

Let $f \in T_1$ be *n*-ary. Let *h* be the (m + 1)-ary function for which $h(\mathbf{w}) = 1$ if and only if there is an *n*-vector **v** with $f(\mathbf{v}) = 1$ and $\lambda(\mathbf{v}) = \mathbf{w}$. We see that $f(\mathbf{v}) = h(\lambda(\mathbf{v})) = h^{M}(\lambda(\mathbf{v}))$. In any true vector of *h*, the coordinate corresponding to the constant function **1** equals 1 by definition, and the same holds for h^{M} , so we have that $h^{M} \in U_{\infty}$. Because $f \in T_1$, we also have that $h^{M} \in M_c$.

Therefore $f = h^{M}(l_1, \ldots, l_m)$, where $h^{M} \in M_c U_{\infty}$ and $l_1, \ldots, l_m \in L_1$, so we conclude that $M_c U_{\infty} \circ L_1 = T_1$. \Box

Proposition 20. $A_0 \circ SM = MU_2$, $SM \circ A_1 = M_1$. Dually, $V_1 \circ SM = MW_2$, $SM \circ V_0 = M_0$.

Proof. It follows from Propositions 2, 12–14 that

$$\Lambda_0 \circ SM = I_0 \circ \Lambda_c \circ SM = I_0 \circ M_c U_2 = M U_2,$$

$$SM \circ \Lambda_1 = SM \circ \Lambda_c \circ I_1 = M_c U_2 \circ I_1 = M_1.$$

Proposition 21. $SM \circ I_0 = MU_2$, $SM \circ I = M$. Dually, $SM \circ I_1 = MW_2$.

Proof. By setting n-1 variables to 0 in the majority function of arity 2n-1, we get the *n*-ary conjunction; and by setting all variables to 0, we get the constant function **0**. Therefore, $\Lambda_0 \subseteq SM \circ I_0$, so $SM \circ \Lambda_0 \subseteq SM \circ SM \circ I_0 = SM \circ I_0$. Since $I_0 \subseteq \Lambda_0$, we also have that $SM \circ I_0 \subseteq SM \circ \Lambda_0$. Thus, $SM \circ I_0 = SM \circ \Lambda_0 = MU_2$, by Proposition 20. By a similar argument, we can also show that $SM \circ I = M$. \Box

Proposition 22. For $m = 2, ..., \infty$, $T_c U_{\infty} \circ M U_m = U_m$, $U_{\infty} \circ M_c U_m = M_c U_m \circ U_{\infty} = U_m$ and, dually, $T_c W_{\infty} \circ M W_m = W_m$, $W_{\infty} \circ M_c W_m = M_c W_m \circ W_{\infty} = W_m$.

Proof. By Propositions 3, 5, 6, 12 and 13, we have that

$$T_{c}U_{\infty} \circ MU_{m} = T_{c}U_{\infty} \circ M_{c}U_{m} \circ I_{0} = T_{c}U_{m} \circ I_{0} = U_{m},$$

$$U_{\infty} \circ M_{c}U_{m} = T_{c}U_{\infty} \circ I_{0} \circ M_{c}U_{m} = T_{c}U_{\infty} \circ MU_{m} = U_{m},$$

$$M_{c}U_{m} \circ U_{\infty} = M_{c}U_{m} \circ T_{c}U_{\infty} \circ I_{0} = T_{c}U_{m} \circ I_{0} = U_{m}.$$

Proposition 23. $L \circ \Lambda_c = L_0 \circ \Lambda_1 = L_1 \circ \Lambda_0 = \Omega$. Dually, $L \circ V_c = L_1 \circ V_0 = L_0 \circ V_1 = \Omega$.

Proof. From the Zhegalkin polynomial representation and Propositions 1, 12 and 13, it follows that

$$\Omega = L_{c} \circ \Lambda = L_{c} \circ I \circ \Lambda_{c} = L \circ \Lambda_{c}$$
$$= L_{c} \circ I_{0} \circ I_{1} \circ \Lambda_{c} = L_{0} \circ \Lambda_{1}$$
$$= L_{c} \circ I_{1} \circ I_{0} \circ \Lambda_{c} = L_{1} \circ \Lambda_{0}.$$

Proposition 24. $L_c \circ A_c = T_c$, $L_c \circ A_0 = T_0$, $L_c \circ A_1 = T_1$, $L_0 \circ A_c = T_0$, $L_1 \circ A_c = T_1$, $LS \circ A_0 = \Omega$, $LS \circ A_1 = \Omega$. *Dually*, $L_c \circ V_c = T_c$, $L_c \circ V_1 = T_1$, $L_c \circ V_0 = T_0$, $L_1 \circ V_c = T_1$, $L_0 \circ V_c = T_0$, $LS \circ V_1 = \Omega$, $LS \circ V_0 = \Omega$.

Proof. If $f \in T_c$, then there is no constant term in the Zhegalkin polynomial of f, so in fact $f = g(h_1, \ldots, h_n)$, where $g \in L_c$ and $h_i \in \Lambda_c$ $(i = 1, \ldots, n)$, so $L_c \circ \Lambda_c = T_c$.

By Propositions 2 and 13 and the equality established above, we also have that

$$L_{c} \circ \Lambda_{0} = L_{c} \circ \Lambda_{c} \circ I_{0} = T_{c} \circ I_{0} = T_{0},$$
$$L_{c} \circ \Lambda_{1} = L_{c} \circ \Lambda_{c} \circ I_{1} = T_{c} \circ I_{1} = T_{1}.$$

Furthermore, by applying these equalities and Propositions 1, 10 and 12, we have

$$L_0 \circ A_c = L_c \circ I_0 \circ A_c = L_c \circ A_0 = T_0,$$

$$L_1 \circ A_c = L_c \circ I_1 \circ A_c = L_c \circ A_1 = T_1,$$

$$LS \circ A_0 = I^* \circ L_c \circ A_0 = I^* \circ T_0 = \Omega,$$

$$LS \circ A_1 = I^* \circ L_c \circ A_1 = I^* \circ T_1 = \Omega.$$

Proposition 25. $SM \circ \Omega(1) = \Omega$, $SM \circ U_{\infty} = U_{\infty} \circ SM = U_2$, $LS \circ SM = S$, $S_c \circ I_0 = T_0$, $SM \circ L_0 = T_0$. Dually, $SM \circ W_{\infty} = W_{\infty} \circ SM = W_2$, $S_c \circ I_1 = T_1$, $SM \circ L_1 = T_1$.

Proof. It follows from Propositions 1, 6, 10, 15, 17, 20-22 and 24 that

 $SM \circ \Omega(1) = SM \circ I \circ I^* = M \circ I^* = \Omega,$ $SM \circ U_{\infty} = SM \circ T_c U_{\infty} \circ I_0 = T_c U_2 \circ I_0 = U_2,$ $U_{\infty} \circ SM = T_c U_{\infty} \circ \Lambda_0 \circ SM = T_c U_{\infty} \circ M U_2 = U_2,$ $LS \circ SM = I^* \circ L_c \circ SM = I^* \circ S_c = S,$ $S_c \circ I_0 = L_c \circ SM \circ I_0 = L_c \circ M U_2 = T_0,$ $SM \circ L_0 = SM \circ L_c \circ I_0 = S_c \circ I_0 = T_0.$

For the very last equality, we applied one of the previously established equalities. \Box

Proposition 26. $V_0 \circ A_1 = M$, $V_1 \circ A_0 = M$, $V_c \circ A_0 = M_0$, $V_c \circ A_1 = M_1$, $V_0 \circ A_c = M_0$, $V_1 \circ A_c = M_1$, $V_c \circ A = M$, $V \circ A_c = M$. *Dually*, $A_1 \circ V_0 = M$, $A_0 \circ V_1 = M$, $A_c \circ V_1 = M_1$, $A_c \circ V_0 = M_0$, $A_1 \circ V_c = M_1$, $A_0 \circ V_c = M_0$, $A_c \circ V = M$, $A \circ V_c = M$.

Proof. From the fact that $V_c \circ \Lambda_c = M_c$ and Propositions 12 and 13, it follows that

$$\begin{split} V_0 \circ A_1 &= I_0 \circ V_c \circ A_c \circ I_1 = I_0 \circ M_c \circ I_1 = M_0 \circ I_1 = M, \\ V_1 \circ A_0 &= I_1 \circ V_c \circ A_c \circ I_0 = I_1 \circ M_c \circ I_0 = M_1 \circ I_0 = M, \\ V_c \circ A_0 &= V_c \circ A_c \circ I_0 = M_c \circ I_0 = M_0, \\ V_c \circ A_1 &= V_c \circ A_c \circ I_1 = M_c \circ I_1 = M_1, \\ V_0 \circ A_c &= I_0 \circ V_c \circ A_c = I_0 \circ M_c = M_0, \\ V_1 \circ A_c &= I_1 \circ V_c \circ A_c = I_1 \circ M_c = M_1, \\ V_c \circ A &= V_c \circ A_c \circ I = M_c \circ I = M, \\ V \circ A_c &= I \circ V_c \circ A_c = I \circ M_c = M. \end{split}$$

Proposition 27. $T_cU_{\infty} \circ I = \Omega$, $M_cU_{\infty} \circ I = M$, $T_cU_{\infty} \circ V_0 = T_0$, $M_cU_{\infty} \circ \Omega(1) = \Omega$. Dually, $T_cW_{\infty} \circ I = \Omega$, $M_cW_{\infty} \circ I = M$, $T_cW_{\infty} \circ \Lambda_1 = T_1$, $M_cW_{\infty} \circ \Omega(1) = \Omega$.

Proof. It follows from Propositions 1, 2, 9 and 13 that

$$\begin{split} T_{c}U_{\infty} \circ I &= T_{c}U_{\infty} \circ I_{1} \circ I_{0} = T_{1} \circ I_{0} = \Omega, \\ M_{c}U_{\infty} \circ I &= M_{c}U_{\infty} \circ I_{1} \circ I_{0} = M_{1} \circ I_{0} = M, \\ T_{c}U_{\infty} \circ V_{0} &= T_{c}U_{\infty} \circ V_{c} \circ I_{0} = T_{c} \circ I_{0} = T_{0}, \\ M_{c}U_{\infty} \circ \Omega(1) &= M_{c}U_{\infty} \circ I_{1} \circ I_{0} \circ I^{*} = M_{1} \circ I_{0} \circ I^{*} = M \circ I^{*} = \Omega. \end{split}$$

Some of these composition results were presented without proof in [5].

3.2. Cases when the composition of clones is not a clone

Proposition 28. $I_0 \circ I^* = I^* \cup [\mathbf{0}], I_1 \circ I^* = I^* \cup [\mathbf{1}], I \circ L_0 = L_0 \cup [\mathbf{1}], I \circ L_1 = L_1 \cup [\mathbf{0}], \Omega(1) \circ LS = LS \cup [\mathbf{0}, \mathbf{1}];$ *these are not clones.*

Proof. Straightforward verification. \Box

Proposition 29. $\Omega(1) \circ M \neq \Omega, \Omega(1) \circ T_c \neq \Omega, I_0 \circ T_c \neq T_0, I_0 \circ L_c \neq L_0, I^* \circ SM \neq S.$ For $m = 2, ..., \infty$, $I_0 \circ T_c U_m \neq U_m$. (But $\Omega(1) \lor M = \Omega, \Omega(1) \lor T_c = \Omega, I_0 \lor T_c = T_0, I_0 \lor L_c = L_0, I^* \lor SM = S, I_0 \lor T_c U_m = U_m$.) Dually, $I_1 \circ T_c \neq T_1, I_1 \circ L_c \neq L_1$, For $m = 2, ..., \infty, I_1 \circ T_c W_m \neq W_m$.

Proof. The function $x_1 + x_2 \in L_0$ is not constant, monotone, the negation of a monotone function, constant-preserving, nor the negation of a constant-preserving function. Therefore, $\Omega(1) \circ M \neq \Omega$, $\Omega(1) \circ T_c \neq \Omega$, $I_0 \circ T_c \neq T_0$, $I_0 \circ L_c \neq L_0$.

The function $x_1 + x_2 + x_3 \in S$ is not monotone nor the negation of a monotone self-dual function. Therefore, $I^* \circ SM \neq S$.

The function $(x_1 + x_2)x_3 \in U_m$, for any $m = 2, ..., \infty$, is not constant-preserving nor **0**. Therefore, $I_0 \circ T_c U_m \neq U_m$. \Box

Proposition 30. $M \circ T_0 \neq \Omega$ (but $M \lor T_0 = \Omega$). Dually, $M \circ T_1 \neq \Omega$.

Proof. The only unary functions in T_0 are **0** and x_1 . These are monotone, so any function in M composed with unary functions in T_0 will be in M. Thus, $\overline{x_1} \notin M \circ T_0$, and so $M \circ T_0 \neq \Omega$. \Box

Proposition 31. $L \circ S \neq \Omega$ (*but* $L \lor S = \Omega$).

Proof. The binary self-dual functions are variables and negations of variables. These are linear, so $L \circ S \neq \Omega$.

Proposition 32. $I_0 \circ SM \neq MU_2$, $I_0 \circ S_c \neq T_0$ (but $I_0 \vee SM = MU_2$, $I_0 \vee S_c = T_0$). Dually, $I_1 \circ SM \neq MW_2$, $I_1 \circ S_c \neq T_1$.

Proof. Since in the chains $SM \subset M_cU_2 \subset MU_2$, $S_c \subset T_c \subset T_0$ all subset inclusions are proper, we must have that $I_0 \circ SM = SM \cup [\mathbf{0}] \neq MU_2$, $I_0 \circ S_c = S_c \cup [\mathbf{0}] \neq T_0$. \Box

Proposition 33. $S \circ T_c \neq \Omega$ (but $S \lor T_c = \Omega$).

Proof. Let $f \in S$ be *n*-ary, and let $g_1, \ldots, g_n \in T_c$ be *m*-ary. Now $f(\mathbf{0}) \neq f(\mathbf{1})$ and for all $i = 1, \ldots, n, g_i(\mathbf{0}) = 0$, $g_i(\mathbf{1}) = 1$, so we have that

 $f(g_1(\mathbf{0}), \ldots, g_n(\mathbf{0})) = f(\mathbf{0}) \neq f(\mathbf{1}) = f(g_1(\mathbf{1}), \ldots, g_n(\mathbf{1})).$

Therefore, there are functions that are not in $S \circ T_c$, e.g., all constant functions. \Box

Proposition 34. $U_2 \circ I^* \neq \Omega$ (but $U_2 \vee I^* = \Omega$). Dually, $W_2 \circ I^* \neq \Omega$.

Proof. We show that $1 \notin U_2 \circ I^*$. Let $f \in U_2$ be *m*-ary and let $g_1, \ldots, g_m \in I^*$ be *n*-ary variables or negations of variables. Then

$$f(g_1(\mathbf{0}),\ldots,g_n(\mathbf{0}))=f(a_1,\ldots,a_n),$$

$$f(g_1(\mathbf{1}),\ldots,g_n(\mathbf{1}))=f(\overline{a_1},\ldots,\overline{a_n})$$

cannot both be equal to 1, because $(a_1, \ldots, a_n) \land (\overline{a_1}, \ldots, \overline{a_n}) = 0$. Therefore, $f(g_1, \ldots, g_n) \neq 1$, and so $U_2 \circ I^* \neq \Omega$. \Box

Proposition 35. $U_2 \circ S \neq \Omega$ (but $U_2 \vee S = \Omega$). Dually, $W_2 \circ S \neq \Omega$.

Proof. The unary constant function 1 is not in $U_2 \circ S$: there cannot exist unary $s_1, \ldots, s_n \in S$ and $f \in U_2$ such that $f(s_1, \ldots, s_n) = 1$, because the unary functions in S are exactly those in I^* , and for every function $f \in U_2$ it holds that if $f(\mathbf{a}) = 1$, then $f(\overline{\mathbf{a}}) = 0$. Hence, $U_2 \circ S \neq \Omega$. \Box

Proposition 36. $\Lambda \circ L \neq \Omega$, $\Lambda_0 \circ L_0 \neq T_0$, $\Lambda_1 \circ L_1 \neq T_1$, $\Lambda \circ S \neq \Omega$ (but $\Lambda \lor L = \Omega$, $\Lambda_0 \lor L_0 = T_0$, $\Lambda_1 \lor L_1 = T_1$, $\Lambda \lor S = \Omega$). Dually, $V \circ L \neq \Omega$, $V_1 \circ L_1 \neq T_1$, $V_0 \circ L_0 \neq T_0$, $V \circ S \neq \Omega$.

Proof. Consider the 4-ary function $\phi = x_1x_2 + x_3x_4$. We show that $\phi \notin \Lambda \circ L$. Assume, on the contrary, that there exists an *n*-ary function $f \in \Lambda$ and quaternary functions $g_1, \ldots, g_n \in L$ such that $\phi = f(g_1, \ldots, g_n)$. Since ϕ is not a constant function, f is not a constant function but rather a conjunction. We can assume, without loss of generality, that $f = x_1 \wedge \cdots \wedge x_n$.

Therefore, if for some $\mathbf{a} = (a_1, a_2, a_3, a_4)$, $\phi(\mathbf{a}) = 1$, then for all $1 \le i \le n$, $g_i(\mathbf{a}) = 1$. Also, if $\phi(\mathbf{a}) = 0$, then for some $1 \le i \le n$, $g_i(\mathbf{a}) = 0$. It follows that there exists $i \in \{1, ..., n\}$ such that $g_i(1, 1, 0, 0) = g_i(1, 1, 0, 1) = g_i(1, 1, 1, 0) = 1$, $g_i(1, 1, 1, 1) = 0$. But we see that it is not possible that g_i be linear, a contradiction. Hence, $A \circ L \neq \Omega$.

We note also that $\phi \in T_0$ and $\overline{\phi} \in T_1$. A similar argument shows that $\phi \notin \Lambda_0 \circ L_0$ and $\phi \notin \Lambda_1 \circ L_1$. Hence, $\Lambda_0 \circ L_0 \neq T_0$ and $\Lambda_1 \circ L_1 \neq T_1$.

A similar argument shows also that $\phi \notin A \circ S$. Assume, on the contrary, that there exists an *n*-ary function $f \in A$ and quaternary functions $g_1, \ldots, g_n \in S$ such that $\phi = f(g_1, \ldots, g_n)$. We conclude that there exists a self-dual function g_i such that $g_i(0, 0, 0, 0) = g_i(1, 1, 1, 1) = 0$, a contradiction. Hence, $A \circ S \neq \Omega$.

Proposition 37. $U_3 \circ L_0 \neq T_0$ (but $U_3 \lor L_0 = T_0$). Dually, $W_3 \circ L_1 \neq T_1$.

Proof. Consider the binary function $\phi = x_1 \lor x_2$. We see that $\phi \in T_0$ but $\phi \notin U_3$, L_0 . Suppose, on the contrary, that $U_3 \circ L_0 = T_0$. Then $\phi = f(g_1, \ldots, g_m)$, where $f \in U_3$ is *m*-ary for some *m* and $g_1, \ldots, g_m \in L_0$ are binary. The binary functions in L_0 are $\mathbf{0}, x_1, x_2, x_1 + x_2$. With some identification of variables, permutation of variables, and addition of inessential variables, we can assume that *f* is 4-ary and $g_1 = \mathbf{0}, g_2 = x_1, g_3 = x_2, g_4 = x_1 + x_2$. Then we have that

$$\begin{split} 0 &= \phi(0,0) = f(g_1,g_2,g_3,g_4)(0,0) = f(0,0,0,0), \\ 1 &= \phi(0,1) = f(g_1,g_2,g_3,g_4)(0,1) = f(0,0,1,1), \\ 1 &= \phi(1,0) = f(g_1,g_2,g_3,g_4)(1,0) = f(0,1,0,1), \\ 1 &= \phi(1,1) = f(g_1,g_2,g_3,g_4)(1,1) = f(0,1,1,0). \end{split}$$

But now $(0, 0, 1, 1) \land (0, 1, 0, 1) \land (0, 1, 1, 0) = (0, 0, 0, 0)$, a contradiction with the fact that $f \in U_3$ and so the set $\{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)\}$ should be 1-separating. \Box

Proposition 38. $T_cU_2 \circ S_c \neq T_c$ (but $T_cU_2 \vee S_c = T_c$). Dually, $T_cW_2 \circ S_c \neq T_c$.

Proof. Consider the binary function $\phi = x_1 \lor x_2$. We see that $\phi \in T_c$ but $\phi \notin T_c U_2$, S_c . The binary functions in S_c are just variables, but these are also in $T_c U_2$, so a composition of any function in $T_c U_2$ with binary functions in S_c belongs to $T_c U_2$. Therefore, we conclude that $\phi \notin T_c U_2 \circ S_c$. Thus $T_c U_2 \circ S_c \neq T_c$. \Box

Proposition 39. If \mathscr{C} is a proper subclone of T_0 or T_1 , then $\Omega(1) \circ \mathscr{C} \neq \Omega$.

Proof. Since for every function f either $f \in T_0$ or $\overline{f} \in T_0$, $\{T_0, \overline{T_0}\}$ is a partition of Ω (we denote $\overline{\mathscr{C}} = \{f : \overline{f} \in \mathscr{C}\}$), and so for any proper subset \mathscr{C} of T_0 , we have that $\mathscr{C} \cup \overline{\mathscr{C}} \neq \Omega$. If \mathscr{C} is in addition a clone, then there are several non-constant functions that are in T_0 but not in \mathscr{C} , so it is easily seen that $\Omega(1) \circ \mathscr{C} = \mathscr{C} \cup \overline{\mathscr{C}} \cup [0, 1] \neq \Omega$.

Similarly, we can prove that if \mathscr{C} is a proper subclone of T_1 , then $\Omega(1) \circ \mathscr{C} \neq \Omega$. \Box

Proposition 39 implies in particular that $\Omega(1) \circ T_c$, $\Omega(1) \circ M_0$, $\Omega(1) \circ M_1$, $\Omega(1) \circ U_2$, $\Omega(1) \circ W_2$ are not clones.

Proposition 40. If \mathscr{C} is a proper subclone of M and $\mathscr{C} \neq M_0$, M_1 , M_c , then $I \circ \mathscr{C} \neq M$. If \mathscr{C} is a proper subclone of M_0 and $\mathscr{C} \neq M_c$, then $I_0 \circ \mathscr{C} \neq M_0$.

Proof. The equality $I \circ \mathscr{C} = \mathscr{C} \cup [0, 1] = M$ holds only if $\mathscr{C} \in \{M, M_0, M_1, M_c\}$. The equality $I_0 \circ \mathscr{C} = \mathscr{C} \cup [0] = M_0$ holds only if $\mathscr{C} \in \{M_0, M_c\}$. \Box

Proposition 40 implies in particular that $I \circ MU_2$, $I_1 \circ M_cU_2$ are not clones. Dually, $I \circ MW_2$, $I_0 \circ M_cW_2$ are not clones.

Proposition 41. $\Lambda_1 \circ M_c U_2 \neq M_1$, $\Lambda \circ MU_2 \neq M$, $M_0 \circ T_c \neq T_0$. For $n = 2, ..., \infty$, $MU_n \circ T_c U_n \neq U_n$. (But $\Lambda_1 \lor M_c U_2 = M_1$, $\Lambda \lor MU_2 = M$, $M_0 \lor T_c = T_0$, $MU_n \lor T_c U_n = U_n$.) Dually, $V_0 \circ M_c W_2 \neq M_0$, $V \circ MW_2 \neq M$, $M_1 \circ T_c \neq T_1$. For $n = 2, ..., \infty$, $MW_n \circ T_c W_n \neq W_n$.

Proof. By Proposition 12, we have that

$$\begin{split} \Lambda_1 \circ M_c U_2 &= I_1 \circ \Lambda_c \circ M_c U_2 = I_1 \circ M_c U_2 \neq M_1, \\ \Lambda \circ M U_2 &= I \circ \Lambda_c \circ M U_2 = I \circ M U_2 \neq M, \\ M_0 \circ T_c &= I_0 \circ M_c \circ T_c = I_0 \circ T_c \neq T_0, \\ M U_n \circ T_c U_n &= I_0 \circ M_c U_n \circ T_c U_n = I_0 \circ T_c U_n \neq U_n. \end{split}$$

The inequalities follow from Propositions 29 and 40. \Box

Proposition 42. $L_0 \circ S_c \neq T_0$, $U_2 \circ S_c \neq T_0$, $\Lambda_c \circ S_c \neq T_c$, $T_cU_3 \circ L_c \neq T_c$ (but $L_0 \lor S_c = T_0$, $U_2 \lor S_c = T_0$, $\Lambda_c \lor S_c = T_c$, $T_cU_3 \lor L_c = T_c$). Dually, $L_1 \circ S_c \neq T_1$, $W_2 \circ S_c \neq T_1$, $V_c \circ S_c \neq T_c$, $T_cW_3 \circ L_c \neq T_c$.

Proof. Suppose, on the contrary, that $L_0 \circ S_c = T_0$, $U_2 \circ S_c = T_0$, $\Lambda_c \circ S_c = T_c$, or $T_c U_3 \circ L_c = T_c$. It follows from Propositions 1, 2, 9–11, 16, 31, 35–37 that

$$\begin{aligned} \Omega \neq L \circ S_{c} &= I^{*} \circ L_{0} \circ S_{c} = I^{*} \circ T_{0} = \Omega, \\ \Omega \neq U_{2} \circ S &= U_{2} \circ S_{c} \circ I^{*} = T_{0} \circ I^{*} = \Omega, \\ \Omega \neq A_{c} \circ S &= A_{c} \circ S_{c} \circ I^{*} = T_{c} \circ I^{*} = \Omega, \\ T_{0} \neq T_{c}U_{3} \circ L_{0} &= T_{c}U_{3} \circ L_{c} \circ I_{0} = T_{c} \circ I_{0} = T_{0}. \end{aligned}$$

We have reached a contradiction in each case. \Box

3.3. Clone composition theorems

Based on the previous two sections, one can construct a clone composition table which indicates for all clones \mathscr{C}_1 , \mathscr{C}_2 whether the composition $\mathscr{C}_1 \mathscr{C}_2$ is a clone or not, see Table 1. The correctness of the table can be verified by drawing obvious consequences of each of the Propositions using the general rules of Section 2.

Theorem 2 summarizes the composition table. For each clone \mathscr{C} that is the composition of two proper subclones, Theorem 3 then gives the possible decompositions $\mathscr{C} = \mathscr{C}_1 \mathscr{C}_2$. The correctness of Theorems 2 and 3 can be verified making use of the clone composition table and the Post Lattice, and cross-checking. (Use of a coloured pencil and a photocopier recommended.)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \Omega \\ \Gamma_1 \\ $	$egin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \Omega \\ \Omega \\ \Omega \\ \Omega \\ M \end{array} \\ M \end{array}$	C C L L	$egin{array}{ccc} & \Omega & & \Omega & & & & & & & & & & & & & & $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 7 \\ 7 $		$\begin{array}{c} T_0 \\ 2 \\ 2 \\ T_0 \\ T_0 \\ M \\ $		$ \begin{array}{c} \Omega \\ T_1 \\ $		2		$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		2 70 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		$\begin{array}{c} T_1 \\ T_1 \\ [\Omega] \end{array}$		2		0 D D D D D D D D D D D D D D D D D D D			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		70 M M M M M M M M M M M M M	0	$ \begin{array}{c} \mathcal{I}_1\\ [\Omega]\\ [\Omega]\\ [\Omega]\\ [\Omega]\\ [\Omega]\\ [\Omega]\\ [\Omega]\\ [\Omega]$		2		$_{M}^{T_{0}}$	T_1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$M_0 = M_0 $		M M M M M M M M M M M M M M M M M M M	0	$ \begin{bmatrix} \Omega \\ \Pi \\$		5		Μ	W	ΩT_c	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} M \\ M $		M M M M M M M M M M M M M M M M M M M	6 1	$\begin{bmatrix} \Omega \\ 1 \end{bmatrix}$		2			INI	Ω M	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} M \\ M $		M M M M M M M M M M M M M M M M M M M	0	$\begin{array}{c} 7_1\\ & & \\ $		2		M_0	M	$\Omega = M_0$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & M_0 \\ & M_0 \\$		M0 20 20 20 20 20 20 20 20 20 20 20 20 20	0	$\begin{array}{c} T_1\\ \Omega\\ \Omega\\$		2		Μ	M_1	$\Omega = M_1$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$		2 T ₀ 2 2 2 2 2 2 2 2 2 2 2 2 2	0	$\begin{array}{c} \Omega \\ T_1 \\ W_2 \\ W_2 \\ \Omega \\ $		2		M_0	M_1	Ω M _C	c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T_0 \\ M_0 \\$		T ₀ MU2 MU2 MU MUn	0	$\begin{array}{c} T_1\\ W_2\\ W_2\\ \Omega\\ \Omega\\ \Omega\\ T_1\\ T_1\\ [\Omega] \end{array}$				\mathcal{O}	C	S S	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M_0		MU2 20 20 20 20 20 20 20 [M] MUn	61	$egin{array}{ccc} W_2 & & & & & & & & & & & & & & & & & & &$			Ω	T_0	T_1	S Sc	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \Omega \\ \Omega \\ M \\$		2 7 2 2 2 7 0 7 0 MUn		$\begin{array}{c} \Omega \\ \Omega $	0		M $\overline{\Omega}$	MU_2	MW_2	S SM	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M_0 M_0 M_0 M_0		$\begin{array}{c} T_0\\ \Omega\\ \Omega\\ MU_n\\ MU_n\end{array}$		$\begin{array}{c} \Omega \\ \Omega \\ \Gamma \\ \Omega \\ \Gamma \\ \Gamma \\ \Gamma \\ \Gamma \\ \Gamma \\ \Gamma \\$	20 20	\mathcal{O}	Г Г	Т	Г	L L	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$		2 2 [M] MUn		$\begin{array}{c} T_1\\ \Omega\\ I\\ \end{array}$	Ω T_0	T_0	T T	L_0	Г	$L = L_0$	~
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \Omega \\ 0 \\ M \\ 0 \\ 0$		Ω [M] MU _n		$\begin{array}{c} \Omega \\ \Pi \\ \Omega \end{array} \begin{bmatrix} T \\ \Omega \end{bmatrix}$	T_1 T_1	T_1	T T	Г	L_1	$L L_1$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0		T ₀ [M] MUn		$\begin{bmatrix} T_1 \\ [\Omega] \end{bmatrix}$	[ω] ω	$[\mho]$	T T	Г	Г	TS TS	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M M M		^u NM [M]		[2] [2]	T_1 T_c	$T_{\rm C}$	T T	L_0	L_1	LS LC	0
${\mathfrak a}$ T_0 $[{\mathfrak a}]$ $[T_0]$ ${\mathfrak M}$ ${\mathfrak M}_0$ ${\mathfrak M}$ ${\mathfrak M}_0$ $[{\mathfrak A}]$ $[T_0]$ ${\mathfrak M} U_2$ $[{\mathfrak a}]$ $[T_0]$ $[{\mathfrak A}]$ $[{\mathfrak A}]$ ${\mathfrak A}$ ${\mathfrak A}_0$ ${\mathfrak A}$ ${\mathfrak A}_0$	M_0		MUn		$[\mho]$	$[\Omega]$ W	Μ	V [\mathcal{O}]	V	Ł	V [7]	
	W					$M [T_0]$	$] M_0$	V [\mho]	40	V	$[\Omega] A_0$	0
$A_1 = \mathcal{Q} \left[\mathcal{Q} \right] T_1 \left[T_1 \right] M = M_1 M_1 \left[\mathcal{Q} \right] \left[T_1 \right] \left[\mathcal{M}_1 \right] \left[\mathcal{Q} \right] \left[\mathcal{Q} \right] \left[T_1 \right] \right] = M_1 = M_$	14.		[W]		T_1	$M_1 [T_1]$] M ₁	V [\mho]	V	^{1}V	V [ΰ]	_
$A_{\rm C} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$	I M 0 M M	$M_{\rm C}$ U_{n}	MU_n	T _c U _n M _c U _n	T_1	$M_1 T_c$	$M_{\rm C}$	V [\mho]	40	^{1}V	$[\Omega] \Lambda_{c}$	0
V 0. [2] [2] [2] [2] [3] [3] [3] [3] [4] [2] [3] [2] [4] W W W [2] [2] [4] [4] W W W [4] W	V V V	V [Ω]	Μ	W [\mho]] [ʊ]	$[\mathcal{O}]$ $[\mathcal{W}]$	[W]	V [Ω]	Λ	Λ	Ω] V	
$\Omega \ T_0 \ [\Omega] \ [T_0] \ M \ M_0 \ M \ M_0 \ [\Omega] \ [T_0] \ [M_0] \ [\Omega]$	$V V_0 V$	$V_0 T_0$	M_0 [$[T_0] M_0$] [ʊ]	$[M] [T_0]$		V [Ω]	V_0	Λ	$[\Omega] V_0$	_
$V_1 \qquad \ \ \Omega \ \ \left[\Omega \right] \ \ T_1 \ \ \left[T_1 \right] \ \ M \ \ M_1 \ \ M_1 \ \ \left[\Omega \right] \ \left[T_1 \right] \ \ MW_2 \ \ \left[\Omega \right] \ \ \left[T_1 \right] \ \ \left[\Omega \right] \ \ \left[T_1 \right] \ \ \left[\Omega \right] \ \ \left[T_1 \right] \ \ M \ \ M \ \ M \ \ M \ \ M \ \ $	<i>v v v</i> ₁	V_1 [Ω]	Μ	$[T_1]$ M_1	M_n	$MW_n \ [W_n]$	$n^{M}M_{n}$	$[\Omega]$ V	Λ	$V_{\rm I}$	[Ω] V ₁	
$V_{\rm C} \qquad \Omega \ T_0 \ T_1 \ T_{\rm c} M \ M_0 \ M_1 \ M_{\rm c} \ [\Omega] \ [T_{\rm c}] \ M_{\rm c} W_2 \ [\Omega] \ [T_0] \ [T_0] \ [T_1] \ [\Omega] \ [T_{\rm c}] \ M \ M_0 \ M_1 \ M_{\rm c} V$	$V V_0 V_1$	$V_{\rm C}$ T_0	M_0	$\Gamma_{\rm C}$ $M_{\rm C}$	M_n	$M W_n T_c W_n$	$V_n M_c W_n$	Λ [\mho]	V_0	V_1	[Ω] V _c	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$T_0 = U_p$	U_p	$U_p U_p$	C	Ω T_0		Ω	U_m	S	Ω] N	U_m
$MU_m \ \ \ \ \ \ \ \Omega T_0 \ \ \ \ \ \ \ \ \ \ \ \ \$	$M = M_0 M$	$M_0 = U_p$	MU_p	$[U_p] MU_p$	$[\Im]$	$M [T_0]$	$] M_0$	M M	MU_m	M	[Ω]	MU_m
$\label{eq:constraint} \Omega \ T_0 \ T_1 \ T_c \Omega \ T_0 \ T_1 \ T_c \Omega \ T_0 \ T_1 \ T_c \Omega \ T_0 \ T_1 \Omega \ T_0 \ T_1 \Omega \ T_0 \ $	Ω T_0 T_1	$T_{\rm C}$ U_{P}	U_{P}	$T_{c}U_{p} T_{c}U_{p}$	p T ₁ 1	T_1 T_c	$T_{\rm C}$	\mathcal{O}	U_m	T_1	[Ω] T _i	$T_{c}U_{m}$
$M_{c}U_{m} \ \ \mathcal{Q} \ \ T_{0} \ \ T_{1} \ \ T_{c} M \ \ M_{0} \ \ M_{1} \ \ M_{c} \ \ \left[\mathcal{Q} \right] \ \left[T_{c} \right] \ M_{c}U_{m} \ \ M \ \ \left[\mathcal{Q} \right] \ \left[T_{c} \right] \ \ M \ \ M U_{m} \ \ M_{1} \ \ M_{c}U_{m} \ \ M \ \ \ M \ \ M \ \ \ M \ \ \ M \ \ \ M \ \ \ M \ \ \ M \$	$M \ M_0 \ M_1$	$M_{\rm C}$ U_p	MU_p	$T_{c}U_{p} M_{c}U_{p}$	T_1	$M_1 T_c$	$M_{\rm C}$	M M	MU_m	M_1	[Ω]	$M_{c}U_{m}$
$T_1 T_1 \Omega \Omega T_1 T_1 [\Omega] [T_1] W_2 \Omega$	Ω Ω W_m	$W_m = \Omega$	Ω T	$_1$ T_1		$W_P = W_P$		\mathcal{O}	\mathcal{O}	W_m	И [7]	W_m
$MW_m \ \ \ \ \Omega \ \ [\Omega] \ \ T_1 \ \ [T_1] \ \ M \ \ M \ \ M_1 \ \ M_1 \ \ M_1 \ \ [\Omega] \ \ [T_1] \ \ MW_2 \ \ \Omega \ \ \ [Z_1] \ \ [Q] \ \ \ [T_1] \ \ M \ \ M \ \ M_1 \ \ \ M_1 \ \ \ M_1 \ \ M_1 \ \ \ M_1 \ \ \ M_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$M M M W_m$	MW_m [Ω]	Μ	$[T_1]$ M_1	M_P A	$MW_p \ [W_p]$	p] MW_p	M Ω	Μ	MW_m	[Ω]	MW_m
$T_{\rm C}W_m ~~ \varOmega ~T_0 ~~ T_1 ~~ T_{\rm C} ~~ \varOmega ~~ T_0 ~~ T_1 ~~ T_{\rm C} ~~ [\varOmega] ~[T_{\rm C}] ~~ T_{\rm C}W_2 ~~ \varOmega ~~ T_0 ~~ T_1 \dotplus ~[\varOmega] ~[T_{\rm C}] ~~ \varOmega ~~ T_0 ~~ T_1 ~~ T_{\rm C} ~~ \varOmega$	$\Omega T_0 W_m$	$T_{c}W_{m} T_{0}$	T_0	$\Gamma_{\rm C}$ $T_{\rm C}$		$W_P T_c W_p$	$V_P T_C W_P$	\mathcal{O}	T_0	W_m	[Ω] T _i	$T_{\rm C} W_m$
$M_{\rm c} W_{\rm m} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$M M_0 M W_m$	$M_{c}W_{m} T_{0}$	M_0	$\Gamma_{\rm C}$ $M_{\rm C}$	M_{P}	$MW_p T_c W_p$	Vp McWp	ΩW	M_0	MW_m	$W = [\Omega]$	$M_{\rm c} W_m$
Ø(1) Ø Ø [Ø]	[U] [U] [U]	[<i>δ</i>] [<i>δ</i>]	$[\sigma]$	[σ] [σ]		[<i>U</i>] [<i>U</i>]	$[\mho]$	$\Omega(1) \ \Omega(1)$	 Ω(1) Ω(1) 	$\Omega(1)$	$\Omega(1) \Omega$	$\Omega(1)$
A V V V V [7] [7] [7] [7] T [1] [7] A [0] [0] [0] W W W [0] [0] [0] [7] H	V V V	V [\mho]	[<i>W</i>]	[<i>W</i>] [<i>U</i>]] [ʊ]	$[\mathcal{D}]$ $[W]$	[W]	$\Omega(1)$ I	Ι	I	$\Omega(1) I$	
$I_0 \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$	$V V_0 V$	$V_0 = U_n$	MU_n	$[U_n] MU_n$	$[\Im]$	$[M] [T_0]$	$[0_W]$ [$\Omega(1)$ I	I_0	Ι	$[\Omega^{(1)}] \ I_0$	
$I_1 \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$	<i>v v v</i> ₁	V_1 [Ω]	[<i>W</i>]	$[T_1] [M_1]$	W_n	$MW_n \ [W_n]$	$n^{-1} M W_{n}$	$\Omega(1)$ I	Ι	I_1	$[\Omega(1)]$	
1* 2 2 2 2 [2] [2] [2] [2] [2] 2 2 [2] T T T T2 T2 [2] [2] [2] [2]	$[\mathcal{O}]$ $[\mathcal{O}]$ $[\mathcal{O}]$	[<i>σ</i>] [<i>σ</i>]	$[\mathcal{O}]$	[<i>δ</i>] [<i>δ</i>]] [[]]	[<u>[</u>] [<u>[</u>]]	$[\mho]$	$\Omega(1)$ $\Omega(1)$	 Ω(1) Ω(1) 	$\Omega(1)$	l* I	
$I_{c} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$	$V V_0 V_1$	$V_{\rm C}$ U_n	MU_{n}	$T_{c}U_{n} M_{c}U_{n}$	W_n	$M W_n T_c W_n$	$V_n M_c W_n$	$\Omega(1)$ I	I_0	I_1	$I^* I_0$	

Table 1 Clone composition table Let $\mathscr{C}_1, \ldots, \mathscr{C}_n, \mathscr{D}_1, \ldots, \mathscr{D}_m$ be Post classes. As usual, $[\mathscr{C}_i, \mathscr{D}_j]$ denotes the set of Post classes \mathscr{C} with $\mathscr{C}_i \subseteq \mathscr{C} \subseteq \mathscr{D}_j$. The union $\bigcup_{i,j} [\mathscr{C}_i, \mathscr{D}_j]$ is denoted by $[\{\mathscr{C}_1, \ldots, \mathscr{C}_n\}, \{\mathscr{D}_1, \ldots, \mathscr{D}_m\}]$, where the set braces are omitted when n = 1 or m = 1.

Theorem 2. Let $\mathscr{C}_1, \mathscr{C}_2$ be Post classes. If for some $i \in \{1, \ldots, 10\}, \mathscr{C}_1 \in A_i \text{ and } \mathscr{C}_2 \in B_i \text{ or } \mathscr{C}_1^d \in A_i \text{ and } \mathscr{C}_2^d \in B_i, where the sets <math>A_i, B_i$ are given below, then $\mathscr{C}_1\mathscr{C}_2$ and $\mathscr{C}_1^d\mathscr{C}_2^d$ are not clones. Otherwise, $\mathscr{C}_1\mathscr{C}_2 = \mathscr{C}_1 \vee \mathscr{C}_2$ and $\mathscr{C}_1^d\mathscr{C}_2^d = \mathscr{C}_1^d \vee \mathscr{C}_2^d$ are clones.

- $A_1 = [\{I_0, \Lambda_c\}, \{\Omega(1), \Lambda, U_2\}], B_1 = [L_c, S];$
- $A_2 = [I^*, \Omega(1)], B_2 = [\Lambda_c, \{U_2, M, T_c\}];$
- $A_3 = [LS, S], B_3 = [\Lambda_c, T_c];$
- $A_4 = [\Lambda_c, \Lambda], B_4 = [\{I^*, L_c\}, \{L, S\}];$
- $A_5 = [I_0, \{L, V\}], B_5 = [SM, S];$
- $A_6 = [I_0, M], B_6 = [\{L_c, T_c U_\infty, T_c W_\infty\}, T_1];$
- $A_7 = [I_1, \Lambda], B_7 = [M_c U_\infty, M U_2];$
- $A_8 = [M_c U_\infty, U_3], B_8 = \{L_0\};$
- $A_9 = [\{I_0, \Lambda_c\}, U_2], B_9 = \{I^*\};$
- $A_{10} = \{I^*\}, B_{10} = \{SM\}.$

For a given clone \mathscr{C} , there are generally several factorizations of the form $\mathscr{C} = \mathscr{C}_1 \mathscr{C}_2$, where \mathscr{C}_1 and \mathscr{C}_2 are also clones. We say that $\mathscr{C}_1 \mathscr{C}_2$ is a *minimal factorization of* \mathscr{C} *into two clones* if $\mathscr{C}_1 \mathscr{C}_2 = \mathscr{C}$ and for all subclones $\mathscr{C}'_1 \subseteq \mathscr{C}_1$ and $\mathscr{C}'_2 \subseteq \mathscr{C}_2$, whenever at least one of the subset inclusions is proper, we have that $\mathscr{C}'_1 \mathscr{C}'_2 \neq \mathscr{C}$.

It is customary to call the clones covering I_c minimal. The minimal clones are I_0 , I_1 , I^* , Λ_c , V_c , L_c , SM. We say that a clone is *prime* if it is not a composition of two proper subclones. The prime clones are the seven minimal ones and $T_c U_{\infty}$, $T_c W_{\infty}$, $M_c U_n$, $M_c W_n$ for $n = 3, ..., \infty$.

Theorem 3. The following list of minimal factorizations of each non-prime clone into two clones is complete up to duality. That is, whenever we have listed a minimal factorization $\mathscr{C} = \mathscr{C}_1 \mathscr{C}_2$, we also have the minimal factorization $\mathscr{C}^d = \mathscr{C}_1^d \mathscr{C}_2^d$. Furthermore, for each clone \mathscr{C} and subclones \mathscr{D}_1 and \mathscr{D}_2 of \mathscr{C} , $\mathscr{C} = \mathscr{D}_1 \mathscr{D}_2$ if and only if there is a minimal factorization $\mathscr{C} = \mathscr{C}_1 \mathscr{C}_2$ such that $\mathscr{C}_1 \subseteq \mathscr{D}_1$ and $\mathscr{C}_2 \subseteq \mathscr{D}_2$.

- $\Omega = M_c \circ I^* = S \circ I_0 = S_c \circ I = SM \circ \Omega(1) = L \circ \Lambda_c = L_0 \circ \Lambda_1 = L_1 \circ \Lambda_0 = LS \circ \Lambda_0 = LS \circ \Lambda_1 = L_c \circ \Lambda = U_\infty \circ I_1 = T_c U_\infty \circ I = M_c U_\infty \circ \Omega(1) = I^* \circ T_0;$
- $T_0 = S_c \circ I_0 = SM \circ L_0 = L_0 \circ A_c = L_0 \circ V_c = L_c \circ A_0 = L_c \circ V_0 = V_c \circ U_\infty = U_\infty \circ V_c = T_c U_\infty \circ V_0 = T_c W_\infty \circ I_0 = M_c W_\infty \circ L_0;$
- $T_{\rm c} = M_{\rm c} \circ L_{\rm c} = L_{\rm c} \circ \Lambda_{\rm c} = V_{\rm c} \circ T_{\rm c} U_{\infty} = T_{\rm c} U_{\infty} \circ V_{\rm c};$
- $M = M_c \circ I = SM \circ I = \Lambda \circ V_c = \Lambda_0 \circ V_1 = \Lambda_1 \circ V_0 = \Lambda_c \circ V = MU_\infty \circ I_1 = M_cU_\infty \circ I = I \circ M_c = I_0 \circ M_1;$
- $M_0 = SM \circ V_0 = \Lambda_0 \circ V_c = \Lambda_c \circ V_0 = V_0 \circ \Lambda_c = V_c \circ \Lambda_0 = M_c W_\infty \circ I_0 = I_0 \circ M_c;$
- $M_{\rm c} = \Lambda_{\rm c} \circ V_{\rm c};$
- $S = SM \circ I^* = LS \circ SM = I^* \circ S_c;$
- $S_{\rm c} = SM \circ L_{\rm c} = L_{\rm c} \circ SM;$
- $L = L_0 \circ I_1 = L_0 \circ I^* = LS \circ I_0 = L_c \circ I = I^* \circ L_0;$
- $L_0 = L_c \circ I_0;$
- $LS = L_c \circ I^* = I^* \circ L_c;$
- $U_2 = SM \circ U_{\infty} = U_{\infty} \circ SM;$
- $U_m = U_\infty \circ M_c U_m = T_c U_m \circ I_0 = T_c U_\infty \circ M U_m = M_c U_m \circ U_\infty;$
- $MU_2 = SM \circ I_0 = \Lambda_0 \circ SM;$
- $MU_m = I_0 \circ M_c U_m = M_c U_m \circ I_0;$
- $T_{\rm c}U_2 = SM \circ T_{\rm c}U_\infty = T_{\rm c}U_\infty \circ SM;$
- $T_{c}U_{m} = T_{c}U_{\infty} \circ M_{c}U_{m} = M_{c}U_{m} \circ T_{c}U_{\infty};$
- $M_{\rm c}U_2 = SM \circ \Lambda_{\rm c} = \Lambda_{\rm c} \circ SM;$
- $\Lambda = \Lambda_0 \circ I_1 = \Lambda_1 \circ I_0 = \Lambda_c \circ I = I \circ \Lambda_c = I_0 \circ \Lambda_1 = I_1 \circ \Lambda_0;$
- $\Lambda_0 = \Lambda_c \circ I_0 = I_0 \circ \Lambda_c;$

- $\Lambda_1 = \Lambda_c \circ I_1 = I_1 \circ \Lambda_c;$
- $\Omega(1) = I \circ I^* = I^* \circ I_0;$
- $I = I_0 \circ I_1$.

4. Normal forms

It follows from Theorem 3 that every clone can be represented as a product of prime clones. In fact, the clone Ω can be represented as a product of minimal clones. (By a product, we mean a composition of 0, 1, 2, 3, or more clones. We adopt the convention that an empty composition of clones equals $I_{c.}$)

Note that each of the seven minimal clones is generated by a single function. We refer to the minimum arity of such a generating function as the *arity* of the clone. For each of the minimal clones, there is a unique generating function of minimum arity. The minimal clones, their generating functions of minimum arity, and their arities are the following: *SM*, μ , 3; L_c , τ , 3; Λ_c , $x_1 \wedge x_2$, 2; V_c , $x_1 \vee x_2$, 2; I^* , $\overline{x_1}$, 1; I_0 , **0**, 1; I_1 , **1**, 1.

In order to develop the concept of well-behaved factorization, we impose two simple conditions on the factorization $\mathscr{C} = \mathscr{C}_1 \cdots \mathscr{C}_n$ of a clone \mathscr{C} into minimal clones.

Condition 1. The factors occur in descending order of arity with no repetitions of factors.

Condition 2. For any factorization $\mathscr{C} = \mathscr{D}_1 \cdots \mathscr{D}_m$ of \mathscr{C} into minimal clones satisfying Condition 1, there are no integers *i*, *j*, *k*, *l* with $0 \le i \le j \le n$, $0 \le k \le l \le m$, such that

$$\begin{aligned} \mathscr{D}_1 \cdots \mathscr{D}_k &\subseteq \mathscr{C}_1 \cdots \mathscr{C}_i, \\ \mathscr{D}_{k+1} \cdots \mathscr{D}_l &\subset \mathscr{C}_{i+1} \cdots \mathscr{C}_j, \\ \mathscr{D}_{l+1} \cdots \mathscr{D}_m &\subseteq \mathscr{C}_{j+1} \cdots \mathscr{C}_n \end{aligned}$$

Note that Condition 2 implies in particular that no factor can be dropped off. We say that a factorization satisfying Condition 1 is *redundant*, if it does not satisfy Condition 2.

A *descending irredundant factorization* of the clone \mathscr{C} is a factorization of \mathscr{C} into minimal clones that satisfies Conditions 1 and 2.

Theorem 4. *The descending irredundant factorizations of* Ω *are exactly the following:*

$$\begin{split} SM \circ I^* \circ I_0, \quad SM \circ I^* \circ I_1, \quad L_{\rm c} \circ \Lambda_{\rm c} \circ I_0 \circ I_1, \quad L_{\rm c} \circ \Lambda_{\rm c} \circ I_1 \circ I_0, \\ L_{\rm c} \circ V_{\rm c} \circ I_0 \circ I_1, \quad L_{\rm c} \circ V_{\rm c} \circ I_1 \circ I_0, \quad \Lambda_{\rm c} \circ V_{\rm c} \circ I^*, \quad V_{\rm c} \circ \Lambda_{\rm c} \circ I^*. \end{split}$$

Proof. Consider a descending irredundant factorization $\Omega = \mathscr{C}_1 \cdots \mathscr{C}_n$. It is obvious that $n \ge 3$, because Ω is not a minimal clone nor a product of two minimal clones.

 \mathscr{C}_1 cannot be I^* , I_0 or I_1 ; otherwise we could only obtain a subclass of $\Omega(1)$.

Consider the case that $\mathscr{C}_1 = \Lambda_c$. It is not possible that $\mathscr{C}_2 = I^*$, I_0 , I_1 , because then we could only obtain a subclass of $\Lambda_c \circ \Omega(1) \neq \Omega$. If $\mathscr{C}_2 = V_c$ (note that $\Lambda_c \circ V_c = M_c$), then we could have the factorization $\Omega = \Lambda_c \circ V_c \circ I^*$; but if \mathscr{C}_3 were I_0 or I_1 , then we would still need the factor I^* in order to obtain Ω , and then the factorization would become redundant. By duality, if $\mathscr{C}_1 = V_c$, then the only possible factorization is $\Omega = V_c \circ \Lambda_c \circ I^*$.

Consider the case that $\mathscr{C}_1 = L_c$. It is not possible that $\mathscr{C}_2 = I^*$, I_0 , I_1 ; otherwise we could only obtain a subclass of $L = L_c \circ \Omega(1)$. If $\mathscr{C}_2 = \Lambda_c$ (note that $L_c \circ \Lambda_c = T_c$), then \mathscr{C}_3 cannot be V_c because then the factorization becomes redundant ($L_c \circ \Lambda_c \circ V_c = L_c \circ \Lambda_c = T_c$). If $\mathscr{C}_3 = I^*$, then we would have the factorization $\Omega = L_c \circ \Lambda_c \circ I^*$, which satisfies Condition 1; but it does not satisfy Condition 2, because we also have that $\Omega = V_c \circ \Lambda_c \circ I^*$ and $V_c \circ \Lambda_c = M_c \subset T_c = L_c \circ \Lambda_c$. If $\mathscr{C}_3 = I_0$, I_1 , then we have the factorizations $\Omega = L_c \circ \Lambda_c \circ I_0 \circ I_1 = L_c \circ \Lambda_c \circ I^*$ and $V_c \circ \Lambda_c = M_c \subset T_c = L_c \circ \Lambda_c$. If $\mathscr{C}_3 = I_0$, I_1 , then we have the factorization. By duality, the only possible factorizations with $\mathscr{C}_2 = V_c$ are $\Omega = L_c \circ V_c \circ I_0 \circ I_1 = L_c \circ V_c \circ I_1 \circ I_0$. We will discuss later the case that $\mathscr{C}_1 = L_c$ and $\mathscr{C}_2 = SM$.

Consider the case that $\mathscr{C}_1 = SM$. If $\mathscr{C}_2 = I^*$, I_0 , I_1 , then we could have the factorizations $\Omega = SM \circ I_0 = SM \circ I_0 = SM \circ I_1 \circ I_0 = SM \circ I_1 \circ I_0 = SM \circ I_1 \circ I_0 \circ I^*$. But the last two do not satisfy Condition 2, because we also have that $\Omega = \Lambda_c \circ V_c \circ I^*$ and $\Lambda_c \circ V_c = M_c \subset M = SM \circ I_0 \circ I_1 = SM \circ I_1 \circ I_0$.

It is not possible that $\mathscr{C}_1 = SM$ and $\mathscr{C}_2 = \Lambda_c$ (note that $SM \circ \Lambda_c = M_cU_2$). If $\mathscr{C}_3 = V_c$, then Condition 2 is not satisfied, because $SM \circ \Lambda_c \circ V_c = M_c = \Lambda_c \circ V_c$. If $\mathscr{C}_3 = I^*$, I_0 , I_1 , then we could obtain the factorizations:

$$\Omega = SM \circ \Lambda_{\rm c} \circ I^* \circ I_0 = SM \circ \Lambda_{\rm c} \circ I^* \circ I_1 = SM \circ \Lambda_{\rm c} \circ I_0 \circ I_1 \circ I^* = SM \circ \Lambda_{\rm c} \circ I_1 \circ I_0 \circ I^*,$$

but here we also have redundancy because of the factorizations mentioned in the previous paragraph. By duality, it is not possible that $\mathscr{C}_1 = SM$ and $\mathscr{C}_2 = V_c$.

Consider then the case that $\mathscr{C}_1 = SM$, $\mathscr{C}_2 = L_c$, or that $\mathscr{C}_1 = L_c$, $\mathscr{C}_2 = SM$ (note that $SM \circ L_c = L_c \circ SM = S_c$). Because $S_c \circ I = \Omega$ is a minimal factorization of Ω into two factors, we could have the factorizations:

$$\Omega = SM \circ L_{c} \circ I_{0} \circ I_{1} = SM \circ L_{c} \circ I_{1} \circ I_{0} = L_{c} \circ SM \circ I_{0} \circ I_{1} = L_{c} \circ SM \circ I_{1} \circ I_{0}.$$

But these do not satisfy Condition 2, because we also have that $\Omega = SM \circ I^* \circ I_0 = L_c \circ A_c \circ I_0 \circ I_1$, and $I^* \circ I_0 = \Omega(1) \subset L = L_c \circ I_0 \circ I_1 = L_c \circ I_1 \circ I_0$ and $A_c \circ I_0 \circ I_1 = A \subset M = SM \circ I_0 \circ I_1 = SM \circ I_1 \circ I_0$. If $\mathscr{C}_3 = A_c$ or $\mathscr{C}_3 = V_c$, then Condition 2 is not satisfied, because

 $SM \circ L_{c} \circ \Lambda_{c} = SM \circ L_{c} \circ V_{c} = L_{c} \circ SM \circ \Lambda_{c} = L_{c} \circ SM \circ V_{c} = T_{c} = L_{c} \circ \Lambda_{c} = L_{c} \circ V_{c}.$

If $\mathscr{C}_3 = I^*$, then Condition 2 is not satisfied, because

$$SM \circ L_{c} \circ I^{*} = L_{c} \circ SM \circ I^{*} = S = SM \circ I^{*}$$

Thus, we only have the eight factorizations:

$$\Omega = \Lambda_{c} \circ V_{c} \circ I^{*} = V_{c} \circ \Lambda_{c} \circ I^{*} = L_{c} \circ \Lambda_{c} \circ I_{0} \circ I_{1} = L_{c} \circ \Lambda_{c} \circ I_{1} \circ I_{0}$$
$$= L_{c} \circ V_{c} \circ I_{0} \circ I_{1} = L_{c} \circ V_{c} \circ I_{1} \circ I_{0} = SM \circ I^{*} \circ I_{0} = SM \circ I^{*} \circ I_{1}$$

that clearly satisfies Condition 1. It is straightforward to verify that these do not violate Condition 2. \Box

Replacing the sequence of unary clones by their composition in the eight descending irredundant factorizations of Theorem 4, we get the following five factorizations of Ω :

$$\Omega = V_{\rm c} \circ \Lambda_{\rm c} \circ I^*,\tag{1}$$

$$\Omega = \Lambda_{\rm c} \circ V_{\rm c} \circ I^*, \tag{2}$$

$$\Omega = L_{\rm c} \circ \Lambda_{\rm c} \circ I, \tag{3}$$

$$Q = L_0 \circ V_0 \circ I \tag{4}$$

$$Q = L_{\rm c} \circ V_{\rm c} \circ I, \tag{4}$$

$$\Omega = SM \circ \Omega(1). \tag{5}$$

Factorizations (1) and (2) express the representability of every Boolean function in DNF and CNF, respectively. Factorization (3) expresses the existence of the Zhegalkin polynomial representation for every function. We shall see that the other two factorizations express representability of functions in other normal forms.

The factorization $\Omega = L_c \circ V_c \circ I$ relates to $\Omega = L_c \circ \Lambda_c \circ I$ in the same way as CNF relates to DNF. Essentially the same as Factorization (4) is expressed by $\Omega = L \circ V_c = L_0 \circ V_1$. These latter factorizations express the fact that every function can be represented as a sum of terms, where each term is a disjunction or **1**. It is not difficult to prove that this representation is unique up to permutation and repetition of terms and permutation and repetition of variables within terms.

The factorization $\Omega = SM \circ \Omega(1)$ expresses the fact that every function can be expressed by repeated applications of the ternary majority function μ to variables, negated variables, and constants. (For early research on the role of ternary majority (median) and a related ternary rejection in Boolean algebra, see [2,8,9,17,20].)

To make a formal comparison between the various expressions of functions corresponding to these factorizations, we need the following definitions.

Let $\Omega = \mathscr{C}_1 \cdots \mathscr{C}_{k-1} \mathscr{C}_k$ be a factorization into clones. Let \mathscr{C}_k contain only variables, negated variables, or constant functions. Let $\mathscr{C}_1, \ldots, \mathscr{C}_{k-1}$ be generated by single functions $\gamma_1, \ldots, \gamma_{k-1}$, where the γ_i 's are pairwise distinct and none of them is in \mathscr{C}_k . The pair of sequences $\mathscr{C}_1, \ldots, \mathscr{C}_k$ and $\gamma_1, \ldots, \gamma_{k-1}$ is called a *normal form system*. In this case, $\mathscr{C}_1^d, \ldots, \mathscr{C}_k^d$ and $\gamma_1^d, \ldots, \gamma_{k-1}^d$ also constitute a normal form system called the *dual system* and the factorization

 $\Omega = \mathscr{C}_1^{d} \cdots \mathscr{C}_k^{d}$ is called the *dual factorization*. Note that (1) and (3) are dual to (2) and (4), respectively, and that (5) is self-dual. An *n*-ary formula corresponding to the system $\mathscr{C}_1, \ldots, \mathscr{C}_k$ and $\gamma_1, \ldots, \gamma_{k-1}$ is defined as a string over $\mathscr{C}_{k}^{(n)} \cup \{\gamma_{1}, \ldots, \gamma_{k-1}\}$, where $\mathscr{C}_{k}^{(n)}$ denotes the set of the *n*-ary functions of \mathscr{C}_{k} , by the following recursion:

- (1) The elements in *C*⁽ⁿ⁾_k are *n*-ary formulas.
 (2) If *γ_i* is *m*-ary and *a*₁,..., *a_m* are *n*-ary formulas and none of the *a_i*'s starts with *γ_j* with *i > j*, then *γ_ia*₁...*a_m* is an *n*-ary formula.

By a *formula* corresponding to the system we mean an n-ary formula for some n, and the length of a formula f as a string of symbols is denoted by |f|. If the generators $\gamma_1, \ldots, \gamma_{k-1}$ are clear from the context, then we only refer to the factorization $\mathscr{C}_1 \cdots \mathscr{C}_k$ and to formulas corresponding to $\mathscr{C}_1 \cdots \mathscr{C}_k$.

Clearly every *n*-ary formula represents an *n*-ary function, and every *n*-ary function is represented by an *n*-ary formula. For illustration, we consider representations of the *n*-ary function $\overline{x_i}$ by formulas of different lengths corresponding to various factorizations $\Omega = \mathscr{C}_1 \cdots \mathscr{C}_k$. If \mathscr{C}_k contains negated variables, as in Factorizations (1), (2), (5), then the function $\overline{x_i}$ can be represented by the formula $\overline{x_i}$ of length 1. On the other hand, if one of the clones $\mathscr{C}_1, \ldots, \mathscr{C}_{k-1}$ is generated by a negated variable, i.e., it is the clone I^* , then the function $\overline{x_i}$ can be represented by the formula $\neg x_i$ of length 2, where \neg denotes the unary function $0 \mapsto 1, 1 \mapsto 0$. Finally, $\overline{x_i}$ can be represented by the formula $\tau \mathbf{01} x_i$ of length 4 corresponding to Factorizations (3) and (4) (τ generates L_c and $0, 1, x_i \in I$).

Factorizations (1)–(5) together with the generators \lor , \land , τ , μ for the clones V_c , Λ_c , L_c , SM will be called *disjunctive*, conjunctive, polynomial, dual polynomial, and median normal form systems, denoted D, C, P, P^d, M, respectively, and the corresponding formulas will be called *disjunctive*, conjunctive, polynomial, dual polynomial, and median formulas. The term median is motivated by the fact that (\mathbb{B}, μ) is the only possible median algebra on the two-element set \mathbb{B} , see, e.g., [1,10,19].

Representation of functions by disjunctive and conjunctive formulas are just variants of the well-known DNF and CNF representations. Polynomial formulas are just variants of Zhegalkin polynomial representations. Representation by dual polynomial formulas relates to polynomial formulas just as CNF relates to DNF. In the remainder of this paper, we will compare the efficiency of these five formula representations, and we will show that median formulas are in some sense more efficient than the others.

For a normal form system A, denote by F_A the set of formulas corresponding to A. For a function $f \in \Omega$, we define the A-complexity of f, denoted $C_A(f)$, as

 $\min\{|\Phi|: \Phi \in F_A, \Phi \text{ represents } f\}.$

For normal form systems A and B, we say that A is polynomially as efficient as B, denoted $A \preccurlyeq B$, if there is a polynomial p with integer coefficients such that $C_A(f) \leq p(C_B(f))$ for all $f \in \Omega$. Indeed, the relation "polynomially as efficient as" is a preorder on any set of normal form systems. In fact (Theorem 5, below) it is also anti-symmetric on {**D**, **C**, **P**, **P**^d, **M**}, and thus it is a partial order on that set. If neither $A \preccurlyeq B$ nor $B \preccurlyeq A$ holds, we say that A and B are uncomparable or, to be more descriptive, that A and B provide representations of uncomparable complexity. In the case of $A \preccurlyeq B$ but $B \not\leq A$, we say that A is polynomially more efficient than B, or that A provides a representation of lower complexity than B.

Theorem 5. The disjunctive, conjunctive, polynomial, and dual polynomial normal form systems provide representations of pairwise uncomparable complexity. The median normal form system M provides representations of lower complexity than the other four normal form systems **D**, **C**, **P**, **P**^d.

Proof. We shall make use of the basic theory of disjunctive and conjunctive normal forms and implicants and implicata. To prove that $\mathbf{D} \not\preceq \mathbf{C}$, let *n* be an even positive integer and let f_n be the *n*-ary Boolean function

$$(x_1 \lor x_2) \land \cdots \land (x_{2i-1} \lor x_{2i}) \land \cdots \land (x_{n-1} \lor x_n).$$

The C-complexity of f_n is less than 3n. But f_n has $2^{n/2}$ prime implicants and each has to appear as a separate term in any DNF. Since each implicant has n/2 variables, $C_{\mathbf{D}}(f_n) \ge (n/2)2^{n/2}$. Therefore, there can be no polynomial p such that $C_{\mathbf{D}}(f_n) \leq p(C_{\mathbf{C}}(f_n))$ would hold for all f_n 's. The proof of $\mathbf{C} \preceq \mathbf{D}$ is similar but based on the dual family of functions

$$(x_1 \wedge x_2) \vee \cdots \vee (x_{2i-1} \wedge x_{2i}) \vee \cdots \vee (x_{n-1} \wedge x_n).$$

Next we show that $\mathbf{D} \not\preceq \mathbf{P}$, \mathbf{P}^d and $\mathbf{C} \not\preceq \mathbf{P}$, \mathbf{P}^d . For each odd $n \ge 1$, consider the *n*-ary function

$$f_n = x_1 + \dots + x_n.$$

Both the **P**- and **P**^d-complexities of f_n are less than 2n. However, f_n has 2^{n-1} prime implicants, each of which is a product of *n* variables or negated variables. Therefore, $C_{\mathbf{D}}(f_n) \ge n2^{n-1}$. This shows that $\mathbf{D} \not\preceq \mathbf{P}$, \mathbf{P}^d . Similarly, $C_{\mathbf{C}}(f_n) \ge n2^{n-1}$, which shows that $\mathbf{C} \not\preceq \mathbf{P}$, \mathbf{P}^d .

To see that $\mathbf{P} \not\preceq \mathbf{D}$, \mathbf{C} , \mathbf{P}^d , consider for each $n \ge 2$ the *n*-ary function

$$f_n = x_1 \vee \cdots \vee x_n$$

The **D**-, **C**- and **P**^d-complexities of f_n are less than 2n. However, the (unique) Zhegalkin polynomial of f_n is the sum of all $2^n - 1$ non-constant monomials in n indeterminates. This implies that the **P**-complexity of f_n is at least $2^n - 1$. The proof of $\mathbf{P}^d \not\preceq \mathbf{D}$, **C**, **P** is similarly based on the dual family of functions $f_n = x_1 \wedge \cdots \wedge x_n$.

Next we show that **D**, **C**, **P**, $\mathbf{P}^d \not\preceq \mathbf{M}$. For each $k \ge 1$, let n = 2k + 1, and consider the *n*-ary self-dual monotone function f_k defined inductively as follows:

$$f_1 = \mu(x_1, x_2, x_3)$$

= $(x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_3 \land x_1) = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1)$
= $(x_1 \land x_2) + (x_2 \land x_3) + (x_3 \land x_1) = (x_1 \lor x_2) + (x_2 \lor x_3) + (x_3 \lor x_1)$
 $f_{k+1} = \mu(f_{k'}, x_{2k+1}, x_{2k+3}),$

where $f_{k'}$ denotes the (2k + 3)-ary cylindrification of f_k . The **M**-complexity of f_k is at most 3k + 1. By induction we see that the number of prime implicants is $2^{k+1} - 1$, which is also the number of prime implicata. Thus, the **D**- and **C**-complexities of f_n are at least $2^{k+1} - 1$, from which it follows that **D**, **C** \preceq **M**. Also by induction, the Zhegalkin polynomial of f_k has $2^{k+1} - 1$ terms and thus $C_{\mathbf{P}}(f_k) \ge 2^{k+1} - 1$, and hence $\mathbf{P} \preceq \mathbf{M}$. Similarly, we can see that $C_{\mathbf{Pd}}(f_k) \ge 2^{k+1} - 1$, and hence $\mathbf{P} \preceq \mathbf{M}$.

To see that $\mathbf{M} \preccurlyeq \mathbf{D}$, let us define the map $T : F_{\mathbf{D}} \rightarrow F_{\mathbf{M}}$ recursively as follows:

(1) T(a) = a, whenever a is a variable or a negated variable,

(2) $T(\land \Phi \Psi) = \mu T(\Phi) T(\Psi) \mathbf{0}$, for $\Phi, \Psi, \land \Phi \Psi \in F_{\mathbf{D}}$, and $T(\lor \Phi \Psi) = \mu T(\Phi) T(\Psi) \mathbf{1}$, for $\Phi, \Psi, \lor \Phi \Psi \in F_{\mathbf{D}}$.

Clearly, for every $\Phi \in F_{\mathbf{D}}$, $T(\Phi) \in F_{\mathbf{M}}$ represents the same function as Φ , and by induction it follows that $|T(\Phi)| < 2|\Phi|$. This shows that $\mathbf{M} \preccurlyeq \mathbf{D}$. Similarly, it follows that $\mathbf{M} \preccurlyeq \mathbf{C}$.

Finally, we show that $\mathbf{M} \preccurlyeq \mathbf{P}, \mathbf{P}^{d}$. For $n \ge 0$, consider the functions

$$f_n = x_1 + \cdots + x_{3^n}.$$

We define the median formulas Φ_n for $n \ge 0$ recursively as follows: $\Phi_0 = x_1$, and for $n \ge 0$, we obtain Φ_{n+1} by substituting

$$\mu\mu\overline{x_{3i-2}}x_{3i-1}x_{3i}\mu x_{3i-2}\overline{x_{3i-1}}x_{3i}\mu x_{3i-2}x_{3i-1}\overline{x_{3i}}$$

and

 $\mu\mu x_{3i-2}\overline{x_{3i-1}} \overline{x_{3i}} \mu \overline{x_{3i-2}} x_{3i-1} \overline{x_{3i}} \mu \overline{x_{3i-2}} \overline{x_{3i-1}} x_{3i}$

for each occurrence of x_i and $\overline{x_i}$ in Φ_n , respectively. It is easy to prove by induction that Φ_n represents f_n , because $\overline{\mu(x, y, z)} = \mu(\overline{x}, \overline{y}, \overline{z})$ and

$$\tau(x, y, z) = \mu(\mu(\overline{x}, y, z), \mu(x, \overline{y}, z), \mu(x, y, \overline{z})).$$

Denote by $|\Phi|_a$ the number of occurrences of the symbol *a* in the formula Φ , and for any variable x_i , denote $|\Phi|_{\tilde{x}_i} = |\Phi|_{x_i} + |\Phi|_{\overline{x}_i}$. We prove by induction on *n* that $|\Phi_n|_{\tilde{x}_i} = 3^n$ for $i = 1, ..., 3^n$ and $|\Phi_n|_{\mu} = (3^{2n} - 1)/2$. It is clear that

3240

the claim holds for Φ_0 . Assume that it holds for Φ_n , and then consider Φ_{n+1} . By the inductive hypothesis, $|\Phi_n|_{\tilde{x}_i} = 3^n$ for $i = 1, ..., 3^n$, and so $|\Phi_{n+1}|_{\tilde{x}_i} = 3^{n+1}$ for $i = 1, ..., 3^{n+1}$ and $|\Phi_{n+1}|_{\mu} = |\Phi_n|_{\mu} + 4 \cdot 3^{2n} = (3^{2n+2} - 1)/2$. We also conclude that $|\Phi_n| = (3^{2n+1} - 1)/2$.

Let $f \in \Omega$ and let Θ be the shortest polynomial formula representing f. Then f is a sum of $m = 1 + 2|\Theta|_{\tau}$ monomial terms. For i = 1, ..., m, let Θ_i be the polynomial formula (occurring as a substring of Θ) that represents the *i*th monomial term. Since the monomial terms are conjunctions of variables, each Θ_i is in fact a disjunctive formula, and by the previous proof that $\mathbf{M} \preccurlyeq \mathbf{D}$, there is a median formula Ξ_i representing the *i*th monomial term such that $|\Xi_i| < 2|\Theta_i|$.

For any median formula Γ , denote by Γ' the median formula obtained from Γ by substituting $\overline{x_i}$ for x_i , x_i for $\overline{x_i}$, **0** for **1**, and **1** for **0**. It is clear that $|\Gamma| = |\Gamma'|$, and Γ' represents the negation of the function represented by Γ . Hence, the **M**-complexity of any function is equal to the **M**-complexity of its negation.

Let *n* be the smallest integer such that $m \leq 3^n$. For $i = m + 1, ..., 3^n$, let $\Xi_i = \Theta_i = 0$. Now, we can construct a median formula Ξ that represents *f* by substituting Ξ_i for x_i and Ξ'_i for $\overline{x_i}$ in Φ_n for $i = 1, ..., 3^n$. We have that

$$C_{\mathbf{M}}(f) \leq |\Xi| = |\Phi_{n}|_{\mu} + \sum_{i=1}^{3^{n}} |\Phi_{n}|_{\widetilde{x}_{i}}|\Xi_{i}|$$

$$< \frac{3^{2n} - 1}{2} + \sum_{i=1}^{3^{n}} 3^{n} \cdot 2|\Theta_{i}| = \frac{3^{2n} - 1}{2} + 2 \cdot 3^{n} \sum_{i=1}^{m} |\Theta_{i}| + 2 \cdot 3^{n} \sum_{i=m+1}^{3^{n}} |\mathbf{0}|$$

$$\leq \frac{3^{2n} - 1}{2} + 2 \cdot 3^{n} \sum_{i=1}^{m} |\Theta_{i}| + 2 \cdot 3^{n} \cdot 3^{n} = \frac{5 \cdot 3^{2n} - 1}{2} + 2 \cdot 3^{n} \sum_{i=1}^{m} |\Theta_{i}|.$$

If $|\Theta|_{\tau} \neq 0$, then using

$$C_{\mathbf{P}}(f) = |\Theta| = |\Theta|_{\tau} + \sum_{i=1}^{m} |\Theta_i|$$

and $|\Theta|_{\tau} \ge 3^{n-1}/2$, we have that

$$(C_{\mathbf{P}}(f))^{2} = (|\Theta|_{\tau})^{2} + 2|\Theta|_{\tau} \sum_{i=1}^{m} |\Theta_{i}| + \left(\sum_{i=1}^{m} |\Theta_{i}|\right)^{2} \ge (|\Theta|_{\tau})^{2} + 2|\Theta|_{\tau} \sum_{i=1}^{m} |\Theta_{i}|$$
$$\ge \frac{3^{2n-2}}{4} + 3^{n-1} \sum_{i=1}^{m} |\Theta_{i}| = \frac{5 \cdot 3^{2n}}{180} + \frac{2 \cdot 3^{n}}{6} \sum_{i=1}^{m} |\Theta_{i}|,$$

and so

$$C_{\mathbf{M}}(f) < \frac{5 \cdot 3^{2n}}{2} + 2 \cdot 3^n \sum_{i=1}^m |\Theta_i| \leq 180 (C_{\mathbf{P}}(f))^2$$

Also, if $|\Theta|_{\tau} = 0$, then clearly $C_{\mathbf{M}}(f) \leq 180(C_{\mathbf{P}}(f))^2$. We conclude that $\mathbf{M} \leq \mathbf{P}$. A similar argument proves that $\mathbf{M} \leq \mathbf{P}^d$. \Box

The above proof of Theorem 5 actually provides algorithms for converting DNF, CNF, and Zhegalkin (Reed–Muller) representations into a generally more efficient median normal form.

Appendix A. Post classes

We make use of notations and terminology appearing in [7] and in [11].

- Ω denotes the clone of all Boolean functions;
- T_0 and T_1 denote the clones of 0- and 1-preserving functions, respectively, i.e., $T_0 = \{f \in \Omega : f(0, ..., 0) = 0\}, T_1 = \{f \in \Omega : f(1, ..., 1) = 1\};$

- T_c denotes the clone of constant-preserving functions, i.e., $T_c = T_0 \cap T_1$.
- *M* denotes the clone of all monotone functions, i.e., $M = \{f \in \Omega : f(\mathbf{a}) \leq f(\mathbf{b}), \text{ whenever } \mathbf{a} \leq \mathbf{b}\}$;
- $M_0 = M \cap T_0, M_1 = M \cap T_1, M_c = M \cap T_c;$
- S denotes the clone of all self-dual functions, i.e., $S = \{f \in \Omega : f^{d} = f\};$
- $S_c = S \cap T_c, SM = S \cap M;$
- L denotes the clone of all linear functions, i.e., $L = \{f \in \Omega : f = c_0 \mathbf{1} + c_1 x_1 + \dots + c_n x_n \text{ for some } n \text{ and } c_0, \dots, c_n \in \mathbb{B}\};$
- $L_0 = L \cap T_0, L_1 = L \cap T_1, LS = L \cap S, L_c = L \cap T_c.$

Let $a \in \{0, 1\}$. A set $A \subseteq \{0, 1\}^n$ is said to be *a*-separating if there is $i, 1 \le i \le n$, such that for every $(a_1, \ldots, a_n) \in A$ we have $a_i = a$. A function f is said to be *a*-separating if $f^{-1}(a)$ is *a*-separating. A function f is said to be *a*-separating of rank $k \ge 2$ if every subset $A \subseteq f^{-1}(a)$ of size at most k is *a*-separating.

- For $m \ge 2$, U_m and W_m denote the clones of all 1- and 0-separating functions of rank *m*, respectively;
- U_{∞} and W_{∞} denote the clones of all 1- and 0-separating functions, respectively, i.e., $U_{\infty} = \bigcap_{k \ge 2} U_k$ and $W_{\infty} = \bigcap_{k \ge 2} W_k$;
- $T_{c}U_{m} = T_{c} \cap U_{m}$ and $T_{c}W_{m} = T_{c} \cap W_{m}$, for $m = 2, ..., \infty$;
- $MU_m = M \cap U_m$ and $MW_m = M \cap W_m$, for $m = 2, ..., \infty$;
- $M_{c}U_{m} = M_{c} \cap U_{m}$ and $M_{c}W_{m} = M_{c} \cap W_{m}$, for $m = 2, ..., \infty$;
- Λ denotes the clone of all conjunctions and constants, i.e., $\Lambda = \{f \in \Omega : f = 0, 1, x_{i_1} \land \dots \land x_{i_n} \text{ for some } n \ge 1 \text{ and } i_i \}$;
- $\Lambda_0 = \Lambda \cap T_0, \Lambda_1 = \Lambda \cap T_1, \Lambda_c = \Lambda \cap T_c;$
- *V* denotes the clone of all disjunctions and constants, i.e., $V = \{f \in \Omega : f = 0, 1, x_{i_1} \vee ... \vee x_{i_n} \text{ for some } n \ge 1 \text{ and } i_i \}$;
- $V_0 = V \cap T_0, V_1 = V \cap T_1, V_c = V \cap T_c;$
- $\Omega(1)$ denotes the clone of all variables, negated variables, and constants;
- *I*^{*} denotes the clone of all variables and negated variables;
- *I* denotes the clone of all variables and constants;
- $I_0 = I \cap T_0, I_1 = I \cap T_1;$
- I_c denotes the smallest clone containing only variables, i.e., $I_c = I \cap T_c$.

References

- [1] H.-J. Bandelt, J. Hedlíková, Median algebras, Discrete Math. 45 (1983) 1-30.
- [2] G. Birkhoff, S.A. Kiss, A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947) 749–752.
- [3] F.M. Brown, Boolean Reasoning: The Logic of Boolean Equations, second ed., Dover, Mineola, NY, 2003.
- [4] M. Couceiro, S. Foldes, Function class composition, relational constraints and stability under compositions with clones, RUTCOR Research Report 22-2004, Rutgers University, 2004, available at (http://rutcor.rutgers.edu/~rrr/).
- [5] M. Couceiro, S. Foldes, E. Lehtonen, On compositions of clones of Boolean functions, in: T. Simos, G. Maroulis (Eds.), International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004), VSP/Brill, Utrecht, 2004, pp. 849–851.
- [6] K. Denecke, S.L. Wismath, Hyperidentities and Clones, Gordon and Breach, London, 2000.
- [7] S. Foldes, G.R. Pogosyan, Post classes characterized by functional terms, Discrete Appl. Math. 142 (2004) 35–51.
- [8] A.A. Grau, Ternary Boolean algebra, Bull. Amer. Math. Soc. 53 (1947) 567–572.
- [9] J. Hashimoto, A ternary operation in lattices, Math. Japon. 2 (1951) 49-52.
- [10] J.R. Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980) 319-362.
- [11] S.W. Jablonski, G.P. Gawrilow, W.B. Kudrjawzew, Boolesche Funktionen und Postsche Klassen, Vieweg, Braunschweig, 1970.
- [12] D.E. Muller, Application of Boolean algebra to switching circuit design and to error correction, IRE Trans. Electron. Comput. 3 (3) (1954) 6–12.
- [13] N. Pippenger, Theories of Computability, Cambridge University Press, Cambridge, 1997.
- [14] E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematical Studies, vol. 5, Princeton University Press, Princeton, NJ, 1941.
- [15] I.S. Reed, A class of multiple-error-correcting codes and the decoding scheme, IRE Trans. Inf. Theory 4 (4) (1954) 38-49.
- [16] M. Reschke, K. Denecke, Ein neuer Beweis f
 ür die Ergebnisse von E.L. Post
 über abgeschlossene Klassen Boolescher Funktionen, Elektronische Informationsverarbeitung Kybernetik 25 (7) (1989) 361–380.
- [17] M. Sholander, Postulates for distributive lattices, Canad. J. Math. 3 (1951) 28-30.

- [18] A.B. Ugol'nikov, On closed Post classes, Izv. Vyssh. Uchebn. Zaved. Mat. 7 (314) (1988) 79–88 (in Russian); translated in Soviet Math. 32(7) (1988) 131–142.
- [19] M.L.J. van de Vel, Theory of Convex Structures, Elsevier, Amsterdam, 1993.
- [20] A. Whiteman, Postulates for Boolean algebra in terms of ternary rejection, Bull. Amer. Math. Soc. 43 (1937) 293-298.
- [21] I.I. Zhegalkin, On the calculation of propositions in symbolic logic, Math. Sbornik 34 (1927) 9–28.
- [22] I.E. Zverovich, Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes, Discrete Appl. Math. 149 (2005) 200–218.