Mobility Management for Femtocells in LTE-Advanced: Key Aspects and Survey of Handover Decision Algorithms

Dionysis Xenakis, Candidate PhD
Department of Informatics and Telecommunications, University of Athens
{nio@di.uoa.gr}
Table of Contents

• Small Cells
 – Key features
 – Femtocells
• LTE-Advanced
• Part I: Mobility Management for femtocells in LTE-Advanced (LTE-A)
 – Network architecture and support of femtocells
 – Cell Identification
 – Access Control
 – Cell Search
 – Cell Selection/Reselection
 – Handover Decision
 – Handover Execution
Table of Contents

- Part II: Handover decision for femtocells in LTE-Advanced (LTE-A)
 - Handover Decision Criteria and Context
 - Classification of Handover Decision Algorithms
 - Survey of Handover Decision Algorithms
 - Performance Evaluation and Modeling Issues
 - Comparative Summary
 - Future Research Directions

Part II: Handover Decision for femtocells in LTE-Advanced

• Overview of Part II
 – Handover Decision Criteria and Context
 – Classification of Handover Decision Algorithms
 – Survey of Handover Decision Algorithms
 – Performance Evaluation and Modeling Issues
 – Comparative Summary
 – Future Research Directions
Part II: Handover Decision for femtocells in LTE-Advanced

• Classification of Handover Decision Algorithms
Part II: Handover Decision for femtocells in LTE-Advanced

- Survey of Handover Decision Algorithms
 - Three representative HO algorithms per class
 - Overview key features and give algorithmic flowchart
 - Summarize the main advantages / disadvantages
 - Adapt the presentation to the LTE-A system and use a common notation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving cell</td>
<td>s</td>
</tr>
<tr>
<td>Candidate cell</td>
<td>c</td>
</tr>
<tr>
<td>Set of candidate cells</td>
<td>L</td>
</tr>
<tr>
<td>Reference Signal Received Power (RSRP) of a tagged cell c</td>
<td>$\text{RSRP}(c)$</td>
</tr>
<tr>
<td>Minimum RSRP threshold for sustaining service continuity</td>
<td>RSRP_{th}</td>
</tr>
<tr>
<td>Reference Signal Received Quality (RSRQ) of a tagged cell c</td>
<td>$\text{RSRQ}(c)$</td>
</tr>
<tr>
<td>Minimum RSRQ threshold for sustaining service continuity</td>
<td>RSRQ_{th}</td>
</tr>
<tr>
<td>Received Interference Power in a tagged cell c</td>
<td>$I(c)$</td>
</tr>
<tr>
<td>Downlink Reference Signal Transmit Power of a tagged cell c</td>
<td>$P_{RS}(c)$</td>
</tr>
<tr>
<td>Signal to Interference plus Noise Ratio (SINR) for cell s</td>
<td>$\text{SINR}(s)$</td>
</tr>
<tr>
<td>Handover Hysteresis Margin (HHM) for a tagged cell c</td>
<td>$\text{HHM}(c)$</td>
</tr>
<tr>
<td>Time to Trigger</td>
<td>TIT</td>
</tr>
<tr>
<td>UE speed</td>
<td>V</td>
</tr>
<tr>
<td>UE speed threshold</td>
<td>V_{th}</td>
</tr>
</tbody>
</table>
Part II: Handover Decision for femtocells in LTE-Advanced

• Performance Evaluation and Modeling Issues
 – The performance of existing algorithms is evaluated either based on simulations [45]-[47], [50], [52]-[53], [55]-[60] or on analytical modeling [41]-[43] [48]
 – Recent trends for performance evaluation and modeling
 • System-level simulations using the Small Cell Forum evaluation methodology [110]
 • Performance Analysis using Stochastic Geometry [111]
Part II: Handover Decision for femtocells in LTE-Advanced

- Performance Evaluation and Modeling Issues
 - Small Cell Forum evaluation methodology for system-level simulation model
 - Main cluster area consists of 7/19 eNBs
 - Each cell has 3 sectors
 - 7 clusters using the wrap-around technique
 - **Femtoblocks**: set of blocks of apartments
 - Models for suburban, urban and dense urban environment
 - **Femtocell deployment ratio** r_{fc}
 - Percentage of apartments with a femtocell installed
 - **Femtocell activation ratio** a
 - Percentage of time where the femtocell is on
 - An additional parameter can be used
 - **Femtoblock deployment density** d_{FB}
 - Percentage of the main cluster area covered with femtoblocks
Part II: Handover Decision for femtocells in LTE-Advanced

• Performance Evaluation and Modeling Issues
 – Small Cell Forum evaluation methodology for system-level simulation model
 • Macrocell users uniformly dropped in the sectors
 • Femtocell stations uniformly dropped inside the apartments
 • Femtocell users uniformly dropped inside the apartments (a minimum separation is provisioned)
 • CSG or hybrid cells
 • Provision for various network and femtoblock layouts
 • Path loss models adapted depending on the femtoblock layout
 – Depend on the serving cell type and the user location
 • Monte-Carlo sampling
Part II: Handover Decision for femtocells in LTE-Advanced

• Performance Evaluation and Modeling Issues
 – Small Cell Forum evaluation methodology for system-level simulation model

• Network layout and femtoblock models
Part II: Handover Decision for femtocells in LTE-Advanced
Part II: Handover Decision for femtocells in LTE-Advanced

- Performance Evaluation and Modeling Issues
 - Small Cell Forum evaluation methodology for system-level simulation model: Mobility and Path Loss models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User speed at time t</td>
<td>(v_t = N(\bar{v}, s_u)) (m/s)</td>
</tr>
<tr>
<td>User direction at time t</td>
<td>(\varphi_t = N\left(\varphi_{t-1}, 2\pi - \varphi_{t-1}\tan(\frac{\varphi_t}{2})\Delta t\right)), where (\bar{v}) is the mean user speed, (s_u) the user speed standard deviation, (\Delta t) the time period between two consecutive updates of the model and (N(a, b)) indicates a Gaussian distribution of mean (a) and standard deviation (b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility model [12]</td>
<td></td>
</tr>
<tr>
<td>UE to Macrocell</td>
<td>(PL(dB) = 15.3 + 37.6 \log_{10}d)</td>
</tr>
<tr>
<td>UE outdoors</td>
<td>(PL(dB) = 15.3 + 37.6 \log_{10}d + L_{ow})</td>
</tr>
<tr>
<td>UE indoors</td>
<td></td>
</tr>
<tr>
<td>UE to Femtocell</td>
<td>(PL(dB) = 38.46 + 20 \log_{10}d + 0.7d_{\text{indoor}} + w \cdot L_{iw})</td>
</tr>
<tr>
<td>UE in the same apartment stripe</td>
<td></td>
</tr>
<tr>
<td>UE outside the apartment stripe</td>
<td>(PL(dB) = \max(15.3 + 37.6 \log_{10}d, 38.46 + 20 \log_{10}d + 0.7d_{\text{indoor}} + w \cdot L_{iw} + L_{ow})</td>
</tr>
<tr>
<td>UE inside a different apartment stripe</td>
<td>(PL(dB) = \max(15.3 + 37.6 \log_{10}d, 38.46 + 20 \log_{10}d + 0.7d_{\text{indoor}} + w \cdot L_{iw} + 2 \cdot L_{ow})</td>
</tr>
</tbody>
</table>
Part II: Handover Decision for femtocells in LTE-Advanced

- Performance Evaluation and Modeling Issues
 - Analytical modeling using Stochastic Geometry
 - Growing literature for modeling large-scale wireless networks using SG
 - Calculates spatial averages that capture the key dependencies of the network performance as a function of a relatively small number of system parameters
 - Interference, outage probability, transmission capacity
 - SG models basic network properties by averaging over all potential geometrical patterns
 - Main SG study object: Point Processes (PP)
 - *Simple or not*: multiplicity of a point is at most one
 - *Stationary or not*: the law of the PP invariant to translation
 - *Isotropic or not*: the law of the PP invariant to rotation
 - *Marked or not*: marks assign labels to the points of the PP, which are typically independent of the PP and i.i.d.
Part II: Handover Decision for femtocells in LTE-Advanced

• Performance Evaluation and Modeling Issues
 – Analytical modeling using Stochastic Geometry
 – Poisson PP (PPP) is the most commonly used PP
 • Offers the highest level of analytical tractability
 • Key properties
 – Superposition: the superposition of two or more independent PPP is again a PPP
 – Independent thinning: the PP obtained by randomly and independently removing a point from the initial PPP is still a PPP
 – Displacement theorem: the PP obtained by displacing a point independently of everything else, according to some Markov kernel that defines the distribution of the displaced position of the point, yields another PPP
Part II: Handover Decision for femtocells in LTE-Advanced

- Network layout
 - Maximum SINR connectivity
Part II: Handover Decision for femtocells in LTE-Advanced
Part II: Handover Decision for femtocells in LTE-Advanced

• Performance Evaluation and Modeling Issues
 – Analytical modeling using Stochastic Geometry
 – Existing results using SG
 • Interference, outage probability, transmission capacity, and spectral efficiency of distributed wireless networks [112]-[114]
 • SG has been used to evaluate the performance of multi-tier cellular networks [65], [115]-[117]
 – Beyond State of the Art for HO decision and SG
 • Capture the impact of user mobility [118]
 – Most of the existing works assume static network topologies
 • Allow for varying cell and UE transmit power [116]
 – Most of the existing works assume fixed transmit power
 • Performance analysis with regards to the HO probability
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Existing HO decision algorithms
 • Divergent system models and assumptions, simulation setups, and performance measures
 – Difficult to readily compare them
 – Comparison based on
 • The HO decision parameters
 • The HO decision scenario under consideration
 • The performance evaluation methodology
 • Their key features
Part II: Handover Decision for femtocells in LTE-Advanced

RSS related
- RSS: Y v v v v v v v v v v
- Minimum required RSS for service continuation: Y v v v v v v v v v v
- Path loss: Y
- RS transmit power: Y
- Window function on the RSS: Y v

Handover Hysteresis Margin related
- HHM: Y v v v v v v v v v v

Interference related
- RSQ: Y v v v v v v v v v v
- Received interference power at the cell sites: Y
- Interference constraints on the target cell(s): Y

Speed related
- UE speed: Y v v v v v v v v v v
- UE residence time in the cell: Y
- UE mobility pattern: Y

Bandwidth related
- Available bandwidth / Cell load: Y v v v v v v v v v v
- Cell capacity: Y
- Number of camped UEs on the target cell: Y
- Number of UE connections per traffic-type: Y
- Cell type: Y

Traffic related
- Traffic-type: Y v v v v v v v v v v
- Mean SINR target of the UE: Y
- Bit Error Rate (BER): Y
- Current SINR at the serving cell: Y

Energy-efficiency related
- UE power class: Y
- UE battery power: Y
- Mean UE transmit power: Y

Other
- UE membership status: Y
- UE priorities: Y
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – HO decision parameters
 • RSS is a common basis for HO decision making
 • RSQ is typically used as an SINR estimate
 • UE speed broadly used to anticipate the negative impact of user mobility
 • Available bandwidth utilized to lower the HO failure probability due to the lack of resources
 • Traffic-type is used to avoid frequent service interruption for delay-sensitive services
Part II: Handover Decision for femtocells in LTE-Advanced

<table>
<thead>
<tr>
<th>Points of Comparison</th>
<th>Algorithms</th>
<th>RSS-based</th>
<th>Speed-based</th>
<th>Cost-function based</th>
<th>Interference-Aware</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moon et. al. [42]</td>
<td>Xie et. al. [43]</td>
<td>Perez et. al. [44], [45]</td>
<td>Jeong et. al. [46]</td>
<td>Ulmer et. al. [47]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wong et. al. [48]</td>
<td>Zhang et. al. [49]</td>
<td>Wu et. al. [50]</td>
<td>Zhang et. al. [51]</td>
<td>Xu et. al. [52]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shaohai et. al. [53]</td>
<td>Lee et. al. [54]</td>
<td>Rego et. al. [55]</td>
<td>Xie et. al. [56]</td>
<td>Zhang et. al. [57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhi et. al. [58]</td>
<td>Yang et. al. [59]</td>
<td>Feng et. al. [60]</td>
<td>Becvar et. al. [61]</td>
<td>Xenakis et. al. [62]</td>
</tr>
</tbody>
</table>

HO DECISION SCENARIO

Single-macrocell single-femtocell for inbound HO to femtocell	v	v	v	v	v	v	v
Single-macrocell single-femtocell	v	v	v				
Single-macrocell multiple-femtocell	v	v					
Multiple-macrocell multiple-femtocell	v	v					

PERFORMANCE EVALUATION RESULTS

<table>
<thead>
<tr>
<th>Analytical (A) / Simulation (S) results</th>
<th>A</th>
<th>A</th>
<th>S</th>
<th>S</th>
<th>A</th>
<th>x</th>
<th>S</th>
<th>S</th>
<th>x</th>
<th>S</th>
<th>S</th>
<th>S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO probability</td>
<td>v</td>
</tr>
<tr>
<td>HO failure probability</td>
<td>v</td>
</tr>
<tr>
<td>Assignment probability to femtocell</td>
<td>v</td>
</tr>
<tr>
<td>Assignment probability to macrocell</td>
<td>v</td>
</tr>
<tr>
<td>Number of HOs</td>
<td>v</td>
</tr>
<tr>
<td>Number of unnecessary HOs</td>
<td>v</td>
</tr>
<tr>
<td>Unnecessary HO probability</td>
<td>v</td>
</tr>
<tr>
<td>Impact of the HHM</td>
<td>v</td>
</tr>
<tr>
<td>Throughput</td>
<td>v</td>
</tr>
<tr>
<td>Signaling overhead</td>
<td>v</td>
</tr>
<tr>
<td>Transmit power</td>
<td>v</td>
</tr>
<tr>
<td>Received interference power</td>
<td>v</td>
</tr>
<tr>
<td>Energy consumption per bit</td>
<td>v</td>
</tr>
<tr>
<td>Power consumption</td>
<td>v</td>
</tr>
<tr>
<td>Uses the evaluation methodology in [110]</td>
<td>v</td>
</tr>
<tr>
<td>Includes a comparison with other algorithms</td>
<td>v</td>
</tr>
</tbody>
</table>
Part II: Handover Decision for femtocells in LTE-Advanced

<table>
<thead>
<tr>
<th>Points of Comparison</th>
<th>Algorithms</th>
<th>RSS-based</th>
<th>Speed-based</th>
<th>Cost-function based</th>
<th>Interference-Aware</th>
<th>E. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts for uneven RS transmit powers</td>
<td>Moon et al. [41], [42], Xu et al. [43], Perez et al. [44], [45], Jeong et al. [46]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Accounts for the impact of interference by using the RSRQ/SINR status</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Accounts for the impact of interference by using the RIP at the cell sites</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Accounts for potential IF limitations at the cells</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Jointly performs interference mitigation and HO</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Performs preliminary admission control</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Enables load balancing</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Uses a HHM to lower the HO probability and minimize the ping-pong effect</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Requires the assessment of the UE speed</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Uses mobility prediction for HO mitigation</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Accounts for the UE service requirements/characteristics</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Requires interventions to the standard network functionality or architecture</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Requires increased signaling/processing overhead</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>The signaling procedure for supporting the algorithm is described, e.g., parameter acquisition</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Algorithm-related parameters are fully specified</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Accounts for the UE energy-efficiency</td>
<td>Perez et al. [44], [45], Jeong et al. [46], Zhang et al. [48], Wu et al. [49], Zhang et al. [50], Xu et al. [52], Lee et al. [53], Xie et al. [54], Xenakis et al. [55], Yang et al. [56], Chen et al. [57], Kim et al. [58], Becvar et al. [59], Xie et al. [60]</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – RSS-based algorithms
 • Strong Aspects
 – Low-complexity and easier to validate through performance analysis
 – Require minimum network interventions unless more sophisticated capabilities are deployed
 » Interference mitigation [44]-[45] or mobility prediction [46]
 • Weak Aspects
 – They do not account for the impact of interference on the SINR, throughput and energy consumption performance
 – Interference-agnostic
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Speed-based algorithms
 • Strong Aspects
 – Reduce the HO probability for medium to high speed users
 – Reduce the number of unnecessary HOs in the system
 • Weak Aspects
 – Arbitrary selection of the UE speed thresholds
 – Typically do not incorporate the monetary, signaling or energy consumption overhead for assessing the UE speed
 – The impact of the algorithms on the interference and throughput performance is not assessed
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Cost-function based algorithms
 • Strong Aspects
 – Incorporate a wide set of parameters to reach a HO decision
 – Perform preliminary admission control or load balancing by incorporating bandwidth-related parameters
 • Weak Aspects
 – Do not provide a detailed methodology for calculating the optimal weights or adjustment factors of the cost-function
 – The performance of the algorithms is typically evaluated by fixing the weights and adjustment factors of the cost-function
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Interference-aware algorithms
 • Strong Aspects
 – Improve the SINR performance in the system
 – Allow for interference handling at a macroscopic level
 • Weak Aspects
 – RSQ based algorithms: Need to incorporate a HHM to lower the HO probability and reduce the ping-pong effect
 » RSQ can be subject to fast variations
 – RIP based algorithms: Need to deploy more complicated signaling procedures
 » Commute the cell RIP of the target cells to the serving cell
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Energy-efficient algorithms
 • Strong Aspects
 – Reduce the energy expenditure per bit
 – Improve the SINR performance in the system
 – Enhance the QoE of the users
 • Weak Aspects
 – Increase the signaling and processing overhead to keep track or estimate the energy-efficiency at the network nodes
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Future Research Directions
 • Need for HO decision algorithms that apply to the multiple-macrocell multiple-femtocell scenario
 – The number of femtocells is expected to surpass that of macrocells by up to six times before 2016 [119]
 – Existing algorithms typically apply to the inbound mobility scenario to femtocell with single-macrocell single-femtocell
 • Attain backwards compatibility with the cellular standard
 – Specify the additional network functionality and the required network signaling procedures
 • Use of a HHM during the RSS / RSQ comparison
 – Anticipate with the fast variations of the wireless medium
 – Mitigate the ping-pong effect
 – Combined with speed-based criteria, the HHM reduces the HO probability for medium to high speed users
 – The HHM selection should be optimized
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Future Research Directions
 • Integrate bandwidth-based HO decision criteria
 – Increase the spectrum availability for the UEs
 – Perform preliminary admission control and load-balancing
 – Reduce the HO failure probability due to lack of resources
 • Account for the ongoing connections’ characteristics
 – Prescribed mean SINR target [55] [60] or traffic-type of the user connections [43] [49] [52]
 – Enhance the QoE
Part II: Handover Decision for femtocells in LTE-Advanced

• Comparative Summary
 – Future Research Directions
 • Validate the performance of the proposed algorithms by using realistic system assumptions or simulation setups
 – Existing algorithms accompanied with performance analysis focus on simple network layouts
 – Only a few works conduct system-level simulations based on the evaluation methodology of the Small Cell Forum
 – Compare the performance of the algorithms against other competing ones
 – Focus on performance measures closely related to the femtocell operation
 » Interference, Energy Consumption, Throughput
Part II: Handover Decision for femtocells in LTE-Advanced

• Conclusions
 – The smooth integration of femtocells dictates architectural and procedural enhancements that go beyond the standard cellular operation
 – Open Issues for MM in the presence of femtocells
 • Cell Identification
 – Develop more sophisticated procedures to uniquely and swiftly identify the femtocell infrastructure
 – Propose distributed PCI selection algorithms for coping with the random yet dense femtocell deployment
 • Cell Search
 – Design UE-based autonomous cell search algorithms
 » Use of cognition, context-awareness and cooperation
 – Develop femtocell-specific DRX and packet scheduling algorithms
 » Utilize the exciting new IMT-Advanced capabilities
Part II: Handover Decision for femtocells in LTE-Advanced

• Conclusions
 – Open Issues for MM in the presence of femtocells
 • Cell Selection/Reselection
 – Design femtocell-specific selection / reselection strategies
 » Use of cognition, context-awareness and cooperation
 – Optimize the formation of tracking areas
 • HO Decision
 – Focus on the multiple-macrocell multiple-femtocell case
 – Specify the additional network functionality and the required network signaling procedures
 – Utilize a HHM during the RSS/RSQ comparison
 » Optimized selection is required
 – Be based on the recent trends for femtocell-specific performance evaluation
 • HO Execution
 – Develop novel signaling methods and protocols to smoothly integrate femtocell-specific processes
References

References

References

References

References

References

84. 3GPP, “E-UTRA and E-UTRAN Overall Description”, TS 36.300 V10.7.0, Mar. 2012.
85. 3GPP, “X2 general aspects and principles”, TS 36.420 V10.2.0, Sept. 2011.
86. 3GPP, “X2 application protocol (X2AP)”, TS 36.423 V10.5.0, Mar. 2012.
87. 3GPP, “S1 general aspects and principles”, TS 36.410 V10.2.0, Sept. 2011.
88. 3GPP, “S1 application protocol (S1AP)”, TS 36.413 V10.5.0, Mar. 2012.
89. 3GPP, “Physical Channels and Modulation”, TS 36.211 V10.4.0, Dec. 2011.
90. 3GPP, "Physical layer; Measurements", TS 36.214 V10.1.0, Mar. 2011.
91. 3GPP, “Radio Resource Control (RRC); Protocol specification”, TS 36.331 V10.5.0, Mar. 2012.
References

References

Thanks for your kind attention!

Questions?

Dionysis Xenakis, candidate PhD
nio@di.uoa.gr
Component and System-Level Energy Saving for femtocells in Future Mobile Heterogeneous Networks

Dionysis Xenakis, Candidate PhD
Department of Informatics and Telecommunications, University of Athens
{nio@di.uoa.gr}
Table of Contents

• Component and System Level Energy Saving for femtocells in Future Mobile Heterogeneous Networks
 – Understanding the EE of the mobile operator’s network
 • Introduction
 • Energy consumption composition
 • Radio Access Network Energy Saving
 • EE model for outdoor Radio Base Stations
 • Forecasts for cellular deployment
 – Component-level Energy Saving
 • Energy Consumption model for femtocells
 • Component-Level Energy Saving Opportunities
 – System-level Energy Saving
 • Time Domain approaches
 • Frequency Domain approaches
 • Spatial Domain approaches
 • Research Directions
References

• This presentation is based on the following references

Introduction

• Mobile industry faces a critical energy consumption challenge
 – More wireless infrastructure has to be deployed
 • Smart-phones will exceed 1.82 billion units by 2013
 • Network load increases 10-fold every five years
 – Energy consumption increase of 16-20%
 – Mobile communications contribute 15-20% of the entire ICT energy footprint
 • 0.3-0.4 % of global CO2 emissions
 – Need for energy-efficient wireless networking
Energy consumption composition of a mobile operator

- Radio base station (RBS): 57%
- Mobile telephone exchange (MTX): 20%
- Core network: 15%
- Data center: 6%
- Retail: 2%
Radio Access Network

• Radio Access Network: The key energy contributor for a mobile operator

• Motivation for focusing on ES for the RAN
 – Wireless standards traditionally focus on maximizing the user throughput
 • Performance trade-offs: Energy Efficiency (EE) vs Throughput
 – Mobile users urgently ask for enhanced EE
 • Enjoy better mobile services and improve their Quality of Experience (QoE)
 – Provides a big energy saving pool

• Key issues
 – How will the cellular RAN evolve?
 – How to model the EE of a RBS?
How will the cellular RAN evolve?

Forecasts for cellular deployment

• Femtocell Market Status
 – 10-fold increase in the number of deployed femtocells from 2012 to 2015
 – The number of deployed femtocells will surpass that of deployed macrocells by six times

• ES for femtocells is challenging
 – Femtocells are deployed and managed by the consumer
 – Unplanned deployment
 – Dense and overlapping deployment
 – Plug and play operation – self-x operation
How to model the EE of a RBS?

• ETSI EE model for outdoor RBS
 – RBS equipment
 • Serves one or more interfaces to the mobile device
 • Radio transceivers: Responsible for transmission and reception of radio signals, include RF Power Amplifiers (PA)
 – The PA amplifies the signal for transmission via antenna
 – In case of no traffic load, the RBS equipment could enter the idle mode (ES)
 – Support systems for the RBS
 • Power Supply (PS)
 – Connects to the AC power line or battery, and offers electrical energy to the equipment
 • Climate Control
 – Maintains the operating climate of the equipment within a defined range
 • Transmission Module (TXM)
 – Connects the RBS to the core network
 • Battery backup
 – Supplies energy to the RBS when the AC power line is down
ETS1 EE model for an outdoor RBS

- EE is defined as the ratio of the radiated to the feeding power
RAN Energy Saving Approaches

• Radio Access Network
 – Energy Saving approaches for femtocells
 • Component-level energy saving
 – Optimize the performance of the various (hardware) components of the femtocell
 » Digital Baseband Engine, Power Amplifier, Analog RF transmitter, matching network
 • System-level energy saving
 – Modify some of the fundamental network parameters to save energy
 » Cell bandwidth, number of carriers, number of antennas, Number/density of cellular stations in the network
Component-Level Energy Saving for femtocells

Simplified block diagram of a pico/femto-cell base-station

RBS power consumption breakdown for different cell-sizes
Component-Level Energy Saving Opportunities

- Base-stations are designed for serving high traffic load and achieve their maximum performance
- The daily data traffic profile for cellular systems in a dense urban environment shows high variations
 - The highest utilization is observed between 18.00 and 24.00
Daily (24h) data traffic profile for cellular systems (Dense urban)

Key idea: Adapt the operation of the various femtocell components with respect to the traffic load
Component-Level Energy Saving: Digital Baseband Engine (DBE)

- **DBE functionality**
 - Frequency-domain processing for modulation/demodulation or equalization, channel coding/decoding, pre-distortion, platform control and backbone network serial link

- **The energy consumption of the DBE is becoming more and more dominant**
 - Due to the shrinking cell size and the rapidly growing signal processing complexity

- **Enable energy scalability depending on the signal load**
 - Bandwidth, modulation, coding rate, number of antennas, duty-cycling in time or frequency
Component-Level Energy Saving:
Digital Baseband Engine
Component-Level Energy Saving: RF Transceiver

• The RF transceiver of traditional base-stations, targets to achieve the best SiNAD performance independent of the signal load
 – Signal-to-noise and distortion ratio (SiNAD) is a measure of the quality of a signal from a communications device

• Scale the transceiver to provide a ‘just good enough’ SiNAD performance depending on the current signal load (SDR technology)
Component-Level Energy Saving: RF Transceiver
Component-Level Energy Saving: Power Amplifier

• The PA is not the major energy consumption contributor in femtocells

• Adaptive Energy Efficient Power Amplifier
 – Adjust the PA Operating Point
 • The PA operating point can be optimized according to the required RF output power level (traffic load), while fulfilling the spectral mask and PAPR specifications
 – Enable fast switching on/off of the RF power transistor
 • Minimum consumption when no RF output power is required
Component-Level Energy Saving: Power Amplifier

- OP5: <20% load, OP4: 20%-40% load, OP3: 40%-60% load, OP2: 60%-80% load, OP1: 80%-100% load
System-Level Energy Saving
System-Level Energy Saving: Time domain

- Time domain solutions temporally shut down PAs in a RBS when there is no data traffic in the downlink
 - Tightly related to the frame structure of the cellular system
 - Three basic ways to temporally shut down PAs
 - Turning off a PA in signal-free symbols
 - Using a multicast broadcast single frequency network (MBSFN) subframe to reduce RSs
 - Use the extended cell discontinuous transmission (DTX) to further reduce the number of RSs
System-Level Energy Saving:
Time domain
System-Level Energy Saving: Time domain

- **PA Off at Signal-Free Symbol**
 - Turn off PAs in time periods of a slot where downlink symbols are signal-free
 - Signal-free periods do not include DL RSs and control signals
 - Assuming it takes half of a symbol time to turn on a PA but the PA can be immediately turned off: The PA is only required to be on for at least 47% of the time in a frame
System-Level Energy Saving: Time domain

• Utilize the MBSFN frame structure
 – MBSFN is proposed to deliver services such as mobile TV using the LTE infrastructure
 – In an MBSFN frame, the symbols for RS in subframes 1–4 and 6–9 are reduced to 1
 – Use the MBSFN structure to further reduce the number of RSs
 • The PA operating time during a frame is then reduced to 28 percent
System-Level Energy Saving: Time domain

• Utilize the Extended Cell DTX mode (3GPP)
 – The extended cell DTX allows to further reduce RSs compared to the MBSFN approach
 – If there is no downlink traffic, in the extended cell DTX mode there is no need to have any transmission in subframes 1–4 and 6–9 of a frame
 – The PA operating time in a frame is further reduced to 7.1 percent
System-Level Energy Saving: Time domain

- **Advantages**
 - Significantly reduce the PA operation time when a cell is idle (apply better in rural areas)
 - Need for joint time-frequency domain scheduling to make them effective in urban areas as well, and only under low traffic conditions

- **Disadvantages**
 - Without enough RSs, some UEs may experience unpredictable problems synchronizing with an RBS or decoding control signals
 - Reducing RSs may also prevent UE from entering into terminal DTX mode and thus shorten its battery life
System-Level Energy Saving: Frequency domain

• Bandwidth Reduction
 – Existing cellular systems allow for scalable bandwidth utilization
 – Adapt the cell bandwidth depending on the downlink traffic load
 • Lower the overall transmit power and reduce the number of DL RSs
 – This approach is suitable only for low traffic
 – Marginal gains given that the PA is still active
System-Level Energy Saving: Frequency domain

• Carrier Aggregation
 – Shut down the associated PAs when the corresponding aggregated carriers are not scheduled for the downlink traffic
 – Applicable to an RBS that has aggregated carriers and separate PAs attached to each group of carriers
System-Level Energy Saving: Frequency domain

• Advantages
 – Frequency domain approaches are backwards compatible and easy to implement at the RBS

• Disadvantages
 – Can only be deployed for low traffic
 – Result in marginal EE gains
System-Level Energy Saving: Spatial domain

- Time and frequency domain approaches are employed in a single RBS
- Spatial domain the solutions can be extended to heterogeneous networks, and are therefore more flexible
 - Reduce the Antenna Number
 - Switch On/Off Cells
 - Layered Structure (Heterogeneous Networking)
System-Level Energy Saving: Spatial domain

• Reducing the antenna number
 – The most commonly used energy saving technique in the spatial domain
 – Can be used when the traffic load of a cell is low
 – Advantages
 • Decreases the total output power and shrinks the cell size
 • For example, if the branches of antennas are reduced from 4 to 1, energy consumption of transceivers is reduced to 1/4, as the PAs associated with those branches can be switched off
 – Disadvantages
 • Need to boost the power of RSs and control signals so as to maintain the cell size
 • May lead to service degradation or interruption as the antenna reconfiguration is needed
 • The change of the antenna number should notify UEs properly
System-Level Energy Saving: Spatial domain

- **Switch On/Off Cell**
 - A system-level approach that works in an area covered by multiple (and overlapping) cells
 - When the traffic load in a given area is low, some cells can be shut down, and the served UE units are handed over to the remaining cells
 - Those inactive cells can be turned on during the busy time autonomously or based on signals by active neighbor cells or from the core network (OAM module)
 - **Advantages**
 - Attains maximum energy saving
 - No need to modify the low-layer components in the RBS
 - Provides a good balance between network performance and energy saving
 - **Limitations**
 - Frequent switching on/off cells affects the UE services
 - Reduce the battery life of the served UEs as they have to connect with other cells far away (Reduced network density)
 - If there is no overlapping between cells, the remaining active cells need to increase their power to cover this area, (perhaps) neutralizing the energy saving gain
System-Level Energy Saving: Spatial domain

• Layered Structure
 – Applies to heterogeneous multi-tier networks
 • Prioritized access to low-power nodes
 – E.g., prioritized access to the femtocell station
 – Advantages
 • Provides energy saving opportunities for the RBS of higher layers
 – More energy consuming in general
 • Prolongs the UE battery lifetime
 – Lower tiers are typically characterized by low-power operation and short cell radii
 – Disadvantages
 • Requires for more sophisticated admission control and mobility management algorithms
 – Lower tiers are characterized by random deployment and short cell radii
System-Level Energy Saving: Hybrid Solutions

- Hybrid solutions
 - Combine solutions in different domains to adapt energy consumption of an RBS in different traffic conditions
 - Achieve the highest ES gain
 - Ask for increased processing/interruption time and signaling for system reconfiguration
 - Need to anticipate their impact on the UE performance
System-Level Energy Saving: Research Directions

• Account for the total energy consumed in the life-cycle of the system
 – Include the energy consumed in the use phase of a system and the energy used to manufacture telecom equipment

• Investigate the impact of introducing any new architecture and device to the overall EE improvement
 – The optimization of EE at one point of the system may lead to suboptimal results at other points

• Attain a good trade-off between optimizing the QoS performance and achieving high energy saving gains
 – The improvement of EE should not compromise the supported QoS
System-Level Energy Saving: Research Directions

• Propose comprehensive energy consumption models
 – Capture the key variables of a system regarding energy consumption while providing sufficient abstraction

• Use appropriate metrics to evaluate the performance of the proposed ES technique
 – The EE metric is normally defined as a performance per unit of energy, and the performance typically refers to throughput
 – Capture the provided QoS by accounting QoS measures other than the end throughput

• Optimize the functionality of the system under a EE perspective
 – The EE problem at the system level can be modeled as a joint optimization problem which takes into account resource allocation in time, frequency and spatial domain
Thanks for your kind attention!

Questions?

Dionysis Xenakis, candidate PhD
nio@di.uoa.gr
Disclaimer

All opinions expressed in this document are those of the author(s) individually and are not reflective or indicative of the opinions and positions of the authors' employers. No information published in this document constitutes or should be construed as constituting an offer to sell any products or services, or an offer or a solicitation of an offer to purchase or sell any products or services. No information published in this document constitutes or should be construed as rendering a description or indication of any feature characteristic of any existing or planned product. The technology described in this document is or could be under development and is being presented solely for the purpose of soliciting feedback, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and non-infringement. In no event shall the authors be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with this document or the use or other dealings with this document. This document may contain trade secrets or privileged, undisclosed or otherwise confidential information. If you have received this document in error, you are hereby notified that any review, copying or distribution of it may violate existing law and be prosecuted. Please inform us immediately and destroy the original transmittal. Thank you for your cooperation.