
Advances in Computer Science and Technology

Boolean Functions
and Their
Applications in
Cryptography

Chuan-Kun Wu
Dengguo Feng

Advances in Computer Science and Technology

Series Editors
Dengguo Feng, Chinese Academy of Sciences, China
Ge Yu, Northeastern University, China
Hongbin Zha, Peking University, China
Hujun Bao, Zhejiang University, China
Jian Zhang, Institute of Software, Chinese Academy of Sciences, China
Minyi Guo, Shanghai Jiao Tong University, China
Nong Xiao, National University of Defense Technology, China
Shi-Min Hu, Tsinghua University, China
Xiaotie Deng, Shanghai Jiao Tong University, China
Xilin Chen, Institute of Computing Technology, Chinese Academy of Sciences,
China
Xinbing Wang, Shanghai Jiao Tong University, China
Zhi Jin, Peking University, China
Zhi-Hua Zhou, Nanjing University, China

Founding Editor: Shi-Min Hu
On behalf of the China Computer Federation (CCF)

More information about this series at http://www.springer.com/series/13197

http://www.springer.com/series/13197

Chuan-Kun Wu • Dengguo Feng

Boolean Functions
and Their Applications
in Cryptography

123

Chuan-Kun Wu
State Key Lab of Information Security
Institute of Information Engineering
Chinese Academy of Sciences
Beijing, China

Dengguo Feng
Institute of Software
Chinese Academy of Sciences
Beijing, China

ISSN 2198-2686 ISSN 2198-2694 (electronic)
Advances in Computer Science and Technology
ISBN 978-3-662-48863-8 ISBN 978-3-662-48865-2 (eBook)
DOI 10.1007/978-3-662-48865-2

Library of Congress Control Number: 2015957583

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.
com)

www.springer.com
www.springer.com

Preface

Nonlinear Boolean functions are necessary building blocks in cryptography; they
often play a key role in the design of many stream ciphers and block ciphers.
In the design of stream ciphers, nonlinear combining functions are an important
type to study, where the cryptographic properties of the combining Boolean
function directly reflect the security vulnerability of the cipher, hence the study
of cryptographic properties of Boolean functions directly relating to the security
of the nonlinear combiners as a special model of stream ciphers. In block cipher
algorithms, nonlinear functions are also one of the core components. In the design
of many modern cryptographic algorithms, including the Advanced Encryption
Standard (AES), the nonlinear cryptographic functions have been used. Therefore,
the study of cryptographic properties of nonlinear Boolean functions not only helps
cryptanalysis but also plays an important guidance in the design of cryptographic
algorithms that have resistance against many cryptographic attacks.

Primary cryptographic properties of Boolean functions include nonlinearity,
correlation immunity, and algebraic property; they represent different security
measures against different cryptanalyses. The nonlinearity is a measure about the
resistance of Boolean functions against linear or affine approximation attack, and
this property can be extended to include the algebraic degree, linear structures,
and propagation criterion. These extended properties seem to have less importance
than the original definition of the nonlinearity and have attracted less study. The
correlation immunity is a measure against correlation attack, and the algebraic
immunity is a measure against algebraic attack. Note that these cryptographic
properties are not independent of each other, they have some relations and some
restrictions to each other, and this means that one cannot find a Boolean function
with all these properties to reach the best extent; therefore, a Boolean function needs
to have multiple cryptographic properties for practical use, and these cryptographic
properties have to compromise to reach a state of conditional optimum, i.e., under
the condition that certain cryptographic properties are met, the chances to have other
specific cryptographic properties to be the best.

v

vi Preface

Apart from numerous research papers on cryptographic properties of Boolean
functions in public literatures, there have been quite a few books about crypto-
graphic Boolean functions, or covering some content about cryptographic Boolean
functions.

This book studies a few hot issues about nonlinear functions in contemporary
cryptography. It is realized that the study of cryptographic Boolean functions has
been undergoing a continuous repaid development, and this book tends to reflect
some research results of the authors in certain aspects of cryptographic properties
of Boolean functions. This book is not meant to have a comprehensive coverage of
the topics in this field; it is designed to perhaps compliment some missing material
about cryptographic Boolean functions. Nevertheless, the book covers the primary
cryptographic properties of Boolean functions.

The contents of this monograph are as follows: Chapter 1 introduces the basic
concept of some fundamental cryptographic properties of Boolean functions, and
these properties are closely related to different security measures of the Boolean
functions. Chapter 2 studies some independence properties of Boolean functions,
mostly the independence of Boolean functions of their variables, including alge-
braic independence, statistical independence, and algebraic degeneration. These
independence properties are used in the forthcoming chapters. Chapter 3 deals
with the nonlinear properties of Boolean functions, including algebraic degree,
nonlinearity, and linear structures of Boolean functions. These nonlinear properties
are fundamental for a Boolean function to be used in an encryption algorithm.
Chapter 4 is about the correlation immunity of Boolean function, an interesting
property measuring the resistance against correlation attack, with different attempts
in constructing correlation-immune Boolean functions being made, and the concept
of correlation immunity is also extended. Chapter 5 is about the algebraic immunity
of Boolean functions, a security measure against algebraic attack that was proposed
in recent years. Chapter 6 studies the symmetric property of Boolean functions,
although the symmetric property is not a property to be pursued for cryptographic
applications, and there are many interesting related properties; hence the results in
this chapter are mostly of theoretical significance. Chapter 7 views cryptographic
S-boxes as vectorial Boolean functions, with a special class being Boolean per-
mutations, and studies their cryptographic properties and constructions. Chapter 8
attempts to give some applications of Boolean functions, where the applications are
beyond the original target as in stream and block cipher design.

Although each chapter has a focus, which is often a specific cryptographic
property, however other cryptographic properties are also considered when needed.
For example, when considering the correlation immunity, the nonlinearity is also
considered, and this is because the cryptographic properties are related to each other;
pursing one property may have to sacrifice the requirement on other properties and
at least have to reduce the requirement on other properties. This has been reflected
in different chapters of this monograph.

Finally, the authors would like to express sincere thanks to Prof. Guanghong Sun,
Hohai University, Nanjing, China, for his contribution to some of the materials in
Chap. 3 and Prof. Wenying Zhang, Shandong Normal University, Jinan, China, for

Preface vii

her contribution to most of the materials in Chap. 5. The authors are grateful to the
publisher of the monograph and the editing team for their assistance and valuable
comments to make this monograph available, and the first author appreciates the
support by Natural Science Foundation of China under project number 61173134.

Beijing, China Chuan-Kun Wu
Dengguo Feng

Contents

1 Boolean Functions and Their Walsh Transforms . 1
1.1 Logic Gates and Boolean Variables . 1
1.2 Boolean Functions and Their Representations . 2

1.2.1 Algebraic Normal Form . 4
1.2.2 Truth Table Representation .. 5
1.2.3 Support Representation . 5
1.2.4 Minterm Representation . 6
1.2.5 Representation Conversions . 7
1.2.6 Enumeration of Boolean Functions . 9

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 9
1.3.1 Walsh Functions and Walsh Transforms . 10
1.3.2 Properties of Walsh Transforms .. 12
1.3.3 Hadamard Matrices . 18

1.4 Basic Models of Stream Ciphers That Use Boolean Functions 20
1.4.1 Linear Feedback Shift Registers . 22
1.4.2 Nonlinear Filtering Generators and Nonlinear

Combiners . 24
1.5 Cryptographic Properties of Boolean Functions . 25

1.5.1 Algebraic Degree . 25
1.5.2 Balance . 26
1.5.3 Nonlinearity . 27
1.5.4 Linear Structure . 27
1.5.5 Propagation Criterion . 27
1.5.6 Correlation Immunity .. 28
1.5.7 Algebraic Immunity.. 28
1.5.8 Remarks . 29

References . 29

ix

x Contents

2 Independence of Boolean Functions of Their Variables 31
2.1 Introduction . 31
2.2 The Algebraic Independence of Boolean Functions

of Their Variables . 31
2.3 The Degeneracy of Boolean Functions . 37
2.4 Images of Boolean Functions on a Hyperplane . 42
2.5 Derivatives of Boolean Functions . 44
2.6 The Statistical Independence of Boolean Functions

of Their Variables . 48
2.7 The Statistical Independence of Two Individual Boolean

Functions .. 53
2.7.1 Properties of the Statistical Independence of

Boolean Functions . 54
2.7.2 How to Judge When Two Boolean Functions

Are Statistically Independent .. 56
2.7.3 Construction of Statistically Independent

Boolean Functions . 59
2.7.4 Enumeration of Statistically Independent

Boolean Functions . 63
2.7.5 On the Statistical Independence of a Group of

Boolean Functions . 65
References . 71

3 Nonlinearity Measures of Boolean Functions . 73
3.1 Introduction . 73
3.2 Algebraic Degree and Nonlinearity of Boolean Functions 74
3.3 Walsh Spectrum Description of Nonlinearity . 75
3.4 Nonlinearity of Some Basic Operations of Boolean Functions.. 77
3.5 Upper and Lower Bounds of Nonlinearity of Boolean Functions .. . 84
3.6 Nonlinearity of Balanced Boolean Functions . 86
3.7 Higher-Order Nonlinearity of Boolean Functions 87
3.8 Linear Structures of Boolean Functions . 89
3.9 Remarks .. 94
References . 95

4 Correlation Immunity of Boolean Functions . 97
4.1 The Correlation Attack of Nonlinear Combiners . 97
4.2 The Correlation Immunity and Correlation Attacks 101
4.3 Correlation Immunity of Boolean Functions . 103
4.4 Correlation Immune Functions and Error-Correcting Codes 104
4.5 Construction of Correlation Immune Boolean Functions 106

4.5.1 Known Constructions of Correlation Immune
Boolean Functions . 107

Contents xi

4.5.2 Construction of Correlation Immune Boolean
Functions Based on A Single Code . 108

4.5.3 Preliminary Enumeration of Correlation
Immune Boolean Functions . 110

4.5.4 Construction of Correlation Immune Boolean
Functions Using a Family of Error-Correcting Codes. 110

4.6 Lower Bounds on Enumeration of the Correlation
Immune Functions Constructible from the
Error-Correcting Code Construction .. 113

4.7 Examples . 114
4.8 Exhaustive Construction of Correlation Immune

Boolean Functions .. 117
4.9 An Example of Exhaustive Construction of Correlation

Immune Functions .. 119
4.10 Construction of High-Order Correlation Immune

Boolean Functions .. 122
4.11 Construction of Correlation Immune Boolean Functions

with Other Cryptographic Properties . 124
4.11.1 Correlation Immune Functions with Good Balance 125
4.11.2 Correlation Immune Functions with High

Algebraic Degree . 126
4.11.3 Correlation Immune Functions with High Nonlinearity . . . 127
4.11.4 Correlation Immune Functions with

Propagation Criterion . 130
4.11.5 Linear Structure Characteristics of Correlation

Immune Functions . 131
4.12 Construction of Algebraically Nondegenerate

Correlation Immune Functions. 133
4.12.1 On the Algebraic Degeneration of Correlation

Immune Functions . 134
4.12.2 Construction of Algebraically Nondegenerate

Correlation Immune Functions .. 135
4.13 The "-Correlation Immunity of Boolean Functions 139
4.14 Remarks .. 143
References . 143

5 Algebraic Immunity of Boolean Functions . 147
5.1 Algebraic Attacks on Stream Ciphers . 147
5.2 A Small Example of Algebraic Attack . 149
5.3 Annihilators and Algebraic Immunity of Boolean Functions 151
5.4 Construction of Annihilators of Boolean Functions 154
5.5 On the Upper and Lower Bounds of Algebraic Immunity

of Boolean Functions .. 161

xii Contents

5.6 Computing the Annihilators of Boolean Functions 162
5.6.1 Computing the Annihilators of Boolean

Functions: Approach I . 163
5.6.2 Computing the Annihilators of Boolean

Functions: Approach II . 166
References . 175

6 The Symmetric Property of Boolean Functions . 177
6.1 Basic Properties of Symmetric Boolean Functions 177
6.2 Computing the Walsh Transform of Symmetric Boolean

Functions .. 180
6.2.1 Walsh Transforms on Symmetric Boolean Functions 180
6.2.2 Computational Complexity . 184

6.3 Correlation Immunity of Symmetric Functions . 187
6.3.1 When n Is Odd . 189
6.3.2 When n Is Even . 190
6.3.3 Higher-Order Correlation Immunity . 191

6.4 On Symmetric Resilient Functions . 192
6.4.1 Constructions of Symmetric Resilient Boolean

Functions . 193
6.4.2 Searching for More Solutions . 194
6.4.3 The Exact Resiliency of Constructed Resilient

Functions . 196
6.5 Basic Properties of Majority Functions .. 198
6.6 The Walsh Spectrum of Majority Functions. 203

6.6.1 When n Is Odd . 203
6.6.2 When n Is Even . 204

6.7 The Correlation Immunity of Majority Functions.. 206
6.8 The "-Correlation Immunity of Majority Functions 209

6.8.1 When n Is Odd . 209
6.8.2 When n Is Even . 211

6.9 Remarks .. 213
References . 214

7 Boolean Function Representation of S-Boxes and Boolean
Permutations . 217
7.1 Vectorial Boolean Function Representation of S-Boxes 217
7.2 Boolean Function Representation of S-Boxes . 218

7.2.1 On the Properties of .n; n/-Boolean Permutations 220
7.3 Properties of Boolean Permutations . 223
7.4 Inverses of Boolean Permutations . 225
7.5 Intractability Assumption and One-Way Trapdoor

Boolean Permutations . 229

Contents xiii

7.6 Construction of Boolean Permutations . 230
7.6.1 Some Primary Constructions . 232
7.6.2 On the Flexibility of the New Construction

Method for Boolean Permutations . 236
7.6.3 Construction of Trapdoor Boolean

Permutations with Limited Number of Terms 237
7.7 A Small Example of Boolean Permutations . 238

7.7.1 Linearity and Nonlinearity of Boolean Permutations 239
References . 240

8 Cryptographic Applications of Boolean Functions . 243
8.1 Applications of Degenerate Boolean Functions to Logic

Circuit Representation .. 243
8.2 An Application of Boolean Permutations to Public Key

Cryptosystem Design . 245
8.2.1 Public Key Cryptosystem 1 (PKC1) . 245
8.2.2 Public Key Cryptosystem 2 (PKC2) . 246
8.2.3 Public Key Cryptosystem 3 (PKC3) . 247

8.3 Application of Boolean Permutations to Digital Signatures 248
8.4 Application of Boolean Permutations to Shared Signatures 249
8.5 An Application of Boolean Permutations to Key Escrow Scheme .. 250

8.5.1 Setup . 250
8.5.2 Escrowing Verification . 251
8.5.3 Key Recovery . 252
8.5.4 Properties . 252

8.6 A Small Example of Key Escrow Scheme Based on
Boolean Permutations . 253
8.6.1 Selecting a Boolean Permutation of Order 6 253
8.6.2 Preparation . 254
8.6.3 Verification . 255
8.6.4 Key Recovery . 255

8.7 Remarks .. 256
References . 256

Notations

GFn.2/: n-Dimensional vector space over the binary field GF.2/.
˚: The Exclusive-Or operation of Boolean values.
Fn: The set of Boolean functions in n variables.
Ln: The set of linear Boolean functions in n variables.
An: The set of affine Boolean functions in n variables.
supp.f /: The support of function f .x/.
supp.f /: The complementary set of supp.f /, i.e., GFn.2/� supp.f /.
wt.f /: The Hamming weight of f .x/.
nl.f /: The nonlinearity of f .x/.
CI.f /: The correlation immunity of f .x/.
AN.f /: The set of annihilators of f .x/.
AD.f /: The algebraic degeneracy of f .x/.
AI.f /: The algebraic immunity of f .x/.
hw; xi: The inner product of vectors w and x, i.e., hw; xi D w1x1 ˚ w2x2 ˚

� � � ˚ wnxn

AjB: A is a factor of B.
Prob.AjB/: The probability of event A happened given the condition that event B

happened.
hSi: The linear span of the set S.

xv

Chapter 1
Boolean Functions and Their Walsh Transforms

Boolean functions are fundamental building blocks for many cryptographic
algorithms. This chapter introduces basic concepts and operations of Boolean
functions, including Walsh transforms and basic cryptographic properties of
Boolean functions.

1.1 Logic Gates and Boolean Variables

Our world is so complex. It has countless number of variant things. However,
science tells us that everything is composed of very basic elements, namely, atoms.
Compared with the variant things, the number of different atoms is very small.
This is similar to the situation of modern computers. Today the computers are very
powerful and complex. Regardless of how complicated they are structured, and how
different they are from one to another, they are all composed of very basic logic
circuits using very basic gates (operators) that only apply to binary numbers, i.e., 0
and 1.

Integrated circuits such as microprocessors, RAMs, interface chips, and so on are
manufactured by putting tens of thousands of simple logic gates into a silicon chip.
These circuits are then built into more powerful computers.

The minimum units of normal electronically devices are called cells. A cell can
have two status,1 high voltage or low voltage. When a cell has high voltage, it stands
for a TRUE Boolean value and is represented by binary value 1, while when a
cell has low voltage, it stands for a FALSE Boolean value and is represented by
binary value 0. Connections of those cells in terms of their assigned values are
performed by three fundamental logic gates, namely, OR, AND, and NOT. These

1For multiple logic circuits, a cell can have more than two status. Here we only consider the two
status logic.

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_1

1

2 1 Boolean Functions and Their Walsh Transforms

Table 1.1 Truth table of logic gates

A B AND (A ^ B) OR (A _ B) NOT (NA) XOR .A ˚ B/

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

logic gates correspond to operations on binary numbers. By connecting these logic
gates together in various ways, we have different kinds of logic circuits. The basic
logic gates are the simplest logic circuits.

The most intuitive way to describe how the logic gates work is to use truth tables.
Let A and B be Boolean variables representing the value of logic cells. The output of
the logic gates can be illustrated in Table 1.1. Note that for simplicity, we use binary
values 1 and 0 to represent the Boolean values TRUE and FALSE, respectively.

There are some other kinds of logic gates which are also very useful; however,
they all can be represented as the composition of the above mentioned ones. The
logic gate exclusive-or (XOR for short), denoted by ˚, can be expressed using the
above three basic logic gates as A˚B D .A_B/^ . NA_ NB/. The outcome of A˚B is
exactly the same as modulo 2 addition of the binary values of A and B. This property
coincides with the addition operation over the finite field GF.2/ D f0; 1g with two
elements and two operations: modulo 2 addition and modulo 2 multiplication. It is
interesting to notice that by employing the logic gate AND, all the three basic logic
gates can be represented using the logic gates XOR and AND. More precisely we
have, apart from logic gate AND,

A _ B D A˚ B˚ .A ^ B/; NA D A˚ 1:

Note that the logic gate OR also coincides with the multiplication operation over
the finite field GF.2/. This enables us to study logic circuits using the functions of
XOR and AND, i.e., Boolean functions, and the variables representing the values of
logic cells are called Boolean variables.

One of the advantages of using Boolean variables and the Boolean operations
XOR and AND is that these two Boolean operations can be treated as operations
over the binary field GF.2/, and many of the results from finite fields can be used.

1.2 Boolean Functions and Their Representations

Let GFn.2/ be the n-dimensional vector space over the binary field GF.2/. A
function f W GFn.2/ �! GF.2/ is called a Boolean function in n variables. We
write it as f .x/ D f .x1; x2; : : : ; xn/, where x is the shorthand writing of vector
.x1; x2; : : : ; xn/. The vector of all the outputs of f .x/ is called the truth table of f .x/,

1.2 Boolean Functions and Their Representations 3

which has dimension 2n. Of course x has to follow a particular order when going
through all the possible values in GFn.2/. If we treat a binary vector as the binary
representation of an integer, i.e.,

x D .x1; x2; : : : ; xn/ D
nX

iD1

xi2
n�i;

when the integer takes all the values from 0 to 2n� 1, then the corresponding vector
goes through all the elements in GFn.2/. Traditionally, we let the value of the binary
representation of the integer to go from 0 incrementally to 2n � 1. If we collect all
the vectors where f .x/ takes value 1, then the set of collections is called the support
of f .x/, denoted by supp.f / D fx W f .x/ D 1g. The complement of the support,
denoted by supp.f / D f0; 1gn � supp.f / D fx W f .x/ D 0g, is called the annihilation
set of f .x/. It is trivial to verify that supp.f / D supp.1˚ f .x//. The number of 1’s
in the truth table of f .x/ is called the Hamming weight of f .x/ and is denoted by
wt.f /. It is obvious that wt.f / is the number of elements in supp.f /. Function f .x/

is called balanced if wt.f / D 2n�1, and it is called an affine function if there exist
a0; a1; : : : ; an 2 GF.2/ such that f .x/ D a0 ˚ a1x1 ˚ � � � ˚ anxn, where ˚ means
modulo 2 addition (equivalent to XOR operation). In particular, if a0 D 0, it is also
called a linear function. We will denote by Fn, the set of all Boolean functions in n
variables, by Ln, the set of linear ones, and by An, the set of affine ones. By these
notations, we have

Ln � An � Fn:

Let f .x/, g.x/ be two Boolean functions in n variables. The distance between
f .x/ and g.x/, denoted by d.f ; g/, is the number of coordinates with different values
in their truth tables, or equivalently it can be written as d.f ; g/ D wt.f ˚ g/. This
distance is also known as Hamming distance. By the properties of XOR operation,
we get a relationship between the Hamming distance of two Boolean functions and
the Hamming weight of them:

wt.f ˚ g/ D wt.f /C wt.g/ � 2wt.fg/:

The nonlinearity of f .x/, denoted by nl.f /, is the minimum distance between f .x/

and all affine functions, i.e.,

nl.f / D minfd.f .x/; l.x// W l.x/ 2 Ang: (1.1)

Boolean variables x D .x1; x2; : : : ; xn/ can be treated as probabilistic variables
which take random values from GFn.2/ equally likely with uniform probability
distribution. From this treatment, each xi is an independent variable over f0; 1g,
and a Boolean function f .x/ is also treated as a function in random variables, which
is hence a random variable over f0; 1g. We will use this treatment when discussing
statistical properties.

4 1 Boolean Functions and Their Walsh Transforms

There can be different arithmetical operations on Boolean functions. Let f .x/ and
g.x/ be two Boolean functions in n variables. Then their addition f .x/˚ g.x/ is the
XOR operation of their corresponding outputs, and their multiplication f .x/g.x/ is
the multiplication of their corresponding outputs. With these two operations, it is
easy to verify that Fn, Ln, and An are all communicative rings.

There are a number of cryptographic properties that a practically applicable
Boolean function is supposed to oppose. Some of the properties have certain levels
of conflict, so they cannot meet the optimum status at the same time. Boolean
functions satisfying multiple cryptographic properties have to make a reasonable
compromise [6, 20, 23, 33].

1.2.1 Algebraic Normal Form

One way to represent a Boolean function is to write the function in terms of Boolean
variables. When a Boolean function is written as

f .x/ D c0

M

1�i�n

cixi

M

1�i<j�n

cijxixj

M
� � �
M

c1;:::;nx1x2 : : : xn; (1.2)

it is called the algebraic normal form representation of f .x/, or the ANF in brief,
where c0, ci, cij, � � � , c1;:::;n are coefficients having a value in {0, 1}. It can be proven
that every Boolean function in n variables can be represented uniquely in the form of
Eq. 1.2, i.e., a unique set of coefficients. So the representation of Eq. 1.2 is universal.
For example, f .x1; x2; x3/ D x1 ˚ x2x3 is the algebraic normal form of a Boolean
function in three variables.

When a Boolean function is represented in its algebraic normal form, it is the
XOR of a number of terms, and each term is a multiplication of either zero (the
constant) or more Boolean variables. The number of variables in one multiplicative
term is called the algebraic degree (or simply the degree) of the term, and the
algebraic degree of a Boolean function is the highest algebraic degree of its terms
with a nonzero coefficient in its ANF representation. The algebraic degree of f .x/ is
denoted as deg.f /. For instance, the degree of the above example f .x/ D x1 ˚ x2x3

is 2, as in the algebraic normal form of f .x/, and the term of the highest possible
degree with nonzero coefficient is x2x3. The highest degree of a Boolean function
in n variables is n, and for the case of n D 3, only when x1x2x3 appears in the
algebraic normal form of a function, the function is of the highest degree. Note that
in the algebraic normal form of a Boolean function, every individual variable has a
degree of at most one; this is because for a Boolean variable x, x2 D x is always
true, regardless whether the value of x is 1 or 0.

When the algebraic normal form of a Boolean function has degree 0, the Boolean
function is called a constant. It can be seen that in this case, for all the possible
values of x, we always have that f .x/ D 1 or f .x/ D 0, but not both. When the
algebraic normal form is of degree 1, the function is an affine Boolean function.

1.2 Boolean Functions and Their Representations 5

Particularly, when the constant term is 0, i.e., f .0/ D 0, f .x/ is a linear Boolean
function. For a linear Boolean function f .x/, it has the property that f .x ˚ y/ D
f .x/ ˚ f .y/. Note that an affine Boolean function is either a linear one or a linear
Boolean function XOR the constant 1. So traditionally affine Boolean functions are
treated as having the same level of nonlinearity as linear functions.

1.2.2 Truth Table Representation

There are only finite numbers of inputs to a Boolean function; hence there are finite
numbers of outputs. If each output corresponds to an input, then with a complete
list of input-output pairs, the function can be uniquely determined. This is even
simplified if we sort the inputs in such a fixed order: map each input .x1; x2; : : : ; xn/

into an integer x0 D Pn
iD1 xi2

n�i of which the binary representation of the integer
is the same as the input, and let x0 go from 0 to 2n � 1 incrementally, and then
according to this order, the outputs of a Boolean function can represent the function.
This is called the truth table representation. As for the above example, f .x/ D x1 ˚
x2x3, when the variables are ordered as 000; 001; 010; 011; 100; 101; 110; 111, and
according to this ordered inputs, the outputs of the function are listed as a vector
00011110, which is the truth table of the function.

1.2.3 Support Representation

Sometimes it is easier to record a Boolean function by the values of the inputs where
the function takes value 1, particularly for those having very low Hamming weight.

Let f .x/ 2 Fn. The support of f .x/ is defined as

supp.f / D fx W f .x/ D 1g (1.3)

It is seen that the support of a Boolean function is a set of vectors of dimension n,
and the cardinality of supp.f / satisfies

0 � jsupp.f /j � 2n: (1.4)

For example, the support for function f .x1; x2; x3/ D x3 ˚ x1x3 ˚ x2x3 ˚ x1x2x3 is
just f.001/g. For this function, the support representation is much simpler than the
algebraic normal form as well as truth table representation.

If we list all the vectors in supp.f / as a matrix Xf , then Xf is a wt.f / � n
binary matrix whose rows represent the nonzero points of f .x/ and whose column
represents the number of variables of f .x/. Then the matrix Xf is called the
characteristic matrix of f .x/ which is unique when the rows are in a specific order,
e.g., the order defined above.

6 1 Boolean Functions and Their Walsh Transforms

If f .x/ is balanced, then its characteristic matrix has 2n�1 different rows and
n columns. Further properties of Boolean functions can be observed from the
properties of their characteristic matrices, as will be seen later in this book.

1.2.4 Minterm Representation

From the above, we know that the support of a Boolean function uniquely defines
the Boolean function, i.e., there is a one-to-one mapping from the set of Boolean
functions and the set of their supports. Given a Boolean function f .x/ 2 Fn, and
assume that its support is supp.f /, then supp.f / is a set of binary vectors. For any
of these vectors, there exists a Boolean function whose support is a set having that
vector only. More precisely, let ˛ D .a1; a2; : : : ; an/ 2 GFn.2/, and define x.ai/

i D 1

if and only if xi D ai, where ai 2 f0; 1g is a constant and xi is a binary variable.
Denote

x˛ D x.a1/
1 x.a2/

2 � � � x.an/
n : (1.5)

Then it is easy to verify that the support of x˛ is indeed ˛. Note that x.ai/
i D .xi ˚

ai ˚ 1/; hence, we can write x˛ as

x˛ D .x1 ˚ a1 ˚ 1/.x2 ˚ a2 ˚ 1/ � � � .xn ˚ an ˚ 1/ D
nY

iD1

.xi ˚ ai ˚ 1/:

It is easy to note that for any f .x/ 2 Fn, we have that

supp.f / D
[

˛2supp.f /

supp.x˛/I (1.6)

hence, we can write f .x/ as

f .x/ D
M

˛2supp.f /

x˛ D
M

˛2supp.f /

x.a1/
1 x.a2/

2 � � � x.an/
n

D
M

˛2supp.f /

nY

iD1

.xi ˚ ai ˚ 1/ (1.7)

Eq. 1.7 is called the minterm representation of f .x/, where each x˛ is called a
minterm of f .x/.

1.2 Boolean Functions and Their Representations 7

1.2.5 Representation Conversions

Given a Boolean function, it can be represented by either algebraic normal form,
or truth table, or the support. As the function is not changed regardless whatever a
representation is used, different representations should be all equivalent. Therefore,
there should be a method of converting from one representation to another.

1.2.5.1 Algebraic Normal Form to Truth Table Conversion

Given a boolean function f .x/ in n variables, it is not hard to find a way of converting
algebraic normal form into the truth table representation. This can be done by simply
recording the outputs of the function by feeding input x, where x, when treated as a
binary representation of integers, goes from 0 to 2n � 1 incrementally.

1.2.5.2 Truth Table to Support Conversion

The truth table of a Boolean function in n variables is a binary vector of dimension
2n, and each coordinate of the vector corresponds to an input x which can be treated
as an n-dimensional binary vector. Choose the vectors x corresponding to value 1 in
the truth table of f .x/, and then they form the support of f .x/.

1.2.5.3 Support to Minterm Conversion

The definition of the minterm representation of a Boolean function actually gives a
conversion: for each vector ˛ 2 supp.f /, define the minterm x˛ , then

f .x/ D
M

˛2supp.f /

x˛ (1.8)

is the minterm representation of f .x/.

1.2.5.4 Minterm to Algebraic Normal Form Conversion

When we remove the parentheses in the minterm representation of f .x/ as in Eq. 1.7,
removing the same terms that appear for even number of times (since˚ is modulo 2
addition) and keeping one of each of the terms that appear for odd number of times,
then the result is the algebraic normal form representation of f .x/.

Now we know that different representations of Boolean functions can be
converted from one form to another. The above shows the possibility of conversion,

8 1 Boolean Functions and Their Walsh Transforms

but not necessarily the most efficient way of conversion. This book will not cover
the efficiency issue of the conversion from one form of representations to another,
and hence the possibility of conversion only shows the equivalence of these different
representations.

1.2.5.5 Truth Table to Algebraic Normal Form Conversion

Apart from algebraic normal form, another popular form of representation is the
truth table representation, and it often needs to convert a truth table representation
into algebraic normal form; hence, we give the following steps with an example
demonstrating how it works.

• Formulate the support of the function from the truth table.
For example, if the truth table for the given function is (11000100), then the
support is a collection of the index of the truth table with nonzero coordinates,
i.e., x D 0; 1; 5, or in binary representation form, we have supp.f / D {000, 001,
101}.

• Convert the support to minterm representation.
For the above example, we have

f .x/ D
M

c2supp.f /

x.c1/
1 x.c2/

2 x.c3/
3 D x.0/

1 x.0/
2 x.0/

3 ˚ x.0/
1 x.0/

2 x.1/
3 ˚ x.1/

1 x.0/
2 x.1/

3 :

• Expand the minterm form into a polynomial to get the algebraic normal form.
Note that x.ci/

i D xi if ci D 1 and x.ci/
i D 1˚ xi if ci D 0.

For the above example, we have

f .x/ D 1˚ x1 ˚ x2 ˚ x1x2 ˚ x1x3 ˚ x1x2x3:

Note: The above method of truth table to algebraic normal form conversion is by
no means optimum. It can be seen from the example that the first two minterms can
be combined as .1˚x1/.1˚x2/, and hence expansion is easier than to expand every
minterm individually.

Example 1.1. Let n D 3, f .x/ D x1x2 ˚ x1x3 ˚ x2x3, then when x D .x1; x2; x3/

takes values .000/ D 0, .001/ D 1, .010/ D 2, .011/ D 3, .100/ D 4, .101/ D 5,
.110/ D 6, .111/ D 7, the outputs of f .x/ form the vector .00010111/ which is the
truth table of f .x/. From the truth table, it is seen that when x 2 f011; 101; 110; 111g,
f .x/ D 1, supp.f / D f011; 101; 110; 111g, and the minterm representation of f .x/ is
f .x/ D x1x2x3˚x1x2x3˚x1x2x3˚x1x2x3. Here we can use x D x˚1 to represent x.0/.

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 9

1.2.6 Enumeration of Boolean Functions

It is sometimes very useful to know how many Boolean functions are there in
a certain class. For Boolean functions in n variables, as there is a one-to-one
relationship between a Boolean function in n variables and a binary vector of
dimension 2n (the truth table of the function), the number of all Boolean functions
in n variables is 22n

, i.e.,

jFnj D 22n
:

It is seen that the number of Boolean functions increases dramatically with the
increasing of the number of variables n. However, the number of affine Boolean
functions is much smaller. Note that the XOR operation of any two affine Boolean
functions will result in an affine Boolean function, so An forms a vector space. To
determine the size of An, it is sufficient if we can determine the dimension of An. It
is trivial to find a basis of An which is 1, x1, x2, . . . , xn. These functions form a basis
of An, because they are elements in An, and no one can be represented by others via
linear combination (over binary field), and every function in An can be represented
as a linear combination of these functions. So we have

jAnj D 2nC1;

and jLnj D jAnj=2 D 2n.
Apart from linear Boolean functions and affine Boolean functions as two

subclasses of Boolean functions, there are many other subclasses of Boolean
functions with some other specific properties. For example, symmetric Boolean
functions and Boolean functions reaching the highest possible nonlinearity (known
as Bent functions) are another two subclasses of Boolean functions. Later on we
will see more subclasses of Boolean functions grouped by some particular crypto-
graphic properties. Studying the enumeration of those function with cryptographic
properties has important cryptographic significance. For instance, it may be the case
that a subclass of Boolean functions have very good cryptographic properties, but if
the number of such functions is very small, then the application of these functions
would be very limited. We will look at the enumeration problem later for some
classes of cryptographic Boolean functions.

1.3 Walsh Transforms and Walsh Spectrum of Boolean
Functions

Walsh transform [3] is an important tool to represent many properties of Boolean
functions [30]. In particular, it has been shown to be a very useful tool in represent-
ing cryptographic properties of Boolean functions [10]. This section introduces the
Walsh transform and its properties.

10 1 Boolean Functions and Their Walsh Transforms

1.3.1 Walsh Functions and Walsh Transforms

Definition 1.1. The Walsh orthogonal family is a collection of Walsh functions
defined over GFn.2/

W.w; x/ D .�1/hw; xi (1.9)

where w D .w1; w2; : : : ; wn/ and x D .x1; x2; : : : ; xn/ are n-dimensional binary
vectors, and hw; xi D w1x1 C w2x2 C � � � C wnxn is the inner product of vectors
w and x. Note that since both w and x are elements in GFn.2/, the result of the
inner product is an element in GF.2/, and hence the addition in the inner product is
modulo 2 addition, which has the same effect as XOR operation. However, when the
inner product is an exponent of �1, then there is no difference whether the addition
is real or in the sense of modulo 2.

In the above, it does not make difference when treating each value of xi and that
of wi as binary values or real values from f0; 1g, so we will not differentiate when
a value in f0; 1g is binary or real. Note that the Walsh functions are real-valued
functions. It is easy to verify that the following properties hold, where a vector is
treated equivalently as an integer in binary representation.

(1) Symmetric property: W.w; x/ D W.x; w/ holds for any w and x.

(2) Orthogonal property:
2n�1P
wD0

W.w; x/W.w; t/ D
�

2n if x D t
0 else

From the orthogonal property of the Walsh orthogonal family, we get

2n�1X

wD0

W.w; x/ D
2n�1X

wD0

.�1/hw; xi D
�

2n if x D 0

0 if x ¤ 0
(1.10)

More generally, we have

Lemma 1.1. Let V be a vector subspace of GFn.2/, and

V? D fy W 8x 2 V; hx; yi D 0g

be the orthogonal vector space of V. Then we have

X

w2V

W.w; x/ D
� jVj if w 2 V?

0 if w 62 V? (1.11)

It can be seen that Eq. 1.10 is a special case of Eq. 1.11 when V D GFn.2/.

Definition 1.2. Let f .x/ W GFn.2/ �! R be a function defined over GFn.2/ and
whose values are from the set of real numbers R. Then the Walsh transform of f .x/

is defined as

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 11

Sf .w/ D
2n�1X

xD0

f .x/W.w; x/ D
2n�1X

xD0

f .x/.�1/hw; xi (1.12)

and the Walsh inverse transform corresponding to Eq. 1.12 is

f .x/ D 2�n
2n�1X

wD0

Sf .w/W.w; x/ D 2�n
2n�1X

wD0

Sf .w/.�1/hw; xi: (1.13)

Then the truth table of Sf .w/ is called the Walsh spectrum of f .x/.

Although Boolean functions are defined over GF.2/, they can well be treated as
real-valued functions that take values 0 and 1 only. So the Walsh transform and the
inverse transform also apply to Boolean functions.

A Boolean function can also be treated as a binary logical function that takes
values TRUE (represented by value 1) and FALSE (represented by value 0). In the
implementation of electronic circuits, it is often more convenient to use f�1; 1g to
represent the domain of binary functions than to use f0; 1g, and hence the following
transform is used to map f0; 1g to f�1; 1g:

ı.f .x// D .�1/f .x/:

By this transform, the Boolean function f .x/ is then mapped to function ı.f .x// on
the domain f�1; 1g. The Walsh transform can also apply to ı.f .x// as

Sı.f .x//.w/ D
2n�1X

xD0

ı.f .x//.�1/hw; xi D
2n�1X

xD0

.�1/f .x/Chw; xi (1.14)

Since the Walsh transform of ı.f .x// is often represented using f .x/ as in Eq. 1.14,
it is often represented as

S.f /.w/ D
2n�1X

xD0

.�1/f .x/Chw; xi:

In order to differentiate these two types of Walsh transforms, we call S.f /.w/ as type
II Walsh transform of f .x/, and call Sf .w/ as type I Walsh transform of f .x/.

Similar to the type I Walsh transform, the corresponding inverse of type II Walsh
transform can be represented as

ı.f .x// D 2�n
2n�1X

wD0

S.f /.w/.�1/hw; xi: (1.15)

12 1 Boolean Functions and Their Walsh Transforms

Note that when the Boolean function f .x/ is treated as a real-valued function,
the Walsh transform remains the same. By this treatment, the two functions can be
converted to each other:

ı.f .x// D .�1/f .x/ D 1 � 2f .x/

Then, the type II Walsh transform of f .x/ can be converted from the type I Walsh
transform of f .x/, i.e.,

S.f /.w/ D
2n�1X

xD0

.�1/f .x/Chw; xi

D
2n�1X

xD0

.1 � 2f .x//.�1/hw; xi

D
2n�1X

xD0

.�1/hw; xi � 2

2n�1X

xD0

f .x/.�1/hw; xi

D
�

2n � 2Sf .w/ if w D 0

�2Sf .w/ else
(1.16)

On the other hand, the type I Walsh transform of f .x/ can be converted from its type
II Walsh transform as

Sf .w/ D
�

2n�1 � 1
2
S.f /.w/ if w D 0

� 1
2
S.f /.w/ else

(1.17)

In the following discussion, we may not specifically name the types of Walsh
transforms or spectrum, as the types can be identified from the notations.

1.3.2 Properties of Walsh Transforms

Now we give some properties of Walsh transforms on Boolean functions. Due to the
easy conversion from one type to another, it is sufficient to use only one type, and
the same properties can be established to a different type of the Walsh transform.

Theorem 1.1. Let f1.x/; f2.x/ 2 Fn. Then

Sf1˚f2 .w/ D Sf1 .w/C Sf2 .w/� 2Sf1f2 .w/ (1.18)

Proof. By the conversion between XOR operation and the addition over the real
numbers, i.e., a˚ b D aC b � 2ab; a; b 2 f0; 1g, we have

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 13

Sf1˚f2 .w/ D
2n�1X

xD0

.f1.x/˚ f2.x//.�1/hw; xi

D
2n�1X

xD0

.f1.x/C f2.x/� 2f1.x/f2.x//.�1/hw; xi

D
2n�1X

xD0

f1.x/.�1/hw; xi C
2n�1X

xD0

f2.x/.�1/hw; xi

�2

2n�1X

xD0

f1.x/f2.x/.�1/hw; xi

D Sf1.w/C Sf2 .w/ � 2Sf1f2 .w/

ut
Theorem 1.2. Let f1.x/; f2.x/ 2 Fn. Then

Sf1f2 .w/ D 2�n
2n�1X

�D0

Sf1 .�/Sf2 .w˚ �/ (1.19)

Proof. By the inverse Walsh transform, we have

Sf1f2 .w/ D
2n�1X

xD0

f1.x/f2.x/.�1/hw; xi

D
2n�1X

xD0

Œ2�n
2n�1X

�D0

Sf1 .�/.�1/h�; xi�Œ2�n
2n�1X

˛D0

Sf2.˛/.�1/h˛; xi�.�1/hw; xi

D 2�2n
2n�1X

�D0

2n�1X

˛D0

Sf1 .�/Sf2 .˛/

2n�1X

xD0

.�1/h.�˚˛˚w/; xi

By Eq. 1.10 it is known that, when ˛ D w˚ � , we have

2n�1X

xD0

.�1/h.�˚˛˚w/; xi D 2n;

else

2n�1X

xD0

.�1/h.�˚˛˚w/; xi D 0:

14 1 Boolean Functions and Their Walsh Transforms

So we have

Sf1f2 .w/ D 2�n
2n�1X

�D0

Sf1 .�/Sf2 .w˚ �/

Hence, the conclusion of Theorem 1.2 holds. ut
From Theorem 1.2, we can easily get the following conclusion.

Theorem 1.3. Let f .x/ 2 Fn. Then the Walsh spectrum of f .x/ satisfies

Sf .w/ D 2�n
2n�1X

�D0

Sf .�/Sf .w˚ �/ (1.20)

On the other hand, if Eq. 1.20 holds, then f .x/ must be a Boolean function.

Proof. In Theorem 1.2, let f1.x/ D f2.x/ D f .x/, and notice that a Boolean
function f .x/ must satisfy that f 2 D f , then Eq. 1.20 holds. On the other hand, by
Theorem 1.2, the right-hand side of Eq. 1.20 equals Sf �f .w/, which holds for every
w 2 GFn.2/ if and only if f 2 D f , which holds if and only if f .x/ is a Boolean
function. ut

Theorem 1.3 can be used to judge whether a real-valued function is a Boolean
function when only the Walsh spectrum is given. In this case, the Walsh spectrum
uniquely determines a Boolean function. We do not usually treat the Walsh spectrum
as a representation of Boolean functions, because to check whether the Walsh
spectrum is from a Boolean function requires much computation.

Theorem 1.4. Let f .x/ 2 Fn. Then the Walsh transform of f .x/ satisfies

2�n
2n�1X

wD0

Sf .w/ D f .0/ 2 f0; 1g (1.21)

Proof. Take the summation of Eq. 1.12 for all w 2 GFn.2/, we have

2�n
2n�1X

wD0

Sf .w/ D
2n�1X

wD0

2n�1X

xD0

f .x/.�1/hw; xi

D 2�n
2n�1X

xD0

f .x/

2n�1X

wD0

.�1/hw; xi

D f .0/ (by Eq. 1.10)

ut
Theorem 1.5. Let f .x/ 2 Fn, D be an n � n invertible (nonsingular) matrix over
GF.2/. Then

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 15

Sf .xD/.w/ D Sf .x/.w.D�1/T/ (1.22)

where .D�1/T is the transpose of matrix D�1 which is the inverse of matrix D.

Proof.

Sf .xD/.w/ D
2n�1X

xD0

f .xD/.�1/hw; xi

D
2n�1X

xD0

f .xD/.�1/hw; .xDD�1/i

D
2n�1X

yD0

f .y/.�1/hw; .yD�1/i .y D xD/

D
2n�1X

yD0

f .y/.�1/hw.D�1/T ; yi

D Sf .x/.w.D�1/T/

ut
Theorem 1.5 shows the relationship between the Walsh spectrums of two

Boolean functions where one is induced from the other by variable invertible linear
transform. Below are some properties with respect to the overall Walsh spectrum of
Boolean functions.

Theorem 1.6 (Plancheral). Let f .x/ 2 Fn and Sf .w/ be the Walsh spectrum of
f .x/. Then we have

2n�1X

wD0

S2
f .w/ D 2n

2n�1X

xD0

f 2.x/ D 2nwt.f / (1.23)

Proof.

2n�1X

wD0

S2
f .w/ D

2n�1X

wD0

Œ

2n�1X

xD0

f .x/.�1/hw; xi
2n�1X

yD0

f .y/.�1/hw; yi�

D
2n�1X

xD0

2n�1X

yD0

f .x/f .y/

2n�1X

wD0

.�1/hw; .x˚y/i

D 2n
X

xDy

f .x/f .y/ D 2nwt.f /

ut

16 1 Boolean Functions and Their Walsh Transforms

Theorem 1.6 tells that the sum of the squares of the Walsh spectrum of a Boolean
function is 2n times the Hamming weight of the function. If the Hamming weight
of f .x/ is small, then the chances for Sf .w/ to have a big absolute value is also
small.

Now we give a spectrum description of self-correlation function of Boolean
functions. First we introduce the concept.

Definition 1.3. Let f .x/ 2 Fn. Then

Rf .�/ D
2n�1X

xD0

f .x/f .x˚ �/

is called the self-correlation function of f .x/, where � 2 GFn.2/.

The self-correlation function of a Boolean function measures the common
coordinates with value 1 between f .x/ and f .x ˚ �/. Note that for any fixed
� 2 GFn.2/, when x goes through all the elements in GFn.2/, x ˚ � also goes
through all the elements in GFn.2/. So the truth table of f .x ˚ �/ is a permutation
of the truth table of f .x/. Now we give an example to show how this works.

Example 1.2. Let f .x/ D x1x2 ˚ x1x3 ˚ x2x3 2 F3. Then the truth table of f .x/

is .00010111/. When x takes values (000, 001, 010, 011, 100, 101, 110, 111), the
shifts x˚ � and the corresponding truth tables of f .x˚ �/ are as follows:

� x ˚ � f .x ˚ �/ Rf .�/

0 000, 001, 010, 011, 100, 101, 110, 111 00010111 4

1 001, 000, 011, 010, 101, 100, 111, 110 00101011 2

2 010, 011, 000, 001, 110, 111, 100, 101 10001101 2

3 011, 010, 001, 000, 111, 110, 101, 100 10001110 2

4 100, 101, 110, 111, 000, 001, 010, 011 01110001 2

5 101, 100, 111, 110, 001, 000, 011, 010 10110010 2

6 110, 111, 100, 101, 010, 011, 000, 001 11010100 2

7 111, 110, 101, 100, 011, 010, 001, 000 11101000 0

There is a good Walsh spectrum property of the self-correlation functions of
Boolean functions.

Theorem 1.7 (Wiener-Khinchin). Let f .x/ 2 Fn, Rf .�/ be the self-correlation
function of f .x/. Then we have

Rf .�/ D 2�n
2n�1X

wD0

S2
f .w/.�1/hw; �i (1.24)

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 17

Proof.

Rf .�/ D
2n�1X

xD0

f .x/f .x˚ �/

D
2n�1X

xD0

2�n

2n�1X

wD0

Sf .x/.w/.�1/hw; xi � 2�n
2n�1X

w0D0

Sf .x˚�/.w
0/.�1/hw0; xi

!

D 2�2n
2n�1X

wD0

2n�1X

w0D0

Sf .x/.w/Sf .x˚�/.w
0/

2n�1X

xD0

.�1/h.w˚w0/; xi

D 2�n
X

wDw0

Sf .x/.w/Sf .x˚�/.w
0/

D 2�n
2n�1X

wD0

Sf .x/.w/Sf .x˚�/.w/

where

Sf .x˚�/.w/ D
2n�1X

xD0

f .x˚ �/.�1/hw; xi

D
2n�1X

xD0

f .x/.�1/hw; xiChw; �i .x x˚ �/

D .�1/hw; �i
2n�1X

xD0

f .x/.�1/hw; xi

D .�1/hw; �iSf .x/.w/

Taking this into the above, we have Eq. 1.24. ut
It is noted that all the above properties are given using the type I Walsh transform.

As stated earlier, since there is convenient conversion between type I and type II
Walsh transforms, any property given in one type can be converted to the other type
of Walsh transform. However, sometimes the expression of certain properties in one
type of Walsh transform is more compact than in the other type. The following is
one such case where it uses the type II Walsh transform.

Theorem 1.8 (Parseval). Let f .x/ 2 Fn, S.f /.w/ be the type II Walsh spectrum of
f .x/. Then we have

18 1 Boolean Functions and Their Walsh Transforms

2n�1X

wD0

S2
.f /.w/ D 22n: (1.25)

Proof.

2n�1X

wD0

S2
.f /.w/ D

2n�1X

wD0

Œ

2n�1X

xD0

.�1/f .x/Chw; xi
2n�1X

yD0

.�1/f .y/Chw; yi�

D
2n�1X

xD0

2n�1X

yD0

.�1/f .x/˚f .y/

2n�1X

wD0

.�1/hw; .x˚y/i

D 2n
X

xDy

.�1/f .x/˚f .y/ D 22n:

ut

1.3.3 Hadamard Matrices

Another representation of Walsh functions and Walsh transform is to use matrices.
Denote

W.n/ D ŒW.w; x/� D Œ.�1/hw; xi�; 0 � w; x � 2n � 1 (1.26)

as a 2n � 2n binary matrix whose element on the i-th row and the j-th column is
W.i; j/. Then when n D 1 and when n D 2, it is easy to formulate the matrices

W.1/ D
�

1 1

1 �1

�

and

W.2/ D

2

664

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

3

775

The matrix W.n/ is called a Hadamard matrix of order n, and the Hadamard matrices
have the following property:

W.n/ D W.1/ ˝W.n�1/ D W.n�1/ ˝W.1/ D W Œn�

.1/: (1.27)

1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions 19

where˝ means the Kronecker product defined as

�
a11 a12

a21 a22

�
˝
�

b11 b12

b21 b22

�
D

2
666664

a11

�
b11 b12

b21 b22

�
a12

�
b11 b12

b21 b22

�

a21

�
b11 b12

b21 b22

�
a22

�
b11 b12

b21 b22

�

3
777775

D

2

664

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

3

775 ;

and W Œn�

.1/ means the consecutive Kronecker product of A.1/ for n times. Particularly,
it is trivial to verify the equality of W.2/ D W.1/ ˝W.1/.

By the orthogonal property of the Walsh functions, it is easy to induce the
corresponding properties of Hadamard matrices:

(1) W.n/ is a symmetric matrix of order 2n � 2n.
(2) W.n/ � W.n/ D 2nI.2n/, where I.2n/ is an identity matrix of order 2n, and the

operator for normal matrix multiplication is denoted by a dot “�” which can be
omitted for convenience of writing.

(3) W�1
.n/ D 2�nW.n/.

Let F D .f .0/; f .1/; f .2/; : : : ; f .2n � 1// be the truth table representation of
Boolean function f .x/, and similarly we define Sf and S.f / to be the truth table
of Sf .w/ and S.f /.w/, respectively. Define ı.f / D .�1/f , and denote ı.F/ D
Œı.f .0//; ı.f .1//; ı.f .2//; : : : ; ı.f .2n � 1//�. Then the Walsh transform and the
inverse Walsh transform can be represented by means of matrices as follows:

Sf D F �W.n/ (1.28)

F D 2�nSf �Wn (1.29)

S.f / D ı.F/ �W.n/ (1.30)

ı.F/ D 2�nS.f / �W.n/ (1.31)

When Eqs. 1.28, 1.29, 1.30 and 1.31 can be used to compute the Walsh spectrum
or the inverse Walsh spectrum, it is faster than to use the normal Walsh transform as
represented in Eqs. 1.12, 1.13, 1.14 and 1.15.

With the matrix representation of Walsh transform, many results from Walsh
transform can be migrated to this new representation. For example, the Plancheral
formula can be expressed as

Trace.ST
f Sf / D Trace.FTF/ (1.32)

20 1 Boolean Functions and Their Walsh Transforms

or

Sf S
T
f D FFT : (1.33)

Since the Hadamard matrix representation has a parallel theory as the Walsh
transform, the transform hence is also called Walsh-Hadamard transform. The
Hadamard matrix representation can be used to formulate fast computation of
Walsh-Hadamard transform. In the following, for the simplicity of writing, we will
use the term Walsh transform.

1.4 Basic Models of Stream Ciphers That Use Boolean
Functions

Boolean functions are widely used in cryptography and cryptanalysis, as well
as many other areas [5]. In the design of cryptographic algorithms, both stream
ciphers [4, 26] and block ciphers use nonlinear functions, where nonlinear Boolean
functions are an important class of cryptographic primitives [2, 25, 26]. However, the
cryptographic properties of Boolean functions mostly come from the consideration
of designing stream ciphers, as nonlinear Boolean functions are a core component
in many stream ciphers [9], and any potential threat or attack to one of such models
(which often lead to the attacks to other models) will lead to a security requirement,
i.e., a new cryptographic property. In order to introduce the cryptographic properties
or cryptographic requirements of Boolean functions, we first introduce the basic
models of stream ciphers.

Stream ciphers are one of the most popular ciphers in traditional encryption as
well as modern encryption processes using high-speed electronic devices. Because
the speed of stream ciphers is normally faster than block ciphers, and much faster
than public key ciphers, stream ciphers are a type of encryption mechanisms that
are not likely to be replaced by any other ciphers. Irrespective of the high speed
advantage in hardware and software, it is unfortunate that all the basic stream cipher
models are under attacks to different degree, which has shown that their security
strength is lower than the designed security strength (corresponding to brute force
attack by testing all the possible keys). One of such example is the A5 algorithm
which is a standard algorithm used in Global System for Mobile Communications
(GSM).

The basic mechanism of stream cipher is very simple: treat original message as
a stream of bits2 and the key as a stream of bits, then the arithmetic performing

2A more general case is that both the message and the key are streams of units, where the unit can
be a bit, byte, or even a larger data unit such as 32-bit block. However, the underneath arithmetic
performing encryption of a message unit and a key unit should be bit-wise XOR. If the arithmetic
between a message unit and a key unit is more complicated than bit-wise XOR, then it would be

1.4 Basic Models of Stream Ciphers That Use Boolean Functions 21

the encryption is the XOR operation. The output of the XOR of message stream
and the key stream is the ciphertext which is apparently a stream of bits. According
to Shannon’s theory [32], if the key stream is composed of pure random bits, then
the encryption is perfect, i.e., from the ciphertext one gets no information about the
original message. This system is known as one-time pad. Although the one-time-pad
mechanism provides the best security in theory, practically however it is not easy to
implement. The difficulty comes from the key management: when encryption is
done by one party and the decryption is done by another, as the same key has to be
used for encryption and decryption, both of the parties must have the same key in
order to complete secure message transmission. Shannon has proved that, in order
to achieve one-time-pad security, the size of the key should be at least the same
as that of the message to be encrypted. When the message is large, to allow both
of the communication parties to share a key of the required size can be difficult.
In order to make it more practical, one solution is to use pseudorandom sequences
instead of pure random sequences as encryption keys. A pseudorandom sequence
is defined to have the following properties: (1) randomness and (2) reproduction.
By randomness, it means that a pseudorandom sequence should look like a random
sequence where it is hard to find rules about how the sequence is generated by
looking at the sequence itself, or in other words, the bits 0 and 1 seem to appear at
random. The reproduction property requires that given certain small amount of data
(often means the initial key), the same pseudorandom sequence can be reproduced.
The reproduction property has significant difference from random sequences, where
the latter one cannot be reproduced for certain.

Given that, the basic model of stream cipher can be designed as follows: a
pseudorandom sequence generator that generates a pseudorandom sequence given a
seed key, and when a message stream is given, by using the XOR operation between
the message stream and the generated pseudorandom sequence which is known
as the key stream, the ciphertext stream is produced. In the decryption, the same
pseudorandom key stream is used to XOR with the ciphertext stream to recover the
original message. This basic model is depicted in Fig. 1.1.

Fig. 1.1 Basic model of
stream ciphers

Plaintext mi Ciphertext ci

ai

Pseudo-random sequence generator

treated as a block cipher. When the arithmetic is a little bit more complicated than XOR but much
simpler than traditional block ciphers, the system can be treated as a hybrid. For simplicity, our
discussion will be based on the simple case where both the message and the key are streams of
bits.

22 1 Boolean Functions and Their Walsh Transforms

Denote m D .mi/ as the sequence of plaintext, k D .ki/ as the sequence of key
stream, and c D .ci/ as the sequence of ciphertext, where i indicates the index of
bits. Then the encryption process can simply be written as

ci D mi ˚ ki; (1.34)

and the decryption process can be written as

mi D ci ˚ ki: (1.35)

With this model of cipher, the security relies on the property of the key stream. So
the study of stream ciphers becomes mostly the study of pseudorandom sequences.
Now we introduce a few traditional pseudorandom sequence generators.

1.4.1 Linear Feedback Shift Registers

We have seen that the design of pseudorandom sequences is to let the sequence
have pseudorandomness. What is pseudorandomness? How to measure it? In 1967,
Golomb [13] gives a description of randomness of binary sequences (composed of
0’s and 1’s). Note that a pseudorandom sequence must be a periodic sequence, or
eventually a periodic sequence, as the generator of such a sequence is a finite-state
machine which will eventually exhaust the states and move to one of the states
appeared earlier, eventually resulting in a periodic sequence. If it is not period, then
by cutting off some parts from the beginning, it must be a period sequence. Hence,
Golomb’s description of pseudorandomness is based on binary period sequences.
It defines that a periodic binary sequence should satisfy the following properties in
order to meet the pseudorandomness:

1. The number of 0’s and 1’s in one period should be equal or as close as possible.
2. In one period, the number of runs of length 1 should be about half of the total

runs, and that of length 2 should be about quarter of the total runs, : : : and that of
length i should be about 1

2iC1 of that of the total runs.
3. For all the runs of any fixed length, half of them should be all-one runs (called

blocks) and the other half of them are all-zero runs (called gaps). An all-one run
is like the segment of consecutive 1’s in : : : 011110 : : :, and an all-zero run is like
the segment of consecutive 0’s in : : : 10000001 : : : :. Both of the cases are called
a run.

4. For any integer k, the autocorrelation function

AC.k/ D 1

p

pX

iD1

.�1/ai˚a.iCk/ mod p

of the sequence has two values: its values are the same for all k ¤ 0, where p is
the period of sequence .ai/.

1.4 Basic Models of Stream Ciphers That Use Boolean Functions 23

a0 a1 an−1

c0 c1 cn−1

Output

Fig. 1.2 Linear feedback shift register (LFSR)

In searching sequences that satisfy the above defined properties, one class seems
to be so good and they are easy to generate, and a subclass of them meet the
properties so well. This class of sequences are linear feedback shift register (LFSR)
sequences, and the subclass of them are m-sequences. To put it in a simple way, a
linear feedback shift register is a collection of memory cells, and when an electric
pulse comes, the content of the cells shifts to the one on its left (or equivalently to
the right). The cell on the most right then is filled with a linear combination of the
original content of all the cells. This is illustrated in Fig. 1.2.

The sequence generated by the LFSR as shown in Fig. 1.2 can be written as

am D c0am�n ˚ c1am�n�1 ˚ � � � ˚ cn�1am�1; m � n; (1.36)

where n is the length of the LFSR (also called the order of the LFSR). Corresponding
to this linear feedback, there is a polynomial f .x/ D c0 ˚ c1x ˚ : : : ˚ cn�1xn�1

which is called the generating polynomial of the LFSR [14]. When the generating
polynomial of an LFSR is primitive,3 from any nonzero initial state, the LFSR will
produce a sequence with very good pseudorandom properties, and such a sequence
is called an m-sequence. The m-sequences meet the pseudorandom properties very
well and hence have wide applications not only in stream ciphers but more in
spectrum communications.

Although the LFSR may produce sequences such as m-sequences that have very
good randomness, when they are used as key streams, it is not secure. In 1969,
Berlekamp and Massey developed an algorithm that can efficiently reconstruct an
LFSR that can generate the whole sequence given a segment of the sequence. This
algorithm is known as Berlekamp-Massey algorithm (or B-M algorithm for short).
When the length of the segment is 2n or larger, where n is the order of the LFSR,
the B-M algorithm can reconstruct an LFSR of order n that can generate the same
period of sequence, although the actual period of the sequence can be up to 2n � 1.
Given B-M algorithm, it is expected that the value of n should be very large so that
to get 2n consecutive bits is practically not possible. This leads to a cryptographic

3A primitive polynomial f .x/ over GF.2/ of degree n is such that its minimum order is 2n � 1, i.e.,
minft W f .x/j.xt � 1/g D 2n � 1.

24 1 Boolean Functions and Their Walsh Transforms

measurement of pseudorandom sequences – the linear complexity. The linear
complexity of a sequence (segment or period) is the minimum value n such that
there exists an LFSR of order n to generate the sequence. The linear complexity has
become a fundamental requirement for cryptographic pseudorandom sequences.

It is apparent that in using linear feedback shift registers [29], it is hard to
produce sequences with high linear complexity, unless the order of the register is
very high which is not practical. However, it is possible to produce sequences with
high linear complexity using other models. One of such models is to use nonlinear
feedback shift registers, and from the name it is known that the feedback function is
nonlinear. Among the nonlinear feedback shift register sequences, a special subset
of them have maximum period 2n, which means that from any initial state, the
feedback function will change the state to all possible elements in GFn.2/. This class
of nonlinear feedback shift register sequences are called M-sequences. Nonlinear
feedback shift register sequences are a large class of sequences, and most of them
have high linear complexity; however, other properties such as randomness are not
clear in most of the cases, and even for those with known randomness such as M-
sequences, how to efficiently generate them is still not practically useful.

1.4.2 Nonlinear Filtering Generators and Nonlinear
Combiners

In order to generate pseudorandom sequences with high linear complexity, while
nonlinear feedback shift registers are possible choices, people found other more
efficient ways of generating pseudorandom sequences using one or more LFSRs and
a nonlinear Boolean function which act as filtering function or combining function.
A nonlinear filtering generator is composed of an LFSR and a nonlinear function
f .x/, where the content of the cells in the LFSR is taken as the input of f .x/, and the
output of f .x/ is the final output of the generator. This is depicted in Fig. 1.3.

Another LFSR-based generator is nonlinear combiner which is composed of
a few LFSRs, and the output of all the LFSRs forms the input of the nonlinear
combining function f .x/, and the output of f .x/ is the final output of the generator.
This is depicted in Fig. 1.4.

Fig. 1.3 Nonlinear filtering
generator

Outputf(x)

a0 a1 an−1

c0 c1 cn−1

1.5 Cryptographic Properties of Boolean Functions 25

LFSRn

LFSR2

LFSR1

f(x) Output

Fig. 1.4 Nonlinear combiner generator

There are other LFSR-based generators for pseudorandom sequences such as
clock-controlled generators. Since they are not necessary for our introduction to
cryptographic properties of Boolean functions, we are not going to introduce them.

The nonlinear filtering generators and the nonlinear combiners are somehow
equivalent: A nonlinear filtering generator can be treated as a nonlinear combiner
with all the LFSRs being the same but different initial states, and a nonlinear
combiner can be treated as a nonlinear filtering generator based on a larger LFSR
(the length of this hypothetic LFSR should be at least the minimum common divisor
of the lengths of the LFSRs in the combiner). However, traditionally, the nonlinear
Boolean function in a nonlinear filtering generator is called the filtering function,
and the function in a nonlinear combiner is called the combining function.

1.5 Cryptographic Properties of Boolean Functions

There are many different kinds of attacks to the stream ciphers, and hence the
Boolean functions used in the stream ciphers must have some required properties.
These properties designed to make the ciphers secure against some known and
potential attacks are known as cryptographic properties. Some of the very common
cryptographic properties of Boolean functions are briefly described as follows, and
we will look into them in more detail in the chapters later.

1.5.1 Algebraic Degree

Let us take the nonlinear combiner for consideration. With respect to linear
complexity of the output segments, assuming each LFSRi has order ni which means
that the periodic sequences generated by this LFSRi will have linear complexity

26 1 Boolean Functions and Their Walsh Transforms

ni. We also assume that the orders of the LFSRs are co-prime of each other. Then
the summation (bit-wise XOR) of two of the sequences generated by LFSRi and
LFSRj will be ni C nj. The multiplication of the two sequences however will
have linear complexity ninj, which is much larger than ni C nj. In general, the
summation of some of the LFSR sequences will have linear complexity the sum
of the orders of those LFSRs, while the multiplication of those LFSR sequences
will have linear complexity the product of the orders of those LFSRs. It is seen
that the multiplication of t of the LFSR sequences will result in a sequence of
much higher linear complexity than summation can achieve. This corresponds to
a multiplicative term of degree t in the algebraic normal form of the combining
function f .x/. Therefore, if we expect the output sequence of the nonlinear combiner
to have high linear complexity, the corresponding nonlinear combining function is
expected to be of high algebraic degree. This is why algebraic degree becomes one
of the cryptographic measurements.

If the linear complexity of the nonlinear combiner generator sequences is the
only cryptographic requirement to pursue, then we can let the nonlinear combining
function f .x/ to be of the highest algebraic degree n, where n is the number of
variables of f .x/, which is also the number of the LFSRs as in the nonlinear
combiner model. However, practically there are other cryptographic requirements to
meet, and some of the requirements may conflict. So to achieve a good compromise
of all the required cryptographic properties, it has to sacrifice the level of some of the
cryptographic requirements. For example, practically the Boolean functions used in
cryptosystems do not reach the highest algebraic degree. However, the algebraic
degree of the employed Boolean functions cannot be too low either. In general, the
algebraic degree should be larger than n

2
.

1.5.2 Balance

When a Boolean function is used in cryptography, it is expected that the output of
the function is unbiased, or at least near unbiased, i.e., the chances for the output
to be 0 are about the same as the chances for the output to be 1. When a Boolean
function has equal chances to output 0 or 1 when the input variables go through
all the possibilities, the function is called balanced. Obviously a balanced Boolean
function f .x/ satisfies that wt.f / D 2n�1. In the design of stream ciphers, Boolean
functions are often required to be balanced, as this would give outputs with balanced
number of 0’s and 1’s and looks more random.

When a Boolean function is balanced, the requirement of algebraic degree has to
have some sacrifice. From the minterm representation, it can be seen that the number
of minterms of f .x/ is wt.f /, and when the minterms are expanded to convert to the
algebraic normal form, every such minterm contributes a product of all the variables
x1x2 � � � xn. Since every two same terms will vanish due to the XOR operation, we
have that

1.5 Cryptographic Properties of Boolean Functions 27

Lemma 1.2. Let f .x/ 2 Fn. Then the term x1x2 � � � xn does not appear in the
algebraic normal form of f .x/ if and only if wt.f / is even, in which case deg.f / �
n � 1. In particular, if f .x/ is balanced, then deg.f / � n � 1.

1.5.3 Nonlinearity

For security reasons, pseudorandom sequences generated by linear shift registers are
not supposed to be used in encryptions directly. This leads to the study of nonlinear
shift register sequences and linear shift register sequences with a nonlinear filtering
function or nonlinear combining function. In order to make sure that a function is
nonlinear, in its algebraic normal form representation, there should be at least one
nonlinear term. As defined earlier, the algebraic degree is a measurement about the
nonlinear feature of a function; however, this is not ideal in many applications. For
example, function f .x/ D x1 C x1x2 � � � xn in n variables has the highest possible
algebraic degree n; however, when we use f 0.x/ D x1 to approximate f .x/, then
the difference is only one out of 2n � 1, which means that the linear approximation
is very close. Then we define another nonlinear measurement, the nonlinearity of
a Boolean function, to be the minimum distance between a given function to all
linear functions. Since the set of linear functions and affine functions differ only by
a constant, the concept of nonlinearity is extended to be the minimum distance of
the given function to all the affine functions, denoted by nl.f /, i.e.,

nl.f / D min
l.x/2An

d.f .x/; l.x// D min
l.x/2An

wt.f .x/˚ l.x// (1.37)

1.5.4 Linear Structure

A Boolean function f .x/ 2 Fn is said to have a linear structure ˛ 2 GFn.2/ if
f .x/ ˚ f .x ˚ ˛/ � c, where c is a constant of f0; 1g. In particular ˛ is called an
invariant linear structure if c D 0 and a complementary linear structure if c D 1.

It is apparent that the linear structure is another extreme case as opposed to the
propagation criterion. More study on linear structures can be found in Sect. 3.8.

1.5.5 Propagation Criterion

A Boolean function f .x/ 2 Fn may have no linear structures at all, i.e., for any
˛ 2 GFn.2/, f .x/ ˚ f .x ˚ ˛/ is not a constant; instead, it may even be a balanced
Boolean function.

28 1 Boolean Functions and Their Walsh Transforms

A Boolean function f .x/ 2 Fn is said to satisfy the propagation criterion with
respect to a nonzero vector ˛ if f .x/˚ f .x˚ ˛/ is balanced.

Let f .x/ 2 Fn. If for any ˛ 2 GFn.2/ with wt.˛/ D 1, f .x/˚ f .x˚˛/ is always a
balanced Boolean function, then f .x/ is said to satisfy the strict avalanche criterion
(SAC). Furthermore, if for any nonzero vector ˛ 2 GFn.2/, f .x/˚f .x˚˛/ is always
a balanced Boolean function, then f .x/ is said to be perfect nonlinear.

The strict avalanche criterion has attracted much study (see, e.g., [1, 7, 8, 11, 15,
18, 19, 21, 22, 31, 34, 35]). If a Boolean function f .x/ satisfies the strict avalanche
criterion, then when any 1 bit of its input changes, exactly half of the output bits
will change. If a Boolean function f .x/ is perfect nonlinear, then any change of its
input will result in exactly half of the output bits changed.

Higher-order SAC is also an interesting cryptographic property, with construc-
tion of such functions [16, 17] being a challenging topic.

As a generalization of the concepts of avalanche criterion and perfect nonlinear,
the following concept was proposed by Preneel et al. in [27].

A Boolean function f .x/ is said to satisfy the propagation criterion [28] of order
k if it satisfies the propagation criterion with respect to all ˛ with 1 � wt.˛/ � k and
is denoted by PC.f / D k. Apparently this concept is a generalization of the concept
of strict avalanche criterion.

Note: Strict avalanche criterion (SAC) is equivalent to the propagation criterion
of order 1 (i.e., PC.f / D 1), and perfect nonlinear defined in [24] is equivalent to
the propagation criterion of order n (i.e., PC.f / D n).

1.5.6 Correlation Immunity

A boolean function f .x/ 2 Fn is said to be correlation immune of order k if f .x/

is statistically independent of any k of its variables. The correlation immunity is
a security measure about how resistant a Boolean function is against correlation
attack [12]. Both the statistical independence and the correlation immunity will
be further studied later. Correlation immunity of Boolean functions will be further
studied in Chap. 4.

1.5.7 Algebraic Immunity

Let f .x/ 2 Fn; if there exists a nonzero Boolean function g.x/ 2 Fn such that
g.x/f .x/ D 0, then g.x/ is called an annihilator of f .x/. The minimum algebraic
degree of the annihilators of f .x/ and of f .x/ ˚ 1 is called the algebraic immunity
of f .x/. The algebraic immunity is a measurement about how resistant a Boolean
function is against algebraic attack. This topic is further studied in Chap. 5 in this
book.

References 29

1.5.8 Remarks

There can be more properties of Boolean functions than those listed above,
and some of them can be classified as cryptographic properties to be met by
cryptographic functions and components in cryptographic algorithms, while others
are just interesting properties. For example, the number of nonlinear terms of
Boolean functions in their algebraic normal form is deemed to be a cryptographic
requirement, although not much formal study on this has been done. On the
other hand, the symmetric property of Boolean functions is not deemed to be a
cryptographic property; instead it is treated as something that cryptographic function
should somehow avoid, as in general case the symmetric property does not benefit
the security of a cipher. However, due to the symmetric property being interesting,
there are still much research on this class of Boolean functions. This book also has
a chapter devoted to the cryptographic properties of symmetric functions, with a
particular focus on the correlation immunity of symmetric Boolean functions.

References

1. Babbage S.: On the relevance of the strict avalanche criterion. Electron. Lett. 26(7), 461–462
(1990)

2. Beal, M., Monaghan M.F.: Encryption using random Boolean functions. In: Cryptography and
Coding, pp. 219–230. Clarendon, Oxford (1989)

3. Beauchamp, K.G.: Applications of Walsh and Related Functions. Academic, London (1984)
4. Beker, H., Piper, F.: Cipher Systems. Northwood Books, London (1982)
5. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y.,

Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science and
Engineering, pp. 257–397. Cambridge University Press, Cambridge/New York (2010)

6. Charpin, P., Pasalic, E.: On propagation characteristics of resilient functions. In: Selected Areas
in Cryptography. LNCS 2595, pp. 175–195. Springer, Berlin (2003)

7. Cusick, T.W.: Boolean functions satisfying a higher order strict avalanche criterion. In:
Advances in Cryptology, Proceedings of Eurocrypt’93. LNCS 765, pp. 102–117. Springer,
Berlin/New York (1994)

8. Cusick, T.W., Stanica, P.: Bounds on the number of functions satisfying the strict avalanche
criterion. Inf. Process. Lett. 60, 215–219 (1996)

9. Daemen, J., Govaerts, R., Vandewalle, J.: On the design of high speed self-synchronizing
stream ciphers. In: Proceedings of ISCC/ISITA’92, Singapore, pp. 279–283 (1992)

10. Feng, D.G.: Spectral Theory and Its Applications in Cryptography. Science Press, Beijing
(2000) (in Chinese)

11. Forre, R.: The strict avalanche criterion: spectral properties of Boolean functions and an
extended definition. In: Advances in Cryptology, Proceedings of Crypto’88. LNCS 403,
pp. 450–468. Springer, Berlin (1990)

12. Forre, R.: A fast correlation attack on nonlinearly feedforward filtered shift-register sequences.
In: Advances in Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 586–595. Springer,
Berlin (1990)

13. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967)
14. Herlestam, T.: On functions of linear shift register sequences. In: Advances in Cryptology,

Proceedings of Eurocrypt’85. LNCS 219, pp. 119–129. Springer, Berlin (1986).

30 1 Boolean Functions and Their Walsh Transforms

15. Kim, K., Matsumoto, T., Imai, H.: A recursive construction method of S-boxes satisfying strict
avalanche criteria. In: Advances in Cryptology, Proceedings of Crypto’90. LNCS 537, pp. 564–
574. Springer, Berlin (1991)

16. Kurosawa, K., Satoh, T.: Generalization of higher order SAC to vector output Boolean
functions. In: Advances in Cryptology, Proceedings of Asiacrypt’96. LNCS 1163, pp. 218–
231. Springer, Berlin (1996)

17. Kurosawa, K., Satoh, T.: Design of SAC/PC(l) of order k Boolean functions and three other
cryptographic criteria. In: Advances in Cryptology, Proceedings of Eurocrypt’7. LNCS 1233,
pp. 434–449. Springer, Berlin (1997)

18. Lloyd, S.: Counting functions satisfying a higher order strict avalanche criterion. In: Advances
in Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 63–74. Springer, Berlin (1990)

19. Lloyd, S.: Characterizing and counting functions satisfying the strict avalanche criterion of
order (n-3). In: Cryptography and Coding II, pp. 165–172. Clarendon Press, Oxford (1992)

20. Lloyd, S.: Counting binary functions with certain cryptographic properties. J. Cryptol. 5(2),
107–131 (1992)

21. Lloyd, S.: Balanced uncorrelatedness and the strict avalanche craterion. Dist. Appl. Math. 41,
223–233 (1993)

22. Maitra, S.: Highly nonlinear balanced Boolean functions with good local and global avalanche
characteristics. Inf. Process. Lett. 83, 281–286 (2002)

23. Maitra, S., Sarkar, P.: Cryptographically significant Boolean functions with five valued Walsh
spectra. Theor. Comput. Sci. 276, 133–146 (2002)

24. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances in
Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer, Berlin (1990)

25. O’Connor, L.J.: An analysis of product ciphers based on the properties of Boolean functions.
Ph.D. Thesis, University of Waterloo (1992)

26. Piper, F.C.: Stream ciphers. In: Cryptography. LNCS 149, pp. 181–188. Springer, Berlin/New
York (1983)

27. Preneel, B., et al.: Propagation characteristics of Boolean bent functions. In: Advances in
Cryptology, Proceedings of Eurocrypt’90. LNCS 473, pp. 161–173. Springer, Berlin (1991)

28. Preneel, B., et al.: Boolean functions satisfying propagation criteria. In: Advances in Cryptol-
ogy, Proceedings of Eurocrypt’91. LNCS 547, pp. 141–152. Springer, Berlin (1991).

29. Ronse, C.: Feedback Shift Registers. Springer, Berlin/New York (1984)
30. Sarkar, P.: A note on the spectral characterization of Boolean functions. Inf. Process. Lett. 74,

191–195 (2000)
31. Seberry, J., Zhang, X.M., Zheng, Y.: Improving the strict avalanche characteristics of crypto-

graphic functions. Inf. Process. Lett. 50, 37–41 (1994)
32. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 59–88 (1949)
33. Yang, Y.X., Guo, B.: Further enumerating Boolean functions of cryptographic significance. J.

Cryptol. 8, 115–122 (1995)
34. Youssef, A.M., Tavares, S.E.: Comment on bounds on the number of functions satisfying the

strict avalanche criterion. Inf. Process. Lett. 60, 271–275 (1996)
35. Youssef, A.M., Cusick, T.W., StManicMa, P., Tavars, S.E.: New bound on the number of functions

satisfying the strict avalanche criterion. In: Proceedings of the Third Annual Workshop on
Selected Areas in Cryptography, Ottawa, pp. 49–56 (1996)

Chapter 2
Independence of Boolean Functions
of Their Variables

This chapter studies a few different independences of Boolean functions of their
variables, including algebraic independence, statistical independence, and algebraic
degeneracy.

2.1 Introduction

Take a Boolean function as a network with n inputs and one output, then there might
be some relationship between the inputs and the output. The relationship between
the inputs and the output of a Boolean function may yield useful information
in breaking an encryption algorithm when such a Boolean function is a core
component of the algorithm. This relationship can be strongly dependent, or
lightly dependent, or even independent in some sense. For example, differential
cryptanalysis [1, 2] uses the relationship between the differentials of inputs and
that of the corresponding outputs of round functions of a block cipher. When such
a round function is treated as a multi-input multi-output Boolean function, the
independence of the variables (inputs) of the function with the outputs (coordinate
functions) may largely affect the differential cryptanalysis.

This chapter studies different kinds of independence of Boolean functions of their
variables. Some previous studies can be found in [5].

2.2 The Algebraic Independence of Boolean Functions
of Their Variables

For a Boolean function f .x/ in n variables, it may not depend on all of its input
variables, i.e., some of the variables may not contribute to the output of f .x/. This is
often the case for the nonlinear feedforward generators, where the nonlinear filtering

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_2

31

32 2 Independence of Boolean Functions of Their Variables

function may not use all of the values from each of the cells of the LFSR. In this
case, the function is said to be algebraically independent of those variables. More
formally, we give the following definition:

Definition 2.1. Let f .x/ 2 Fn. If the value of f .x/ is not affected by the value of
xi, i.e.,

f .x1; � � � ; xi�1; 0; xiC1; � � � ; xn/ D f .x1; � � � ; xi�1; 1; xiC1; � � � ; xn/

holds for any .x1; � � � ; xi�1; xiC1; � � � ; xn/ 2 GFn�1.2/, then f .x/ is said to be
algebraically independent of xi or simply independent of xi.

For the general case, we have

Definition 2.2. Let f .x/ 2 Fn. Denote by �.i1; i2; : : : ; ik/ D fx 2 GFn.2/ W xj D
0 if j 62 fi1; i2; : : : ; ikgg. If

f .x˚ ˛/ D f .x/

holds for all ˛ 2 �.i1; i2; : : : ; ik/, then f .x/ is said to be independent of variables
xi1 ; xi2 ; : : : ; xik . For simplicity, we simply call the function to be independent of
xi1 ; xi2 ; : : : ; xik .

Definition 2.2 is a generalization of Definition 2.1. As an example, f .x/ D x1 is
independent of variables x2; x3; : : : ; xn, because any assignment of these variables
will not affect the value of f .x/ which only depends on the value of x1.

Mitchell [3] called the functions defined above as degenerate functions and
recommended that in cryptographic applications, degenerate functions should be
avoided. We will generalize this concept to a more general case in the next section.

By this definitions above we naturally have

Theorem 2.1. Boolean function f .x/ is independent of a subset of its variables
xi1 ; xi2 ; : : : ; xik , if and only if xi1 ; xi2 ; : : : ; xik do not appear in the algebraic normal
form of f .x/.

Proof: The sufficiency is obvious: if xi1 ; xi2 ; : : : ; xin do not appear in the algebraic
normal form of f .x/, then any change of their values will not affect the value of f .x/.
So we only need to prove the necessity.

Assume the contrary; for simplicity we assume that f .x/ is independent of xi, and
in the mean time, xi appears in the algebraic normal form (ANF) of f .x/, then the
ANF of f .x/ can be transformed into the form f .x/ D g.x/ ˚ xih.x/, where both
g.x/ and h.x/ are independent of xi, and h.x/ ¤ 0. Then there must exist ˛ such that
h.˛/ D 1. Define ei 2 GFn.2/ be the vector whose i-th coordinate is 1 and 0 else-
where. Since h.x/ is independent of xi, we have that h.˛˚ ei/ D 1; hence, we have

f .˛ ˚ ei/ D g.˛ ˚ wi/˚ .ai ˚ 1/h.˛˚ ei/

D g.˛/˚ ai ˚ 1

2.2 The Algebraic Independence of Boolean Functions of Their Variables 33

On the other hand, we have f .˛/ D g.˛/ ˚ aih.˛/ D g.˛/˚ ai, which yields that
f .˛/ D f .˛/˚ 1 which is a contradiction. This contradiction shows the correctness
of the necessity, and hence the conclusion of the theorem follows. ut

Apart from Theorem 2.1, we have the following judgment about the indepen-
dence of a Boolean function of its variables in terms of Walsh spectrum.

Theorem 2.2. Let f .x/ 2 Fn. Then f .x/ is independent of xi1 ; xi2 ; : : : ; xik , if and
only if

Sf .w/ D 0

holds for every w 2 GFn.2/ with
Pk

jD1 wij ¤ 0.

Proof: For the simplicity of writing and without loss of generality, we prove
that f .x/ is independent of x1; x2; : : : ; xk if and only if Sf .w/ D 0 holds for
every w with

Pk
iD1 wi ¤ 0. For convenience of writing, denote w 2 GFn.2/ as

w D .w.1/; w.2//, where w.1/ D .w1; w2; : : : ; wk/ and w.2/ D .wkC1; wkC2; : : : ; wn/.
Similarly we denote x.1/ D .x1; x2; : : : ; xk/, x.2/ D .xkC1; xkC2; : : : ; xn/, and a.1/ D
.a1; a2; : : : ; ak/.

Necessity: By Definition 2.2, assume that f .x/ is independent of x1; x2; : : : ; xk

then f .x/ D f .0; x.2//. So we have

Sf .w/ D
2n�1X

xD0

f .x/.�1/hw; xi

D
2k�1X

a.1/D0

0

@
X

xW x.1/Da.1/

f .x/.�1/h.w.1/;w.2//; .x.1/;x.2//i
1

A

D
X

x.2/2GFn�k.2/

f .0; x.2//.�1/hw.2/; x.2/i X

x.1/2GFk.2/

.�1/hw.1/; x.1/i

By Eq. 1.10, for any w.1/ ¤ 0, we have that

X

x.1/2GFk.2/

.�1/hw.1/; x.1/i D 0;

and hence Sf .w/ D 0.
Sufficiency: By the inverse Walsh transform, we have

f .x˚ ˛/ D 2�n
2n�1X

wD0

Sf .w/.�1/hw; .x˚˛/i

D 2�n
2n�1X

wD0

Sf .w/.�1/hw; xiChw; ˛i

34 2 Independence of Boolean Functions of Their Variables

Let W.i1; i2; : : : ; ik/ D fw 2 GFn.2/ W Pk
jD1 wij ¤ 0g. Then for any

˛ 2 �.i1; i2; : : : ; ik/, if w 62 W.i1; i2; : : : ; ik/, then we have hw; ˛i D 0, hence
Sw.�1/hw; xiChw; ˛i D Sw.�1/hw; xi. If w 2 W.i1; i2; : : : ; ik/, by the assumption of the
theorem, i.e., assume that Sf .w/ D 0 holds for all w 2 W.i1; i2; : : : ; ik/, we have
the equality Sw.�1/hw; xiChw; ˛i D Sw.�1/hw; xi D 0. Therefore the above can be
written as

f .x˚ ˛/ D 2�n
2n�1X

wD0

Sf .w/.�1/hw; xiChw; ˛i

D 2�n
2n�1X

wD0

Sf .w/.�1/hw; xi

D f .x/

By Definition 2.2, this means that f .x/ is independent of xi1 ; xi2 ; : : : ; xik . ut
There is a close connection between the self-correlation function Rf .�/ of a

Boolean function f .x/ (see Definition 1.3) and the independence of the Boolean
function of its variables. First we give

Lemma 2.1. The self-correlation function satisfies that Rf .�/ D wt.f / if and only
if f .x ˚ �/ D f .x/ holds for all x 2 GFn.2/, i.e., f .x ˚ �/ and f .x/ are the same
Boolean function in variable x.

Proof: Since the truth tables of f .x/ and that of f .x ˚ �/ are all 2n-dimensional
binary vectors, and it is easy to see that Rf .�/ D wt.f / if and only if wherever
f .x/ D 1, f .x˚ �/ D 1 also holds. This means that the truth table of f .x˚ �/ is the
same as the truth table of f .x/, so we have f .x˚ �/ D f .x/. ut
Theorem 2.3. A necessary and sufficient condition for f .x/ 2 Fn to be independent
of its variables xi1 ; xi2 ; : : : ; xik is that

Rf .�/ D wt.f / (2.1)

holds for all � 2 �.i1; i2; : : : ; ik/.

Proof: Now assume that f .x/ is independent of xi1 ; xi2 ; : : : ; xik . Then by Defini-
tion 2.2, for any � 2 �.i1; i2; : : : ; ik/, f .x ˚ �/ D f .x/ must hold, and hence we
have Rf .�/ D wt.f /. On the other hand, if for all � 2 �.i1; i2; : : : ; ik/ we have
Rf .�/ D wt.f /, then by Lemma 2.1, we have f .x ˚ �/ D f .x/, which means that
f .x/ is independent of xi1 ; xi2 ; : : : ; xik . This proves the theorem. ut
Definition 2.3. Let f .x/ 2 Fn. Then

Rf .�1; �2; : : : ; �k/ D
2n�1X

xD0

f .x/f .x˚ �1/f .x˚ �2/ � � � f .x˚ �k/ (2.2)

is called the k-fold self-correlation function of f .x/, where �i 2 GFn.2/, i D
1; 2; : : : ; k.

2.2 The Algebraic Independence of Boolean Functions of Their Variables 35

The concept of k-fold self-correlation function is a generalization of the self-
correlation function as defined in Definition 1.3. When k D 1, the onefold self-
correlation function is simply called the self-correlation function. Similar to the
case of self-correlation function, we have

Lemma 2.2. Rf .�1; �2; : : : ; �k/ D wt.f / if and only if

f .x/ D f .x˚ �1/ D f .x˚ �2/ D � � � D f .x˚ �k/

holds for all �i 2 GFn.2/, i D 1; 2; : : : ; k.

Denote by ei be the vector over GFn.2/ whose i-th coordinate is 1 and 0
elsewhere. By Lemma 2.2 we have

Theorem 2.4. A necessary and sufficient condition for f .x/ 2 Fn to be independent
of its variables xi1 ; xi2 ; : : : ; xik is that

Rf .e1; e2; : : : ; ek/ D wt.f /: (2.3)

Proof: The proof of the necessity is similar to the proof of Theorem 2.3. Here we
give a slightly different proof of the sufficiency.

Assume Eq. 2.3 holds, and then by Lemma 2.2, f .x/ D f .x˚ e1/ D f .x˚ e2/ D
� � � D f .x˚ ek/ holds for all x 2 GFn.2/. So for any � 2 �.i1; i2; : : : ; ik/, there must
exist ai 2 f0; 1g such that � D a1ei1 ˚ a2ei2 ˚ � � � ˚ akeik . Therefore,

f .x˚ �/ D f .x˚ a1ei1 ˚ a2ei2 ˚ � � � ˚ akeik /

D f ..x˚ a2ei2 ˚ � � � ˚ akeik /˚ a1ei1 /

D f .x˚ a2ei2 ˚ � � � ˚ akeik /

D � � �
D f .x/

This means that f .x/ is independent of xi1 ; xi2 ; : : : ; xik . ut
Note that for any fixed � 2 GFn.2/, x ˚ � is a permutation of GFn.2/, this is

because when x goes through all the elements in GFn.2/ in a fixed order, x˚ � will
also go through all the elements in GFn.2/ in a different order. For f .x/ 2 Fn, if
f .x ˚ �1/ D f .x ˚ �2/, then f .x/ is said to be indistinguishable with permutations
x˚ �1 and x˚ �2. This can be rewritten as f .x˚ �1 ˚ �2/ D f .x/, and in this case,
�1 ˚ �2 is called an invariant of f .x/. There is a Walsh spectrum description of the
invariants of Boolean functions as described below.

Theorem 2.5. Let � D ei1 ˚ ei2 ˚ � � � ˚ eik . Then f .x˚ �/ D f .x/ if and only if

Sf .w/ D 0

holds for all w 2 GFn.2/ with hw; �i D 1.

36 2 Independence of Boolean Functions of Their Variables

Proof: Necessity: Assume f .x˚ �/ D f .x/ holds, where � D ei1 ˚ ei2 ˚ � � � ˚ eik .
Then

Sf .w/ D
2n�1X

xD0

f .x/.�1/hw; xi

D
2n�1X

xD0

f .x˚ �/.�1/hw; xi

D
2n�1X

xD0

f .x/.�1/hw; .x˚�/i

D .�1/hw; �i
2n�1X

xD0

f .x/.�1/hw; xi

D .�1/hw; �iSf .w/

Therefore, for any w 2 GFn.2/ with hw; �i D 1, the above yields Sf .w/ D �Sf .w/

and hence Sf .w/ D 0 must hold.
Sufficiency: If Sf .w/ D 0 always hold for any w 2 GFn.2/ with hw; �i D 1, then

by Plancherel formula (Theorem 1.6)

2n�1X

wD0

S2
f .w/ D 2nwt.f /

we have wt.f / D 2�n
P

wW hw; �iD0

S2
f .w/. Then by the Wiener-Khinchin formula

(Theorem 1.7), we have

Rf .�/ D 2�n
2n�1X

xD0

S2
f .w/.�1/hw; �i

D 2�n
X

wW hw; �iD0

S2
f .w/

D wt.f /

By Lemma 2.1 we have f .x˚ �/ D f .x/. ut
When f .x/ is independent of variables xi1 ; xi2 ; : : : ; xik , the function can be treated

as a function in only n� k variables. Denote by

g.y/ D g.y1; y2; : : : ; yn�k/

D f .x1; � � � ; xi1�1; 0; xi1C1; � � � ; xik�1; 0; xikC1; � � � ; xn/

2.3 The Degeneracy of Boolean Functions 37

Then the Walsh spectrum of f .x/ can be expressed as

Sf .w/ D
2n�1X

xD0

f .x/.�1/hw; xi

D 2k
X

xW Pj xij D0

f .x/.�1/hw; xi

D 2k
X

y2GFn�k.2/

g.y/.�1/hw.1/; yi

D 2kSg.w
.1//

where w.1/ 2 GFn�k.2/ is the vector generated from w after removing all the ij-th
coordinates of w, j D 1; 2; : : : ; k. This means that

dim.hfw W Sf .w/ ¤ 0gi/ D dim.hfw.1/ W Sg.w
.1// ¤ 0gi/

where hSi is the smallest vector space containing set S, which is also called the
linear span of S, and dim.V/ means the dimension of vector space V . Obviously the
right-hand side of the above equation is at most n � k; hence, we have

Theorem 2.6. Let f .x/ 2 Fn. If f .x/ is independent of k of its variables, then the
linear span of the set of inputs (vectors) with nonzero Walsh values is at most n� k.

2.3 The Degeneracy of Boolean Functions

One of the applications of Boolean functions in stream ciphers is to act as a
combining function or the like. For security consideration (and due to Berlekamp-
Massey algorithm), the combining functions should be nonlinear and ideally should
have high nonlinearity. However, from a different viewpoint, a nonlinear function
may be treated as the composition of a collection of linear functions and a nonlinear
function. By function composition, we mean that the output of one or more functions
become the input of another. By this function deposition (the inverse process of
composition), it may be possible to find a simpler nonlinear component of the
functions. If the number of linear functions can be smaller than the number of the
original inputs, then the original function is said to be degenerate. More formally
we have

Definition 2.4. Let f .x/ 2 Fn. If there exists an n � k matrix D over GF.2/ and
g.y/ 2 Fk such that

f .x/ D g.xD/ D g.y/; (2.4)

38 2 Independence of Boolean Functions of Their Variables

where k < n, then f .x/ is said to be algebraically degenerate or degenerate in
brief. If k is the minimum value such that Eq. 2.4 holds, i.e., there does not exist
an n � .k � 1/ matrix D0 and a Boolean function h.y/ 2 Fk�1 such that f .x/ D
h.xD0/ holds, then g.y/ is called an algebraically degenerated function of f .x/ or
a degenerated function of f .x/ in brief. The value n � k is called the degree of
degeneracy of f .x/ and is denoted as

AD.f / D n � k:

If there does not exist such an n � k matrix D with k < n that f .x/ D g.xD/ holds,
i.e., the minimum value of the above k is k D n, then f .x/ is said to be algebraically
nondegenerate.

It should be noted that a Boolean function in n variables cannot be equal to a
Boolean function in k (k < n) variables, so the equality of Definition 2.4 only means
the algebraic representation. A simple such example is f .x/ D x1, in which it can
be treated as a Boolean function in any number of variables, depending where it is
defined, but it is always equivalent to a Boolean function in one variable, in terms
of algebraic representation in the sense of linear transformation on its variables.
Another such example is f .x/ D x1 ˚ x2 ˚ � � � ˚ xn, in which it is also equivalent
to a Boolean function in one variable, and again this equivalence is in the sense
of algebraic representation by a linear transformation on their variables. In the
forthcoming discussion, the equivalence of Boolean functions in different numbers
of variables is always in this sense, unless specified otherwise.

The degeneracy property of Boolean functions was also studied in [7]. It is easy
to see that if a Boolean function is independent of some of its variables, then the
Boolean function is degenerate.

Theorem 2.7. Let f .x/ 2 Fn. If f .x/ is independent of some of its variables, then
f .x/ is degenerate.

Proof: Without loss of generality, suppose that f .x/ is independent of x1. Let D be
a n� .n� 1/ matrix generated by deleting the first column of the identity matrix In,
and let y D xD. Then it is trivial to verify that the ANF of f .x/ can be replaced by
the ANF of a Boolean function with y as its n � 1 variables. By Definition 2.4, f .x/

is degenerate. ut
By the definition above it is easy to induce the following results.

Lemma 2.3. Let f1.x/ D f .xA/ be two Boolean functions in n variables, where A is
an n � n nonsingular binary matrix. Then we have deg.f / D deg.f1/.

Proof: By f1.x/ D f .xA/ it is known that each variable of f .x/ is a linear
combination of the variables x1; x2; : : : ; xn. Take the linear combinations into the
algebraic normal form representation of f .x/; no minterm with degree higher than
deg.f / can be produced. This means that deg.f1/ � deg.f /. Note that f .x/ D
f1.xA�1/ holds, so we have deg.f / � deg.f1/; hence, we must have deg.f / D deg.f1/
and the result of Lemma 2.3 holds. ut

2.3 The Degeneracy of Boolean Functions 39

By Lemma 2.3 we have

Theorem 2.8. Let f .x/ 2 Fn and g.y/ 2 Fk be an algebraically degenerated
function of f .x/. Then we have deg.f / D deg.g/.

Proof: By Definition 2.4, there must exist an n�k binary matrix D such that f .x/ D
g.xD/ D g.y/ holds. Let deg.g/ D t; and assume a term of g.y/ with the highest
degree is yi1yi2 � yit , and then by replacing each yij , j D 1; 2; : : : ; t, with a linear
combination of x1; x2; : : : ; xn, it will result in a polynomial of degree no more than
t. This means that by replacing the variables of each yi, i D 1; 2; : : : ; k with linear
combinations of x1; x2; : : : ; xn, the algebraic degree of the resulted function will be
no more than t, i.e., we have deg.f / � deg.g/. Note that by Definition 2.4, the rank
of D in Eq. 2.4 must be k, so there must exist a k � k binary matrix P such that
PD D ŒIk; 0k�.n�k/�

T D D0, where Ik is the k � k identity matrix. This means that
f1.x/ D f .xP�1/ D g.xD0/ D g.x1; x2; : : : ; xt/. It is obvious that the degree of f1.x/

is the same as that of g.xD0/, because they have the same representation in variables
x1; x2; : : : ; xt. By Lemma 2.3, deg.f / D deg.f1/, so the conclusion of the theorem
holds. ut

By Theorem 2.8 we immediately get

Corollary 2.1. Let f .x/ 2 Fn. If deg.f / D n, then f .x/ is algebraically nondegen-
erate.

This section will develop a method to find the algebraically degenerated function
g.y/ of a given Boolean function f .x/, if f .x/ is algebraically degenerate. First we
introduce a concept about coset decomposition.

Definition 2.5. Let V be a vector subspace of GFn.2/. For any ˛ 2 GFn.2/ n V ,
V1 D ˛ ˚ V D f˛ ˚ x W x 2 Vg is called a coset of V . The decomposition

GFn.2/ D
[

˛2GFn.2/nV

˛ ˚ V (2.5)

is called the coset decomposition of GFn.2/ with respect to V , and ˛ is called a coset
leader of V for the coset V1. Apparently any element (vector) in V1 can be a coset
leader, but they are equivalent in terms of coset decomposition.

Definition 2.5 can be generalized to a general vector space with a general vector
operation which is not necessarily the bit-wise exclusive-or. However, we rarely use
the general case in this book.

From the coset decomposition of the whole vector space GFn.2/ as represented
in Eq. 2.5, it is easy to verify that

(1) ˛ ˚ V D ˇ ˚ V if and only if ˛ ˚ ˇ 2 V;
(2) if ˛ ˚ ˇ 62 V , then .˛ ˚ V/\ .ˇ ˚ V/ D �, where � is the empty set;
(3) V is a factor of the total number of vectors in GFn.2/ which is 2n.

40 2 Independence of Boolean Functions of Their Variables

There is a sophisticated theory of coset-related issues, and they are beyond the
coverage of this book. By using the some known results from the theory of coset
and coset decomposition of vector spaces, we can get the following result:

Theorem 2.9. Let f .x/ 2 Fn. Denote V D hfw W Sf .w/ ¤ 0gi be the linear span of
the nonzero spectrum points of f .x/. Assume that dim.V/ D k, and let h1, h2, : : :, hk

be a basis of V. Denote H D ŒhT
1 ; hT

2 ; : : : ; hT
k � which is an n � k matrix. Then there

exists a Boolean function in k variables g.y/ such that

g.y/ D g.xH/ D f .x/ (2.6)

Proof: By the expression of the inverse Walsh transform as in Eq. 1.13, we can
write f .x/ as

f .x/ D 2�n
2n�1X

wD0

Sf .w/.�1/hw; xi D 2�n
X

w2V

Sf .w/.�1/hw; xi:

In the above, only w 2 V needs to be considered; hence, for any x 2 V?, hw; xi D 0

always hold. Hence for any ˛ 2 GFn.2/ and x 2 V?, we have

f .x˚ ˛/ D 2�n
X

w2V

Sf .w/.�1/hw; .x˚˛/i D 2�n.�1/hw; ˛iX

w2V

Sf .w/:

This means that f .x/ is a constant on every coset of V?. Let S be a set of all the
coset leaders of V?. Then we can establish a mapping ' from S to GFk.2/ as:

'.˛/ D ˛H

where H is the matrix as described in the theorem. It is easy to see that, for any
˛1; ˛2 2 S, if '.˛1/ D '.˛2/, then .˛1�˛2/H D 0. This means that .˛1�˛2/ 2 V?;
therefore, ˛1 D ˛2; hence, ' is a one-to-one mapping. On the other hand, since
jSj D 2k D jGFk.2/, hence ' must be a bijection. Therefore, the function g.y/ can
be defined as

g.y/ D f .'�1.y//; y 2 GFk.2/

Then for any ˛ 2 S, we have

g.˛H/ D f .'�1.˛H// D f .˛/:

Therefore, for any x 2 GFn.2/, there must exist ˛ 2 S and ˇ 2 V? such that
x D ˛ ˚ ˇ; hence, xH D .˛ ˚ ˇ/H D ˛H, and consequently we have

f .x/ D f .˛/ D g.˛H/ D g.xH/:

ut

2.3 The Degeneracy of Boolean Functions 41

It can also be shown [4] that the dimension of the vector space V is the least
number k so that f .x/ has an algebraically degenerated function in Fk.

Corollary 2.2. Let f .x/ 2 Fn, A be an n � n nonsingular matrix, and let g.x/ D
f .xA/. Then AD.g/ D AD.f /.

Theorem 2.10. Let f .x/ 2 Fn. Then dim.hfw W Sf .w/ ¤ 0gi/ D k if and only if
f .x/ can be algebraically degenerated into a function in k variables.

Proof: Sufficiency: If f .x/ can be algebraically degenerated into a function g.y/ in
k variables, i.e., there exists a binary n � k matrix D such that

g.y1; y2; : : : ; yk/ D g.xD/ D f .x1; x2; : : : ; xn/

holds. Do the coset decomposition of GFn.2/ with respect to Ker.D/ as

GFn.2/ D
k[

iD1

˛i ˚ Ker.D/;

where

Ker.D/ D fx 2 GFn.2/ W xD D 0g

is the kernel of D (here D can be treated as a linear mapping defined by GFn.2/!
GFk.2/ as: x! xD), and then we have

Sf .w/ D
2m�1X

xD0

f .x/.�1/hw; xi

D
rX

iD1

X

x2Ker.D/

f .˛i ˚ x/.�1/hw; .˛i˚x/i

D
rX

iD1

X

x2Ker.D/

g.˛iD/.�1/hw; xi.�1/hw; ˛ii

D
rX

iD1

g.˛iD/.�1/hw; ˛ii X

x2Ker.D/

.�1/hw; xi

D
�

2n�r
Pr

iD1 g.˛iD/.�1/hw; ˛ii if w 2 .Ker.D//?
0 else

where r D rank.D/. Obviously r � k; hence, we have

dim.hw W Sf .w/ ¤ 0gi/ � dim..Ker.D//?/ � k:

42 2 Independence of Boolean Functions of Their Variables

This means that if f .x/ can be algebraically degenerated into a function in k
variables, then the dimension of the linear span of its nonzero Walsh spectrum
points is at most k. On the other hand, from Theorem 2.9, it is known that if
dim.hfw W Sf .w/ ¤ 0gi/ D k, then f .x/ can be algebraically degenerated into
a function in k variables. Combining the above, we have the conclusion of the
theorem. ut
Theorem 2.11. If for any x 2 supp.f /, we have wt.x/ � m, i.e.,

min
x2supp.f /

wt.x/ � m;

then

dim.hfw W Sf .w/ ¤ 0gi/ � m:

Proof: Assume the contrary, then by Theorem 2.10 we know that f .x/ can be
algebraically degenerated into a function in k (k � m�1) variables g.y1; y2; : : : ; yk/,
i.e., g.y1; y2; : : : ; yk/ D g.xD/ D f .x/, where D is an n�k binary matrix over GF.2/

with rank equal k. For any y 2 GFk.2/, there must exist x D yD� such that xD D y,
where D� is a generalized inverse matrix of D satisfying that DD�D D D (for the
existence of generalized inverses of binary matrices, see, e.g., [6]). From a variety
of generalized matrices of D, we can select such a D� that it has exactly k columns,
and then for any y 2 GFk.2/, the Hamming weight of x D yD� is smaller than or
equal to k, and by the assumption, we have f .x/ D f .xD�/ D g.y/ D 0. This yields
a contradiction, which means that the conclusion of the theorem must hold. ut

2.4 Images of Boolean Functions on a Hyperplane

In Sect. 2.2, independence of a Boolean function with some of its variables has been
studied. If we treat the space of variables x D .x1; x2; : : : ; xn/ to be an n-dimensional
vector space GFn.2/, then every coordinate xi is a direction, and ei is the unit vector
in that direction. When one direction remains a constant, say xi D c, where c 2
f0; 1g, then the vector space becomes f.x1; x2; : : : ; xi�1; c; xiC1; : : : ; xn/ 2 GFn.2/g,
which forms an .n � 1/-dimensional subspace of GFn.2/. This subspace is called a
hyperplane of GFn.2/. Denote

Hi D f.x1; x2; : : : ; xi�1; c; xiC1; : : : ; xn/ 2 GFn.2/g
be the hyperplane in GFn.2/ defined by xi D c; then to be specific, we call Hi the
hyperplane of GFn.2/ in the direction ei. More specifically, when c D 0, Hi is called
a linear hyperplane, and when c D 1, Hi is called an affine hyperplane. In order to
differentiate these two cases, we will denote H.0/

i as the linear hyperplane and denote

2.4 Images of Boolean Functions on a Hyperplane 43

H.1/
i as the affine hyperplane. Otherwise, Hi denotes either a linear hyperplane or an

affine hyperplane where these two cases do not make difference.
For any Boolean function f .x/ 2 Fn, the restriction of f .x/ on the hyperplane

H.c/
i is defined as

f .c/
ei

.x/ D f .x1; x2; : : : ; xi�1; c; xiC1; : : : ; xn/;

i.e., the restriction of f .x/ under the condition of xi D c. It is trivial to verify that
both f .0/

ei .x/ and f .1/
ei .x/ are independent of xi, and f .0/

ei .x/ D f .1/
ei .x/ if and only if f .x/

is independent of xi, in which case we also have f .x/ D f .0/
ei .x/.

More generally, let ˛ D .a1; a2; : : : ; an/ 2 GFn.2/, then we can define a
hyperplane of GFn.2/ in the direction ˛ as

H.c/
˛ D fx 2 GFn.2/ W hx; ˛i D cg;

where hx; ˛i D a1x1 ˚ a2x2 ˚ � � � ˚ anxn and c 2 GF.2/. Now the restriction of
f .x/ 2 Fn on the hyperplane H.c/

˛ is defined as

f .c/
˛ .x/ D f .x/jhx; ˛iDc:

Similarly, it can be proven that the restriction of f .x/ on the hyperplane H.c/
˛ is

independent of h˛; xi, and f .0/
˛ .x/ D f .1/

˛ .x/ D f .x/ if and only if f .x/ is independent
of h˛; xi.

The restriction of a Boolean function on a hyperplane is also called the image of
the function on the hyperplane, which is equivalent to a Boolean function in n � 1

variables, i.e., the image of a Boolean function in n variables on a hyperplane is
degenerate to a Boolean function in n � 1 variables. When ˛ D ei, i.e., when the
hyperplane is defined by xi D c, the image of f .x/ on the hyperplane

H.c/
i D f.x1; x2; : : : ; xi�1; c; xiC1; : : : ; xn/ 2 GFn.2/g

becomes f .x1; x2; : : : ; xi�1; c; xiC1; : : : ; xn/ which is degenerate to

f1.x1; x2; : : : ; xi�1; xiC1; : : : ; xn/

which is a Boolean function in Fn�1. However, in a general case, it is not so intuitive
to treat the image of a Boolean function on the hyperplane H˛ as a Boolean function
in n � 1 variables. In fact, for any ˛ ¤ 0, we can always find an n � n invertible
binary matrix A with ˛T as its first column vector, where ˛T is the transpose of ˛

which is a column vector. Write .y1; y2; : : : ; yn/ D .x1; x2; : : : ; xn/A, then we have
y1 D hx; ˛i, and we can write .x1; x2; : : : ; xn/ D .y1; y2; : : : ; yn/A�1. By taking this
into the representation of f .x/, we get f .x/ D f .yA�1/ D g.y/. The image of f .x/

on the hyperplane H.c/
˛ is equivalent to the image of g.y/ on the hyperplane H.c/

1 ;

44 2 Independence of Boolean Functions of Their Variables

since the image of g.y/ on the hyperplane H.c/
1 is degenerate to a Boolean function

in n � 1 variables, so is the image of f .x/ on the hyperplane H.c/
˛ .

It is trivial to verify that the image of a Boolean function on a hyperplane Hi

yields a function independent of variable xi. The image of a Boolean function on a
general hyperplane may not be independent of any variable; however, it must be an
algebraically degenerate function.

Theorem 2.12. Let f .x/ 2 Fn. Then f .x/ is algebraically degenerate if and only
if there exists a hyperplane H˛ such that f .x/ is equivalent to its image on the
hyperplane.

Proof: If f .x/ is algebraically degenerate, by Definition 2.4, there must exist an
n � k matrix D over GF.2/ and g.y/ 2 Fk such that f .x/ D g.xD/ D g.y/ holds,
where k < n. Let D1 be an n � .n � k/ binary matrix such that ŒD W D1� makes a
nonsingular matrix. Let ˛ be a column vector of D1 (say the first column, which
exists since k < n). Then f .x/ D g.xD/ is independent of h˛; xi, which means that
f .x/ D f .0/

˛ .x/ D f .1/
˛ .x/.

On the other hand, assume that f .x/ is equivalent to its image on a hyperplane
H.c/

˛ , i.e., f .x/ is independent of h˛; xi. Let D1 be an n � .n � 1/ matrix such that
D D Œ˛ W D1� makes a nonsingular matrix, and let y D xD, then x D yD�1, replacing
each xi in the ANF of f .x/ by the linear combination of y1; y2; : : : ; yn; we get a
Boolean function g.y/ 2 Fn, such that f .x/ D g.y/. Note that y D xD implies that
y1 D h˛; xi, by the assumption that f .x/ is independent of h˛; xi, and we know that
g.y/ is independent of y1 and hence is equivalent to its image on hyperplane H1. ut

2.5 Derivatives of Boolean Functions

In the following discussion, let f .x/ 2 Fn be a Boolean function in n variables, let
˛ 2 GFn.2/ be an arbitrary vector, and let ei 2 GFn.2/ be such a vector that only
its i-th coordinate is 1 and 0 elsewhere.

Definition 2.6. Let

�˛.f / D f .x/˚ f .x˚ ˛/:

Then �˛.f / is called the derivative function of f .x/ with respect to ˛ or the
derivative of f .x/ in brief.

When ˛ D ei for some 1 � i � n, we denote

�i.f / D f .x/˚ f .x˚ ei/

and call it a normal derivative of f .x/ with respect to ei.

It is easy to verify that, when ˛ D 0 is an all-zero vector, �˛.f / D �0.f / D
0 is always a zero function for any Boolean function f .x/. This is a very trivial

2.5 Derivatives of Boolean Functions 45

case, and in the discussion below, we will only consider the cases when ˛ ¤ 0,
unless specified otherwise.

Theorem 2.13. Let ˛; ˇ 2 GFn.2/ be nonzero vectors. Then we have

�ˇ.�˛.f // D �˛.�ˇ.f // D f .x/˚ f .x˚ ˛/˚ f .x˚ ˇ/˚ f .x˚ ˛ ˚ ˇ/:

Proof: By Definition 2.6, the conclusion can trivially be verified. ut
Theorem 2.13 means that the derivative operation is commutative.

Definition 2.7. Let ˛; ˇ 2 GFn.2/. Then

�˛;ˇ.f / D �ˇ.�˛.f //

is called the second-order derivative function of f .x/ with respect to ˛ and ˇ.

To generalize Definition 2.7, for a set of vectors A D f˛1; ˛2; : : : ; ˛tg 	 GFn.2/,
denote f1.x/ D �˛1.f /, f2.x/ D �˛2.f1/, f3.x/ D �˛3.f2/, � � � , ft.x/ D �˛t .ft�1/, and
then it is easy to prove that the generated function ft.x/ does not depend on the order
of the vectors in A but only depends on A as a set counting repeat vectors. So it is
reasonable to denote ft.x/ to be �A.f /.

Definition 2.8. The above described function �A.f / is called the high-order deriva-
tive function of f .x/ with respect to A.

Theorem 2.14. Let ˛i; ˛j 2 A and ˛i D ˛j for some i ¤ j, and then for any Boolean
function f .x/ 2 Fn, we have �A.f / D 0.

Proof: We only need to prove that �˛1.�˛2.f // D 0 holds. By Theorem 2.13 and
the assumption that ˛i D ˛j, the conclusion is true. ut

Theorem 2.14 shows that taking the derivative operation twice on a same
direction yields a zero function. However, having duplicate vectors in A is not a
necessity for �A.f / D 0.

Theorem 2.15. If the vectors in A are linearly dependent, then for any f .x/ 2 Fn,
we have �A.f / D 0.

Proof: Without loss of generality, let A D f˛1; ˛2; � � � ; ˛tg and ˛i D ˛1 ˚ ˛2 ˚
� � � ˚ ˛i�1, where 1 < i � t. Then �˛1;˛2;:::;˛i .f / D �˛i.�˛1;˛2;:::;˛i�1 .f //. By
Theorem 2.13, we get

�˛1;˛2;:::;˛i�1 .f / D f .x/˚
i�1M

jD1

f .x˚ ˛j/˚
M

1�j1<j2�i�1

Œf .x˚ ˛j1 ˚ f .x˚ ˛j2 //˚ � � �

˚ f .x˚ ˛1 ˚ ˛2 ˚ � � � ˚ ˛i�1/� (2.7)

46 2 Independence of Boolean Functions of Their Variables

By the assumption that ˛i D ˛1 ˚ ˛2 ˚ � � � ˚ ˛i�1, we have

�˛1;˛2;:::;˛i�1 .f /.x˚ ˛i/ D �˛1;˛2;:::;˛i�1 .f /.x˚ ˛1 ˚ ˛2 ˚ � � � ˚ ˛i�1/: (2.8)

It is easy to verify that every term in Eq. 2.8 is the same as a term in Eq. 2.7, and
they appear almost in the reverse order. This means that

�˛1;˛2;:::;˛i�1 .f /.x˚ ˛i/ D �˛1;˛2;:::;˛i�1 .f /:

So we have

�˛i.�˛1;˛2;:::;˛i�1 .f // D �˛1;˛2;:::;˛i�1 .f /.x˚ ˛i/˚�˛1;˛2;:::;˛i�1 .f /.x/ D 0

and the conclusion of Theorem 2.15 holds. ut
Theorem 2.15 shows that even when A has no duplicate vectors, the high-order

derivative �A.f / may lead any Boolean function into a zero derivative. However,
when the vectors in A are linearly independent, the case is different.

Theorem 2.16. If A 	 GFn.2/ is a collection of linearly independent vectors, then
there exists a Boolean function f .x/ 2 Fn such that �A.f / is not a constant function,
i.e., �A.f / 6� c, c 2 GF.2/, if and only if the linear span of A is not GFn.2/.

Proof: Necessity: Assume that A has n linearly independent vectors ˛1; ˛2; : : : ; ˛n.
Let D be a matrix composed by all the vectors in A as its column vectors, and then
D is a nonsingular matrix. Write f .x/ D g.yD�1/, or equivalently g.y/ D f .xD/,
and then we have

�˛i.f / D f .x/˚ f .x˚ ˛i/ D g.yD�1/˚ g..y˚ ˛i/D
�1/:

Note that eiD D ˛i, so ˛iD�1 D ei, so the above becomes

�˛i.f / D g.yD�1/˚ g.yD�1 ˚ ei/:

Note that the function g.yD�1/ can be written as g.yD�1/ D yig1.Nyi/ ˚ g2.Nyi/,
where Nyi D .y1; y2; : : : ; yi�1; yiC1; : : : ; yn/ 2 GFn�1.2/; it is easy to verify that
�˛i.f / D g1.Nyi/ is a Boolean function depending only on n � 1 variables and is
independent of yi. Since the above equations hold for i D 1; 2; : : : ; n, so the high-
order derivative �A.f / must be a Boolean function independent of any variable, and
such a Boolean function can only be a constant.

Sufficiency: By the assumption, if the linear span of A is not GFn.2/, then there
must exist a nonzero vector ˛ 2 GFn.2/ that is linearly independent of all the
vectors in A, i.e., ˛ is not a linear combination of the vectors in A. Let D be a matrix
composed by the vectors in A as column vectors, let f .x/ D h˛; xi, and then by the
transformation y D x � Œ˛ W D�, we can write f .x/ D g.y/ D y1, which is independent

2.5 Derivatives of Boolean Functions 47

of yi D h˛i; xi for all ˛i 2 A; hence, we have �˛i.f / D f .x/, and eventually we
have �A.f / D f .x/ which is not a constant. ut

The above theorem shows that the derivative operation will eventually lead a
Boolean function into a constant, and if one more derivative applies, it will yield
a zero, which is what Theorem 2.15 implies. In a general case, let A 	 GFn.2/

be a basis of a k-dimensional vector subspace of GFn.2/, and then the high-order
derivative operation may lead some of the Boolean functions into zero, but not all,
as has been shown in Theorem 2.16. More specifically we have

Theorem 2.17. If A 	 GFn.2/ is a basis of a k-dimensional vector subspace of
GFn.2/, where k < n, then for any f .x/ 2 Fn, we have

deg.�A.f // � n � k

and there must exist a Boolean function f1.x/ 2 Fn such that deg.�A.f1// D n � k.

Proof: First we prove the case when k D 1. Let ˛ be the element in A. Without
loss of generality, we assume the first coordinate of ˛ is not zero. Then D D
Œ˛T ; eT

2 ; : : : ; eT
n � is a nonsingular matrix. Let g.x/ D f .xD/, we know that

�A.f / D �˛.f / D f .x˚ ˛/˚ f .x/

D g.xD�1 ˚ ˛D�1/˚ g.xD�1/

D g.xD�1 ˚ e1/˚ g.xD�1/

Denote g.xD�1/ D g1.x/, and then by the proof of Theorem 2.16, we have known
that the algebraic degree of �1.g1/ D g1.x ˚ e1/ ˚ g1.x/ is less than or equal to
deg.g1/ � 1, where the equality holds if and only if in the ANF of x1, the degree of
the term containing x1 is the degree of x1. Note that deg.x1/ D deg.y/ D deg.f /, the
conclusion holds for this case.

Now assume that the conclusion holds for the cases up to k�1. Denote a .k�1/-
th-order derivative of f .x/ as f 0.x/ (not unique and is subject to how the derivative
is done). Then a k-th-order derivative of f .x/ is the same as applying a derivative on
f 0.x/. By the same proof as the case when k D 1, it can be proven that the conclusion
of the theorem also holds for the case k. By the principle of mathematical deduction,
the conclusion of the theorem holds. ut

From the above discussion, we can see that the derivative operation on Boolean
functions will decrease the algebraic degree and also make the derivative function
to be algebraically degenerate.

Theorem 2.18. If A 	 GFn.2/ is a basis of a k-dimensional vector subspace of
GFn.2/, where k < n, then for any f .x/ 2 Fn, the algebraic degeneracy of the
derivative function must satisfy

AD.�A.f // � k

and there must exist a Boolean function f1.x/ 2 Fn such that AD.�A.f1// D k.

48 2 Independence of Boolean Functions of Their Variables

Proof: First we prove the case when k D 1. Let ˛ be the element in A. If ˛ D e1,
then f .x/ can always be written as f .x/ D x1f1.x/˚ f2.x/, where f1.x/ and f2.x/ are
both independent of x1. So we have

�1.f / D f .x˚ e1/˚ f .x/

D ..x1 ˚ 1/f1.x/˚ f2.x//˚ x1f1.x/˚ f2.x/

D f1.x/

Since f1.x/ is independent of x1, by Theorem 2.7 it is known that �1.f / is
degenerate.

In a general case, since ˛ is a nonzero vector, there must exist a nonsingular
matrix D such that ˛ � D D e1. Write y D xD, and denote g.x/ D f .xD/ and then
f .x˚ ˛/ D g..x˚ ˛/D/ D g.xD˚ ˛ � D/ D g.xD˚ e1/. Hence, we have

�˛.f / D f .x˚ ˛/˚ f .x/

D g.xD˚ e1/˚ g.xD/

D g.y˚ e1/˚ g.y/

D �1.g/

which is a degenerate Boolean function as has been shown above.
Now assume that the conclusion holds for the cases up to k�1. Denote a .k�1/-

th-order derivative of f .x/ as f 0.x/ (not unique and is subject to how the derivative
is done). Then a k-th-order derivative of f .x/ is the same as applying a derivative on
f 0.x/. By the same proof as the case when k D 1, it can be proven that the conclusion
of the theorem also holds for the case k. By the principle of mathematical deduction,
the conclusion of the theorem holds. ut

2.6 The Statistical Independence of Boolean Functions
of Their Variables

A binary variable x 2 GFn.2/ is supposed to take all the 2n possible values.
However, in many instances, only a certain number of its particular values are taken
into consideration. It matters what value it takes. So in general, we assume that the
variable may take any possible value in GFn.2/ with equal probability. This means
that we treat x as a probabilistic variable with uniform probability distribution. By
this treatment, any Boolean function with this variable, f .x/, is also a probabilistic
event which has certain probability to be true (when its value equals 1) or false
(when its value equals 0). Similarly we may study conditional probabilities, for
example, when the precondition is that the variable takes a particular set of values
in GFn.2/, the probability that f .x/ has value 0 or value 1 is a conditional probability.

2.6 The Statistical Independence of Boolean Functions of Their Variables 49

There are such Boolean functions, although they are not independent of any
of their variables; however, statistically they seem to be not affected by some of
their variables, i.e., the probability of such a function to take a certain value (0
or 1) is not affected by any predefined value of these variables. In this case, the
function is said to be statistically independent of these variables. For example, the
Boolean function in three variables f .x/ D x1x2 ˚ x3 takes value 1 if and only if
x 2 f.110/; .001/; .101/; .011/g. So Prob.f .x/ D 1/ D Prob.f .x/ D 0/ D 1

2
,

i.e., f .x/, is balanced, where Prob.A/ represents the probability that event A occurs.
When x1 D 1 is fixed, then f .x/ takes value 1 if and only if x D .110/ or x D .101/,
and f .x/ D 0 if and only if x D .100/ or x D .111/. Obviously, under the condition
that x1 D 1, let x2 and x3 be free variables, and then f .x/ is still balanced, i.e.,

Prob.f .x/ D 1jx1 D 1/ D Prob.f .x/ D 0jx1 D 1/ D 1

2
;

where Prob.AjB/ represents the probability that event A occurs given the condition
that B has occurred. It is easy to verify that f .x/ is also balanced under the condition
that x1 D 0. This means that regardless whatever a fixed value is assigned to x1, the
probability that f .x/ takes a certain value (0 or 1) remains the same, i.e.,

Prob.f .x/ D ajx1 D b/ D Prob.f .x/ D a/

holds for any a; b 2 f0; 1g. Therefore, function f .x/ is statistically independent of
x1. It is easy to verify that this f .x/ is also statistically independent of x2 but not of
x3. Apparently f .x/ is not independent of any of its variables, as all the variables
appear in the algebraic normal form of f .x/. Now we give a formal definition of
statistical independence.

Definition 2.9. Let f .x/ 2 Fn. Treat each xi as an independent binary variable
which takes values from GF.2/ at random. If the probability of f .x/ to take a
particular value is not affected by the precondition that xi is assigned certain
value, i.e.,

Prob.f .x/ D bjxi D a/ D Prob.f .x/ D b/;

where a; b 2 f0; 1g, Prob.Z/ means the probability that event Z occurs, and
Prob.AjB/ means the conditional probability for event A to occur given that the event
B occurred, then f .x/ is called to be statistically independent of xi. More generally,
if for some 1 � i1 < i2 < � � � < ik � n,

Prob .f .x/ D bj.xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak// D Prob.f .x/ D b/ (2.9)

holds for any b 2 GF.2/ and .a1; a2; : : : ; ak/ 2 GFk.2/, then f .x/ is called to be
statistically independent of variables xi1 ; xi2 ; : : : ; xik .

50 2 Independence of Boolean Functions of Their Variables

As in Definition 2.9, if f .x/ is statistically independent of xi1 ; xi2 ; : : : ; xik , then
any assignment of values to xi1 ; xi2 ; : : : ; xik will not affect the probability for f .x/ to
take a certain value. This means that for a nonconstant Boolean function f .x/ 2 Fn,
we have

Prob.f .x/ D bj.xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

D Prob.f .x/ D b/ ¤ 0

where b 2 f0; 1g and .a1; a2; : : : ; ak/ 2 GFk.2/.
Note that a function may be statistically independent of its variables xi1 , xi2 ,

: : :, xik individually but still not be statistically independent of the set of variables
xi1 ; xi2 ; : : : ; xik . For example, f .x1; x2; x3/ D x1x3 ˚ x2x3 ˚ x3 is statistically
independent of x1 and of x2 individually but not statistically independent of x1; x2 as
a group. However, we have a simplified view on the statistical independence.

Theorem 2.19. f .x/ is statistically independent of xi1 ; : : : ; xik if and only if for every
a; b 2 GF.2/ and for every nonzero vector .c1; : : : ; ck/ 2 GFk.2/, we have

Prob.f .x/ D b

ˇ̌
ˇ̌
ˇ̌

kM

jD1

cjxij D a / D Prob.f .x/ D b/:

By the probability congruent

Prob.f .x/ D b/ � Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jf .x/ D b/

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

�Prob.f .x/ D bj.xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

we know that f .x/ is statistically independent of xi1 ; xi2 ; : : : ; xik if and only if

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jf .x/ D b/

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

D 2�k:

So we have

Theorem 2.20. Let f .x/ 2 Fn be a nonconstant Boolean function. Then a necessary
and sufficient condition for f .x/ to be statistically independent of xi1 ; xi2 ; : : : ; xik is

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jf .x/ D b/ D 2�k (2.10)

holds for any b 2 f0; 1g and .a1; a2; : : : ; ak/ 2 GFk.2/.

Theorem 2.20 restricts f .x/ to be a nonconstant. What about a trivial Boolean
function, i.e., a constant function? It is not so intuitive, particularly when b is not
the same constant as f .x/, because in this case the precondition f .x/ D b does not

2.6 The Statistical Independence of Boolean Functions of Their Variables 51

hold, and to consider a probability under such a condition does not seem to make
sense. However, logically Eq. 2.10 still holds, as traditionally we consider an event
under a false condition to be true regardless how meaningless it seems to be. So the
restriction of the considered function to be nonconstant is not necessary but for easy
understanding.

Theorem 2.20 means that if f .x/ is statistically independent of variables
xi1 ; xi2 ; : : : ; xik , then the i1-th, i2-th, � � � , ik-th coordinates of the vectors in supp.f /

(as well as those in supp.f / D GFk.2/ � supp.f /) form GFk.2/ or multiple copies
of GFk.2/. However, the inverse statement requires both supp.f / and supp.f / to
satisfy the property. We show that if supp.f / satisfies the following:

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f //

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

D 2�k;

then supp.f / also satisfies the property, i.e.,

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f //

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

D 2�k:

This leads to the condition for judging whether f .x/ is statistically independent of
xi1 ; xi2 ; : : : ; xik to be simpler. In fact,

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f //

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jf .x/ D 0/

D Prob.f .x/ D 0j.xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

�Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//=Prob.f .x/ D 0/

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

Prob.f .x/ D 0/

Œ1 � Prob.f .x/ D 1j.xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//�

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

Prob.f .x/ D 0/
�
1 � Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jf .x/ D 1/ � Prob.f .x/ D 1/

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

�

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

Prob.f .x/ D 0/
Œ1 � Prob.f .x/ D 1/�

D Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak//

D 2�k:

Hence, we have

52 2 Independence of Boolean Functions of Their Variables

Theorem 2.21. Let f .x/ 2 Fn. Then f .x/ is statistically independent of
xi1 ; xi2 ; : : : ; xik if and only if

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f // D 2�k

holds for any .a1; a2; : : : ; ak/ 2 GFn.2/.

An equivalent statement of Theorem 2.21 is to use supp.f / instead of supp.f /;
both of the statements give a simpler condition for judging if f .x/ is statistically
independent of xi1 ; xi2 ; : : : ; xik .

It is noted that Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f // means that
the i1-th, i2-th, : : :, ik-th coordinates of those x 2 supp.f / form GFn.2/ or multiple
copies of GFn.2/. Below is another measurement about when this condition is met.

Lemma 2.4. Let A be a set of m-dimensional binary vectors. Then

f.yi1 ; : : : ; yij/ W y 2 Ag
contains an equal number of even weight vectors and odd weight vectors for every
1 � j � m and every possible j coordinates 1 � i1 < i2 < � � � < ij � m, if and only
if A is GFm.2/ or contains multiple copies of GFm.2/.

Proof: When m D 2, it is easy to check the correctness of the conclusion. Assume
the conclusion is true for m � 1. Then the validity of the conclusion for m is proved
as follows.

Denote by

A0 D f˛ D .a1; : : : ; am/ 2 A W am D 0g;
A1 D f˛ D .a1; : : : ; am/ 2 A W am D 1g:

Assume the contrary that the first m � 1 coordinates of vectors in A0 do not form
GFm�1.2/ or multiple copies of GFm�1.2/. Then by the assumption we know that
there must exist 1 � i1 < i2 < � � � < ij � m � 1 such that in the set

A0.i1; i2; : : : ; ij/ D f.ai1 ; ai2 ; : : : ; aij/ W ˛ D .a1; : : : ; am/ 2 Ag

the number s0 of odd weight vectors is different from the number t0 of even weight
vectors. Similarly we can define the set A1.i1; i2; : : : ; ij/ in which we assume that
there are s1 odd weight vectors and t1 even weight vectors. By the assumption above
we must have s0 C s1 D t0 C t1. From the definition of A0 and A1, it is known
that A0.i1; i2; : : : ; ij; m/ contains s0 odd weight vectors and t0 even weight vectors,
and A1.i1; i2; : : : ; ij; m/ contains t1 odd weight vectors and s1 even weight vectors.
Therefore,

A.i1; i2; : : : ; ij; m/ D A0.i1; i2; : : : ; ij; m/
[

A1.i1; i2; : : : ; ij; m/

contains s0 C t1 odd weight vectors and s1 C t0 even weight vectors. By the
assumption s0 6D t0 and the fact that s0 C s1 D t0 C t1, we have s0 C t1 6D s1 C t0.

2.7 The Statistical Independence of Two Individual Boolean Functions 53

This means that the number of odd weight vectors and that of even weight vectors
in A0.i1; i2; : : : ; ij; m/ are different which contradicts with the previous assumption.
This means that the first m� 1 coordinates of A0 form GFm�1.2/ or multiple copies
of GFm�1.2/. Similarly it can be proven that the first m � 1 coordinates of A1 form
GFm�1.2/ or multiple copies of GFm�1.2/. Therefore, A D A0 [A1 is GFm.2/ or
multiple copies of GFm.2/, and hence, the conclusion of Lemma 2.4 is true. ut

Denote by �.i1; i2; : : : ; ik/ D fx 2 GFn.2/ W xj D 0 if j 62 fi1; i2; : : : ; ikgg. Then
we have

Theorem 2.22. Let f .x/ 2 Fn. Then a necessary and sufficient condition for
f .x/ to be statistically independent of xi1 ; xi2 ; : : : ; xik is that, for any nonzero w 2
�.i1; i2; : : : ; ik/, we have Sf .w/ ¤ 0.

Proof: First it is noted that

Sf .w/ D
2n�1X

xD0

f .x/.�1/hw; xi D
X

x2supp.f /

.�1/hw; xi:

If f .x/ is statistically independent of xi1 ; xi2 ; : : : ; xik , then by Lemma 2.4 we know
that the i1-th, i2-th, . . . , ik-th coordinates of all the vectors in �.i1; i2; : : : ; ik/ form
GFk.2/ or multiple copies of GFk.2/. Hence, for any nonzero w 2 �.i1; i2; : : : ; ik/,
by Eq. 1.10 we have

P
x2supp.f /.�1/hw; xi D 0, i.e., Sf .w/ D 0. On the other hand, if

Sf .w/ D 0 holds for any nonzero w 2 �.i1; i2; : : : ; ik/, then the i1-th, i2-th, : : :, ik-th
coordinates of all the vectors in �.i1; i2; : : : ; ik/ satisfy the conditions of Lemma 2.4;
hence, by Lemma 2.4, they form GFk.2/ or multiple copies of GFk.2/; hence, for
any .a1; a2; : : : ; ak/ 2 GFk.2/, we have

Prob..xi1 ; xi2 ; : : : ; xik / D .a1; a2; : : : ; ak/jx 2 supp.f // D 2�k:

By Theorem 2.21 we know that f .x/ is statistically independent of xi1 ; xi2 ; : : : ; xik .
ut

Comparing the definition and properties of the concept of independence and that
of statistical independence, we note that if a Boolean function is independent of
some variables, then it must be statistically independent of those variables. In this
sense the statistical independence is a weaker relationship about independence.

2.7 The Statistical Independence of Two Individual Boolean
Functions

In Sect. 2.6 we considered the independence of Boolean functions of their variables.
As a generalization of this relationship, we may consider the independence of two
distinct Boolean functions. Let f .x/ and g.x/ be two Boolean functions of the same
number of variables. The conditional probability Prob.f .x/ D ajg.x/ D b/, where
a; b 2 f0; 1g, means that among the set of input x’s that satisfy g.x/ D b, the

54 2 Independence of Boolean Functions of Their Variables

probability that x also satisfies f .x/ D a. For example, when g.x/ has a fixed value,
say g.x/ D 1, then the probability of f .x/ to take value 1 is a conditional probability,
denoted by Prob.f .x/ D 1jg.x/ D 1/. Note that when the free variable x 2 GFn.2/

has uniform probability distribution, then it is easy to see that Prob.f .x/ D 1/ D
wt.f /

2n , and Prob.f .x/ D 1jg.x/ D 1/ D wt.fg/

wt.g/
.

2.7.1 Properties of the Statistical Independence of Boolean
Functions

First we introduce the concept of statistical independence of Boolean functions.

Definition 2.10. Let f .x/ and g.x/ be two Boolean functions in n variables. Treat x
as a random variable over GFn.2/. If for any a; b 2 f0; 1g, we always have

Prob.f .x/ D ajg.x/ D b/ D Prob.f .x/ D a/; (2.11)

Then f .x/ is called to be statistically independent of g.x/.

Definition 2.10 considers when the value of f .x/ is affected by the value of
g.x/ as a precondition, i.e., whether the conditional probability equals the absolute
probability. If the condition is satisfied, is the inverse true as well? That is, if f .x/

is statistically independent of g.x/, is g.x/ statistically independent of f .x/ as well?
We have

Theorem 2.23. Let f .x/ and g.x/ be two Boolean functions in n variables, and
a; b 2 f0; 1g. If

Prob.f .x/ D ajg.x/ D b/ D Prob.f .x/ D a/

holds, then

Prob.g.x/ D bjf .x/ D a/ D Prob.g.x/ D b/

also holds.

Proof: For the convenience of description, we denote the two events by A D
ff .x/ D ag and B D fg.x/ D bg. Then the condition of Theorem 2.23 indicates
that the events satisfy that Prob.AjB/ D Prob.A/. By the multiplication rule of
probability:

Prob.AB/ D Prob.AjB/Prob.B/D Prob.BjA/Prob.A/;

we have

Prob.BjA/ D Prob.AjB/Prob.B/

Prob.A/
:

2.7 The Statistical Independence of Two Individual Boolean Functions 55

Since Prob.AjB/ D Prob.A/, we have Prob.BjA/ D Prob.B/, and this means that
Prob.g.x/ D bjf .x/ D a/ D Prob.g.x/ D b/, and hence the conclusion is true. ut

Theorem 2.23 means that if f .x/ is statistically independent of g.x/, then the
inverse is also true, i.e., g.x/ is also statistically independent of f .x/. Therefore, the
statistical independence is a mutual relationship between two Boolean functions.

Theorem 2.24. Let f1.x/, f2.x/, and g.x/ be all Boolean functions in n variables.
If f1.x/ and f2.x/ are all statistically independent of g.x/, then f1.x/ ˚ f2.x/ is also
statistically independent of g.x/.

Proof: By Definition 2.10, we only need to prove that the following holds for all
a; b 2 f0; 1g:

Prob.f1.x/˚ f2.x/ D ajg.x/ D b/ D Prob.f1.x/˚ f2.x/ D a/:

First we consider the case when a D b D 0. We have

Prob.f1.x/˚ f2.x/ D 0jg.x/ D 0/

D Prob.f1.x/ D 0jg.x/ D 0/ � Prob.f2.x/ D 0jg.x/ D 0/

CProb.f1.x/ D 1jg.x/ D 0/ � Prob.f2.x/ D 1jg.x/ D 0/

D Prob.f1.x/ D 0/ � Prob.f2.x/ D 0/C Prob.f1.x/ D 1/ � Prob.f2.x/ D 1/

D Prob.f1.x/˚ f2.x/ D 0/:

Similarly, when a D 1; b D 0, we have

Prob.f1.x/˚ f2.x/ D 1jg.x/ D 0/

D Prob.f1.x/ D 0jg.x/ D 0/ � Prob.f2.x/ D 1jg.x/ D 0/

CProb.f1.x/ D 1jg.x/ D 0/ � Prob.f2.x/ D 0jg.x/ D 0/

D Prob.f1.x/ D 0/ � Prob.f2.x/ D 1/C Prob.f1.x/ D 1/ � Prob.f2.x/ D 0/

D Prob.f1.x/˚ f2.x/ D 1/:

This proves that when b D 0, regardless whether a D 0 or a D 1, the following
always holds:

Prob.f1.x/˚ f2.x/ D ajg.x/ D b/ D Prob.f .x/˚ f2.x/ D a/:

Similarly it can be proven that when b D 1, the following also holds:

Prob.f1.x/˚ f2.x/ D ajg.x/ D 1/ D Prob.f1.x/˚ f2.x/ D a/:

By Definition 2.10, f1.x/˚ f2.x/ is statistically independent of g.x/. ut
Theorem 2.25. Let f .x/ and g.x/ be statistically independent Boolean functions. If
f .x/ is a balanced, then f .x/˚ g.x/ is also balanced.

56 2 Independence of Boolean Functions of Their Variables

Proof: By the multiplication rule of probability, we have that

Prob.f .x/ D 1jg.x/ D 1/ � Prob.g.x/ D 1/ D Prob.f .x/ D 1; g.x/ D 1/:

Since f .x/ is statistically independent of g.x/, we have Prob.f .x/ D 1jg.x/ D 1/ D
Prob.f .x/ D 1/, and hence the above equation becomes

Prob.f .x/ D 1/ � Prob.g.x/ D 1/ D Prob.f .x/ D 1; g.x/ D 1/;

i.e.,

wt.f /

2n
� wt.g/

2n
D wt.fg/

2n
:

Since f .x/ is balanced, i.e., wt.f / D 2n�1, then the above equation becomes
wt.fg/ D wt.g/

2
; therefore,

wt.f ˚ g/ D wt.f /C wt.g/ � 2wt.fg/

D 2n�1 C wt.g/ � 2 � wt.g/

2

D 2n�1:

This proves that f .x/˚ g.x/ is balanced. ut
By Definition 2.10 it is trivial to prove that

Theorem 2.26. Let f .x/ and g.x/ be two Boolean functions that are statistically
independent of each other, then for any a; b 2 f0; 1g, f .x/ ˚ a and g.x/ ˚ b are
statistically independent of each other.

Denote by SI.f / the set of Boolean functions that are statistically independent of
f .x/. Theorem 2.26 indicates that SI.f / D SI.f ˚ 1/. This means that any process
of finding the statistically independent functions need only consider the case when
their Hamming weight is no more than 2n�1.

2.7.2 How to Judge When Two Boolean Functions Are
Statistically Independent

The above has given some properties of the statistical independence of Boolean
functions. Apart from the original definition, there is no progress on how to judge
more efficiently when two Boolean functions are statistically independent of each.
This section will give some more efficient or more practical means to judge whether
two given Boolean functions are statistically independent of each other.

From Definition 2.10 we know that to judge whether two Boolean functions are
statistically independent of each other, we need to check the validity of Eq. 2.11 for

2.7 The Statistical Independence of Two Individual Boolean Functions 57

every possible values of a; b 2 f0; 1g. The following theorem tells that we can in
fact reduce the process by checking only one of the cases.

Theorem 2.27. Let f .x/ and g.x/ be two Boolean functions in n variables. Then a
sufficient and necessary condition for f .x/ to be statistically independent of g.x/ is
that, for any fixed values a0; b0 2 f0; 1g, we have

Prob.f .x/ D a0jg.x/ D b0/ D Prob.f .x/ D a0/:

Proof: By Definition 2.10 it is known that the necessity is obvious. Now the
sufficiency is given below. Assume the above equation is true for a0 D b0 D 1.
Since Prob.f .x/ D 1jg.x/ D 1/ D Prob.g.x/ D 1/, and the fact that both
Prob.f .x/ D 0jg.x/ D 1/ C Prob.f .x/ D 1jg.x/ D 1/ D 1 and Prob.f .x/ D
0/C Prob.f .x/ D 1/ D 1 are true, we have

Prob.f .x/ D 0jg.x/ D 1/ D Prob.f .x/ D 0/:

This indicates that if Eq. 2.11 is true for .a; b/ D .1; 1/, then it is also true for
.a; b/ D .0; 1/. Given the above, by the complete probability formula, we have

Prob.f .x/ D 0jg.x/ D 1/ � Prob.g.x/ D 1/

CProb.f .x/ D 0jg.x/ D 0/ � Prob.g.x/ D 0/

D Prob.f .x/ D 0/

and by the real meaning of probability of Boolean functions (assuming that variable
x has uniform probability distribution):

Prob.g.x/ D 1/ D wt.g/

2n
;

Prob.g.x/ D 0/ D 1 � wt.g/

2n
;

the above becomes

Prob.f .x/ D 0/ � wt.g/

C Prob.f .x/ D 0jg.x/ D 0/ � Œ2n � wt.g/�

D 2nProb.f .x/ D 0/

Therefore, we have Prob.f .x/ D 0jg.x/ D 0/ D Prob.f .x/ D 0/. This indicates that
if Eq. 2.11 is true for .a; b/ D .0; 1/, then it is true for .a; b/ D .0; 0/. Similarly, we
can prove that if Eq. 2.11 is true for .a; b/ D .0; 0/, then it is true for .a; b/ D .1; 0/;
and if Eq. 2.11 is true for .a; b/ D .1; 0/, then it is true for .a; b/ D .1; 1/. This
proves that Theorem 2.27 is true. ut

58 2 Independence of Boolean Functions of Their Variables

Compared with Definition 2.10, Theorem 2.27 simplifies the condition of judging
if two Boolean functions are statistically independent of each other. However, this
probabilistic method is not very comfortable in real applications.

Now we consider a special case: what about the statistical independence relation-
ship of a constant with a Boolean functions? Without loss of generality, let’s assume
that f .x/ � 1. Then by Theorem 2.27, if we can prove that Prob.f .x/ D ajg.x/ D b/

holds for some a; b 2 f0; 1g, then we can conclude that f .x/ and g.x/ are statistically
independent of each other. Obviously regardless what the value of b is, the equality
equals 1 if a D 1 and 0 if a D 0. This proves that f .x/ and g.x/ are statistically inde-
pendent. Similarly when f .x/ � 0, it can be proven similarly. Therefore, we have

Theorem 2.28. A constant Boolean function is statistically independent of all the
Boolean functions of the same number of variables.

It is noted that in the proof of Theorem 2.28, we naturally assume that g.x/ D b
is possible. However, in an extreme case when g.x/ � b ˚ 1 is a constant, the
event .f .x/ D ajg.x/ D b/ is under the condition of an impossible event which
does not make sense. In this case, Theorem 2.27 is very helpful which tells that
we can simply choose another value for g.x/, and by choosing b0 D b ˚ 1, the
conclusion about the statistical independence of constant Boolean functions f .x/

and g.x/ becomes very clear.
In a general case, a Boolean function is not statistically independent of itself, as

the conditional probability Prob.f .x/ D ajf .x/ D a/ is always 1. However, when
Prob.f .x/ D a/ D 1 holds, which means that f .x/ � a is a constant Boolean
function, the above conditional probability is acceptable, and hence constant
Boolean functions (0 and 1) are the only ones that are statistically independent of
themselves. In the following discussion, without being stated explicitly, the Boolean
functions stated are all nonconstant. However, it is easy to verify that many of the
results are also true for constant functions as well.

Below is another sufficient and necessary condition for judging if two Boolean
functions are independent of each other.

Theorem 2.29. Let f .x/, g.x/ be two Boolean functions in n variables. Then f .x/ is
statistically independent of g.x/ if and only if

wt.fg/ D wt.f /wt.g/

2n
(2.12)

Proof: Necessity:

Prob.f .x/ D 1jg.x/ D 1/

D Prob.f .x/D1; g.x/D1/

Prob.g.x/D1/

D wt.fg/=2n

wt.g/=2n D wt.fg/

wt.g/
:

2.7 The Statistical Independence of Two Individual Boolean Functions 59

Note that the probability of f .x/ D 1 to hold is Prob.f .x/ D 1/ D wt.f /

2n . Assume that
f .x/ is statistically independent of g.x/, then the above two probabilities are equal,
i.e., wt.fg/

wt.g/
D wt.f /

2n , which indicates that wt.fg/ D wt.f /wt.g/

2n .
Similarly if we consider the probability of event f .x/ D 0 given that the event

g.x/ D 0 has occurred, since Prob.f .x/ D 0jg.x/ D 0/ D Prob.f .x/ D 0/, we have

wt.Nf /wt.Ng/ D 2nwt.Nf Ng/; (2.13)

where Nf .x/ D f .x/˚ 1. Note that wt.f ˚ g/ D wt.f /C wt.g/ � 2wt.fg/; hence,

wt.Nf Ng/ D wt.1˚ f ˚ g˚ fg/

D wt.1˚ f /C wt.g˚ fg/� 2wt..1˚ f /.g˚ fg//

D wt.1˚ f /C wt.g˚ fg/� 2wt.g˚ fg/

D Œ2n � wt.f /� � Œwt.g/C wt.fg/ � 2wt.fg/�

D 2n � wt.f / � wt.g/C wt.fg/

Since wt.Nf / D 2n � wt.f / and wt.Ng/ D 2n � wt.g/, by Eq. 2.13 we have

Œ2n � wt.f /�Œ2n � wt.g/� D 2nŒ2n � wt.f / � wt.g/C wt.fg/�:

Simplifying the above we have 2nwt.fg/ D wt.f /wt.g/ which is Eq. 2.12.
Sufficiency: It is easy to prove that condition wt.fg/ D wt.f /wt.g/

2n is also sufficient
for Prob.f .x/ D 1jg.x/ D 1/ D Prob.f .x/ D 1/ to hold, and by Theorem 2.27, f .x/

is statistically independent of g.x/. ut

2.7.3 Construction of Statistically Independent Boolean
Functions

The above has discussed the properties and alternative representation of judging
when two Boolean functions are statistically independent. Now our concentration
will be to find an efficient and effective way to construct statistically independent
functions given a proper Boolean function (at the moment constant is out of
consideration). First of all, it needs to know the existence of Boolean functions
that are statistically independent of the given one and then to find a way to construct
them. By Eq. 2.12 it is easy to see that the following is true.

Theorem 2.30. If the Hamming weight of f .x/ is odd, then the only functions that
are statistically independent of f .x/ are constants.

Proof: Assume that g.x/ is statistically independent of f .x/. Since wt.f / is an odd
number, we must have gcd.wt.f /; 2/ D 1, where gcd./ means the greatest common

60 2 Independence of Boolean Functions of Their Variables

divisor of its inputs. By Eq. 2.12 we have that 2njwt.f /wt.g/; therefore, 2njwt.g/

must hold; hence, we must have that g.x/ � 1 or g.x/ � 0. ut
Theorems 2.28 and 2.30 give clear picture about the statistical independence

of constant functions and nonconstant functions with odd Hamming weight. What
remains unclear is the statistical independence of nonconstant Boolean functions of
even Hamming weight, which will be discussed below.

Suppose that f .x/ is such a Boolean function, then how to construct a Boolean
function g.x/ such that they are statistically independent of each other? By
Theorem 2.29, it suffices if g.x/ satisfies (2.12). The following algorithm will be
able to find such statistically independent Boolean functions of a given one:

Algorithm 2.1 Input: Boolean function f .x/ in n variables.
(1) Check if f .x/ is a constant. If so, then output “all,” meaning that all the Boolean functions are

the outputs and then exits.
(2) Check if f .x/ has odd Hamming weight. If so, then output 0 and 1 and exits.
(3) Partition supp.f / and supp.Nf / evenly into t D gcd.2n; wt.f // groups.
(4) From each of the partitions, select k (1 � k < t) partitioned groups to form the support of g.x/.
(5) Output g.x/.

With regard to the effectiveness and efficiency of the algorithm, it is trivial to see
that as long as the partition of both supp.f / and supp.Nf / is finished, the algorithm
is almost finished (in the case only one output is expected). We are more concerned
about the correctness of the algorithm, i.e., whether the output of the algorithm
really yields Boolean functions that are statistically independent of the input f .x/.
This can be guaranteed by the following theorem:

Theorem 2.31. An output function g.x/ generated by Algorithm 2.7.3 is indeed
statistically independent of f .x/.

Proof: By Theorem 2.29, it suffices to prove that Eq. 2.12 holds. From the steps of
Algorithm 2.7.3, it can be seen that, in set supp.g/, there are k partitioned groups
of size wt.f /

gcd.2n;wt.f //
(the number of elements in the group) chosen from supp.f /, and

these are the instances of variable x where both f .x/ and g.x/ take value 1; hence,

wt.fg/ D k:
wt.f /

gcd.2n; wt.f //
:

It is also noted from the algorithm that there are k groups of size 2n�wt.f /

gcd.2n;wt.f //
chosen

from supp.Nf / included in supp.g/, and they together form all the elements of
supp.g/; hence,

wt.g/ D wt.fg/C k:
2n � wt.f /

gcd.2n; wt.f //
D 2nk

gcd.2n; wt.f //
:

2.7 The Statistical Independence of Two Individual Boolean Functions 61

Therefore, we have

Prob.f .x/ D 1jg.x/ D 1/ D wt.fg/

wt.g/

D k:wt.f /

gcd.2n; wt.f //
=

2nk

gcd.2n; wt.f //

D wt.f /

2n

D Prob.f .x/ D 1/:

This shows that Eq. 2.11 holds, and hence the theorem is true. ut
Note that in the proof of Theorem 2.31, the value of t D gcd.2n; wt.f // seems

to be of no importance, and one suspect that it is not necessary to partition both
supp.f / and supp.Nf / into t groups. However, it is easy to verify that t is the maximum
possible value that both supp.f / and supp.Nf / can be partitioned evenly into t groups,
because gcd.jsupp.f /j; jsupp.Nf /j/ D t. This means that any r even partition of both
supp.f / and supp.Nf / will yield that r is a factor of t.

Theorem 2.31 states the correctness of Algorithm 2.7.3. Another question is
where there are functions that are statistically independent of f .x/ but beyond the
coverage of Algorithm 2.7.3, i.e., they cannot be constructed by Algorithm 2.7.3?
The following theorem gives a confirmative answer:

Theorem 2.32. The output of Algorithm 2.7.3 will exhaust all the Boolean func-
tions that are statistically independent of the input function f .x/.

Proof: It needs to prove that any Boolean function g.x/ that is statistically
independent of f .x/ can be constructed by the steps of Algorithm 2.7.3. For the
convenience of writing, we denote d D gcd.2n; wt.f //. Let g.x/ be an output of
Algorithm 2.7.3. By Theorem 2.29 we have

wt.fg/ D wt.f /wt.g/

2n

D wt.f /

d
� d:wt.g/

2n
:

Let k D d:wt.g/

2n , and then k must be an integer (otherwise it will yield that wt.fg/

is not an integer which is impossible). Then the above equation means that there
are k:

wt.f /

d elements from supp.f / that are in supp.g/, or this can equivalently be
understood as when the elements of supp.f / are partitioned evenly into groups of
size wt.f /

d , there are k such groups in supp.g/. More precisely, the size of supp.f /\
supp.g/ is k:

wt.f /

d . If it can be proven that the rest k:
wt.Nf /

d elements in supp.g/ are also
in supp.Nf /, then g.x/ is indeed an output of Algorithm 2.7.3. It is easy to verify that
the following holds:

62 2 Independence of Boolean Functions of Their Variables

k:
wt.f /

d
C k:

wt.Nf /

d
D k:

2n

d
D d:wt.g/

2n
:
2n

d
D wt.g/:

This shows that k:
wt.f /

d elements from supp.f / and k:
wt.Nf /

d elements from supp.Nf /
form all the elements of supp.g/. Hence, the conclusion of the theorem holds. ut

In order to demonstrate how Algorithm 2.7.3 works, here we give a small
example.

Example 2.1. Let f .x/ D x1˚x2x3˚x1x2x3˚x4˚x1x4˚x2x4˚x1x2x4 be a Boolean
function in four variables. Then it is easy to verify that supp.f / D{0001, 0011, 0110,
0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 } and supp.Nf / D{0000,
0010, 0100, 0101}. Partition both supp.f / and supp.Nf / into gcd.2n; wt.f // D 4

groups. There will be many different ways of partitioning supp.f /, and here we
choose one partition, the one that any consecutive three elements in supp.f / form a
group. Then we choose k groups from both supp.f / and supp.Nf /, respectively, as the
support of g.x/. There are many different ways of choosing k groups as well. For a
very simple case, when k D 1, we get the following outputs as g.x/:

g1.x/ D 1˚ x1 ˚ x2 ˚ x1x2 ˚ x3 ˚ x1x3 ˚ x3x4 ˚ x1x3x4

g2.x/ D x3 ˚ x1x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x1x2x4 ˚ x3x4 ˚ x1x3x4

g3.x/ D x2 ˚ x1x2 ˚ x4 ˚ x1x4

g4.x/ D x2x3 ˚ x1x2x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x2x3x4

g5.x/ D 1˚ x2 ˚ x3 ˚ x2x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x1x2x4 ˚ x3x4 ˚ x1x3x4

g6.x/ D x1 ˚ x1x2 ˚ x3 ˚ x2x3 ˚ x3x4 ˚ x1x3x4

g7.x/ D x1 ˚ x2 ˚ x1x3 ˚ x2x3 ˚ x2x4 ˚ x1x2x4

g8.x/ D x1 ˚ x1x2 ˚ x1x3 ˚ x1x2x3 ˚ x2x4 ˚ x1x2x4

g9.x/ D 1˚ x1 ˚ x2 ˚ x3 ˚ x2x3 ˚ x1x2x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x3x4

˚x1x3x4 ˚ x2x3x4

g10.x/ D x1x2 ˚ x3 ˚ x2x3 ˚ x1x2x3 ˚ x1x2x4 ˚ x3x4 ˚ x1x3x4 ˚ x2x3x4

g11.x/ D x2 ˚ x1x3 ˚ x2x3 ˚ x1x2x3 ˚ x2x4 ˚ x2x3x4

g12.x/ D x1x2 ˚ x1x3 ˚ x2x4 ˚ x2x3x4

g13.x/ D 1˚ x1 ˚ x2 ˚ x1x2 ˚ x3 ˚ x1x3 ˚ x2x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x3x4

˚x1x3x4 ˚ x2x3x4

g14.x/ D x3 ˚ x1x3 ˚ x2x3 ˚ x1x2x4 ˚ x3x4 ˚ x1x3x4 ˚ x2x3x4

g15.x/ D x2 ˚ x1x2 ˚ x2x3 ˚ x2x4 ˚ x2x3x4

g16.x/ D x1x2x3 ˚ x2x4 ˚ x2x3x4

2.7 The Statistical Independence of Two Individual Boolean Functions 63

Example 2.1 shows one possibility of partitioning supp.f /. For each of the other
different partitions, there will be another 16 functions produced. Similar cases are
there when k D 2; 3. Note that when k D 2, the output functions are balanced.

2.7.4 Enumeration of Statistically Independent Boolean
Functions

For a given Boolean function f .x/, if it is statistically independent of a Boolean func-
tion, there may exist many Boolean functions that are all statistically independent of
f .x/. How many Boolean functions in n variables can be statistically independent of
a given Boolean function? Theorem 2.30 tells that if the Hamming weight of f .x/ is
odd, then only constants are statistically independent of f .x/. What about Boolean
functions with even Hamming weight? We have

Theorem 2.33. Let f .x/ be a Boolean function in n variables, and its Hamming
weight is wt.f / D t � 2k, where 0 < k < n, t < 2n�k is an odd number. Then there
exist

2k�1X

rD1

t � 2k

t � r

!
2n � t � 2k

r � .2n�k � t/

!
(2.14)

Boolean functions that are statistically independent of f .x/.

Proof: For any r < 2k, we check how many Boolean functions are g.x/ with
Hamming weight r � 2n�k and are statistically independent of f .x/. Denote by
a D t � 2k, b D r � 2n�k, c D t � r. Then the number of 1’s in the truth table of
f .x/ is a. For those corresponding values of x where f .x/ D 1, there are

�a
c

�
ways of

letting the value of g.x/ to be 1 for c times. Fix the Hamming weight of g.x/ to be b,
and then g.x/ needs to have another b�c 1’s for the other 2n�a possible values of x.
In this way the number of possible candidates of g.x/’s truth table is

�a
c

��
2n�a
b�c

�
. Now

we prove that function g.x/ constructed as above is indeed statistically independent
of f .x/. From the construction it is easy to see that

Prob.f .x/ D 1jg.x/ D 1/ D c

b

Prob.f .x/ D 1/ D a

2n

and note that c
b D a

2n , by Theorem 2.27 it is known that g.x/ and f .x/ are indeed
statistically independent of each other. The above is the number of such functions
(g.x/) when number r is fixed, and the sum of those numbers for all possible r
is the number of Boolean functions that are statistically independent of f .x/, i.e.,P2k�1

rD1

�a
c

��
2n�a
b�c

�
. ut

64 2 Independence of Boolean Functions of Their Variables

Treat a Boolean function in n variables as a 2n-dimensional binary vector, any
such vector with t � 2k 1’s in its truth table corresponds to a Boolean function of
Hamming weight t � 2k. Using the enumeration given in Theorem 2.33, sum those
numbers for all possible t and k will result in the number of Boolean function pairs
that are statistically independent of each other. We call such a pair as a statistically
independent Boolean function pair. From the constructional proof of Theorem 2.33,
it is known that the above enumeration counts statistically independent Boolean
function pairs counting their orders. We should not distinguish the case when f .x/ is
statistically independent of g.x/ and when g.x/ is statistically independent of f .x/,
and hence when their order is not counted, we have

Theorem 2.34. The number of statistically independent Boolean function pairs in
n variables is

n�1X

kD1

2n�k�1X

tD1

2k�1X

rD1

2n

t � 2k

!
t � 2k

r � t

!
2n � t � 2k

r � .2n�k � t/

!,
2 (2.15)

Equations 2.14–2.15 are the cases for general Boolean functions, and the
expressions are a bit complicated. When we consider balanced Boolean functions,
the expressions can be simplified. Balanced Boolean functions are a class of very
important functions which have wide applications in practice. By Theorem 2.29, a
necessary and sufficient condition for two Boolean functions to be independent is
Eq. 2.12. If they are all balanced, then the condition can be simplified as wt.fg/ D
2n�2. Similar to the proof of Theorem 2.33 we have

Theorem 2.35. Given a balanced Boolean function f .x/ in n variables, then the
number of balanced Boolean functions that are statistically independent of f .x/ is
�

2n�1

2n�2

�2
and the number of balanced statistically independent Boolean function pairs

are
�

2n

2n�1

��
2n�1

2n�2

�2
=2.

Proof: This is actually the special case of Theorems 2.33 and 2.34 when k D n�1,
t D 1, and r D 2n�1. ut

With the enumerations above, it is trivial to induce the probability that two
Boolean functions chosen at random are statistically independent of each other.
We mainly mention the special case when all the Boolean functions considered are
balanced. We have

Corollary 2.3. The probability that two balanced Boolean functions in n variables
chosen at random are independent of each other is

�
2n�1

2n�2

�2

2

�
2n

2n�1

�
 1

4
p

�
� e �13

3�2nC2 :

2.7 The Statistical Independence of Two Individual Boolean Functions 65

Proof: It can be seen directly from Theorem 2.35 that the probability that two
balanced Boolean functions in n variables chosen at random are independent of
each other is

�
2n�1

2n�2

�2

2

�
2n

2n�1

� :

By Stirling approximation that nŠ
 p2�nnC 1
2 e�nC 1

12n , the above becomes

�
2n�1

2n�2

�2

2

�
2n

2n�1

� D .2n�1Š/4

2 � 2nŠ � .2n�2Š/4

 Œ
p

2�.2n�1/2n�1C 1
2 � e�2n�1C 1

12�2n�1 �4

2 � p2�.2n/2nC 1
2 � e�2nC 1

12�2n � Œp2�.2n�2/2n�2C 1
2 � e�2n�2C 1

12�2n�2 �4

D 1

4
p

�
� e 13

3�2nC2 :

ut
It can be seen that with the increase of n, the above probability does not reduce

to zero. Instead, it is convergent to 1

4
p

�

 0:141.

2.7.5 On the Statistical Independence of a Group of Boolean
Functions

The above studies the statistical independence between two Boolean functions.
Although Theorems 2.24 and 2.25 involve more than two Boolean functions, the
final relationship is still between two Boolean functions. Now we consider the
pairwise relationship between a group of Boolean functions. For the simplest case,
we first consider when there are three such functions.

Let f1.x/, f2.x/, and f3.x/ be Boolean functions in n variables. If f1.x/ is
statistically independent of f2.x/, and f2.x/ is statistically independent of f3.x/, is
f1.x/ statistically independent of f3.x/? That is, does the statistical independence
relationship has transferability? The answer is unfortunately no. An extreme case is
when f3.x/ D f1.x/˚ 1. Even in a general case, a simple example can convenience
this. For example, f1.x/ D x1 is statistically independent of f2.x/ D x1˚x2, and f2.x/

is statistically independent of f3.x/ D x1˚ x1x3˚ x2x3; however, f1.x/ and f3.x/ are
not statistically independent of each other. Are there cases where a group of Boolean
functions is pairwise statistically independent? If we let f4.x/ D x1˚x1x2˚x3˚x2x3,

66 2 Independence of Boolean Functions of Their Variables

then f1.x/, f2.x/ and f4.x/ form such a group. What are the other constraints for the
Boolean functions to be pairwise statistically independent? This section studies the
statistical independence of a group of Boolean functions.

Definition 2.11. Let f1.x/; f2.x/; : : : ; fm.x/ 2 Fn. Treating x as a random variable
over GFn.2/ with uniform probability distribution. If

Prob..f1.x/; f2.x/; : : : ; fm.x// D .a1; a2; : : : ; am//

D Prob.f1.x/ D a1/Prob.f2.x/ D a2/ � � �Prob.fm.x/ D am/ (2.16)

holds for all .a1; a2; : : : ; am/ 2 GFm.2/, then the function group

ff1.x/; f2.x/; : : : ; fm.x/g
is called a statistically independent Boolean function family.

Note that when m D 2, the statistically independent Boolean function family is
composed of two Boolean functions that are statistically independent of each other.
Given this definition, it is ready to answer the above question about when a set of
Boolean functions can be pairwise statistically independent.

Theorem 2.36. Let ff1.x/; f2.x/; : : : ; fm.x/g be a statistically independent Boolean
function family in Fn. Then any of its subset is a statistically independent Boolean
function family.

Proof: Without loss of generality, we prove that ff1.x/; f2.x/; : : : ; fk.x/g forms
a statistically independent Boolean function family, where k < m. For any
.a1; a2; : : : ; ak/ 2 GFk.2/, since ff1.x/; f2.x/; : : : ; fm.x/g forms a statistically inde-
pendent Boolean function family, we have

Prob..f1.x/; f2.x/; : : : ; fk.x// D .a1; a2; : : : ; ak//

D
X

.akC1;:::;am/2GFm�k.2/

Prob..f1.x/; : : : ; fk.x// D .a1; : : : ; ak/;

.fkC1.x/; : : : ; fm.x// D .akC1; : : : ; am//

D
X

.akC1;:::;am/2GFm�k.2/

kY

iD1

Prob.fi.x/ D ai/

mY

jDkC1

Prob.fj.x/ D aj/

D
kY

iD1

Prob.fi.x/ D ai/
X

.akC1;:::;am/2GFm�k.2/

mY

jDkC1

Prob.fj.x/ D aj/

D
kY

iD1

Prob.fi.x/ D ai/

"P
akC12f0;1g Prob.fkC1.x/ D akC1/ � � �P
am2f0;1g Prob.fm.x/ D am/

#

D
kY

iD1

Prob.fi.x/ D ai/

2.7 The Statistical Independence of Two Individual Boolean Functions 67

By Definition 2.11, ff1.x/; f2.x/; : : : ; fk.x/g forms a statistically independent
Boolean function family, and hence the conclusion of the theorem follows. ut

As a direct corollary of Theorem 2.36, we have

Corollary 2.4. Let ff1.x/; f2.x/; : : : ; fm.x/g be a statistically independent Boolean
function family in Fn, and then they are pairwise statistically independent, i.e., any
two functions fi.x/ and fj.x/ are statistically independent of each other if i ¤ j.

Corollary 2.4 reflects a property of statistically independent Boolean function
family. However, the inverse is not true, i.e., when a group of Boolean functions
satisfy that they are pairwise statistically independent, these functions may not
constitute a statistically independent Boolean function family. One such counterex-
ample is that, given two statistically independent Boolean functions f1.x/ and f2.x/,
we can construct f3.x/ D f1.x/ ˚ f2.x/, and it is easy to verify that both f1.x/

and f2.x/ are also statistically independent of f3.x/; however, the group ff1.x/,
f2.x/, f3.x/g does not form a statistically independent Boolean function family,
because Prob..f1.x/; f2.x/; f3.x// D .0; 0; 1// D 0 may not equal Prob.f1.x/ D
a1/ � Prob.f2.x/ D a2/ � Prob.f3.x/ D a3/.

In fact, given a statistically independent Boolean function family, we will show
that more pairwise statistically independent functions can be constructed. First we
give a further study on the statistically independent Boolean function families.

Theorem 2.37. Let f1.x/; f2.x/; : : : ; fm.x/ 2 Fn be a statistically independent
Boolean function family. Then for any m � m matrix A over GF.2/,

.g1.x/; g2.x/; : : : ; gm.x// D .f1.x/; f2.x/; : : : ; fm.x//A

forms a statistically independent Boolean function family, if and only if A is
nonsingular.

Proof: Sufficiency: Since

.g1.x/; g2.x/; : : : ; gm.x// D .f1.x/; f2.x/; : : : ; fm.x//A;

for any .a1; a2; : : : ; am/ 2 GFm.2/, we have

Prob..g1.x/; g2.x/; : : : ; gm.x// D .a1; a2; : : : ; am//

D Prob..f1.x/; f2.x/; : : : ; fm.x//A D .a1; a2; : : : ; am//

D Prob..f1.x/; f2.x/; : : : ; fm.x// D .a1; a2; : : : ; am/A�1/

D Prob..f1.x/; f2.x/; : : : ; fm.x// D .b1; b2; : : : ; bm//

D
mY

iD1

Prob.fi.x/ D bi/

68 2 Independence of Boolean Functions of Their Variables

where .b1; b2; : : : ; bm/ D .a1; a2; : : : ; am/A�1. Let A D Œ˛T
1 ; ˛T

2 ; : : : ; ˛T
m�, and

denote by �i D f.b1; b2; : : : ; bm/ W .b1; b2; : : : ; bm/˛T
i D aig. Then we have

Prob.gi.x/ D ai/ D Prob..f1; f2; : : : ; fm/˛T
i D ai/

D
X

.b1;b2;:::;bm/2�i

Prob..f1; f2; : : : ; fm/ D .b1; b2; : : : ; bm//

and hence

mQ
iD1

Prob.gi D ai/

D
mQ

iD1

.
P

.b1;b2;:::;bm/2�i

Prob..f1; f2; : : : ; fm/ D .b1; b2; : : : ; bm///

D
mQ

iD1

.
P

.b1;b2;:::;bm/2�i

mQ
jD1

Prob.fj D bj//

The above is equivalent to the sum for .b1; b2; : : : ; bm/ 2 �i which is uniquely
determined by

.b1; b2; : : : ; bm/.˛T
1 ; ˛T

2 ; : : : ; ˛T
m/ D .a1; a2; : : : ; am/;

i.e.,

.b1; b2; : : : ; bm/ D .a1; a2; : : : ; am/A�1;

hence,

mY

iD1

Prob.gi D ai/ D
Y

.b1;b2;:::;bm/D.a1;a2;:::;am/A�1

Prob.fi.x/ D bi/

D Prob..f1.x/; f2.x/; : : : ; fm.x// D .a1; a2; : : : ; am/A�1/

D Prob..g1.x/; g2.x/; : : : ; gm.x// D .a1; a2; : : : ; am//:

By Definition 2.11, fg1.x/; g2.x/; : : : ; gm.x/g forms a statistically independent
Boolean function family.

Necessity: Assume the contrary, i.e., assume that A is not invertible. Then there
must exist a column of A which is a linear combination of the rest of the columns.
Without loss of generality, let ˛1 D c2˛2 ˚ : : :˚ cm˛m, where c2; : : : ; cm are coef-
ficients in GF.2/. Then from .g1.x/; g2.x/; : : : ; gm.x// D .f1.x/; f2.x/; : : : ; fm.x//A,
we have g1.x/ D c2g2.x/˚� � �˚cmgm.x/. This means that fg1.x/; g2.x/; : : : ; gm.x/g
cannot form a statistically independent Boolean function family, because g1.x/ is not
statistically independent of the other functions, as its values are uniquely determined

2.7 The Statistical Independence of Two Individual Boolean Functions 69

once the other functions have a fixed value. This contradicts with the preamble of
the theorem, which means that the conclusion must be true. ut

More generally, we have

Theorem 2.38. Let ff1.x/; f2.x/; : : : ; fm.x/g be a statistically independent Boolean
function family in Fn. Let A be a m � k matrix over GF.2/. Then

.g1.x/; g2.x/; : : : ; gk.x// D .f1.x/; f2.x/; : : : ; fm.x//A

forms a statistically independent Boolean function family, if and only if Rank.A/ D
k, where Rank.A/ means the rank of matrix A.

Proof: The proof of the necessity of this theorem is very similar to that of
Theorem 2.37. Now we only give the proof of sufficiency. Since Rank.A/ D k,
we can add another m � k columns to form a nonsingular matrix A0: A0 D ŒA; A1�.
By Theorem 2.37, we know that

.g1; g2; : : : ; gm/ D .f1; f2; : : : ; fm/A0

D ..f1; f2; : : : ; fm/A; .f1; f2; : : : ; fm/A1/

forms a statistically independent Boolean function family, and by Theorem 2.36, the
subset .g1; g2; : : : ; gk/ D .f1; f2; : : : ; fm/A forms a statistically independent Boolean
function family; hence, the conclusion of the theorem is true. ut

By Theorem 2.38 we have

Corollary 2.5. Let ff1.x/; f2.x/; : : : ; fm.x/g be a statistically independent Boolean
function family in Fn. Then any two different linear combinations of the family
members are statistically independent.

By Corollary 2.5, for a given statistically independent Boolean function family,
the linear combinations can produce 2m Boolean functions that they are pairwise
statistically independent. This conclusion gives a clearer picture about why the
inverse of Corollary 2.4 is not true.

Theorem 2.39. The number of nonconstant Boolean functions (members) in a
statistically independent Boolean function family in n variables is at most n, and
in this case, all the member functions must be balanced.

Proof: First we prove that the number of member functions in a statistically
independent Boolean function family in n variables is at most n. Assume the
contrary; by Theorem 2.36, we can assume that there are nC 1 Boolean functions
f1.x/; f2.x/; : : : ; fnC1.x/ 2 FnC1 that they form a statistically independent Boolean
function family. By Definition 2.11, for any .a1; a2; : : : ; anC1/ 2 GFnC1.2/, we have

Prob..f1.x/; f2.x/; : : : ; fnC1.x// D .a1; a2; : : : ; anC1// D
nC1Y

iD1

Prob.fi.x/ D ai/:

70 2 Independence of Boolean Functions of Their Variables

However, since x 2 GFn.2/ has only 2n possible values, and the output of
.f1.x/; f2.x/; : : : ; fnC1.x// cannot cover all the vectors in GFnC1.2/, hence there
must exist .a1; a2; : : : ; anC1/ 2 GFnC1.2/ such that

Prob..f1.x/; f2.x/; : : : ; fnC1.x// D .a1; a2; : : : ; anC1// D 0:

However, for any nonconstant member function fi.x/ and any ai 2 GF.2/, we have
Prob.fi.x/ D ai/ ¤ 0, and hence

nC1Y

iD1

Prob.fi.x/ D ai/ ¤ 0:

This leads to a contradiction. This means that the assumption that n C 1 functions
form a statistically independent Boolean function family is not true.

Now we prove that if there are n member functions in such a statistically inde-
pendent Boolean function family, then every member function must be balanced.
Assume that f1.x/; f2.x/; : : : ; fn.x/ forms such a statistically independent Boolean
function family. Then for any .a1; a2; : : : ; an/ 2 GFn.2/, we have

Prob..f1.x/; f2.x/; : : : ; fn.x// D .a1; a2; : : : ; an// D
nY

iD1

Prob.fi.x/ D ai/:

Since each member function is not a constant, hence for any ai 2 GF.2/,
Prob.fi.x/ D ai/ ¤ 0 holds. This means that for any .a1; a2; : : : ; an/ 2 GFn.2/,
we have

Prob..f1.x/; f2.x/; : : : ; fn.x// D .a1; a2; : : : ; an// ¤ 0:

Note that x 2 GFn.2/ has exactly 2n possible values; therefore, for any
.a1; a2; : : : ; an/ 2 GFn.2/, there is exactly one x 2 GFn.2/ such that

.f1.x/; f2.x/; : : : ; fn.x// D .a1; a2; : : : ; an/

holds. Hence, when x goes through all the possible values in GFn.2/,

.f1.x/; f2.x/; : : : ; fn.x// D .a1; a2; : : : ; an/

will also go through all the possible values in GFn.2/. When x changes its values
in a certain order, all the possible values of ai form the truth table of fi.x/. It is
known that, when .a1; a2; : : : ; an/ goes through all the possible values in GFn.2/,
each of its coordinates ai has equal number of 0’s and 1’s, which means that fi.x/ is
balanced. ut

References 71

When ff1.x/; f2.x/; : : : ; fn.x/g forms a statistically independent Boolean function
family in n variables, from the proof of Theorem 2.39 it is seen that different values
of input x will result in a different output of .f1.x/; f2.x/; : : : ; fn.x//. In this sense, the
Boolean function group .f1.x/; f2.x/; : : : ; fn.x// is a permutation on GFn.2/. Since
each of the coordinate functions is a Boolean function, such a permutation is called
a Boolean permutation and is denoted as

P.x/ D Œf1.x/; f2.x/; : : : ; fn.x/�:

More properties of Boolean permutations will be studied in Chap. 7.

References

1. Daemen, J.: Cipher and hash function design, Strategies based on linear and differential
cryptanalysis. PhD Thesis, Leuven (1995)

2. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., et al.
(eds.) Communications and Cryptography: Two Sides of One Tapestry, pp. 227–233. Kluwer
Academic Publishers, Springer (1994)

3. Mitchell, C.: Enumerating Boolean functions of cryptographic significance. J. Cryptol. 2(3),
155–170 (1990)

4. Wu, C.K.: Boolean functions in cryptology. Ph.D. Thesis, Xidian University, Xian (1993) (in
Chinese)

5. Wu, C.K.: On the independence of Boolean functions. Int. J. Comput. Math. 82(4), 415–420
(2005)

6. Wu, C.K., Dawson, E.: Existence of generalized inverse of linear transformations over finite
fields. Finite Fields Appl. 4(4), 307–315 (1998)

7. Xiao, G.Z., Shen, B.Z., Wu, C.K., Wang, C.C.: Spectral techniques in coding theory. Discret.
Math. 87, 181–186 (1991)

Chapter 3
Nonlinearity Measures of Boolean Functions

Nonlinearity is an important cryptographic measure to cryptographic Boolean func-
tions, and much study can be found from public literatures (see, e.g., [1, 2, 12, 14]).
More generalized cryptographic measures about the nonlinear properties of Boolean
functions also include algebraic degree, linear structure property, and higher-order
nonlinearity [6, 33, 34]. These properties are extensively studied in this chapter.

3.1 Introduction

Linear functions have simple structures and have limited applications. Nonlinear
functions are better than linear ones in many cases, and the problem about how to
measure the nonlinear property of Boolean functions has been studied from different
aspects [32]. One of the nonlinear properties of Boolean functions is their algebraic
degree, and another such property is nonlinearity. Among the nonlinear Boolean
functions, some have linear structures which behave like linear functions in this
aspect.

Algebraic degree is the most intuitive measure of nonlinear property of Boolean
functions, because the algebraic degrees of linear Boolean functions (including
affine ones) are always 1, except constants 0 and 1 whose algebraic degrees are
marked as 0. However, a Boolean function with very high algebraic degree might be
very close to a linear function; even if a function has the highest algebraic degree, it
may defer with a linear function at only one input out of 2n total inputs.

Nonlinearity of Boolean functions is one of the fundamental cryptographic
properties; it measures the distance from a Boolean function to the nearest affine
Boolean function. When a Boolean function is used in a cryptographic algorithm,
the Boolean function must have high nonlinearity; otherwise, it may have vulnera-
bility against best affine approximation attack (known as linear cryptanalysis). From
this aspect, a cryptographic Boolean function should have as high nonlinearity as

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_3

73

74 3 Nonlinearity Measures of Boolean Functions

possible or even the highest nonlinearity in some cases. For Boolean functions with
multiple outputs (vectorial Boolean functions), apart from linear cryptanalysis, there
is another attack known as differential cryptanalysis [7]. Resistance against this kind
of cryptanalysis seems to be also the nonlinearity.

For a linear (or an affine) Boolean function f .x/ in n variables, it has the property
that, for any ˛ 2 GFn.2/, the equality f .x ˚ ˛/ ˚ f .x/ D c always hold, where
c D 0 or c D 1 is a constant depending on ˛ and not depend on the inputs of f .x/.
A nonlinear Boolean function may have the property that for certain ˛ 2 GFn.2/,
the equality f .x˚ ˛/˚ f .x/ D c always hold, where c D 0 or c D 1 is a constant.
This property coming from linear functions is called having linear structures. This
is also a property of nonlinear Boolean function to be avoided when good nonlinear
properties are pursued.

This chapter studies the algebraic degree, nonlinearity, and linear structures of
Boolean functions.

3.2 Algebraic Degree and Nonlinearity of Boolean Functions

Let us take the nonlinear combiner shown in Fig. 1.4 for consideration. With respect
to linear complexity, assume each LFSRi is of order ni, which means that the
periodic sequences generated by this LFSRi will have linear complexity ni. We
also assume that the orders of the LFSR’s are co-prime of each other. Then the
linear complexity of the sum (bitwise Xor) of two of the sequences generated by
LFSRi and LFSRj will be niCnj. The multiplication of the two sequences, however,
will have linear complexity ninj, which is much larger than ni C nj. In general,
the summation of t of the LFSR sequences will have linear complexity the sum
of the orders of those LFSRs, while the multiplication of the t LFSR sequences
will have linear complexity the multiplication of the orders of those LFSRs. It is
seen that the multiplication of t of the LFSR sequences will result in a sequence
of much higher linear complexity than summation can achieve. This corresponds
to a multiplicative term of degree t in the algebraic normal form of the combining
function f .x/. Therefore, if we expect the output sequence of the nonlinear combiner
to have high linear complexity, the corresponding nonlinear combining function is
expected to be of high algebraic degree. This is why algebraic degree becomes one
of the cryptographic measurements.

If the linear complexity of the nonlinear combiner generator sequences is the
only cryptographic requirement to pursue, then we can let the nonlinear combining
function f .x/ to be of the highest algebraic degree n, where n is the number of
variables of f .x/, which is also the number of the LFSRs as in the nonlinear
combiner model. However, practically there are other cryptographic requirements
to meet, and some of the requirements may conflict. A simple observation will find
that the output of the multiplication of the LFSRs will have most of 0’s and very
small amount of 1’s, which is a very bad behavior in terms of balance. So to achieve
a good compromise of all the required cryptographic properties, it has to sacrifice
some of the requirements. For example, practically the Boolean functions used in

3.3 Walsh Spectrum Description of Nonlinearity 75

cryptosystems do not reach the highest algebraic degree. However, the algebraic
degree of the employed Boolean functions cannot be too low either. In general, the
algebraic degree should be larger than n

2
.

However, even if a nonlinear combining function has very high algebraic degree,
say, the highest possible degree n, it may not be good against other attacks. For
example, function f .x/ D x1 C x1x2 � � � xn in n variables has the highest possible
algebraic degree n; however, when we use f 0.x/ D x1 to approximate f .x/, then
the approximation is so close that the probability of having an error is only one
over 2n. Then we need to define another nonlinear measurement, the nonlinearity
of a Boolean function, to be the minimum distance of a given function to all linear
functions. Since the set of linear functions and affine functions differ only by a
constant, the concept of nonlinearity is extended to be the minimum distance of the
given function to all the affine functions, as defined in Eq. 1.37.

Although both the algebraic degree and nonlinearity are measures about how
different a Boolean function is with all linear and affine Boolean functions as well
as constants 0 and 1, these two measures, however, are quite different. A Boolean
function with very high algebraic degree may have low nonlinearity. One such
an extreme example is f .x/ D x1x2 � � � xn, which has the highest degree n, but its
nonlinearity is 1, i.e., the distance between f .x/ and the constant 0 is just 1, and they
differ at the point when all the xi D 1. On the other hand, a Boolean function with
a high nonlinearity may not necessarily have a high algebraic degree. For example,
when n is even, it can be verified that f .x/ D x1x2˚x3x4˚� � � xn�1xn has the highest
nonlinearity, but its algebraic degree is 2, the lowest degree among all nonlinear
functions in Fn.

3.3 Walsh Spectrum Description of Nonlinearity

Compared with the algebraic degree, the nonlinearity of a Boolean function reflects
another angle of the algebraic complexity of the function and has been extensively
studied (see, e.g., [31, 46]) due to its cryptographic significance. In some sense, a
high nonlinearity is more critical to ensure than a high algebraic degree.

Let f .x/ 2 Fn. For any affine function a.x/ D a0 ˚ l.x/, the distance between
f .x/ and a.x/ is

d.f .x/; a.x// D wt.f .x/˚ a.x//

D
2n�1X

xD0

.f .x/˚ a.x//

D 1

2

2n�1X

xD0

.1 � .�1/f .x/Ca.x//

D 2n�1 � 1

2
.�1/a0

2n�1X

xD0

.�1/f .x/Cl.x/

76 3 Nonlinearity Measures of Boolean Functions

Write l.x/ D hw; xi D w1x1 ˚ w2x2 ˚ � � � ˚ wnxn, where w is the coefficient
vector; then the above can be written as

d.f .x/; a.x// D 2n�1 � 1

2
.�1/a0

2n�1X

xD0

.�1/f .x/Chw; xi

D 2n�1 � 1

2
.�1/a0S.f /.w/

where S.f /.w/ is the type II Walsh value of f .x/ on w. Note that a0 2 f0; 1g, and
hw; xi can represent all the linear Boolean functions when w goes through all the
possible vectors in GFn.2/, so we have [20]:

nl.f / D 2n�1 � 1

2
max

w2GFn.2/
jS.f /.w/j; (3.1)

where j:j means the absolute value. If w0 is such a value that jS.f /.w0/j D
max

w
jS.f /.w/j, then if S.f /.w0/ > 0, we have that d.f .x/; hw; xi/ D min

a.x/2An

d.f ; a/,

and hence l.x/ D hw; xi is the best linear approximation (BLA) of f .x/; if S.f /.w0/ <

0, we have d.f .x/; hw; xi˚ 1/ D min
a.x/2An

d.f ; a/, and hence a.x/ D hw; xi˚ 1 is the

best affine approximation (BAA) of f .x/.
From Eq. 3.1 we can see that the nonlinearity of a Boolean function depends

only on the maximum absolute value of its Walsh spectrum. When the maximum
absolute value of its Walsh spectrum is small, then the nonlinearity of f .x/ is large.
By Parseval’s theorem (Theorem 1.8),

2n�1X

wD0

S2
.f /.w/ D 22n;

we have that

2
n
2 � max

w
jS.f /.w/j � 2n

and hence we have

0 � nl.f / � 2n�1 � 2
n
2 �1: (3.2)

Definition 3.1. Let f .x/ 2 Fn. If the nonlinearity of f .x/ reaches the upper bound
of Eq. 3.2, i.e.,

nl.f / D 2n�1 � 2
n
2 �1;

then f .x/ is called a bent Boolean function, or a bent function for short.

3.4 Nonlinearity of Some Basic Operations of Boolean Functions 77

It is easy to see that the smallest value of the maximum absolute value of the
Walsh spectrum exists when all the values of S2

.f /.w/ are equal; this is the property
that a bent function must meet. Equivalently, it can be stated that a Boolean function
f .x/ in n variables is bent if jS.f /.w/j D 2

n
2 holds for all w 2 GFn.2/. It is obvious

that bent functions exist only when n is even.
Bent functions are a very special class of Boolean functions; their studies are

extensive and there are numerous related publications in the public literatures (see,
e.g., [3–5, 9, 10, 15, 16, 18, 21, 23, 25, 36, 38]).

It is interesting to note that quadratic bent Boolean functions exist for every even
n. It can be verified that f .x/ D x1x2˚x3x4˚� � �˚xn�1xn is a quadratic bent Boolean
function, and every permutation on its variables will yield a quadratic bent Boolean
function.

3.4 Nonlinearity of Some Basic Operations of Boolean
Functions

In this section we will mainly show the nonlinearity of some operations of Boolean
functions. By the definition of nonlinearity of Boolean functions, the following basic
property of nonlinearity can easily be verified.

Theorem 3.1. Let f .x/ 2 Fn, a.x/ 2 An. Set g.x/ D f .x/ ˚ a.x/. Then nl.g/ D
nl.f /.

Theorem 3.1 means that the minimum distance of a Boolean function is not
affected by adding an affine Boolean function. This is obvious, because if b.x/ is
such an affine function closest to f .x/, then b.x/˚a.x/ must be closest to f .x/˚a.x/.

Another transformation that does not change the nonlinearity is a kind of affine
transformation on the variables as stated below.

Theorem 3.2. Let f .x/ 2 Fn, D be an n � n nonsingular matrix over GF.2/ and
b 2 f0; 1g. Set g.x/ D f .xD˚ b/. Then

nl.g/ D nl.f /: (3.3)

Proof.

S.g/.w/ D
2n�1X

xD0

.�1/g.x/Chw; xi

D
2n�1X

xD0

.�1/f .xD˚b/Chw; xi

yDxD˚bD
2n�1X

yD0

.�1/f .y/Chw; .y˚b/D�1i

78 3 Nonlinearity Measures of Boolean Functions

D
2n�1X

yD0

.�1/f .y/Chw.D�1/T ; .y˚b/i

D .�1/hw.D�1/T ; bi
2n�1X

yD0

.�1/f .y/Chw.D�1/T ; yi

D .�1/hw.D�1/T ; biS.f /.w.D�1/T/:

This means that max
w2GFn.2/

jS.f /j D max
w2GFn.2/

jS.g/j, and by Eq. 3.1, we have nl.g/ D
nl.f /. ut

Construction of nonlinear Boolean functions is often based on some known
ones. One of such constructions is by trivial extension, i.e., let f .x/ 2 Fn be a
Boolean function in n variables, and let g.x0/ D f .x/ ˚ cxnC1, where c 2 f0; 1g,
x0 D .x; xnC1/; then g.x0/ is a Boolean function in nC 1 variables. The nonlinearity
of f .x/ and that of g.x0/ have the following relationship.

Theorem 3.3. Let f .x/ 2 Fn be a Boolean function in n variables; let g.x0/ D
f .x/˚ cxnC1, where c 2 f0; 1g, x0 D .x; xnC1/. Then we have

nl.g/ D 2nl.f / (3.4)

Proof.

S.g/.w
0/ D

2nC1�1X

x0D0

.�1/g.x0/Cw0:x0

D
2nC1�1X

x0D0

.�1/.f .x/˚cxnC1/Ch.w;wnC1/; .x;xnC1/i

D
2n�1X

xD0

.�1/f .x/Chw; xi C
2n�1X

xD0

.�1/f .x/CcChw; xiCwnC1

D S.f /.w/C .�1/cCwnC1S.f /.w/

D .1C .�1/cCwnC1/S.f /.w/

Regardless whether c D 0 or c D 1, we can always find wnC1 such that
.�1/cCwnC1 D 1; hence, maxw0 jS.g/.w0/j D 2 maxw jS.f /.w/j. By Eq. 3.1 we have

nl.g/ D 2n � 1

2
max

w0

jS.g/.w
0/

3.4 Nonlinearity of Some Basic Operations of Boolean Functions 79

D 2.2n�1 � 1

2
max

w
jS.f /.w/j/

D 2nl.f /

which proofs the conclusion. ut
Another common construction of cryptographic Boolean functions based on

some known ones is the cascade construction. Let f .x/; g.x/ 2 Fn be two Boolean
functions in n variables. Then �.x0/ D .1 ˚ xnC1/f .x/ ˚ xnC1g.x/ is a Boolean
function in nC1 variables, where x0 D .x; xnC1/. Looking at the truth table of �.x0/,
it is a concatenation of the truth table of f .x/ and that of g.x/; hence, it is called a
cascade construction. Now we check how the nonlinearity of this new function is
related to the nonlinearities of f .x/ and g.x/.

Theorem 3.4. Let f .x/; g.x/ 2 Fn. Define the convolutional product of f and g as
a function in nC 1 variables � 2 FnC1:

� D .1˚ xnC1/f .x/˚ xnC1g.x/:

Then we have

nl.�/ � nl.f /C nl.g/: (3.5)

Equality holds if and only if there exists a w0 2 GFn.2/ such that the following
equations hold simultaneously:

� jS.f /.w0/j D maxw jS.f /.w/j
jS.g/.w0/j D maxw jS.g/.w/j:

Proof. Denote x0 D .xI xnC1/; w0 D .wIwnC1/. Then we have

S.�/.w
0/

D
X

x02GFnC1.2/

.�1/�.x0/˚hw0; x0i

D
X

xnC1D0

X

x2GFn.2/

.�1/f .x/˚hw; xi C
X

xnC1D1

X

x2GFn.2/

.�1/g.x/˚hw; xi˚wnC1

D S.f /.w/C .�1/wnC1S.g/.w/:

It follows that

max
w0

jS.�/.w
0/j � max

w
jS.f /.w/j Cmax

w
jS.g/.w/j:

80 3 Nonlinearity Measures of Boolean Functions

Equality holds if and only if the equations

� jS.f /.w0/j D maxw jS.f /.w/j
jS.g/.w0/j D maxw jS.g/.w/j

hold simultaneously. By Eq. 3.1 the conclusion follows. ut
The following result was developed independently in [30] and in [35].

Theorem 3.5. Let f .x1; : : : ; xn/ D f1.x1; : : : ; xn1 /˚f2.xn1C1; ::; xn/ which is denoted
in brief by f .x/ D f1.x1/˚ f2.x2/. Let n2 D n � n1. Then we have

nl.f / D 2n2nl.f1/C 2n1nl.f2/� 2nl.f1/nl.f2/ > 2nl.f1/nl.f2/: (3.6)

Proof.

S.f /.w/ D
X

x2GFn.2/

.�1/f .x/˚hw; xi

D
X

x12GFn1 .2/

X

x22GFn2 .2/

.�1/f1.x1/Cf2.x2/Cw1�x1Cw2�x2

D
X

x12GFn1 .2/

.�1/f1.x1/Cw1�x1

X

x22GFn2 .2/

.�1/f2.x2/Cw2�x2

D S.f1/.w1/ � S.f2/.w2/

Hence, for w D .w1; w2/, jS.f /.w/j reaches the maximum value if and only if both
jS.f1/.w1/j and jS.f2/.w2/j reach the maximum value simultaneously. Let w 2 GFn.2/

be such a vector that jS.f /.w/j reaches the maximum Value; then, by Eq. 3.1, we have

nl.f / D 1

2
.2n � jS.f /.w/j/

D 1

2
.2n � jS.f1/.w1/j � jS.f1/.w1/j/

D 2n2

2
.2n1 � jS.f1/.w1/j/C

jS.f1/.w1/j
2

.2n2 � jS.f2/.w2/j/
D 2n2nl.f1/C jS.f1/.w1/jnl.f2/

Since jS.f1/.w1/j also reaches the maximum value, taking jS.f1/.w1/j D 2n1 � 2nl.f1/
into the above, we have

nl.f / D 2n2nl.f1/C 2n1nl.f2/� 2nl.f1/nl.f2/:

By Eq. 3.2, the inequality nl.f / > 2nl.f1/nl.f2/ becomes obvious. ut

3.4 Nonlinearity of Some Basic Operations of Boolean Functions 81

By Theorem 3.5 we have

Corollary 3.1. Let f .x1; : : : ; xn/ D f1.x1; : : : ; xn1 / ˚ f2.xn1C1; : : : ; xn/. Then f is
bent if and only if both f1 and f2 are bent.

Theorem 3.6. Let f .x1; : : : ; xn/ D f1.x1; : : : ; xn1 / � f2.xn1C1; ::; xn/ which is denoted
in brief by f .x/ D f1.x1/ � f2.x2/. Then

nl.f / � nl.f1/nl.f2/: (3.7)

The following lemma is required in the proof of Theorem 3.6.

Lemma 3.1. Let f .x/ 2 Fn. Then

nl.f / � wt.f / � 2n � nl.f /: (3.8)

Proof. By definition, the nonlinearity of f .x/ is the minimum Hamming distance of
f .x/ and all the affine Boolean functions in Fn; hence, we have nl.f / � d.f .x/; 0/ D
wt.f /, which proves the left part of the inequality (3.8). Again by the definition of
nonlinearity, it is obvious that the nonlinearity of a Boolean function f .x/ is the same
as that of f .x/˚ 1. Hence, the right part of the inequality can be derived by

nl.f / D nl.f ˚ 1/ � wt.f ˚ 1/ D 2n � wt.f /:

ut
Proof of Theorem 3.6: Let n2 D n � n1 and denote by Nf D f ˚ 1. Then

S.f /.w/ D
X

x2GFn.2/

.�1/f1f2˚hw; xi

D
X

x12GFn1 .2/

X

x22GFn2 .2/

.�1/f1f2˚hw1; x1iChw2; x2i

D
X

f1D1

.�1/hw1; x1i X

x22GFn2 .2/

.�1/f2˚w2�x2

C
X

f1D0

.�1/hw1; x1i X

x22GFn2 .2/

.�1/hw2; x2i

D
X

x12GFn1 .2/

f1.x1/.�1/hw1; x1i X

x22GFn2 .2/

.�1/f2˚w2�x2

C
X

x12GFn1 .2/

.f1.x1/˚ 1/.�1/hw1; x1i X

x22GFn2 .2/

.�1/hw2; x2i

D
(

Sf1 .w1/S.f2/.w2/C 2n2SNf1 .w1/ if w2 D 0;

Sf1 .w1/S.f2/.w2/ if w2 6D 0:
(3.9)

82 3 Nonlinearity Measures of Boolean Functions

Note that Nf1 D f1 ˚ 1, so we have

SNf1 .w1/ D
X

x12GFn1 .2/

.f1.x1/˚ 1/.�1/hw1; x1i

D
X

x12GFn1 .2/

.�1/hw1; x1i �
X

x12GFn1 .2/

f1.x1/.�1/hw1; x1i

D
�

2n1 � Sf1 .w1/ if w1 D 0;

�Sf1 .w1/ if w1 6D 0:

And by the conversion of the two types of Walsh transforms, we have

Sf1.w1/ D
�

1
2
.2n1 � S.f1/.w1// if w1 D 0;

� 1
2
S.f1/.w1/ if w1 6D 0:

By substituting these relations into Eq. 3.9 and simplifying the expression, we get

S.f /.w/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

2n�1 C 2n1�1S.f2/.w2/C 2n2�1S.f1/.w1/

� 1
2
S.f1/.w1/S.f2/.w2/ if w1 D 0; w2 D 0

2n2�1S.f1/.w1/ � 1
2
S.f1/.w1/S.f2/.w2/ if w1 6D 0; w2 D 0

2n1�1S.f2/.w2/ � 1
2
S.f1/.w1/S.f2/.w2/ if w1 D 0; w2 6D 0

� 1
2
S.f1/.w1/S.f2/.w2/ if w1 6D 0; w2 6D 0:

(3.10)
Let jS.f /.w/j reach its maximum value on w D .w1Iw2/. The following cases will

be considered:

(1) If w1 D 0; w2 D 0. Then S.f1/.w1/ D 2n1 � 2wt.f1/, S.f2/.w2/ D 2n2 � 2wt.f2/.
By substitution into the first case of Eq. 3.10, we have

S.f /.w/ D 2n � 2wt.f1/wt.f2/:

• If wt.f1/wt.f2/ � 2n�1, we have nl.f / D 1
2
.2n � jS.f /.w/j/ D wt.f1/wt.f2/,

and by Lemma 3.1 we have nl.f / � nl.f1/nl.f2/.
• If wt.f1/wt.f2/ > 2n�1, by Lemma 3.1, we have

nl.f / D 1
2
.2n � jS.f /.w/j/

D 2n � wt.f1/wt.f2/

� 2n � .2n1 � nl.f1//.2n2 � nl.f2//
D 2n2nl.f1/C 2n1nl.f2/ � nl.f1/nl.f2/:

Since nl.f1/ < 2n1�1; nl.f2/ < 2n2�1, we have nl.f / � 3nl.f1/nl.f2/.

3.4 Nonlinearity of Some Basic Operations of Boolean Functions 83

(2) If w1 6D 0; w2 D 0, by Lemma 3.1, Eq. 3.10 becomes

S.f /.w/ D S.f1/.w1/

2
.2n2 � S.f2/.w2// D S.f1/.w1/wt.f2/:

By Lemma 3.1, we have nl.f1/ < 2n1�1 and wt.f2/ � 2n2 � nl.f2/. Therefore,
we have

nl.f / D 1
2
.2n � jS.f /.w/j/

D 1
2
.2n � wt.f2/jS.f1/.w1/j/

D 2n�1 � 2n1�1wt.f2/C wt.f2/

2
.2n1 � jS.f1/.w1/j/

� 2n�1 � 2n1�1wt.f2/C wt.f2/nl.f1/
D 2n�1 � .2n1�1 � nl.f1//wt.f2/

� 2n�1 � .2n1�1 � nl.f1//.2n2 � nl.f2//
D 2n1�1nl.f2/C .2n2 � nl.f2//nl.f1/
� 2nl.f1/nl.f2/:

(3) If w1 D 0; w2 6D 0; similar to the proof of case (2), we have nl.f / �
2nl.f1/nl.f2/.

(4) If w1 6D 0; w2 6D 0, then S.f /.w/ D � 1
2
S.f1/.w1/S.f2/.w2/. In this case it is easy to

see that jS.f /.w/j reaches its maximum value if and only if both jS.f1/.w1/j and
jS.f2/.w2/j reach their maximum value. Similar to the proof of Theorem 3.5 in
[35], we have

nl.f / D 1
2
.2n � jS.f /.w/j/

D 1
2
.2n � 1

2
jS.f1/.w1/jjS.f2/.w2/j/

D 2n�2 C 2n2�2.2n1 � jS.f1/.w1/j/C jS.f1/.w1/j
4

.2n2 � jS.f2/.w2/j/
� 2n�2 C 2n2�2nl.f1/C jS.f1/.w1/jnl.f2/=4

Since jS.f1/.w1/j D 2n1 � 2nl.f1/, taken into the equation above, we have

nl.f / � 2n�2 C 2n2�2nl.f1/C 2n1�2nl.f2/ � 1

2
nl.f1/nl.f2/:

Recall that nl.f1/ < 2n1�1; nl.f2/ < 2n2�1, so we get nl.f / � 3
2
nl.f1/nl.f2/.

Sum up the cases above, and the conclusion of Theorem 3.6 follows. ut
Note: It is noticed from the proof above that the value of nl.f / is nearly about

2nl.f1/nl.f2/.

84 3 Nonlinearity Measures of Boolean Functions

3.5 Upper and Lower Bounds of Nonlinearity of Boolean
Functions

Let f .x/ 2 Fn; by Parseval’s equation, we can obtain an upper bound of nonlinearity
in general case, that is,

nl.f / � 2n�1 � 2
n
2 �1:

Obviously, the equality holds if and only if n is even, and such a Boolean function
is called a bent function. However, bent functions are not balanced; hence, they
are usually not directly applied in cryptosystems. So, in practical cryptosystems,
nonlinearity of Boolean functions are usually lower than 2n�1 � 2

n
2 �1. Therefore, it

is important to investigate the upper bounds and lower bounds of nonlinearity.

Theorem 3.7 ([19]). Considering Boolean functions in Fn, the following conclu-
sions hold.

(1) When n D 3; 5; 7, then maxfnl.f / W f .x/ 2 Fng D 2n�1 � 2
n�1

2 ;
(2) When n � 9 and n is odd, then

2n�1 � 2
n�1

2 � maxfnl.f / W f .x/ 2 Fng < 2n�1 � 2
n�1

2 �1:

It is known that quadratic bent Boolean functions exist for every even n. When n
is odd, then there exists a quadratic bent Boolean function f .x1; x2; : : : ; xn�1/ in
n � 1 variables, which has the highest nonlinearity 2n�2 � 2

n�1
2 �1. Let g.x/ D

f .x1; x2; : : : ; xn�1/ ˚ xn, and then by Theorem 3.3, we have nl.g/ D 2nl.f / D
2n�1 � 2

n�1
2 . This means that the nonlinearity bound 2n�1 � 2

n�1
2 is reachable by

quadratic Boolean functions; hence, it is called the quadratic bound. Theorem 3.7
shows that this bound also holds for all Boolean functions in Fn for odd n � 7.

When n � 9 is odd, existence of Boolean functions with nonlinearity exceeding
the quadratic bound remain unknown until 1983 [22], and balanced such examples
are found in [31]. Now considering the general case, we have the following results.

Theorem 3.8. Let f .x/ 2 Fn and denote W D fw 2 GFn.2/ W S.f /.w/ ¤ 0g; then,
the nonlinearity nl.f / of f .x/ satisfies

nl.f / � 2n�1 � 2n�1

pjWj � 2n�1 � 2
n
2 �1: (3.11)

Proof. Let m D maxfjS.f /.w/j W w 2 GFn.2/g, and then m2 D maxfS2
.f /.w/ W w 2

GFn.2/g. Let w0 be such a spectral point satisfying S2
.f /.w0/ D m2. By Parseval’s

equation
2n�1P
wD0

S2
.f /.w/ D 22n, we have

P
w2W

S2
.f /.w/ D 22n. Note that when

X

w2W

S2
.f /.w/ � jWjS2

.f /.w0/ D m2jWj;

3.5 Upper and Lower Bounds of Nonlinearity of Boolean Functions 85

we have m � 2npjWj . Therefore,

nl.f / D 2n�1 � 1

2
max

w2GFn.2/
jS.f /.w/j

D 2n�1 � 1

2
m

� 2n�1 � 2n�1

pjWj :

Note that jWj � 2n, so we have

2n�1 � 2n�1

pjWj � 2n�1 � 2
n
2 �1I

hence, the theorem follows. ut
The following upper bound of the nonlinearity of Boolean functions is related

with the autocorrelation function of itself.

Theorem 3.9. Let f .x/ 2 Fn, then the nonlinearity of f .x/ satisfies

nl.f / � 2n�1 � 2� n
2 �1

vuut
2n�1X

�D0

R2
f .�/ � 2n�1 � 2

n
2 �1 (3.12)

Proof. Write jS.f /.w0/j D maxfjS.f /.w/j W w 2 GFn.2/g. By Eq. 1.24, we have

2nRf .�/ D
2n�1P
wD0

S2
.f /.w/.�1/hw; �i. Hence, we get

22n
2n�1X

�D0

R2
f .�/ D

2n�1X

�D0

2n�1X

wD0

2n�1X

xD0

S2
.f /.w/S2

.f /.x/.�1/h.w˚x/; �i

D
2n�1X

wD0

2n�1X

xD0

S2
.f /.w/S2

.f /.x/

2n�1X

�D0

.�1/h.w˚x/; �i

D 2n
2n�1X

wD0

S4
.f /.w/

� 2nS2
.f /.w0/

2n�1X

wD0

S2
.f /.w/

D 23nS2
.f /.w0/ (by Parseval’s Equation):

86 3 Nonlinearity Measures of Boolean Functions

So, we have

2n�1X

�D0

R2
f � 2nS2

.f /.w0/:

Hence, we have

S.f /.w0/ � 2� n
2

vuut
2n�1X

�D0

R2
f .�/:

By

nl.f / D 2n�1 � 1

2
max

w2GFn.2/
jS.f /.w/j;

we have

nl.f / � 2n�1 � 2� n
2 �1

vuut
2n�1X

�D0

R2
f .�/:

Since Rf .0/ D 2n, we have

2n�1 � 2� n
2 �1

vuut
2n�1X

�D0

R2
f .�/ � 2n�1 � 2

n
2 �1;

and the theorem follows. ut

It is also noted that inequality nl.f / � 2n�1 � 2� n
2 �1

s
2n�1P
�D0

R2
f .�/ is also a more

tight bound of nonlinearity than the commonly used inequality nl.f / � 2n�1�2
n
2 �1.

3.6 Nonlinearity of Balanced Boolean Functions

In cryptographic applications, it is a common and primary requirement for Boolean
functions to be balanced. Note that the Boolean functions with highest nonlinearity
are the bent functions, and bent functions are not balanced. It would be interesting to
know what the upper bound or lower bound of the nonlinearity of balanced Boolean
functions could be. Some interesting results can be found in [30].

3.7 Higher-Order Nonlinearity of Boolean Functions 87

Theorem 3.10. Let f .x/ 2 Fn be balanced (n � 3). Then the nonlinearity of f .x/ is
given by

nl.f / �
�

2n�1 � 2
n
2 �1 � 2; n even

bb2n�1 � 2
n
2 �1cc; n odd

where bbxcc denotes the maximum even integer less than or equal to x.

Proof. Since f .x/ is a balanced function, we have wt.f / D 2n�1. Obviously, for any
affine function l.x/ 2 An, we have

wt.l/ D
8
<

:

0; if l.x/ D 0

2n; if l.x/ D 1

2n�1; otherwise:

Since d.f ; l/ D wt.f ˚ l/ D wt.f / C wt.l/ � 2wt.f � l/, it is known that d.f ; l/
must be even. On the other hand, since f .x/ is balanced, f .x/ is not bent and so
nl.f / < 2n�1 � 2

n
2 �1. Since nl.f / D min

l2An

d.f ; l/, we have

nl.f / �
�

2n�1 � 2
n
2 �1 � 2; n even

bb2n�1 � 2
n
2 �1cc; n odd ;

which proves the theorem. ut

3.7 Higher-Order Nonlinearity of Boolean Functions

Nonlinearity of a Boolean function f .x/ 2 Fn measures the distance between f .x/

and all affine Boolean functions l.x/ 2 An. For resistance to the linear cryptanalysis,
we expect that the nonlinearity is as high as possible, even close to the maximum
value 2n�1 � 2

n
2 �1. Similarly, we can also consider the higher-order nonlinearity

of Boolean functions as a measure against higher-order nonlinear approximation
cryptanalysis. Naturally, we also expect the higher-order nonlinearity to be as high
as possible. However, it is more difficult to calculate the higher-order nonlinearity
than the nonlinearity. So far very few methods are available to calculate the higher-
order nonlinearity. In the following, we describe two methods which calculate a
lower bound of the higher-order nonlinearity.

It is noted that the rth order Reed-Muller code of length n, denoted by RM.r; n/,
is actually the set of all Boolean functions in n variables with algebraic degree no
more than r. When r D 1, RM.r; n/ is the set of affine Boolean functions An. Let
f .x/ 2 Fn, and define the rth order nonlinearity of f .x/ to be the smallest distance
between f .x/ and the code words in RM.r; m/, denoted by nlr.f /, i.e.,

nlr.f / D min
g.x/2RM.r;n/

fd.f ; g/g: (3.13)

88 3 Nonlinearity Measures of Boolean Functions

First, we give some simple properties on higher-order nonlinearities. By the
definition of higher-order nonlinearity, it is easy to derive the following theorem.

Theorem 3.11. Let f .x/ 2 Fn, and then for any g.x/ 2 Fn with deg.g/ � r, we
have

nlr.f ˚ g/ D nlr.f /:

Before considering the rth order nonlinearity, we consider a special case when
the algebraic degree of Boolean functions to be considered is rC 1. We have

Theorem 3.12. The tight lower bound of rth order nonlinearity of Boolean func-
tions in Fn with algebraic degree rC 1 is 2n�r�1.

Proof. Since the minimum distance of RM.r; n/ is equal to 2n�r, for every r < n, we
have nlr.f / � 2n�r�1 for every function f .x/ of algebraic degree exactly rC 1 � n.
Moreover, if f0.x/ 2 RM.r; n/ has minimum weight and is of algebraic degree rC1,
then we have wt.f0/ D 2n�r�1; otherwise, the minimum distance of RM.r; n/ would
be larger than 2n�r�1 which is not true. Hence, we have nlr.f0/ D 2n�r�1, because
in this case the distance between f0.x/ and the constant 0 is 2n�r�1. This means that
2n�r�1 is the tight upper bound of rth order nonlinearity of Boolean functions with
algebraic degree rC 1. ut

It is known that every Boolean function in n variables can be written as a
concatenation of two Boolean functions in n � 1 variables, i.e., f .x/ 2 Fn can be
written as

f .x/ D .xn ˚ 1/f0.x
0/˚ xnf1.x

0/

where f0.x0/; f1.x0/ 2 Fn�1. Then we have the following theorem.

Theorem 3.13. Let f .x/ D .xn ˚ 1/f0.x0/ ˚ xnf1.x0/ be a Boolean function in n
variables, where both f0.x0/ and f1.x0/ are Boolean functions in n � 1 variables.
Then we have

nlr.f / � nlr.f0/C nlr.f1/: (3.14)

Proof. Let g.x/ D .xn ˚ 1/g0.x0/˚ xng1.x0/ be a Boolean function in n variables,
where both g0.x0/ and g1.x0/ are Boolean functions in n�1 variables. Then we have

d.f ; g/ D d.f0; g0/C d.f1; g1/I

this is naturally interpreted as follows: the Hamming distance between two Boolean
functions is the sum of the Hamming distance of the first half of the truth tables of
these functions and those of the second half. Hence, if g.x/ is of algebraic degree r,
then we have

d.f ; g/ � nlr.f0/C nlr.f1/:

3.8 Linear Structures of Boolean Functions 89

When g.x/ has the closest Hamming distance with f .x/, it gives

nlr.f / � nlr.f0/C nlr.f1/:

This proves the theorem. ut
Now consider a special case. If f0.x0/ D f1.x0/, then f .x/ D f0.x0/˚ xn.f0.x0/˚

f0.x0// D f0.x0/, which means that f .x/ is independent of xn. In this case, if g.x0/ 2
Fn�1 with algebraic degree r is the best approximation for f0 D f1, then g.x0/ now
being viewed as an n-variable Boolean function has distance 2nlr.f0/ from f .x/, i.e.,
nlr.f / D 2nlr.f0/.

3.8 Linear Structures of Boolean Functions

Linear structures of block ciphers have been investigated for their cryptographic
significance. It has been pointed out in [8, 11, 24] that block ciphers having linear
structures are vulnerable to attacks which could be much faster than exhaustive key
search. In [17] it was shown that linear structures of a cryptographic function can
be used to simplify the expression of the function. In this section linear structures
of Boolean functions are studied by two subclasses, invariant linear structures
and complementary linear structures. It should be noted that linear structures are
normally studied in general rather than being distinguished in those subclasses. By
this treatment, some new results are obtained.

Definition 3.2. Let f .x/ 2 Fn. If for some ˛ 2 GFn.2/; f .x˚ ˛/˚ f .x/ D c holds
for all x 2 GFn.x/, where c 2 GF.2/ is a constant, then ˛ is called a linear structure
of f .x/. More specifically, ˛ is called an invariant linear structure of f .x/ if c D 0

and a complementary linear structure of f .x/ if c D 1.

Denote by VL.f / the set of all linear structures of f .x/, by VI.f / (VL.f /)
the subset of invariant linear structures, and by VC.f / (VL.f /) the subset of
complementary linear structures. It is easy to verify the following results:

Theorem 3.14. Let f .x/ 2 Fn. Then the following is true with respect to invariant
and complementary linear structures of f .x/:

• Both VL.f / and VI.f / form a vector subspace of GFn.2/. However, VC.f / is not a
vector subspace of GFn.2/ if it is not empty.

• VL.f / D VI.f / if and only if VC.f / is empty.
• If VC.f / is not empty, let ˛ 2 VC.f /; then

� W x �! x˚ ˛

is a one-to-one mapping from VI.f / to VC.f /, and in this case we have
dim.VI.f // D dim.VL.f //� 1.

90 3 Nonlinearity Measures of Boolean Functions

Proof. Let ˛; ˇ 2 GFn.2/ be two linear structures of f .x/, then by Definition 3.2,
there exists c1; c2 2 GF.2/ such that both f .x˚˛/ D c1 and f .x˚ˇ/ D c2 hold for
all x 2 GFn.2/. So we have

f .x˚ ˛ ˚ ˇ/˚ f .x/ D .f .x˚ ˛ ˚ ˇ/˚ f .x˚ ˛//˚ .f .x˚ ˛/˚ f .x//

D c2 ˚ c1

Note that c2 ˚ c1 2 GF.x/ is a constant, so by Definition 3.2, ˛ ˚ ˇ is also a linear
structure of f .x/. This proves that the linear structures of f .x/ form a vector subspace
of GFn.2/. Note that when c1 D c2 D 0, we also have c1 ˚ c2 D 0, which means
that when ˛ and ˇ are two invariant linear structures of f .x/, then ˛ ˚ ˇ is also
an invariant linear structure of f .x/. The above discussion includes the case when
˛ D ˇ, which yields ˛ ˚ ˇ D 0 to be a trivial invariant linear structure of f .x/.

However, when c1 D c2 D 1, we have c1 ˚ c2 D 0, which means that when ˛

and ˇ are two complementary linear structures of f .x/, then ˛ ˚ ˇ is an invariant
linear structure of f .x/; this proves that VC.f / is not a vector subspace of GFn.2/.

If VL.f / is empty, then it is obvious that VL.f / D VI.f / holds. On the other hand,
if VL.f / is not empty, since VI.f / 	 VL.f /, it is obvious that VL.f / ¤ VI.f /.

If ˛ 2 VC.f / is not zero, then it is easy to verify that the function �.x/ D x˚ ˛

maps an invariant linear structure of f .x/ into a complementary linear structure, and
in the meantime, it also maps a complementary linear structure into an invariant
linear structure; this means that �.x/ is a one-to-one mapping from VI.f / to VC.f /;
hence, we have dim.VI.f // D dim.VL.f // � 1. ut

The following theorem describes in general the structure of Boolean functions
which have linear structures.

Theorem 3.15. Let f .x/ 2 Fn. Then for all x 2 GFn.2/ and all ˛ 2 VL.f /, we have

f .x˚ ˛/ D f .x/˚ f .˛/˚ f .0/;

where

f .˛/ D
�

f .0/; if ˛ 2 VI.f /;

f .0/˚ 1; if ˛ 2 VL.f / � VI.f /:

Proof. By Definition 3.2, for any ˛ 2 VL.f /, f .x/ ˚ f .x ˚ ˛/ D c is a constant.
Now we see what the constant c equals. Since it is a constant, it should be the same
for all the values of x. Let x D 0 and we get c D f .0/ ˚ f .˛/, which means that
f .x ˚ ˛/ D f .x/ ˚ f .˛/ ˚ f .0/ holds. Now we further examine what f .˛/ is. If
˛ 2 VI.f / is an invariant linear structure of f .x/, then by definition, c D 0, hence
f .˛/ D f .0/. If ˛ 2 VC.f / D VL.f / � VI.f / is a complementary linear structure of
f .x/, then c D 1 and hence f .˛/ D f .0/˚ 1. ut

3.8 Linear Structures of Boolean Functions 91

In [17] it was shown how to simplify a function over a finite field having linear
structures. For the case of Boolean functions, it can be refined as follows:

Theorem 3.16. Let f .x/ 2 Fn and dim.VI.f // D k. Then there exists an invertible
matrix A over GF.2/ such that

g.x1; : : : ; xn/ D f ..x1; : : : ; xn/A/ D g�.xkC1; : : : ; xn/;

where g�.xkC1; : : : ; xn/ has no nonzero invariant linear structure. Moreover,
g�.xkC1; : : : ; xn/ has a complementary linear structure, or equivalently it can
be written as g�.xkC1; : : : ; xn/ D xkC1 ˚ g�

1 .xkC2; : : : ; xn/, if and only if f .x/ has a
complementary linear structure.

Proof. Choose a nonsingular n�n matrix in such a way that its first k columns are a
basis of VI.f / and the .kC1/th column is possibly a complementary linear structure
of f , and the rest of columns are arbitrary vectors. Then it can be verified that the
matrix satisfies the requirement. ut

From Theorem 3.16, it is easy to deduce the inequality about the degree of a
nonlinear Boolean function having linear structures [17]. It is

deg.f /C dim.V/ � n:

As well, if dim.V/ D k, then we have that the nonlinearity of f satisfies nl.f / �
2n�1 � 2

nCk
2 �1.

Now we turn our attention to the spectral description of linear structures by the
treatment with two subclasses.

Theorem 3.17. Let f .x/ 2 Fn. Then ˛ is an invariant linear structure of f .x/, i.e.,
f .x/˚ f .x˚˛/ D 0, if and only if the self-correlation of f .x/ satisfies the following:

Rf .˛/ D wt.f /: (3.15)

Proof. Rf .˛/ D wt.f / if and only if f .x ˚ ˛/ D 1 whenever f .x/ D 1, i.e., if and
only if every component in the truth table of f .x/ and that of g.x/ D f .x˚˛/ are the
same. By the definition of self-correlation function (Definition 1.3), the conclusion
follows. ut
Theorem 3.18. Let f .x/ 2 Fn. Then ˛ is a complementary linear structure of f .x/,
i.e., f .x/˚ f .x˚ ˛/ D 1, if and only if f .x/ is balanced and the self-correlation of
f .x/ satisfies the following:

Rf .˛/ D 0: (3.16)

92 3 Nonlinearity Measures of Boolean Functions

Proof. The proof of the theorem is similar to that of Theorem 3.17 and is omitted
here. ut

Let f .x/˚ f .x˚ ˛/ D c. Then

P2n�1
xD0 .f .x/˚ f .x˚ ˛//.�1/h!; xi

D Sf .!/C .�1/h!;˛iSf .!/ � 2
P2n�1

xD0 f .x/f .x˚ ˛/.�1/h!; xi
D .1C .�1/h!;˛i/Sf .!/ � 2

P2n�1
xD0 f .x/.f .x/˚ c/.�1/h!; xi

D .1C .�1/h!;˛i/Sf .!/ � 2.Sf .!/� cSf .!//

D .2c � 1C .�1/h!; ˛i/Sf .!/:

On the other hand, since f .x/˚ f .x˚ ˛/ D c, by Lemma 1.1 we have

2n�1X

xD0

.f .x/˚ f .x˚ ˛//.�1/h!; xi D
�

c � 2n if ! D 0;

0 else:

By the conversion between the two types of Walsh transforms, we have

.2c � 1C .�1/h!; ˛i/.�1

2
S.f /.!// D 0; if ! 6D 0 and

.2c� 1C .�1/h!; ˛i/.2n � S.f /.!//=2 D c � 2n; if ! D 0

i.e.,

�
.2c� 1C .�1/h!; ˛i/S.f /.!/ D 0 if ! 6D 0;

cS.f /.!/ D 0 if ! D 0:

Setting c D 0, we have S.f /.!/ D 0 for all ! with h!; ˛i D 1. By setting c D 1, we
have S.f /.!/ D 0 for all ! with h!; ˛i D 0. It will be shown that these conditions
are also sufficient for ˛ to be a linear structure of f .x/.

Theorem 3.19. Let f .x/ 2 Fn. Then ˛ is an invariant linear structure of f .x/, i.e.,
f .x/˚ f .x˚ ˛/ D 0, if and only if S.f /.!/ D 0 holds for all ! with h!; ˛i D 1.

Proof. Necessity has been shown as above. So only the sufficiency needs to be
proved. From the conversion of the two types of Walsh transforms, we know that,
for ! 6D 0; S.f /.!/ D 0 if and only if Sf .!/ D 0. Since Sf .!/ D 0 for every
! with h!; ˛i D 1, by Theorem 1.6 we have wt.f / D 2�n

P
h!; ˛iD0 S2

f .!/. By
Theorem 1.7,

Rf .˛/ D 2�n
P

! S2
f .!/.�1/h!; ˛i

D 2�n
P

h!; ˛iD0 S2
f .!/

D wt.f /:

By Theorem 3.17 the conclusion then follows. ut

3.8 Linear Structures of Boolean Functions 93

Theorem 3.20. Let f .x/ 2 Fn. Then ˛ is an invariant linear structure of f .x/, i.e.,
f .x/˚ f .x˚ ˛/ D 1, if and only if S.f /.!/ D 0 holds for all ! with h!; ˛i D 0.

Proof. Necessity is as above and the sufficiency is as follows. Note that S.f /.0/ D 0

means that f .x/ is balanced, and for every ! 6D 0; S.f /.!/ D 0 if and only if
Sf .!/ D 0. By Theorem 1.6 we have

X

h!; ˛iD1

S2
f .!/C S2

f .0/ D 2nwt.f /:

Since f .x/ is balanced, we have Sf .0/ D wt.f / D 2n�1. So
P

h!; ˛iD1 S2
f .!/ D 22n�2.

By Theorem 1.7 we have

Rf .˛/ D 2�n
P

! S2
f .!/.�1/h!; ˛i

D 2�nS2
f .0/� 2�n

P
h!; ˛iD1 S2

f .!/

D 0:

And by Theorem 3.18 the conclusion then follows. ut
For an arbitrary nonzero vector ˛ 2 GFn.2/, define Ai D f! 2 GFn.2/ W

h!; ˛i D ig, i D 0; 1. Then it is easy to show by establishing a one-to-one mapping
from A0 to A1 that jA0j D jA1j, where jAjmeans the cardinality of set A. This proves
that:

Corollary 3.2. If f .x/ has a nonzero linear structure, then at least half of its Walsh
spectrums vanish, i.e., the Walsh transform of f .x/ takes value zero on at least half
of its inputs.

Theorem 3.21. Let f .x/ 2 Fn and VL.f / D VI.f / [VC.f / be the set of linear
structures of the function f .x/. If the dimension of VL.f / is k, then we have

nl.f /

2n�1
C 1p

2n�k
� 1:

Proof. Since the dimension of VL.f / D VI.f / [VC.f / is k, assume that
ˇ1; ˇ2; � � � ; ˇk 2 VI.f / are linearly independent vectors. We also assume that
ˇ1; ˇ2; � � � ; ˇk�1 are invariant linear structures of f .x/ and f .x ˚ ˇk/ ˚ f .x/ D c.
That means that we have

f .x/ D f .x˚ ˇ1/ D � � � D f .x˚ ˇk�1/ D f .x˚ ˇk/˚ c;

so we have

S.f /.w/ D .�1/hˇ1; wiS.f /.w/

D � � �

94 3 Nonlinearity Measures of Boolean Functions

D .�1/hˇk�1; wiS.f /.w/

D .�1/c˚hˇk; wiS.f /.w/:

If S.f /.w/ ¤ 0, then we have

hˇ1; wi D � � � D hˇk�1; wi D c˚ hˇk; wi D 0: (3.17)

Since ˇ1; ˇ2; � � � ; ˇk�1; ˇk are linearly independent on GF.2/, the system of linear
equations (3.17) has 2n�k solutions over GFn.2/. Hence, the number of nonzero
spectra of f .x/ is at most 2n�k, i.e.,

jfw 2 GFn.2/jS.f /.w/ ¤ 0gj � 2n�k:

By Parseval’s equation
2n�1P
wD0

S2
.f /.w/ D 22n and

2n�1X

wD0

S2
.f /.w/ � 2n�k max

w2GFn.2/
S2

.f /.w/;

we have

max
w2GFn.2/

jS.f /.w/j � 2
nCk

2 :

By Eq. 3.1, nl.f / D 2n�1 � 1
2

max
w2GFn.2/

jS.f /.w/j, we get

nl.f /

2n�1
D 1 � 1

2n
max

w2GFn.2/
jS.f /.w/j � 1 � 2� n�k

2 I

hence, the theorem follows. ut

3.9 Remarks

Nonlinearity is only one of the important cryptographic properties of Boolean
functions; other cryptographic properties are also needed in practice [26–29, 37].
The same case applies to the other chapters in this book, although each chapter is
mainly focused on a specific cryptographic property.

References 95

References

1. Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Advances in Cryptology,
Proceedings of Eurocrypt’93. LNCS 765, pp. 65–76. Springer, Berlin/New York (1994)

2. Carlet, C., Ding, C.: Highly nonlinear mappings. J. Complex. 20, 205–244 (2004)
3. Carlet, C., Dobbertin, H., Leander, G.: Normal extensions of bent functions. IEEE Trans. Inf.

Theory IT-50(11), 2880–2885 (2004)
4. Carlet, C., Guillot, P.: An alternate characterization of the bentness of binary functions with

uniqueness. Des. Codes Cryptogr. 14, 133–140 (1998)
5. Carlet, C., Gouget, A.: An upper bound on the number of m-resilient bent functions. In:

Advances in Cryptology, Proceedings of Asiacrypt 2002. LNCS 2501, pp. 484–496. Springer,
Berlin/New York (2002)

6. Carlet, C., Tarannikov, Y.: Covering sequences of Boolean functions and their cryptographic
significance. Des. Codes Cryptogr. 25, 263–279 (2002)

7. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
Advances in Cryptology, Proceedings of Eurocrypt’94. LNCS 950, pp. 356–365. Springer,
Berlin/Heidelberg (1995)

8. Chaum, D., Evertse, J.H.: Cryptanalysis of DES with a reduced number of rounds. In:
Advances in Cryptology, Proceedings of Crypto’85. LNCS 218, pp. 192–211. Springer, Berlin
(1986)

9. Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high
nonlinearity. In: Fast Software Encryption 1994. LNCS 1008, pp. 61–74. Springer, Berlin
(1995)

10. Dobbertin, H.: A survey of some recent results on bent functions. In: Sequences and Their
Applications – SETA 2004. LNCS 3486, pp. 1–29. Springer, Berlin (2005)

11. Evertse, J.-H.: Linear structures in block ciphers. In: Advances in Cryptology, Proceedings of
Eurocrypt’87. LNCS 304, pp. 249–266. Springer, Berlin (1988)

12. Fedorova, M., Tarannikov, Y.: On the construction of highly nonlinear resilient Boolean
functions by means of special matrices. In: Proceedings of Indocrypt 2011. LNCS 2247,
pp. 254–266. Springer, Heidelberg/New York (2001)

13. Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation
immunity. In: Advances in Cryptology, Proceedings Eurocrypt’98. LNCS 1403, pp. 475–488.
Springer, Berlin (1998)

14. Fontaine, C.: The nonlinearity of a class of Boolean functions with short representation. In:
Proceedings of the 1st International Conference on the Theory and Applications of Cryptology
(PRAGOCRYPT’96). CTU Publishing House, Prague, pp. 129–144

15. Kumar, P.V., Scholtz, R.A.: Bounds on the linear span of Bent sequences. IEEE Trans. Inf.
Theory IT-29(6), 854–862 (1983)

16. Kumar, P.V., Scholtz, R.A.: Generalized bent functions and their properties. J. Combin. Theory
(A) 40, 90–107 (1985)

17. Lai, X.: Additive and linear structures of cryptographic functions. FSE 1994(1008), 75–85
(1995)

18. Lempel, A., Cohn, M.: Maximal families of Bent sequences. IEEE Trans. Inf. Theory IT-28(6),
865–868 (1982)

19. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
New York (1977)

20. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances in
Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer, Berlin (1990)

21. Nyberg, K.: Construction of Bent functions and different sets. In: Advances in Cryptology,
Proceedings of Eurocrypt’90. LNCS 473, pp. 151–160. Springer, Berlin (1991)

22. Patterson, N.J., Wiedemann, D.H.: The covering radius of the [215, 16] Reed-Muller code is at
least 16276. IEEE Trans. Inf. Theory IT-29(3), 354–356 (1983)

96 3 Nonlinearity Measures of Boolean Functions

23. Qu, C., Seberry, J., Pieprzyk, J.P.: Homogeneous bent functions. Discret. Appl. Math. 102,
133–139 (2000)

24. Reeds, J.A., Manferdeli, J.L.: DES has no per round linear factors. In: Advances in Cryptology,
Proceedings of Crypto’84. LNCS 196, pp. 377–389. Springer, Berlin/Heidelberg (1985)

25. Rothaus, O.S.: On ‘bent’ functions. J. Combin. Theory (A) 20, 300–305 (1976)
26. Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient Boolean functions.

In: Advances in Cryptology, Proceedings of Crypto’2000. LNCS 1880, pp. 515–532. Springer,
Berlin (2000)

27. Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important crypto-
graphic properties. In: Advances in Cryptology, Proceedings of Eurocrypt’2000. LNCS 1807,
pp. 485–506. Springer, Berlin (2000)

28. Sarkar, P., Maitra, S.: Construction of nonlinear resilient Boolean functions using ‘small’ affine
functions. IEEE Trans. Inf. Theory IT-50(1), 2185–2193 (2004)

29. Schnoor, C.P.: The multiplicative complexity of Boolean functions. In: Proceedings of
AAECC-6, pp. 45–58. Springer, Berlin (1989)

30. Seberry, J., Zhang, X.M., Zheng, Y.: On construction and nonlinearity of correlation immune
functions, (extended abstract). In: Advances in Cryptology, Proceedings of Eurocrypt’93.
LNCS 765, pp. 181–199. Springer, Berlin (1994)

31. Seberry, J., Zhang, X.M., Zheng, Y.: Nonlinearly balanced Boolean functions and their
propagation characteristics (extended abstract). In: Advances in Cryptology, Proceedings of
Crypto’93. LNCS 773, pp. 49–60. Springer, Berlin (1994)

32. Seberry, J., Zhang, X.M., Zheng, Y.: Relationships among nonlinearity criteria (extended
abstract). In: Advances in Cryptology, Proceeding of Eurocrypt’94. LNCS 950, pp. 376–388.
Springer, Berlin (1995)

33. Sun, G., Wu, C.: The lower bound on the second order nonlinearity of a class of Boolean
functions with high nonlinearity. Appl. Algebra Eng. Commun. Comput. (AAECC) 22(1), 37–
45 (2011)

34. Tang, D., Carlet, C., Tang, X.: On the second-order nonlinearities of some bent functions. Inf.
Sci. 223, 322–330 (2013)

35. Wu, C.K.: Boolean functions in cryptology. Ph.D. Thesis, Xidian University, Xian (1993) (in
Chinese)

36. Yu, N.Y., Gong, G.: Constructions of quadratic bent functions in polynomial forms. IEEE
Trans. Inf. Theory IT-52(2), 3291–3299 (2006)

37. Zheng, Y., Xhang, X.M., Imai, H.: Restriction, terms and nonlinearity of Boolean functions.
Theor. Comput. Sci. 226, 207–223 (1999)

38. Zheng, Y., Zhang, X.M.: On plateaued functions. IEEE Trans. Inf. Theory IT-47(3), 1215–1223
(2001)

Chapter 4
Correlation Immunity of Boolean Functions

The concept of correlation immunity was proposed by Siegenthaler in 1984. It is
a security measure to the correlation attack of nonlinear combiners. This chapter
first briefly describes the correlation attack of nonlinear combiners, which gives the
rationale about why correlation immunity is a reasonable security measure, and then
the correlation immunity of Boolean functions is studied. Different approaches to
the constructions of Boolean functions are introduced, which yields a way in theory
to exhaustively construct all the correlation immune Boolean functions, and such an
example is given for the correlation immune Boolean functions in four variables.
Correlation immune Boolean function with some other cryptographic properties are
also studied in brief. In the end, the concept of "-correlation immunity is introduced
to reflect the resistance against correlation attack when the Boolean function is not
correlation immune in the traditional sense.

4.1 The Correlation Attack of Nonlinear Combiners

Nonlinear combiner is a popular pseudorandom sequence generator for stream
ciphers [33]. The basic structure of nonlinear combiners in stream ciphers is shown
in Fig. 4.1.

The correlation attack proposed by Siegenthaler [37] makes use of the correlation
information between the output sequence (zk) of the nonlinear combiner and each
input sequence (xi

k) of the combining function f .x/ and to use the statistical
analysis trying to recover the initial state as well as the feedback function of each
LFSRi individually. This approach is also called divide and conquer attack, which
significantly reduces the complexity than the brute force attack. Below we will give
a brief description about the divide and conquer attack model as described in [37].

In the security analysis, it is always assumed that the structure of the generator
is known, i.e., the lengths of each LFSR and the nonlinear combining function

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_4

97

98 4 Correlation Immunity of Boolean Functions

LFSRn

LFSRi

LFSR1

f

Plaintext (mk) Ciphertext (ck)

xk
n

xk
i zk

xk
1

Fig. 4.1 A nonlinear combiner of stream ciphers

f .x/. The attack proposed in [37] does not assume the knowledge of the primitive
feedback polynomial of each LFSR which is only of certain limited amount to
search for.

Assume that all the LFSRs in the combiner of Fig. 4.1 are maximum length
sequence generators, i.e., each LFSRi of order ri generates an m-sequence of period
pi D 2ri � 1, and there are Ri primitive polynomials of degree ri (which is the
number of different m-sequences of order ri such that they are not equivalent by
cyclic shift). Then under the brute force attack, the number of all the possible keys
for the nonlinear combiner (different initial states and different feedback function
of each of the LFSR have been taken into account) is

K D
nY

iD1

Ri.2
ri � 1/:

With the correlation attack, information about each input sequence (xi
k) can be

extracted from the output sequence (zk), and hence the attack can concentrate each
of the individual LFSR sequences, and the number of trials in the worst case is
reduced to approximately

K0 D
nX

iD1

Ri2
ri :

The correlation attack is a probabilistic attack which assumes some statistical
properties of the combining function f .x/. Assume in the ideal case that each of
the LFSRs in Fig. 4.1 produces a pseudorandom sequence with uniform probability
distribution, i.e., Prob.xi

k D 0/ D Prob.xi
k D 1/, and assume that Prob.zk D 0/ D

Prob.zk D 1/. Let

4.1 The Correlation Attack of Nonlinear Combiners 99

Prob.zk D xi
k/ D qi; (4.1)

and assume the plaintext comes from a memoryless binary source, which satisfies

Prob.yk D 0/ D p0 (4.2)

Then it is easy to compute

Prob.ck ˚ xj
k D 0/ D Prob.zk D xj

k/ � Prob.yk D 0/

CProb.zk ¤ xj
k/ � Prob.yk D 1/

D 1 � .p0 C qj/C 2p0qj

D pe (4.3)

When j D 0, let x0
k be an hypothetical random variable which are independent of any

xi
k .i > 0/ and with uniform probability distribution. Then compute the correlation

of sequences ck and xj
k as

˛ D
NX

kD1

.1 � 2.ck ˚ xj
k// D N � 2

NX

kD1

.ck ˚ xj
k/; j 2 f0; 1; : : : ; ng (4.4)

By the central limit theorem, when N is sufficiently large, ˛ approaches to a normal
distribution (or Gaussian distribution). In an attack, attackers use hypothetical LFSR
of length ri which produce sequence (x0

k) for testing. By choosing a nonzero initial
state and an arbitrary primitive polynomial as the feedback polynomial, compute the
correlation ˛0 between N bits of output of the hypothetical LFSR and N bits of the
real ciphertext. Then there are two hypotheses to consider:

H1: There are N > ri coincidences between the output of the hypothetical LFSR
and LFSRi, referring to the above cases, and this is the case when ˛0 is the
correlation between zk and xi

k, i 2 f1; 2; : : : ; ng.
H0: There are N > ri disagreement between the output of the hypothetical LFSR

and LFSRi, referring to the above cases, and this is the case when ˛0 is the
correlation between zk and x0

k .

In order to make a decision about the two hypotheses, a threshold value T is
needed. When ˛0 < T, then accept the hypothesis H0, and when ˛0 � T, accept H1.
Let the probability density function of the probabilistic variable ˛ be P˛jHk .x/. If
qi D 1

2
or p0 D 1

2
, then by Eq. 4.3, we have pe D 1

2
. In this case no decision can be

made, because in this case the probability distribution of ˛ under the two hypotheses
is the same. Here the discussed attack depends on the number of wrong decisions,
i.e., the number of cases when ˛ � T. So we define a false alarm probability Pf D
Prob.˛ � TjH0/. In order to determine an appropriate threshold T, we also need to
consider the probability Pm D Prob.˛ < TjH1/. We have

100 4 Correlation Immunity of Boolean Functions

Pf D
Z 1

T
P˛jH0

.x/dx (4.5)

Pm D
Z T

�1
P˛jH1

.x/dx (4.6)

With the help of the function

Q.x/ D 1p
2�

Z 1

x
e� y2

2 dy (4.7)

we can get the following expressions:

Pf D Q.j Tp
N
j/ (4.8)

Pm D Q.j N.2pe � 1/� T

2
p

N
p

pe.1 � pe/
j/ (4.9)

Denote by

�0 D N.2pe � 1/� T

2
p

N
p

pe.1 � pe/
; (4.10)

then the expression of Pf and Pm can be written as

Pf D Q.jpN.2pe � 1/� 2�0

p
pe.1 � pe/j/; (4.11)

Pm D Q.j�0j/: (4.12)

In order to attack the stream cipher model as in Fig. 4.1, the following process
is to be taken: first to determine the probability qi by f .x/, and to determine the
probability p0 according to the coding method of the plaintext, then compute pe

using Eq. 4.3. For any chosen probability Pm, by Eq. 4.12, it is known that �0 is
a constant, and from Eq. 4.11, it is known that the false alarm probability P.˛ �
TjH0/ is a function of N. In order to recover LFSRi, choose an arbitrary primitive
polynomial as its feedback polynomial and an arbitrary nonzero state as its initial
state, and let it produce a sequence, and then compute the correlation between this
sequence and the ciphertext sequence. For any event with ˛ � T, H0 is accepted,
i.e., the LSFRi is supposed to have been recovered. However, the probability of event
˛ � T is Pf , and our decision may be wrong. So we need to test more ciphertexts
for all the events ˛ � T. If for all the 2ri � 1 different states, the decision is always
to reject H1, then change another primitive polynomial and to repeat the test. In the
worst case, we need to test for about Ri2

ri times. The false alarm probability depends
on the length of ciphertext N. Choose N1 such that

4.2 The Correlation Immunity and Correlation Attacks 101

Pf D 1

Ri2ri
(4.13)

and then by Eq. 4.11, we have

1

Ri2ri
D Q.j

p
N1.2pe � 1/� 2�0

p
pe.1 � pe/j/: (4.14)

Using the inequality

Q.x/ <
1

2
2� x2

2 ; x > 0 (4.15)

we have an upper bound of N1

N1 <

2

4
1p
2

p
ln.Ri2ri�1/C �0

p
pe.1 � pe/

pe � 1
2

3

5
2

: (4.16)

The upper bound in Eq. 4.16 gives the length of required ciphertext to enable
an attack on the model in Fig. 4.1. If the length of the ciphertext is no less than
this upper bound, then when conducting such an attack, the number of tests can be
minimized, and when a decision is made, the probability of false alarm is minimized.
More detailed description of the correlation attack can be found in [37, 38].

In order to resist the correlation attack as described above, the combining
function f .x/ needs to have some special properties. Siegenthaler [36] introduced
the concept of correlation immunity of Boolean functions. The correlation immunity
of Boolean functions has attracted much study (see, e.g., [11–13, 13, 18, 25, 32, 34,
43, 51]). This chapter will show how such functions can have resistance against
the correlation attack. Then it will study the construction issues of the correlation
immune functions.

4.2 The Correlation Immunity and Correlation Attacks

In most shift register-based key stream generators, the key stream is usually
generated by a nonlinear combination of some shift register sequences. These base
shift registers are usually linear ones, and sequences generated by them are of
very low linear complexity and can easily be retrieved by the Berlekamp-Massey
algorithm [26]. The output of the combined sequence, however, should be designed
to have good algebraic and statistical properties. A potential attack is to seek the
cross-correlation between an input and the output of the combining function known
as the correlation attack [37]. So, statistical independence of Boolean functions of
their input variables is of practical significance. The concept of correlation immunity

102 4 Correlation Immunity of Boolean Functions

of Boolean functions [36], which is designed to resist the correlation attack, is the
development of the concept of statistical independence with a stronger constraint.

In Sect. 2.6, the concept of statistical independence was introduced. A Boolean
function f .x/ 2 Fn being statistically independent of its variables xi1 ; xi2 ; : : : ; xik
means that any fixed value of xi1 ; xi2 ; : : : ; xik will not change the probability of f .x/

to be 0 or 1. The concept of correlation immunity of Boolean functions is in some
sense more restricted than the statistical independence.

Definition 4.1. Let f .x/ 2 Fn. If for some integer k, and for any set of indices 1 �
i1 < i2 < � � � < ik � n, f .x/ is always statistically independent of xi1 ; xi2 ; : : : ; xik ,
then f .x/ is said to be correlation immune (CI) of order k. The value k is called the
correlation immunity of f .x/ and is denoted by CI.f / D k.

Furthermore, if f .x/ is balanced, then f .x/ is called to be resilient of order k or
k-resilient for short.

From the properties of statistical independence, we know that if f .x/ is correla-
tion immune of order k, then it must be correlation immune of any order m < k
as well. In this sense, when we talk about the correlation immunity, it is meant the
maximum known value of the correlation immunity. If the correlation immunity is
0, then f .x/ is rather called to be not correlation immune. If the correlation immunity
is n, it is easy to deduce that f .x/ must be a constant. Therefore, our discussion about
correlation immune functions will assume that the correlation immunity is between
1 and n � 1.

Now let us look at the problem about how correlation immune functions can
have resistance against the correlation attack. Assume that the nonlinear combining
function f .x/ as in the nonlinear combiner is correlation immune, and then for any
1 � j � n, f .x/ is statistically independent of xj. By Theorem 2.20 we know that for
any a; b 2 f0; 1g, we have

Prob.xj D bjf .x/ D a/ D Prob.xj D b/ D 1

2
:

Hence, we have

Prob.f .x/ D xj/ D Prob.f .x/ D 0; xj D 0/C Prob.f .x/ D 1; xj D 1/

D Prob.f .x/ D 0/Prob.xj D 0jf .x/ D 0/

CProb.f .x/ D 1/Prob.xj D 1jf .x/ D 1/

D 1

2
Prob.f .x/ D 0/C 1

2
Prob.f .x/ D 1/

D 1

2

which is the value of qj as defined in Eq. 4.1, and by Eq. 4.3 we have pe D 1 �
.p0C qj/� 2p0qj D 1

2
, and then by Eq. 4.16, we know that the upper bound of N1 is

4.3 Correlation Immunity of Boolean Functions 103

infinity. This means that one can never get sufficient amount of data (ciphertext) to
conduct the correlation attack effectively. This is why correlation immune functions
are supposed to be of resistance against correlation attacks.

The objective of correlation attack is to try to recover the LFSRs one by one using
the correlation information between the nonlinear combining function f .x/ and its
variables. It could be modified to recover the linear combinations of those LFSRs by
the correlation information of the combining function and the linear combinations
of the variables. If n linearly independent linear combinations of the LFSRs can be
recovered, then the original LFSRs can be recovered easily. Even if some of the
linear combinations of the LFSRs are reconstructed, the computational complexity
for computing the rest of the linear combinations can be reduced. In order to enable
the nonlinear combining function to be resistant against such a modified correlation
attack, the combining function should have high-order correlation immunity. The
concept of higher-order correlation immunity is to provide resistance against
modified correlation attack so that Prob.f .x/ D xi1 ˚ xi2 ˚ � � � ˚ xik / D 1

2
always

holds. However, practically the correlation immunity doesn’t need to be very high,
as there is much computational overhead to recover the original LFSRs even if some
of their linear combinations are found.

4.3 Correlation Immunity of Boolean Functions

In order to study the correlation immunity of Boolean functions, we introduce a new
concept of partial correlation immunity.

Definition 4.2. Let f .x/ 2 Fn. The function f .x/ 2 Fn is called to be correlation
immune with respect to the subset T � f1; 2; : : : ; ng if the probability for f to take
any value from {0, 1} remains unchanged when any of the values of fxi; i 2 Tg
are fixed in advance while other variables are free and randomly independent.
The correlation immunity with constraint on a particular set T is called a partial
correlation immunity of f .x/.

Note that the partial correlation immunity does not have an order defined but
must have a set associated. The function f .x/ is said to be correlation immune (CI)
of order k if for every T of cardinality at most k, f is correlation immune with
respect to T. It is noticed that f .x/ is correlation immune of order k, implying that
it is correlation immune of any order less than k as well. The largest possible value
of k is called the correlation immunity of f . It is easy to see that this definition of
correlation immunity is the same as in Definition 4.1.

Let z DLn
iD1 cixi be a (nonzero) linear combination of the variables, where ci 2

f0; 1g. Then Boolean function f .x/ 2 Fn is said to be correlation immune in z if the
probability for f to take any value from {0, 1} is unchanged given that z is assigned
any fixed value in advance. This is actually the case when T D f.c1; c2; : : : ; cn/g has
a single element, and in this particular case, the partial correlation immunity can be
referred to as the correlation immunity in this element (vector). It is noted that the

104 4 Correlation Immunity of Boolean Functions

partial correlation immunity with respect to a vector (coefficient vector of a linear
combination of the variables) is the same as the statistical independence. However,
for the convenience of description, we keep the new term of correlation immunity.

Lemma 4.1. Let f .x/ 2 Fn. Then f .x/ is correlation immune of order t if and only
if for every � 2 GFn.2/ with wt.�/ � t, f .x/ is correlation immune in combined
variable z D h�; xi D �1x1 ˚ �2x2 ˚ � � � ˚ �nxn

Proof. It is trivial to prove that f .x/ is correlation immune with respect to T �
f1; 2; : : : ; ng, if and only if f .x/ is correlation immune in z D h�; xi for all

� 2 f� W �i D 1 implies that i 2 Tg:

A generalization of this observation is that f .x/ is correlation immune with respect to
all T of cardinality� t, if and only if f .x/ is correlation immune in every z D h�; xi
with wt.�/ � t. Therefore, the conclusion of Lemma 4.1 follows. ut

It should be noted that f .x/ is correlation immune in z1 and z2 individually
does not imply that it is correlation immune in z1 ˚ z2. For example, although
f .x1; x2; x3/ D x3˚ x1x2˚ x1x3˚ x2x3 is a first-order correlation immune function,
it is easy to verify that it is not correlation immune in x1 ˚ x2.

Let f .x/ 2 Fn; g.y/ 2 Fk; D D .dT
1 ; dT

2 ; : : : ; dT
k / be an n � k binary matrix with

rank.D/ D k, where di 2 GFn.2/. Let f .x/ D g.xD/ D g.y/. It is known that each
yi is the linear combination of xj’s with coefficients vector di, i.e., yi D hx; dii. Let
z DLn

iD1 cixi be another variable. Then it is obvious that f .x/ is correlation immune
in z if and only if g.y/ is correlation immune in z. Denote by � D .c1; c2; : : : ; cn/.
We have

Lemma 4.2. If rankŒDI �T � D k C 1, where [AIB] means the concatenation of
matrices A and B, then for any Boolean function g.y/ 2 Fk, g.xD/ is independent
of z D h�; xi and hence is correlation immune in z.

Proof. Let y D .y1; y2; : : : ; yk/ D xD. It is noticed that rankŒDI �T � D k C 1 if and
only if variables y1; y2; : : : ; yk together with z are all independent, and consequently
g.xD/ is independent of z. So we have

Prob.g.xD/ D 1jz D 1/ D Prob.g.y/ D 1jz D 1/ D Prob.g.y/ D 1/:

This means that g.xD/ is correlation immune in z. ut

4.4 Correlation Immune Functions and Error-Correcting
Codes

Since the discussion below uses the concept of linear code, here we briefly introduce
the relevant concepts.

4.4 Correlation Immune Functions and Error-Correcting Codes 105

Definition 4.3. An error-correcting code of length n, denoted by C, is a collection
of vectors in GFn.2/ (since we only consider binary codes). And for any ˛; ˇ 2 C,
˛ ¤ ˇ, we have that the minimum distance of code C is defined as

d D minfd.˛; ˇ/ W ˛; ˇ 2 Cg

where d.˛; ˇ/ D wt.˛ ˚ ˇ/ is the Hamming distance between ˛ and ˇ.
If C forms a k-dimensional vector subspace of GFn.2/, then C is called a Œn; k; d�

linear code.

The error-correction capability is t D b d�1
2
c, where bXc is the largest integer that

is less than or equal to X. The objective of error-correcting codes is to achieve the
maximum distance d and hence the maximum error-correction capability when n
and the cardinality of the code space jCj are fixed or to find the largest possible jCj
when n and d are fixed, where jCj is the cardinality of C. When C forms a linear
subspace of GFn.2/, C is called a linear code. Since the code words (elements in
C) and their linear combinations are all in C, it is possible to select some linearly
independent code words from C so that every code word in C can be represented as
a linear combination of these code words. Put these linearly independent code words
as a matrix G, where the rows of G are code words in C, and any code word in C
can be represented as a linear combination of the rows of G, and then G is called a
generating matrix of C. The number of rows of G determines the size of C. When
using a generating matrix G to represent a linear code, the code is often denoted as
CG.

The following theorem reveals a close connection between linear codes and the
correlation immunity of Boolean functions.

Theorem 4.1. If G is a generating matrix of an Œn; k; d� linear code, then for any
g.y/ 2 Fk, the correlation immunity of f .x/ D g.xGT/ is at least d � 1.

Proof. For any vector � 2 GFn.2/ with wt.�/ � d� 1, since the minimum distance
of C is d, � cannot be represented by a linear combination of the rows of G; hence,
rankŒGT I �T � D k C 1. By Lemma 4.2 we know that f .x/ D g.xGT/ is correlation
immune in z D h�; xi. Since � is an arbitrary vector with Hamming weight less than
d, by Lemma 4.1, the correlation immunity of f .x/ is at least d � 1. ut

In order for the function f to have correlation immunity of order larger than d�1,
by the definition of correlation immunity and Lemmas 4.1 and 4.2, we need to make
g.y/, or equivalently f .x/ D g.xGT/, to be correlation immune in every z D hx; �i
with wt.�/ D d. It is obvious that rankŒGT ; �T � D k if and only if � is a code word
of CG, the linear code generated by G. By Lemma 4.2 we know that for those �

with Hamming weight d which are not code words of CG, the function f is already
correlation immune in z D hx; �i. So we have

Lemma 4.3. Let G be a generating matrix of an [n; k; d] linear code, and f .x/ D
g.xGT/. Then f is correlation immune of order � d if and only if for every ˛ 2
GFk.2/ with wt.˛G/ D d; g.y/ is correlation immune in z D h˛; yi.

106 4 Correlation Immunity of Boolean Functions

Proof. It can be proven by setting � D ˛G and consequently we have h˛; yi D
hx; �i. By Lemma 4.1 the conclusion follows. ut

By generalizing Lemma 4.3, we have

Theorem 4.2. Let G be a generating matrix of an [n; k; d] linear code, and f .x/ D
g.xGT/. Then a necessary and sufficient condition for the function f to be correlation
immune of order m is that for every ˛ 2 GFk.2/ with d � wt.˛G/ � m; g.y/ is
correlation immune in z D h˛; yi.
Corollary 4.1. If the i-th row vector of G is a code word with nonzero minimum
Hamming weight d and the function g.y/ is not correlation immune in yi, then the
correlation immunity of f .x/ D g.xGT/ is exactly .d � 1/.

Now we consider the inverse question for general correlation immune functions.
Given an m-th-order correlation immune function f 2 Fn, can it be written as f .x/ D
g.xD/, where g 2 Fk is algebraic nondegenerate and DT is a generating matrix of an
[n; k; d] linear code with k � n and d � 1‹ The following theorem gives a positive
answer. Furthermore, it can be shown that the code generated by DT is unique.

Theorem 4.3. Let f .x/ 2 Fn. Then it can be written as f .x/ D g.xD/, where g 2 Fk

is algebraic nondegenerate and DT is a generating matrix of an [n; k; d] linear code
with k � n and d � 1. Moreover, the linear code is unique for any given f .x/.

Proof. From the discussion above, what we need to show is the uniqueness of the
code. On the contrary we suppose f .x/ D g1.xD1/ D g2.xD2/, where CDT

1
¤ CDT

2
.

Then there must exist a column ˛ of D1 which is linearly independent of the column
vectors of D2. Without loss of generality, let ˛ be the first column of D1. Then by
Lemma 4.2 we know that f .x/ is independent of h˛; xi, and equivalently g1.y/ must
be independent of y1. This is in contradiction with the nondegeneracy assumption
of g.x/. So the conclusion of Theorem 4.3 is true. ut

4.5 Construction of Correlation Immune Boolean Functions

Since correlation immune functions have resistance against correlation attack, in
order for the nonlinear combiner or the like to be secure against the correlation
attack, the employed nonlinear Boolean function should have certain degree of
correlation immunity. It should also be noted that it is misleading to strongly require
a high order of correlation immunity of Boolean functions, because there should
be a trade-off among the correlation immunity and other algebraic properties of
cryptographic Boolean functions. For example, in the extreme case when a Boolean
function in n variables is correlation immune of order n � 1, the function must be
linear or affine due to the relationship between the correlation immunity and the
algebraic degree. Nevertheless, the correlation immunity of Boolean functions has
been emphasized in public literatures (see, e.g., [1, 15, 16, 35]) as an important secu-
rity measure. Furthermore, correlation immunity may also lead to other interesting

4.5 Construction of Correlation Immune Boolean Functions 107

properties of Boolean functions which may be useful in cryptography. For example,
in [6] it is shown that the nonlinear points of a correlation immune function form
an orthogonal array [2], which is an important tool in the designing of message
authentication schemes (see [4]). Therefore, how to construct correlation immune
functions becomes practically important.

A necessary step to enable correlation immune functions to be practically
useful is to have good methods to efficiently construct such functions. There
are some constructions available from the public literatures. Here we explore the
constructions based on the availability assumption of good linear error-correcting
codes.

4.5.1 Known Constructions of Correlation Immune Boolean
Functions

There have been alternative ways for constructing correlation immune functions
(see, e.g., [5, 6, 10, 35, 36]). Some of them studied correlation immune functions
over a general finite field (e.g., [5, 10]). This book only considers Boolean functions
defined over the binary field GF.2/.

Lemma 4.4 ([36]). Let f1.x/; f2.x/ 2 Fn be two k-th-order correlation immune
functions with wt.f1/ D wt.f2/. Then

f .x1; : : : ; xnC1/ D xnC1f1.x/˚ .1˚ xnC1/f2.x/ (4.17)

is a k-th-order correlation immune function with wt.f / D 2wt.f1/.

Lemma 4.4 gives a construction of correlation immune functions based on known
correlation immune functions in fewer number of variables. This construction works
only when correlation immune functions in fewer number of variables are given.

Lemma 4.5 ([6]). Let f1.x/ 2 Fn be balanced. Write x D .x1 ˚ 1; : : : ; xn ˚ 1/.
Then

1. f .x1; : : : ; xnC1/ D f1.x/˚xnC1 is a .kC1/-th-order correlation immune function
in FnC1 if and only if f1.x/ is a k-th-order correlation immune function of Fn.

2. f .x1; : : : ; xnC1/ D f1.x/ ˚ xnC1.f1.x/ ˚ f1.x// is a .k C 1/-th-order correlation
immune function in FnC1 if and only if f1.x/ is a k-th-order correlation immune
function of Fn.

The two constructions above are both based on known correlation immune
functions. In [6] a more direct construction is proposed which can be described
as follows:

Lemma 4.6 ([6]). Let n1; n2; n be positive integers with n1 C n2 D n, r.y/; �i.y/ 2
Fn2 ; i D 1; : : : ; n1. Let

108 4 Correlation Immunity of Boolean Functions

f .xI y/ D
n1M

iD1

xi�i.y/˚ r.y/: (4.18)

Then f .xI y/ is a balanced Boolean function in Fn with correlation immunity of order

k � minfwt.�1.y/; : : : ; �n1 .y// W y 2 GFn2 .2/g:

4.5.2 Construction of Correlation Immune Boolean Functions
Based on A Single Code

Denote by ei the vector in GFn.2/ with 1 in its i-th coordinate and 0 elsewhere, and
we have

Theorem 4.4. Let f .x/ be a Boolean function in n variables and g.y/ a Boolean
function in k.k < n/ variables, and let f .x/ D g.xD/ D g.y/, where D is a binary
matrix of order n � k with rank.D/ D k. Let ŒD W eT

i � be the conjunction by D and
eT

i , which is an n � .kC 1/ matrix. If

rankŒD W eT
i � D kC 1; (4.19)

where eT
i is the transposed vector of ei, then f .x/ is statistically independent of xi.

Proof. Let A D ŒD W eT
i �. Since rank.A/ D kC 1, variables xA D .y1; y2; : : : ; yk; xi/

are independent ones. So for any a; b 2 GF.2/, we have

Prob.f .x/ D b j xi D a/

D Prob.g.y/ D b j xi D a/

D Prob.g.y/ D b/

D Prob.f .x/ D b/

This implies that f .x/ is statistically independent of xi. ut
Theorem 4.5. Let D be an n � k binary matrix and rank(D)=k. If

rankŒD W eT
i1 ; eT

i2 ; : : : ; eT
im � D kC m (4.20)

holds for any indices i1; i2; : : : ; im with 1 � i1 < i2 < : : : < im � n, then for
any Boolean function g.y/ in k variables, f .x/ D g.xD/ is a Boolean function in n
variables which is correlation immune of order � m.

4.5 Construction of Correlation Immune Boolean Functions 109

Proof. By the induction on Theorem 4.4, it is obvious. ut
From Theorem 4.5, it can be seen that the problem of constructing correlation

immune functions can be converted into the construction of matrices satisfying
Eq. 4.20. Once such a matrix is obtained, we can construct 22k

(the number of
Boolean functions in k variables) m-th-order correlation immune functions in n
variables (including the two trivial functions f D 0 and f D 1). Denote by Œn; k; d�

a linear error-correcting code with length n, dimension k, and minimum distance d.
The following theorem yields a way to construct matrices satisfying Eq. 4.20.

Theorem 4.6. Let D be an n�k binary matrix with rank(D)=k. Then Eq. 4.20 holds
for D if and only if DT is a generating matrix of an Œn; k; d� linear code, where d > m.

Proof. Sufficiency: Denote D D ŒdT
1 ; dT

2 ; : : : ; dT
k �, where dT

i is a vector in GFn.2/.
Since DT is a generating matrix of an Œn; k; d� linear code, d1; : : : ; dk; ei1 ; : : : ; eim
must be linearly independent vectors. Assume the contrary, and so suppose there
exist not-all-zero constants c1; c2; : : : ; ckCm 2 GF.2/ such that

c1d1 ˚ � � � ˚ ckdk ˚ ckC1ei1 ˚ � � � ˚ ckCmeim D 0

or

c1d1 ˚ � � � ˚ ckdk D ckC1ei1 ˚ � � � ˚ ckCmeim :

Since there is some ci to be nonzero, each side of the above equation is a nonzero
vector. However, the left side gives a vector with Hamming weight d > m and the
right side gives a vector with Hamming weight � m. This is a contradiction.

Necessity: Let the matrix D satisfy Eq. 4.20, i.e., for any 1 � i1 < i2 < : : : <

im � n, d1; : : : ; dk together with ei1 ; : : : ; eim must be linearly independent vectors.
So any linear combination of d1; : : : ; dk must be a vector with Hamming weight
> m (otherwise it would be equal to a linear combination of some ei1 ; : : : ; eim ;

contradiction). This proves that DT is a generating matrix of a linear code with
length n, dimension k, and minimum distance d > m. ut
Corollary 4.2. Let g.y/ 2 Fk, DT be a generating matrix of an Œn; k; d� linear code.
Then f .x/ D g.xD/ 2 Fn is a correlation immune function of order � d � 1.

By Corollary 4.2 we can form an algorithm for constructing correlation immune
functions.

Algorithm 4.1
(1) Choose a generating matrix G of an [n; k; d] linear code.
(2) Choose a Boolean function g.y/ in k variables.
(3) Then f .x/ D g.xGT / is a Boolean function in n variables with correlation immunity of order

� d � 1.

110 4 Correlation Immunity of Boolean Functions

4.5.3 Preliminary Enumeration of Correlation Immune
Boolean Functions

From Algorithm 4.1 we know that given a generating matrix of an Œn; k; d� linear
code, we can construct 22k

correlation immune functions in n variables with
correlation immunity of order � d � 1. In nonlinear combining generators, the
combining functions are usually required to be balanced or have good property
of being balanced. How many balanced correlation immune functions can be
constructed by Algorithm 4.1? First we give

Lemma 4.7. Let D be an n � k binary matrix with rank.D/ D k, and let g.y/ a
Boolean function in k variables. Then

Prob.g.xD/ D 1/ D Prob.g.y/ D 1/: (4.21)

Proof. This is true from the fact that .y1; : : : ; yk/ D .x1; : : : ; xn/D are k independent
variables if and only if rank(D)=k. ut

By Lemma 4.7 we know that the number of balanced correlation immune
functions constructed by Algorithm 4.1 is just the number of balanced Boolean
functions in k variables. So we have

Theorem 4.7. If there exists an Œn; k; d� linear code. Then the number of balanced
.d � 1/-th-order correlation immune functions in n variables is at least

�
2k

2k�1

�

 1p

�
22k� k�1

2 (4.22)

Proof. It is known that the number of balanced Boolean functions in k variables
is just the left side of Eq. 4.22. From Corollary 4.2 and Lemma 4.7, we have the
conclusion. ut

4.5.4 Construction of Correlation Immune Boolean Functions
Using a Family of Error-Correcting Codes

In order to construct more correlation immune functions, the possibility of using a
set of error-correcting codes is explored in this section. Recall that in general case
there are many different generating matrices for the same linear code. Theorem 4.8
gives the relationship between the correlation immune functions constructed by
Algorithm 4.1 by using different generating matrices.

Theorem 4.8. Let D be an n � k binary matrix and H be obtained from D by
nonsingular transforms on its columns, i.e., there exists a k � k binary nonsingular

4.5 Construction of Correlation Immune Boolean Functions 111

matrix P such that H D DP. Denote by SD D fg.xD/ W g.y/ 2 Fkg, SH D fg.xH/ W
g.y/ 2 Fkg. Then we have SD D SH.

Proof. Denote D D ŒdT
1 ; dT

2 ; : : : ; dT
k �, H D ŒhT

1 ; hT
2 ; : : : ; hT

k �, P D .pij/k�k. Since
H D DP, we have hT

i D
Lk

jD1 pjidT
j , i D 1; 2; : : : ; k. So for any Boolean function

g.y/ in k variables, we have

g.xH/ D g.xhT
1 ; xhT

2 ; : : : ; xhT
k /

D g
hLk

jD1 pj1.xdT
j /;
Lk

jD1 pj2.xdT
j /; : : : ;

Lk
jD1 pjk.xdT

j /
i

D g1.xdT
1 ; xdT

2 ; : : : ; xdT
k /

D g1.xD/

where g1 is another Boolean function in k variables. This shows that SH 	 SD. Since
D D HP�1, it can be shown that SD 	 SH. So we have SD D SH. ut

Theorem 4.8 shows that those correlation immune functions constructed by
Algorithm 4.1 do not rely on the choice of the generating matrices of a linear code.
If we apply a permutation to the generating matrix of some Œn; k; d� code, it results
in an Œn; k; d� code. What is the relationship between the sets of correlation immune
functions generated by Algorithm 4.1 based on those two different linear codes?
More generally we have

Theorem 4.9. Let C1 and C2 be Œn; k1; d� and Œn; k2; d� linear codes and G1 and G2

be their generating matrices, respectively. Let the dimension of the subcode C1\C2

be k.k � minfk1; k2g/. Then

ˇ̌
ˇSGT

1
\ SGT

2

ˇ̌
ˇ D 22k

(4.23)

Proof. Let G D

2

6664

˛1

˛2

:::

˛k

3

7775 be the generating matrix of C1 \ C2. Then C1 and C2 must

have generating matrices of the form

G1 D

2

6666666664

˛1

:::

˛k

ˇ1

:::

ˇk1�k

3

7777777775

; G2 D

2

6666666664

˛1

:::

˛k

�1

:::

�k2�k

3

7777777775

112 4 Correlation Immunity of Boolean Functions

respectively. It is easy to verify that for any Boolean function f1 2 Fk1 and f2 2 Fk2 ,
f1.xGT

1 / 2 SGT
2

if and only if f1 depends only on the first k variables, and f2.xGT
2 / 2

SGT
1

if and only if f2 depends only on the first k variables. So the number of functions
in SGT

1
\ SGT

2
is equal to the number of functions in k variables, i.e.,

ˇ̌
ˇSGT

1
\ SGT

2

ˇ̌
ˇ D 22k

:

ut
The following two theorems can easily be derived from Theorem 4.9:

Theorem 4.10. Let Ci be an Œn; ki; di� linear code having a generating matrix Gi,
i=1,2,. . . . If

maxfdim.Ci \ Cj/ W i ¤ jg D k: (4.24)

Then any function in the form f .xGT
i / with degree � kC 1 is not included in the setS

j¤i SGT
j
.

Theorem 4.11. Let Ci be an Œn; ki; di� linear code with generating matrix Gi; i D
1; 2; � � � . If dimŒCi\

�[j¤iCj
�
� D t, then any function in the form f .xGT

i / with degree
� t C 1 should not be included in the set

S
j¤i SGT

j
.

Based on Theorems 4.10 and 4.11, we can develop another algorithm as follows
which is the generalization of Algorithm 4.1.

Algorithm 4.2
(1) Choose Œn; ki; di� linear codes Ci with generating matrices Gi, i D 1; 2; � � � .
(2) Compute k D maxfdim.Ci

T
Cj/ W i ¤ jg, d D minfdi W i D 1; 2; : : :g.

(3) Let km D maxfki W i D 1; 2; : : :g. Choose a Boolean function gm in km variables, then f .x/ D
gm.xGT

m/ is a correlation immune function in n variables with correlation immunity of order
� d � 1.

(4) Execute the following two steps:

• For each i ¤ m, choose a Boolean function gi in ki variables with degree � k C 1, and then
fi.x/ D gi.xGT

i / is a correlation immune function in n variables with correlation immunity
� d � 1 and with degree � k C 1.

• For each i ¤ m, compute ti D dimŒCi \ �[j¤iCj

�
�; Ti D minfk; tig, and choose a Boolean

function gi in ki variables with degree � Ti C 1. Then fi.x/ D gi.xGT
i / is a correlation

immune function in n variables with correlation immunity of order � d �1 and with degree
� Ti C 1.

It should be noted that functions generated by the two steps in step 4 may be
in duplication, but they are not covered by the former three steps. Meanwhile, this
algorithm is by no means optimum; it only gives a way to generate some (not the
largest number) of the distinct correlation immune functions.

4.6 Lower Bounds on Enumeration of the Correlation Immune Functions. . . 113

4.6 Lower Bounds on Enumeration of the Correlation
Immune Functions Constructible from the
Error-Correcting Code Construction

In the following discussion, we shall use symbol �n.t/ to denote the number of
correlation immune functions in n variables with correlation immunity of order � t
and � 0

n.t/ to denote the number of such nontrivial functions. Now some lower bounds
can be derived.

Theorem 4.12.

�n.1/ � 22n�1 C 2

b.n�1/=2cX

iD1

�
n

2iC 1

�
(4.25)

where bac is the largest integer � a.

Proof. By Algorithm 4.2 we know that, with an Œn; n�1; 2� even weight linear code,
there are 22n�1

Boolean functions in n variables with correlation immunity of odd
order (including the trivial ones f D 0 and f D 1) which are constructible. For each
vector of length n and Hamming weight odd (�3), two more nontrivial functions
with correlation immunity of order even can be constructed. Take all these cases
into account, and we have the desired conclusion. ut
Theorem 4.13. If m � n=2, then

� 0
n.m/ �

nX

kDmC1

�
n
k

�
(4.26)

Proof. Directly from Theorem 4.10. ut
With the help of the following lemmas, we can discuss the case when m < n=2.

Lemma 4.8 ([40]). If integers n; k; d satisfy

V.n; d � 1/ < 2n�kC1; (4.27)

where V.n; d � 1/ DPd�1
iD0 .

n
i
/, then there must exist a binary Œn; k; d� linear code.

Lemma 4.9 (Estimation for a sum of binomial coefficients [22]). For integers
n; m, if m < n=2, then

mX

iD0

�
n
i

�
� 2nH2.m=n/ (4.28)

114 4 Correlation Immunity of Boolean Functions

where H2.x/ D �x log2 x � .1 � x/ log2.1 � x/.

By Lemmas 4.8 and 4.9, we have

Theorem 4.14. For any integers m, n, if m < n=2, then we have

�n.m/ � 22n. m
n /m.1� m

n /n�m
(4.29)

Proof. By Lemmas 4.8 and 4.9, if 2nH2.m=n/ < 2n�kC1, i.e., k < nŒ1�H2.m=n/�C1,
then an Œn; k; m C 1� binary linear code exists, and by Theorem 4.5, there are 22k

Boolean functions in n variables with correlation immunity of order � m which are
constructible. Let k D dn�nH2.m=n/e, where dae denotes the smallest integer� a.
Then we have

2k � 2n=2nH2.m=n/ D 2n.m=n/m.1 �m=n/n�m

Then the conclusion of Theorem 4.14 follows. ut
By the theory of error-correcting codes (e.g., [22]), we know that each irreducible

polynomial of degree t over GF.2m/ corresponds to a binary, irreducible Goppa
code of length n D 2m, dimension k � n � tm, and minimum distance d � 2t C
1. The theory of finite fields (see [21]) also shows that the number of irreducible
polynomials of degree t over GF.2m/, It satisfies

It � nt

t
Œ1 � 1

nt=2�1
� (4.30)

So we have It irreducible Goppa codes of length n D 2m, dimension k � n � tm,
and minimum distance d � 2tC1. Let their generating matrices be G1; G2; : : : ; GIt ,
respectively. Then with G1 we can construct 22k

Boolean functions in n variables
with correlation immunity of order � 2t. By Theorem 4.9, with each Gi; i D
2; 3; : : : ; It, we can construct at least 22k

=2 more correlation immune functions of
degree k. This can be summarized as

Theorem 4.15. Let n D 2m, m an integer, and t < n=m be an arbitrary integer.
Then

�n.2t/ � It C 1

2
� 22k � nt

2t
.1� 1

nt=2�1
/ � 22n=nt C 22n=nt�1 (4.31)

4.7 Examples

Here we list some examples to show the procedure of construction with correspond-
ing enumeration of correlation immune functions by a family of error-correcting
codes.

4.7 Examples 115

Example 1. For n D 3, with a generating matrix
	
1 1 0
0 1 1

of a [3,2,2] linear code,

we can construct 222 D 16 first-order correlation immune functions. With a
generating matrix (1 1 1) of [3,1,3] linear code, two more nontrivial second-order
correlation immune functions can be constructed. These are all the correlation
immune functions in three variables.

Example 2. For n D 4, with the matrix

2

4
1 1 0 0

0 1 1 0

0 0 1 1

3

5 ;

one can construct 223 D 256 functions with correlation immunity of odd order. With
the matrices (1 1 1 0), (1 1 0 1), (1 0 1 1), (0 1 1), there are 4 � 2 D 8 nontrivial
functions with correlation immunity of order 2.

Example 3. For n D 5, with the generating matrix of a [5, 4, 2] linear code, we can
construct 224 D 65;536 Boolean functions with correlation immunity of odd order.
With matrices

�
00111

11010

�
;

�
01011

10101

�
;

�
01101

10110

�
;

�
01110

11001

�
;

�
10011

11100

�
;

.222 � 4/� 5 D 60 nontrivial Boolean functions with correlation immunity of order
� 2 can be constructed. Note that the correlation immune functions in the form
g.xD/ based on these matrices have been covered by the former ones if and only if
g.y1; y2/ D y1 ˚ y2 ˚ c with c being 0 or 1. And with matrices

�
00111

11001

�
;

�
00111

11100

�
;

�
01011

10110

�
;

�
01011

11100

�
;

�
01101

10011

�
;

�
01101

11010

�
;

�
01110

10011

�
;

�
01110

10101

�
;

�
10101

11010

�
;

�
10110

11001

�
;

222�1 � 10 D 80 more functions of degree 2 and with correlation immunity of order
� 2 can be constructed. There are only 10 nontrivial functions with correlation
immunity of order 3 (which can be generated by using the matrices above). There
are only two nontrivial fourth-order correlation immune functions. The number of
correlation immune functions which can be constructed by Algorithm 4.2 is shown
in Table 4.1.

Table 4.1 Number of
constructible correlation
immune functions for n D 5

m 1 2 3 4 5

�5.m/ 65,676 160 14 2 2

116 4 Correlation Immunity of Boolean Functions

Example 4. For n D 6, with the generating matrix of a [6, 5, 2] even weight linear
code, we can construct 225 D 4;294;967;296 correlation immune functions with odd
order correlation immunity. With matrices

G1 D
2

4
1 0 0 0 1 1

1 0 1 1 0 0

0 1 0 1 1 0

3

5 ; G2 D
2

4
1 0 0 1 1 0

1 1 1 0 0 0

0 1 0 1 0 1

3

5

we can construct 223 D 256 nontrivial correlation immune functions with correla-
tion immunity of order � 2. Among them 23C1 D 16 affine functions (including
linear and trivial ones) have been covered by the former step. With matrices

G3 D
2

4
1 0 1 0 0 1

1 1 0 1 0 0

0 0 1 1 1 0

3

5 ; G4 D
2

4
1 0 1 0 1 0

1 1 0 0 0 1

0 0 0 1 1 1

3

5 ;

since

CG3 \ .CG1 [CG2 / D f.000000/; .111010/g;
CG4 \ .CG1 [CG2 [CG3 / D f.000000/; .101101/g;

where CG is the linear code with G as a generating matrix, then by Theorem 4.9,
there are .223 � 4/ � 2 D 504 more correlation immune functions of order � 2 that
are constructible. With matrices

2

4
100011

101100

010101

3

5 ;

2

4
100011

110100

001101

3

5 ;

2

4
100011

110100

001110

3

5 ;

2

4
100011

111000

001101

3

5 ;

2

4
100011

111000

001110

3

5 ;

2

4
100101

101010

010011

3

5 ;

2

4
100101

101010

010110

3

5 ;

2

4
100101

110010

001110

3

5 ;

2

4
100101

110010

011100

3

5 ;

2

4
100101

111000

001110

3

5 ;

2

4
100101

111000

010110

3

5 ;

2

4
100110

101001

010011

3

5 ;

2

4
100110

101001

010101

3

5 ;

2

4
100110

110001

001101

3

5 ;

2

4
100110

110001

011100

3

5 ;

2

4
100110

111000

001101

3

5 ;

2

4
101001

110010

000111

3

5 ;

2

4
101001

110010

001110

3

5 ;

2

4
101001

110100

000111

3

5 ;

2

4
101010

110001

001101

3

5 ;

4.8 Exhaustive Construction of Correlation Immune Boolean Functions 117

Table 4.2 Number of
constructible correlation
immune functions for n D 6

m 1 2 3 4 5 6

�6.m/ 4,294,968,172 880 136 16 4 2

2

4
101010

110100

000111

3

5 ;

2

4
101010

110100

001101

3

5 ;

2

4
101100

110001

000111

3

5 ;

2

4
101100

110001

010110

3

5 ;

2

4
101100

110010

000111

3

5 ;

2

4
101100

110010

010101

3

5 ;

we can construct 223�1 � 26 D 3328 correlation immune functions of degree 3
and with correlation immunity of order � 2. For the construction of correlation
immune functions of order� 3, we can use the following matrices, which can yield
222�1 � 15 D 120 functions of degree 2 (it can easily be verified that they yield
functions with correlation immunity of order exactly 3):

�
001111

110011

�
;

�
011011

101101

�
;

�
011101

100111

�
;

�
010111

101110

�
;

�
011110

101011

�
;

�
001111

110100

�
;

�
001111

110110

�
;

�
010111

101011

�
;

�
010111

101101

�
;

�
011011

100111

�
;

�
011011

101110

�
;

�
011101

101011

�
;

�
011101

101110

�
;

�
011110

100111

�
;

�
011110

101101

�
:

The number of nontrivial fourth-order correlation immune functions is 12, which
can be constructed based on the following matrices and have not been covered by
the above procedures: (011111), (101111), (110111), (111011), (111101), (111110).
Only two nontrivial correlation immune functions can be constructed based on the
matrix (111111). Table 4.2 shows the number of such functions for n D 6.

4.8 Exhaustive Construction of Correlation Immune Boolean
Functions

Theoretically by using Theorems 4.1 and 4.2, the complete set of correlation
immune functions can be constructed. By applying Theorem 4.2, we can see when
the correlation immunity is larger than or equal to the minimum distance of the code.
In order to do this, we need to construct Boolean functions which are correlation
immune in some of their variables and/or their linear combinations. Denote by
Oxi D .x1; : : : ; xi�1; xiC1; : : : ; xn/. Then we have

118 4 Correlation Immunity of Boolean Functions

Lemma 4.10. Let f .x/ D xif1. Oxi/˚ f2. Oxi/. Then f .x/ is correlation immune in xi if
and only if

wt.f1 ˚ f2/ D wt.f2/: (4.32)

Proof. By writing f .x/ D xi.f1. Oxi/˚ f2. Oxi//˚ .1˚ xi/f2. Oxi/, it can be seen that f .x/

is correlation immune in xi if and only if wt.f1 ˚ f2/ D wt.f2/ D 1
2
wt.f /: ut

Lemma 4.11. Let f .x/ 2 Fn. Then deg.f / < n if and only if the Hamming weight
of f .x/ is an even number.

In [36] it was shown that if f .x/ 2 Fn is correlation immune (of order� 1), then
deg.f / � n � 1. We further prove that

Lemma 4.12. Let f .x/ 2 Fn. If deg.f / D n then f .x/ is not correlation immune in
any linear combination of its variables.

Proof. Assume the contrary, f .x/ is correlation immune in h˛; xi, and without
loss of generality the first coordinate of ˛ is assumed to be not zero. Denote
by ıi the vector in GFn.2/ with i consecutive ones followed by zeros. Let D D
Œ˛T ; ıT

2 ; : : : ; ıT
n �. Then g.x/ D f .xD�1/ is correlation immune in x1 and hence can

be written as g.x/ D x1g1. Ox1/˚ g2. Ox1/. By Lemma 4.10, we know that

wt.g1/ D wt..g1 ˚ g2/˚ g2/

D wt.g1 ˚ g2/C wt.g2/ � 2wt..g1 ˚ g2/ � g2/

D 2wt.g2/� 2wt..g1 ˚ g2/ � g2/

is an even number, and by Lemma 4.11 we have deg.f / D deg.g/ D deg.g1/C 1 <

.n� 1/C 1 D n. This is a contradiction. So the conclusion of Lemma 4.12 must be
true. ut

Let f .x/ D g.xGT/ be a Boolean function in Fn, where g is algebraically
nondegenerate, and G is a generating matrix of an [n; k; d] linear code. It is easy
to see that by a linear transform on the rows of G, we can always make the row
vectors of G satisfy

wt.g1/ � wt.g2/ � � � � � wt.gk/;

and there does not exist another basis ˇ1; ˇ2; : : : ; ˇk of CG with wt.ˇ1/ � wt.ˇ2/ �
� � � � wt.ˇk/ such that wt.ˇi/ < wt.gi/ for some 1 � i � k. Constructions can
always be based on this assumption. Such a matrix will be called a minimum weight
generating matrix.

It is noticed that under a permutation on the variables of a Boolean function, the
correlation immunity of the function is an invariant. To simplify the problem, we
will treat two correlation immune functions as equivalent if they are equivalent by
a permutation on the variables. For the function f .x/ D g.xGT/, a permutation on
x is equivalent to the same permutation on the column vectors of G. Complements
of correlation immune functions can be left out in the early steps and then added at
last. So the exhaustive construction can be outlined as follows:

4.9 An Example of Exhaustive Construction of Correlation Immune Functions 119

Algorithm 4.3 For all integers k 2 f1; 2; : : : ; ng, conduct the following steps:
(1) Search the minimum weight generating matrices Gi; i 2 I, of Œn; k� codes such that they are

not column equivalent, where I is the set of complete index.
(2) List all nontrivial Boolean functions g.y/ 2 Fk such that g.0/ D 0.
(3) Match each g.y/ with every Gi to see if fi.x/ D g.xGT

i / is correlation immune of any order
according to Theorem 4.2.

(4) For those fi.x/ with a certain order of correlation immunity, permute their variables to get an
equivalent class of correlation immune functions.

(5) Complement every correlation immune function obtained above.

Theoretically the above steps can exhaustively generate all the correlation
immune functions. However, because of the large number of correlation immune
functions in n variables when n is sufficiently large, it is not surprising to see that the
above steps are not practically efficient in terms of computational complexity (such
as step 3). So more efficient constructions of specific correlation immune functions
are still required.

4.9 An Example of Exhaustive Construction of Correlation
Immune Functions

It is not surprising that to accomplish an exhaustive construction of correlation
immune functions in n variables is not practical when n is fairly large, even if the
method described in Sect. 4.5 is used. However, as an interesting practice, we show
here a small example of how all the correlation immune functions are constructed.

We consider the correlation immunity of Boolean functions in n D 4 variables.
All correlation immune functions will be presented by means of representatives,
i.e., their complements and/or variable-permutation equivalences. First of all we
know that

f .x1; x2; x3; x4/ D c1x1 ˚ c2x2 ˚ c3x3 ˚ c4x4

is correlation immune of order wt.�/ � 1 if � D .c1; c2; c3; c4/ ¤ 0 or 4 if
� D 0. Then we consider functions in the form g.xGT/, where g is an algebraic
nondegenerate Boolean function in two variables and G is a generating matrix of
[4, 2] code. Since the function g.y/ has only two variables, it is easy to see that g
is algebraically nondegenerate if and only if deg.g/ D 2, and by Lemma 4.12 such
a function is not correlation immune in any linear combination of its variables. All
possible representatives of such functions are as follows:

y1y2;

y1y2 ˚ y1;

y1y2 ˚ y2;

y1y2 ˚ y1 ˚ y2:

120 4 Correlation Immunity of Boolean Functions

In order for the constructed function to be correlation immune of order at least one,
the only possible codes useful are [4, 2, 2] codes. Recall that a permutation on the
column vectors of matrix G is equivalent to the same permutation performed on
the variables of the constructed correlation immune functions. So under column
permutation equivalence, we have three different linear codes with matrices

�
1 1 0 0

1 0 1 0

�
;

�
1 1 0 0

0 0 1 1

�
;

�
1 1 0 0

1 0 1 1

�
:

By Corollary 4.1 we know that all the constructed functions (with 12
representatives) are exactly first-order correlation immune. All these functions
also have the properties that algebraic degree = 2, nonlinearity = 4, number of
invariant linear structures = 4, number of complementary linear structures = 0.

Now we consider algebraic nondegenerate functions in three variables and
the family of [4, 3] linear codes. It is known that there are totally 223 D 256

Boolean functions in three variables. Among them half are of degree 3 which
are algebraically nondegenerate according to Corollary 2.1 (they are useless in
constructing correlation immune functions according to Corollary 4.1 because every
[4, 3] linear code has a code word with Hamming weight one), and 23C1 D 16 are
affine ones. So only 112 functions are of degree 2 with half being complements of
the other. It can be verified that those algebraically degenerate functions can always
be written as y1y2, y1y2 ˚ y1, y1y2 ˚ y2, and y1y2 ˚ y1 ˚ y2 and their complements.
When y1 and y2 are as follows (order is ignored):

�
y1 D x1 ˚ x2

y2 D x3

;

�
y1 D x1 ˚ x3

y2 D x2

;

�
y1 D x2 ˚ x3

y2 D x1

;

�
y1 D x1 ˚ x2

y2 D x2 ˚ x3

;

they form 16 algebraically degenerate functions of degree 2. When y1 D 1 while y2

is any Boolean function in two variables from x1; x2; x3 with degree 2, y1y2 has 12
different forms. Altogether we have 28 algebraically degenerate functions of degree
2 and with constant term 0. So there are 28 algebraically nondegenerate Boolean
functions of degree 2 which have constant term 0, namely,

x1x2 ˚ fx3; x1 ˚ x3; x2 ˚ x3; x1 ˚ x2 ˚ x3g;
x1x3 ˚ fx2; x1 ˚ x2; x2 ˚ x3; x1 ˚ x2 ˚ x3g;
x2x3 ˚ fx1; x1 ˚ x2; x1 ˚ x3; x1 ˚ x2 ˚ x3g;
x1x2 ˚ x1x3 ˚ fx2; x3; x1 ˚ x2; x1 ˚ x3g;
x1x2 ˚ x2x3 ˚ fx1; x3; x1 ˚ x2; x2 ˚ x3g;
x1x3 ˚ x2x3 ˚ fx1; x2; x1 ˚ x3; x2 ˚ x3g;
x1x2 ˚ x1x3 ˚ x2x3 ˚ f0; x1 ˚ x2; x1 ˚ x3; x2 ˚ x3g

It is easy to verify that no function above is correlation immune. So by Theorem 4.2,
in order for the function g.xGT/ to be correlation immune, there are at most two
linearly independent code words with Hamming weight one. Therefore, only the

4.9 An Example of Exhaustive Construction of Correlation Immune Functions 121

following minimum weight generating matrices of [4, 3] linear codes need to be
considered (without being column permutation equivalent):

G1 D
2

4
1 1 0 0

0 1 1 0

0 0 1 1

3

5 ; G2 D
2

4
1 0 0 0

0 1 1 0

0 0 1 1

3

5 and G3 D
2

4
1 0 0 0

0 1 0 0

0 0 1 1

3

5 :

Matching the 28 functions above with G1, we can construct 28 first-order correlation
immune functions. These functions are actually constructed based on Theorem 4.1
and have been discussed in [42]. By Theorem 4.2, if g.y/ is correlation immune in
y1, then g.xGT

1 / is correlation immune of order� 1. Among the above algebraically
nondegenerate functions, only the following ones are correlation immune in x1:

x1x2 ˚ fx3; x1 ˚ x3; x2 ˚ x3; x1 ˚ x2 ˚ x3g
x1x3 ˚ fx2; x1 ˚ x2; x2 ˚ x3; x1 ˚ x2 ˚ x3g

x1x2 ˚ x1x3 ˚ fx2; x3; x1 ˚ x2; x1 ˚ x3g:

Matching them with G2, we can generate 12 first-order correlation immune func-
tions in four variables. By permutations on the variables, more correlation immune
functions can be generated. Note that all these functions are not constructible by the
methods in [42].

It can also be verified that functions

x1x2 ˚ fx3; x1 ˚ x3; x2 ˚ x3; x1 ˚ x2 ˚ x3g

are also correlation immune in x2 as well. Matching with G3, we can get four
more first-order correlation immune functions in four variables which are not
constructible by the methods in [42] either. In addition, all of the above-constructed
functions also have the properties that algebraic degree = 2, nonlinearity = 4,
number of invariant linear structures = 2, and number of complementary linear
structures = 2.

By computing search, we found that there are 192 functions in F4 which are
algebraically nondegenerate and with first-order correlation immunity. They also
have the properties that algebraic degree = 3, nonlinearity = 4, number of invariant
linear structures = 1, and number of complementary linear structures = 0, and
propagation criterion order = 0. Among them 96 are listed below by truth table
expression, and the other 96 are just the complements of those in the list.

0001011010011000 0001011010100100 0001011011000010

0001100101101000 0001100110100100 0001100111000010

0001101001100100 0001101010010100 0001101011000001

0001110001100010 0001110010010010 0001110010100001

0010010101101000 0010010110011000 0010010111000010

0010011001011000 0010011010010100 0010011011000001

0010100101011000 0010100101100100 0010100111000001

122 4 Correlation Immunity of Boolean Functions

0010110001010010 0010110001100001 0010110010010001

0011010001001010 0011010010000110 0011010010001001

0011100001000110 0011100001001001 0011100010000101

0011110111011010 0011110111100110 0011110111101001

0011111011010110 0011111011011001 0011111011100101

0100001101101000 0100001110011000 0100001110100100

0100011000111000 0100011010010010 0100011010100001

0100100100111000 0100100101100010 0100100110100001

0100101000110100 0100101001100001 0100101010010001

0101001000101100 0101001010000110 0101001010001001

0101100000100110 0101100000101001 0101100010000011

0101101110111100 0101101111100110 0101101111101001

0101111010110110 0101111010111001 0101111011100011

0110000100101100 0110000101001010 0110000110001001

0110001000011100 0110001001001001 0110001010000101

0110010000011010 0110010000101001 0110010010000011

0110011110111100 0110011111011010 0110011111101001

0110100000011001 0110100000100101 0110100001000011

0110101101111100 0110101111011001 0110101111100101

0110110101111010 0110110110111001 0110110111100011

0110111001111001 0110111010110101 0110111011010011

0111011010011110 0111011010101101 0111011011001011

0111100101101110 0111100110101101 0111100111001011

0111101001101101 0111101010011101 0111101011000111

0111110001101011 0111110010011011 0111110010100111

All the correlation immune functions in four variables can be obtained by a
permutation on the variables and by counting the complements of the above-
constructed functions.

4.10 Construction of High-Order Correlation Immune
Boolean Functions

From the above, every correlation immune function can be written as g.xD/, where
g is an algebraic nondegenerate function and DT is a minimum weight generating
matrix of an [n; k; d] linear code. In this section, we will concentrate mainly on the
construction of those functions whose correlation immunity is no less than d.

For any Boolean function f .x/ 2 Fn, set

�f D fw 2 GFn.2/ W f .x/ is correlation immune in hw; xig: (4.33)

Then by Theorem 4.2, we have

4.10 Construction of High-Order Correlation Immune Boolean Functions 123

Theorem 4.16. Let g.y/ 2 Fk and G be a generating matrix of an [n; k; d] linear
code. Set f .x/ D g.xGT/. Then the correlation immunity of f .x/ is

min
˛ 62�g

wt.˛G/ � 1: (4.34)

Moreover we have

AD.f / D n� kC AD.g/: (4.35)

where AD.f / is the degeneracy of f .x/ as defined in Definition 2.4.

Proof. The former part (Eq. 4.34) comes directly from Theorem 4.2. So we only
need to prove the latter part. Assume AD.g/ D t, i.e., there exists an algebraic
nondegenerate function g1 2 Fk�t and a k�.k�t/ matrix D such that g.y/ D g1.yD/.
So f .x/ D g1.xGTD/, and AD.f / � n � .k � t/ D n � kC AD.g/.

On the other hand, since rank.G/ D k, we can assume, without loss of
generality, that the first k columns of G are linearly independent, and we write
G D ŒG1IG2�. Then g.y/ D f .yG�1

1 ; 0; � � � ; 0/. This means that if f can be
algebraically degenerated to a function in r variables, then g can be algebraically
degenerated to a function in no more than r variables, i.e., k � AD.g/ � n � AD.f /

or AD.f / � n � kC AD.g/.
In light of the above discussion, the conclusion follows. ut
In order to determine �f for a general Boolean function f .x/ 2 Fn, we have

Theorem 4.17. Let f .x/ 2 Fn and w 2 GFn.2/. Then w 2 �f if and only if

Sf .w/ D 0: (4.36)

Proof. It is easy to see that

w 2 �f ” f .x/ is correlation immune in hw; xi
” Prob.f .x/ D 1jhw; xi D 0/ D Prob.f .x/ D 1jhw; xi D 1/

”
X

hw; xiD0

f .x/ �
X

hw; xiD1

f .x/ D 0

” Sf .w/ D
X

x

f .x/.�1/hw; xi D
X

hw; xiD0

f .x/ �
X

hw; xiD1

f .x/ D 0:

Hence, the conclusion of the theorem holds. ut
By Theorem 4.17, Eq. 4.34 can be rewritten as

min
˛W Sg.˛/¤0

wt.˛G/ � 1: (4.37)

124 4 Correlation Immunity of Boolean Functions

It is seen that using the techniques of Walsh transforms, the correlation immunity of
f .x/ D g.xGT/ can easily be determined by Eq. 4.37.

Note that g.y/ can always be chosen as algebraically nondegenerate which
enables us to construct correlation immune functions with least possible algebraic
degeneration. When we use Theorem 4.16 to construct correlation immune func-
tions, it is noticed that an [n; k; d] linear code normally has several code words
of Hamming weight d. So in general it is hard to find a Boolean function which
can match a generating matrix of this linear code to generate correlation immune
functions of order � d. However, it is easy to find Boolean functions which are
correlation immune in part of their variables and their linear combinations as shown
in the following:

Corollary 4.3. Let g.y/ 2 Fk be correlation immune in its first t variables and their
nonzero linear combinations. Let G be a generating matrix of an Œn � t; k � t; d�

linear code. Then the correlation immunity of function f .x/ D g.x OGT/ is at least
d � 1, where

OG D
�

D 0

0 G

�
;

and D is an arbitrary nonsingular binary matrix of order t � t.

We note that when Corollary 4.3 is used to construct correlation immune
functions, the size of D is normally small. For special cases, we have

Corollary 4.4. If G is a generating matrix of an [n; k; d] linear code and the
row vectors of G include all the code words with Hamming weight d, then for
any algebraic nondegenerate Boolean function g.y/ in k variables with correlation
immunity of order t, f .x/ D g.xGT/ is a correlation immune function of order tC 1.

4.11 Construction of Correlation Immune Boolean Functions
with Other Cryptographic Properties

The correlation immunity, being another cryptographic requirement, has some
conflict with the algebraic degree. Siegenthaler [36] has proved the relationship
between the correlation immunity m and the algebraic degree d of a Boolean
function, which says

Theorem 4.18 ([36]). Let f .x/ 2 Fn has algebraic degree d and correlation
immunity m. Then

mC d � n: (4.38)

Furthermore, if f .x/ is balanced, then

mC d � n � 1: (4.39)

4.11 Construction of Correlation Immune Boolean Functions with Other. . . 125

One remarkable result on the spectral description of correlation immunity of
Boolean functions is in [44], which says:

Lemma 4.13 (Xiao-Massey). Let f .x/ 2 Fn. Then f .x/ is correlation immune of
order k if and only if Sf .w/ D 0 for every w with 1 � wt.w/ � k.

It is noted that the Xiao-Massey theorem is a direct corollary of Theorem 2.22.
Since correlation immunity is not the only cryptographic measure, and other

cryptographic requirements may have conflicts with the correlation immunity, so
when constructing Boolean functions with multiple cryptographic properties, one
or more of the properties have to sacrifice to certain degree. From the discussion
above, we see that correlation immune functions usually have a good structure, so
we will use this structure as a basis to add on more other cryptographic properties.

4.11.1 Correlation Immune Functions with Good Balance

From the viewpoint of cryptographic applications, we aim to construct correlation
immune functions with as good balance as possible. Define the bias of a Boolean
function f .x/ 2 Fn to be

ı.f / D
2n�1X

xD0

.�1/f .x/:

Then the bias of correlation immune functions given in the form f .x/ D g.xGT/ can
easily be controlled by choosing g.y/ to have a good balance property.

Lemma 4.14. Let f .x/ D g.xD/, where g is an algebraically nondegenerate
Boolean function in k variables and DT is a generating matrix of an [n; k; d] linear
code. Then we have

ı.g/ D ı.f /;

In particular, f .x/ is balanced (when ı.f / D 0) if and only if g.y/ is balanced as
well.

Proof. Denote by KerD D fx W xD D 0g. For any y 2 GFk.2/, since rank.D/ D k,
there must exist an x 2 GFn.2/ such that y D xD. So x C KerD is the set of all
solutions of equation xD D y. This means that when there exists an y such that
g.y/ D 1, there will exist 2n�k vectors x such that xD D y and f .x/ D 1. So we have
that wt.f / D 2n�k � wt.g/. By the definition of bias, the conclusion of Lemma 4.14
holds. ut

126 4 Correlation Immunity of Boolean Functions

4.11.2 Correlation Immune Functions with High Algebraic
Degree

Algebraic degree is one criterion to measure the nonlinearity of Boolean functions.
In practical applications, a correlation immune function is required to have as high
algebraic degree as possible. Otherwise there may be a risk in decreasing its security
when the low-order approximation technique [31] is applied.

Siegenthaler proved in [36] that for any Boolean function f 2 Fn which is
correlation immune of order m, its algebraic degree deg.f / satisfies mCdeg.f / � n.
With the theory of error-correcting codes, we have the following conclusion:

Theorem 4.19. If there exists an Œn; k; d� maximum distance separable (MDS) code,
then the number of .d � 1/-th-order correlation immune functions satisfying .d �
1/C deg.f / D n is at least 22k�1.

In order to prove Theorem 4.19, the following lemmas are needed.

Lemma 4.15. Let f .x/ 2 Fn and A be an n � n invertible binary matrix. Then
deg.f .xA// D deg.f .x//.

Proof. Denote f1.x/ D f .xA/. It is obvious that the expansion of f .xA/ does not
generate a term with degree > deg.f .x//, so we have deg.f1.x// � deg.f .x//. On
the other hand, from the invertibility of A, we have f .x/ D f1.xA�1/ and hence
deg.f .x// � deg.f1.x//. Therefore, deg.f1.x// D deg.f .x//: ut
Lemma 4.16. Let D be an n�k .k � n/ binary matrix and let f .x/ D g.xD/, where
g 2 Fk. Then deg.f / D deg.g/ holds for any g if and only if rank.D/ D k.

Proof. By row transformation, matrix D can be written as

D D A

�
Ir 0

0 0

�
P

where A is an n � n invertible matrix, Ir is an r � r (r � k) identity matrix, and P is
a k � k permutation matrix. Then

f .x/ D g.xD/ D g.xA

�
Ir 0

0 0

�
P/

Denote f1.x/ D f .xA�1/, g1.y/ D g.yP/, where x 2 GFn.2/ and y 2 GFk.2/. Then

f1.x/ D f .xA�1/

D g.xA�1D/

D g.x

�
Ir 0

0 0

�
P/

4.11 Construction of Correlation Immune Boolean Functions with Other. . . 127

D g1.x

�
Ir 0

0 0

�
/

D g1.x1; : : : ; xr; 0; : : : ; 0/:

From the equation above, it can be seen that

deg.f1/ D deg.g1.x1; : : : ; xr; 0; : : : ; 0// D deg.g1.y//

holds for any g1.y/ 2 Fk if and only if r D k, i.e., if and only if rank.D/ D k. Notice
that by Lemma 4.15, we have deg.g1/ D deg.g/ and deg.f1/ D deg.f /. So we get
that deg.f / D deg.g/ holds for any g.y/ 2 Fk if and only if rank.D/ D k. ut

From Lemma 4.16 we see that the maximum algebraic degree of the function
written as f .x/ D g.xD/ is k. In this case by Corollary 4.1 and Lemma 4.12, the
correlation immunity of f .x/ is exactly d � 1, where DT is the generating matrix of
an Œn; k; d� linear code. This is consistent with Siegenthaler’s inequality [36]. The
discussion above also shows that we can construct correlation immune functions
which meet the equality (maximum correlation immunity/algebraic degree) of
Siegenthaler’s inequality.

Proof of Theorem 4.19: Given an Œn; k; d� MDS code with generating matrix G, we
have d D n � kC 1 or k C d � 1 D n. For any Boolean function in k variables, by
Algorithm 4.1, f .x/ D g.xGT/ is a Boolean function in n variables with correlation
immunity at least d � 1. By Lemma 4.16, we have deg.f / D deg.g/, and it is easy
to verify that g1.xGT/ ¤ g2.xGT/ if g1 ¤ g2, so the number of Boolean functions
in k variables with degree k is no more than the number of Boolean functions in n
variables of degree k and with correlation immunity at least d�1. It is easy to verify
that the number of Boolean functions in k variables with degree k is 22k�1, so the
conclusion of Theorem 4.19 holds. ut

4.11.3 Correlation Immune Functions with High Nonlinearity

Nonlinearity of Boolean functions is a measure of the distance of Boolean functions
to the nearest affine ones [29]. If the nonlinearity of a Boolean function is very low,
then it can be approximated by an affine Boolean function with high correlation
with the affine function [14] and hence is cryptographically insecure. By the Walsh
spectrum representation of nonlinearity as in Eq. 3.1 and the conversion between the
two types of Walsh transforms, it is easy to deduce that

Lemma 4.17.

nl.f / D minfwt.f /; 2n � wt.f /; 2n�1 �maxfjSf .!/j W ! ¤ 0g: (4.40)

128 4 Correlation Immunity of Boolean Functions

Lemma 4.18. Let f .x/ D g.xGT/, where g is an algebraic nondegenerate Boolean
function in k variables and G is a generating matrix of an [n; k; d] linear code. Then

nl.f / � 2n�knl.g/:

Proof. By the definition of nonlinearity, there exists an affine function l.y/ in k
variables such that wt.g.y/˚ l.y// D nl.g/. Hence, we have wt.g.xGT/˚ l.xGT // D
2n�knl.g/ and again by the definition we have nl.f / � 2n�knl.g/. ut

Furthermore, we can prove

Theorem 4.20. Let D be an n � k (k � n) binary matrix. Then rank.D/ D k if and
only if for any Boolean function g.y/ 2 Fk and f .x/ D g.xD/, and we have

nl.f / D 2n�knl.g/: (4.41)

In order to prove Theorem 4.20, the following lemma will be used.

Lemma 4.19. Let D D
�

D1

0

�
be an n � k binary matrix, where D1 is a k � k

nonsingular matrix. Let f .x/ D g.xD/. Then we have

nl.f / D 2n�knl.g/:

Proof. For any vector ˛ 2 GFn.2/, we will write ˛1 D .˛1; � � � ; ˛k/. It is easy to
see that

KerD D f.0; : : : ; 0; xkC1; : : : ; xn/ W xi 2 GF.2/g;
.KerD/? D f.x1; : : : ; xk; 0; : : : ; 0/ W xi 2 GF.2/g:

Noticing that GFn.2/ D .KerD/? ˚ KerD, we have

Sf .!/ DP
x f .x/.�1/h!; xi

DP
x g.xD/.�1/h!; xi

DP
x2.KerD/?

P
y2KerD g..x˚ y/D/.�1/h!; .x˚y/i

DP
x2.KerD/?

g.xD/.�1/h!; xiP
y2KerD.�1/h!; yi:

By Lemma 1.1 we know that Sf .!/ D 0 if ! 62 .KerD/?. If ! 2 .KerD/? we have

Sf .!/ D 2n�k
P

x2.KerD/?

g.xD/.�1/h!; xi

D 2n�k
P

x2.KerD/?

g.x1D1/.�1/h!1; x1i (by Theorem 1.5)
D 2n�kSg.!1.D

�1
1 /T/:

4.11 Construction of Correlation Immune Boolean Functions with Other. . . 129

This means that

maxfjSf .!/j W ! ¤ 0g D maxf2n�kjSg.!1/j W !1 ¤ 0g

Notice that wt.f / D 2n�kwt.g/. By Lemma 4.17 we have nl.f / D 2n�knl.g/. ut
Proof of Theorem 4.20:
Necessity: Since rank.D/ D k, there must exist a nonsingular n � n matrix R such

that RD D D0 D Œ
D1

0
�. Write

f1.x/ D f .xR/ D g.xRD/ D g.xD0/:

Then by Lemma 4.19 we have nl.f1/ D 2n�knl.g/, and by Theorem 3.2 we have
nl.f / D nl.f1/. So the conclusion follows.

Sufficiency: On the contrary we assume that rank.D/ < k. Then the columns of
D D ŒdT

1 ; � � � ; dT
k � are linearly dependent, i.e., for some i-th column of D, there must

exist aj 2 GF.2/ such that

di D a1d1 ˚ � � � ˚ ai�1di�1 ˚ aiC1diC1 ˚ � � � ˚ akdk:

If di is an all-zero vector, then for any j ¤ i, set g.y/ D yiyj to be a quadratic
function which has nonzero nonlinearity, f .x/ D g.xD/ D .xdT

i /.xdT
j / D 0 has zero

nonlinearity. If di is a nonzero vector, then set g.y/ D yi.a1y1 ˚ � � � ˚ ai�1yi�1 ˚
aiC1yiC1 ˚ � � � ˚ akyk/ to be a quadratic function which has nonzero nonlinearity.
Then

f .x/ D g.xD/

D .xdT
i /.a1xdT

1 ˚ � � � ˚ ai�1xdT
i�1 ˚ aiC1xdT

iC1 ˚ � � � ˚ akxdT
k /

D .xdT
i /.xdT

i /

D xdT
i

is a linear function which has zero nonlinearity. This is a contradiction with Eq. 4.41,
and hence the conclusion of Theorem 4.20 is true. ut

From Theorem 4.20 we know that if a correlation immune function is constructed
in the form f .x/ D g.xD/, where D is an n � k matrix with rank.D/ D k, then
f .x/ has maximum possible nonlinearity if and only if g.x/ has the maximum
possible nonlinearity as well. There have been alternative methods for constructing
Boolean functions with high nonlinearity (refer to [7–9, 35, 46]). With Boolean
functions having high-order nonlinearity, correlation immune functions having high
nonlinearity can be constructed according to Theorem 4.20.

130 4 Correlation Immunity of Boolean Functions

4.11.4 Correlation Immune Functions with Propagation
Criterion

Unlike other properties, the propagation criterion is not inheritable from g to f
for the expression f .x/ D g.xD/, i.e., g satisfying propagation criterion does not
guarantee that f does. For example, let

D D

2

66666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 1 1

3

77777775

:

Although g.y/ D y1y2˚y2y3˚y3y4˚y4y5˚y1y5 satisfies the propagation criterion
of order 4, f .x/ D g.xD/ D x1x2 ˚ x2x3 ˚ x3x4 ˚ x4x5 ˚ x1x5 ˚ x6 does not satisfy
the propagation criterion of order 1. In order to study the way that the propagation
property of f relates to that of g more precisely, for f .x/ 2 Fn, we denote by

NP.f / D f˛ 2 GFn.2/ W f .x/˚ f .x˚ ˛/ is not balancedg:

Theorem 4.21. Let f .x/ D g.xD/, where g.y/ 2 Fk and D is an n�k binary matrix
with rank.D/ D k. Then the propagation criterion order of f .x/ is

PC.f / D min
˛D 2 NP.g/

wt.˛/ � 1:

Proof. We first prove that ˛ 2 NP.f / if and only if ˛D 2 NP.g/. It is easy
to verify (refer the proof of Lemma 4.14) that when rank.D/ D k, xD forms k
random variables provided that x is a collection in n random variables with uniform
probability distribution. So g.xD/ ˚ g.xD ˚ ˇ/ is unbalanced if and only if ˇ 2
NP.g/. So ˛ 2 NP.f /” f .x/˚ f .x˚˛/ is unbalanced” g.xD/˚g.xD˚˛D/

is unbalanced” ˛D 2 NP.g/. By the definition that

PC.f / D min
˛ 2 NP.f /

wt.˛/ � 1

the conclusion follows. ut
Particularly, when g satisfies the propagation criterion of the maximum order k,

i.e., g is a bent function (or g is perfect nonlinear and k is even in this case), we have

4.11 Construction of Correlation Immune Boolean Functions with Other. . . 131

Corollary 4.5. Let g 2 Fk and g satisfy the propagation criterion of order k, i.e., g
is perfect nonlinear, and let D be an n � k matrix with rank.D/ D k. Then f .x/ D
g.xD/ satisfies the propagation criterion of order k.

Proof. Note that g.y/ 2 Fk satisfies the propagation criterion of order k if and only
if NP.g/ D f0g. Since rank.D/ D k, it is obvious that ˛D 2 NP.g/ or equivalently
˛D D 0 only if wt.˛/ � kC 1. We can also find an ˛ with wt.˛/ D kC 1 such that
˛D D 0. So by Theorem 4.21, the conclusion of Corollary 4.5 is true. ut

In the case of Corollary 4.5, function f .x/ has the same propagation criterion
order as that of g.y/. Is it possible that f .x/ has a higher propagation criterion order
than that of g.y/? The answer is yes as demonstrated by the following example. It
can be verified that g.x1; : : : ; x5/ D x1x2 ˚ x3x4 ˚ x5 satisfies propagation criterion
of order 0. Let

A D

2

66666664

1 1 1 0 0

0 0 1 1 1

1 0 0 1 0

0 1 0 0 1

1 0 0 0 0

1 1 1 1 1

3

77777775

:

Then f .x1; : : : ; x6/ D g..x1; : : : ; x6/A/ D x1 ˚ x1x2 ˚ x2x3 ˚ x4 ˚ x1x4 ˚
x3x4 ˚ x1x5 ˚ x4x5 ˚ x6 ˚ x1x6 ˚ x4x6 ˚ x5x6 satisfies the propagation criterion
of order 3. We can easily find more such examples. However, as the propagation
criterion characteristics of different functions are very different, and the choice
of the matrices can be variant, we do not have a systematic way for constructing
correlation immune functions in the form f .x/ D g.xD/ enabling the propagation
criterion order of f to be higher than that of g. We leave this as an open problem.

4.11.5 Linear Structure Characteristics of Correlation
Immune Functions

From the definition of linear structures, it can be seen that the more linear structures
a Boolean function has, the closer the function is related to an affine function. In the
extreme case when every vector is a linear structure of a Boolean function, it must be
an affine one. From a cryptographic point of view, a Boolean function is required to
have as few linear structures as possible. However, when a Boolean function can be
written as f .x/ D g.xD/, it definitely has linear structures if k < n. The relationship
between the linear structures of f and that of g can be described as follows:

132 4 Correlation Immunity of Boolean Functions

Theorem 4.22. Let f .x/ D g.xD/, where D is an n � k (k � n) matrix with
rank.D/ D k. Then ˛ is an invariant (a complementary) linear structure of f .x/

if and only if ˛D is an invariant (a complementary) linear structure of g.x/.

Proof. The sufficiency is obvious. So we only need to present the proof of the
necessity. Assume the contrary, i.e., there exists a vector ˛ 2 GFn.2/ such that
f .x/˚ f .x˚ ˛/ � c and g.y/˚ g.y˚ ˛D/ 6� c. Let g.y0/˚ g.y0˚ ˛D/ ¤ c. Since
rank.D/ D k, there must exist an x0 2 GFn.2/ such that y0 D x0D. So we have

f .x0/˚ f .x0 ˚ ˛/ D g.x0D/˚ g..x0 ˚ ˛/D/ D g.y0/˚ g.y0 ˚ ˛D/ ¤ c:

This is a contradiction of the assumption. So the conclusion is true. ut
Corollary 4.6. Let f .x/ D g.xD/, where D is an n � k (k � n) matrix with
rank.D/ D k. Denote by Vf and Vg the set of linear structures of f and g,
respectively. Then dim.Vf / D .n� k/Cdim.Vg/, where dim.:/ means the dimension
of a vector space.

It can be seen from Corollary 4.6 that even if g has no nonzero linear structures, f
may have because the all-zero vector is an invariant linear structure (trivial) of every
function. It also implies that a Boolean function may have many invariant linear
structures but no complementary ones.

The above shows that if a function is algebraically degenerate, it must have
nonzero invariant linear structures. Is this also a sufficient condition for a Boolean
function to be algebraically degenerate? The following gives a positive answer:

Theorem 4.23. Let f .x/ 2 Fn, VI.f / be the linear space of all the invariant linear
structures of f .x/ and dim.VI.f // D k. Then there must exist a nonsingular matrix
A over GF.2/ such that

g.x1; : : : ; xn/ D f ..x1; : : : ; xn/A/ D g1.xkC1; : : : ; xn/;

where g1.xkC1; : : : ; xn/ has no nonzero invariant linear structures. Moreover,
g1.xkC1; : : : ; xn/ has a complementary linear structure, or equivalently it can be
written as g1.xkC1; : : : ; xn/ D xkC1 ˚ g2.xkC2; : : : ; xn/, if and only if f has a
complementary linear structure.

Proof. Let A be such an n � n binary matrix that, the first k rows of A, ˛1; : : : ; ˛k,
form a basis of VI.f /. Let ei 2 GFn.2/ be the vector with the i-th coordinate being
one and zero elsewhere. Set g.x/ D f .xA/. It is easy to verify that e1; : : : ; ek form
a basis of VI.g/. This means that g.x/ is independent of x1; : : : ; xk and hence can
be written as g.x/ D g1.xkC1; : : : ; xn/. Also note that ˛ is a complementary linear
structure of f .x/ if and only if ˛A�1 is a complementary linear structure of g.x/. So
the conclusion follows. ut

Note that this result is similar to the one in [19]. However, here we precisely
describe the value of k which is the dimension of VI.f /. The proof here is also
simpler.

4.12 Construction of Algebraically Nondegenerate Correlation Immune. . . 133

From Theorem 4.23 we have

Corollary 4.7. Let f .x/ 2 Fn, VI.f / be the linear space of all the invariant linear
structures of f .x/. Then AD.f / D dim.VI.f //. Particularly, f .x/ is algebraically
nondegenerate if and only if it has no nonzero invariant linear structures.

Corollary 4.7 gives a relationship between the algebraic degeneration and
linear structure characteristics of Boolean functions. We further know that an
algebraically nondegenerate function can have at most one complementary linear
structure.

Theorem 4.24. Let f .x/ 2 Fn, where ˛ is a complementary linear structure of
f .x/. Then there exists an n � n nonsingular matrix D such that g.x/ D f .xD/ D
x1˚g1.x2; : : : ; xn/, where g1 has no linear structures. In this case, f .x/ is balanced.

Proof. Let D D
�

˛

D1

�
be a nonsingular matrix. Then e1 is a complementary linear

structure of g.x/, and by Theorem 4.23, g.x/ can be written as x1 ˚ g1.x2; : : : ; xn/.
It is easy to verify that ˇ D .0; b2; : : : ; bn/ is an invariant linear structure of
f .x/ if and only if ˇ1 D .b2; : : : ; bn/ is an invariant linear structure of g1, and
ˇ D .1; b2; : : : ; bn/ is an invariant linear structure of f .x/ if and only if ˇ1 D
.b2; : : : ; bn/ is a complementary linear structure of g1. Since f .x/ has no invariant
linear structures, g1 must have no linear structures. ut

Considering the correlation immune functions without linear structures, from the
discussion above, it is known that they are algebraically nondegenerate functions
which do not have a complementary linear structure. From Lemma 4.24, it is
known that those unbalanced correlation immune functions which are algebraically
nondegenerate satisfy the requirement, i.e., they do not have linear structures. In
the next section, we give constructions of algebraically nondegenerate correlation
immune functions which can be formulated by the constructions for correlation
immune functions having no linear structures.

4.12 Construction of Algebraically Nondegenerate
Correlation Immune Functions

It is noted that the constructions of correlation immune functions described above
are based on linear codes, and the constructed correlation immune function must
be of the format f .x/ D g.yD/, where y is a vector variable of less dimension
than x. This means that f .x/ must be algebraic degenerate. In the applications
where algebraic degeneracy is to be avoided, nondegenerate correlation immune
functions are more useful. It is noted that correlation immune functions from other
constructions are also algebraically degenerate.

134 4 Correlation Immunity of Boolean Functions

4.12.1 On the Algebraic Degeneration of Correlation Immune
Functions

Since constructions described in Lemmas 4.4 and 4.5 are based on known corre-
lation immune functions, initial correlation immune functions are required before
executing the construction. In [36] it is suggested that f1.x/ can be a linear function
with mC1 terms and f2.x/ is the one obtained from f1.x/ by permuting the variables.
In this case we have

Theorem 4.25. Let f .x1; : : : ; xnC1/ D xnC1l1.x/ ˚ .1 ˚ xnC1/l2.x/, where
l1.x/; l2.x/ 2 Ln. Then f .x1; : : : ; xnC1/ can be algebraically degenerated to a
function in no more than three variables.

Proof. It is known that for a linear function, there is only one nonzero Walsh
spectrum. It can be verified that the dimension of the vector space linearly spanned
by the nonzero Walsh spectrums of f .x/ is at most three, and by Theorem 2.10, the
conclusion follows. ut

More generally we have

Theorem 4.26. Let f .x1; : : : ; xnC1/ D xnC1f1.x/ ˚ .1 ˚ xnC1/f2.x/, where
f1.x/; f2.x/ 2 Fn. Then

AD.f / � AD.f1/C AD.f2/� n: (4.42)

Proof. By Theorem 2.10, dim.hfw W Sfi.w/ 6D 0gi/ D n � AD.fi/; i D 1; 2. Then
for every w0 D .wIwnC1/; Sf .w0/ D 0 if both Sf1 .w/ and Sf2 .w/ vanish, i.e., if
Sf1 .w/ D Sf2 .w/ D 0. This means that fw0 W w0 6D 0 and Sf .w0/ 6D 0g is a subset of

f.wI 0/ W w 6D 0 and Sf1.w/ 6D 0g
[
f.wI 0/ W w 6D 0 and Sf2.w/ 6D 0g

[
f.0I 1/g:

This directly results in the following inequality:

dim.hfw0 W Sf .w0/ 6D 0gi/
� dim.hfw W Sf1 .w/ 6D 0gi/C dim.hfw W Sf2 .w/ 6D 0gi/C 1:

Note by Theorem 2.10 we have that dim.hfw W Sfi.w/ 6D 0gi/ D n�AD.fi/; i D 1; 2.
So it follows that

AD.f / D nC 1 � dim.hfw0 W Sf .w0/ 6D 0gi/
� AD.f1/C AD.f2/� n:

ut

4.12 Construction of Algebraically Nondegenerate Correlation Immune. . . 135

For the construction of Lemma 4.6, although the algebraic degeneration of the
constructed functions can hardly be determined, it is most likely to be degenerate
for the ones with higher-order correlation immunity. This is the case since some of
the �i.y/ should be constant with a value of one in order for f .xI y/ to be guaranteed
to have higher-order correlation immunity. More precisely we have

Theorem 4.27. Let f .xI y/ 2 Fn be the function of Eq. 4.18. Let the number of
constants of f�1.y/; : : : ; �n1 .y/g be t. Then the degree of degeneracy of f .x/ satisfies
that

AD.f / � t � 1: (4.43)

Proof. Without loss of generality, we assume that �1.y/; : : : ; �t.y/ are constants.
Then f .xI y/ can be expressed as f .xI y/ D c1x1˚� � �˚ctxt˚Ln1

iDtC1 xi�i.y/˚r.y/;

where ci 2 f0; 1g. By a linear transformation, the first part can be changed from
the linear combination of x1; : : : ; xt to one variable and the others unchanged. This
yields a function with at most n � tC 1 variables. If c1 D � � � D ct D 0, then f .xI y/

is actually a function in n � t variables. In both of the cases, Eq. 4.43 always holds.
ut

The algebraic degeneration of the correlation immune functions constructed in
Theorem 4.1 is clearly not zero because it coincides with the definition of algebraic
degeneration. More precisely we have that AD.f / � n�k holds for every correlation
immune function constructed by Theorem 4.1. By the theory of error-correcting
codes (see [22]), we know that n � k � d � 1. So the algebraic degeneration of the
correlation immune functions constructed by Theorem 4.1 is larger than or equal to
the designed order of correlation immunity.

4.12.2 Construction of Algebraically Nondegenerate
Correlation Immune Functions

Correlation immunity also has a strong connection with orthogonal arrays [3]. An
orthogonal array OA	.t; d; v/ is a 	vt � d array of v symbols, such that in any t
columns of the array, every one of the possible vt ordered pairs of symbols occurs
in exactly 	 rows (see [22] for this definition). The following conclusion which has
been proved in [6] is a direct deduction of Theorem 2.20.

Theorem 4.28. Let f .x/ 2 Fn. Treat the supp.f / D fx W f .x/ D 1g as a wt.f / � n
matrix with its row vectors being the x’s on which f .x/ takes value 1, and denote
the matrix as Tf . Then f .x/ is correlation immune of order k if and only if Tf is an
orthogonal array OA	.k; n; 2/, where 	 D wt.f /=2k.

136 4 Correlation Immunity of Boolean Functions

Let Tf be the wt.f / � n matrix as defined in Theorem 4.28 and ei 2 GFn.2/ be
such a vector with 1 in its i-th coordinate and 0 elsewhere. It is easy to verify that
the following conclusion holds:

Lemma 4.20. Sf .ei/ D 0 if and only if the i-th column of Tf is balanced, i.e., in the
i-th column of Tf , the number of zeros and that of ones are equal.

Now a necessary and sufficient condition for judging a Boolean function to
be algebraically nondegenerate in terms of its truth table representation can be
described as follows:

Theorem 4.29. Let f .x/ 2 Fn. Then f .x/ is algebraically nondegenerate if and
only if there exists an n� n invertible matrix G such that every column of Tf G is not
balanced.

Proof. Necessity: Let f .x/ be an algebraically nondegenerate function. By The-
orem 2.10 we know that there are n linearly independent vectors w1; : : : ; wn 2
GFn.2/ such that Sf .wi/ 6D 0; i D 1; : : : ; n. Write G D ŒwT

1 ; : : : ; wT
n �. Then G is

an n � n invertible matrix and G�1G D I D ŒeT
1 ; : : : ; eT

n �, or G�1wT
i D eT

i . Let
f .x/ D g.xG/. By Theorem 1.5 we have Sf .w/ D Sg.w.G�1/T/. Since Sf .wi/ 6D 0,
and it should be noticed that wi.G�1/T D ei, we have Sg.ei/ 6D 0. It is easy to verify
that Tg D Tf G. By Lemma 4.20 it is known that every column of Tg is not balanced.

Sufficiency: Suppose that Tf G has the property that every column is not balanced.
Let g.x/ be the function with Tg D Tf G, then g.x/ D f .xG�1/. By Theorem 1.5
we have Sg.w/ D Sf .wGT/. Note that by Lemma 4.20, we have Sg.ei/ 6D 0, then
Sf .eiGT/ 6D 0; i D 1; 2; : : : ; n. This shows that on every row vector of GT , the Walsh
transform of f .x/ takes a nonzero value. Recall that G is invertible, its columns can
generate the whole space GFn.2/. By Theorems 2.9 and 2.10, we know that f .x/ is
algebraically nondegenerate. ut

By Theorems 4.28 and 4.29, we have

Corollary 4.8. There exists an algebraically nondegenerate k-th-order correlation
immune function in Fn if and only if there exists an orthogonal array OA	.k; n; 2/

and an n � n binary invertible matrix G such that every column of OA	.k; n; 2/G is
not balanced.

The following examples are found based on Corollary 4.8, where each Ai is an
orthogonal array, each Gi is an invertible matrix, and AiGi has the property that every
column is not balanced.

A1 D

2
66666664

0011

0010

0100

1000

1101

1111

3
77777775

; G1 D

2

664

0011

0101

1001

1110

3

775 ; A1G1 D

2
66666664

0111

1001

0101

0011

1000

0001

3
77777775

;

4.12 Construction of Algebraically Nondegenerate Correlation Immune. . . 137

A2 D

2
66666664

0000

0110

1011

1101

1000

0111

3
77777775

; G2 D

2

664

1101

0111

0011

1000

3

775 ; A2G2 D

2
66666664

0000

0100

0110

0010

1101

1100

3
77777775

;

A3 D

2

66666666666666666666666666664

10000

10011

10010

11111

11110

11100

11010

11000

01101

01100

01001

00111

00110

00101

00011

00001

3

77777777777777777777777777775

; G3 D

2

666664

11111

10100

01100

00010

00001

3

777775
; A3G3 D

2

66666666666666666666666666664

11111

11100

11101

00100

00101

00111

01001

01011

11001

11000

10101

01111

01110

01101

00011

00001

3

77777777777777777777777777775

:

From the orthogonal arrays above, we get three algebraically nondegenerate
functions:

f1.x1; x2; x3; x4/ D x1 ˚ x2 ˚ x3 ˚ x1x4 ˚ x2x4 ˚ x1x2x3 ˚ x1x2x4

˚x1x3x4 ˚ x2x3x4

f2.x1; x2; x3; x4/ D 1˚ x2 ˚ x3 ˚ x4 ˚ x2x4 ˚ x3x4 ˚ x1x2x3

˚x1x2x4 ˚ x1x3x4 ˚ x2x3x4

f3.x1; x2; x3; x4; x5/ D x1 ˚ x5 ˚ x1x3 ˚ x2x3 ˚ x3x4 ˚ x1x3x4 ˚ x1x3x5

˚x1x4x5 ˚ x2x3x5 ˚ x2x4x5 ˚ x3x4x5

where f1; f2 2 F4, and f3 2 F5 is a balanced function. They are all first-order
correlation immune functions.

For f .x/ 2 Fn, denote S.f / D fw W Sf .w/ 6D 0g. By Theorem 1.5 we have
Sf .w/ D Sg.wDT/, and consequently we have

138 4 Correlation Immunity of Boolean Functions

Theorem 4.30. Let f .x/ 2 Fn. If there is an n � n invertible matrix G such that for
every w with 1 � wt.w/ � k, we have

w 2 S.f /G D fwG W w 2 S.f /g:

Then f .xGT/ is a k-th-order correlation immune function. Moreover, f .xGT/ is
algebraic nondegenerate if and only if f .x/ is algebraically nondegenerate.

As for the iterative construction described in Lemma 4.4, we have

Theorem 4.31. Let f1.x/; f2.x/ 2 Fn be two k-th-order correlation immune func-
tions with wt.f1/ D wt.f2/. If hfw W Sf1 .w/ C Sf2 .w/ 6D 0gi D GFn.2/, then
f .x1; : : : ; xnC1/ D xnC1f1.x/ ˚ .1 ˚ xnC1/f2.x/ is an algebraically nondegenerate
k-th-order correlation immune function in nC 1 variables.

Proof. Denote by ! D .!; !nC1/ and x D .x; xnC1/. Then for the functions of
Eq. 4.17, we have

Sf .!/ D
X

x

f .x/.�1/!�x

D
X

xnC1D1

X

x

f1.x/.�1/!�x˚!nC1 C
X

xnC1D0

X

x

f2.x/.�1/!�x

D .�1/!nC1Sf1.!/C Sf2 .!/: (4.44)

It is easy to verify that when the dimension of the linear span of f! W Sf1 .!/ C
Sf2 .!/ ¤ 0g is n, the dimension of the linear span of f! W Sf .!/ ¤ 0g is nC 1, and
hence f is algebraic nondegenerate. ut

Theorem 4.31 gives a sufficient condition for the Boolean function f defined by
Eq. 4.17 to be algebraically nondegenerate. When the condition of Theorem 4.31 can
be satisfied is still not clear. It is anticipated that when one or both of f1 and f2 are
algebraically nondegenerate, f is likely to be so. It is noticed that Sect. 4.9 listed 96
algebraically nondegenerate correlation immune functions; among them half have
Hamming weight 6 and another half have Hamming weight 10. By checking every
pair of them with the same Hamming weight, we found that among 2� �96

2

� D 9120

pairs, there are 7680 pairs which can form an algebraic nondegenerate correlation
immune function in five variables according to Eq. 4.17, while another 1440 pairs
cannot.

In practice it is suggested to use the definition to verify whether the con-
structed correlation immune function according to Lemma 4.4 is algebraically
nondegenerate. Notice in the proof of Theorem 4.31 that for every ! D .!; !nC1/,
.�1/!nC1Sf1.!/ C Sf2.!/ D 0 if and only if Sf1.!/ C .�1/!nC1Sf2 .!/ D 0. So we
have

4.13 The "-Correlation Immunity of Boolean Functions 139

Corollary 4.9. Let f1.x/; f2.x/ 2 Fn. Then xnC1f1.x/ ˚ .1 ˚ xnC1/f2.x/ is alge-
braically nondegenerate if and only if .1˚ xnC1/f1.x/˚ xnC1f2.x/ is algebraically
nondegenerate.

Let f .x/ 2 Fn. Now we consider the function F.x/ D F.x1; : : : ; xnC1/ D
xnC1 ˚ f .x/. It is easy to verify that AD.F/ � AD.f / C 1. So F.x/ is algebraic
degenerate if f .x/ is such. When f .x/ is algebraically nondegenerate, the algebraic
degeneration of F.x/ is at most one. It is interesting to know when F.x/ is
algebraically nondegenerate as well. We have

Theorem 4.32. Let f .x/ 2 Fn be an algebraic nondegenerate function and F.x/ D
xnC1 ˚ f .x/. Then F.x/ is algebraically nondegenerate if and only if f .x/ has no
complementary linear structures.

Proof. Necessity: Assume that f .x/ has a complementary linear structure ˛, then
.˛; 1/ is an invariant linear structure of F.x/. By Theorem 4.23, F.x/ is algebraic
degenerate.

Sufficiency: If xnC1 ˚ f .x/ is algebraically degenerate, then by Corollary 4.7,
xnC1 ˚ f .x/ must have an invariant linear structure .a1; : : : ; anC1/. It can easily be
verified in this case that .a1; : : : ; an/ is an invariant linear structure of f .x/ if anC1 D
0 and is a complementary linear structure of f .x/ if anC1 D 1. ut

By Theorem 4.32 and Lemma 4.4, we know that if f .x/ is a balanced algebraic
nondegenerate m-th-order correlation immune function and has no complementary
linear structures, then xnC1˚f .x/ is a balanced algebraically nondegenerate .mC1/-
th-order correlation immune function in nC 1 variables. Note that this construction
cannot be preceded further as xnC1 ˚ f .x/ has at least one complementary linear
structure. As an example of this construction, we found that the function

f .x1; : : : ; x5/ D x1 ˚ x5 ˚ x2x3 ˚ x3x4 ˚ x3x5 ˚ x1x2x3 ˚ x1x2x4

˚x1x2x5 ˚ x1x3x4 ˚ x1x3x5 ˚ x2x3x5

is balanced, algebraically nondegenerate, and first-order correlation immune and has
no complementary linear structures. Then by Theorem 4.32 and Lemma 4.4, we can
construct a Boolean function x6 ˚ f .x/ which is balanced, algebraically nondegen-
erate, and second-order correlation immune and has only one complementary linear
structure (000001).

4.13 The "-Correlation Immunity of Boolean Functions

It is noted that the correlation immunity is a cryptographic measure about the
resistance against correlation attack, and there can be cases where although a
combining function is not correlation immune, however the correlation attack
still consumes large amount of computation due to the function being “near” to

140 4 Correlation Immunity of Boolean Functions

correlation immune. We hereby define a measure about how “near” a function is
to being correlation immune. This only makes sense for the functions that are not
correlation immune at all. Consider the balancedness of the i-th coordinate of all
the vectors in supp.f /. If it has a good balance, then f .x/ has small correlation with
xi. If it is balanced, then f .x/ has no correlation with xi. If for all i 2 f1; 2; : : : ; ng,
f .x/ has no correlation with xi, then f .x/ is correlation immune (of order at least 1).
Not expecting the correlation immunity of f .x/, we define the relative correlation of
f .x/ with xi as the difference between the number of 0’s and that of 1’s in the i-th
coordinates of vectors x in supp.f /, i.e.,

".i/.f / D
ˇ̌
ˇ̌
ˇ̌
X

x2supp.f /

.�1/xi

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌wt.f / � 2

X

x2supp.f /

xi

ˇ̌
ˇ̌
ˇ̌ :

By this definition, it is easy to see that the idea of correlation immunity is to find the
maximum value of these relative correlations. If the maximum value is 0, then f .x/

must be correlation immune (of order 1 or larger); otherwise f .x/ is not correlation
immune. However, in the case where f .x/ is not correlation immune, the value of
".i/.f / varies which indicates the different degrees that f .x/ has correlation with xi.
The correlation of f .x/ with any variables is hence defined as

".f / D maxf".i/.f / W i 2 f1; 2; : : : ; ngg:

For this consideration, we define the "-correlation immunity of f .x/ as

CI".f / D 1 � ".f /

wt.f /

D 1 � 1

wt.f /
max

i2f1;2;:::;ng

ˇ̌
ˇ̌
ˇ̌wt.f / � 2

X

x2supp.f /

xi

ˇ̌
ˇ̌
ˇ̌ (4.45)

It is seen from Eq. 4.45 that 0 � CI".f / � 1. When CI".f / D 1, it means that f .x/

is correlation immune (of at least order 1). Another extreme case is when CI".f / D
0; this means that there exists i such that xi D 0 (or xi D 1) always holds for all
x 2 supp.f /, which means that the correlation between f .x/ and this xi is high (the
highest possible case). The " here means that the indexed correlation immunity is a
fractional value between 0 and 1, instead of integral value as the traditional meaning
of correlation immunity.

Now we take a look at what the "-correlation immunity has to do with the
correlation attacks proposed by Siegenthaler. Let i be such an index satisfying that

CI".f / D 1 � 1

wt.f /

ˇ̌
ˇ̌
ˇ̌wt.f / � 2

X

x2supp.f /

xi

ˇ̌
ˇ̌
ˇ̌

�D ":

4.13 The "-Correlation Immunity of Boolean Functions 141

Then we have

Prob.xi D 1jf .x/ D 1/ D

P
x2supp.f /

xi

jsupp.f /j D

P
x2supp.f /

xi

wt.f /

and

Prob.xi D 0jf .x/ D 0/ D
jsupp.f /j � P

x2supp.f /

xi

jsupp.f /j

D
2n � wt.f / � .

P
x2GFn.2/

xi � P
x2supp.f /

xi/

2n � wt.f /

D
2n�1 � wt.f /C P

x2supp.f /

xi

2n � wt.f /
:

Hence, we have

qi D Prob.f .x/ D xi/

D Prob.f .x/ D 1/Prob.xi D 1jf .x/ D 1/

CProb.f .x/ D 0/Prob.xi D 0jf .x/ D 0/

D wt.f /

2n
�

P
x2supp.f /

xi

wt.f /
C 2n � wt.f /

2n
�

2n�1 � wt.f /C P
x2supp.f /

xi

2n � wt.f /

D 1

2n
.2n�1 � wt.f / � 2

X

x2supp.f /

xi/

D 1

2
� wt.f /

2n
.1 � "/ (4.46)

If " is very close to 0, then qi is very different from 1
2
. Particularly when f .x/

is balanced which is often practically required, then qi is very close to 1 or 0; in
which case, we have high confidence to have either f .x/ D xi or f .x/ D xi ˚ 1.
Consequently by Eq. 4.3, we get that pe
 p0 or pe
 1 � p0. It is assumed that
p0 ¤ 1

2
; otherwise, we would always have pe D 1

2
and hence the correlation attack

does not work. It is also easy to verify that these are the cases when jpe� 1
2
j reaches

the maximum value, and by Eq. 4.16 we know that the minimum amount of data is
needed to conduct a correlation attack.

If " is very close to 1, then qi is very close to 1
2
, and by Eq. 4.3, pe is also very

close to 1
2
, and consequently large amount of ciphertext is required to conduct a

correlation attack. Although such an attack is possible, however, when " is so close

142 4 Correlation Immunity of Boolean Functions

to 1 that results in the bound of Eq. 4.16 to be too large to reach in practice, then the
correlation attack becomes practically infeasible.

The concept of higher-order "-correlation immunity has similar motivation to
that of higher-order correlation immunity, and it is to measure the probability of
event .f .x/ D xi1 ˚ xi2 ˚ xik / and a corresponding modified correlation attack, for
any possible 1 � i1 < i2 < � � � < ik � n.

In order to compute the "-correlation immunity of a Boolean function, motivated
by Lemma 4.13, we will seek a Walsh spectrum description. It is easy to deduce that
the Walsh spectrum of f .x/ on ei (as defined before, ei is such a vector in GFn.2/

that its i-th coordinate is 1 and 0 elsewhere) is

Sf .ei/ D
X

x2GFn.2/

f .x/.�1/ei�x

D
X

x2supp.f /

.�1/ei�x

D
X

x2supp.f /

.�1/xi

D
X

x2supp.f /

.1 � 2xi/

D wt.f / � 2
X

x2supp.f /

xi

Therefore, we have

CI".f / D 1 � 1

wt.f /
max

i
jSf .ei/j (4.47)

Given the relationship of the two types of Walsh spectrums, we have Sf .ei/ D
� 1

2
S.f /.ei/, and hence the "-correlation immunity can be represented as

CI".f / D 1 � 1

2wt.f /
max

i
jS.f /.ei/j (4.48)

We will use the concept of "-correlation immunity to study the majority functions
in Chap. 6 and will see that although the majority functions are not correlation
immune at all, their "-correlation immunity however tends to approach 1 with the
increase of the number of variables n, which means that they also have a good
resistance against correlation attack.

It is also easy to extend the concept of "-correlation immunity of Boolean
functions to an order higher than 1. Note that the basic correlation attack considers
qi D Prob.f .x/ D xi/; in general case, we may consider a nonzero linear
combination of the LFSR sequences, and the linear combination can be written as
hw; xi, where w 2 GFn.2/ is the coefficient vector. Now the probability

References 143

qw D Prob.f .x/ D hw; xi/

needs to be considered. When w D ei, we have hw; xi D xi which is the special case.
However, even in the general case, one cannot afford to count all the possible linear
combinations in a practical attack. So we can restrict that there are at most k LFSR
sequences involved in the linear combination, where k is a security parameter. So
we need to consider all the linear combinations hw; xi with 1 � wt.w/ � k. Similar
to the analysis of how the "-correlation immunity is related to the basic correlation
attack, we define the k-order-"-correlation immunity of f .x/ 2 Fn to be

CIk
" .f / D 1 �

max
wW 1�wt.w/�k

jSf .w/j
wt.f /

: (4.49)

When k D 1, it becomes the "-correlation immunity as defined above.

4.14 Remarks

Correlation immunity is an interesting cryptographic property, which is to measure
the level of resistance (subject to the order of correlation immunity) against corre-
lation attacks. Since practically used functions are often required to be balanced, so
resilient functions are of particular interest. Constructions of correlation immune
function with other cryptographic properties are of practical significance; much
related work can be found in public literatures, for example, [23, 49, 50]; and
much research has been devoted to the constructions of resilient function with
other crytographic properties; see, for example, [24, 39, 41, 45, 47, 48]. Based
on the correlation attack, some other related attacks are developed, for example,
conditional correlation attack [20], fast correlation attack [27, 28, 30], and edit
distance correlation attack [17]. Those new attacks indicate new cryptographic
measures on the nonlinear functions.

References

1. Anderson, R.J.: Searching for the optimum correlation attacks. In: Proceedings of K.U.Leuven
Workshop on Cryptographic Algorithms, Leuven, pp. 56–62 (1994)

2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Bibliographisches Institute, ZRurich (1986)
3. Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds on resilient functions and orthogonal

arrays. In: Advances in Cryptology, Proceedings of Crypto’94. LNCS 839, pp. 247–256.
Springer, Berlin/Heidelberg (1994)

4. Brickell, E.: A few results in message authentication. Congr. Numer. 43, 141–154 (1984)
5. Camion, P., Canteaut, A.: Construction of t-resilient functions over a finite alphabet. In:

Advances in Cryptology, Proceedings of Eurocrypt’96. LNCS 1070, pp. 283–293. Springer,
Berlin/Heidelberg (1996)

144 4 Correlation Immunity of Boolean Functions

6. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. In:
Advances in Cryptology, Proceedings of Crypto’91. LNCS 576, pp. 86–100. Springer,
Berlin/Heidelberg/New York (1992)

7. Carlet, C.: Partially-bent functions. Des. Codes Cryptogr. 3, 135–145 (1993)
8. Carlet, C.: Two new classes of Bent functions. In: Advances in Cryptology, Proceedings of

Eurocrypt’93. LNCS 765, pp. 77–101. Springer, Berlin/Heidelberg (1994)
9. Carlet, C.: Generalized partial spreads. IEEE Trans. Inf. Theory IT-41(5), 1482–1487 (1995)

10. Carlet, C.: More correlation-immune and resilient functions over Galois fields and Galois rings.
In: Advances in Cryptology, Proceedings of Eurocrypt’97. LNCS 1233, pp. 422–433. Springer,
Berlin/Heidelberg (1997)

11. Carlet, C., Sarkar, P.: Spectral domain analysis of correlation immune and resilient boolean
functions. Finite Fields Appl. 8(1), 120–130 (2002)

12. Chee, S., Lee, S., Lee, D.: On the correlation immune functions and their nonlinearity. In:
Advances in Cryptoloty, Proceedings of Asiacrypt’96. LNCS 1163, pp. 232–243. Springer,
Berlin/Heidelberg (1996)

13. Denisov, O.V.: An asymptotic formula for the number of correlation immune of order k boolean
functions. Discret. Math. Appl. 2, 407–426 (1992)

14. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS 561. Springer,
Berlin/Heidelberg (1991)

15. Golic, J.D.: On the security of shift register based keystream generators. In: Fast Software
Encryption 1993. LNCS 809, pp. 90–100. Springer, Berlin/Heidelberg (1994)

16. Golic, J.D.: Correlation properties of a general binary combiner with memory. J. Cryptol. 9(2),
111–126 (1996)

17. Golic, J.D., Menicocci, R.: Edit distance correlation attack on the alternating step generator.
In: Advances in Cryptology, Proceedings of Crypto’97. LNCS 1294, pp. 499–512. Springer,
Berlin (1997)

18. Gopalakrishnan, K., Stinson, D.R.: Three characterizations of non-binary correlation-immune
and resilient functions. Des. Codes Cryptogr. 5(3), 241–251 (1995)

19. Lai, X.: Additive and linear structures of cryptographic functions. In: Fast Software Encryption
1994. LNCS 1008, pp. 75–85. Springer, Berlin/Heidelberg (1995)

20. Lee, S., Chee, S., Park, S., Park, S.: Conditional correlation attack on nonlinear filter
generators. In: Advances in Cryptology, Proceedings of Asiacrypt 1996. LNCS 1163, pp. 360–
367. Springer, Berlin/Heidelberg (1996)

21. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Applications,
vol. 20. Addison-Wesley, Reading (1983)

22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland
(1977)

23. Maitra, S.: On nonlinearity and autocorrelation properties of correlation immune boolean
functions. J. Inf. Sci. Eng. 20, 305–323 (2004)

24. Maitra, S., Passalic, E.: Further constructions of resilient boolean functions with very high
nonlinearity. IEEE Trans. Inf. Theory IT-48(7), 1825–1834 (2002)

25. Maitra, S., Sarkar, P.: Hamming weights of correlation immune boolean functions. Inf. Process.
Lett. 71, 149–153 (1999)

26. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT-15(1),
122–127 (1969)

27. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Advances in
Cryptology, Proceedings of Eurocrypt’88. LNCS 330, pp. 301–314. Springer, New York (1988)

28. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1,
159–176 (1989)

29. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances
in Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer,
Berlin/Heidelberg (1990)

30. Meier, W., Staffelbach, O.: Correlation properties of combiners with memory in stream ciphers.
J. Cryptol. 5(1), 67–86 (1992)

References 145

31. Millan, W.: Low order approximation of cipher functions. In: Cryptography: Policy and
Algorithms, pp. 144–155. Springer, Berlin/Heidelberg (1996)

32. Rueppel, R.A.: Correlation-immunity and the summation generator. In: Advances in
Cryptology, Proceedings of Crypto’85. LNCS 218, pp. 260–272. Springer, Berlin/Heidelberg
(1986)

33. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin/Heidelberg (1986)
34. Schneider, M.: On the construction and upper bounds of balanced and correlation-immune

functions. Sel. Areas Cryptogr. Kluwer Academic Publishers, 6544(3), 73–87 (1997)
35. Seberry, J., Zhang, X.M., Zheng, Y.: On construction and nonlinearity of correlation immune

functions, (extended abstract). In: Advances in Cryptology, Proceedings of Eurocrypt’93.
LNCS 765, pp. 181–199. Springer, Berlin/Heidelberg/New York (1994)

36. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE Trans. Inf. Theory IT-30(5), 776–780 (1984)

37. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans.
Comput. C-34(1), 81–85 (1985)

38. Siegenthaler, T.: Cryptanalysts’ representation of nonlinearly filtered m-sequences. In:
Advances in Cryptology, Proceedings of Eurocrypt’85. LNCS 219, pp. 103–110. Springer,
Berlin (1986)

39. Stinson, D.R.: Resilient functions and large sets of orthogonal arrays. Congr. Numer. 92,
105–110 (1993)

40. van Lint, J.H.: Introduction to Coding Theory. Springer, Berlin/Heidelberg (1982)
41. Wu, C.K., Dawson, E.: On construction of resilient functions. In: Information Security and

Privacy, Proceedings of First Australasian Conference. LNCS 1172, pp. 79–86. Springer,
Berlin/Heidelberg (1996)

42. Wu, C.K., Wang, X.M., Dawson, E.: Construction of correlation immune functions based on
the theory of error-correcting codes. In: Proceedings of ISITA96, Victoria, pp. 167–170 (1996)

43. Xian, Y.: Correlation immunity of boolean functions. Electron. Lett. 23, 1335–1336 (1987)
44. Xiao, G.Z., Massey, J.L.: A spectral characterization of correlation-immune combining

functions. IEEE Trans. Inf. Theory IT-34(3), 569–571 (1988)
45. Zhang, X.M., Zheng, Y.: On nonlinear resilient functions (extended abstract). In:

Advances in Cryptology, Proceedings of Eurocrypt’95. LNCS 921, pp. 274–288. Springer,
Berlin/Heidelberg (1995)

46. Zhang, X.M., Zheng, Y.: Auto-correlations and new bounds on the nonlinearity of boolean
functions. In: Advances in Cryptology, Proceedings of Eurocrypt’96. LNCS 1070, pp. 294–
306. Springer, Berlin/Heidelberg (1996)

47. Zhang, X.M., Zheng, Y.: Cryptographically resilient functions. IEEE Trans. Inf. Theory IT-
43(5), 1740–1747 (1997)

48. Zhang, F., Hu, Y., Xie, M., Wei, Y.: Constructions of 1-resilient boolean functions on odd
number of variables with a high nonlinearity. Secur. Commun. Netw. 5(6), 614–624 (2011)

49. Zheng, Y., Zhang, X.M.: On relationships among avalanche, nonlinearity and corrlation
immunity. In: Advances in Cryptology, Proceedings of Asiacrypt 2000. LNCS 1976, pp. 470–
482. Springer, Berlin/Heidelberg (2000)

50. Zheng, Y., Zhang, X.M.: Improved upper bound on the nonlinearity of high order correlation
immune functions. In: Selected Areas in Cryptography. LNCS 2012, pp. 262–274. Springer,
Berlin/Heidelberg (2001)

51. Zheng, Y., Zhang, X.M.: New results on correlation immune functions. In: Proceedings of 3-
rd International Conference on Information Security and Cryptology. LNCS 2015, pp. 49–63.
Springer, Berlin/Heidelberg (2001)

Chapter 5
Algebraic Immunity of Boolean Functions

Algebraic immunity is a cryptographic measure about the resistance against alge-
braic attack which was first proposed by Courtois in 2003 for stream ciphers. This
chapter studies some basic properties of algebraic immunity of Boolean functions,
including the construction of annihilators of Boolean functions, upper and lower
bounds of algebraic immunity, and an approach toward computing the annihilators
of Boolean functions.

5.1 Algebraic Attacks on Stream Ciphers

Any cryptographic property comes from a concrete attack or a potential security
threat to cryptosystems. The concept of algebraic immunity of Boolean functions
comes from the algebraic attack on stream ciphers proposed by Courtois and
Meier [9], which has proven to be a very effective attack not only on stream
ciphers [13] but also on block ciphers [10]. It is difficult to construct general
Boolean function reaching the best algebraic immunity [6]; many of such functions
are from a very specific class of Boolean functions or their modifications [18].
However, construction of Boolean functions with high-order algebraic immunity
is possible [11, 12], and some even have other cryptographic properties [14].

In order to study the algebraic immunity of Boolean functions, we first give a
brief description of the principle of the algebraic attacks on stream ciphers. Our
description will be based on the nonlinear feedforward generator as depicted in
Fig. 5.1, and the method applies to other models as well with a suitable modification.

In a nonlinear feedforward generator-based stream cipher, the security of the
stream cipher is mainly based on the security (randomness, nonlinearity, correlation
immunity, etc.) of the output of the nonlinear function f .x/. Therefore, the nonlinear
feedforward function f .x/ plays an essential role in the model. When attacking such
a model, it is assumed that the attacker is given sufficiently long sequence of the

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_5

147

148 5 Algebraic Immunity of Boolean Functions

input mi output ci

f(x)

a0 a1 an−1

c0 c1 cn−1

Fig. 5.1 Nonlinear feedforward generator in stream ciphers

output of the generator, not only the ciphertext but the actual output of f .x/ in the
generator, and the objective of the attack is to reconstruct the initial state of the
LFSR in the generator, so that the output of the generator from an arbitrary state
can be reconstructed. If some output of the LFSR are known, by using the famous
Berlekamp-Massey algorithm (BM-algorithm) [4, 15], only 2n consecutive bits of
the LFSR are needed to fully reconstruct the LFSR of order n. So the objective of
the algebraic attack is to recover 2n consecutive bits of the LFSR in the nonlinear
feedforward generator.

Let L.x/ be the state-updating function, where L.x/ is an .n; n/ Boolean function,
i.e., it is a mapping from GFn.2/ into itself. We will see that such a Boolean
function can be represented by a vector Boolean function. More precisely, L.x/ can
be represented as

L.x/ D L.x1; x2; : : : ; xn/ D .x2; x3; : : : ; xn; c0x1 ˚ c1x2 ˚ � � � ˚ cn�1xn/:

Let S D .s0; s1; : : : ; sn�1/ denote a state of the LFSR in the feedforward generator.
Then L.x/, being an operator on the state, when applied to S, outputs

S1 D L.S/ D L.s0; s1; : : : ; sn�1/ D .s1; s2; : : : ; sn�1; sn/;

where sn D c0s0 ˚ c1s1 ˚ � � � ˚ cn�1sn�1. When the operator L.x/ applies on S1,
we call that the operator applies on S twice and denote it as S2 D L.S1/ D L2.S/.
In general, when the operator L.x/ applies on the state S for k times, it outputs
Sk D Lk.S/ D Lk.s0; s1; : : : ; sn�1/. The advantage of this notation is that when we
treat s0; s1; : : : ; sn�1 as unknowns, then the output of every Lk.S/ is a function of
those n unknowns.

5.2 A Small Example of Algebraic Attack 149

Let f .x/ 2 Fn be the nonlinear feedforward function in the generator of Fig. 5.1,
and then its outputs b0; b1; b2; : : : can be written as

8
ˆ̂<

ˆ̂:

b0 D f .s0; s1; : : : ; sn�1/

b1 D f .L.s0; s1; : : : ; sn�1//

b2 D f .L2.s0; s1; : : : ; sn�1//

: : : : : :

(5.1)

Here .s0; s1; : : : ; sn�1/ are the unknowns which form the initial state of the LFSR,
and the output of f .x/ is actually the key stream for the stream cipher. Denoting
the unknowns as x D .s0; s1; : : : ; sn�1/, then every output bit of f .x/ is a function
of the unknown x, i.e., bi D f .Li.x//. Given a sufficient number of bi, then we
have sufficient number of equations of unknown x, and it may be possible (and
very likely) to determine the value of x (and hence the values of s0; s1; : : : ; sn�1) by
solving the system of these equations. For traditional notation, we will denote the
variable as x D .x1; x2; : : : ; xn/.

There are improvements on the algebraic attacks (see, e.g., [1–3]); one of such
improvements is called fast algebraic attack.

5.2 A Small Example of Algebraic Attack

In order to demonstrate how the algebraic attack works, here we give a toy example.
First a concept is introduced.

Definition 5.1. Treating each single term of f .x1; x2; � � � ; xn/ in its ANF as a new
variable, then the equation f .x/ D 0 is called a multivariate equation.

As an example, the Boolean function in four variables

f .x/ D x1 ˚ x2 ˚ x3 ˚ x3x4 ˚ x1x2x4 ˚ x1x3x4 ˚ x2x3x4

has seven single terms in its ANF representation, and the corresponding multivariate
equation of f .x/ D 0 becomes something like x1˚ x2˚ x3˚ y1˚ y2˚ y3˚ y4 D 0,
an equation with seven variables (unknowns).

When all the functions in Eq. 5.1 become a multivariate equation, then Eq. 5.1
becomes a system of equations of many variables. Let the degree of f .x/ be k, since
the degree of f .x/ is the same as that of f .Lk.x// for any k, where L.x/ is the state-
updating function as described above; it is seen that the maximum possible number
of variables (or the number of different single terms) of Eq. 5.1 is at most

n

1

!
C

n

2

!
C � � � C

n

k

!
:

150 5 Algebraic Immunity of Boolean Functions

Fig. 5.2 A nonlinear
feedforward generator of
order 3

s0 s1 s2

D
input mi output ci

If there are more functions in Eq. 5.1 than the number of variables, then Eq. 5.1 is
called an over-defined system. The process of an algebraic attack is actually to solve
such an over- defined system [10]. Now we’ll see how to perform an algebraic attack
by solving such an over- defined system of equations.

Consider the model as depicted in Fig. 5.2.
In Fig. 5.2, the notation “D” means the AND operator, which is equivalent to

the multiplication of Boolean variables. It is clear that the feedback iteration of
the LFSR is aiC3 D ai ˚ aiC2 for i D 0; 1; 2; : : : and the feedforward function is
f .x/ D x1x2 ˚ x3.

Let the initial state of the LFSR be S D .s0; s1; s2/. Then the relationship
between the outputs bi of f .x/ and the LFSR initial state can be represented as
follows:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

b0 D f .s0; s1; s2/ D s0s1 ˚ s2

b1 D f .L.s0; s1; s2// D f .s1; s2; s0 ˚ s2/ D s1s2 ˚ s0 ˚ s2

b2 D f .L2.s0; s1; s2// D f .s2; s0 ˚ s2; s0 ˚ s1 ˚ s2/ D s0s2 ˚ s0 ˚ s1

b3 D f .L3.s0; s1; s2// D f .s0 ˚ s2; s0 ˚ s1 ˚ s2; s0 ˚ s1/ D s0s1 ˚ s1s2 ˚ s1 ˚ s2

b4 D f .L4.s0; s1; s2// D f .s0 ˚ s1 ˚ s2; s0 ˚ s1; s1 ˚ s2/ D s0s2 ˚ s1s2 ˚ s0 ˚ s2

b5 D f .L5.s0; s1; s2// D f .s0 ˚ s1; s1 ˚ s2; s0/ D s0s1 ˚ s0s2 ˚ s1s2 ˚ s0 ˚ s1

b6 D f .L6.s0; s1; s2// D f .s1 ˚ s2; s0; s1/ D s0s1 ˚ s0s2 ˚ s1

: : : : : :
(5.2)

Note that Eq. 5.2 is effectively a system of multivariate equations in six variables
s0; s1; s2 and the generated variables s0s1; s0s2, and s1s2. If 6 of such functions
are given, the value of these six variables may be determined. When more than
six equations are given, the system is an over-defined system. Here we assume
that we are given such an over-defined system of equations, i.e., the functions of
b0; b1; : : : ; b6. Now rewrite this equation as

5.3 Annihilators and Algebraic Immunity of Boolean Functions 151

0

BBBBBBBBB@

0 0 1 1 0 0

1 0 1 0 0 1

1 1 0 0 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 1 1 1

0 1 0 1 1 0

1

CCCCCCCCCA

0

BBBBBBB@

s0

s1

s2

s0s1

s0s2

s1s2

1

CCCCCCCA

D

0

BBBBBBBBB@

b0

b1

b2

b3

b4

b5

b6

1

CCCCCCCCCA

:

Since the last row of the coefficient matrix is the exclusive-or (XOR) of the other six
rows, it is redundant and can be removed. In fact, it is equivalent to remove any row
since the remaining coefficient matrix still forms a full rank matrix. For example,
when we remove the six-th row instead of the seven-th, the equation then becomes

0
BBBBBBB@

0 0 1 1 0 0

1 0 1 0 0 1

1 1 0 0 1 0

0 1 1 1 0 1

1 0 1 0 1 1

0 1 0 1 1 0

1
CCCCCCCA

0
BBBBBBB@

s0

s1

s2

s0s1

s0s2

s1s2

1
CCCCCCCA

D

0
BBBBBBB@

b0

b1

b2

b3

b4

b6

1
CCCCCCCA

:

Since the coefficient matrix is a full rank one, there is a unique solution for the
variables s0; s1; s2 and s0s1, s0s2, and s1s2. Since our target is to recover the initial
state of the LFSR, it is not necessary to find the values of s0s1, s0s2, and s1s2. Given
any set of specific values of b0; b1; b2; b3; b4 and b6, it is easy to compute the values
of s0, s1, and s2.

For a relatively large system, even if we get an over-defined system of equations,
it may not form a full rank coefficient matrix, and hence it has many solutions.
Among those possibilities, some incorrect ones can be filtered by checking the
relationships between single variables x1; x2; : : : ; xn and their products, where the
latter ones have been treated as new variables in the process of equation solving. So
to determine a unique solution is not always an easy task.

5.3 Annihilators and Algebraic Immunity of Boolean
Functions

The above analysis shows that, to break the stream cipher as shown in Fig. 5.1,
it needs to solve the system of nonlinear Eq. 5.1, where the unknowns are the
coefficients of f .x/. However, even if we know that such a function exists and Eq. 5.1
can uniquely determine the values of x1; x2; : : : ; xn, to find the actual values for the
function is equivalent to solving the system of equations (5.1) which is nonlinear,
and the problem may become computationally infeasible when n is large. So far

152 5 Algebraic Immunity of Boolean Functions

there is no efficient algorithm to solve such a system of nonlinear equations, so we
must find a practical way to solve such a system of nonlinear equations; at least that
works when n is reasonably small.

One such approach is to replace every nonlinear term by a new variable. Then
apart from possible variables x1; x2; : : : ; xn, all their products, when they appear in
the expression of Eq. 5.1, will become new variables. In general, the number of
variables can be up to the number of all the products of x1; x2; : : : ; xn, which equals

n

1

!
C

n

2

!
C � � � C

n

n

!
D 2n � 1:

Apparently when n is large, the above is a very large number, although the actual
number of variables is less than 2n � 1; for a random Boolean function f .x/, the
number of terms of f .x/ is about half of that number, and the number of terms in
Eq. 5.1 is likely to be more than the number of terms of f .x/ itself. So after variable
replacement, although Eq. 5.1 becomes a system of linear equations, due to the large
number of variables, it is computationally infeasible to solve. However, noting that
the algebraic degree of f .x/ may be far smaller than n, say deg.f / D t < n, and
noticing that the degree of f .Lk.x// is a function of degree at most t, then the number
of products (including single terms x1; x2; : : : ; xn) of Eq. 5.1 is

n

1

!
C

n

2

!
C � � � C

n

t

!
:

If t is small enough, then
�n

1

�C �n
2

�C � � � C �n
t

�
is not terribly large, and hence it is

possible to solve Eq. 5.1 using the technique of variable replacement.
Experiments show that at present people can only handle very little t for n D 128

or similar scale. For example, when t � 5, it seems to be possible to solve Eq. 5.1;
however when t > 6, to solve Eq. 5.1 is infeasible using normal computers.

However, practically the feedforward function is likely to be of an algebraic
degree higher than 6; hence the attack via solving a system of nonlinear equations
does not work. Meier and Courtois [8, 16] considered the following cases and
concluded that under certain circumstances, even if the algebraic degree of f .x/ is
high, it may be possible to solve the unknowns of Eq. 5.1 with a transformation:

[A1] There exists a Boolean function g.x/ 2 Fn of low algebraic degree such that
g.x/f .x/ D 0 holds. In this case, g.x/ is called an annihilator of f .x/. Note
that g.x/ D 0 is a trivial annihilator of any function f .x/; so in general, we
only consider the nonzero annihilators, unless specified otherwise.

If there exists an annihilator g.x/ of f .x/ with deg.g/ < deg.f /, then given
a sufficient number of outputs bi D f .Li.x//, we have

f .Li.x//g.Li.x// D big.Li.x// D 0:

5.3 Annihilators and Algebraic Immunity of Boolean Functions 153

When bi D 1, we must have g.Li.x// D 0. When there are a sufficient number
of such bi, we have a sufficient number of equations g.Li.x// D 0. Since
the algebraic degree of g is lower than that of f .x/, by solving the system of
equations g.Li.x// D 0, we can hopefully find a solution of x which is also
the solution for Eq. 5.1.

[A2] There exists a Boolean function g.x/ 2 Fn with deg.g/ < deg.f / such that
g.x/.1˚f .x// D 0 holds. In this case, from bi D f .Li.x//, we have .f .Li.x//˚
1/g.Li.x// D .bi ˚ 1/g.Li.x// D 0. When bi D 0, we must have g.Li.x// D
0, and the work for finding a solution of Eq. 5.1 becomes that of finding a
solution of the system of equations g.Li.x// D 0, which is easier due to the
degree of g.x/ being lower than that of f .x/.

It is noted that conditions [A1] and [A2] are independent of each other,
i.e., one condition does not affect the other. For example, f .x/ D x1x2x3 in
3 variables satisfies condition [A1], as g.x/ D x1 ˚ x2 is an annihilator, but
not condition [A2], and f .x/ D x1 ˚ x1x2 ˚ x3 ˚ x1x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚
x1x2x4˚ x3x4˚ x1x3x4˚ x2x3x4˚ x1x2x3x4 in four variables has a low-degree
annihilator g.x/ D x1x2 2 F4, and f .x/˚ 1 also has a low-degree annihilator
h.x/ D x3 ˚ x1x3 (or h.x/ D x1 ˚ x1x2).

[A3] There exist Boolean functions g.x/ 2 Fn and h.x/ 2 Fn such that g.x/f .x/ D
h.x/ holds, where deg.h/ < deg.f /.

It can be shown that this case is equivalent to case [A2]. Assume that
condition [A3] holds. Multiply both sides of g.x/f .x/ D h.x/ by f .x/, and
we have f .x/g.x/ D f .x/h.x/ D h.x/, or h.x/.1˚ f .x// D 0. So this leads to
case [A2].

[A4] There exist low-degree factors of f .x/, i.e., there exists a low-degree Boolean
function g.x/ such that f .x/ D g.x/h.x/, where h.x/ is another Boolean
function which may have high or low degree.

For this case, multiply both sides of f .x/ D g.x/h.x/ by g.x/˚ 1, and we
have f .x/g.x/ D g.x/h.x/ D f .x/ or f .x/.1˚ g.x// D 0. Since by assumption
that 1˚ g.x/ is of low degree, this leads to the case [A1].

By the above discussion, we see that many different cases can be converted into
either case [A1] or case [A2]. This means that, even if the algebraic degree of f .x/ is
high, as long as there exists a low-degree annihilator of f .x/ or of f .x/˚ 1, then the
algebraic attack would work. The minimum of algebraic degree of the annihilators
of f .x/ and that of 1˚ f .x/ is called the algebraic immunity of f .x/ and is denoted
by

AI.f / D minfdeg.g/ W f .x/g.x/ D 0 or .f .x/˚ 1/g.x/ D 0g (5.3)

By this notion, the problem of improving the efficiency of algebraic attack is
converted into finding the low-degree annihilator of f .x/ or of 1 ˚ f .x/, and the
problem of resisting algebraic attack becomes the problem of finding Boolean
functions with high algebraic immunity. It should be noted that the algebraic
immunity is just one of many important cryptographic properties.

154 5 Algebraic Immunity of Boolean Functions

5.4 Construction of Annihilators of Boolean Functions

Construction of Boolean function with high-order algebraic immunity is not an
easy task; that of the highest order of algebraic immunity is certainly a challenging
topic. Some special class of Boolean functions with high-order algebraic immunity
have been found [5–7]; however, general construction still remains a research topic.
Since the algebraic immunity has close relationship with the annihilators of a given
Boolean function, construction of annihilators is an approach to study the algebraic
immunity. On the other hand, when performing a practical algebraic attack, a
concrete annihilator is to be used.

Let f .x/ 2 Fn. It is obvious that if g.x/ is an annihilator of f .x/, then f .x/ is also
an annihilator of g.x/.

Let f .x/ 2 Fn, and denote

AN.f / D fg.x/ 2 Fn W g.x/f .x/ D 0g (5.4)

as the set of all the annihilators of f .x/. Then it is trivial to verify that

Theorem 5.1. AN.f / with multiplication operation of Boolean functions forms a
multiplicative group, and together with the XOR operation, AN.f / forms a ring.

The conclusion of Theorem 5.1 comes from the simple observation that if
f .x/g1.x/ D 0 and f .x/g2.x/ D 0, then both f .x/.g1.x/g2.x// D 0 and f .x/.g1.x/˚
g2.x// D 0 hold.

Theorem 5.2. Let f .x/ 2 Fn, and then the minimum degree of the annihilators of
f .x/ is no larger than deg.f /.

Proof. The conclusion comes from the fact that any Boolean function f .x/ has a
special annihilator f .x/˚ 1 which has the same algebraic degree as f .x/. ut

Theorem 5.2 shows that the minimum degree of the annihilators (nonzero ones)
of a Boolean function f .x/ cannot be larger than the degree of f .x/ itself; however,
there are cases when it may not be less either. One of the key steps of algebraic attack
is to find a low-degree annihilator (of f .x/ or of 1˚ f .x/), and how to efficiently find
such a low-degree annihilator becomes critical for the algebraic attack to work more
efficiently. Here we introduce some constructions of annihilators for an arbitrary
Boolean function.

Theorem 5.3. Let f .x/ 2 Fn, g.x/ be an annihilator of f .x/. Then supp.g/ must be
a subset of supp.1˚ f /, i.e., supp.g/ 	 supp.1˚ f /.

Proof. For any x with g.x/ D 1, since f .x/g.x/ D 0 always hold, we must have
f .x/ D 0, which is equivalent to 1 ˚ f .x/ D 1, i.e., x 2 supp.1˚ f /. This means
that supp.g/ 	 supp.1˚ f /. ut

Some constructions of annihilators of Boolean functions are given by Meier in
[16]. Those algorithms are fundamental; hence they are described here.

5.4 Construction of Annihilators of Boolean Functions 155

Algorithm 5.1 (Construction of low-degree annihilators [16]).
Input: A Boolean function f .x/ in n variables;
Output: A low-degree annihilator of f .x/.
Choose a small integer d, and solve the system of equations composed by g.x/ D 0 for all x 2
supp.f / for the unknown coefficients of g.x/, where g.x/ is of degree d and can be written as

g.x/ D a0 ˚
nM

iD1

aixi ˚ M

1�i<j�n

ai;jxixj ˚ � � �

˚ M

1�i1<i2<���<id�n

xi1 xi2 � � � xid (5.5)

which has 1 C �
n
1

�C �
n
2

�C � � � C �
n
d

�
unknown coefficients. If there is a solution for the system of

equations (i.e., to find the coefficients of g.x/ in (5.5)), such that g.x/ D 0 hold for all x 2 supp.f /,
then g.x/ is an annihilator of f .x/, and the degree of g.x/ is at most d. If no solution can be found,
then increase d by 1, and repeat the above process until a solution can be found.

Algorithm 5.1 is definitely convergent since when d equals deg.f /, there must be
at least one solution for the equation. However, the computational complexity of the
above algorithm can be very high. Below is an improvement of the algorithm:

Algorithm 5.2 (Improvement of Algorithm 5.1 [16]).
Input and output: Same as in Algorithm 5.1.
Step 1: Find from the support of f .x/ the vectors whose Hamming weight is 1, since for these

vectors v, we must have g.v/ D 0, this leads to

g.ei/ D a0 ˚ ai D 0:

If f .x/ is balanced, then on average there should be half of the coefficients of linear terms of g.x/

that can be represented by a0.
Step 2: For those vectors in supp.f / having Hamming weight 2, g.x/ also takes value 0 on these

vectors; hence, we have a0 ˚ ai ˚ aj ˚ aij D 0. So aij can be represented by a0 ˚ ai ˚ aj.
Following this approach, when examining all the vectors in supp.f / of Hamming weight up to
d, we solve the equation of those unknown coefficients of g.x/. If there is a solution, then g.x/

is an annihilator of f .x/ and the degree of g.x/ is at most d. If the number of equations about
the unknown coefficients are smaller than that of the unknowns, then consider more vectors
in supp.f / with larger Hamming weight, which will yield more relations (equations) about the
known coefficients, until there are a sufficiently large number of equations to determine the
unknown coefficients of Eq. 5.5.

It is seen that Algorithm 5.2 avoids the d to be chosen larger than necessary
at the very beginning as in Algorithm 5.1 and ensures the algorithm to output
an annihilator of the lowest degree. However, the algebraic degree is one of the
important measures of annihilators, and the other properties (e.g., the number of
terms in its ANF representation) of the output function of Algorithm 5.2 may not be
the best.

156 5 Algebraic Immunity of Boolean Functions

Algorithm 5.3 gives another approach, which is also efficient and can produce a
large number of annihilators of a given function.

Algorithm 5.3 (Construction of low-degree annihilators).
Input: A Boolean function f .x/ in n variables.
Output: A set of low-degree annihilators of f .x/.
Step 1: Choose a small integer d, and let F0 be the set of all the monomials that have degree � d.

Let supp.f / D fv1; v2; : : : ; vsg.
Step 2: For i D 1 to s dof

Let F0
i D ff j f 2 Fi�1; f .vi/ D 0g and

F1
i D ff j f 2 Fi�1; f .vi/ D 1g

If jF1
i j > 1, thenf

set G0
i to be the set of even weight linear combinations

of functions in F1
i ;

}
else set G0

i D ; be the empty set;
set Fi WD F0

i [G0
ig

Step 3: If Fs is empty, go to Step 1 with d incremented by 1; else output the set Fs.

The basic idea of the algorithm is as follows: let F be initialized as the set
of monomials that have degree � d; the problem is to find all nonzero linear
combinations of functions in F, so that the linear combinations take value 0 on all the
inputs from supp.f / D fv1; v2; � � � ; vsg. More precisely, Algorithm 5.3a describes
the detailed process:

Algorithm 5.3a
Step 1: Divide the functions in F into two disjoint subsets according to their values at v1, i.e.,

F0
1 D ff 2 F W f .v1/ D 0g

F1
1 D ff 2 F W f .v1/ D 1g

Step 2: Let even weight linear combinations of the function in F1
1 form a set G0

1. Union it with the
set F0

1 , and we have a new set F1 D F0
1 [G0

1.
Step 3: Let F D F1, and divide the functions in F1 into two disjoint subsets according to their

values at v2, which result in two function sets, i.e.,

F0
2 D ff 2 F W f .x2/ D 0g

F1
2 D ff 2 F W f .x2/ D 1g

Let the even weight linear combinations of functions in F1
2 form a set G0

2, and union it with F0
2 ;

we get F2.
Step 4: Divide F D F2 into two subsets F0

3 and F1
3 according whether they take value 0 or 1 on

v3, and repeat the same process as in Step 1 and Step 2, until we get a set Fs.

5.4 Construction of Annihilators of Boolean Functions 157

The idea of the algorithm is to narrow down the set of functions who take value
0 on one vector in supp.f /, on two vectors in supp.f /, and so on, until on all the
vectors in supp.f /, which is the set Fs. However, if f .x/ does not exist an annihilator
of degree d or less, then obviously Fs will be an empty set; in this case, we need to
increase the value of d in order to find a nonzero annihilator of f .x/.

In order to demonstrate how the Algorithm 5.3 works, below we give a small
example by finding the annihilators of f .x/ D x1x2˚ x3, a Boolean function in three
variables, where the algebraic degree of the annihilators is expected to be no more
than 2.

It is easy to compute the support of f .x/ as supp.f / D{(0,0,1), (0,1,1), (1,0,1),
(1,1,0)}. Our task is to find Boolean functions with algebraic degree being no more
than 2 who take value 0 on all the elements in supp.f /. According to Algorithm 5.3,
we first need to list all the monomials whose algebraic degrees are no more than 2.
This will result in the following set:

F D f1; x1; x2; x3; x1x2; x1x3; x2x3g

Next, by dividing F into two disjoint subsets according to whether the functions take
value 0 or 1 at v1 D .0; 0; 1/, we have

F0
1 D fx1; x2; x1x2; x1x3; x2x3g

F1
1 D f1; x3g

Then, when making the union of F0
1 and the even weight linear combination of

functions in F1
1 , we get

F1 D fx1; x2; x1x2; x1x3; x2x3; 1˚ x3g

Without confusion, let F D F1 D fx1; x2; x1x2; x1x3; x2x3; 1 ˚ x3g, and then repeat
the same process, i.e., divide F D F1 into two disjoint subsets according to whether
the functions (elements in F) take value 0 or 1 at v2 D .0; 1; 1/, and we get

F0
2 D fx1; x1x2; x1x3; 1˚ x3g

F1
2 D fx2; x2x3g

Making the union of F0
2 and the even weight linear combinations of elements in F1

2 ,
we get

F2 D fx1; x1x2; x1x3; 1˚ x3; x2 ˚ x2x3g

Again let F D F2, which is then divided into two disjoint subsets according to
whether the functions (elements in F) take value 0 or 1 at v3 D .1; 0; 1/, and we get

F0
3 D fx1x2; 1˚ x3; x2 ˚ x2x3g

158 5 Algebraic Immunity of Boolean Functions

F0
3 D fx1; x1x3g

Similar to the above process, we get

F3 D fx1x2; 1˚ x3; x2 ˚ x2x3; x1 ˚ x1x3g:

Divide F D F3 into two disjoint subsets according to whether the functions
(elements in F) take value 0 or 1 at v4 D .1; 1; 0/, and we get

F0
4 D ;

F1
4 D fx1x2; 1˚ x3; x2 ˚ x2x3; x1 ˚ x1x3g

Finally, we get the union of F0
4 and the even weight linear combinations of functions

in F1
4 , i.e., the set F4, which has eight nonzero elements, together with the zero

function, and it has a basis

B D f1˚ x3 ˚ x1x2; 1˚ x2 ˚ x3 ˚ x2x3; 1˚ x1 ˚ x3 ˚ x1x3g:

Therefore, we get eight nontrivial annihilators of f .x/ with algebraic degree being
no more than 2, and it is noted that their algebraic degrees are exactly 2.

It is interesting to see that in theory Algorithm 5.3 can find all the possible
annihilators with degree � d of a given function f .x/, if they ever exist.

Theorem 5.4. Algorithm 5.3 can find all the annihilators of any Boolean function
f .x/ with algebraic degree up to d.

Proof. Let g.x/ be an annihilator of f .x/ and deg.g/ � d. Write g.x/ in the form of
XOR of the monomials, i.e., g.x/ D g1.x/ ˚ g2.x/ ˚ � � � ˚ gt.x/. Then each gi.x/

is a monomial of degree � d; hence, it is included in the initialization of the set F
that starts Algorithm 5.3. When F is divided into two subsets, those fj.x/ that take
value 0 on v1 are in one same set F0

1 , and the rest of fj.x/ that take value 1 on v1 are
in the other set F1

1 , Then a new set F1 is formed that includes all the elements in F0
1

and the even weight linear combinations of those in F1
1. It is noted that F1 includes

all the monomials gi.x/, either in the form of monomials or in the form of a linear
combination of them. Note that g.x/ must be a linear combination of functions in
F1, since g.x/ takes value 0 on v1. Following Algorithm 5.3, we will get sets F2,
F3, � � � , Fn�1, and similarly it is easy to verify that they all contain g.x/ as a linear
combination of its elements. Note that Algorithm 5.3 outputs a set, which means that
any (nonzero) linear combination of the elements in the output set is an annihilator
of the given function f .x/. According to the above analysis, the linear combinations
will include g.x/ as a special linear combination. This concludes Theorem 5.4. ut

Define a matrix Pd
n.S/ whose column vectors are the values of monomials of

degree no more than d on the vectors in S. When S D GFn.2/, we simply write
Pd

n.S/ as Pd
n. Note that Pd

n.S/ can be uniquely determined if vectors in S always

5.4 Construction of Annihilators of Boolean Functions 159

follow a specific order. For example, let S D f.0; 0; 1/; .0; 1; 1/; .1; 0; 1/; .1; 1; 0/g,
where the order of the vectors in S is as how they are written, which can also be
treated as the integers in incremental order, where the vectors are the corresponding
2-adic representation. Then P2

3.S/ can be defined as follows:

S P2
3.S/

1 x1 x2 x3 x1x2 x1x3 x2x3

0 0 1 1 0 0 1 0 0 0

0 1 1 1 0 1 1 0 0 1

1 0 1 1 1 0 1 0 1 0

1 1 0 1 1 1 0 1 0 0

It is easy to verify the following conclusion.

Lemma 5.1. For any S 	 f0; 1gn, a sufficient and necessary condition for the
existence of a Boolean function with degree no more than d that takes value 0 on all
vectors in S is that the rank of the matrix Pd

n.S/ is less than the number of columns
of Pd

n.S/.

Proof. Sufficiency: If the rank of Pd
n.S/ is less than the number of its columns, it

means that the column vectors of Pd
n.S/ are linearly dependent, so there is a linear

combination that results in a zero column vector. It is trivial to verify that the same
linear combination on the monomials will result in a function that takes value 0 on
all the rows of S. In fact, the columns of Pd

n.S/ can be treated as the truth tables
of monomials restricted on set S, and the linear combination on these restricted
truth tables is equivalent to the linear combination of these monomials, where the
resulted linear combination is a zero function when restricted on S. Since each of
the monomials has a degree no more than d, then their linear combination is also a
polynomial of degree no more than d.

Necessity: Assume the existence of a polynomial of degree no more than d
that takes value 0 on all the vectors in S, and then treat the polynomial as a
linear combination of each of the terms (monomials); it corresponds to a linear
combination of the columns of Pd

n.S/. Since the linear combination is a polynomial
that takes value 0 on all the vectors in S, it means that the linear combination of the
columns corresponding to the monomials will be a zero vector. This means that the
columns of Pd

n.S/ must be linearly dependent, and hence the rank of Pd
n.S/ must be

less than the number of its columns. ut
By Lemma 5.1, it is easy to prove the well-known upper bound of algebraic

immunity given in [9].

Corollary 5.1. For any n-variable Boolean function f .x/, we have that

AI.f / �
ln

2

m
(5.6)

160 5 Algebraic Immunity of Boolean Functions

Proof. For any Boolean function f .x/ in n variables, one of the supports supp.f / and
supp.1˚ f / must have no more than 2n�1 elements. Without loss of generality, let
jsupp.f /j � 2n�1, and denote S D supp.f /. The number of monomials (including
the constant 1) of degree no more than d is

Pd
iD0

�n
i

�
. When d � n

2
, we must have

that

dX

iD0

n

i

!
> 2n�1I

in this case, the number of columns in matrix Pd
n.S/ must be larger than its rank

(since it has no more than 2n�1 rows); hence an annihilator of degree no more than
d must exist. This means that the algebraic immunity of any Boolean function in n
variables is upper bounded by d for all d � n

2
. It is easy to verify that

minfd W d � n

2
g D

ln

2

m

which is the upper bound of algebraic immunity in general case. ut
Lemma 5.1 also leads to a new approach of finding low-degree annihilators of a

given Boolean function. Hence, we have the following algorithm:

Algorithm 5.4 (Construction of low-degree annihilator).
Input: A Boolean function f .x/ in n variables.
Output: A low-degree annihilator of f .x/.
Step 0: If jsupp.f /j � 2n�1, then denote S D supp.f /; else write S D supp.f ˚ 1/.
Step 1: Choose a small integer d, and write down the matrix Pd

n.S/.
Step 2: Check if the rank of Pd

n.S/ equals the number of its columns. If so, go to Step 1; else
continue;

Step 3: Find a set of columns of Pd
n.S/ that are linearly dependent;

Step 4: Find a linear combination of the dependent columns of Pd
n.S/, and compose the same

linear combination of the monomials corresponding to the chosen linearly dependent columns;
Step 5: Output the linear combination of the monomials.

It is noted that Algorithm 5.4 is easy to implement, and the storage needed in
implementation is to hold the matrix Pd

n.S/.

Theorem 5.5. For any S 	 f0; 1gn, if

dX

iD0

n

i

!
> jSj;

then there must exist a Boolean function with degree no more than d that takes value
0 on all the vectors in S.

5.5 On the Upper and Lower Bounds of Algebraic Immunity of Boolean. . . 161

Proof. It is noticed that the number of columns of the matrix Pd
n.S/ is larger than that

of the rows, so the columns are linearly dependent. By Lemma 5.1, the conclusion
follows. ut

Theorem 5.5 indicates that, when a Boolean function has very little weight, then
it will have low-degree annihilators.

5.5 On the Upper and Lower Bounds of Algebraic Immunity
of Boolean Functions

A tight upper bound of the algebraic immunity of Boolean functions in the general
case was given in [9, 16] as described in Corollary 5.1, which says that the algebraic
immunity of Boolean functions in n variables cannot be larger than d n

2
e. Then we

have

Corollary 5.2. For any integer d, 0 � d � n, denote

.n; d/ D

n

0

!
C

n

1

!
C � � � C

n

d

!
:

Let f .x/ be a Boolean function in n variables satisfying that
.n; d/ � jsupp.f /j,
and then there exists an annihilator of f .x/ with degree lower than or equal to d,
i.e.,

minfdeg.g/ W g.x/ 2 AN.f /g � d:

Proof. The conclusion comes directly from Theorem 5.5 and the fact that f .x/˚ 1

is an annihilator of f .x/. ut
With respect to the lower bound of algebraic immunity of Boolean functions, we

have

Theorem 5.6. Let f .x/ be a Boolean function in n variables and with algebraic
degree being no larger than d. Then we have

2n�d � jsupp.1˚ f /j � 2n � 2n�d: (5.7)

and both the lower and the upper bounds are tight.

Proof. For a fixed d, we prove the theorem with an induction on n. If n D d, then
we must have 1 � jsupp.1˚ f /j � 2n�1; hence the conclusion is true. Assume that
the conclusion is true for some d, i.e., for all the Boolean functions f .x/ with degree
no larger than d, the inequality jsupp.1˚ f /j � 2n � 2n�d holds. Let f 2 FnC1 be a
Boolean function in nC 1 variables that has algebraic degree no more than d. Then
f .x/ must be represented in the following format:

162 5 Algebraic Immunity of Boolean Functions

f .x1; � � � ; xnC1/ D f 0.x1; � � � ; xn/˚ xnC1f 00.x1; � � � ; xn/

where f 0; f 00 2 Fn, deg.f 0/ � d and deg.f 00/ � d � 1 and either f 0 or f 00 has to be
nonzero. Now we consider the following three cases:

(1) If f 0 ¤ 0; f 00 D 0, then f .x/ can be treated as a function in Fn, and by the
assumption, we have supp.1˚ f / � .2d � 1/2n�d � .2d � 1/2nC1�d.

(2) If f 0 D 0; f 00 ¤ 0, then supp.1˚ f / D f.x; 0/[.x; 1/jx 2 supp.1˚ f 00/g, since
deg.f 00/ � d � 1; hence we have

jsupp.1˚ f /j � 2n C .2d�1 � 1/2n�.d�1/ D .2d�1/2nC1�d:

(3) If f 0 ¤ 0; f 00 ¤ 0, then supp.1˚ f / can be written as

supp.1˚ f / D f.x; 0/ j x 2 supp.1˚ f 0/g [f.x; 1/ j x 2 supp.1˚ f 0 ˚ f 00/g:

If f 0 ˚ f 00 D 0, then we get deg.f 0/ D deg.f 00/ � d � 1 and

jsupp.1˚ f /j D jsupp.1˚ f 0/j C jsupp.1˚ f 0 ˚ f 00/j
� .2d � 1/2n�.d�1/ C 2n D .2d � 1/2nC1�d

If f 0 ˚ f 00 ¤ 0, then we have

jsupp.1˚ f /j D jsupp.1˚ f 0/j C jsupp.1˚ f 0 ˚ f 00/j
� .2d � 1/2n�d C .2d � 1/2n�d D .2d � 1/2nC1�d:

In particular, if we choose f 0 such that supp.1˚ f 0/ D .2d�1/2n�d and f 00 D 0,
then the upper bound .2d � 1/2nC1�d can be reached. ut

Theorem 5.7. Let f .x/ 2 Fn. If jsupp.f /j > 2n � 2n�d, then there does not exist an
annihilator of f .x/ with degree less than or equal to d.

Proof. Let g.x/ be an annihilator of f .x/. By f .x/g.x/ D 0, it is known that
supp.f / 	 supp.1 ˚ g/; hence jsupp.f /j � jsupp.1 ˚ g/j. Since jsupp.f /j >

2n � 2n�d, we have jsupp.1 ˚ g/j > 2n � 2n�d, and by Theorem 5.6, we know
that the algebraic degree of g.x/ must be larger than d; hence the conclusion of
Theorem 5.7 holds. ut

5.6 Computing the Annihilators of Boolean Functions

Algebraic attacks have big impact on the security of stream ciphers and block
ciphers. Since the key to the success of algebraic attacks is to find low-degree
annihilators of a nonlinear Boolean function, many cryptographic researchers

5.6 Computing the Annihilators of Boolean Functions 163

have paid much attention on the efficient computation of annihilators of Boolean
functions and on the construction of Boolean function that do not have low-degree
annihilators. This section is to find some relationships between a Boolean function
f .x/ and its annihilators and further to design efficient algorithms to find the
annihilators of an arbitrarily given Boolean function. The analysis will also provide
some advice to the cryptographic designers as what to avoid in order to avoid the
use of Boolean functions with low-degree annihilators.

5.6.1 Computing the Annihilators of Boolean Functions:
Approach I

It is noticed that the truth table of f .x/˚ 1 is just the complement of that of f .x/, so
we may call f .x/˚ 1 the complement function of f .x/ and vice versa.

Definition 5.2. If all the x satisfying f .x/ D 1 also satisfy that g.x/ D 1, i.e.,
f .x/ D 1 implies that g.x/ D 1 always holds, then g.x/ is called a cover of f .x/.

If g.x/ is an annihilator of f .x/, then f .x/ is an annihilator of g.x/ as well. By
Theorem 5.3, it is known that, if g.x/ is an annihilator of f , then g.x/˚ 1 must be a
cover of f .x/.

Since the algebraic degree of g.x/ and that of g.x/ ˚ 1 are the same, if we are
given the ANF representation of g.x/˚1, then it is easy to get that of g.x/. Therefore,
in order to find a low-degree annihilator g.x/ of f .x/, the relationship supp.gC1/ �
supp.f / is useful. Our approach is to find a low-degree Boolean function whose
support is a subset of supp.f /. More precisely, we have the following intuitive but
very useful theorem:

Theorem 5.8. The problem of finding a low-degree annihilator of f .x/ is equivalent
to finding a low-degree Boolean function whose support is a subset of supp.f /.

By Theorem 5.8, to find an annihilator of f .x/ is equivalent to the problems of
finding a Boolean function whose support is a subset of supp.f /. Let t D wt.f /, and
then wt.f ˚ 1/ D 2n � t. In the support of f .x/˚ 1 that has 2n � t elements, select a
nonempty subset as the support of a new Boolean function g.x/, and then g.x/ is an
annihilator of f .x/. Hence we get

Theorem 5.9. Let f .x/ be a Boolean function in n variables and wt.f / D t. Then
the number of annihilators of f .x/ equals

2n�tX

iD1

2n � t

i

!
D 22n�t � 1:

Theorem 5.9 gives the total number of annihilators of a given Boolean function,
and these annihilators can be constructed using Theorem 5.8. This means that

164 5 Algebraic Immunity of Boolean Functions

in theory we may construct all the annihilators of an arbitrary Boolean function;
however, in practice, only the low-degree annihilators are useful in performing an
algebraic attack. Practically, when the algebraic degree of the annihilator (if it is
the lowest degree) of a Boolean function is larger than 5, it is difficult to launch
an algebraic attack, or the attack is impractical. So with respect to the practical
algebraic attacks, only the low-degree annihilators of Boolean functions are of
interest. Here we tend to give an efficient and practical algorithm to find low-degree
annihilators of Boolean functions.

Theorem 5.10. Let f1.x0/, f2.x0/ and g1.x0/, g2.x0/ be Boolean functions in n � 1

variables, where g1.x0/ is an annihilator of f1.x0/ and g2.x0/ is an annihilator of
f2.x0/. Let f .x/ D xnf1 ˚ .xn ˚ 1/f2 be a Boolean function in n variables, and then
f .x/ has an annihilator g.x/ D xng1 ˚ .xn ˚ 1/g2.

Proof. It is easy to verify that

g.x/f .x/ D .xng1 ˚ .xn ˚ 1/g2/.xnf1 ˚ .xn ˚ 1/f2/

D xnf1g1 ˚ .xn ˚ 1/f2g2 D 0:

This indicates that g.x/ is indeed an annihilator of f .x/. ut
Theorem 5.10 indicates that it is possible to use the decomposition of Boolean

functions to find annihilators. If we write f .x/ as f .x/ D xnf1.x0/ ˚ .xn ˚ 1/f2.x0/,
which is called a cascade representation of f .x/, then the problem of finding
annihilators of f .x/ can be converted into the problem of finding annihilators of
f1.x0/ and of f2.x0/, respectively.

However, there is a question about whether all the annihilators of f .x/ in its
cascade representation f .x/ D xnf1 ˚ .xn ˚ 1/f2 have an annihilator g.x/ which
is also in its cascade representation as g.x/ D xng1 ˚ .xn ˚ 1/g2, where g1 is an
annihilator of f1 and g2 is an annihilator of f2. We have the following conclusion:

Theorem 5.11. Let f .x/ D xnf1 ˚ .xn ˚ 1/f2; a Boolean function in n variables
in cascade representation has an annihilator g.x/. Then there must exist g1, an
annihilator of f1, and g2, an annihilator of f2, such that g.x/ can be written as
g.x/ D xng1 ˚ .xn ˚ 1/g2

Proof. Let g1 D g.xjxn D 0/, g2 D g.xjxn D 1/, and then it is trivial to verify that
the conclusion of Theorem 5.11 holds. ut

By Theorems 5.10 and 5.11, the problem of finding annihilators of f .x/ can be
converted into the ones of finding the annihilators of f1 and of f2, respectively. Since
the number of variables of f1 and of f2 is smaller than that of f .x/, hence the problem
of finding annihilators for a Boolean function with less number of variables becomes
easier on average. Note that our problem is not to find all the annihilators; it is
targeted at finding an annihilator with the lowest algebraic degree. Now a question
is, if it is possible to find an annihilator with the lowest algebraic degree for both f1

5.6 Computing the Annihilators of Boolean Functions 165

and f2, does it mean that we can form an annihilator with the lowest algebraic degree
for f .x/? First, we give the following conclusion:

Theorem 5.12. Let f .x/ D xnf1 ˚ .xn ˚ 1/f2 be a Boolean function in n variables.
Then we have

deg.f / D
8
<

:

deg.f1/C 1 if deg.f1/ > deg.f2/
deg.f2/C 1 if deg.f1/ < deg.f2/
deg.f1/C c if deg.f1/ D deg.f2/

(5.8)

where c 2 f0; 1g. Moreover, when f1 and f2 have the same term with the highest
degree, i.e., when deg.f1 ˚ f2/ < deg.f1/ D deg.f2/, we have c D 0; else c D 1.

Proof. Since f .x/ D xn.f1 ˚ f2/ ˚ f2, when deg.f1/ ¤ deg.f2/, it is obvious that
deg.f1˚ f2/ D maxfdeg.f1/; deg.f2/g must hold. Hence the first two items in Eq. 5.8
hold obviously. With respect to the last item, it is noticed that the degree of f1 ˚ f2
is less than that of f2 if and only if f1 and f2 have the same term with the highest
degree, and in this case, f .x/ has the same degree with f2. Otherwise, we must have
deg.f1 ˚ f2/ D deg.f1/ D deg.f2/, i.e., deg.f / D deg.f2/C 1. Hence the conclusion
of Theorem 5.12 is true. ut

By Theorem 5.12, we directly have

Corollary 5.3. Let f .x/ D xnf1 ˚ .xn˚ 1/f2, where f1 and f2 are Boolean functions
in n � 1 variables. Then we have

deg.f / � maxfdeg.f1/; deg.f2/g C 1:

With the above preparation, we are ready to discuss some of the properties of
annihilators of Boolean functions in their cascade representation.

Theorem 5.13. Let f .x/ D xnf1 ˚ .xn ˚ 1/f2 be a Boolean function in n variables.
Then the minimum degree of annihilators of f .x/ is

min
g12AN.f1/; g22AN.f2/

fmaxfdeg.g2/; deg.g1 ˚ g2/C 1gg (5.9)

Proof. For any g1 2 AN.f1/ and any g2 2 AN.f2/, by Theorem 5.11, we know that
g.x/ D xng1 ˚ .xn ˚ 1/g2 is an annihilator of f .x/. Note that we can write g.x/ D
xn.g1˚g2/˚g2, and it is easy to see that deg.g/ D maxfdeg.g2/; deg.g1˚g2/C1g.
Take such a function, say g0.x/, with the lowest algebraic degree, among all those
annihilators in cascade representations, and we get an annihilator of f .x/ that has
the lowest degree. Further, by Theorem 5.9, these annihilators cover all the possible
annihilators of f .x/, so g.x/ is indeed an annihilator of f .x/ with the lowest degree.

ut
By Theorem 5.13, the correctness of the following algorithm can easily be

verified:

166 5 Algebraic Immunity of Boolean Functions

Algorithm 5.5 (Construction of annihilator with the lowest degree).
Input: A Boolean function f .x/ in n variables.
Output: An annihilator g.x/ of f .x/ that has the lowest possible degree.
(1) Write f .x/ in a cascade representation as f .x/ D xn.f1 ˚ f2/ ˚ f2.
(2) Find all the possible annihilators AN.f1/ of f1 and AN.f2/ of f2, respectively.
(3) For all the possible functions .g1; g1/; g1 2 AN.f1/and g2 2 AN.f2/, compute d D

maxfdeg.g2/; deg.g1 ˚ g2/ C 1g.
(4) Find a function pair .g1; g2/ corresponding to the smallest possible value of d.
(5) Output g.x/ D xng1 ˚ .xn ˚ 1/g2.

Note that Algorithm 5.5 is meant to find one of the annihilators of f .x/ with
the lowest degree, which may not be unique. When there are multiple possibilities,
it is not sure which annihilator is obtained as the output. In practical applications,
an annihilator is only one cryptographic measure, and different annihilators with
the same degree may have very different behaviors when performing an algebraic
attack. Hence, in practice, more measures need to be taken into consideration, e.g.,
the number of terms of the final annihilators.

5.6.2 Computing the Annihilators of Boolean Functions:
Approach II

Lemma 5.2. Let S be a k-dimensional subspace of GFn.2/ with M being a 2k � n
matrix with row vectors being different elements in S. Then any nonzero column of
M must have half of 0’s and half of 1’s.

Proof. Let ˛1; � � � ; ˛k form a basis of S. When 	 D .	1; 	2; � � � ; 	k/ go through
all the possible vectors in GFk.2/, 	 � .˛1; � � � ; ˛k/

T and must meet all the possible
row vectors of M, denote by a1j; a2j; � � � ; akj the j-th coordinate of ˛1; � � � ; ˛k. If
the j-th column of M is nonzero, because ˛1; � � � ; ˛k is a basis of S, it means that
.a1j; a2j; � � � ; akj/ ¤ 0. Hence the linear combination

	1a1j ˚ 	2a2j ˚ � � � ˚ 	kakj D 0

has 2k�1 solutions in GFk.2/, i.e., a1j; a2j; � � � ; akj has 2k�1 linear combinations that
result in 0, while other 2k�1 linear combinations will result in value 1. ut
Definition 5.3. Let V be a d-dimensional subspace of GFn.2/ and c be a nonzero
vector in GFn.2/. Then the set fc ˚ v; v 2 Vg is called a d-dimensional affine
subspace of GFn.2/.

The concept of affine subspace is the same as that of coset as defined in
Definition 2.5; however, the former emphasizes the dimension while the latter one
does not. Note that an .n � 1/-dimensional subspace (linear or affine) is also called
a hyperplane.

5.6 Computing the Annihilators of Boolean Functions 167

Theorem 5.14 ([17]). If the support of a Boolean function f .x/ in n variables is
a k-dimensional subspace or a k-dimensional affine subspace of GFn.2/, then the
algebraic degree of f .x/ is n � k.

Proof. Let f.ai1 ; ai2 ; : : : ; ain W 1 � i � 2n � 1g be a k-dimensional subspace of
GFn.2/. Let S D f.ai1˚ c1; � � � ; ain˚ cn/g, where c D .c1; c2; � � � ; cn/ is a constant
vector in GFn.2/, and let g.x/ be a Boolean function with S being its support. Then
g.x/ can be written in minterm representation as

g.x1; x2; � � � ; xn/ D
M

.ai1˚c1;��� ;ain˚cn/2S

nY

lD1

.xl ˚ ail ˚ cl ˚ 1/; (5.10)

where c D .c1; c2; � � � ; cn/. For the convenience of writing, we write yl D xl˚cl˚1

in Eq. 5.10. Then we have

h.y1; y2; � � � ; yn/ D
M

.ai1˚c1;��� ;ain˚cn/2S

nY

lD1

.yl ˚ ail/

D
nM

lD1

.

2kM

iD1

aijlC1
aijlC2

� � � aijn/yj1yj2 � � � yjl ; (5.11)

where 1 � l � n, and jlC1; jlC2 � � � jn is a permutation of 1; 2; � � � ; n, i.e.,

fjlC1; jlC2 � � � jng D f1; 2; � � � ; ngnfj1; � � � ; jlg:

It is easy to see that deg.h/ D deg.g/. Now it leaves to prove that the algebraic
degree of h.x/ is exactly n � k. Forming a matrix M with the elements in S as row
vectors, we get

M D

0

BBBBB@

a11 a12 � � � a1k � � � a1n

a21 a22 � � � a2k � � � a2n

a31 a32 � � � a3k � � � a3n

� � � � � � � � � � � � � � � � � �
a2k1 a2k2 � � � a2kk � � � a2kn

1

CCCCCA
:

Then the coefficients of yj1yj2 � � � yjl , .l � n/ are equal to the sum of the products of
same row elements in the jlC1; jlC2 � � � jn-th columns of M. Below we prove that, in
the ANF of h.x/, all the terms with degree larger than n � k have a zero coefficient.

Case (1): Considering the term with the highest degree in h.x/, because the
matrix M has 2k rows, the coefficient of y1y2 � � � ; yn therefore equals 0.

Case (2): Considering the terms with degree n � 1 in h.x/, the coefficient of any

such a term yj1yj2 � � � yjn�1 can be written as
L2k

iD1 aijn , which is the XOR of all
the elements in the jn-th column of M. If all the elements in the jn-th column are

168 5 Algebraic Immunity of Boolean Functions

all zero, then the coefficient is obviously 0. Otherwise, by Lemma 5.2, we know
that the jn-th column of M has 2n�1 of 1’s, and when n > 1, their XOR will also
result in 0. This means that all the coefficients of the terms of h.x/ with degree
n � 1 are 0.

Case (3): Considering the terms with degree of n� 2 in h.x/, then the coefficient
of such a term yj1yj2 � � � yjn�2 is

2kM

iD1

aijn�1aijn ;

and it is easy to see that the above XOR equals the inner product of the jn�1-th
column and the jn-th column of the matrix M.
If these two vectors (columns in M) are linearly dependent, then there are two
cases in which either one of the vectors is a zero vector, in which case the above
equals zero, or the two vectors are equal, in which case similar to the discussion
in case (2), and we have

2kX

iD1

aijn�1aijn D
2kX

iD1

aijn�1 D 2k�1 � 0 .mod 2/; (5.12)

where k > 1. If these two vectors are independent, let Prob.aij D 1/ represent
the probability that the .i; j/-th element in M is 1; then by Lemma 5.2, we have

Prob.aijn�1 D 1/ D Prob.aijn D 1/ D 1

2

and further we have

2kX

iD1

aijn�1aijn D Pfaijn�1aijn D 1g � 2k

D 2k�2 � 0 .mod 2/; (5.13)

where k > 2.
Case (4): Considering the terms with degree of n � 3 in h.x/, in this case, we

further consider the following three cases to discuss the coefficient of yj4 � � � yjn in
Eq. 5.11:

1. The j1; j2; j3-th columns of M are linearly independent;
2. One of the columns is the XOR of the other two columns;
3. Two columns are equal.

For the first case, similar to Eq. 5.13, we have, for k > 3,

5.6 Computing the Annihilators of Boolean Functions 169

2kX

iD1

aijn�2aijn�1aijn D Pfaijn�2aijn�1aijn D 1g � 2k

D 2k�3 � 0 .mod 2/:

For the second case, we have

2kX

iD1

aijn�2aijn�1aijn D
2kX

iD1

aijn�2aijn�1 .aijn�2 C aijn�1 /

� 0 .mod 2/: (5.14)

And for the third case, it can be converted into a case either in Eq. 5.12 or
Eq. 5.13.

Case (5): Considering the terms with degree of l (l > n � k) in h.x/, and in this
case, we use induction to prove that the coefficient of the term yj1yj2 � � � yjl is zero.
If the rest n � l columns of M are linearly independent, then we have

2kX

iD1

aijlC1
� � � aijn D 2k�.n�l/ � 0 .mod 2/;

where n � l < k. If these n � l columns are linearly dependent, let ˛j1; � � � ; ˛jt,
t < n � l be a basis of these column vectors. Then we have

2kX

iD1

aijlC1
� � � aijn

D
2kX

iD1

aij01
� � � aij0t 	

jtC1 � .aij01
; � � � ; aij0t / � � �

� 	jn�l � .aij01
; � � � ; aij0t /: (5.15)

here 	jtC1 ; � � � ; 	jl 2 GFk.2/; ˛j1 D .a1j01
; � � � ; a2kj01

/T ; � � � ; ˛jt D
.a1j0t ; � � � ; a2kj0t /

T . In the representation of f	jtC1 ; � � � ; 	jn�lg, there is a 	jZ that
has even Hamming weight; hence similar to Eq. 5.14, for any 1 � i � 2k, we
have

aij01
� � � aij0t 	

jtC1 � .aij01
; � � � ; aij0t / � � �	jn�l � .aij01

; � � � ; aij0t / � 0 .mod 2/:

If all these 	jtC1 ; � � � ; 	jn�l have odd Hamming weight, then we get

aij01
� � � aij0t 	

jtC1 � .aij01
; � � � ; aij0t / � � �	jn�l � .aij01

; � � � ; aij0t / D aij01
� � � aij0t I

170 5 Algebraic Immunity of Boolean Functions

hence, for t < k, we have

2kX

lD1

aijlC1
� � � aijn D

2kX

lD1

aij01
� � � aij0t D 2k�t � 0 .mod 2/:

Combining the cases (1)–(5), we have proved that all the terms in h.x/ with
degree larger than n � k have a zero coefficient.

Now we prove that, if the jn�kC1; jn�kC2; � � � ; jn-th columns in M are linearly
independent, then in the ANF representation of h.x/, the coefficient of the term
xj1xj2 � � � xjn�k is 1. In fact, in the sub-matrix composed by the jn�kC1; jn�kC2; � � � ; jn-
th columns of M, there is only one row with all 1’s; hence

2kM

iD1

aijn�kC1
aijn�kC2

� � � ajn D 1:

Therefore, the algebraic degree of h.x/ is indeed n� k, which also equals the degree
of g.x/, and hence the conclusion of the theorem follows. ut
Definition 5.4. Let A be a subset of GFn.2/, and then function

fA.x/ D
�

1 if x 2 A
0 if x 2 GFn.2/� A

is called the characteristic function of the set A.

Theorem 5.15 ([17]). If there exist some disjoint d-dimensional subspaces or affine
subspaces of GFn.2/, denoted by Ak, such that the union of these subspaces [Ak is
a cover of the support of Boolean function f .x/ in n variables. Then there must exist
an annihilator of f .x/ with degree n � d. A special case is to let the union of the
above subspaces be the support of g.x/; in this case, g.x/ is an annihilator of f .x/

and is of degree n � d. More specifically, we can write

g.x/ D 1˚
M

�2[Ak

nY

iD1

.xi ˚ �i ˚ 1/; (5.16)

where � D .�1; �2; � � � ; �n/.

Proof. It is easy to verify that the characteristic function of any Ak is

M

�2Ak

nY

iD1

.xi ˚ �i ˚ 1/

where � D .�1; �2; � � � ; �n/, and by Theorem 5.14, their algebraic degrees are all
equal to n � d; hence their XOR is

5.6 Computing the Annihilators of Boolean Functions 171

M

�2[Ak

nY

iD1

.xi ˚ �i ˚ 1/

which is also a Boolean function in n variables with algebraic degree no larger than
n � d; hence the conclusion of the theorem follows. ut
Example 5.1. Let

f .x/ D x1 ˚ x3 ˚ x5 ˚ x1x3 ˚ x1x4 ˚ x1x5 ˚ x2x4 ˚ x2x5 ˚ x1x2x3 ˚ x2x3x4x5;

g.x/ D 1˚ x1 ˚ x2 ˚ x3 ˚ x5 ˚ x1x2 ˚ x1x3 ˚ x1x5 ˚ x2x3 ˚ x2x5:

Use the vectors in the support of f .x/ as row vectors to form a matrix as

M D

2

66666666666666666666666666664

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 1 0 0

1 0 1 0 1

3

77777777777777777777777777775

The vectors in the support of f .x/ can be expanded into a union of the following
affine subspaces of dimension 3:

f.00001/; .00011/; .00100/; .00110/; .11000/; .11010/; .11101/; .11111/g;
f.10000/; .10001/; .10010/; .10011/.10100/; .10101/; .10110/; .10111/g

and

f.01000/; .01001/; .01010/; .01011/.01100/; .01101/; .01110/; .01111/g:

Therefore, f .x/ has an annihilator of degree 2. Furthermore, since this is the only
3-dimensional subspace of GF5.2/ composed of the union of some 3-dimensional

172 5 Algebraic Immunity of Boolean Functions

affine subspaces and 3-dimensional subspaces constituting a cover of the support of
f .x/, hence it is the only annihilator of degree 2 for f .x/.

Note that in Theorem 5.15, [Ak are disjoint d-dimensional subspaces or affine
subspaces; the number of elements of these sets is 2d or integral multiple of 2d.
Hence the annihilators of f .x/ constructed by Theorem 5.15 all have a Hamming
weight of a multiple of 2d.

By Theorem 5.15, we can give the following algorithm to compute the annihila-
tors of Boolean functions:

Algorithm 5.6 (Construction of annihilator with the lowest degree).
Input: A Boolean function f .x/ in n variables.
Output: An annihilator g.x/ of f .x/ that has the lowest possible degree.
(1) Represent f .x/ by its support, and write E D supp.f /;
(2) From the union of some d-dimensional subspaces and affine subspaces of GFn.2/, find a

nontrivial subset that covers supp.f /; If ˛ ˚ ˇ1 2 supp.f /, ˛ ˚ ˇ2 2 supp.f /, then construct
˛ ˚ ˇ1 ˚ ˇ2 and add it into E, regardless whether ˛ ˚ ˇ1 ˚ ˇ2 belongs to supp.f /;

(3) Let E be the support of g.x/ and output g.x/ ˚ 1.

In fact, Theorem 5.15 can be generalized as follows:

Theorem 5.16. Let A1; A2 be two subspaces or affine subspaces of GFn.2/ with
dimension no less than d. Write A D .A1 [A2/ n .A1 \ A2/. If supp.f / 	 A, then
f .x/ must exist an annihilator with degree no more than n�d. More specifically, the
Boolean function with NA as support is an annihilator of f .x/ and has degree n � d,
i.e.,

g.x/ D 1˚
M

�2.A1[A2/n.A1\A2/

nY

iD1

.xi ˚ �i ˚ 1/ (5.17)

where � D .�1; �2; � � � ; �n/.

Proof. Write � D .�1; �2; � � � ; �n/; then the characteristic functions of A1 and A2 are

gA1.x/ D
M

�2A1

nY

iD1

.xi ˚ �i ˚ 1/

and

gA2.x/ D
M

�2A2

nY

iD1

.xi ˚ �i ˚ 1/;

5.6 Computing the Annihilators of Boolean Functions 173

respectively. By Theorem 5.14, we know that gA1.x/ and gA2.x/ are both Boolean
functions with degree no more than n � k; hence their XOR is

gA1.x/˚ gA2.x/ D
M

�2A1

nY

iD1

.xi ˚ �i ˚ 1/˚
M

�2A2

nY

iD1

.xi ˚ �i ˚ 1/

D
M

�2.A1[A2/n.A1\A2/

nY

iD1

.xi ˚ �i ˚ 1/ (5.18)

which has a degree no more than n � d. The correctness of Eq. 5.18 is due to that
the elements in A1 \ A2 appear both in the characteristic functions of A1 and that
of A2, which yield their XOR to be zero. Let g.x/ D 1˚ gA1.x/˚ gA2.x/; then the
algebraic degree of g.x/ is no more than n � d, and the support of g.x/ is NA. Since
supp.f / 	 A, it is trivial to verify that g.x/ is an annihilator of f .x/. ut
Example 5.2. Let

A1 D f.1100/; .1101/; .1110/; .1111/g;
A2 D f.1111/; .0011/; .1011/; .0111/g

be two affine subspaces of GF4.2/ with dimension d D 2. Then

A D .A1 [A2/ n .A1 \ A2/ D f.1100/; .1101/; .1110/; .0011/; .1011/; .0111/g:

Let f .x/ D x1x2˚x1x2x3x4, then supp.f / � A. Since the characteristic function of A
is x1x2˚x3x4 which has degree n�d D 2, by Theorem 5.16, g.x/ D 1˚x1x2˚x3x4

is an annihilator of f .x/.

Example 5.3. Define three subsets in GF6.2/ as

A1 D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

.1 1 0 0 0 0/

.1 1 0 0 0 1/

.1 1 0 0 1 0/

.1 1 0 0 1 1/ �

.1 1 0 1 0 0/

.1 1 0 1 0 1/

.1 1 0 1 1 0/

.1 1 0 1 1 1/ �

9
>>>>>>>>>>>=

>>>>>>>>>>>;

174 5 Algebraic Immunity of Boolean Functions

A2 D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

.1 0 1 1 0 0/

.1 0 1 1 0 1/

.1 0 1 1 1 0/

.1 0 1 1 1 1/ �

.1 1 1 1 0 0/

.1 1 1 1 0 1/

.1 1 1 1 1 0/

.1 1 1 1 1 1/ �

.0 1 1 1 0 0/

.0 1 1 1 0 1/

.0 1 1 1 1 0/

.0 1 1 1 1 1/ �

.0 0 1 1 0 0/

.0 0 1 1 0 1/

.0 0 1 1 1 0/

.0 0 1 1 1 1/ �

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

A3 D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

.0 0 0 0 1 1/

.0 0 0 1 1 1/

.0 0 1 0 1 1/

.0 0 1 1 1 1/ �

.0 1 0 0 1 1/

.0 1 0 1 1 1/

.0 1 1 0 1 1/

.0 1 1 1 1 1/ �

.1 0 0 0 1 1/

.1 0 0 1 1 1/

.1 0 1 0 1 1/

.1 0 1 1 1 1/ �

.1 1 1 0 1 1/

.1 1 0 0 1 1/ �

.1 1 0 1 1 1/ �

.1 1 1 1 1 1/ �

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Then the characteristic functions of A1; A2; A3 are x1x2.x3 ˚ 1/, x3x4, and x5x6,
respectively. Let

S3
iD1 Ai be the set of elements belonging to Ai; i D 1; 2; 3,

where the elements appear in two sets are double counted. Then the characteristic
function of

S3
iD1 Ai is x1x2x3 ˚ x1x2 ˚ x3x4 ˚ x5x6, which is a bent function in six

variables.
Since the elements marked with asterisk (�) in the matrix appear for even number

of times, so all the rest vectors without the asterisk form the support of function
x1x2x3 ˚ x1x2 ˚ x3x4 ˚ x5x6.

References 175

From Example 5.3 above, we can see that, although the vectors without an
asterisk (�) in each of the sets do not form a d-dimensional subspace and neither
a d-dimensional affine subspace, however, by adding some vectors into each of the
sets, such that among the whole matrix, each new vector is added for even number of
times, then the characteristic function of the whole matrix forms a Boolean function
with algebraic degree no more than d.

References

1. Armknecht, F.: Improving fast algebraic attacks. In: Fast Software Encryption 2004. LNCS
3017, pp. 65–82. Springer, Berlin/New York (2004)

2. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory. In: Advances in
Cryptology, Proceedings of Crypto’03. LNCS 2729, pp. 162–175. Springer, Berlin (2003)

3. Armknecht, F., et al.: Efficient computation of algebraic immunity of algebraic and fast
algebraic attacks. In: Advances in Cryptology, Proceedings of Eurocrypt’2006. LNCS 4004,
pp. 147–164. Springer, Berlin/New York (2006)

4. Berlekamp, E.: Algebraic Coding Theory. McGraw-Hill, New York (1968)
5. Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions. In:

Proceedings of Indocrypt 2005. LNCS 3797, pp. 35–48. Springer, Berlin/New York (2005)
6. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal algebraic immunity,

good immunity to fast algebraic attacks and good nonlinearity. In: Advances in Cryptology,
Proceedings of Asiacrypt 2008. LNCS 5350, pp. 425–440. Springer, Berlin (2008)

7. Carlet, C., Dalai, D.K., Gupta, G.C., Maitra, S.: Algebraic immunity for cryptographically
significant Boolean functions: analysis and construction. IEEE Trans. Inf. Theory IT-52(7),
3105–3121 (2006)

8. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Advances in
Cryptology, Proceedings of Crypto’03. LNCS 2729, pp. 176–194. Springer, Berlin/New York
(2003)

9. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Advances
in Cryptology, Proceedings of Eurocrypt’03. LNCS 2656, pp. 345–359. Springer, Berlin (2003)

10. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of
equations. In: Advances in Cryptology, Proceedings of Asiacrypt 2002. LNCS 2501, pp. 267–
287. Springer, Berlin/New York (2002)

11. Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for cryptographically
significant Boolean functions. In: Proceedings of Indocrypt 2004. LNCS 3348, pp. 92–106.
Springer, Berlin/New York (2004)

12. Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically significant Boolean functions: con-
struction and analysis in terms of algebraic immunity. In: Fast Software Encryption 2005.
LNCS 3557, pp. 98–111. Springer, Berlin/New York (2005)

13. Lee, D.H., Kim, J., Hong, J., Han, J.W., Moon, D.: Algebraic attacks on summation generators.
In: Fast Software Encryption 2004. LNCS 3017, pp. 34–48. Springer, Berlin/New York (2004)

14. Lobanov, M.S.: Exact relation between nonlinearity and algebraic immunity. Discret. Math.
Appl. 16(5), 453–460 (2006)

15. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT-15(1),
122–127 (1969)

16. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions.
In: Advances in Cryptology, Proceedings of Eurocrypt’04. LNCS 3027, pp. 474–491. Springer,
Berlin/New York (2004)

17. Zhang, W., Wu, C.K., Yu, J.: On the annihilators of cryptographic Boolean functions. Acta
Electron. Sin. 34(1), 51–54 (2006) (in Chinese)

18. Zhang, W., Wu, C.K., Liu, X.: Construction and enumeration of Boolean functions with
maximum algebraic immunity. Sci. China (Ser. F) 52(1), 32–40 (2009)

Chapter 6
The Symmetric Property of Boolean Functions

Symmetric property is a special property of Boolean functions, which has attracted
much study on it. This chapter presents fast Walsh transforms of symmetric Boolean
functions, correlation immunity of symmetric functions, construction of symmetric
resilient Boolean functions, and some cryptographic properties of majority functions
being a special class of symmetric Boolean functions. The study on the "-correlation
immunity of majority functions shows that majority functions have good asymp-
totical behavior of "-correlation immunity, i.e., although they are not correlation
immune, they have, however, asymptotical correlation immunity.

6.1 Basic Properties of Symmetric Boolean Functions

Symmetric Boolean functions are a class of functions with the special property that
they are indistinguishable to different inputs with the same Hamming weight. In
other words, when a permutation applies on the input variables, the outputs of the
function always remain the same as the original inputs. This property has been
regarded as being favorable, as it meets, in one aspect, Shannon’s “confusion”
requirement [15] when some keys act as part of the input bits, and the key bits
play the same importance as the message bits. However, another argument about
the symmetry property of Boolean functions is something to be avoided in the
design of ciphers. Regardless whether the symmetry property of Boolean functions
is favorable or on the contrary, this special property has attracted much interests
in theoretical research [14, 21, 24]. Some work on cryptographic properties of
symmetric Boolean functions can be found in public literatures, for example,
[1, 2, 8–10, 22].

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_6

177

178 6 The Symmetric Property of Boolean Functions

Definition 6.1. Let f .x/ 2 Fn. Then f .x/ is called a symmetric Boolean function if
for any permutation � on {1, 2, : : :, n}, we have

f .x�.1/; x�.2/; : : : ; x�.n// D f .x1; x2; : : : ; xn/:

For a symmetric function f , it is known that there is an integral function If W
f0; 1; : : : ; ng �! f0; 1g such that

f .x/ D If .k/ if and only if wt.x/ D k;

where wt.x/ is the Hamming weight of x. Let 'i.x/; i D 0; 1; : : : ; n; be the
homogeneous symmetric function which is composed of all the terms of degree
i; i.e.,

'0.x/ D 1;

'1.x/ D x1 ˚ x2 ˚ � � � ˚ xn;

'2.x/ D x1x2 ˚ x1x3 ˚ � � � ˚ x1xn ˚ x2x3 ˚ � � � ˚ xn�1xn;

� � � ;
'n.x/ D x1x2 � � � xn:

Let 	j.x/; j D 0; 1; : : : ; n; be the symmetric function satisfying that 	j.x/ D 1 if
and only if wt.x/ D j: Then we have

Lemma 6.1. The set Sn of all the symmetric Boolean functions in Fn forms an
.nC 1/-dimensional vector space over GF.2/ with f'i.x/gniD0 and f	i.x/gniD0 as two
different bases.

Proof. First of all, it is trivial to verify that both f'i.x/gniD0 and f	i.x/gniD0 form
a class of independent Boolean functions, i.e., no function from the set can be
represented by a linear combination of the rest. Now we show that any symmetric
Boolean function can be represented by a linear combination of f'i.x/gniD0 and
f	i.x/gniD0. Let f .x/ 2 Sn be an arbitrary Boolean function. If f .x/ has a term of
degree k in its algebraic normal form, then due to the symmetry, it must have all the
terms of degree k in its algebraic normal form representation, which means that f .x/

can be written as f .x/ D 'k.x/ ˚ g.x/, where g.x/ is also symmetric and does not
have any term of degree k in its algebraic normal form. When we consider all the
possible values of k (k 2 f0; 1; 2; : : : ; ng), a subset of f'i.x/gniD0 is selected where
the XOR of this subset is f .x/. This means that any symmetric Boolean function
f .x/ can be represented by a linear combination of f'i.x/gniD0, and hence f'i.x/gniD0

forms a basis of Sn.
Similarly we can prove that f	i.x/gniD0 forms a basis of Sn. ut
Though trivial, it is worth to point out the following:

6.1 Basic Properties of Symmetric Boolean Functions 179

Lemma 6.2. 	i.x/	j.x/ � 0 if and only if i 6D j:

Lemma 6.2 shows that f	i.x/gniD0 is actually an orthogonal basis. By using this
orthogonal basis to represent other symmetric functions, the study of their other
cryptographic properties can become more convenient.

Furthermore, since the product of two symmetric functions is also a symmetric
function, Sn is virtually a ring with the multiplication operation. Let f .x/ 2 Sn be
symmetric; it is easy to verify that f .x/ can be written as

f .x/ D
nM

kD0

If .k/	k.x/: (6.1)

For a vector x with wt.x/ D k, there are
�k

i

�
subsets of coordinates with i

coordinates having value 1. So for this specific x, the value of 'i.x/ is 'i.x/ D�k
i

�
mod 2, i.e., I'i.k/ D �k

i

�
mod 2. Taken into Eq. 6.1, we have in general case

'i.x/ D
nM

kDi

.

k

i

!
mod 2/	k.x/: (6.2)

Denote the binary representation of integer a be .an�1; an�2; : : : ; a0/, i.e., a DPn�1
iD0 ai2

i, where ai 2 GF.2/. For two integers of binary length no more than n,
define a to be a cover of b if ai � bi holds for all i D 0; 1; : : : ; n and is denoted as
a b or equivalently as b � a. If there exists at least one i such that ai > bi, then a
is called an absolute cover of b and is denoted as a � b, or equivalently as b � a.
By the well-known Lucas theorem (named after the French mathematician François
Édouard Anatole Lucas, 1842–1891):

k

i

!
mod 2 D 1 if and only if a b

Eq. 6.2 can be written as

'i.x/ D
M

k�i

	k.x/: (6.3)

Equation 6.2 or equivalently Eq. 6.3 is the representation of 'i.x/ in terms of
	k.x/.

Summing up Eq. 6.3 for all i t, we get

M

i�t

'i.x/ D
M

i�t

M

k�i

	k.x/: (6.4)

On the right-hand side of Eq. 6.4, 	k.x/ appears for even number of times for every
k � t, and hence it vanishes after the XOR operation. This is due to the following
lemma.

180 6 The Symmetric Property of Boolean Functions

Lemma 6.3. Let k be an integer of binary length n. Then there are even number of
k0 such that k0 k except k D 2n � 1.

Proof. Trivial and obvious. ut
By Lemma 6.3, the right-hand side of Eq. 6.4 only leaves 	t.x/, which gives the

expression of 	t.x/ in terms of 'i.x/’s. To be consistent with the indexes used in
Eq. 6.3, we can write

	i.x/ D
M

k�i

'k.x/: (6.5)

Equation 6.5 is the representation of 	i.x/ in terms of 'k.x/. So Eqs. 6.4 and 6.5
will enable us to convert the representations of a symmetric Boolean function in
terms of 'k.x/ to 	t.x/ and vice versa.

6.2 Computing the Walsh Transform of Symmetric Boolean
Functions

The Walsh transform has been widely used in studying cryptographic properties of
Boolean functions [11, 23]. Efficient algorithms for performing Walsh transforms
are very useful. Noticing the particular properties of symmetric Boolean functions, it
is possible to present efficient algorithms to perform Walsh transforms on symmetric
Boolean functions.

For a Boolean function f .x/ 2 Fn; it is noticed that

Sf .w/ D
X

x2supp.f /

.�1/hw; xi D wt.f / � 2
X

x2supp.f /

hw; xiD1

1: (6.6)

So the Walsh transform Sf .w/ of f .x/ can be calculated by the following steps:

1. Let Xf be the characteristic matrix of f .x/, i.e., Xf is a wt.f / � n matrix with its
row vectors being the vectors in supp.f /.

2. For every wi D 0; delete the i-th column of Xf to get a target matrix A:

3. The number of even weight rows of A minus the number of odd weight rows of
A yields the value of Sf .w/:

6.2.1 Walsh Transforms on Symmetric Boolean Functions

By Lemmas 6.1 and 6.2 and Theorem 1.1, we have

6.2 Computing the Walsh Transform of Symmetric Boolean Functions 181

Sf .w/ D
nX

kD0

If .k/S	k .w/: (6.7)

Denote by w.i/ the vector with i consecutive ones followed by zeros, and let

Aik D
X

x2supp.	k/

hw.i/; xi; i; k 2 f0; 1; : : : ; ng: (6.8)

It is known that the Hamming weight of symmetric function 	k.x/ is

wt.	k/ D

n

k

!
:

By Eq. 6.6 we have

S	k .w
.i// D

n

k

!
� 2Aik: (6.9)

Substituting Eq. 6.7 by Eq. 6.9, we have

Sf .w
.i// D

nX

kD0

If .k/

n

k

!
� 2

nX

kD0

If .k/Aik: (6.10)

In particular, for the functions �j.x/; since

�j.x/ D
nM

kDj

.

k

j

!
mod 2/	k.x/ D

M

k�j

	k.x/; (6.11)

we have

S�j.w
.i// D

nX

kDj

"
k

j

!
mod 2

!
n

k

!
� 2Aik

!#

D
X

k�j

n

k

!
� 2Aik: (6.12)

It is noticed that for a symmetric function f .x/; its Walsh transform Sf .w/

is also a symmetric function. So when the Walsh transforms on the vectors
w.0/; w.1/; : : : ; w.n/ have been calculated out, the whole Walsh spectrum of this
symmetric function f becomes clear. It is seen from Eq. 6.10 that the computational
complexity for the computation of Walsh transforms of symmetric functions

182 6 The Symmetric Property of Boolean Functions

depends largely on that for the computation of the value of Aik: So more attention
should be paid to the computation of Aik: Write

�n
k

� D 0 whenever k > n or k < 0:

Then we have

Lemma 6.4.

Aik D
X

1�j�n; j is odd

i

j

!
n � i

k � j

!
: (6.13)

Proof. Recall that supp.	k/ is the set of x with wt.x/ D k: The value of Aik is
actually the number of those vectors in supp.	k/ which have an odd number of ones
in the first i positions. This is the expression of Eq. 6.13. ut

It is interesting to notice that the value of Aik is just the coefficient of xk in the
expansion of the multiplication of .1Cx/n�i and all terms with odd degree of .1Cx/i:

It is easy to show that

Lemma 6.5. All terms with odd degree of .1C x/m form a polynomial

1

2
.1C x/m � 1

2
.1 � x/m:

So, by Lemma 6.5, the value of Aik is the coefficient of xk in the expansion of

Ai.x/ D
�

1

2
.1C x/i � 1

2
.1 � x/i

�
.1C x/n�i: (6.14)

From Eq. 6.14 we obtain Aik D 1
2
.
�n

k

� �Pi
jD0.�1/j

�i
j

��n�i
k�j

�
/: By substituting this

expression in Eq. 6.10, we have

Sf .w
.i// D

nX

kD0

If .k/

iX

jD0

.�1/j

i

j

!
n � i

k � j

!
: (6.15)

Now we can sketch the algorithm for computing Walsh transforms of symmetric
Boolean functions. Given a symmetric Boolean function f .x/ 2 Fn, then its Walsh
transform at a single vector w and the whole Walsh spectrums can be calculated by
the following algorithms:

Algorithm 6.1 (Walsh transform at a single vector).
(1) Compute If .k/ for k D 0; 1; : : : ; n:

(2) Let i D wt.w/:

(3) Use Eq. 6.15 to compute Sf .w.i//:

6.2 Computing the Walsh Transform of Symmetric Boolean Functions 183

Algorithm 6.2 (whole Walsh spectrums).
(1) Compute If .k/ for k D 0; 1; : : : ; n:

(2) Use Eq. 6.15 to compute Sf .w.i// for i D 0; 1; : : : ; n:

(3) Then Sf .w/ D Sf .w.i// if and only if wt.w/ D i:

In the algorithms above, we need first to compute the value of If .k/ for k D
0; 1; : : : ; n: If a Boolean function is given by its truth table representation, it is easy
to get the value of If .k/ from the truth table of f .x/: If the function is given by a
polynomial form, instead of computing f .x/ for some x with wt.x/ D k to get If .k/,
we use functions f�j.x/gnjD0: From the polynomial representation, it is very easy to
get the linear combination

f .x/ D
nM

jD0

cj�j.x/:

By Eq. 6.11 we have

f .x/ D
nM

jD0

nM

kDj

cj

k

j

!
mod 2

!
	k.x/ D

nM

jD0

M

k�j

	k.x/: (6.16)

From the expansion of Eq. 6.16, we can easily get the value of If .k/ for k D
0; 1; : : : ; n:

It should be noted that in general it is not much easier to determine the value
of Aik from the expansion of Eq. 6.14 than from Eq. 6.13. However, Eq. 6.14 can be
used to compute certain particular values. For example, when i D n

2
.n even), we

have Ai.x/ D 1
2
.1C x/n � 1

2
.1 � x2/

n
2 : So

Aik D
(

1
2

�n
k

�
; k odd;

1
2

�n
k

� � .�1/
k
2

2

�n=2
k=2

�
; k even:

Similarly for i D n�1
2

.n odd), we have

Aik D 1

2

n

k

!
� 1

2
.�1/b k

2 c

i

b k
2
c

!
;

and for i D nC1
2

.n odd), we have

Aik D 1

2

n

k

!
� 1

2
.�1/kCb k

2 c

i � 1

b k
2
c

!
;

184 6 The Symmetric Property of Boolean Functions

where bac means the largest integer which is less than or equal to a: In general our
suggestion is to use Eq. 6.15 to compute the Walsh transforms of symmetric Boolean
functions.

6.2.2 Computational Complexity

At the first sight, Algorithm 6.2 is just nC 1 times repeat of Algorithm 6.1. It turns
out that its computational complexity is not simply n C 1 times the complexity
of Algorithm 6.1. In order to assess the computational complexity of the two
algorithms, we treat both the multiplication and the division of two integers as a
computing unit. Then it is obvious that the complexity for computing

�n
t

�
is at most

2t units. So the complexity for computing
�i

j

��n�i
k�j

�
is at most 2jC2.k� j/ D 2k units.

The computational complexity of Algorithm 6.1 varies for different symmetric
functions and different vectors w.i/: Note that the value of If .k/ can be determined
by comparing a certain coordinate of the truth table of f .x/ when f .x/ is given
by truth table representation and by expanding Eq. 6.16 when f .x/ is given by
polynomial representation. The worst case for the complexity of computing all
values of If .k/, from Eq. 6.16, is at most n2

2
times that of computing

�k
j

�
mod 2:

Write both k and j as binary integers: k D k0k1 : : : kt�1 and j D j0j1 : : : jt�1;

where t D blog2 kc � blog2 nc: Then by the well-known Lucas theorem, we
have

�k
j

�
.mod2/ D 1 if ki � ji for every 0 � i � t � 1 and

�k
j

�
.mod2/ D 0

otherwise. By comparing the value of ki and ji for every i D 0; 1; : : : ; t� 1, we then
have the value of

�k
j

�
mod 2 or equivalently of cj.

�k
j

�
mod 2/: So the computational

complexity for computing cj.
�k

j

�
mod 2/ is at most t times comparison of integers

from f0; 1g: Hence the complexity for computing the whole If .k/ is upper bounded
by 1

2
n2blog2 nc: The lower bound for the complexity of Eq. 6.15 is when If .k/ � 1:

Since the computational complexity for computing
Pi

jD0.�1/j
�i

j

��n�i
k�j

�
from Eq. 6.15

is upper bounded by

iX

jD0

.2k/ D 2k.iC 1/ � 2k.nC 1/;

the computational complexity for computing Eq. 6.15 is then upper bounded by

nX

kD0

2k.nC 1/ D n.nC 1/2:

Sum them together we have that the complexity of Algorithm 6.1, in the worst case,

is n2blog2 nc
2

times binary integer comparison and n.nC 1/2 units of computation.
Now we consider the computational complexity of Algorithm 6.2. In the first

step, the complexity is the same as that of Algorithm 6.1. The second step also

6.2 Computing the Walsh Transform of Symmetric Boolean Functions 185

depends on the particular symmetric function. We are most interested in the
expected value or, in other words, the weighted average value of computational
complexity. Assume all symmetric functions are chosen at random. Since for each
k with If .k/ D 1 there are

�n
k

�
vectors x on which f .x/ has value 1 and the Hamming

weight of such an x is k; we then have that the weighted average complexity for the
computation of a symmetric Boolean function is upper bounded by

Pn
kD0

�
k
�n

k

� �Pn
iD0 2k.iC 1/

�

2n
D n.nC 1/2.nC 2/

4
: (6.17)

Taking into account the complexity of step one, we have the weighted average
complexity of Algorithm 6.2. By dividing by nC 1 we obtain the average weighted
complexity for computing the Walsh transform of a symmetric function on a single
vector.

In order to specify this complexity more precisely, we define bit addition as the
complexity unit when addition is performed between two integers from {0, 1}. Then
binary integer comparison can be treated as being equivalent to bit addition. It is
known that the complexity of the multiplication of two integers is no larger than n;

or equivalently the complexity unit defined above is upper bounded by n � log2 n bit
additions. When Eq. 1.12 is used to compute the Walsh transform, since each hw; xi
needs n bit additions and the summation in Eq. 1.12 should be performed through
all x 2 GFn.2/; the complexity would be n � 2n bit additions. This does not take
into account the complexity for computing the value of f .x/ when it is given by
polynomial representation. If Eq. 6.6 rather than Eq. 1.12 is used, then the weighted
average Hamming weight of a symmetric Boolean function is

nX

kD0

k

n

k

!
D 2n�1:

The weighted average complexity for the computation of
P

x2supp.f /hw; xi then is
n � 2n�1 bit additions. In addition we need to determine the value of wt.f / for a
particular symmetric Boolean function. Note that

wt.f / D
nX

kD0

k

n

k

!
If .k/;

and the complexity for the computation of
�n

k

�
is 2k units. Hence, the weighted

average complexity for the computation of wt.f / is

1

2

nX

kD0

.2kC 1/ D .nC 1/2

2

186 6 The Symmetric Property of Boolean Functions

units or roughly 1
2
n.nC1/2 log2 n bit additions. It can be seen that the computational

complexity of Eq. 6.6 is exponential on n, the number of variables of the Boolean
function.

Now we show that the computational complexities of both Algorithms 6.1
and 6.2 are polynomial on n: Note that the complexity assessment of computing
If .k/ is already counted by bit addition. So the complexity of Algorithms 6.1 and 6.2
is upper bounded by

1

2
n2blog2 nc C n2.nC 1/2 log2 n

and

n2blog2 nc
2

C n2.nC 1/2.nC 2/ log2 n

4

bit additions, respectively. Summing up the discussions above, we know that the
complexities of Walsh transforms of symmetric functions on one vector are as
follows:

• Exhaustive search by Eq. 6.6:

CS D n � 2n�1 C 1

2
n.nC 1/2 log2 n

bit additions.
• Worst case (upper bound) by Algorithm 6.1:

CU D 1

2
n2blog2 nc C n2.nC 1/2 log2 n

bit additions.
• Weighted average complexity from Algorithm 6.2:

CE D n2blog2 nc
2.nC 1/

C n2.nC 1/.nC 2/ log2 n

4

bit additions.

Comparison of complexities are shown in Table 6.1.
From Table 6.1 it is seen that the method introduced here is not efficient for small
n. But when n is large, the average complexity is much lower than the values when
either Eq. 1.12 or Eq. 6.6 is used in computing the Walsh transforms of symmetric
Boolean functions.

6.3 Correlation Immunity of Symmetric Functions 187

Table 6.1 Complexities of Walsh transforms of symmetric functions at a single vector

n CS CU CE CE=CS

2 17 38 13 0.7647

4 132 816 244 1.8485

8 1996 15648 4331 2.1698

16 533536 296448 78366 0.1460

32 2:15 � 109 5578240 1436338 0.0007

64 5:91 � 1020 103845888 26357949 4:5 � 10�14

128 2:18 � 1040 1:19 � 109 480829884 2:2 � 10�32

6.3 Correlation Immunity of Symmetric Functions

Correlation immunity of Boolean functions with its cryptographic significance is
first studied in [16] and has attracted a wide attention. A Boolean function f .x/ 2 Fn

is called correlation immune (CI) of order m if for every m indices 1 � i1 < i2 <

� � � < im � n and for every .a1; a2; : : : ; am/ 2 GFm.2/ we have

Prob.f .x/ D 1j.xi1 ; : : : ; xim/ D .a1; : : : ; am// D Prob.f .x/ D 1/:

By the probabilistic identity,

Prob.f .x/ D 1j.xi1 ; : : : ; xim/ D .a1; : : : ; am// � Prob..xi1 ; : : : ; xim/ D .a1; : : : ; am//

D Prob..xi1 ; : : : ; xim / D .a1; : : : ; am/jf .x/ D 1/ � Prob.f .x/ D 1/I

the above implies that if f .x/ is m-th order correlation immune, then the following
equation must be true provided that f .x/ 6� 0:

Prob..xi1 ; : : : ; xim/ D .a1; : : : ; am/jf .x/ D 1/

D Prob..xi1 ; : : : ; xim / D .a1; : : : ; am// D 1

2m
: (6.18)

This means that if we put all the values of x 2 supp.f / D fx 2 supp.f /g to form
an n � wt.f / matrix with each column of the matrix being the binary representation
of value of that x, then for an arbitrary sub-matrix composed of any m rows, the
columns of the sub-matrix have equal number of every possible binary string of
length m.

In the following, f .x/ is assumed to be a symmetric function of Fn unless
specified otherwise. In this case Eq. 6.18 can simply be written as

Prob..x1; : : : ; xm/ D .a1; : : : ; am/jf .x/ D 1/ D 1

2m
:

188 6 The Symmetric Property of Boolean Functions

Denote by ˛ D .a1; : : : ; am/. Then the number of x’s with wt.x/ D k and
.x1; : : : ; xm/ D .a1; : : : ; am/ is

� n�m
k�wt.˛/

�
. The range of possible Hamming weight

of ˛ is from 0 to m when ˛ takes all possible strings. Define
�n

t

� D 0 for the cases
when t < 0 and when t > n: By Eq. 6.18 we know that a necessary condition for
f .x/ to be correlation immune of order m is

nX

tD0

n � m

t

!
If .t/ D

nX

tD0

n � m

t � 1

!
If .t/ D � � �

D
nX

tD0

n � m

t �m

!
If .t/: (6.19)

Note that an m-th order correlation immune function is also i-th correlation immune
for every i � m. So another stronger necessary condition for f .x/ to be correlation
immune of order m is

nX

tD0

n � i

t

!
If .t/ D

nX

tD0

n � i

t � 1

!
If .t/ D � � �

D
nX

tD0

n � i

t � i

!
If .t/; i D 1; 2; : : : ; m: (6.20)

By the binomial coefficient identity

n

k

!
D

n � 1

k

!
C

n � 1

k � 1

!
;

we know that Eq. 6.20 is equivalent to

n�iX

tD0

n � i

t

!
If .t/ D

n�iC1X

tD1

n � i

t � 1

!
If .t/; i D 1; 2; : : : ; m: (6.21)

Now we will show that Eq. 6.21 is also sufficient for f .x/ to be correlation immune
of order m.

By Lemma 2.4, if Eq. 6.20 or equivalently Eq. 6.21 holds, it means that supp.f /

contains an equal number of vectors of which the corresponding segment vectors
covering positions 1, 2, : : :, j are of Hamming weight 0, 1, : : :, j. So the number of
even weight and odd weight of such vectors are equal. By Lemma 2.4 we know
that the coordinates 1, 2, : : :, j of supp.f / cover GFj.2/ or its multiple copies.
Since f .x/ is symmetric, such a property of supp.f / also includes the case when
the positions are i1; i2; : : : ; ij instead. By Eq. 6.18 we know that f .x/ is indeed an
m-th order correlation immune function. This proves the following conclusion.

6.3 Correlation Immunity of Symmetric Functions 189

Theorem 6.1. Let f .x/ 2 Sn be a symmetric function corresponding to an integer
function If .t/ from f0; 1; : : : ; ng to f0; 1g, i.e., f .x/ D If .t/ if and only if wt.x/ D t.
Then f .x/ is m-th order correlation immune if and only if Eq. 6.21 holds.

In the later part of this section, we will mainly consider symmetric functions
with correlation immunity of order 1 or 2. By Theorem 6.1, a symmetric function
f .x/ 2 Fn is 1-st order correlation immune if and only if the following equation
holds,

n�1X

tD0

n � 1

t

!
If .t/ D

nX

tD1

n � 1

t � 1

!
If .t/: (6.22)

It is known that If .t/ � 0 and If .t/ � 1 are two trivial roots of the above equation.
Moreover, the alteration of 0 and 1 is also a root of Eq. 6.22, corresponding to '1.x/

or '1.x/˚ 1.
Write � D I�1

f D ft W If .t/ D 1}. Then Eq. 6.22 can be written as

X

t2�

n � 1

t

!
D
X

t2�

n � 1

t � 1

!
: (6.23)

Now the problem of constructing symmetric correlation immune functions is
converted to the construction of such sets � so that equality of Eq. 6.23 holds. It
seems that explicit solutions of Eq. 6.23 are very hard to derive. We will derive
some sporadic solutions of this equation.

6.3.1 When n Is Odd

By noticing
� n�1

n�1
2 C1

� D � n�1
n�1

2 �1

�
, it is known that

�1 D fn � 1

2
C 1;

n � 1

2
g

is a solution of Eq. 6.23. In general, it is easy to check that

�k D
�

n � 1

2
C k;

n � 1

2
C k � 1;

n � 1

2
C k � 2; : : : ;

n � 1

2
� kC 1

�

is a solution of Eq. 6.23 for every k D 1; 2; : : : ; n�1
2

: It is also noticed that �1 �
�2 � � � � � � n�1

2
: We have the following result.

190 6 The Symmetric Property of Boolean Functions

Lemma 6.6. Let f1; f2 2 Fn with supp.f1/ \ supp.f2/ D �: Then the fact that any
two functions from f1; f2; f1 ˚ f2 are m-th order correlation immune implies that the
third one is also such a function.

By Lemma 6.6 we can calculate the number of constructed functions as follows:
Firstly �1 is a solution of Eq. 6.23. By employing �2, we get two more solutions: �2

and �2��1; by employing �3, we get four more solutions: �3, �3��1, �3��2, and
�3 � .�2 � �1/: By the same method, it can be shown that with each forthcoming
�i, we can get 2i�1 more solutions. It can easily check that all of those solutions
obtained by those �i’s together with their subtractions and additions are different.
So the number of different solutions of Eq. 6.23 that we have obtained is

�1 D
n�1

2X

kD1

2k�1 D 2
n�1

2 � 1:

Note that each of those functions is a delegate of a couple, itself and its complement,
and they still do not include '1.x/ and '1.x/˚ 1: So, the number of symmetric 1-st
order correlation immune functions (including 0 and 1) for odd integer n is lower
bounded by

B1 D 2�1 C 4 D 2
nC1

2 C 2:

6.3.2 When n Is Even

Similar to the case when n is odd, it can be verified that �k D f n
2
C k � 1; n

2
C k �

2; : : : ; n
2
�kC1g is a solution of Eq. 6.23 for every k D 1; 2; : : : ; n

2
: It is also noticed

that �1 � �2 � � � � � � n
2
: By Lemma 6.6 and the similar idea as in the last section,

we have that the number of different solutions of Eq. 6.23 is

�2 D
n=2X

kD1

2k�1 D 2
n
2 � 1:

Note that different from the case when n is odd, the affine symmetric functions
'1.x/ and '1.x/ ˚ 1 are covered by the subtraction/addition of �i’s, i.e., they are
� n

2
�� n

2 �1C� n
2 �2�� � �C .�1/n=2C1�1 and its complement. Therefore, the number

of symmetric 1-st order correlation immune functions (including 0 and 1) in this
case is lower bounded by

B2 D 2�2 C 2 D 2
n
2 C1:

6.3 Correlation Immunity of Symmetric Functions 191

Table 6.2 Comparison of
lower bounds with the exact
numbers of symmetric 1-st
order correlation immune
functions

n even B2 Total n odd B1 Total

2 4 4 3 6 6

4 8 8 5 10 10

6 16 20 7 18 26

8 32 48 9 34 42

10 64 64 11 66 66

12 128 144 13 130 178

14 256 452 15 258 428

16 512 576 17 514 514

18 1024 1072 19 1026 1442

20 2048 2864 21 2050 2534

22 4096 4608 23 4098 6402

24 8192 12448 25 8194 9350

26 16384 16648 27 16386 16522

28 32768 32768 29 32770 36866

30 65536 82496 31 65538 77186

32 131072 132352 33 131074 148170

34 262144 393216

Comparison of the lower bounds as described above and the actual number
of symmetric 1-st order correlation immune functions, as found by exhaustive
computing search, is shown in Table 6.2. It is noticed that in certain cases, the
lower bound just meets the total number of symmetric 1-st order correlation immune
functions (e.g., when n D2, 3, 4, 5, 10, 11, 17, 28). It seems that the method can be
used to construct most of the symmetric 1-st order correlation immune functions.
The efficiency of the method could be assessed if an upper bound on the number
of symmetric correlation immune functions is found. This problem needs further
research.

6.3.3 Higher-Order Correlation Immunity

For symmetric functions with correlation immunity of order larger than one,
besides the exclusive-or of all the variables and its negation, there indeed exist
such nonlinear functions. The investigation of this problem seems much more
complicated. We have not yet found an efficient construction method. In the
following table, we list some results which were found by exhaustive computing
search. Numbers in the column initiated by “n” mean the number of variables, those
in the column initiated by “CI order” mean the order of correlation immunity, and
those in the column initiated by “Tally” mean the total number of such functions
with the corresponding correlation immunity. The exhaustive search was conducted
for all n up to 34 (see Table 6.3). We have omitted from the table the cases where the

192 6 The Symmetric Property of Boolean Functions

Table 6.3 High-order correlation immunity of symmetric functions

n CI order Tally n CI order Tally n CI order Tally

7 2 4 8 2 4 8 3 2

9 2 4 9 3 2 10 3 2

13 2 4 14 2 8 14 3 2

15 2 18 15 3 4 16 3 8

19 2 8 20 2 8 20 3 4

21 2 8 21 3 4 22 3 4

23 2 4 24 2 4 24 3 2

25 2 16 25 3 2 26 2 8

26 3 6 27 2 4 27 3 4

28 3 2 31 2 12 32 2 8

32 3 6 33 2 8 33 3 4

34 2 4 34 3 4

tally is zero. It is seen that the highest correlation immune order of those functions
available by our computing search is three, and in general only very few symmetric
functions are correlation immune of order higher than one (Table 6.3).

6.4 On Symmetric Resilient Functions

When correlation immune Boolean functions are balanced, they are also called
resilient functions. Symmetric resilient functions have some particular interesting
properties [7]. In 1985, Chor et al. conjectured in [3] that the only 1-resilient
symmetric Boolean functions are the exclusive-or of all n variables and its negation.
This conjecture was disproved by Gopalakrishnan, Hoffman, and Stinson in [8]
where a class of infinite counterexamples were found. The following were also
proposed in [8] as two open problems:

• Find the smallest constant t such that the Statement, the only t-resilient symmetric
Boolean functions are the exclusive-or of all n variables, is true, or disprove this
statement.

• Other than the exclusive-or of all n variables, its negation, and those correspond-
ing to the infinite class presented in [8], are there any symmetric functions which
are 1-resilient or 2-resilient?

In addition to the infinite class of nonlinear symmetric resilient functions
introduced in [8], we will introduce two other infinite classes of nonlinear symmetric
resilient functions, and it is interesting to find that one of the introduced class of
resilient functions are all 1-resilient, while the other class of functions are all 2-
resilient. We will also point out that the infinite class of resilient functions presented
in [8] are all 1-resilient, and none is 2-resilient, and hence the second resiliency

6.4 On Symmetric Resilient Functions 193

statement of theorem 3.1 in [8] is proved to be incorrect. What makes it more
interesting is that there is an example introduced in [8] that is indeed 2-resilient;
however, that example does not belong to the general class of resilient functions as
constructed in [8].

In this section we will study the construction of balanced correlation immune
symmetric Boolean functions.

6.4.1 Constructions of Symmetric Resilient Boolean Functions

Let f .x/ 2 Fn. Then by Definition 4.1, f .x/ is t-resilient, if and only if for every
.a1; : : : ; at/ 2 GFt.2/ and for every c 2 GF.2/, we have

Prob.f .x/ D cj.xi1 ; : : : ; xit / D .a1; : : : ; at// D 1

2
:

Recall that a t-resilient Boolean function is also a balanced Boolean function
with correlation immunity of order t. By the following probability identity

Prob..xi1 ; : : : ; xit / D .a1; : : : ; at// � Prob.f .x/ D cj.xi1 ; : : : ; xit / D .a1; : : : ; at//

D Prob.f .x/ D c/ � Prob..xi1 ; : : : ; xit / D .a1; : : : ; at/jf .x/ D .y1; : : : ; ym//;

we have

Lemma 6.7. Let f .x/ 2 Fn. Then f .x/ is t-resilient if and only if f .x/ is balanced,
and for every t-subset fi1; : : : ; itg � f1; 2; : : : ; ng and for any c 2 GF.2/, we have

Prob..xi1 ; : : : ; xit / D .a1; : : : ; at/jx 2 supp.f // D 1

2t
:

The following result was proved in [8] and is included here.

Lemma 6.8 ([8]). There exists a symmetric 1-resilient function in Fn if and only if
the following equations have a solution:

� Pn
iD0

�n
i

� � If .i/ D 2n�1

Pn�1
iD0

�n�1

i

� � If .i/ D 2n�2
(6.24)

where If D .If .i// is a binary string of length nC 1 which is to be determined.

It is also noticed that the exclusive-or of all n variables, i.e., the function '1.x/,
satisfies that '1.x/ D 1 if and only if wt.x/ is odd. So Eq. 6.24 is guaranteed to have a
solution I'1 D .0; 1; 0; 1; : : :/ which is an alternating 0-1 vector, and the complement
of '1.x/ corresponds to another solution of Eq. 6.24, that is .1; 0; 1; 0; : : :/ which is
also an alternating of 0-1 vector.

194 6 The Symmetric Property of Boolean Functions

It is easy to show that the roots of Eq. 6.24 always appear in couple. In general
we have

Lemma 6.9. If If D .If .i// is a solution of Eq. 6.24, then

Ig D .Ig.i// D .If .i/C 1/ mod 2

is another solution.

Proof. The conclusion follows from the identity
Pn

iD0

�n
i

� D 2n: ut

6.4.2 Searching for More Solutions

In [8], besides the affine symmetric resilient functions, an infinite class of nonlinear
symmetric resilient functions were found by a way which can be described as
follows: Set

If .i/ D
�

I'1.i/C 1 mod 2 if i 2 fk; kC 1; n � k; n � kC 1g
I'1.i/ otherwise

where k is to be determined. By solving Eq. 6.24 with this restriction, an infinite
class of symmetric resilient functions were found which have parameters n D r2 �
2; k D 1

2
.r�2/.r�1/; where r > 2 is an even integer. The smallest example in this

class corresponds to the vector If D .0; 1; 0; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 1; 0/: We will
search for other classes of counterexamples for n being even and odd, respectively,
and the following methods come from [22].

6.4.2.1 Type-A: When n Is Even

Let

If .i/ D
�

I'1.i/C 1 mod 2 if i 2 fk; k � 1; n � k; n � k � 1g
I'1.i/ otherwise

where k is to be determined. Then we have

nX

iD0

n

i

!
� If .i/ D 2n�1 ˙

"
n

k

!
�

n

k � 1

!
C

n

n � k

!
�

n

n � k � 1

!#

and

6.4 On Symmetric Resilient Functions 195

n�1X

iD0

n � 1

i

!
� If .i/ D 2n�2˙

"
n � 1

k

!
�

n � 1

k � 1

!
C

n � 1

n � k

!
�

n� 1

n � k � 1

!#
:

In order for If D .If .i// to be a solution of Eq. 6.24, the following two equations
must hold:

n

k

!
�

n

k � 1

!
C

n

n � k

!
�

n

n � k � 1

!
D 0; (6.25)

n � 1

k

!
�

n � 1

k � 1

!
C

n � 1

n � k

!
�

n � 1

n � k � 1

!
D 0: (6.26)

Notice that Eq. 6.26 is an identity, so only Eq. 6.25 needs to be solved. Dividing by�n
k

�
throughout Eq. 6.25, we have

1 � k

n � kC 1
C 1 � n � k

kC 1
D 0:

By solving this equation, we have two solutions in the form

k D 1

2
.n˙pnC 2/: (6.27)

The roots of Eq. 6.27 are k and n� k. So we have from Eq. 6.27 only one desired set
of {k; k � 1; n � k; n � k � 1}, and hence we have a solution for Eq. 6.24.

Equation 6.27 can be written in another form as

�
n D 4r2 � 2

k D 2r2 � r � 1

where r � 2 is an arbitrary integer. Set r D 2; we have n D 14 and
k D 5; which yields the smallest solution of Eq. 6.24 in this case as If D
.0; 1; 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 0; 1; 0/:

6.4.2.2 Type-B: When n Is Odd

Let

If .i/ D
�

I'1.i/C 1 mod 2 if i 2 fk; kC 1; n � k; n � k � 1g;
I'1.i/ otherwise:

Then we have

196 6 The Symmetric Property of Boolean Functions

nX

iD0

n

i

!
� If .i/ D 2n�1 ˙

"
n

kC 1

!
�

n

k

!
C

n

n � k

!
�

n

n � k � 1

!#

and

n�1X

iD0

n � 1

i

!
� If .i/ D 2n�2˙

"
n � 1

kC 1

!
�

n � 1

k

!
C

n � 1

n � k

!
�

n� 1

n � k � 1

!#
:

In order for If D .If .i// to be a solution of Eq. 6.24, the following equations must
hold:

n

kC 1

!
�

n

k

!
C

n

n � k

!
�

n

n � k � 1

!
D 0; (6.28)

n � 1

kC 1

!
�

n � 1

k

!
C

n � 1

n � k

!
�

n � 1

n � k � 1

!
D 0: (6.29)

Noticing that Eq. 6.28 is an identity, only Eq. 6.29 needs to be solved. Similar to the
procedure above, we have a solution of Eq. 6.29 in the form

�
n D 4r2 � 1

k D 2r2 � r � 1
(6.30)

where r � 2 is an arbitrary integer. If set r D 2; we have n D 15; k D 5; which
yields the smallest solution of this case as If =(0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1).

Note that this class of counterexamples can be seen as being derived from the
construction in [8] where n is replaced with n�1 and hence becomes an odd number.
This observation has been noticed but not yet made explicit in [20].

6.4.3 The Exact Resiliency of Constructed Resilient Functions

For the above constructed resilient functions, it is interesting to know whether
they have higher-order resiliency. Let f .x/ be a symmetric t-resilient function
corresponding to a vector If D .If .i//: Then we have

n�mX

iD0

n � m

i

!
.If .i/� I'1.i// D

n�mX

iD0

n � m

i� 1

!
.If .i/� I'1.i//

D � � � D
n�mX

iD0

n �m

i� t

!
.If .i/ � I'1.i//; m D 0; 1; : : : ; t: (6.31)

6.4 On Symmetric Resilient Functions 197

By the binomial coefficient identity

n

i

!
D

n � 1

i

!
C

n � 1

i � 1

!
;

we know that Eq. 6.31 is equivalent to

n�kX

iD0

n � k

i

!
.If .i/� I'1.i// D 0; k D 0; 1; : : : ; t: (6.32)

It should be noticed that Eq. 6.32 describes exactly the 0-resiliency of f .x/ (or
equivalently f .x/ is balanced) when m D 0 and the 1-resiliency of f .x/ when m D 1:

We write this conclusion in the following theorem.

Theorem 6.2. Let f 2 Fn be a symmetric function corresponding to a vector If D
.If .i//: Then f .x/ is a t-resilient function if and only if Eq. 6.32 holds.

For the abovementioned constructed resilient functions, we consider whether
their exact resiliency is higher than one. It is already known that they are 1-resilient,
which means that Eq. 6.32 holds for m D 0 and m D 1. We only need to consider
the case when m > 1. This will be treated in the following three cases.

6.4.3.1 On the Construction of [8]

In the construction of [8], n is even and If .i/ 6D I'1.i/ if and only if i 2 fk; kC1; n�
k; n � kC 1g: So when m D 2, Eq. 6.32 becomes

n � 2

kC 1

!
�

n � 2

k

!
C

n � 2

n � kC 1

!
�

n � 2

n � k

!
D 0: (6.33)

It is easy to notice that this can be simplified as

.n�2k�3/.n�k/..n�k/2�1/Ck.k�1/.k�2/.kC1/�k.k2�1/.n�kC1/ D 0:

Replacing n and k by r2 � 2 and 1
2
.r � 2/.rC 1/, respectively, we have

.r � 3/.r2 C r � 2/.r4C 2r3 � 3r2 � 4r/ D .r2 � r � 2/.r2 � r � 4/.r2 � r/.rC 3/:

By solving this equation, we have r D 0, 1, �1. This is a contradiction to the
statement that r > 2 be even. So we can conclude that:

Theorem 6.3. The functions constructed in [8] are all 1-resilient functions, and
none is 2-resilient.

198 6 The Symmetric Property of Boolean Functions

6.4.3.2 On the Construction of Type-A Resilient Functions

Type-A resilient functions are in even number of variables, and If .i/ 6D I'1.i/ if and
only if i 2 fk; k�1; n�k; n�kC1g: So, if If .i/ corresponds to a 2-resilient function,
according to Theorem 6.2, the following equation must hold:

n � 2

k

!
�

n � 2

k � 1

!
C

n � 2

n � k

!
�

n � 2

n � k � 1

!
D 0: (6.34)

By solving Eq. 6.34, we have

k D 1

2
.n˙pn/:

Combining this with Eq. 6.27, we know that no solution exists, i.e., no function in
this class is 2- resilient.

6.4.3.3 On the Construction of Type-B Resilient Functions

Type-B resilient functions are in odd number of variables, and If .i/ 6D I'1.i/ if and
only if i 2 fk; kC 1; n� k; n � k � 1g: So if If corresponds to a 2-resilient function,
then by Theorem 6.2, the following equation must hold:

n � 2

kC 1

!
�

n � 2

k

!
C

n � 2

n � k

!
�

n � 2

n � k � 1

!
D 0: (6.35)

Surprisingly, Eq. 6.30 makes Eq. 6.35 an identity. Since the functions we are
considering are symmetric, properties which apply to (x1; x2) are also valid for
every pair (xi; xj). Hence by Lemma 6.7 we know that the functions constructed
in Sect. 6.4.2.2 are all 2-resilient functions.

However, when m D 3, it is easy to verify that Eq. 6.32 cannot be hold
simultaneously with the cases for m D 0; 1; 2. This means that all functions in
this class are exactly 2-resilient.

6.5 Basic Properties of Majority Functions

The development of cryptographic algorithms have experienced different attacks.
As a result of the attacks, different measure about the resistance against the
corresponding attacks are proposed. When correlation attack [17–19] was treated
as a threat, the concept of correlation immunity was proposed in [16] as a measure
about the resistance that a nonlinear combination function has against the correlation

6.5 Basic Properties of Majority Functions 199

attack. In [4] a new attack known as the algebraic attack is proved to be very
effective to many stream ciphers as well as to some block ciphers. As a measure
of the resistance of a nonlinear function against the algebraic attack, another
measure known as algebraic immunity is proposed. As studied in Chap. 5, the idea
of algebraic attack is to find a low-degree annihilator of the targeting combining
function. By doing so, the process of algebraic attack is to solve a system of
nonlinear equations. When the algebraic degree of the annihilator is low, the
computational complexity to solve such a system of nonlinear equations is also
low. So the effectiveness of algebraic attack depends on whether one can find such
an annihilator with low algebraic degree. On the other hand, when the combining
function is of high algebraic immunity, the algebraic degree of any of its annihilators
cannot be very low. Hence, a significant job for the designers is to find combining
functions with highest possible algebraic immunity. It has been proved [12] that the
order of the algebraic immunity of a Boolean function in n variables cannot exceed
d n

2
e. If a Boolean function has algebraic immunity of order d n

2
e, then this function

is said to have the highest algebraic immunity.
In 2004, Dalai [5] studied the majority functions in odd number of variables

to be a class of Boolean functions with highest algebraic immunity, and it was
further proved in [9] that the majority functions and their complements are the only
symmetric Boolean functions in odd number of variables with maximum algebraic
immunity. While algebraic immunity is an important cryptographic measure, very
often the best performance with one cryptographic measure will sacrifice the perfor-
mance with other cryptographic measures. Here we study the correlation immunity
of the generalized majority functions, which include the majority functions in odd
number of variables and newly defined such functions in even number of variables.

Definition 6.2. Let n be an odd number. The following defined Boolean function
f .x/ in n variables is called a majority function:

f .x/ D
�

0; if wt.x/ � n�1
2
I

1; if wt.x/ � nC1
2

:
(6.36)

The natural meaning of the above-defined majority function is that when the
majority of the n-bit input has value 1, then the function outputs 1 which means a
TRUE value, and when the majority of the input has value 0, the function outputs 0
which means FALSE.

The definition of majority function is very natural for the case when the input
has odd number of coordinates, i.e., the number of inputs n of the function is an odd
number, and in this case, it is a symmetric Boolean function. When n is even, there
is no natural way of defining majority functions, as there are cases where the input
has equal number of 0 values and 1 values. For this case, we generalize the concept
of majority function as follows:

Definition 6.3. Let n be an even number. Define S D fx 2 GFn.2/ W wt.x/ D n
2
g

and let A 	 S be a subset of S. Then

200 6 The Symmetric Property of Boolean Functions

fA.x/ D
�

0; if wt.x/ < n
2

or x 2 AI
1; if wt.x/ > n

2
or x 2 .S n A/

(6.37)

is called a set-majority function.

Definition 6.3 generalizes the concept of majority function in odd number of
variables to the case in even number of variables, and hence without confusion,
the set-majority function may simply be called the majority function and is simply
denoted as f .x/ (without the subindex “A”). The definition of Eq. 6.37 can be treated
as universal (i.e., it applies to odd and even number of variables) since when n is
odd, the set S is an empty set and so is A.

There are two extreme cases of the set-majority functions, that is, when A D S
and when A D � which is an empty set. When A D S, Eq. 6.37 becomes

f1.x/ D
�

0; if wt.x/ � n
2
I

1; if wt.x/ > n
2
;

(6.38)

which is called a strict majority function. When A D �, Eq. 6.37 becomes

f0.x/ D
�

0; if wt.x/ < n
2
I

1; if wt.x/ � n
2
;

(6.39)

which is called a loose majority function. The meaning of the above two extreme
cases can be interpreted as follows: The strict majority function has value 1 only
when there are absolutely more 1 values than 0 values in the input; otherwise, it
has value 0, including the case when the input has equal number of 0’s and 1’s. The
loose majority function has value 1 as long as the number of 1 value inputs is no less
than that of 0 value inputs, including the case when their numbers are equal, and it
takes 0 only when there are absolutely less 1’s than 0’s in the input. In general case,
the set-majority function has value 1 when there are absolutely more 1’s than 0’s in
the input, and it has value 0 when there are absolutely less 1’s than 0’s in the input,
and in the case when the input has equal number of 0’s and 1’s, it has to check if
the input is from set A or S n A. For the former case, the function has value 0 and
otherwise it has value 1.

For any given even number n, the strict majority function and the loose majority
function are uniquely determined, just as the case of majority function defined for
odd n. However, in general, the set-majority function is not uniquely determined
yet, as it depends on the set A. Note that when n is even, fA.x/ is symmetric if and
only if A D � or A D S. So in general, fA.x/ is not a symmetric Boolean function.
However, our study will be on the general case, where all the induced conclusions
will apply to the cases when A D � and A D S as well.

Theorem 6.4. When n is odd, the majority functions in n variables are all
balanced; when n is even, the (set) majority functions in n variables are balanced if
and only if jAj D jSj

2
, where jAj is the cardinality of set A.

6.5 Basic Properties of Majority Functions 201

Proof. When n is odd, by the Definition 6.2, the Hamming weight of the majority
function f .x/ is wt.f / D � n

nC1
2

�C � n
nC1

2 C1

�C � � � C �n
n

�
. Note that

2n D

n

0

!
C

n

1

!
C � � � C

n

n�1
2

!

C

n
nC1

2

!
C

n
nC1

2
C 1

!
C � � � C

n

n

!

D

n

n

!
C

n

n � 1

!
C � � � C

n

nC1
2

!

C

n
nC1

2

!
C

n
nC1

2
C 1

!
C � � � C

n

n

!

D 2wt.f /

Hence, we have wt.f / D 2n�1 which means that f .x/ is balanced.
When n is even, the Hamming weight of majority function fA.x/ is wt.fA/ D� n

n
2 C1

�C � n
n
2 C2

�C � � � C �n
n

�C jS n Aj. For convenience of writing, let � D � n
n
2 C1

�C
� n

n
2 C2

�C � � � C �n
n

�
and A0 D S n A. Then � can also be expressed as:

� D

n

0

!
C

n

1

!
C � � � C

n

n
2
� 1

!
:

Hence, we have

2n D

n

0

!
C

n

1

!
C � � � C

n

n
2
� 1

!

C

n
n
2

!
C

n
n
2
C 1

!
C � � � C

n

n

!

D �C

n
n
2

!
C�

Note that jAj C jA0j D jSj D �n
n
2

�
, from the above we have

2n D 2�C jAj C jA0j:

So, fA.x/ is balanced” wt.fA/ D � C jA0j D 2n�1 ” �C jAj D 2n�1 ”
jAj D jA0j” jAj D jSj

2
. ut

202 6 The Symmetric Property of Boolean Functions

Table 6.4 The number of
balanced majority functions
in even number of variables

n C(n)

2 2

4 20

6 184756

8 112186277816662845432

10 3:63 � 1074

12 3:72 � 10276

14 1:85 � 101031

16 1:26 � 103872

18 4:33 � 1014633

20 2:32 � 1055614

It is seen from the above theorem that there is a strict restriction on the size of A
when the majority function is required to be balanced. What is the number of such
balanced functions for a given even n? Since A is any subset of S that has half of the
elements in S, there can be

� jSj
jSj=2

�
choices of A. To distinguish this special case with

the general case, we call this case as balanced majority functions, because this class
of functions are all balanced.

Denote by C.n/ the number of balanced majority functions. Then C.n/ D �0
0

� D
1 for any odd value n. When n is even, it is easy to prove that

C.n/ D
 � n

n=2

�
� n

n=2

�
=2

!
:

From Table 6.4 it can be seen that the size of C.n/ increases very fast with the
increase of n.

For the general case, by Stirling formula, nŠ
 p2�nnC 1
2 e�nC 1

12n , we can get an
approximation:

n

n=2

!

 2nC1

p
2�ne

1
4n

 2nC1

p
2�n

and hence

C.n/ D
 � n

n=2

�
� n

n=2

�
=2

!

 2

2nC1
p

2n�
� n

2 C 1
4 n

1
4 �� 1

4 e
1
8n

which increases super exponentially with the increase of n. In this sense, the
generalized majority functions in even number of variables are more applicable in
practice for their large number of supplies.

6.6 The Walsh Spectrum of Majority Functions 203

6.6 The Walsh Spectrum of Majority Functions

Walsh transform has been a very useful tool in analyzing cryptographic properties of
Boolean functions. Here we use Walsh transform to study the correlation immunity
of majority functions.

Since the definition of majority functions differs much for the cases when n is
odd and when n is even, our discussion will treat each of the cases, respectively.
Note that, when we write the XOR of two vectors such as x˚ s, it means the bitwise
XOR of vectors x and s. Let 1 be the all-one vector in GFn.2/, then we use x ˚ 1
to denote the complement of x, i.e., all the coordinates of x is taken the complement
by XORing with 1.

6.6.1 When n Is Odd

First we notice the following property of this class of functions:

Theorem 6.5. When n is odd, a Boolean function f .x/ defined in Definition 6.2
satisfies:

f .x˚ 1/ D f .x/˚ 1:

Proof. By Definition 6.2, f .x/ D 0 ” wt.x/ � .n � 1/=2 ” wt.x ˚ 1/ �
.nC 1/=2” f .x˚ 1/ D 1. Similarly, f .x/ D 1” f .x˚ 1/ D 0. ut
Theorem 6.6. Let f .x/ be a majority function in n variables, and then the Walsh
transform of f .x/ satisfies:

S.f /.w/ D
8
<

:

0; if wt.w/ is evenI
2

P

wt.x/� n�1
2

.�1/hw; xi; if wt.w/ is odd: (6.40)

Proof. Since f .x/ is a majority function in odd number of variables, we have

S.f /.w/ D
X

x2GFn.2/

.�1/f .x/Chw; xi

D
X

wt.x/� n�1
2

.�1/hw; xi �
X

wt.x/� nC1
2

.�1/hw; xi

D
X

wt.x/� n�1
2

.�1/hw; xi �
X

wt.x/� n�1
2

.�1/hw; .1˚x/i

204 6 The Symmetric Property of Boolean Functions

D
X

wt.x/� n�1
2

.�1/hw; xi �
X

wt.x/� n�1
2

.�1/hw; 1iChw; xi

D
X

wt.x/� n�1
2

.�1/hw; xi �
X

wt.x/� n�1
2

.�1/wt.w/Chw; xi

D
8
<

:

0; if wt.w/ is evenI
2

P

wt.x/� n�1
2

.�1/hw; xi; if wt.w/ is odd:

ut

6.6.2 When n Is Even

From Definition 6.3 it is known that the majority function in even number of
variables is not uniquely determined; it depends on the set A. Denote by A0 D
S n A D fx W x 2 S and x 62 Ag to be the complement set of A with respect to S,
and define

A1 D fx W x 2 GFn.2/ and wt.x/ <
n

2
g

A2 D fx W x 2 GFn.2/ and wt.x/ >
n

2
g

A3 D fx W x 2 A n .A \ NA/g
A4 D fx W x 2 A0 n .A0 \ NA0/g
A5 D fx W x 2 A \ NAg
A6 D fx W x 2 A0 \ NA0g

where NA D fx˚ 1 W x 2 Ag. Then we have

Theorem 6.7. The above defined sets satisfy the following:

1. jA1j D jA2j; jA3j D jA4j, where jAj means the cardinality of set A, i.e.,
the number of elements in A. Furthermore, if jAj D jSj

2
, then we also have

jA5j D jA6j.
2. f .x/jA1 D 0, f .x/jA2 D 1, f .x/jA3 D 0, f .x/jA4 D 1, f .x/jA5 D 0, f .x/jA6 D 1,

where f .x/jA represents the constraint function of f .x/ whose variable x can only
take values from A.

3. Define a map �.x/ D x˚1. It maps every coordinate of x to its complement, and
for a set B � GFn.2/, we denote �.B/ D fy D �.x/ W x 2 Bg. Then we have
�2.x/ D x, �2.B/ D B, and �.A1/ D A2, �.A3/ D A4, �.A5/ D A5, �.A6/ D A6.

6.6 The Walsh Spectrum of Majority Functions 205

Proof.

1. By the definition of S, it is known that for any x 2 S, we have wt.x/ D n
2
, and

hence wt.x ˚ 1/ D n
2
, or .x˚ 1/ 2 S. This means that the elements in S appear

in pairs that are complement to each other, i.e., for any x 2 S, there must exist
y 2 S such that x˚ y D 1.
By the definitions of Ai (i D 1 � 6) above, we have that A has jA5j elements
whose complement is also in A and jA3j elements whose complement is not in A
(and therefore must be in A0). So we have jAj D jA3j C jA5j. Similarly we have
jA0j D jA4j C jA6j. Since the complement of every element in A3 must be in A4

and vice versa, we have jA3j D jA4j. Furthermore, if jAj D jSj
2

, then jAj D jA0j
and hence jA5j D jA6j.

2. From Definition 6.3 we know that f .x/jA1 D 0, f .x/jA2 D 1, and f .x/jA D 0, and
hence f .x/jA0 D 1. The conclusion comes from the fact that A3 � A, A5 � A,
A4 � A0, and A6 � A0.

3. It is obvious that �2.x/ D x and �2.B/ D B. From the definitions of A1 to A6, it is
trivial to verify that �.x/ is a one-to-one mapping from A1 to A2, from A3 to A4,
from A5 onto itself, and from A6 onto itself, and hence the conclusion follows.

ut
Based on Theorem 6.7, we can formulate the Walsh transform of the majority

functions in even number of variables. First we give:

Lemma 6.10. Let V � GFn.2/ be a self-complement set, i.e., NV D fx ˚ 1 W
x 2 Vg D V, then for any odd Hamming weight vector w 2 GFn.2/, we haveP
x2V

.�1/hw; xi D 0:

Proof. Denote ı D P
x2V

.�1/hw; xi, then

ı D P
x2V

.�1/hw; .x˚1/i

D P
x2V

.�1/hw; xiCwt.w/

D .�1/wt.w/
P
x2V

.�1/hw; xi .since wt.w/ is odd/

D �ı:

Hence, ı D 0. ut
Theorem 6.8. Let fA.x/ be a majority function in n variables. Then the Walsh
transform of fA.x/ is:

S.fA/.w/ D

8
<̂

:̂

P
x2A5

.�1/hw; xi � P
x2A6

.�1/hw; xi; if wt.w/ is evenI
2

P
x2A3 or wt.x/< n

2

.�1/hw; xi; if wt.w/ is odd:
(6.41)

206 6 The Symmetric Property of Boolean Functions

Proof. By the definition of fA.x/ with respect to the sets A and S, and note that
S D A [A0 D A3 [A5 [A4 [A6 and GFn.2/ D S [A1 [A2 D S6

iD1 Ai, by
Lemma 6.10 and Theorem 6.7, we have

S.fA/.w/ D
X

x2GFn.2/

.�1/fA.x/Chw; xi

D
X

x2A1

.�1/hw; xi �
X

x2A2

.�1/hw; xi C
X

x2A3

.�1/hw; xi

�
X

x2A4

.�1/hw; xi C
X

x2A5

.�1/hw; xi �
X

x2A6

.�1/hw; xi

D
X

x2A1

.�1/hw; xi �
X

x2A1

.�1/hw; .x˚1/i C
X

x2A3

.�1/hw; xi

�
X

x2A3

.�1/hw; .x˚1/i C
X

x2A5

.�1/hw; xi �
X

x2A6

.�1/hw; xi

D
X

x2A1

.�1/hw; xi � .�1/wt.w/
X

x2A1

.�1/hw; xi

C
X

x2A3

.�1/hw; xi � .�1/wt.w/
X

x2A3

.�1/hw; xi

C
X

x2A5

.�1/hw; xi �
X

x2A6

.�1/hw; xi

D

8
<̂

:̂

P
x2A5

.�1/hw; xi � P
x2A6

.�1/hw; xi; if wt.w/ is evenI
2

P
x2A1[A3

.�1/hw; xi; if wt.w/ is odd

D

8
<̂

:̂

P
x2A5

.�1/hw; xi � P
x2A6

.�1/hw; xi; if wt.w/ is evenI
2

P
x2A3orwt.x/< n

2

.�1/hw; xi; if wt.w/ is odd

ut

6.7 The Correlation Immunity of Majority Functions

A common method to study the correlation immunity of Boolean functions is to
use Walsh transforms, this is due to Xiao-Massey theorem (see Lemma 4.13) which
gives a clear representation of correlation immunity in terms of Walsh spectrum.

Note that in Lemma 4.13, any type of Walsh spectrum can be used, as it only
considers the Walsh values on vectors with nonzero Hamming weight, and for any

6.7 The Correlation Immunity of Majority Functions 207

nonzero w, we always have that Sf .w/ D 0 if and only if S.f /.w/ D 0. In order to
check if the majority functions are correlation immune of any order at all, we first
look at whether they are correlation immune of order 1; for this purpose, we only
need to verify their Walsh spectrum on a vector w with Hamming weight 1. Without
loss of generality, let this vector be ei whose i-th coordinate is 1 and 0 elsewhere.

Regarding the correlation immunity of majority functions, we have the following
conclusion.

Theorem 6.9. None of the majority functions defined in Definitions 6.2 and 6.3 is
correlation immune.

Proof. When n is odd, by Theorem 6.6 we have

S.f /.ei/ D 2
X

wt.x/� n�1
2

.�1/hei; xi D 2
X

wt.x/� n�1
2

.�1/xi

Among all the n-dimensional vectors x with wt.x/ � n�1
2

, the number of such
vectors that also satisfy that the i-th coordinate is 1 (and the other n� 1 coordinates
can have 0 � n�3

2
of 1’s) is

n � 1

0

!
C

n � 1

1

!
C

n� 1

2

!
C � � � C

n � 1

n�3
2

!
;

and the number of such vectors whose i-th coordinate is 0 (and the other n � 1

coordinates can have 1 � n�1
2

of 1’s) is

n � 1

1

!
C

n � 1

2

!
C

n � 1

3

!
C � � � C

n � 1

n�1
2

!
:

Therefore,

S.f /.ei/ D 2

"
n � 1

1

!
C

n � 1

2

!
C

n � 1

3

!
C � � � C

n � 1

n�1
2

!!

�

n � 1

0

!
C

n � 1

1

!
C

n � 1

2

!
C � � � C

n � 1

n�3
2

!!#

D 2

"
n � 1

n�1
2

!
�

n � 1

0

!#

D 2

"
n � 1

n�1
2

!
� 1

#

208 6 The Symmetric Property of Boolean Functions

Obviously the above is not zero for n > 1, which means that the majority function
f .x/ in odd number of variables is not correlation immune (note that no Boolean
function in one variable is correlation immune).

When n is even, by Theorem 6.8 we have

S.fA/.ei/ D 2
X

x2A1[A3

.�1/hei; xi D 2

0

@
X

wt.x/< n
2

.�1/xi C
X

x2A3

.�1/xi

1

A

Similar to the case when n is odd, we have

X

wt.x/< n
2

.�1/xi D

n � 1
n
2
� 1

!
� 1;

therefore,

S.fA/.ei/ D 2

n � 1
n
2
� 1

!
� 1C

X

x2A3

.�1/xi

!
:

We show that the above is not always zero, i.e., if the above is zero for some i, then
there must exist j such that S.fA/.wj/ ¤ 0. Denote by Ai1

3 D fx 2 A3 W xi D 1g and
Ai0

3 D fx 2 A3 W xi D 0g, then A3 D Ai0
3 [Ai1

3 .
Assume for some i, S.fA/.ei/ D 0, and then

P
x2A3

.�1/xi D 1 � �n�1
n
2 �1

�
: This means

that jAi1
3 j � jAi0

3 j D
�n�1

n
2 �1

�� 1. Note that when the i-th coordinate is fixed to be 1, the

number of such vectors in S is
�n�1

n
2 �1

�
(the other n � 1 coordinates has n

2
� 1 of 1’s).

Since jAi1
3 j cannot be larger than

�n�1
n
2 �1

�
, then there are only two possible cases: (1)

jAi1
3 j D

�n�1
n
2 �1

�
and jAi0

3 j D 1 or (2) jAi1
3 j D

�n�1
n
2 �1

� � 1. We show that in both of the

cases, there must exist a j such that S.fA/.wj/ ¤ 0 and hence induces the conclusion
of the theorem.

If case (1) is true, then the other n � 1 coordinates (except i) of the vectors in A3

have all the possible vectors of Hamming weight n
2
� 1. So for any j ¤ i, there are�n�2

n
2 �1

�
elements in Ai1

3 whose j-th coordinate is 0 (let the other n� 2 coordinates take
n
2
� 1 of 1’s), and there are

�n�2
n
2 �2

�
elements in Ai1

3 whose j-th coordinate is 1 (let the

other n � 2 coordinates take n
2
� 2 of 1’s). Since the j-th coordinate of the element

in Ai0
3 may be 0 or 1, we have

X

x2A3

.�1/xj D

n� 2
n
2
� 1

!
�

n � 2
n
2
� 2

!
� c D .n� 2/Š

n
2
Š. n

2
� 1/Š

� c;

6.8 The "-Correlation Immunity of Majority Functions 209

where c 2 f0; 1g. It is easy to verify that the above expression is larger than or equal
to 0 when n > 2, and hence S.fA/.wj/ > 0.

If case (2) is true, then similarly other n � 1 coordinates (except i) have all but
one of the possible vectors of Hamming weight n

2
� 1. So for any j ¤ i, there are�n�2

n
2 �1

�� c1 elements in Ai1
3 whose j-th coordinate is 0 (let the other n� 2 coordinates

take n
2
� 1 of 1’s, taking away one such vector), and there are

�n�2
n
2 �2

� � c2 elements

in Ai1
3 whose j-th coordinate is 1 (let the other n � 2 coordinates take n

2
� 2 of 1’s,

taking away one such vector). Hence, we have

X

x2A3

.�1/xj D

n � 2
n
2
� 1

!
� c1 �

n � 2
n
2
� 2

!
� c2

!
D .n � 2/Š

n
2
Š. n

2
� 1/Š

C c2 � c1;

where c1; c2 2 f0; 1g. As in case (1), when n > 2, it always results in S.fA/.wj/ > 0.
When n D 2, all the possible majority functions in 2 variables are f1.x/ D x1,
f2.x/ D x2, f3.x/ D x1x2, and f4.x/ D x1 ˚ x2 ˚ x1x2. It is easy to verify that none
of these functions is correlation immune, and hence the conclusion of the theorem
is true. ut

6.8 The "-Correlation Immunity of Majority Functions

It is known that the majority functions defined in Definition 6.2 (and those defined
in Definition 6.3 as well) have good algebraic Immunity; their correlation immunity,
however, as shown by Theorem 6.9, is not so good. Note that the correlation
immunity is a cryptographic measure about the resistance against correlation attack;
there can be cases where although a combining function is not correlation immune,
the correlation attack, however, still consumes large amount of computation due
to the function being “near” to be correlation immune, i.e., when the "-correlation
immunity is near to 1. Now we compute the "-correlation immunity of the majority
functions using Eq. 4.47 or Eq. 4.48.

6.8.1 When n Is Odd

By Definition 6.2 it is known that f .x/ D 1 if and only if wt.x/ � nC1
2

. Similar to
the discussion above, among the vectors with Hamming weight being larger than or
equal to nC1

2
, the number of such vectors where the i-th coordinate is 0 (and the rest

n�1 coordinates can have nC1
2
� n�1 of 1’s) is

�n�1
n�1

�C�n�1
n�2

�C� � �C�n�1
nC1

2

�
, and the

number of such vectors where the i-th coordinate is 1 (and the rest n�1 coordinates
can have n�1

2
� n � 1 of 1’s) is

�n�1

n�1

�C �n�1

n�2

�C � � � C �n�1
n�1

2

�
. Therefore,

210 6 The Symmetric Property of Boolean Functions

S.f /.ei/ D �2
X

x2supp.f /

.�1/xi

D 2

n � 1

n � 1

!
C

n � 1

n � 2

!
C � � � C

n � 1

n�1
2

!!

�2

n � 1

n � 1

!
C

n � 1

n � 2

!
C � � � C

n � 1

nC1
2

!!

D 2

n � 1

n�1
2

!

Note that here the value of S.f /.ei/ is independent of i; hence, by Eq. 4.48 we have

CI".f / D 1 � 1

2wt.f /
max

i
jS.f /.ei/j

D 1 � 1

wt.f /
:

n � 1

n�1
2

!

D 1 � 1

wt.f /

n � 1

n�1
2

!
(6.42)

By Definition 6.2 we know that when n is odd, the majority functions are
balanced; hence, wt.f / D 2n�1, and hence, the above becomes

CI".f / D 1 � 1

2n�1

n � 1

n�1
2

!
:

By Stirling formula, nŠ
 p2�nnC 1
2 e�nC 1

12n , we further have

n
n
2

!
D nŠ

. n
2
/2

p

2�nnC 1
2 e�nC 1

12n

2�. n
2
/nC1e�nC 1

3n

D 2nC1e� 1
4np

2�n

6.8 The "-Correlation Immunity of Majority Functions 211

Then,

n � 1

n�1
2

!

 2n

p
2�.n� 1/

e� 1
4.n�1/

So,

1 � 1

2n�1

n � 1

n�1
2

!

 1 � 2p

2�.n� 1/
e� 1

4.n�1/
 1 � 2p
2�.n � 1/

:

Summarize the discussion above, we have

Theorem 6.10. When n is odd, the "-correlation immunity of the majority functions
is

CI".f / D 1 � 1

2n�1

n � 1

n�1
2

!

 1 � 2p

2�.n � 1/
: (6.43)

6.8.2 When n Is Even

By Theorem 6.8 we have

S.fA/.ei/ D 2
X

x2A3orwt.x/< n
2

.�1/hei; xi D 2

0

@
X

x2A3

.�1/xi C
X

wt.x/< n
2

.�1/xi

1

A :

It is easy to verify that, among the n-dimensional vectors of Hamming weight less
than n

2
, the number of such vectors where the i-th coordinate is 0 (and the rest n� 1

coordinates can have 0 � . n
2
� 1/ of 1’s) is

�n�1
0

� C �n�1
1

� C � � � C �n�1
n
2 �1

�
, and the

number of such vectors where the i-th coordinate is 1 (and the rest n�1 coordinates
can have 0 � n

2
� 2 of 1’s) is

�n�1
0

�C �n�1
1

�C � � � C �n�1
n
2 �2

�
. Therefore

X

wt.x/< n
2

.�1/xi D

n � 1

0

!
C

n� 1

1

!
C � � � C

n � 1
n
2
� 1

!!

�

n � 1

0

!
C

n � 1

1

!
C � � � C

n � 1
n
2
� 2

!!

D

n � 1
n
2
� 1

!
:

212 6 The Symmetric Property of Boolean Functions

Note from the definition that jSj D �n
n
2

�
and A3 cannot have more than half of the

elements in S (otherwise A3 would have at least a pair of complement vectors which
contradicts with the definition), i.e. jA3j � jSj D

�n
n
2

�
=2. Since

�jA3j �
X

x2A3

.�1/hei; xi � jA3j;

so we get a lower bound of S.fA/.ei/:

S.fA/.ei/ D 2

�jA3j �

n � 1
n
2
� 1

!!

� 2

�

n
n
2

!
=2�

n � 1
n
2
� 1

!!

D �2

n � 1

n
2

!
D �

n
n
2

!

and an upper bound

S.fA/.ei/ D 2

jA3j �

n� 1
n
2
� 1

!!

� 2

n
n
2

!
=2�

n � 1

n
2

!!

D 0:

By Definition 6.3, we have

wt.fA/ D

n
n
2
C 1

!
C

n
n
2
C 2

!
C � � � C

n

n

!
C jA3j

� 2n�1 �

n
n
2

!
=2:

Therefore, by Eq. 4.48 we have

CI".fA/ D 1 � 1

2wt.fA/
max

i
jS.fA/.ei/j

� 1 � 1

2n � �n
n
2

� :

n
n
2

!

6.9 Remarks 213

 1 � 2p
2�n � 2

:

Summarizing the discussion above, we have

Theorem 6.11. When n is even, then the "-correlation immunity of majority
functions in n variables fA.x/ satisfies

CI".fA/ � 1 � 1

2n � �n
n
2

�

n
n
2

!

 1 � 2p

2�n � 2
: (6.44)

Noticing that when n is odd, by Theorem 6.10 we have

lim
n!1 CI".f / D 1;

and when n is even, by Theorem 6.11 we have

lim
n!1 CI".fA/ D 1I

this yields the following conclusion.

Theorem 6.12. The "-correlation immunity of the majority functions defined in
Definitions 6.2 and 6.3 approaches to 1 with the increase of the number of variables.

Theorem 6.12 means that the majority functions are almost correlation immune,
and the approximation becomes more precise with the increase of n. This property
is called asymptotical correlation immunity.

6.9 Remarks

It has been shown that for symmetric Boolean functions, the method for computing
their Walsh transforms described in this chapter is much faster than traditional
methods for general Boolean functions. This is not surprising because symmetric
Boolean functions are just a special class of Boolean functions, and the number
of those functions is equivalent to the number of affine ones. The computational
complexity is shown to be a polynomial of n for the computation of Walsh transform
(and the whole spectrums as well) of any symmetric Boolean function in Fn; while
it is exponential in n for the general cases. In [11] it is shown that the nonlinearity
of a Boolean function depends only on the maximum absolute value of its Walsh
transforms, and in [6] it is shown that from a maximum absolute value of Walsh
transforms of a Boolean function, a best affine approximation function can easily
be found. The best affine approximation attack is a potential attack to some stream

214 6 The Symmetric Property of Boolean Functions

ciphers and block ciphers [6, 13]. In this fashion the results suggest that symmetric
Boolean functions should be avoided in those relevant generators.

With respect to the correlation immunity of symmetric Boolean functions, we
have studied the constructions of such functions, and some interesting results are
obtained. As has been mentioned above, constructions of symmetric functions with
higher-order correlation immunity need to be studied further. As for symmetric
correlation immune functions with the property of being balanced, besides the
exclusive-or of all n variables, its complement, and those presented in [8], two more
infinite classes of such functions have been presented which are correlation immune
of order one for n being even and correlation immune of order two for n being odd,
respectively, which answers the second open problem proposed in [8]. It is also
shown that the two classes of such functions (one class is from [8], and the other
class is introduced above) are only 1-resilient; hence, the conclusion of theorem 3.1
in [8] is adjusted. The functions constructed in this chapter for n being odd, however,
are exactly 2-resilient. It is also noticed that in [20], one of such examples has been
found, but the method was not clear enough to induce the whole infinite class.

Apart from the general symmetric Boolean functions, another special class
of symmetric Boolean functions have attracted more attention; they are majority
functions. It is shown that majority functions do not have correlation immunity.
However, by using the concept of "-correlation immunity, it is shown that although
none of the majority functions is correlation immune in the traditional sense, the
"-correlation immunity of the majority functions in both odd and even number of
variables will approach 1 with the increase of the number of variables. This means
that when the number of variables n is large enough, although the majority functions
are not immune against correlation attack due to their zero correlation immunity, the
cost of the correlation attack, however, would be very high due to their "-correlation
immunity being approaching 1.

References

1. Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions. In:
Proceedings of Indocrypt 2005. LNCS 3797, pp. 35–48. Springer, Berlin/Heidelberg (2005)

2. Canteaut, A., Videau, M.: Symmetric Boolean functions. IEEE Trans. Inf. Theory IT-51(8),
2791–2811 (2005)

3. Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction
problem or t-resilient functions. In: Proceedings of 26th IEEE Symposium on Foundations of
Computer Science, Portland, pp. 396–407 (1985)

4. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Advances
in Cryptology – Proceedings of Eurocrypt’03. LNCS 2656, pp. 345–359. Springer, Berlin/New
York (2003)

5. Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean functions with
maximum possible annihilator immunity. Des. Codes Cryptogr. 40(1), 41–58 (2006)

6. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS 561, Springer,
Berlin/New York (1991)

References 215

7. Friedman, J.: On the bit extraction problem. In: Proceedings 33rd IEEE Symposium on
Foundations of Computer Science, Pittsburgh, pp. 314–319 (1992)

8. Gopalakrishnan, K., Hoffman, D.G., Stinson, D.R.: A note on a conjecture concerning
symmetric resilient functions. Inf. Process. Lett. 47, 139–143 (1993)

9. Li, N., Qi, W.-F.: Symmetric Boolean functions depending on an odd number of variables with
maximum algebraic immunity. IEEE Trans. Infor. Theory IT-52(5), 2271–2273 (2006)

10. Maitra, S., Sarkar, P.: Maximum nonlinearity of symmetric boolean functions on odd number
of variables. IEEE Trans. Inf. Theory IT-48(9), 2626–2630 (2002)

11. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances
in Cryptology – Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer,
Berlin/Heidelberg (1990)

12. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions.
In: Advances in Cryptology – Proceedings of Eurocrypt’04. LNCS 3027, pp. 474–491.
Springer, Berlin/Heidelberg (2004)

13. Nyberg, K.: Linear approximation of block ciphers, In: Advances in Cryptology – Proceedings
of Eurocrypt’94. LNCS 950, pp. 439–444. Springer, Berlin/Heidelberg (1995)

14. Qu, C., Seberry, J., Pieprzyk, J.P.: On the symmetric property of homogeneous Boolean
functions. In: Proceedings of Australian Conference on Information Security and Privacy
(ACISP’99). LNCS 1587, pp. 26–35. Springer, Berlin/Heidelberg (1999)

15. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 59–88 (1949)
16. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic

applications. IEEE Trans. Inf. Theory IT-30(5), 776–780 (1984)
17. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans.

Comput. C-34(1), 81–85 (1985)
18. Siegenthaler, T.: Cryptanalysts’ representation of nonlinearly filtered m-sequences. In:

Advances in Cryptology – Proceedings of Eurocrypt’85. LNCS 219, pp. 103–110. Springer,
Heidelberg (1986)

19. Siegenthaler, T.: Design of combiners to prevent divide and conquer attacks. In:
Advances in Cryptology, Proceedings of Crypto’85. LNCS 218, pp. 237–279. Springer,
Berlin/Heidelberg/New York (1986)

20. Stinson, D.R., Massey, J.L.: An infinite class of counterexamples to a conjecture concerning
nonlinear resilient functions. J. Cryptol. 8, 167–173 (1995)

21. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions.
Math. Syst. Theory 10, 323–336 (1977)

22. Wu, C.K., Dawson, E.: Correlation immunity and resiliency of symmetric Boolean functions.
Theor. Comput. Sci. 312, 321–335 (2004)

23. Xiao, G.Z., Massey, J.L.: A spectral characterization of Correlation-immune combining
functions. IEEE Trans. Inf. Theory IT-34(3), 569–571 (1988)

24. Zhao, Y., Li, H.: On bent functions with some symmetric properties. Discret. Appl. Math. 154,
2537–2543 (2006)

Chapter 7
Boolean Function Representation of S-Boxes
and Boolean Permutations

S-boxes are often the core nonlinear component in many encryption algorithms. By
using vector Boolean functions to represent S-boxes, cryptographic properties as
well as constructions can be made possible. This chapter studies the S-boxes by
the view of vector Boolean functions, with focus being on Boolean permutations,
which are a special class of vector Boolean functions. Properties and constructions
of Boolean permutations are studied; computation of inverses of Boolean functions
is also studied. The concept of one-way trapdoor Boolean permutation is proposed.
Construction of Boolean permutations using function composition is studied which
enables the construction of one-way trapdoor Boolean permutations.

7.1 Vectorial Boolean Function Representation of S-Boxes

In the design of cryptographic algorithms, particularly the algorithm of block
ciphers, S-boxes play an essential role in ensuring the security of the algorithms.
For example, both the DES [4] and AES [3] symmetric key encryption algorithms
(block ciphers) use S-boxes as their nonlinear components of transformations. It is
known that many stream cipher algorithms also use S-boxes as important nonlinear
components, and practical good S-boxes need to possess some cryptographic
properties [1, 7]. Given the importance of S-boxes, their study has induced many
research publications (see, e.g., [2, 5, 6, 9, 10, 12, 14–17, 19, 21, 23, 26]). Since an
S-box can be represented by a vectorial Boolean function, cryptographic properties
can be represented by the corresponding properties of vectorial Boolean functions,
although this is not always the best representation in terms of complexity both in pre-
sentation and implementation. This chapter studies the vectorial Boolean function
representation of S-boxes, particularly the construction of Boolean permutations as
a special class of S-boxes, and some basic properties of Boolean permutations.

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_7

217

218 7 Boolean Function Representation of S-Boxes and Boolean Permutations

A cryptographic S-box, or simply called S-box, is such a function that takes as
input a string of length n and outputs a string of length m. This means that an S-box
is a mapping F.x/ from GFn.2/ to GFm.2/, and for this sake, an S-box is also called
an .n; m/-Boolean function. In the following description, to be more precise, we will
use the notions of .n; m/-Boolean functions and S-boxes interchangeably.

Note that an .n; m/-Boolean function can always be represented as a collection
of m Boolean functions from Fn, and we write

F.x/ D Œf1.x/; f2.x/; � � � ; fm.x/�;

where each fi 2 Fn, i D 1; 2; : : : ; m, is a Boolean function in n variables, and it
is called a coordinate function of F.x/. It appears that the study of such .n; m/-
Boolean functions can be converted into the study of individual coordinate Boolean
functions; however, as a whole, .n; m/-Boolean function may have many properties
that cannot be reflected from any of its individual coordinate Boolean functions.

Considering the output of an .n; m/-Boolean function, any such an output is a
vector in GFm.2/. Then there is a probability for each of the vectors to be the output
of the function when the input variable x goes through all the possible values in
GFn.2/. If n < m, then the input space is smaller than the output space, i.e., the
.n; m/-Boolean function F.x/ maps GFn.2/ into a subset of GFm.2/; in this case,
the output of F.x/ does not have the same chances to be any value in GFm.2/. This
kind of S-boxes is called expansion S-boxes.

If n > m, then the input space is larger than the output space; this means that
a subset of the input may result in all possible outputs in GFm.2/. It is noted that
even in such case, the output of F.x/ may also have more chances to be some of the
vectors in GFm.2/ and less chances to be some other vectors. This kind of S-boxes
are called compression S-boxes. In order to study the probabilistic behavior, let the
input x of F.x/ be a random variable, which is a collection of n independent binary
variables that take values either 0 or 1 with equal probability. Then the output of
F.x/ can be regarded as a collection of m random variables, but they are in general
not independent.

If n D m, then this special case can either be called a compression S-box or an
expansion S-box wherever convenient.

7.2 Boolean Function Representation of S-Boxes

From cryptographic point of view, a secure S-box is expected to have the property
that any subset of its output gives no information about other bits of the output. This
means that an .n; m/-Boolean function that represents an S-box has the property that
the m output functions, f1.x/, f2.x/, : : :, fm.x/, are statistically independent of each
other. Theorem 2.39 says that this happens only when n � m. We will ignore the
trivial case when any of the fi.x/ is a constant which is not what cryptographically
desired.

7.2 Boolean Function Representation of S-Boxes 219

Definition 7.1. Let an S-box be represented by an .n; m/-Boolean function F.x/.
If n >D m, then F.x/ (and hence the S-box) is called unbiased, if for any

.a1; a2; � � � ; am/ 2 GFm.2/, the following equality always holds:

Prob .F.x/ D .a1; a2; � � � ; an�m// D 1

2m
:

If n < m, then F.x/ (and hence the S-box) is called unbiased, if any n coordinate
functions of F.x/ form an unbiased .n; n/-Boolean function.

Theorem 7.1. Let F.x/ D Œf1.x/; f2.x/; � � � ; fm.x/� be an .n; m/-Boolean function
representation of an S-box, where n � m. Then F.x/ is unbiased if and only if:

(1) f1.x/; f2.x/; � � � ; fm.x/ form a statistically independent Boolean function family.
(2) f1.x/; f2.x/; � � � ; fm.x/ are all balanced.

Proof. Necessity: Since Œf1.x/; f2.x/; � � � ; fm.x/� is unbiased, by Definition 7.1, for
any .a1; a2; : : : ; am/ 2 GFm.2/, Prob..f1.x/; f2.x/; � � � ; fm.x// D .a1; a2; : : : ; am// D
1

2m is a fixed constant.
Let x go through all the vectors in GFn.2/; then for each .a1; a2; : : : ; am/ 2

GFm.2/, there are 2n�m values of x such that .f1.x/; f2.x/; � � � ; fm.x// D
.a1; a2; : : : ; am/ holds. This means that when x goes through all the values in
GFn.2/, .f1.x/; f2.x/; � � � ; fm.x// also goes through every vector in GFm.2/ for
exactly 2n�m times. It is known that when .a1; a2; : : : ; am/ goes through all the
vectors in GFm.2/, each of its coordinates ai has equal chances to be 0 or 1. This
is the same when .a1; a2; : : : ; am/ goes through all the vectors in GFm.2/ for 2n�m

times. This proves that every fi.x/ is balanced, and it is easy to verify that in this
case, we have

Prob..f1.x/; f2.x/; � � � ; fm.x// D .a1; a2; : : : ; am//

D
mY

iD1

Prob.fi.x/ D ai/ D 2�m

holds; by Definition 2.11, f1.x/; f2.x/; � � � ; fm.x/ form a statistically independent
Boolean function family.

Sufficiency: For any .a1; a2; : : : ; am/ 2 GFm.2/, by Definition 2.11, we have

Prob..f1.x/; f2.x/; � � � ; fm.x// D .a1; a2; : : : ; am//

D
mY

iD1

Prob.fi.x/ D ai/ D 2�m:

This means that .f1.x/; f2.x/; � � � ; fm.x// has equal chances to take any values in
GFm.2/. Because

220 7 Boolean Function Representation of S-Boxes and Boolean Permutations

X

.a1;a2;:::;am/2GFm.2/

Prob..f1.x/; f2.x/; � � � ; fm.x// D .a1; a2; : : : ; am// D 1;

so for each .a1; a2; : : : ; am/ 2 GFm.2/, we have that

Prob..f1.x/; f2.x/; � � � ; fm.x// D .a1; a2; : : : ; am// D 2�m:

By Definition 7.1, Œf1.x/; f2.x/; � � � ; fm.x/� is unbiased. ut

7.2.1 On the Properties of .n;n/-Boolean Permutations

A special case of .n; m/-Boolean functions is when m D n, which means that the
output domain of the function is equal to the input domain. This is actually a special
case covered by the case when n � m, which means that all the conclusions for the
case of n � m are true for this case. Because it is a special case, we hereby give it
a special consideration, and here we will only consider the unbiased .n; n/-Boolean
functions.

Let F.x/ be an .n; m/-Boolean function. In the case of m D n and the function is
unbiased, different inputs will yield different outputs. By treating each input-output
as the binary representation of an integer within S D f0; 1; : : : ; 2n � 1g, the above
function F performs a permutation on S. We refer to such a permutation on S in
Boolean function representation as an .n; n/-Boolean permutation. For simplicity,
we also call it a Boolean permutation in n variables. Since any Boolean permutation
can be represented as a collection of Boolean functions in n variables, we can write
it as

F.x/ D Œf1.x/; f2.x/; � � � ; fn.x/�: (7.1)

Note that not every collection of Boolean functions forms a Boolean permutation;
they must satisfy certain conditions. The following is a necessary and sufficient
condition for a collection of Boolean functions to be a Boolean permutation.

Theorem 7.2. Let F.x/ D Œf1.x/; f2.x/; � � � ; fn.x/� be an .n; n/-Boolean function,
where fi.x/ 2 Fn, i D 1; 2; : : : ; n. Then F.x/ is a Boolean permutation if and only if
any nonzero linear combination (i.e., the X-or) of f1.x/; f2.x/; � � � ; fn.x/ is a balanced
Boolean function, i.e., for any nonzero vector c D .c1; c2; � � � ; cn/ 2 f0; 1gn, we have

wt

nM

iD1

cifi

!
D 2n�1 (7.2)

Before we present a proof of Theorem 7.2, the following two lemmas are needed.

7.2 Boolean Function Representation of S-Boxes 221

Lemma 7.1. Let f .x/ 2 Fn be a Boolean function in n variables. Denote f 0.x/ D
1 ˚ f .x/, f 1.x/ D f .x/. Then for any a 2 f0; 1g, we have that f a.x/ D a holds if
and only if f .x/ D 1 holds. Similarly we have that f a.x/ D 1 holds if and only if
f .x/ D a holds.

Proof. The correctness of the lemma can be verified by trivially checking the cases
when a D 0 and a D 1. ut
Lemma 7.2. Let fi 2 Fn, i D 1; 2; : : : ; n. Then f1.x/, f2.x/, � � � , fn.x/ satisfy Eq. 7.2,
if and only if for any a 2 f0; 1g and for any i 2 f1; 2; � � � ; ng, functions

f1.x/; � � � ; fi�1.x/; f a
i .x/; fiC1.x/; � � � ; fn.x/

also satisfy Eq. 7.2.

Proof. By Lemma 7.1, the sufficiency and necessity of Lemma 7.2 are symmetric.
So we only need to prove the necessity. When a D 1, the conclusion is trivially true.
Let a D 0; then for any i with 1 � i � n, we have

wt

0

@
M

k;k¤i

ckfk ˚ cif
0
i

1

A D wt

nM

kD1

ckfk ˚ ci

!

D
�

wt
�Ln

kD1 ckfk
�

if ci D 0

2n � wt
�Ln

kD1 ckfk
�

if ci D 1

D 2n�1

So the conclusion of the lemma follows. ut
Proof of Theorem 7.2:

Necessity: Treat each output of .f1.x/, f2.x/, � � � , fn.x// as the binary represen-
tation of an integer in S D f0; 1; � � � ; 2n � 1g; then the output of fi.x/ is the
ith coordinate of the binary representation of this integer. When x goes from 0

to 2n � 1, because F.x/ is a Boolean permutation which is an unbiased .n; n/-
Boolean function, by Definition 7.1, the output of F.x/ also goes through every
element in S exactly once. So the truth table of F.x/ D Œf1.x/; f2.x/; � � � ; fn.x/� is a
permutation of the truth table of x D Œx1; x2; � � � ; xn�. Therefore, the truth table of
f 0.x/ D Ln

iD1 cifi.x/, a nonzero linear combination of f1.x/, f2.x/, � � � , fn.x/, is a
permutation of the truth table of

Ln
iD1 cixi, the same nonzero linear combination of

x1; x2; : : : ; xn, which is obviously a balanced Boolean function. This means that the
necessity of Theorem 7.2 holds.

Sufficiency: By Eq. 7.2 and by choosing the coefficient vector to be the special
case whose Hamming weight is 1, we have

wt.fi/ D 2n�1; i D 1; 2; : : : ; n

222 7 Boolean Function Representation of S-Boxes and Boolean Permutations

Since wt.fi ˚ fj/ D wt.fi/C wt.fj/ � 2wt.fifj/, we have

wt.fifj/ D 2n�2; i ¤ j:

Assume that wt.fi1 fi2 � � � fit / D 2n�t holds for t D 1; 2; � � � ; k, where 1 � i1 < i2 <

� � � < it � n, since

wt.f1 ˚ f2 ˚ � � � ˚ fkC1/

D
kC1X

iD1

wt.fi/� 2
X

1�i<j�n

wt.fifj/

C � � � C .�1/k2kwt.f1f2 � � � fkC1/

which is equivalent to

2n�1 D .kC 1/2n�1 �

kC 1

2

!
2n�1 C � � �

C.�1/k�1

kC 1

k

!
2n�1 C .�1/kwt.f1f2 � � � fkC1/

we hence have

wt.f1f2 � � � fkC1/ D 2n�.kC1/:

It is noted that the order of the functions f1.x/; f2.x/; � � � ; fn.x/ that satisfy Eq. 7.2
does not matter; hence, the above means that for any k C 1 coordinate function of
F.x/, we have

wt.fi1 fi2 � � � fikC1
/ D 2n�.kC1/

holds. According to the principle of induction, we have for the case of k D n � 1,
the following also holds

wt.f1f2 � � � fn/ D 2n�n D 1:

This means that there exists only one x satisfying that f1.x/f2.x/ � � � fn.x/ D 1.
For any .a1; a2; � � � ; an/ 2 f0; 1gn, by using Lemma 7.2 repeatedly, we know that
f a1

1 .x/; f a2

2 .x/; � � � ; f an
n .x/ also satisfy Eq. 7.2. This means that there exists only one

x such that f a1

1 .x/f a2

2 .x/ � � � f an
n .x/ D 1 holds, i.e., f ai

i .x/ D 1 holds. By Lemma 7.1,
we have fi.x/ D ai. This shows that the output of F.x/ D Œf1.x/; f2.x/; � � � ; fn.x/� has
exactly one chance to be any value in S when x goes through all the possible values
in S, and hence F.x/ is a permutation on S, i.e., F.x/ is a Boolean permutation in n
variables.

7.3 Properties of Boolean Permutations 223

In light of the above, the conclusion of Theorem 7.2 is true. ut
Theorem 7.2 is actually the fundamental XOR lemma for the case of .n; n/-

Boolean permutations. Let zi D fi.x/; i D 1; 2; : : : ; n, be a system of (non-
linear) equations. Since F is a Boolean permutation, there must be a unique
solution to the equation system, say, xi D gi.z/, where z D .z1; : : : ; zn/, and
Œg1.z/; g2.z/; : : : ; gn.z/� is called the inverse Boolean permutation of F.x/ and is
denoted as F�1.z/.

In the following discussion, we will use the notation P.x/ to represent a Boolean
permutation and P�1.x/ the inverse Boolean permutation of P.x/.

7.3 Properties of Boolean Permutations

Apart from Theorem 7.2, some fundamental properties of Boolean permutations are
listed below. These properties will be helpful to understand and manipulate the use
of Boolean permutations.

Theorem 7.3. Let P D Œf1; f2; � � � ; fn� be a Boolean permutation and �n be a
permutation on the set {0, 1, : : :, n}. Then

�n.P/ D Œf�n.1/; f�n.2/; � � � ; f�n.n/� (7.3)

is also a Boolean permutation.

Theorem 7.3 states that a permutation on the index of a Boolean permutation
yields another Boolean permutation. A generalization of this result leads to the
following theorem.

Theorem 7.4. Let P D Œf1; f2; � � � ; fn� be a Boolean permutation, D D .dij/ an n�n
binary matrix, and C D .c1; c2; : : : ; cn/ 2 GFn.2/. Then

PD˚ C D
"

nM

iD1

di1fi ˚ c1;

nM

iD1

di2fi ˚ c2; � � � ;
nM

iD1

dinfi ˚ cn

#
(7.4)

is a Boolean permutation if and only if D is nonsingular.

Proof. It is easy to verify that P D Œf1; f2; � � � ; fn� is a Boolean permutation if and
only if for any vector ˛ D .a1; a2; : : : ; an/, P˚ ˛ D Œf1 ˚ a1; f2 ˚ a2; � � � ; fn ˚ an�

is also a Boolean permutation. So we only need to prove the case when C D 0.
Necessity: Suppose that D is a singular matrix. Then there must exist a nonzero

vector B D .b1; b2; : : : ; bn/ such that DBT D 0; hence,

Œf1; f2; � � � ; fn�DBT D
nX

jD1

bj

nX

iD1

di;jfi D 0:

224 7 Boolean Function Representation of S-Boxes and Boolean Permutations

This indicates that the nonzero linear combination of the coordinates of
Œf1; f2; � � � ; fn�D with coefficient vector B is zero rather than a balanced Boolean
function. By Theorem 7.2, we know that Œf1; f2; � � � ; fn�D is not a Boolean
permutation.

Sufficiency: Suppose D is nonsingular. Then for any nonzero vector B 2 GFn.2/,
DBT ¤ 0. Therefore,

Œf1; f2; � � � ; fn�DBT D
nX

iD1

fi

nX

jD1

di;jbj

is a nonzero linear combination (with the coordinates of DBT as coefficients) of fi.
Since P is a Boolean permutation, by Theorem 7.2, we have

wt

0

@
nX

iD1

fi

nX

jD1

di;jbj

1

A D 2n�1:

Given the arbitrariness of B and using Theorem 7.2 again, we know that
Œf1; f2; � � � ; fn�D is a Boolean permutation. ut
Theorem 7.5. Let P D Œf1; f2; � � � ; fn� be a Boolean permutation, D D .dij/ be an
n � n binary matrix, and C D .c1; c2; : : : ; cn/ 2 GFn.2/. Then

P.xD˚ C/ D Œf1.xD˚ C/; f2.xD˚ C/; : : : ; fn.xD˚ C/� (7.5)

is a Boolean permutation if and only if D is nonsingular.

Proof. Denote y D .y1; y2; : : : ; yn/ D .x1; x2; : : : ; xn/D ˚ C. Then it is easy to
see that y1; y2; : : : ; yn are n independent variables if and only if D is nonsingular.
Since P D Œf1; f2; � � � ; fn� is a Boolean permutation, Œf1.y/; f2.y/; � � � ; fn.y/� is also a
Boolean permutation if and only if y1; y2; : : : ; yn are n independent variables. ut

Theorems 7.4 and 7.5 show that linear transformations on the coordinate func-
tions or variables of a Boolean permutation will yield a new Boolean permutation.
Now, we consider the composition of Boolean permutations.

Theorem 7.6. Let P D Œf1; f2; � � � ; fn� and Q D Œg1; g2; � � � ; gn� be two Boolean
permutations. Then their composition

P.Q/ D Œf1.g1; g2; � � � ; gn/; f2.g1; g2; � � � ; gn/; � � � ; fn.g1; g2; � � � ; gn/� (7.6)

is a new Boolean permutation.

Proof. This result comes from the fact that an .n; n/-Boolean function is a Boolean
permutation if and only if it is a one-to-one mapping from its inputs to its outputs.

ut

7.4 Inverses of Boolean Permutations 225

Now, we introduce a new operation, concatenation of Boolean permutations.
Concatenation of two functions F1.x/ and F2(x) involves independent variables. For
example, the concatenation of F1.x/ D Œx1; x1˚x2� and F2.x/ D Œx1˚x2x3; x2; x2˚
x3� forms a new function F.x/ D ŒF1IF2� D Œx1; x1 ˚ x2; x3 ˚ x4x5; x4; x4 ˚ x5�.

Theorem 7.7. Let P1 D Œf1; � � � ; fn1 � and P2 D Œg1; � � � ; gn2 � be two Boolean
permutations in n1 and n2 variables, respectively. Then their concatenation P D
ŒP1; P2� forms a Boolean permutation in n D n1 C n2 variables.

As a direct corollary of Theorems 7.7 and 7.6, we have the following:

Corollary 7.1. Let P D Œf1; � � � ; fn� be a Boolean permutation in n variables and
Ri D Œgi;1; : : : ; gi;ni � a Boolean permutation in ni variables for i D 1; 2; : : : ; k, where
n1 C n2 C � � � C nk D n. Then

Q D Œg1;1.f1; : : : ; fn1 /; � � � ; g1;n1 .f1; : : : ; fn1 /;

g2;1.fn1C1; : : : ; fn1Cn2 /; � � � ; g2;n2 .fn1C1; : : : ; fn1Cn2 /;

� � � ; gk;1.fn1Cn2C:::Cnk�1C1; : : : ; fn/; � � � ;
gk;nk .fn1Cn2C:::Cnk�1C1; : : : ; fn/� (7.7)

is a Boolean permutation in n variables.

The above conclusions are just a few simple operations on Boolean permutations.
Complex operations can be achieved by combining these operations.

Theorem 7.8. Let P D Œf1; � � � ; fn� be a Boolean permutation in n variables. If
there exists a subset A D ffi1 ; fi2 ; � � � ; fitg of the coordinate functions of P, such
that for any xi, either all functions in A are independent of xi or all functions in
ff1; f2; � � � ; fng � A are independent of xi; then Œfi1 ; fi2 ; � � � ; fit � forms a degenerate
Boolean permutation (i.e., when those variables xk that all fij are independent of are
ignored), and ff1; f2; � � � ; fng � ffi1 ; fi2 ; � � � ; fitg forms another degenerate Boolean
permutation.

Theorem 7.8 is just to treat Theorem 7.7 from a different angle. Actually when
the coordinate functions of the Boolean permutation described in Theorem 7.7
perform a permutation, then the result is a permutation having the properties as
stated in Theorem 7.8.

7.4 Inverses of Boolean Permutations

Like any permutation, a Boolean permutation has an inverse. The inverse is also a
Boolean permutation. Given a Boolean permutation P D Œf1; f2; � � � ; fn�, the inverse
of P is a solution of the following equation:

226 7 Boolean Function Representation of S-Boxes and Boolean Permutations

8
ˆ̂<

ˆ̂:

z1 D f1.x1; x2; : : : ; xn/

z2 D f2.x1; x2; : : : ; xn/

� � � � � �
zn D fn.x1; x2; : : : ; xn/

(7.8)

i.e., an expression of each xi in terms of zj. Suppose we have a solution of Eq. 7.8 in
the form

8
ˆ̂<

ˆ̂:

x1 D f �1
1 .z1; : : : ; zn/;

x2 D f �1
2 .z1; : : : ; zn/;

� � �
xn D f �1

n .z1; : : : ; zn/;

(7.9)

then P�1 D Œf �1
1 ; f �1

2 ; : : : ; f �1
n � is the inverse Boolean permutation of P.

Lemma 7.3. Let P D Œf1; f2; � � � ; fn� and Q D Œg1; g2; � � � ; gn� be two Boolean
permutations. Then they are inverses of each other if and only if for every i 2
f1; 2; : : : ; ng, we have gi.f1; f2; � � � ; fn/ D xi and fi.g1; g2; � � � ; gn/ D xi.

Lemma 7.3 can be used to check whether two Boolean permutations are inverses
of each other, especially when the number of variables of the Boolean permutations
is fairly large so that it is computationally infeasible to check all the input-output
pairs.

It is known that when one of the functions in Eq. 7.8 is nonlinear, to solve
equation Eq. 7.8 is a hard problem, i.e., there is no efficient algorithm to solve it.
However, inverses of certain special classes of Boolean permutations can easily be
found. The following are the inverses of Boolean permutations from Theorems 7.3
to 7.6, respectively. Since their proofs are trivial, we only list the conclusions
without any proof.

Lemma 7.4. Let P D Œf1; f2; � � � ; fn�, �n and Q D �n.P/ be as defined in
Theorem 7.3 and P�1 D Œf �1

1 .z/; f �1
2 .z/; : : : ; f �1

n .z/� be the inverse of P. Let
z0 D .z��1

n .1/; z��1
n .2/; : : : ; z��1

n .n//. Then Q�1 D Œf �1
1 .z0/; f �1

2 .z0/; : : : ; f �1
n .z0/�.

Lemma 7.5. Let P D Œf1; f2; � � � ; fn� and Q D PD˚C be defined as in Theorem 7.4,
where D is a nonsingular matrix. Let z0 D ..z1; : : : ; zn/ ˚ C/D�1. Then Q�1 D
Œf �1

1 .z0/; f �1
2 .z0/; : : : ; f �1

n .z0/�, where P�1 D Œf �1
1 .z/; f �1

2 .z/; : : : ; f �1
n .z/�.

Lemma 7.6. Let P D Œf1; f2; � � � ; fn� and Q D P.xD ˚ C/ be defined as in
Theorem 7.5, where D is a nonsingular matrix. Then Q�1 D P�1D�1 ˚ CD�1.

Lemma 7.7. Let P, Q, and R D P.Q/ be defined as in Theorem 7.6. Then R�1 D
Q�1.P�1/.

Now we consider the inverse of the composed Boolean permutation obtained
in Corollary 7.1, given the inverses P�1 D Œf �1

1 ; f �1
2 ; : : : ; f �1

n � and R�1
i D

Œg�1
i;1 ; g�1

i;2 ; : : : ; g�1
i;ni

�; i D 1; 2; : : : ; n; of the known Boolean permutations. Using

7.4 Inverses of Boolean Permutations 227

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

z1 D g1;1.f1; : : : ; fn1 /.x/

� � � � � �
zn1 D g1;n1 .f1; : : : ; fn1 /.x/

zn1C1 D g2;1.fn1C1; : : : ; fn1Cn2 /.x/

� � � � � �
zn1Cn2 D g2;n2 .fn1C1; : : : ; fn1Cn2/.x/

� � � � � �
zn1Cn2C���Cnk�1C1 D gk;1.fn1Cn2C���Cnk�1C1; : : : ; fn/.x/

� � � � � �
zn D gk;nk .fn1Cn2C���Cnk�1C1; : : : ; fn/.x/

(7.10)

and the corresponding inverse of Ri, we have

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

f1.x/ D g�1
1;1.z1; : : : ; zn1 / D y1

� � � � � �
fn1 .x/ D g�1

1;n1
.z1; : : : ; zn1 / D yn1

fn1C1.x/ D g�1
2;1.zn1C1; : : : ; zn1Cn2 / D yn1C1

� � � � � �
fn1Cn2 .x/ D g�1

2;n2
.zn1C1; : : : ; zn1Cn2 / D yn1Cn2

� � � � � �
fn1Cn2C:::Cnk�1C1.x/ D g�1

k;1.zn1Cn2C���Cnk�1C1; : : : ; zn/ D yn1Cn2C:::Cnk�1C1

� � � � � �
fn.x/ D g�1

k;nk
.zn1Cn2C���Cnk�1C1; : : : ; zn/ D yn:

(7.11)
By applying the inverse of P on Eq. 7.11, we have

8
<

:

x1 D f �1
1 .y1; : : : ; yn/ D '1.z1; : : : ; zn/

� � � � � �
xn D f �1

n .y1; : : : ; yn/ D 'n.z1; : : : ; zn/

(7.12)

which gives an .n; n/-Boolean function with input z D .z1; : : : ; zn/ and output x D
.x1; : : : ; xn/. So Q�1 D Œ'1; : : : ; 'n� is the inverse Boolean permutation of Q.

From the above description, for an arbitrary Boolean permutation, if it can be
transformed into a concatenation of several smaller Boolean permutations by linear
transforms on variables and/or component functions (refer to Theorems 7.4 and 7.5),
then the complexity of finding its inverse is equivalent to the total complexity of
finding the inverses of all the smaller ones.

In general, to find the inverse of a Boolean permutation is equivalent to solving a
system of equations of Boolean functions over the binary field. It is well known that
when at least one of the functions is nonlinear, there is no efficient (e.g., polynomial
time complexity) algorithm to fulfill this task. For an arbitrary Boolean permutation,
the probability that it is composed of all affine Boolean functions is 2n2Cn=.2n/Š

which becomes negligible with the increase of n. So we assume that a general

228 7 Boolean Function Representation of S-Boxes and Boolean Permutations

Boolean permutation is a one-way function, i.e., given any input, it is easy (with a
polynomial time complexity) to generate the output, while there is not a polynomial
time algorithm to find the corresponding input given any output.

However, it is possible to design a special class of Boolean permutations of which
the inverses can easily be computed, as long as how the Boolean permutations are
constructed is known.

Lemma 7.8. Let P.x/ D Œf1.x/; : : : ; fn.x/� be a Boolean permutation in n variables
with P�1.z/ D Œf �1

1 .z/; : : : ; f �1
n .z/�. Let g.x/ 2 Fn be an arbitrary function and

set f .Ox/ D g.x/ ˚ xnC1, where Ox D .x1; : : : ; xnC1/. Then Q.Ox/ D Œf1.x/ ˚
f .Ox/; : : : ; fn.x/ ˚ f .Ox/; f .Ox/� is a new Boolean permutation in n C 1 variables.
Moreover, let z0 D .z1˚znC1; : : : ; zn˚znC1/. Then Q�1.Oz/ D Œg�1

1 .Oz/; : : : ; g�1
nC1.Oz/�,

where Oz D .z1; : : : ; znC1/, .g�1
1 .Oz/; : : : ; g�1

n .Oz// D P�1.z0/, and g�1
nC1.Oz/ D znC1 ˚

g.g�1
1 .Oz/; : : : ; g�1

n .Oz//.
From Lemma 7.8, the following is a straightforward algorithm for constructing

new Boolean permutations based on old ones.

Algorithm 7.1 (Simple construction of Boolean permutations).
(1) Let P D Œf1; : : : ; fn� be a Boolean permutation in n variables and g.x/ 2 Fn be an arbitrary

Boolean function.
(2) Set gi.Ox/ D fi.x/ ˚ xnC1 ˚ g.x/; i D 1; : : : ; n, and gnC1.Ox/ D xnC1 ˚ g.x/. Then Q D

Œg1; : : : ; gnC1� is a Boolean permutation in n C 1 variables.

Algorithm 7.1 gives an iterative method for constructing Boolean permutations
based on old ones. We can also apply linear transformations on the components or
the variables of the constructed Boolean permutations to get new ones. However,
there has to be an initial Boolean permutation available when we use Algorithm 7.1.
One way to do this is to select a Boolean permutation in small number of variables as
the initial one. This makes the construction inefficient when the target permutation
to construct is in a large number of variables. Another method is to construct a linear
Boolean permutation as the initial one. The following gives a construction on linear
Boolean permutations in an arbitrary number of variables.

Lemma 7.9. Let li.x/ D ai0 ˚ ai1x1 ˚ � � � ˚ ainxn 2 An, i D 1; : : : ; n. Let A D
Œaij�; i; j D 1; : : : ; n; be the matrix of coefficients. Then Œl1; : : : ; ln� forms a linear
Boolean permutation if and only if A is nonsingular.

Note that from Lemma 7.9 we get that Œl1; : : : ; ln� D Œa10; : : : ; an0�˚Œx1; : : : ; xn�A.
Hence we have the following:

Corollary 7.2. The number of linear Boolean permutations in n variables is 2n

times the number of nonsingular matrices of order n � n.

It is known that the number of n � n nonsingular matrices is larger than 0:288 �
2n2

. The probability that a random selection of n affine functions from Ln forms a
Boolean permutation is 0:288� 2n2 � 2n=.2nC1/n D 0:288 which is the same as the

7.5 Intractability Assumption and One-Way Trapdoor Boolean Permutations 229

probability that a randomly chosen n � n binary matrix is nonsingular. This implies
that random selection of linear Boolean permutations is acceptable.

By Lemma 7.8 we know that it is easy to find the inverse of the constructed
Boolean permutation using Algorithm 7.1 provided that the inverse of the given
Boolean permutation is known. So Algorithm 7.1 cannot produce trapdoor Boolean
permutations even if it is repeated for several times. Another method we will use to
construct trapdoor Boolean permutations is as follows:

Lemma 7.10. Let P D Œf1; f2; � � � ; fn� and Q D Œg1; g2; � � � ; gn� be two Boolean
permutations and R D P.Q/ be the composed Boolean function of P and Q as in
Theorem 7.6. Then the inverse of this composed Boolean permutation is R�1 D
Q�1.P�1/.

Proof. The conclusion R to be a Boolean permutation is from Theorem 7.6, and the
expression of the inverse of R can easily be verified to be true. ut

Now we claim that using Algorithm 7.1, we can construct a large number of
Boolean permutations with known inverses. By applying Lemma 7.10, we can
construct new Boolean permutations. As in general the new constructed Boolean
permutations no longer have the properties as those constructed by Algorithm 7.1,
we claim that there has been no efficient algorithm to find their inverses without the
knowledge of the intermediate Boolean permutations. In this sense the composed
Boolean permutation is a trapdoor permutation as its inverse can be found using the
information of the intermediate ones.

7.5 Intractability Assumption and One-Way Trapdoor
Boolean Permutations

In public key cryptography where both encryption and decryption algorithms are
required, the basic idea for designing the algorithms involves the use of one-way
trapdoor functions. A function y D f	.x/ is called a one-way trapdoor function with
trapdoor parameter 	 if it satisfies the following properties:

• Computable: Given any input x, it is computationally easy (e.g., in polynomial
time complexity) to get the output y.

• One-way: Given any output y, without the knowledge of the trapdoor parameter
	 or other extra information, it is computationally infeasible to trace back to the
input x.

• Trapdoor: With the knowledge of 	, it is computationally easy to find the
corresponding x given any output y.

A one-way trapdoor function is also known as a one-way function if the trapdoor
parameter is unknown and hence the function is hard to invert. A function is called
a two-way function if it is computationally easy to find its inverse. From these
requirements, we see that a trapdoor function must be an injection (not necessarily

230 7 Boolean Function Representation of S-Boxes and Boolean Permutations

a bijection) from the input domain to the output domain. The trapdoor parameter 	

could be data, or an algorithm, or any other kind of knowledge. For instance, in the
RSA public key cryptosystem [20], the encryption algorithm is a trapdoor function,
where the factorization of the modulus is the trapdoor parameter. In McEliece’s
public key cryptosystem [11], the fast decoding algorithm is the trapdoor parameter.

When the input domain and the output domain of a trapdoor function are
identical, the function is a one-to-one function and is thus a permutation on the
domain. A Boolean permutation is one specific expression of such permutations.

It is well known that there have been no efficient algorithms with polynomial time
complexity for solving systems of nonlinear equations in the general case. Based on
this fact of intractability, we can clarify our assumption below which will be used in
constructing trapdoor Boolean permutations: There has been no efficient algorithms
to find the inverse of a randomly given Boolean permutation in n variables in a
polynomial time complexity in n.

It is easy to verify that for certain subclasses of Boolean permutations, we can
find their inverses easily. These subclasses include:

• Linear Boolean permutations
• Boolean permutations constructed simply using Algorithm 7.1, where P is a two-

way permutation
• A linear transformation on P, where P is a two-way permutation
• Extension of several smaller Boolean permutations where no one is a one-way

permutation

We can find infinite subclasses of Boolean permutations where for each specific
subclass of such permutations, there is a fast algorithm to find the inverses of
the permutations in the subclass. However, it does not reduce the complexity for
solving a general system of nonlinear equations, because the problem to identify
which subclass the permutation belongs to is by itself a hard one. At this stage, we
classify a Boolean permutation as a one-way permutation if it does not belong to
the above described special classes, and no efficient algorithm (in polynomial time
complexity) to find its inverse is known.

It should be noted that the composition of two Boolean permutations in the above
subclasses will yield a new Boolean permutation (likely to be) outside the above
described subclasses if both of the initial permutations are nonlinear. This new
composed permutation therefore can be treated as a one-way trapdoor permutation,
and its inverse can be computed using the knowledge of the inverses of the initial
Boolean permutations. It is suggested that other operations should also be used in
formulating trapdoor Boolean permutations.

7.6 Construction of Boolean Permutations

Block ciphers play a very important role in contemporary cryptography. The case
is more obvious in today’s electronic commerce, where almost all encryption tools

7.6 Construction of Boolean Permutations 231

use block ciphers. There are two types of block ciphers, symmetric key block cipher
(which is also called traditional block cipher) and asymmetric key block cipher
(which is also known as public key cipher). In both of the ciphers, encryption is a
one-to-one mapping from plaintext space (all possible plaintexts) to ciphertext space
(all possible ciphertexts), and the corresponding decryption is the inverse mapping.
Those mappings are controlled by a secret key in block ciphers or determined by
the choice of public key and private key in asymmetric key ciphers.

Block ciphers are very often designed to have the same length for both plaintexts
and ciphertexts, which means that the plaintext space and the ciphertext space are
the same, and the one-to-one mapping becomes a invertible transformation on the
plaintext space. We will denote such a space as M, and encryption and decryption
are essentially a permutation and the inverse permutation on M. However, when M is
very large, e.g., when it contains 2128 elements or more, to find such a permutation
and its inverse is not an easy task. It should also have the properties that when a
permutation is given, it is hard to find the inverse, and the inverse can be found given
further secret information. This requires that the permutation should be presented in
a concise algebraic form (e.g., RSA [20]), and without further information, from the
algebraic form, it is computationally infeasible to find its inverse.

Therefore, there is a strong relationship between permutations and block ciphers.
New methods of constructing block ciphers (particularly public key ciphers) are in
some sense about new presentation of permutations over a large set. One of those
presentations is to use Boolean functions, and this type of permutations is called
Boolean permutations. Boolean permutations have been used in the design of public
key cryptosystems [24].

However, it is still a hard problem as how to efficiently construct Boolean
permutations. Boolean permutations composed of linear or affine Boolean functions
are easy to construct, and they have little use in practical cryptographic design,
because when such a permutation is given, its inverse can easily be computed
given its algebraic presentation. In order to introduce nonlinear Boolean functions
to the Boolean permutations, which will increase the computational complexity in
finding its inverse without any further information, systematic construction methods
are necessary. A probabilistic method was proposed in [18], and it is proved
in [22] that the method has low successful rate. An algebraic construction method
is given in [22] which can construct nonlinear Boolean permutations. However,
the constructed permutations have the property that all of the coordinate Boolean
functions, when XORed with a particular nonlinear Boolean function, will yield a
linear or affine Boolean function. Another improved construction is proposed in [25]
which is supposed to make use of the Boolean permutations constructed using the
method of [22], i.e., given two Boolean permutations in n � 1 variables, a new
Boolean permutation in n variables can be constructed. This section will describe
some constructions of Boolean permutations, where the inverses of the constructed
Boolean permutations can be computed. These constructions are in addition to the
Algorithm 7.1 and Lemma 7.10.

232 7 Boolean Function Representation of S-Boxes and Boolean Permutations

7.6.1 Some Primary Constructions

Algorithm 7.1 can construct new Boolean permutations based on old ones, where the
newly constructed Boolean permutations have one more variable. This method can
be used for recursive construction. However, the algorithm works only when there
is a Boolean permutation available as the very initial one. How do we construct
Boolean permutations from the scratch? Here we list the construction algorithms
in [22] and [25] and will use them to give a new construction.

Algorithm 7.2 (Construction of Boolean permutations [22]).
(1) Select an arbitrary Boolean function g.x1; : : : ; xn�1/ in n � 1 variables. Let f .x/ D

g.x1; : : : ; xn�1/ ˚ xn.
(2) Let D be an .n � 1/ � .n � 1/ nonsingular matrix, c D .c1; c2; : : : ; cn/ 2 f0; 1gn�1. Set

Œl1; l2; : : : ; ln�1� D .x1; x2; : : : ; xn/D ˚ c.
(3) Let fi.x/ D f .x/ ˚ li.x/, i D 1; 2; : : : ; n � 1; fn.x/ D f .x/.
(4) Output P D Œf1; f2; : : : ; fn�.

Theorem 7.9. The .n; n/-Boolean function P D Œf1; : : : ; fn� generated by Algo-
rithm 7.2 is indeed a Boolean permutation.

Proof. Let ˛ D .a1; a2; : : : ; an/ be an arbitrary nonzero vector. If the Hamming
weight of ˛ is even, then the linear combination a1f1 ˚ � � � ˚ anfn becomes a
linear combination of l1; : : : ; ln�1 and hence is an affine function in n � 1 variables
and is balanced. If the Hamming weight of ˛ is odd, then the linear combination
a1f1 ˚ � � � ˚ anfn can be represented as xn ˚ g0.x1; : : : ; xn�1/ and is also balanced.
By Theorem 7.2, we know that P D Œf1; : : : ; fn� is a Boolean permutation. ut

The inverses of Boolean permutations obtained by Algorithm 7.2 can be calcu-
lated as follows. From Algorithm 7.2, we have

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

z1 D f1.x/ D g.x1; : : : ; xn�1/˚ xn ˚ l1.x1; : : : ; xn�1/;

z2 D f2.x/ D g.x1; : : : ; xn�1/˚ xn ˚ l2.x1; : : : ; xn�1/;

� � � � � �
zn�1 D fn�1.x/ D g.x1; : : : ; xn�1/˚ xn ˚ ln�1.x1; : : : ; xn�1/;

zn D fn.x/ D g.x1; : : : ; xn�1/˚ xn:

(7.13)

Let li.x1; : : : ; xn�1/ D ai;1x1 ˚ � � � ˚ ai;n�1xn�1 ˚ ai. Since l1; : : : ; ln�1 and 1 are
linearly independent, by Lemma 7.9 the coefficient matrix

A D

2

664

a1;1 a1;2 � � � a1;n�1

a2;1 a2;2 � � � a2;n�1

� � � � � � � � � � � �
an�1;1 an�1;2 � � � an�1;n�1

3

775

7.6 Construction of Boolean Permutations 233

must be nonsingular. By solving Eq. 7.10, we have

2

664

x1

x2

� � �
xn�1

3

775 D A�1

2

664

z1 ˚ zn ˚ a1

z2 ˚ zn ˚ a2

� � �
zn�1 ˚ zn ˚ an�1

3

775 :

Substituting each xi .i D 1; : : : ; n � 1/ in xn D zn ˚ g.x1; � � � ; xn�1/ we get
a representation of xn in terms of zj; hence, the inverse Boolean permutation is
obtained which has a form as in Eq. 7.9.

Another algorithm introduced in [25] is as follows:

Algorithm 7.3 (Construction of Boolean permutations [25]).
(1) Let P1 D Œg1; : : : ; gn�1�, P2 D Œh1; : : : ; hn�1� be two Boolean permutations in n �1 variables,

where gi ˚ hi ¤ 0, i D 1; 2; : : : ; n � 1.
(2) Set fi.x/ D gi ˚ xn.gi ˚ hi/, i D 1; 2; : : : ; n � 1; fn.x/ D 1 ˚ xn.
(3) Output P D Œf1; f2; : : : ; fn�

Both Algorithms 7.2 and 7.3 can produce nonlinear Boolean permutations in
n variables. The difference of the above two algorithms is that Algorithm 7.2
produces Boolean permutations based on Boolean functions that are easy to select,
while Algorithm 7.3 produces Boolean permutations based on two given Boolean
permutations in n � 1 variables. In this sense, the flexibility of Algorithm 7.3 is
limited.

In the following, we give a new method to construct Boolean permutations based
on a given one. Although the newly generated Boolean permutations have the same
number of variables as the given Boolean permutation, the method will be able to
produce a large number of different Boolean permutations, instead of generating one
as what the Algorithm 7.3 does. This means that the new method can be combined
with Algorithm 7.3 to generate many Boolean permutations in n variables when two
Boolean permutations in n � 1 variables are given.

Theorem 7.10. Let Œg1.x/; g2.x/; : : : ; gn.x/� be a Boolean permutation and fi.x/ be
independent of gi.x/, where i D 1; 2; : : : ; k, k � n, and for an arbitrary vector
.c1; c2; : : : ; ck/ 2 f0; 1gk, Lk

iD1 cifi.x/ is also independent of
Lk

iD1 cigi.x/. Then

Œf1 ˚ g1; : : : ; fk ˚ gk; gkC1; : : : ; gn�

is a new Boolean permutation in n variables.

Proof. By Theorem 7.2, it only needs to prove that any nonzero linear combination
of Boolean functions f1 ˚ g1, . . . , fk ˚ gk, gkC1, . . . , gn yields a balanced Boolean
function. For any nonzero vector .c1; c2; : : : ; cn/ 2 f0; 1gn, we have the following
linear combination

234 7 Boolean Function Representation of S-Boxes and Boolean Permutations

kM

iD1

ci .fi.x/˚ gi.x//˚
nM

jDkC1

cjgj.x/:

If c1 D c2 D � � � D ck D 0, the above becomes
Ln

jDkC1 cjgj.x/. Since
Œg1.x/; g2.x/; : : : ; gn.x/� is a Boolean permutation, by Theorem 7.2 it is known thatLn

jDkC1 cjgj.x/ is balanced. If c1; c2, : : :, ck has at least one nonzero element, then
we have

kM

iD1

cifi.x/˚
nM

jDkC1

cjgj.x/˚
kM

iD1

cigi.x/:

By the initial assumption and the properties of Boolean permutations (mainly
Theorem 7.2), it is easy to show that in the above expression, the first and the
second terms are all independent of the third part. By Theorem 2.24, we know
that the exclusive-or of the first two parts is independent of the third one. Again
by Theorem 7.2, it is known that the third part is a balanced Boolean function, and
by Theorem 2.25, it is known that the exclusive-or of all the three parts is a balanced
Boolean function, which proves the theorem to be true. ut

Theorem 7.10 does not give an explicit construction. However, we can consider
some special cases which will imply construction methods. Apparently, in order to
use the method in Theorem 7.10, one needs to find Boolean functions which are
independent of a given one. Using truth table, in theory it is trivial to construct
such functions. However, when a Boolean function has many variables, say, 100,
it is practically impossible to work on the truth table. A more practical way would
be to use polynomial representation of Boolean functions. However, for a general
Boolean function, even if some more information is given, say, it is balanced, it is
still very hard to find another Boolean function so that they are independent of each
other, unless the given Boolean function has a very special algebraic structure. It is
noticed that in Theorem 7.10, a preconstructed Boolean permutation is given. We
assume that this Boolean permutation is constructed using one of the algorithms
introduced above, which has some algebraic structures that we know.

In practical construction, the condition of Theorem 7.10 can be made stronger,
e.g., to assume that any nonzero linear combination of f1.x/, : : :, fk.x/ is inde-
pendent of any nonzero linear combination of g1.x/, : : :, gk.x/. These two linear
combinations do not necessarily have the same coefficients. Although this stronger
assumption will yield fewer Boolean permutations, it is however practically easier
to implement.

Corollary 7.3. Let f1.x/, f2.x/, : : :, fn.x/ be k Boolean functions in n variables,
and two different Boolean permutations can be made when they are combined with
gkC1.x/, : : :, gn.x/, and hkC1.x/, : : :, hn.x/, respectively. Then Œf1 ˚ hkC1, f2 ˚ hkC2,
: : :, gkC1, : : :, gn� is also a Boolean permutation.

7.6 Construction of Boolean Permutations 235

Corollary 7.3 makes use of two Boolean permutations with overlap coordinates
to construct new Boolean permutations. To be precise, when k > n

2
, the constructed

new Boolean permutation will have the form of f1 ˚ hkC1, : : :, fn�k ˚ hn, fn�kC1,
: : : fk, gkC1, : : :, gn, and when k � n

2
, the new constructed Boolean permutation will

have the form of f1 ˚ hkC1, : : :, fk ˚ h2k, gkC1, : : :, gn.
Now we consider how to construct new Boolean permutations based on the ones

constructed using Algorithm 7.2 or Algorithm 7.3. When we consider Boolean
permutations constructed using Algorithm 7.2, we need to modify the algorithm
as follows: for an arbitrary value k, choose two nonsingular matrices D1 and D2,
such that their first k rows are the same and their last n � k rows are different
by at least one row. Then Algorithm 7.2 produces two Boolean permutations
Œf1; : : : ; fk; gkC1; : : : ; gn� and Œf1; : : : ; fk; hkC1; : : : ; hn�. By Corollary 7.3, these two
Boolean permutations can be used to produce a new Boolean permutation.

However, there is a possibility that the newly constructed Boolean permutation
may be linearly equivalent to one of the original Boolean permutations, i.e., the new
Boolean permutation can be obtained from a linear transformation of Lemma 7.8
or Lemma 7.9, which is not very desirable. It is noted that Lemma 7.9 does not apply
here, as the Boolean permutations constructed using Algorithm 7.2 have all their
coordinate Boolean functions being nonlinear, while the method from Corollary 7.3
will construct Boolean permutations with linear coordinates. This means that if the
constructed Boolean permutation is linearly equivalent to a previous one, it must be
in the sense of the transformation of Lemma 7.8. If this is the case, then fi ˚ hkCi

can be represented as a linear combination of Œf1; : : : ; fk; gkC1; : : : ; gn�, i.e.,

fi ˚ hiCk D c1f1 ˚ � � � ˚ ckfk ˚ ckC1gkC1 ˚ � � � ˚ cngn:

However, from Algorithm 7.2, it is known that a Boolean permutation constructed
using Algorithm 7.2 has the property that all the coordinate Boolean functions have
a close relationship with a fixed nonlinear Boolean function, i.e., when they are
XORed with the fixed function, the outcome is always a linear or affine Boolean
function. This implies that the left-hand side of the above equation is an affine
Boolean function, and for the equality to hold, the right-hand side must be the same
affine function as well. This means that the coefficient vector .c1; c2; : : : ; cn/ must
have an even Hamming weight. This is not necessary and can even be made not
possible by carefully choosing the matrices D1 and D2. By Corollary 7.3, it is known
that the constructed Boolean permutation can be made not to be linearly equivalent
to any of the previous Boolean permutations.

When Boolean permutations constructed using Algorithm 7.3 are further used
to construct new Boolean permutations using the method of Corollary 7.3, three
Boolean permutations in n � 1 variables are needed, where two of them have k
coordinate Boolean function being the same. Similar to the idea of the construction
based on the Boolean permutations constructed using Algorithm 7.2, here it is also
possible to make the final Boolean permutation not to be linearly equivalent to any
of the original ones.

236 7 Boolean Function Representation of S-Boxes and Boolean Permutations

7.6.2 On the Flexibility of the New Construction Method for
Boolean Permutations

One of the measurements of good constructions is to see how many new things
can be produced. This also applies to our construction method. We will give
an evaluation of the number of new Boolean permutations that our new method
can produce by considering very special cases. First we check how many new
Boolean permutations can be constructed based on the ones constructed using
Algorithm 7.2. Assume that Œf1; f2; : : : ; fn� is a Boolean permutation constructed
using Algorithm 7.2, where the algorithm used nonlinear Boolean function f .x/ and
linear or affine functions l1, l2, . . . , ln�1. Now replace the first column of D with the
bit-wise exclusive-or of the first three columns and remain the rest unchanged; then
it yields a new nonsingular matrix. If this matrix is used, a new Boolean permutation
is constructed using Algorithm 7.2 with only the first coordinate f1 being different
from the previous Boolean permutation; more precisely, it is f 0

1 D f ˚ l1 ˚ l2 ˚ l3.
By Corollary 7.3, it is known that Œf1; : : : ; fn�1; fn ˚ f 0� D Œf1; : : : ; fn�1; l1 ˚ l2 ˚ l3�
is a Boolean permutation. It is easy to verify that Œf1; : : : ; fn�1; l1 ˚ l2 ˚ l3� cannot
be produced directly from Algorithm 7.2, and further analysis shows that is it not
linearly equivalent to any Boolean permutation constructed using Algorithm 7.2.
This means that the new method proposed in this chapter, in the very special case as
just described above, can produce as many Boolean permutations as Algorithm 7.2
can, and the newly constructed Boolean permutations are not linearly equivalent to
anyone constructed using Algorithm 7.2. Note that the evaluation is based on a very
special case, and thus Corollary 7.3 can actually construct much more new Boolean
permutations. The precise enumeration remains an open problem.

Let Œf1; f2; : : : ; fn� be a Boolean permutation constructed using Algorithm 7.3.
In its construction, if the two basis Boolean permutations in n � 1 variables
Œg1; : : : ; gn�1� and Œh1; : : : ; hn�1� are both constructed using Algorithm 7.2, then sim-
ilar to the method described above, it is easy to construct another Boolean permu-
tation Œh1; : : : ; hn�2; h0

n�1�. Therefore, two Boolean permutations, P D Œf1; : : : ; fn�

and P0 D Œf1; : : : ; fn�2; f 0
n�1; fn�, can be constructed. By Corollary 7.3, it is known

that Œf1; : : : ; fn�1; fn ˚ f 0
n�1� is also a Boolean permutation. The question concerned

about is whether it can be generated from Algorithm 7.3, directly or indirectly, with
the combination of a linear transformation as in Lemmas 7.8 or 7.9. Apparently,
it cannot be generated directly from Algorithm 7.3, since all of the coordinate
Boolean functions of the new constructed Boolean permutation are nonlinear, which
is different in form from those constructed using Algorithm 7.3. From the way
how new Boolean permutations are constructed based on those constructed using
Algorithm 7.2, it is known that it is easy to construct h0

n�1 such that h0
n�1 is

not a linear combination of f1, . . . , fn�1. This shows that the newly constructed
Boolean permutations cannot be linearly equivalent to those constructed directly
from Algorithm 7.3, which also means that based on any Boolean permutation
constructed using Algorithm 7.3, at least one new Boolean permutation can be

7.6 Construction of Boolean Permutations 237

constructed. Notice that this is just a very special case and in general the method
of Corollary 7.3 can be used to construct much more new Boolean permutations.

7.6.3 Construction of Trapdoor Boolean Permutations with
Limited Number of Terms

It is seen that whether a Boolean permutation is a trapdoor function depends
essentially on the difficulty of computing inverses of the Boolean permutations.
Because the number of variables of Boolean permutations has to be reasonably
large in practice, say, 64 or larger, and a Boolean function can have as many as 2n

terms in its algebraic normal form representation, the number of terms in a Boolean
permutation is an important factor in the design of trapdoor Boolean permutations.
This section describes a method for constructing trapdoor Boolean permutations
with limited number of terms.

Algorithm 7.4 (Construction of nonlinear Boolean permutations).
(1) Select integers n1; : : : ; nk; at random such that n1 C � � � C nk D n.
(2) Select gi 2 Fni�1 at random.
(3) Let Fi D Œgi ˚ x1 ˚ xni ; : : : ; gi ˚ xni�1 ˚ xni ; gi ˚ xni �.
(4) Then the concatenation P D ŒFi; : : : ; Fk� is a Boolean permutation in n variables.

Let NT.f / be the number of terms of function f . It can be seen that for the above
constructed Boolean permutation, we have

NT.P/ �
kX

iD1

.niNT.gi/C 2ni � 1/ (7.14)

NT.P�1/ � 2ni�1 C
kX

iD1

.2ni C 1/: (7.15)

By choosing each gi such that it has a small number of variables, both NT.P/ and
NT.P�1/ can be reasonably small. However, it is also easy to compute the inverses of
the Boolean permutations constructed using Algorithm 7.4. Applying another small
Boolean permutation which has no component Boolean function that has degree
larger than, say, 3, we can compose a Boolean permutation that is hard to invert
(refer to Theorem 7.7). The lower degree of the small Boolean permutation ensures
that the resulting composed Boolean permutation will only have a small number of
terms and hence can be implemented effectively.

An alternative approach to constructing applicable Boolean permutations is as
follows: Use Algorithm 7.4 to construct a Boolean permutation with controllable
number of terms. Apply other small Boolean permutations to it to generate a new

238 7 Boolean Function Representation of S-Boxes and Boolean Permutations

Boolean permutation (Theorem 7.7) which may have relatively more terms and is
harder to invert, while the inverse can be obtained easily using the inverses of each
of the individual Boolean permutations in the process of composition.

7.7 A Small Example of Boolean Permutations

Here is a Boolean permutation in 64 variables. It is so simple that we do not suggest
it be used in practice. However, it is expected to show that given any one of the
Boolean permutations, to find the other (the inverse) without additional information
is difficult.

In order to simplify the notation, we use the indices to represent variables. For
example, x1 is denoted as 01 and x3x33 is denoted as 0333. In this way, f9 of
permutation P below represents x6 ˚ x12x16 ˚ x16.

Permutation P

f1 D 26 2631 2635 3135 35, f2 D 18 54, f3 D 4549 49 4958 58, f4 D 3847 47 56,
f5 D 26 2631 2635 31 3135, f6 D 14 1425 1448 25, f7 D 28 2837 29, f8 D 19 1920
20 2050, f9 D 06 1216 16, f10 D 1540 1551 40 4051 51, f11 D 04 0411 0423 1123
23, f12 D 17 60 6063, f13 D 40 51, f14 D 14 2548 48, f15 D 3334 3339 34 3439
39, f16 D 33 39, f17 D 05 3046 46, f18 D 02 0208 0243 08 0843, f19 D 09 0944
4461, f20 D 07 0753 2453, f21 D 11 23, f22 D 0208 0243 08 0843 43, f23 D 21
42, f24 D 03 52, f25 D 26 35, f26 D 07 24 2453, f27 D 3847 3856 56, f28 D 08 43,
f29 D 21 2122 2142 2242 42, f30 D 2829 29 2937 37, f31 D 45 4558 49, f32 D 01,
f33 D 38 3856 4756 56, f34 D 05 0530 0546 30, f35 D 07 0724 0753 53, f36 D 05
0530 3046, f37 D 09 4461 61, f38 D 09 0944 0961 44, f39 D 03 0336 0352 36 3652,
f40 D 18 1854 1855 54 5455, f41 D 10 1041 1064 41, f42 D 1950 20 50, f43 D 2732
2757 32 3257 57, f44 D 2837 29 2937, f45 D 4558 49 4958, f46 D 14 1425 2548,
f47 D 1920 1950 20, f48 D 06 0612 1216, f49 D 18 1854 1855 5455 55, f50 D 13
1359 1362 5962 62, f51 D 33 3334 3339 3439 39, f52 D 32 57, f53 D 13 62, f54 D 06
0612 0616 12, f55 D 10 4164 64, f56 D 27 2732 2757 32 3257, f57 D 2122 2142 22
2242 42, f58 D 03 0336 0352 3652 52, f59 D 17 1760 1763 63, f60 D 17 1763 6063,
f61 D 0411 0423 11 1123 23, f62 D 15 1540 1551 4051 51, f63 D 13 1359 1362 59
5962, f64 D 10 1041 4164.

Inverse permutation P�1

g1 D 32, g2 D 18 1828 2228 28, g3 D 2439 2458 58, g4 D 11 1121 21 2161,
g5 D 1734 3436 36, g6 D 0954 48 4854, g7 D 20 2035 2635, g8 D 1828 22 2228,
g9 D 19 1938 3738, g10 D 4155 4164 64, g11 D 1121 21 2161 61, g12 D 0948 54,
g13 D 50 5053 5363, g14 D 0614 0646 46, g15 D 1013 13 1362 62, g16 D 09 0948
0954 48, g17 D 1259 5960 60, g18 D 0240 0249 40, g19 D 08 4247, g20 D 0842
0847 47, g21 D 23 2329 2357 29, g22 D 23 2329 2357 57, g23 D 1121 2161 61,
g24 D 20 2026 26 2635, g25 D 06 1446, g26 D 01 0125 0525, g27 D 4352 52 5256
56, g28 D 07 0730 0744 44, g29 D 0730 3044 44, g30 D 1736 34, g31 D 0125 05

7.7 A Small Example of Boolean Permutations 239

0525 25, g32 D 43 4352 5256, g33 D 1516 16 1651 51, g34 D 15 1516 16 1651,
g35 D 01 0125 0525 25, g36 D 24 2439 2458 39, g37 D 0744 30, g38 D 0427 33,
g39 D 1516 1651 51, g40 D 10 1013 13 1362, g41 D 41 5564, g42 D 2329 2357 29,
g43 D 1828 22 2228 28, g44 D 1937 38, g45 D 0331 31 3145 45, g46 D 17 1734
1736 36, g47 D 04 0427 0433 27, g48 D 0614 14 1446 46, g49 D 0331 0345 45,
g50 D 0842 42 4247 47, g51 D 10 1013 1362, g52 D 24 2439 2458 58, g53 D 2026
35, g54 D 02 0240 0249 40, g55 D 02 0240 0249 49, g56 D 0433 27 2733, g57 D 43
4352 52 5256, g58 D 03 3145, g59 D 5053 53 5363 63, g60 D 12 1259 1260 60,
g61 D 19 1937 37 3738, g62 D 50 5053 53 5363, g63 D 1260 59, g64 D 4155 55
5564 64.

7.7.1 Linearity and Nonlinearity of Boolean Permutations

There are different definitions of nonlinearity of Boolean permutations (more gen-
erally, nonlinearity of (n; m)-Boolean functions) in public literatures. One is defined
in [18] as the summation of the nonlinearities of all the coordinate functions of a
Boolean permutation. It does not correctly reflect the “nonlinearity” of a Boolean
permutation in terms of best linear approximation (BLA). A Boolean permutation
with relatively high nonlinearity can have a very good linear approximation using
this definition. In [13], the nonlinearity of a Boolean permutation is defined as the
minimum nonlinearity of all possible nonzero linear combinations of the coordinate
functions of the permutation and nonzero linear combinations of the coordinate
functions of the inverse permutation. This does not reflect the real “nonlinearity”
of a Boolean permutation either, because a Boolean permutation with one linear
coordinate would have zero nonlinearity while it could be very hard to provide a
linear approximation. For this reason, we tend to give a different concept called
“linearity,” hoping this concept describes more precisely the nonlinearity of Boolean
permutations in terms of the hardness of their best linear approximations.

Although it is hard to find the inverse of an arbitrary Boolean permutation, it is
possible to find another linear Boolean permutation that can be an approximation of
it. The more precise the approximation is, the closer the Boolean permutation is to
a linear Boolean permutation.

Let f .x/ 2 Fn. If there exists an affine function l0.x/ 2 Ln such that

wt.f .x/˚ l0.x// D min
l.x/2Ln

fwt.f .x/˚ l.x/g;

then l0.x/ is called the best affine approximation (BAA) of f .x/. The BAA of a
Boolean function is not necessarily unique. The most efficient method for finding
a BAA of a Boolean function uses Walsh techniques (see [8] for details). To find a
BAA of a Boolean function in n variables, it takes on average n � 2n operations.

Let P D Œf1; : : : ; fn� be a Boolean permutation of order n. If li.x/ is a BAA
of fi.x/ and L D Œl1; : : : ; ln� is a (linear) Boolean permutation, we call L an

240 7 Boolean Function Representation of S-Boxes and Boolean Permutations

optimum linear permutation approximation (OLPA) of P. From this definition we
know that L1 D Œx1; x2; x3� and L2 D Œx1; x1 ˚ x2; x2 ˚ x3 ˚ 1� are two
OLPAs of P D Œx3 ˚ x1x2 ˚ x2x3; x2 ˚ x1x3; x1 ˚ x1x2 ˚ x2x3�. Note that
L1.x/ D P.x/ if and only if x 2 f000; 010; 011; 110g and L2.x/ D P.x/ if and
only if x 2 f010; 011; 111g. We say that P is closer to L1 than to L2 because
jfx W L1.x/ D P.x/gj > jfx W L2.x/ D P.x/gj. This means that an OLPA is not
necessarily the best one in terms of Boolean permutation approximation. In general,
if an OLPA of a Boolean permutation P is closest to P, then it is called the best linear
approximation (BLA) of P. Likewise the BLA of a Boolean permutation is not
necessarily unique. The number of coincidences between a Boolean permutation P
and any one of its BLAs is called the linearity of P and is denoted by LP. L0

P D LP=2n

is called the relative linearity of P. Hence, the following conclusion holds:

• For any Boolean permutation, P, 1 � LP � 2n. When LP D 2n, P is a linear
Boolean permutation.

• Let P�1 be the inverse of P. Then LP�1 D LP.

In general, given a Boolean permutation, it is difficult to construct its BAA.
On the other hand, it is also difficult to construct Boolean permutations with low
linearity.

References

1. Adams, C.M., Tavares, S.: The structured design of cryptographically good S-boxes. J. Cryptol.
3(1), 27–41 (1990)

2. Armknecht, F., Krause M.: Constructing single and multi-output boolean functions with
maximal immunity. In: Proceedings of ICALP 2006. LNCS 4052, pp. 162–175. Springer,
Berlin Heidelberg (2006)

3. Daemen, J., Rijmen, V.: AES Proposal: Rijndael, pp. 1–45. NIST, Ventura (1998)
4. Data Encryption Standard, FIPS PUB 46, National Technical Information Services. Springer-

field (1977)
5. Forre, R.: Methods and instruments for designing S-boxes. J. Cryptol. 2, 115–130 (1990)
6. Golic, J.D.: Vectorial Boolean functions and induced algebraic equations. IEEE Trans. Inf.

Theory IT-52(2), 528–537 (2005)
7. Gupta, K.C., Sarkar, P.: Improved construction of nonlinear resilient S-boxes. IEEE Trans. Inf.

Theory IT-51(1), 339–348 (2005)
8. Karpovsky M.G.: Finite Orthogonal Series in the Design of Digital Devices. Wiely, New York

(1976)
9. Lidle, R., Muller, W.B.: Permutation polynomials in RSA-cryptosystem. In: Advances in

Cryptology – Proceedings of Crypto’83, pp. 293–301. Plenum, New York (1984)
10. Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: Advances

in Cryptology – Proceedings of Eurocrypt’94. LNCS 950, pp. 366–375. Springer, Berlin (1995)
11. McEliece, R.L.: A public-key cryptosystem based on algebraic coding theory, pp. 114–116 .

Deep Space Network Progress Report 42–44, Jet Propulsion Labs, Pasadena (1978)
12. Minster, S., Adams, C.: Practical S-box design. In: Proceedings of the Third Annual Workshop

on Selected Areas in Cryptography, Kingston, pp. 61–76 (1996)
13. Nyberg, K.: Perfect nonlinear S-boxes. In: Advances in Cryptology – Proceedings of Euro-

crypt’91. LNCS 547, pp. 378–386. Springer, Heidelberg (1991)

References 241

14. Nyberg, K.: On the construction of highly nonlinear permutations, In: Advances in Cryptology
– Proceedings of Eurocrypt’92. LNCS 658, pp. 92–98. Springer, Berlin/Heidelberg (1993)

15. Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology –
Proceedings of Eurocrypt’93. LNCS 765, pp. 55–64. Springer, Berlin/Heidelberg (1994)

16. O’Connor, L.J.: Enumerating nondegenerate permutations. In: Advances in Cryptology –
Proceedings of Eurocrypt’91. LNCS 547, pp. 368–377. Springer, Berlin/Heidelberg (1991)

17. Pieprzyk, J.: How to construct pseudorandom permutations from single pseudorandom func-
tions. In: Advances in Cryptology – Proceedings of Eurocrypt’90. LNCS 473, pp. 140–150.
Springer, Berlin/Heidelberg (1991)

18. Pieprzyk, J., Finkelstein, G.: Towards effective nonlinear cryptosystem design. IEE Proc. Part
E 135(6), 325–335 (1988)

19. Pieprzyk, J., Zhang, X.M.: Permutation generators of alternating groups. In: Advances in
Cryptology – Proceedings of Auscrypt’90. LNCS 453, pp. 237–244. Springer, New York
(1990)

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures. Commun.
ACM 21(2), 120–126 (1978)

21. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Advances in Cryptology –
Proceedings of Crypto’85. LNCS 218, pp. 523–534. Springer, Berlin (1986)

22. Wu, C.K.: Boolean functions in cryptology. Ph.D. thesis, Xidian University, Xian (1993) (in
Chinese)

23. Wu, C., Wang, X.: Efficient construction of permutations of high nonlinearity. Chin. Sci. Bull.
38(8), 679–683 (1993)

24. Wu, C.K., Varadharajan, V.: Public key cryptosystems based on Boolean permutations and their
applications. Int. J. Comput. Math. 74(2), 167–184 (2000)

25. Xing, Y.S., Yang, Y.: Construction and enumeration of Boolean permutations in cryptosystems.
J. China Inst. Commun. 3, 74–76 (1998)

26. Zhang, X.M., Zheng, Y.: Difference distribution table of a regular substitution box. In:
Proceedings of the Third Annual Workshop on Selected Areas in Cryptography, kingston,
pp. 57–60 (1996)

Chapter 8
Cryptographic Applications of Boolean
Functions

Cryptographic applications of Boolean functions are meant to have some cryp-
tographic properties, those properties are built to thwart cryptanalysis of certain
kinds, and multiple cryptographic properties are usually required for a Boolean
function to be used in cryptographic algorithm design, expected to resist some
known attacks to the cryptographic algorithms. Therefore, the primary applications
of cryptographic Boolean functions are the design of cryptographic algorithms,
particularly stream cipher and block cipher algorithms. This chapter will discuss
some applications of Boolean functions with some cryptographic properties in the
areas beyond cryptographic algorithm design, where the involved Boolean functions
are primary building blocks.

8.1 Applications of Degenerate Boolean Functions to Logic
Circuit Representation

One of the applications of degeneracy property of Boolean functions is to simplify
logic circuits. Since Boolean functions are so close to logic circuits, the Boolean
operations, XOR and modulo 2 multiplication, have corresponding XOR and AND
gates. We will use a notation like the letter capital “D” to denote the modulo 2
multiplication operator and the notation

L
to denote the XOR operation (modulo 2

addition). By Theorem 2.9 we know that, if a Boolean function f .x/ 2 Fn is
degenerate, there exists g.y/ 2 Fk and an n � k binary matrix D such that
f .x/ D g.xD/ holds for all x 2 GFn.2/. The proof of Theorem 2.9 actually gives a
way about how to find the degenerated function g.y/ of a given degenerate Boolean
function f .x/. Here we will not repeat the process of how to compute the degenerated

© Springer-Verlag Berlin Heidelberg 2016
C.-K. Wu, D. Feng, Boolean Functions and Their Applications in Cryptography,
Advances in Computer Science and Technology, DOI 10.1007/978-3-662-48865-2_8

243

244 8 Cryptographic Applications of Boolean Functions

Fig. 8.1 The logic circuit
representation of f .x/ x1

x2

x3

f(x)

function of a Boolean function if the given Boolean function is degenerate; instead,
we claim that there is a good chance for the circuit implementation of g.xD/ to be
simpler than that of f .x/. We have not yet tried on an applicable Boolean function;
we only give an example here to demonstrate how it works.

Example 8.1. Boolean function f .x/ D x1x2 ˚ x1x3 ˚ x2x3 ˚ x3 represents a logic
circuit (we assume the availability of XOR gate, although this can equivalently be
implemented using AND and OR gates. The multiplication represents an AND gate)
as shown in Fig. 8.1.

It is easy to see that the linear span of nonzero spectrum points of f .x/ has
dimension 2, and hence, f .x/ can be degenerated to a function in two variables.
In fact we can actually find the degenerated function g.y1; y2/ D y1y2, since

g.y1; y2/ D g..x1; x2; x3/D/ D f .x/;

where D D
2

4
1 0

0 1

1 1

3

5; hence, y1 D x1 ˚ x3 and y2 D x2 ˚ x3. According to the

degenerated function, the logic circuit can be designed as in Fig. 8.2.

The above example shows that, when a Boolean function is degenerate, the
degenerated function can be used to simplify the logic representation of the Boolean
function. Although this is not always the case, given that the variables of the
degenerated function are linear combinations of the original input variables, this
degenerate approach of Boolean function representation has potential to simplify the
hardware implementation of some Boolean functions in complex algebraic normal
form representation.

8.2 An Application of Boolean Permutations to Public Key Cryptosystem Design 245

Fig. 8.2 The simplified logic
circuit of f .x/ using its
degenerated form

x1

x2

x3

f(x)

8.2 An Application of Boolean Permutations to Public Key
Cryptosystem Design

Boolean permutations are treated as Boolean function representation of crypto-
graphic S-boxes, and their primary applications are in the design of stream ciphers
and block ciphers. Here we show how Boolean permutations can be used as primary
building blocks to the design of public key cryptosystems.

Essentially any encryption algorithm without information expansion is a permu-
tation. In the case of symmetric key systems, the permutation is hidden by a secret
key. In the case of asymmetric key cryptosystems, the permutation is hidden by
some special structure. For example, in the RSA cryptosystem, a special polynomial
(exponentiation) is used to implement a large permutation over the integral ring Zn,
where n is the RSA modulus.

8.2.1 Public Key Cryptosystem 1 (PKC1)

A Boolean permutation can be directly used to design a public key cryptosystem if
it satisfies the following properties like a one-way trapdoor function:

• Without additional knowledge, it is computationally infeasible to find the inverse
of the given Boolean permutation (one way).

• With some special knowledge, it is easy to find the inverse of the Boolean
permutation (trapdoor exists).

• The number of items in all the coordinate functions of the Boolean permutation
is reasonably small (applicable).

246 8 Cryptographic Applications of Boolean Functions

A Boolean permutation with the first two properties is actually a trapdoor
function. The special knowledge for finding the inverse is the trapdoor. One way
to construct such Boolean permutations involves the use of composition of Boolean
permutations described in Chap. 8.

Let P D Œf1; f2; : : : ; fn� be a Boolean permutation with the above properties.
User U chooses P as the public key and keeps the inverse permutation P�1 D
Œf �1

1 ; f �1
2 ; : : : ; f �1

n � as his private key. A plaintext m is a binary string of length n,
and the corresponding ciphertext is then given by c D P.m/. Decryption is given by
m D P�1.c/.

8.2.1.1 Properties

The size of the public key is based on the number of terms in the permutation P, and
the size of the private key is based on the number of terms in P�1. So the number of
terms of P and P�1 must both be reasonably small for the system to be a practical
one. The best way to attack this system seems to be the determination of the BLA. In
general, the cryptosystem can be made secure by choosing a Boolean permutation
with low linearity.

8.2.2 Public Key Cryptosystem 2 (PKC2)

Let A be an arbitrary k � n binary matrix with rank.A/ D k. Then there must exist
an n� k binary matrix X and an .n� k/�n matrix B such that AX D Ik and BX D 0,
where Ik is the k � k identity matrix. We denote this as a triple .A; B; X/. It is better
to choose matrices with neither an all-zero row nor an all-zero column. One way to
do this is to choose an arbitrary n� n nonsingular matrix C, then let A be composed
of the first k rows of C and B be composed of the rest n � k rows of C, and let X be
composed of the first most left k columns of C�1.

Let P D Œf1; : : : ; fk� be a Boolean permutation of order k for which the inverse
P�1 is known only to the user. Let .A; B; X/ be a triple satisfying the properties
above. Let R D Œr1; : : : ; rn�k� be a collection of arbitrary functions from Fk (it
should have small number of terms), and let Q D PA˚ RB be the public key. Note
that as P D QX, the corresponding private key is given by P�1.zX/. Hence, the
public key cryptosystem is as follows:

Public: Q D PA ˚ RB.

Private: P�1.zX/.

Message m: binary string of length k.

Encryption: c D Q.m/.

Decryption: m D P�1.cX/.

8.2 An Application of Boolean Permutations to Public Key Cryptosystem Design 247

In this cryptosystem, the public key is a collection of n Boolean functions in
k variables, while the private key is a collection of k such Boolean functions in n
variables. If any k components of the public key form a Boolean permutation which
is easy to invert, then the cryptosystem can be easily broken. However, determining
whether any k coordinates of Q form a Boolean permutation is an NP-complete
problem (see [5]). Even if such a Boolean permutation is occasionally found, to find
its inverse seems to be as hard as to break PKC1. So it is infeasible to get m from
c when k is fairly large. To minimize information expansion, it is proposed that n
is slightly larger than k. When both the Boolean permutation P and the arbitrary
function R are chosen properly, the key size can be reasonably small.

8.2.3 Public Key Cryptosystem 3 (PKC3)

Similar to the PKC2 above, in PKC3 we use a generating matrix G of an Œn; k; d�

linear code (see [6] on error-correcting codes) with a known fast decoding algorithm
(e.g., Goppa code). Let P.x/ D Œf1.x/; f2.x/; : : : ; fk.x/� be a Boolean permutation
of order k for which the inverse P�1 is known only to the user U. Let G.x/ D
P.x/G which is a collection of n Boolean functions in k variables. Note that for any
m 2 Fk

2, G.m/ is the code word corresponding to the message P.m/. Let E.x/ D
Œe1.x/; : : : ; en.x/� be a collection of n arbitrary Boolean functions in k variables that
satisfy for any x, wt.E.x// � t D bd � 1c=2. Then C.x/ D G.x/˚ E.x/ is set to be
the public key and P�1 and the fast decoding algorithm are kept private. The public
key cryptosystem is as follows:

Public: C.x/.

Private: P�1.x/ and decoding algorithm.

Message m: binary string of length k.

Encryption: c D C.m/.

Decryption: (1) Decoding c to get m0 D P.m/;

(2) m D P�1.m0/.

Similar to the case as in PKC2, if k components of the public key form a Boolean
permutation, then the cryptosystem can be broken. However, this is an NP-complete
problem and is hard when k is large. One issue with this system is how to construct
the error pattern function E.x/. Consider the following example: let n D 127; k D
64, and t D 10 (there is a Goppa with the above parameters). Choose 4 arbitrary
Boolean functions in 64 variables with a small number of terms f1; f2; f3; f4. Let
i 2 f0; 1; : : : ; 15g and .i1i2i3i4/ be the binary representation of i. Define Ei.x/ D
f i1
1 f i2

2 f i3
3 f i4

4 , where f 1.x/ D f .x/ and f 0 D 1 ˚ f .x/. Then we have 16 Boolean
functions in 64 variables. Repeating this construction for t D 10 times, we get 160
Boolean functions in 64 variables. Select from them any 127 functions. Then the
Hamming weight of the error pattern function is always less than or equal to t D 10.

248 8 Cryptographic Applications of Boolean Functions

At a first glance this public key cryptosystem is similar to McEliece’s [7], which
is based on an error-correcting code, and may suffer the same security risks as
pointed in [2]. However, there are some differences:

• In McEliece cryptosystem, matrix G� D SGP rather than G is used, where G
is a generating matrix of an [n; k] Goppa code, S is a k � k nonsingular matrix,
and P is an n � n permutation matrix. In this cryptosystem, it is safe to use G.
Nevertheless, it is better to use G�.

• In McEliece’s cryptosystem, the error pattern is a random vector, while in this
cryptosystem, the error pattern is a fixed (k; n) Boolean function.

• It is inappropriate to directly use McEliece’s cryptosystem to obtain signatures,
while with this cryptosystem it is possible (see Sect. 8.3 below).

• In this cryptosystem, with different choices of Boolean functions/permutations,
the key size varies significantly, while the security level is kept unchanged. This
property can be used to have keys whose size can be very small.

8.3 Application of Boolean Permutations to Digital
Signatures

Public key cryptosystems are often used in the design of digital signature schemes.
For example, the well-known RSA scheme is used to create digital signatures
in numerous applications. A digital signature system must satisfy the following
conditions: (1) generation and verification of signatures must be computationally
efficient, (2) only the owner can create his or her valid signatures, and (3) anyone
should be able to verify the validity of the digital signature. Let us now consider
how our Boolean permutation-based public key cryptosystems proposed in Sect. 8.2
can be used to obtain digital signatures.

It can be seen that PKC1 can be used to obtain signatures in a straightforward
manner. Here a signature is the same as decrypting a message, while verifying a
signature is the same as encrypting a message.

With PKC2, signatures can be achieved by letting P�1.zX/ to be the public key
and letting Q.x/ to be the private key. Then the private key can be used to create
signatures, while the public key can be used to verify them.

Now let us consider how PKC3 can be used to obtain signatures. Without loss
of generality, we will assume that the first k columns of G form a nonsingular
matrix G0. Then by Theorem 7.4 we know that PG0 D ŒG1; : : : ; Gk� is a Boolean
permutation for which the inverse ŒG�1

1 ; : : : ; G�1
k � can be obtained easily by the

owner of the public key. For a message m, which is a binary string of length k, user
U’s signature is the pair .m0; e0/, where

m0 D .G�1
1 .m/; : : : ; G�1

k .m//;

e0 D .e1.m
0/; : : : ; ek.m

0//:

8.4 Application of Boolean Permutations to Shared Signatures 249

On receiving the signature, the verifier can validate the signature by computing

.C1.m0/; : : : ; Ck.m
0// D .G1.m

0/; : : : ; Gk.m
0//˚ .e1.m

0/; : : : ; ek.m
0// D m˚ e0;

.C1.m
0/; : : : ; Ck.m

0//˚ e0 D .m˚ e0/˚ e0 D m:

It is easy to verify that this signature scheme also satisfies the required properties of
normal digital signature schemes.

8.4 Application of Boolean Permutations to Shared
Signatures

Suppose there is a company which has a private key for signing documents. Every
member of the company shares a piece of the information relating to the private key
such that a single person cannot create a valid signature; only an authorized group
can generate a valid signature. This is a combination of a normal signature scheme
and a secret sharing scheme. When the secret sharing scheme is a threshold scheme,
it yields a threshold signature which was originally studied by Y. Desmedt [3].
Note that the main difference between secret sharing schemes and shared signatures
is that in a secret sharing scheme, once the secret information is recovered, the
secret is revealed forever and all of the share holders cannot use their shares later.
However, in a shared signature scheme, shareholders can repeatedly use their shares
for signing messages without revealing the secret key.

Assume that there is a trusted authority of a company who can generate private
and public keys for the company. Let S be a collection of k Boolean functions which
is the private key of the company (see digital signatures modified from PKC1 and
PKC2). Let A be a k � n matrix, where n > k. Let ˛T

i denote the i-th column of
A. Then the authority distributes ˛T

i and S˛T
i to a member Ui of the company. For

a message m 2 Fk
2, Ui’s signature is ˛T

i and S.m/˛T
i . It can be seen that when

k such signatures are collected such that the k ˛T
i ’s are linearly independent, the

original message m can be recovered and hence a valid signature is generated. So
a collection of Ui is an authorized group if and only if their ˛i’s form a matrix
with rank k. When k is large and we want the group to be small, every person can
hold more than one column of A. It should be noted that when a message is signed,
the signature together with the message itself should be sent to the receiver. When
the receiver receives the signature, he/she checks if some of the ˛i’s can form a
nonsingular matrix so that S.m/ can be recovered. Then by using the public key,
m is recovered. By comparing the attached message with the recovered one, the
validity of the signature is recognized. It is easy to verify that this shared signature
has the following properties:

• Only an authorized group can generate valid signatures.
• Signing a message does not reduce the security of other signatures.

250 8 Cryptographic Applications of Boolean Functions

• Signatures can be verified easily.
• When new members are added to the group, their keys can be assigned by the

authority without the collaboration of other members.
• When members leave the company, in order for their shares to be no longer valid,

all the members’ shares as well as the public key have to be changed.

8.5 An Application of Boolean Permutations to Key Escrow
Scheme

Since the proposal to use key escrow based on Clipper Chips for mobile phone
communications in 1994 [8], there have been many papers discussing the signifi-
cance and drawbacks of key escrow schemes. Most of these proposals are based on
exponentiations and discrete logarithms, and the mathematical issues are essentially
similar to those in RSA [9] and Diffie-Hellman’s [4]. In this paper we present a new
key escrow scheme based on a different mathematical structure, namely, Boolean
permutations, and analyze its security properties.

8.5.1 Setup

The setup process includes the following phases.

8.5.1.1 Public/Secret Keys

Assume U is a general user and his public key is a Boolean permutation P D
Œf1; f2; : : : ; fn�. The inverse permutation P�1 D Œf �1

1 ; f �1
2 ; : : : ; f �1

n � is kept secret by
U as his private key.

8.5.1.2 Session Keys

Consider the situation when the user U wishes to communicate with another user,
say Alice. We assume that Alice is able to get hold of the public key of the user U
via some means such as using a directory service. Alice now selects a random string
e of length n and sends P.e/ to user U. The session key is e which can be recovered
by U using his private key.

8.5.1.3 Key Escrowing

In this paper, we assume that there are N different key Escrowing agencies (KEAs)
and that the secret key is handed to these agencies in a secure manner so that when

8.5 An Application of Boolean Permutations to Key Escrow Scheme 251

any K of them gets together, they are able to recover every session key transmitted
using U’s public key and any K � 1 of them is not able to recover any message
encrypted using U’s public key. Ideally any K � 1 of them is not able to get any
more information than an outsider from any message encrypted using U’s public
key. The key escrowing procedure is as follows.

1. Extend the length of the private key (if necessary) to a multiple of K by adding
zeros, i.e., P0 D Œf1; : : : ; fn; 0; : : : ; 0�.

2. Split P0 into K equivalent parts F1; F2; : : : ; FK , where

Fi D Œf.i�1/dC1; f.i�1/dC2; : : : ; fid�; i D 1; 2; : : : ; K

is an .n; d/-Boolean function and d is the least integer such that dK � n and
fj D 0 if j > n.

3. User U is to choose a K � N matrix A D Œ˛T
1 ; : : : ; ˛T

N � such that any K columns
of A can form a K � K nonsingular matrix.

4. Then ˛i and Ei D ŒF1; : : : ; FK �˛T
i , which is an .n; d/-Boolean function, are given

to key escrow agency KEAi. These are referred to as the share of KEAi.

8.5.2 Escrowing Verification

It is important for each KEA to know that their shares from the user are genuine.
We assume the existence of an independent authorized Verifier. Escrowed keys are
verified first internally by each KEA, and then each KEA passes its part to the
verifier for external verification by the Verifier.

8.5.2.1 Internal Verification

Let Xi D Œx.i�1/dC1; x.i�1/dC2; : : : ; xid�; i D 1; 2; : : : ; K, where xi D 0 if i > n. Using
U’s public key as input, KEAi checks internally whether equality Ei.f1; f2; : : : ; fn/ D
ŒX1; : : : ; XK �˛T

i holds. If this is not the case, then the information sent to KEAi is
fraudulent.

8.5.2.2 External Verification

Each KEAi sends ˛i to the Verifier in a secure manner (e.g., via offline). The Verifier
then checks if all of the ˛ form a matrix in which any K columns are linearly
independent. If this is the case, then the Verifier informs KEAs that their shares
are genuine. Otherwise, the user is asked to resubmit his secret key to each KEA
before he can become a legitimate user of the system.

Note that the verification process does not reveal any information about the user’s
secret key.

252 8 Cryptographic Applications of Boolean Functions

8.5.3 Key Recovery

Upon court order, the Verifier requests at least K of KEAs to work together on a law-
fully wiretapped message c D P.e/. Instead of presenting their original shares which
were handed by the user U, each KEAi presents Ei.c/ D ŒF1.c/; F2.c/; : : : ; FK.c/�˛T

i
securely to the Verifier. Since the Verifier knows ˛i, and a set of K ˛i forms
a nonsingular matrix, ŒF1.c/; F2.c/; : : : ; FK.c/� can easily be recovered which
contains the session key.

8.5.4 Properties

8.5.4.1 Key Size

Each KEA needs to store the data associated with each user. In the proposed key
escrow system, each KEA has to store an .n; d/-Boolean function for user U which
is smaller than the secret key of U. Note that there is no need to update the shares
kept by the KEAs unless the public key of user U is changed.

8.5.4.2 Forward Security

A key escrow protocol is said to be forward secure if the disclosure of one of the
session keys does not decrease the security of other session keys. Forward security
enables a user to continuously use his/her facility for further secure communications
when some session keys have been compromised. Note that in the above key
recovery procedure, information regarding the user’s secret key (Boolean functions)
is not leaked when a session key is revealed. So this key escrow protocol provides
forward security.

8.5.4.3 Other Security Properties

The proposed key escrow scheme is not vulnerable to attacks by an outsider to
recover the session key.e form P.e/. This attack is equivalent to decrypting messages
encrypted by user U’s public key without knowing the secret key.

Let us now consider the situation when some of the KEAs are corrupt. Let us
assume that t .t � K � 1/ KEAs are corrupt. When they put their shares together,
they can form a K � t matrix B and ŒF1; : : : ; FK �B. Because B is not a nonsingular
matrix, the secret key ŒF1; : : : ; FK � of user U cannot be recovered. However, for a
session key k, by taking P.k/ as an input to ŒF1; : : : ; FK �B, it will yield a system
of equations with t independent linear equations and K unknowns. Note that each
unknown of this equation is a binary vector of dimension d, and there are 2d.K�t/

solutions to this equation. Among them, one contains the session k which is the first
n-bit segment. So the complexity for finding a session key with t KEAs collaborating

8.6 A Small Example of Key Escrow Scheme Based on Boolean Permutations 253

with each other is equivalent to solving 2d.K�t/ system of linear equations with td
unknowns. It is computationally infeasible when d.K � t/ is reasonably large.

8.5.4.4 Full Disclosure

If user U is proved to be guilty and it is required to reveal his private key,
on receiving a court order, then at least K KEAs send their functions Ei to the
Verifier; the Verifier can recover the private key of the user U. For example, when
i D 1; 2; : : : ; K, the Verifier gets .E1; : : : ; EK/ D ŒF1; : : : ; FK �Œ˛T

1 ; : : : ; ˛T
K �. Since

the verifier knows Œ˛T
1 ; : : : ; ˛T

K � which is a nonsingular matrix, ŒF1; : : : ; FK � can be
recovered of which the nonzero part is the private key of the user. At this stage, no
one other than the Verifier knows the private key of user U.

8.5.4.5 Partial Key Escrowing

On addressing the confidentiality of users, Shamir proposed that partial key rather
than the whole key be escrowed [10] which was further supported in [1]. It is clear
that our scheme can easily achieve partial key escrowing by only allowing part of
the user’s secret key instead of the whole key to be escrowed; all the procedures
described above remain unchanged.

8.6 A Small Example of Key Escrow Scheme Based on
Boolean Permutations

Here we give a small example to demonstrate how the key escrow protocol works.

8.6.1 Selecting a Boolean Permutation of Order 6

It can easily be verified that P1 D Œx3 ˚ x1x2 ˚ x2x3; x2 ˚ x1x3; x1 ˚ x1x2 ˚ x2x3�

is a Boolean permutation of order 3 with P�1
1 D P1. We can also construct another

Boolean permutation of order 6 by using Algorithm 7.1. With set g.x1; : : : ; x5/ D
x1x2 ˚ x3x4x5 and li D xi for i D 1; : : : ; 5, we have Boolean permutation Q D
Œf1; : : : ; f6�, where

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

g1 D x1 ˚ x1x2 ˚ x3x4x5 ˚ x6;

g2 D x2 ˚ x1x2 ˚ x3x4x5 ˚ x6;

g3 D x1x2 ˚ x3 ˚ x3x4x5 ˚ x6;

g4 D x1x2 ˚ x4 ˚ x3x4x5 ˚ x6;

g5 D x1x2 ˚ x5 ˚ x3x4x5 ˚ x6;

g6 D x1x2 ˚ x3x4x5 ˚ x6:

254 8 Cryptographic Applications of Boolean Functions

The inverse of Q can easily be computed as Q�1 D Œf �1
1 ; : : : ; f �1

6 �, where f �1
i D

zi ˚ x6 for i D 1; : : : ; 5; and f �1
6 D z6 ˚ z1z2 ˚ z1z6 ˚ z2z6 ˚ z3z6 ˚ z4z6 ˚ z5z6 ˚

z3z4z5˚ z3z4z6˚ z3z5z6˚ z4z5z6. By Lemma 7.6, the composition of P and Q yields
a new Boolean permutation R D ŒP.f1; f2; f3/; P.f4; f5; f6/� D Œr1; : : : ; r6�, where

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

r1 D x1x2 ˚ x3 ˚ x2x3 ˚ x1x2x3 ˚ x1x3x4x5 ˚ x6 ˚ x1x6 ˚ x3x6

r2 D x2 ˚ x1x2 ˚ x1x3 ˚ x1x2x3 ˚ x3x4x5 ˚ x1x3x4x5 ˚ x1x6 ˚ x3x6

r3 D x1 ˚ x1x2 ˚ x2x3 ˚ x1x2x3 ˚ x1x3x4x5 ˚ x6 ˚ x1x6 ˚ x3x6

r4 D x1x2 ˚ x1x2x4 ˚ x4x5 ˚ x6 ˚ x4x6

r5 D x1x2x4 ˚ x5 ˚ x3x4x5 ˚ x4x6

r6 D x1x2 ˚ x4 ˚ x1x2x4 ˚ x4x5 ˚ x6 ˚ x4x6

The inverse of R is also easy to compute given the inverses of P and Q; it is R�1 D
Œr�1

1 ; : : : ; r�1
6 �, where

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

r�1
1 D x1x2 ˚ x3 ˚ x2x3 ˚ x4 ˚ x4x5 ˚ x5x6;

r�1
2 D x2 ˚ x1x3 ˚ x4 ˚ x4x5 ˚ x5x6;

r�1
3 D x1 ˚ x1x2 ˚ x2x3 ˚ x4 ˚ x4x5 ˚ x5x6;

r�1
4 D x4 ˚ x6;

r�1
5 D x4 ˚ x5 ˚ x4x5 ˚ x4x6 ˚ x5x6;

r�1
6 D x1x2 ˚ x1x3 ˚ x4 ˚ x1x4 ˚ x2x4 ˚ x3x4 ˚ x1x3x4 ˚ x4x5

˚x2x4x5 ˚ x1x2x4x5 ˚ x3x4x5 ˚ x1x3x4x5 ˚ x2x3x4x5 ˚ x4x6

˚x1x4x6 ˚ x1x2x4x6 ˚ x2x3x4x6 ˚ x2x5x6 ˚ x1x2x5x6 ˚ x3x5x6

˚x1x3x5x6 ˚ x2x3x5x6 ˚ x4x5x6:

Note that the composed permutation R no longer has the format similar to those
functions generated by Algorithm 7.1. So there is not an efficient way to compute its
inverse. We would like to point out that, for this particular example, there might exist
an efficient algorithm to get the inverse of R. It is however very hard to generalize
the method to arbitrary composed permutations. In general composed Boolean
permutations are hard to inverse and hence can be used as trapdoor functions. Here
is a method for general composition:

• Generate a Boolean permutation Q of order n having a small number of terms by
Algorithm 7.1.

• Select small Boolean permutations Pi of order ni (i D 1; : : : ; k) at random such
that

Pk
iDi nk D n. Concatenate them to form a Boolean permutation P of order n.

• Generate a new Boolean permutation by composition P.Q/ or Q.P/.

8.6.2 Preparation

Assume that the above permutations are generated by user U. U uses R�1 as his
public key and keep R as his secret key. A session key is a random binary string of

8.6 A Small Example of Key Escrow Scheme Based on Boolean Permutations 255

length 6 which should be encrypted by R�1 and sent to U. Let e D 100110 be an
arbitrary string which is a session key. Then c D R�1.e/ D 001111 is sent to user
U. U can then recover the key e using his secret key. For key escrowing, we assume
that there are three KEAs and any two of them would be able to escrow the session

keys. So user U chooses matrix A D
�

0 1 1

1 0 1

�
. The secret key is split into two parts

as R D ŒF1; F2�, where

F1 D Œx1x2 ˚ x3 ˚ x2x3 ˚ x1x2x3 ˚ x1x3x4x5 ˚ x6 ˚ x1x6 ˚ x3x6;

x2 ˚ x1x2 ˚ x1x3 ˚ x1x2x3 ˚ x3x4x5 ˚ x1x3x4x5 ˚ x1x6 ˚ x3x6;

x1 ˚ x1x2 ˚ x2x3 ˚ x1x2x3 ˚ x1x3x4x5 ˚ x6 ˚ x1x6 ˚ x3x6�;

F2 D Œx1x2 ˚ x1x2x4 ˚ x4x5 ˚ x6 ˚ x4x6;

x1x2x4 ˚ x5 ˚ x3x4x5 ˚ x4x6;

x1x2 ˚ x4 ˚ x1x2x4 ˚ x4x5 ˚ x6 ˚ x4x6�:

The three shares of KEAs are ŒE1; E2; E3� D ŒF1; F2�A, where we have E1 D F1,
E2 D F2 and E3 D F1˚F2. Ei and the i-th column of matrix A are handed to KEAi.

8.6.3 Verification

We will just demonstrate how the verification is done by KEA3. With the coordinates
of the public key R�1 as inputs, the equality

Ei.r
�1
1 ; : : : ; r�1

6 / D Œx1; x2; x3�˚ Œx4; x5; x6� D Œx1 ˚ x4; x2 ˚ x5; x3 ˚ x6�

should hold. Otherwise, the share is fraudulent. External verification is nothing but
simply a check of the properties of matrix A.

8.6.4 Key Recovery

Normally only the session keys need to be recovered. For example, for the above
message c wiretapped from a public channel, KEA1 can get E1.c/ D Œ1; 0; 0�, KEA2

can get E2.c/ D Œ1; 1; 0�, and KEA3 can get E3.c/ D Œ0; 1; 0�. The session key e
can be reformed by either .E1; E2/ or .E1; E1˚ E3/ or .E2˚ E3; E3/. Also note that
when E1; E2; E3 are put together and matrix A is known, the secret key of user U can
be fully disclosed.

256 8 Cryptographic Applications of Boolean Functions

8.7 Remarks

It does not need to address how wide applications that Boolean functions may have;
there are many books about Boolean functions and their applications in different
areas. Cryptographic Boolean functions are designed preliminarily for the use in
cryptographic algorithm design. This chapter presents some other applications of
Boolean functions, particularly the applications of Boolean permutations in the
design of public cryptography, shared signature, and key escrow schemes. This
chapter is designed to show the possibility of alternate applications of Boolean
functions in the area of cryptography, and the security analyses are not very deep,
since these demonstrations are not meant for practical applications. There can be
many other applications of cryptographic Boolean functions apart from what have
been covered by this chapter.

References

1. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Proceedings of the Fourth ACM
Conference on Computer and Communications Security, Zurich, pp. 78–91. ACM (1997)

2. Chabaud, F.: On the security of some cryptosystems based on error-correcting codes. In:
Advances in Cryptology – Proceedings of Eurocrypt’94. LNCS 950, pp. 131–139. Springer,
Berlin/Heidelberg (1995)

3. Desmedt, Y.: Threshold cryptosystems. In: Advances in Cryptology – Proceedings of
Auscrypt’92. LNCS 718, pp. 3–14. Springer, Berlin/Heidelberg (1993)

4. Diffie, W., Hellman, M.: New directions in cryptology. IEEE Trans. Inf. Theory IT-22(6), 644–
654 (1976)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company/Bell Telephone Laboratories Incorporated, New
York (1978)

6. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

7. McEliece, R.L.: “A public-key cryptosystem based on algebraic coding theory”, Deep Space
Network Progress Report, Jet Propulsion Labs, Pasadena 42–44, pp. 114–116 (1978)

8. National Institute for Standards and Technology, “Escrowed Encryption Standard (EES),”
Federal Information Processing Standards Publication (FIPS PUB) 185, 9 Feb 1994

9. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures. Commun.
ACM 21(2), 120–126 (1978)

10. Shamir, A.: Partial key escrow: a new approach to software key escrow, presented at Key
Escrow Conference, Washington, D.C., 15 Sept 1995

	Preface
	Contents
	Notations
	1 Boolean Functions and Their Walsh Transforms
	1.1 Logic Gates and Boolean Variables
	1.2 Boolean Functions and Their Representations
	1.2.1 Algebraic Normal Form
	1.2.2 Truth Table Representation
	1.2.3 Support Representation
	1.2.4 Minterm Representation
	1.2.5 Representation Conversions
	1.2.5.1 Algebraic Normal Form to Truth Table Conversion
	1.2.5.2 Truth Table to Support Conversion
	1.2.5.3 Support to Minterm Conversion
	1.2.5.4 Minterm to Algebraic Normal Form Conversion
	1.2.5.5 Truth Table to Algebraic Normal Form Conversion

	1.2.6 Enumeration of Boolean Functions

	1.3 Walsh Transforms and Walsh Spectrum of Boolean Functions
	1.3.1 Walsh Functions and Walsh Transforms
	1.3.2 Properties of Walsh Transforms
	1.3.3 Hadamard Matrices

	1.4 Basic Models of Stream Ciphers That Use Boolean Functions
	1.4.1 Linear Feedback Shift Registers
	1.4.2 Nonlinear Filtering Generators and NonlinearCombiners

	1.5 Cryptographic Properties of Boolean Functions
	1.5.1 Algebraic Degree
	1.5.2 Balance
	1.5.3 Nonlinearity
	1.5.4 Linear Structure
	1.5.5 Propagation Criterion
	1.5.6 Correlation Immunity
	1.5.7 Algebraic Immunity
	1.5.8 Remarks

	References

	2 Independence of Boolean Functions of Their Variables
	2.1 Introduction
	2.2 The Algebraic Independence of Boolean Functions of Their Variables
	2.3 The Degeneracy of Boolean Functions
	2.4 Images of Boolean Functions on a Hyperplane
	2.5 Derivatives of Boolean Functions
	2.6 The Statistical Independence of Boolean Functions of Their Variables
	2.7 The Statistical Independence of Two Individual Boolean Functions
	2.7.1 Properties of the Statistical Independence of Boolean Functions
	2.7.2 How to Judge When Two Boolean Functions Are Statistically Independent
	2.7.3 Construction of Statistically Independent Boolean Functions
	2.7.4 Enumeration of Statistically Independent Boolean Functions
	2.7.5 On the Statistical Independence of a Group of Boolean Functions

	References

	3 Nonlinearity Measures of Boolean Functions
	3.1 Introduction
	3.2 Algebraic Degree and Nonlinearity of Boolean Functions
	3.3 Walsh Spectrum Description of Nonlinearity
	3.4 Nonlinearity of Some Basic Operations of Boolean Functions
	3.5 Upper and Lower Bounds of Nonlinearity of Boolean Functions
	3.6 Nonlinearity of Balanced Boolean Functions
	3.7 Higher-Order Nonlinearity of Boolean Functions
	3.8 Linear Structures of Boolean Functions
	3.9 Remarks
	References

	4 Correlation Immunity of Boolean Functions
	4.1 The Correlation Attack of Nonlinear Combiners
	4.2 The Correlation Immunity and Correlation Attacks
	4.3 Correlation Immunity of Boolean Functions
	4.4 Correlation Immune Functions and Error-Correcting Codes
	4.5 Construction of Correlation Immune Boolean Functions
	4.5.1 Known Constructions of Correlation Immune Boolean Functions
	4.5.2 Construction of Correlation Immune Boolean Functions Based on A Single Code
	4.5.3 Preliminary Enumeration of Correlation Immune Boolean Functions
	4.5.4 Construction of Correlation Immune Boolean Functions Using a Family of Error-Correcting Codes

	4.6 Lower Bounds on Enumeration of the Correlation Immune Functions Constructible from the Error-Correcting Code Construction
	4.7 Examples
	4.8 Exhaustive Construction of Correlation Immune Boolean Functions
	4.9 An Example of Exhaustive Construction of Correlation Immune Functions
	4.10 Construction of High-Order Correlation Immune Boolean Functions
	4.11 Construction of Correlation Immune Boolean Functions with Other Cryptographic Properties
	4.11.1 Correlation Immune Functions with Good Balance
	4.11.2 Correlation Immune Functions with High Algebraic Degree
	4.11.3 Correlation Immune Functions with High Nonlinearity
	4.11.4 Correlation Immune Functions with Propagation Criterion
	4.11.5 Linear Structure Characteristics of Correlation Immune Functions

	4.12 Construction of Algebraically Nondegenerate Correlation Immune Functions
	4.12.1 On the Algebraic Degeneration of Correlation Immune Functions
	4.12.2 Construction of Algebraically Nondegenerate Correlation Immune Functions

	4.13 The -Correlation Immunity of Boolean Functions
	4.14 Remarks
	References

	5 Algebraic Immunity of Boolean Functions
	5.1 Algebraic Attacks on Stream Ciphers
	5.2 A Small Example of Algebraic Attack
	5.3 Annihilators and Algebraic Immunity of Boolean Functions
	5.4 Construction of Annihilators of Boolean Functions
	5.5 On the Upper and Lower Bounds of Algebraic Immunity of Boolean Functions
	5.6 Computing the Annihilators of Boolean Functions
	5.6.1 Computing the Annihilators of Boolean Functions: Approach I
	5.6.2 Computing the Annihilators of Boolean Functions: Approach II

	References

	6 The Symmetric Property of Boolean Functions
	6.1 Basic Properties of Symmetric Boolean Functions
	6.2 Computing the Walsh Transform of Symmetric Boolean Functions
	6.2.1 Walsh Transforms on Symmetric Boolean Functions
	6.2.2 Computational Complexity

	6.3 Correlation Immunity of Symmetric Functions
	6.3.1 When n Is Odd
	6.3.2 When n Is Even
	6.3.3 Higher-Order Correlation Immunity

	6.4 On Symmetric Resilient Functions
	6.4.1 Constructions of Symmetric Resilient BooleanFunctions
	6.4.2 Searching for More Solutions
	6.4.2.1 Type-A: When n Is Even
	6.4.2.2 Type-B: When n Is Odd

	6.4.3 The Exact Resiliency of Constructed ResilientFunctions
	6.4.3.1 On the Construction of GHS93
	6.4.3.2 On the Construction of Type-A Resilient Functions
	6.4.3.3 On the Construction of Type-B Resilient Functions

	6.5 Basic Properties of Majority Functions
	6.6 The Walsh Spectrum of Majority Functions
	6.6.1 When n Is Odd
	6.6.2 When n Is Even

	6.7 The Correlation Immunity of Majority Functions
	6.8 The -Correlation Immunity of Majority Functions
	6.8.1 When n Is Odd
	6.8.2 When n Is Even

	6.9 Remarks
	References

	7 Boolean Function Representation of S-Boxes and Boolean Permutations
	7.1 Vectorial Boolean Function Representation of S-Boxes
	7.2 Boolean Function Representation of S-Boxes
	7.2.1 On the Properties of (n, n)-Boolean Permutations

	7.3 Properties of Boolean Permutations
	7.4 Inverses of Boolean Permutations
	7.5 Intractability Assumption and One-Way Trapdoor Boolean Permutations
	7.6 Construction of Boolean Permutations
	7.6.1 Some Primary Constructions
	7.6.2 On the Flexibility of the New Construction Method for Boolean Permutations
	7.6.3 Construction of Trapdoor Boolean Permutations with Limited Number of Terms

	7.7 A Small Example of Boolean Permutations
	7.7.1 Linearity and Nonlinearity of Boolean Permutations

	References

	8 Cryptographic Applications of Boolean Functions
	8.1 Applications of Degenerate Boolean Functions to Logic Circuit Representation
	8.2 An Application of Boolean Permutations to Public Key Cryptosystem Design
	8.2.1 Public Key Cryptosystem 1 (PKC1)
	8.2.1.1 Properties

	8.2.2 Public Key Cryptosystem 2 (PKC2)
	8.2.3 Public Key Cryptosystem 3 (PKC3)

	8.3 Application of Boolean Permutations to Digital Signatures
	8.4 Application of Boolean Permutations to Shared Signatures
	8.5 An Application of Boolean Permutations to Key Escrow Scheme
	8.5.1 Setup
	8.5.1.1 Public/Secret Keys
	8.5.1.2 Session Keys
	8.5.1.3 Key Escrowing

	8.5.2 Escrowing Verification
	8.5.2.1 Internal Verification
	8.5.2.2 External Verification

	8.5.3 Key Recovery
	8.5.4 Properties
	8.5.4.1 Key Size
	8.5.4.2 Forward Security
	8.5.4.3 Other Security Properties
	8.5.4.4 Full Disclosure
	8.5.4.5 Partial Key Escrowing

	8.6 A Small Example of Key Escrow Scheme Based on Boolean Permutations
	8.6.1 Selecting a Boolean Permutation of Order 6
	8.6.2 Preparation
	8.6.3 Verification
	8.6.4 Key Recovery

	8.7 Remarks
	References

