
C HAPTE R 1

3

Go back to the first page for a quick link to buy this book online!

E nterprise JavaBeans (EJB) is a server-side component architecture that enables
and simplifies the process of building enterprise-class distributed object appli-
cations in Java. By using EJB, you can write scalable, reliable, and secure ap-
plications without writing your own complex distributed object framework. EJB
is about rapid application development for the server side; you can quickly and
easily construct server-side components in Java by leveraging a prewritten dis-
tributed infrastructure provided by the industry. EJB is designed to support
application portability and reusability across any vendor’s enterprise middleware
services.

If you are new to enterprise computing, these concepts will be made very clear
shortly. EJB is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll discusses the main concepts surrounding Enterprise
JavaBeans. This starts with a discussion about what’s involved in writing enter-
prise software and why a prepackaged distributed object architecture such as
Enterprise JavaBeans simplifies your life. From this discussion, we’ll have a
greater insight into why a server-side component architecture makes sense, as
well as a feature list of what we’d like to see when we choose an architecture
for developing server-side distributed object applications.

We’ll then examine several endeavors by the industry to address these enterprise
needs. The highlight of this discussion—as well as this book—is Sun’s Java 2

Platform, Enterprise Edition (J2EE). J2EE is a collection of enterprise tech-
nologies, of which EJB is an integral part. By understanding and using J2EE
properly, you can build portable, object-oriented, enterprise-class applications
in Java.

Server-side Component
Architectures

4 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

The Need for a Server-Side Component Architecture

To understand the value EJB brings to the table, we first must examine the needs
that developers commonly have when authoring and deploying components in a
server-side environment. As we uncover the issues surrounding server-side devel-
opment, we’ll begin to see the need for a standardized architecture such as EJB.

Software Components

We begin our discussion with a look at software components. A software com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some larger
problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we’re order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules such as:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 memory
modules

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers

Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other in-
dustries, such as health care, appliances, airline tickets, and others need the same
pricing functionality. Obviously, it would be a huge waste of resources if each
company that needed complex pricing had to write its own sophisticated pricing
engine. Thus, it makes sense that a vendor provides a generic pricing component
that can be reused over and over again for different customers. For example:

5Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.1.

2. An automobile manufacturer can use the pricing component to discrimi-
nate prices for cars. For example, the manufacturer can set up a Web site
that allows customers to get price quotes for cars over the Internet. Figure
1.2 illustrates this scenario.

3. An online grocery store can use the pricing component as a discrete part
of a complete workflow solution. When a customer purchases groceries
over the Web, the pricing component first computes the price of the gro-
ceries. Next, a different vendor’s component bills the customer with the
generated price. Finally, a third component fulfills the order, setting things
in motion for the groceries to be delivered to the end user. We depict this
in Figure 1.3.

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application from
prewritten components, rather than writing the entire application from scratch.
This means:

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving de-
velopment time.

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the component
vendor is an expert in its field, the component generally has fewer bugs and
higher performance than an IT shop’s home-grown solution. This reduces the
IT shop’s maintenance costs.

Figure 1.1 Reusing a pricing component for the U.S. Postal Service.

Post Office worker Legacy SystemWorkstation / Dumb Terminal

Pricing
Component

Call into legacy system

6 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Figure 1.2 Reusing a pricing component for quoting car prices over the Internet.

Thus, once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
re-usable components to companies.

Web Server

Network

Client Browser

Client Browser

Client Browser

Pricing
Component

7Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

Component Architectures

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. This approach consists
of the following:

Tools for developing components. The process of building components
should be streamlined, allowing the component developer to focus on writ-
ing the core logic behind the component. This promotes rapid application
development and is essential for any component standard to succeed. For
example, an Integrated Development Environment (IDE), such as Symantec’s
Visual Cafe, IBM’s VisualAge for Java, or Inprise’s JBuilder 2, assists Java
developers in rapidly building and debugging components. Other vendors,
such as Inline Software, provide enhanced EJB-specific development tools.

Figure 1.3 Reusing a pricing component as part of an e-commerce workflow solution.

Web Server

2: Bill Order to customer

1: Price Order

Workflow logic

3: Fulfill Order

Pricing
Component

Billing
Component

Fufillment
Component

8 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

A container that manages your deployed components. This component
container provides a runtime environment for your components to play in. It
also provides a set of common services that most components will need. For
example, the container could automatically instantiate new components as
necessary, thus removing that burden from the component developer. To
combine any container with any component, you must have a well-defined
contract between containers and components. This contract allows any con-
tainer to manage any component.

Tools for deploying and maintaining components. When an organization
purchases components from component vendors, there must be a set of tools
to aid in the deployment and maintenance of those components. For example,
there should be a way to customize the components for a particular environ-
ment. In our pricing component example, we could have a tool that assists
us in customizing the products we are pricing.

Each of these features is essential in a mainstream component marketplace. And,
of course, as a component developer, you would like to focus on writing the com-
ponents themselves, rather than the ancillary products that are common to all
components: the container and the tools. A well-defined component architecture

supplies the standards necessary for different vendors to write the components,
component containers, and tools. Thus, by having a component architecture stan-
dard, developers can employ a “divide-and-conquer” approach to programming.

Java: An Ideal Language for Component Architectures

For a component to succeed in solving a business problem, both the compo-
nent developer and the customer using the component must agree on the syn-
tax and semantics of calling the component’s methods. Thus, the component
vendor must publish the contract (or rules) for calling the component, and the
client code must adhere to these rules.

As the vendor releases new versions of the component, that vendor’s custom-
ers will want to upgrade. This raises a number of issues. Will the new compo-
nent work with the IT shop’s code that called the old component? Do the IT
shops need to recompile their client code? Or, even worse, has the component
contract changed, necessitating that IT shops modify their client code to map
to the new component contract?

Thankfully, object-oriented design introduced a great programming practice to
help solve this problem by separating the interface of a component from its
implementation:

A component’s interface defines the component’s contract with the code that
calls it. For example, the interface defines methods and parameters that the
component accepts. The interface masks the implementation from clients of

9Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

the component, so clients deal only with the end result: the methods the com-
ponent exposes.

A component’s implementation is the core programming logic that an object
provides. It has some very specific algorithms, logic, and data. This data is
private to the component, and it should be hidden from all client code that
calls the component.

For interface/implementation separation to be effective, developers must write
client code to a component’s interface only (this is called interface-based program-

ming). If you’re writing components, you can force developers into this paradigm
by publishing only the interfaces to your components, not your implementations.

By separating interface from implementation, you can vary a component’s pro-
prietary logic without changing any client code. For example, you can plug in a
different implementation that performs the same task more efficiently. This is
possible because the actual implementation is not needed at compile time—only
the interface is needed. Hence, there is no specific implementation tied to the
client code. This is shown in Figure 1.4.

The Java language supports interface/implementation separation at a syntactic
level via the interface keyword and class keyword. And because Java is an in-
terpreted language, the separation of code into discrete class files ensures that
clients do not have to recompile their code if you ship a new version of your
component.

Figure 1.4 Interface-based programming on our pricing component.

Pricer

IPricer

Client

The Client code depends upon the
IPricer interface.

The Pricer component implements the
IPricer interface.

10 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

In addition to the interface/implementation separation, Java is an object-oriented
language that has been built from the ground-up as a cross-platform develop-
ment language and that has wide industry support. This makes the Java language
an ideal technology on which you can base components.

Component Architectures in Java

Now that you’ve seen what a component architecture is, let’s look at what com-
ponent architectures exist in the Java world. The first one you may have heard
of is JavaBeans. JavaBeans components are small-grained application bits. You
can use JavaBeans to assemble larger-grained components or to build entire
applications. JavaBeans, however, are development components and are not
deployable components. You typically do not deploy a JavaBean because a
JavaBean is not a complete application; rather, JavaBeans help you construct
larger software that is deployable. And because they cannot be deployed,
JavaBeans do not need a runtime environment in which to live. JavaBeans do
not need a container to instantiate them, to destroy them, and to provide other
services to them because the application itself is made up of JavaBeans.

By way of comparison, the Enterprise JavaBeans (EJB) standard defines a
component architecture for deployable components called enterprise beans.
Enterprise beans are larger, coarser-grained application components that are
ready to be deployed. They can be deployed as is, or they can be assembled with
other components into larger application systems. Deployable components must
be deployed in a container that provides runtime services to the components,
such as services to instantiate components as needed.

Enterprise beans are very similar to two other types of Java components: applets
and servlets. Applets can be deployed in a Web page, where the browser’s applet
viewer provides a runtime container for the applets. Servlets can be deployed
in a Web server, where the Web server’s servlet engine provides a runtime con-
tainer for the servlets. Enterprise beans are deployed in an application server,
where the application server provides a runtime container for the Enterprise
JavaBeans. This is shown in Figure 1.5.

The real difference between applets, servlets, and enterprise beans is the do-
main of which each component type is intended to be a part.

Applets are portable Java programs that can be downloaded on the fly and can
execute in an untrusting environment. For example, an applet can be down-
loaded from a Web server into a Web browser, and it typically displays a user
interface to the end user.

Servlets are networked components that you can use to extend the functional-
ity of a Web server. Servlets are request/response oriented, in that they take
requests from some client host (such as a Web browser) and issue a response

11Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

back to that host. This makes servlets ideal for performing Web tasks, such as
rendering an HTML interface to an e-commerce catalog.

Both applets and servlets are well suited to handle client-side operations, such
as rendering graphical user interfaces (GUIs) (although they don’t necessarily need
to have one), performing other presentation-related logic, and lightweight busi-
ness logic operations. The client side could be a Web browser, in the case of applets

Figure 1.5 Applets, servlets, and Enterprise JavaBeans.

Web Server with Servlet Engine

Servlets

Application Server with Component Container

Enterprise
JavaBeans

Java-enabled Web Browser
(Applets downloaded from a Web Server)

Applets

12 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

that render user interfaces using the Java Foundation Classes. The client side could
also be a Web server, in the case of servlets that render user interfaces in HTML.
In both these situations, the components are dealing directly with the end user.

Enterprise beans, on the other hand, are not intended for the client side, but
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24x7), fault-
tolerant, transactional, and multiuser secure environment. An application server

provides this high-end server-side environment for the enterprise beans, and it
provides the runtime containment necessary to manage enterprise beans.

Finally, note that applets, servlets, and enterprise beans are not “either-or” tech-
nologies. You can use JavaBeans as development component building blocks
for constructing deployable enterprise beans. You can also provide a user in-
terface to your enterprise beans with applets or servlets (shown in Figure 1.5).

Now that you’ve seen where EJB fits in with other technologies, let’s take a look
at the class of problems that EJB addresses. EJB is meant for server-side pro-
gramming; to appreciate what EJB brings to the table, we must first understand
what makes server-side programming difficult.

The Needs of the Server Side

As we’ve mentioned, a complete component architecture paves the way for the
following:

�� Developers to write reusable components

�� Vendors to write component containers that provide a runtime environ-
ment and services to components

�� Vendors to provide development, deployment, and maintenance tools,
which are necessary complements to the components themselves

This divide-and-conquer approach allows vendors to provide a set of common
services that most components will need, thus saving precious development and
deployment time. Rather than reimplement the wheel, the component developer
can simply outsource the services he needs to other products. Professionals who
are experts in providing these services write these products. When harnessed
properly, users save time by buying rather than building. Additionally, the over-
all deployment is strengthened because domain experts are writing these com-
mon products.

As we’ll see, server-side software opens up a whole new set of problems that
require some very high-end services. If you choose to home-grow these services

13Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

yourself, you’ll likely encounter a development and maintenance nightmare.
Being able to outsource server-side services is one of the key benefits of a server-
side distributed object architecture like EJB.

Multi-tier Architectures

A server-side deployment is software written to support concurrent users per-
forming operations simultaneously, securely, reliably, and efficiently. Examples
of server-side deployments include the following:

Banks where many ATM machines connect to a central bank server

Retail outlets such as the Wal-Mart chain of stores, where many Wal-Mart
stores send shopping information to a central Wal-Mart server

Support centers where support engineers have terminals that can bring up
customer data from a central server

Insurance agencies where insurance sales staff have terminals that connect
to a central server

Web sites where thousands or millions of users connect to Web servers and
those Web servers need to connect with a central server for data and logic

Robust server-side deployments are not easy to build. Many issues arise, such
as scalability, maintainability, security, reliability, and more. With so many cli-
ents depending on your central server-side deployment, it would be a catastro-
phe if your central servers went down, slowed to a crawl, or allowed a hostile
party to gain access to the systems. Therefore, server-side deployments need
to be well written from the ground up and well tested, and they need to run in a
robust environment.

Any well-written deployment has a logical software partitioning into layers. Each
layer has a different responsibility in the overall deployment, and within each
layer there can be one or more components. Note that these layers are purely
abstractions, and they may not correspond to physical distribution. A layered
system is a well-designed system because each layer is responsible for a sepa-
rate task. Here is a typical layer partitioning:

A presentation layer contains components dealing with user interfaces and
user interaction. For example, the presentation layer of a stand-alone appli-
cation could be written in Visual Basic. The presentation layer of a Web-based
deployment could use Java servlets, Java server pages, and/or Java applets.

A business logic layer contains components that work together to solve busi-
ness problems. These components could be high-performance engines, such
as catalog engines or pricing engines. Typically, these components are writ-
ten in a type-safe language such as Java or C++.

14 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

A data layer is used by the business logic layer to persist state permanently.
Central to the data layer is one or more databases that house the stored state.

The advantage to partitioning an application into these logical layers is to iso-
late each layer from the others. For example, it should be possible to plug in a
different view (i.e., change the presentation layer) while minimizing impacts on
the business logic or data layers. It should similarly be possible to plug in a dif-
ferent set of business rule component implementations within your business
logic layer, or to plug in a different database in your data layer, with relatively
minor effects on the other layers. In some ways, this is analogous to how the
classic model-view-controller separation allows the developer to vary the model,
view, and controller independently of one another.

The physical separation of these layers is another story. In a two-tier architec-

ture, two of these layers are physically separated from the third, forming two
physically separated tiers. On the other hand, a three-tier architecture separates
each of these three abstract, logical layers into three physically distributed tiers.
In each of these architectures, the tiers are separated from one another by some
physical boundaries, such as machine boundaries, process boundaries, or cor-
porate boundaries. In the discussion that follows, we don’t really care what the
boundary is—it could be a process boundary, a machine boundary within a lo-
cal area network, or a boundary across the Internet. And for clarity, we will re-
fer to all deployments with three tiers or more as N-tiered, which is used
interchangeably with three-tiered occasionally.

So what are the advantages to separating your application into two tiers verses
N tiers? There are a number of compelling reasons for both sides, which we’ll
soon uncover. From this debate, you will begin to see the needs of the server
side and why a distributed server-side architecture such as Enterprise JavaBeans
is necessary.

Two-Tier Architectures

Traditionally, most high-end deployments have been two-tiered. Two-tier deploy-
ments combine the business logic layer with one of the other two layers. There
are two combinations possible: combining the presentation layer with the busi-
ness logic layer, and pushing some of the business logic layer into the data layer.
Let’s take a look at each scenario.

Combining the Presentation Layer with the Business Logic Layer

Your presentation layer and business logic layer can be coupled together in a
single tier, pushing the data access layer into a tier by itself. This draws a tier
boundary between the business logic layer and the data layer (Figure 1.6). If you
think of the first tier as a “client” and the second tier as a “server,” this architec-
ture effectively makes the client “fat” and the server “thin.”

15Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

In a two-tier architecture, the client application typically communicates with
the data layer through a database bridge API such as Open Database Connec-
tivity (ODBC) or Java Database Connectivity (JDBC). This decouples the client
from the particular database being used. So that each vendor’s proprietary da-
tabase will conform to the database bridge, each database vendor must supply
a database driver that is called from the database bridge API, such as an ODBC
driver or JDBC driver.

Two-tier architectures have the following characteristics:

Deployment costs are high. Database drivers must be installed and configured
on each of the client tiers, which may mean hundreds or thousands of machines.

Database driver switching costs are high. Switching one database driver
with another now requires a reinstallation of every client machine’s database

Figure 1.6 Combining presentation with business logic in a two-tier architecture.

Pricing
Component

Billing
Component Fulfillment

Component

Presentation
Logic

Database Driver

Database

- Since Database Driver is
installed on client, a change
of Database Drivers means
redeploying many machines

- Since Business Logic
Components are installed
on client, a change of
business logic means
recompiling and redeploying
many client machines

- Client installs are
cumbersome and bulky

- No database connection
pooling between disparate
clients

Presentation / Business Logic Layer

Data Layer

Tier Boundary

16 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

drivers. This is very costly from a maintenance perspective because the cli-
ent tier could reside on the desktops of hundreds or thousands of client ma-
chines. For example, the size and mobility of a sales force could make uniform
upgrades on all the individual laptops virtually impossible.

Database schema switching costs are high. The fat clients directly access
the database via JDBC, SQL/J, or ODBC. This means that the clients are deal-
ing directly with the underlying database schema. If you ever decide to mi-
grate the schema to handle new business processes, you need to redeploy each
client.

Database type switching costs are high. The fat clients are bound to a da-
tabase API, such as a relational database API or an object database API. If you
ever decide to switch between database types (such as switching from a rela-
tional database to an object database), you must not only redeploy each client,
but you must drastically change the client code to suit the new database type.

Business logic migration costs are high. Changing the business logic layer
involves recompiling and redeploying the client tier.

Database connection costs are high. Every database client needs to estab-
lish its own database connection. These connections are limited in number
and costly to establish. When clients are not using the database, the connec-
tion is often still held and cannot be used by others.

Network performance suffers. Each time your business logic performs a da-
tabase operation, you need to make a number of roundtrips across the physi-
cal boundary separating the business logic layer and the data layer. If this
barrier is a network boundary, it could severely hamper the total time a data-
base operation takes—and it could clog the network, reducing the amount
of bandwidth other users have.

Pushing Some of the Business Logic Layer into the Data Layer

More recently, deployments have begun to combine parts of the business logic
layer with the data layer into a separate tier. This is illustrated in Figure 1.7. If
you think of the first tier as a “client” and the second tier as a “server,” this ar-
chitecture effectively makes the client “thin” and the server “fat.”

To actualize this scenario, you push some of your business logic (usually your
persistence-related data logic) within the database. Databases allow you to
execute logic within the database’s context by writing a suite of modules known
as stored procedures. By pushing select parts of your logic into stored proce-
dures, you gain a number of scalability and performance enhancements. For one,
because you are pushing some logic inside of the database, the network round
trip from the logic to the database is minimized. Rather than performing n da-
tabase queries, you can call one procedure kept inside the database, which per-
forms n queries for you. This saves you many round trips, increasing the speed

17Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

of database operations. It also reduces total network traffic, enabling other cli-
ents to perform network operations more speedily.

Thus, having database-specific logic within the database does enhance performance
and increases the overall deployment scalability. Most of the other problems with
two-tiered approaches listed previously, however, still apply. And while the de-
velopment of stored procedures is an important step forward, they do not solve
every problem. In fact, they add some problems of their own. For example,
stored procedure languages are often proprietary, which ties clients to a par-
ticular database. The whole point of having a database bridge such as ODBC or
JDBC, allowing any database to plug in, was defeated. Now it becomes even
harder to plug in a database of a different genre, such as an object database. It

Figure 1.7 Pushing data access logic into the second tier in a two-tier architecture.

Database

Tier Boundary

Presentation
Logic

- Our Data Access Logic is
now running in the
Database as stored
procedures

- Business Logic
Components may not be
portable components if a
proprietary stored
procedure language is
used.

- Vendors of Business
Logic cannot resell their
code to be used in a
different database without
significant code changes.

- Network roundtrip latency
is reduced for data access.

- Cost of an IT Department
changing to a different
database is very
expensive.

Pricing Logic

Billing Logic

Fulfillment
Logic

Stored
Procedures

Presentation Layer

Business Logic / Data Layer

18 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

should be noted, however, that Java is being used more and more as a stored
procedure language, which enhances the portability of stored procedures.

N-Tier Architectures

An N-tier architecture adds one or more tiers to the two-tier model. In N-tier
deployments, your presentation layer, business logic layer, and data layer are
separated into respective physical tiers. With four or more tiers, you decompose
each of these layers even further to allow various parts of your system to scale
independently.

A concrete example of an N-tier architecture is a three-tiered Web-based deploy-
ment, as illustrated in Figure 1.8. A three-tiered Web-based deployment is typi-
cally broken down as follows:

Your presentation tier runs within the address space of one or more Web
servers. It consists of Java servlets, scripts to customize look-and-feel (such
as Active Server Pages, Java Server Pages, etc.), and workflow logic that ties
things together.

Your business logic tier runs within the address space of one or more appli-

cation servers. Application servers are necessary to provide a suitable con-
tainment environment for the business logic components to run in. The
application server also manages these components efficiently and provides
a number of services to the components. For example, the application server
provides a database access layer for the business components, allowing the
business components to persist data to and load data from the data tier. The
application server is also responsible for making the business components
available to be used, instantiating them as necessary.

Your data tier consists of one or more databases and may contain data-related
logic in the form of stored procedures.

Note that a single-company Web deployment is only one example of a viable N-tier
deployment. Another example is a banking system that has many tiers, with each
tier representing a department of a bank. Another example is a control system that
does not have a graphical user interface, yet also requires several tiers. Yet another
example is a distributed deployment that spans company boundaries, where
several companies work together to provide enhanced value (such as an online
purchasing store that involves UPS for shipping logic and VISA for credit card logic).

N-tier architectures have the following characteristics:

Deployment costs are low. Database drivers are installed and configured on
the server-side, rather than on client machines. It is much cheaper to deploy
and configure software in a controlled server-side environment than to deploy

19Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

software on (for example) thousands of salesmen’s laptops, or on thousands
of end user terminals.

Database switching costs are low. Clients no longer access the database di-
rectly, but rather go through the middle tier for data access. This enables you
to migrate database schemas, change to different database drivers, or even
change your persistent storage type without re-deploying clients.

Business logic migration costs are low. Changing the business logic layer
may not necessitate recompiling and redeploying the client tier.

Database

Tier Boundary

Presentation
Logic

Tier Boundary

Pricing
Component

Billing
Component

Fulfillment
Component

Database
Driver

- Business Logic
Components are true
components, since they
are written in a non-
proprietary language.

- Vendors of Business
Logic can easily resell
their code. It will run in
any database that has a
corresponding driver.

- Application Server
vendors must agree on a
unified set of services
and service APIs which
they offer Business
Components, else the
components are non-
portable.

- Client deployments are
thin and simple.

- Maintenance of three
physical tiers is
expensive.

- Automatic database
connection pooling.

- Cost of an IT
Department changing to
a different database is
cheap.

Presentation Layer

Business Logic Layer
(Application Server)

Data Layer

Figure 1.8 An N-tier architecture.

20 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

You can secure parts of your deployment with firewalls. Many businesses
are sensitive about protecting their data, yet they do not want to hamper a
deployed application. For example, in a Web-based deployment, businesses
may not want to expose their business layer directly to outside users. Yet the
deployment must expose the presentation layer to outside users so that they
can hit the Web site. A solution is to place a firewall in between the presenta-
tion and business logic tiers, as shown in Figure 1.9

Resources can be efficiently pooled and re-used. With an N-tier architec-
ture, connections to external resources can be managed very efficiently. Re-

source pooling exploits the fact that clients are often doing other things

Figure 1.9 Security reasons often necessitate three-tier divisions.

Tier Boundary

Web Server

Database

Application Server with Component Container

Firewall + Tier Boundary

Insecure
Zone

Secure
Zone

Business Logic
Layer

Presentation Layer

Data Layer

21Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

besides using resources, such as rendering a graphical user interface. Rather
than your business components acquiring and releasing connections to re-
sources (such as databases), the resources can be pooled and re-used for
different client requests. The resulting set of database connections required
is often far less than the total number of components in a deployed system.
Because database connections are very expensive, this paradigm increases
the overall scalability of the deployment. Furthermore, connections to re-
sources do not need to be re-established continuously, improving application
performance. Resource pooling can be applied to other resources as well, such
as socket connections and threads. In fact, with an N-tier architecture, the
business components themselves can be pooled and reused by multiple cli-
ents. Pooling of components means you don’t need a dedicated component
for each client, as is true with two-tier thick clients. The pooling of resources
is illustrated in Figure 1.10.

Each tier can vary independently. For example, you can add database im-
ages while minimizing changes and recompilations of the other tiers.

Figure 1.10 Pooling of resources in an N-tier deployment.

Application Server

Client ClientClient ... Client

Sockets

Business
Components

Database
Connections

Pools

22 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Performance slowdown is localized. If one tier is overloaded, the other tiers
can still function properly. In a Web deployment, users may able to view your
front page even though the application server is overburdened.

Errors are localized. If a critical error occurs, it is localized to a single tier.
The other tiers can still function properly, gracefully dealing with the situa-
tion. For instance, if your application server crashes, your Web server could
report a “site down” page to client browsers.

Communication performance suffers. Since the tiers are physically separate,
they must communicate across process boundaries, across machine bound-
aries, or across enterprise domain boundaries. This results in high commu-
nications overhead. Only by designing your distributed object application
properly can you have an efficient deployment. Unfortunately, this often ne-
cessitates being very aware of tier boundaries and reduces the location trans-
parency of your application code.

Maintenance costs are high. You are deploying in three or more physically
separate tiers. Software installation costs, software upgrade costs, redeploy-
ment costs, and administration costs increase significantly.

Making Multi-tier a Reality

The benefits of multi-tier deployments do not come for free. Someone, at some
point in time, needs to write the code that will:

�� Broker method requests

�� Perform resource pooling

�� Handle the lifecycle of your components

�� Handle the logic to load-balance communications between each tier

�� Deal with the ramifications of two or more clients concurrently accessing
the same component

�� Reroute client requests to other machines in case of failure

�� Provide a secure environment so that unauthorized clients cannot sabo-
tage the system state

�� Provide monitoring software that might page a system administrator in
case of catastrophic problems

�� Authorize users to perform secure operations

�� And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. And each of these services requires a lot of thought
and a lot of network middleware plumbing to resolve. Often times, companies

23Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

build in-house proprietary frameworks that give some of these services. Those
companies are setting themselves up for failure, because high-end application
servers are hideously complicated to build and maintain, require expert-level knowl-
edge of middleware, gain support of industry-standard tools, and are completely
orthogonal to most companies’ core business. Why not build instead of buy?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide a runtime environment
for server-side components. They provide component developers with common
middleware services, such as resource pooling, networking, and more. Appli-
cation servers allow you to focus on your application, and not worry about the
middleware you need for a robust server-side deployment.

Server-Side Component Architecture Solutions

It has been a number of years now since the idea of multi-tier server-side deploy-
ments surfaced. Since then, multitudes of application servers have begun to
appear on the market. These application servers provide a usable runtime envi-
ronment in which components can execute and provide the needed middleware
services (such as resource pooling and security) for reliability and scalability.
But unfortunately, up until now there has not been a definition of what a middle-
tier component really is. Because of this, each application server has been pro-
viding component services in a non-uniform, proprietary way. This means that
once you bet on an application server, your code is locked into that vendor’s
solution. This greatly reduces portability and is an especially tough pill to swal-
low in the Java world, which promotes portability. It also hampers the commerce
of components because a customer cannot combine a component written to one
application server with another component written to a different application
server.

From this, the need for a standard architecture for server-side components has
arisen. This architecture needs to craft a well-formed interface between the ap-
plication server, which contains the components, and the components themselves.
These interfaces allow the components to be managed in a portable way, rather
than a proprietary one. The component vendors should be able to focus on the
business logic of the problems being solved and not worry about external over-
head such as resource pooling, networking, security, and so on. These necessary
elements of enterprise-class deployments should be externalized to application
server vendors, which should provide these common services to all component
developers. The goal here is rapid application development of server-side de-
ployments, allowing developers to leverage preexisting network middleware
while still writing portable server-side components. This will allow components

24 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

to be switched in and out of various application servers, without having to
change code or potentially even recompile the components themselves.

To address the need, technology advances have been made to compensate for
the lack of server-side component architectures. The most popular standards
have emerged from Microsoft, Sun Microsystems, and the Object Management
Group (OMG). We now outline each of these architectures.

Microsoft’s Distributed interNet Applications Architecture

Microsoft has recently consolidated its multi-tier vision into the Windows Dis-
tributed interNet Applications Architecture (DNA). This architecture combines
the following:

Windows NT, the underlying operating system that provides a runtime environ-
ment for all Microsoft technology

Distributed COM, a core technology that promotes interface/implementation
separation and language independence and that allows for distributed com-
ponents

Microsoft Message Queue (MSMQ), a message-queuing product for asyn-
chronous communications between components

Microsoft Transaction Server (MTS), an application server product that
manages components

Microsoft Wolfpack, software for server clustering

Microsoft SQL Server, a relational database store

Microsoft Internet Information Server, its Web server, which includes Ac-

tive Server Pages (ASP) scripts, which can be used to coordinate interactions
with client browsers

Microsoft Management Console, a tool for deployment and administration

Windows DNA is a server-side development platform that incorporates all these
products and more. Note that these technologies are also evolving as we speak—
specifically, Distributed COM, MTS, and parts of MSMQ are evolving into a new,
combined technology called COM+. COM+, along with the ancillary Windows
DNA services, allows vendors to build and deploy server-side components with
Microsoft technology. Needs such as resource pooling, database transactions,
asynchronous communications, and security are all handled implicitly by the
underlying distributed object infrastructure.

Microsoft’s N-tier vision is quite compelling because it’s a one-vendor distributed
object framework. Rather than assembling products from competing vendors,
developers can work with tools written by a single source. But unfortunately,

25Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

developers who integrate to Microsoft’s N-tier vision must tie themselves to a par-
ticular vendor (Microsoft), which allows only the Microsoft platform as a deploy-
ment scenario. This makes it difficult if not impossible to perform deployments
on mainframes or high-end UNIX machines, which have a significant amount
of services available for high-reliability deployments, as well as much higher
processor and resource scalability. And while the number of server-side Win32-
based workstations is climbing incredibly fast, Windows NT is scalable to only
four processors (or reportedly 16 processors with NT 5.0). This means a Win-
dows-based deployment has a very high machine maintenance cost due to the
sheer number of machines required. Hopefully, this will change in the future.

Sun Microsystems’s Java 2 Platform, Enterprise Edition (J2EE)

Sun Microsystems has also realized the need for a server-side component archi-
tecture. Many Java component vendors have been clamoring for a full server-
side N-tier story that is Java-based; the Java language itself is well suited for the
server. Client-side Java has many problems, such as inconsistency with user
interfaces between platforms, slow speed of these user interfaces, and wrong
versions of Java Virtual Machines running on client machines. But for the server
side, Java is the ideal language. Server-side deployments run in a controlled
environment, which means that the correct version of the Java programming
language will always be used. The speed of Java is also a less significant issue
on the server because often typically 80 percent or more of an N-tier application’s
time is spent at the database or networking level.

Java is also a very convenient language to write server-side components in, if
for one reason alone: The server-side market is dominated by UNIX machines
and mainframes. This means a cross-platform language for writing server-side
components adds huge value because a developer can write a component once
and deploy it on any customer’s existing server-side environment. This means
that customers with legacy applications (such as programs written in COBOL
on mainframe systems) have a well-defined migration path to e-commerce and
other modern business processes.

Thus, to enable server-side computing in Java, Sun has produced a complete
development platform called the Java 2 Platform, Enterprise Edition (J2EE).
The mission of J2EE is to provide a platform-independent, portable, multiuser,
secure, and standard enterprise-class platform for server-side deployments
written in the Java language. The cornerstone of J2EE is Enterprise JavaBeans
(EJB), a standard for building server-side components in Java.

J2EE simplifies many of the complexities surrounding the construction of a
scalable, component-based server-side application, and it is very analogous to
Windows DNA. The most notable exception is that J2EE is a specification,

26 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

whereas Windows DNA is a product. J2EE specifies the rules of engagement that
people must agree on when writing enterprise software. Vendors then imple-

ment the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many companies),
it is inherently not tied to one vendor; it also supports cross-platform development.
This encourages vendors to compete, yielding best-of-breed products. As we will
see in this book, though, incompatibilities between vendor products will arise—
some problems due to ambiguities with specifications, other problems due to
the human nature of competition.

The Object Management Group’s CORBA Standard

The Object Management Group (OMG) is an open standards body whose mis-
sion is to standardize on industry guidelines and build object management stan-
dards to provide a common framework for application development and to
promote a software component marketplace. The OMG’s two most notable
achievements have been the Common Object Request Broker Architecture
(CORBA), as well as the Internet Inter-ORB Protocol (IIOP). We will cover these
technologies in Chapter 11. For now, you should know that CORBA/IIOP are
standards that promote portable distributed objects. If you write your objects
to use CORBA/IIOP, you can leverage prewritten middleware supplied by ven-
dors. For example, a vendor could provide a security service, a transaction ser-
vice, or a persistence service, and you can use those services in your applications
without writing that middleware yourself.

Like J2EE, CORBA is a specification, not a product. Vendors (such as Inprise,
Iona, and IBM) implement the CORBA specification with their products. The
big distinction between CORBA and J2EE is that (until now) CORBA has had
only the notion of an object and had no notion of a deployable server-side com-
ponent that is automatically managed by an application server. The OMG, how-
ever, has recently addressed this need by bolstering CORBA with a CORBA

Components proposal. This proposal defines the notion of a component in
CORBA—an entity that is deployable within an application server, is managed
by the application server, and is sellable in a component marketplace, resulting
in rapid application development through the divide-and-conquer strategy.

CORBA Components is still in its infancy at the time of this writing. In fact, there is
great debate within the OMG over whether CORBA Components should even be
standardized at all. The main reason behind this is that J2EE contains built-in
support for CORBA (as we will see). The real danger is if the OMG creates yet a
third server-side component standard beyond Windows DNA and J2EE. This is
definitely a specification to keep an eye on in the future.

27Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

The Java 2 Platform, Enterprise Edition

Now that you have seen the three major server-side architectures out there, let’s
turn our attention to the Java 2 Platform, Enterprise Edition (J2EE), of which
EJB is an integral part.

Why J2EE?

To understand why J2EE is necessary, we need to take a look back in time and
chart the evolution of the Java platform.

JDK Efforts

Sun Microsystems first focused on building a robust Java Development Kit
(JDK). The JDK became the de facto reference implementation of the Java plat-
form. Not much exciting development was happening here for server-side
middleware support.

Enterprise API Efforts

Sun Microsystems then recognized the power of Java on the server and began
to develop several Enterprise APIs that provided enterprise-level services for
server-side deployments. These services include naming and lookup services,
transaction services, and the Enterprise JavaBeans (EJB) 1.0 API. Sun also be-
gan to develop elements of Consumer Java, which provide functionality for
consumer devices to interoperate.

Several months after EJB 1.0 was finalized, the first EJB-based application serv-
ers began to arrive on the market (BEA’s WebLogic was the first). These appli-
cation servers took advantage of the other Enterprise APIs as well, such as the
ones for naming and lookup services, for transactions, and for database opera-
tions. The early application servers served as a great feedback device to Sun
because they highlighted many problems with the Enterprise APIs. These include
the following:

Ambiguities. The unspecified sections of the Enterprise API specifications
(particularly EJB 1.0) hampered portability of components. This is unaccept-
able due to the “Write Once, Run Anywhere” paradigm of Java.

Poor synchrony between Enterprise APIs. Each of Sun’s Enterprise APIs
was related, yet each was being developed independently. Sun was not com-
municating the typical purpose of the enterprise APIs together as a suite, and
the specifications themselves were not very intertwined.

28 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

A moving target. Each of Sun’s Enterprise APIs was evolving separately and
had new version numbers coming out all the time. This made it somewhat
difficult to program using EJB because EJB depends on those Enterprise APIs.
What versions of each API should be used? This was unspecified, leading to
nonportable code between application server vendors.

No way to test application server compatibility. When a vendor wrote a
product to the EJB 1.0 standard, there was no way to test whether this prod-
uct was compatible with Sun’s specification. Similarly, a consumer had no
information about whether a vendor was compliant with EJB 1.0.

No reference implementation. The Enterprise APIs were simply specifica-
tions; Sun did not provide a default reference implementation. Thus, appli-
cation developers had no low-end enterprise platform against which to test
code. By way of comparison, programmers who did not leverage the Enter-
prise APIs could simply use Sun’s JDK reference implementation. Thus, the
Enterprise APIs needed an analog to the JDK.

Platform Separation

Realizing the problems with the Enterprise APIs, Sun Microsystems has recently
taken a major leap forward in solving the problems we alluded to previously by
issuing three different Java platforms. Each platform is a superset of the next
smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so-on. This
is a very restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphical
user interface facilities, and more. This platform contains what most people
use in standard JDK programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise
APIs and bundles them together in a complete development platform for en-
terprise-class server-side deployments in Java.

The arrival of J2EE is significant because it addresses all the problems raised
when Sun developed the Enterprise APIs, including the following:

Fewer ambiguities. Sun has addressed a great deal of the incompatibilities in
EJB 1.0 with the EJB 1.1 specification (covered in Appendix D). This specifica-
tion corrects bugs and other ambiguities that had been restricting portability.

Enterprise API synchrony. Each of the Enterprise APIs has a clear role in
J2EE, as defined by Sun’s J2EE Application Programming Model document.

29Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

This should clear up any confusion about how you can use the Enterprise APIs
together to enable a server-side deployment. Similarly, the Enterprise APIs
are evolving in harmony, as the specifications leverage each other in an in-
tertwined fashion.

Locked-down revisions. Enterprise Java is no longer a moving target, as Sun
has locked down versions of each Enterprise API specification and bundled
them together as the de facto versions to use when developing with J2EE. This
increases code portability across vendors’ products because each vendor
supports exactly the same API revision.

Test suite. As we mentioned above, there is no way for a vendor to know if he
or she is implementing EJB 1.0 properly. Sun has fixed this with J2EE, as it
provides a test suite for vendors to test their products against. If a product
passes the tests, Sun will issue a compliance brand, alerting customers that
the vendor’s product is indeed J2EE-compliant.

Reference implementation. To enable developers to write code against J2EE
as they have been doing with the JDK, Sun is providing its own free reference
implementation of J2EE. Sun is positioning it as a low-end reference platform,
as it is not intended for commercial use.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware services
that make life very easy for server-side application developers. The technolo-
gies included with J2EE are shown in Figure 1.11; they include the following:

Enterprise JavaBeans (EJB). EJB defines how server-side components are
written and provides a standard contract between components and the ap-
plication servers that manage them. EJB promotes the spawning of a compo-
nent marketplace, where vendors can sell reusable components that can be
purchased to help solve business problems. EJB is the cornerstone for J2EE
and is covered throughout this book.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI allows for
interprocess communication and provides other communication-related ser-
vices. RMI-IIOP is a portable extension of RMI that can use the Internet In-
ter-ORB Protocol (IIOP) and can be used for CORBA integration. RMI is
covered in Appendix A. RMI-IIOP is covered in Chapter 11.

Java Naming and Directory Interface (JNDI). JNDI identifies the locations
of components or other resources across the network. JNDI is covered in
Appendix B.

Java Database Connectivity (JDBC). JDBC is a relational database bridge
that allows for relatively portable database operations. JDBC is used in
Chapter 8.

30 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Java Transaction API (JTA) and Java Transaction Service (JTS). The
JTA and JTS specifications allow for components to be bolstered with reli-
able transaction support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for asynchronous distributed
object communications. We do not cover JMS in this book, as Sun Microsystems
has not integrated JMS with EJB yet.

Java Servlets and Java Server Pages (JSPs). Servlets and JSPs are net-
worked components which are ideally suited for request/response oriented
computing, such as interacting with clients over HTTP. We illustrate using
servlets with EJB in Chapters 12 and 15.

Figure 1.11 The Java 2 Platform, Enterprise Edition.

Java IDL

- CORBA provides language
interoperability
- Integration with existing systems

Remote Method Invocation

- Simple Distributed
Communications API
- RMI-IIOP adds CORBA
interoperability

Naming and Directory Interface

- Provides a namespace for
finding components and
resources

Database Connectivity

- Provides a unified API for
accessing relational databases

Enterprise JavaBeans

- Component Standard
- Defines the overall Server-side
architecture
- Defines interfaces between
software vendors and clients
- Ties together the other APIs

Transaction API

- Defines the high-level interface
for demarcating transactional
boundaries

- Java Transaction Service (JTS)
defines low-level interfaces
between transaction participants.

Servlets and Java Server
Pages

- Request/Response oriented
network components
- Typical use is in web server for
client-side interaction
- Scripting capability

Java 2
Platform,

Enterprise
Edition

Java Messaging Service

- Asynchronous Invocations
- Publish/Subscribe, or Point-to-
Point
- Transactional Messages

JavaMail

- Allows you to perform E-Mail
operations in a cross-platform,
cross-protocol fashion.
- Also requires JavaBeans
Activation Framework (JAF).

Java 2 Platform,
Standard Edition

- Core Java platform language and
services, such as java.io, java.util,
applets, applications, JFC, etc

Connectors

- Provide access to existing
enterprise information systems.

XML

- Describes EJB components
- Format for JSP scripts
- Other future uses as well

31Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

Java IDL. Java IDL is Sun Microsystem’s Java-based implementation of CORBA.
Java IDL allows for integration with other languages. Java IDL also allows for
distributed objects to leverage CORBA’s full range of services. Thus, J2EE is
fully compatible with CORBA, rounding out the Java 2 Platform, Enterprise
Edition completely. Java IDL is explained in Chapter 11.

JavaMail. The JavaMail service allows you to send e-mail messages in a plat-
form-independent, protocol-independent manner from your Java programs.
For example, in a server-side J2EE deployment, you can use JavaMail to con-
firm a purchase made on your Internet e-commerce site by sending an e-mail
to the customer. Note that JavaMail depends on the JavaBeans Activation

Framework (JAF), which makes JAF part of J2EE as well. We do not cover
JavaMail in this book.

Connectors. Connectors make J2EE well suited to integrate with mainframe
systems running high-end transactions (such as those deployed with IBM’s
CICS), as well as Enterprise Resource Planning (ERP) systems. Connectors
will be included in a future release of J2EE.

The Extensible Markup Language (XML). Several J2EE technologies (such
as EJB 1.1 and JSP) depend on XML as a meta-markup language for describ-
ing content. We cover XML in Appendix C, and we cover how XML and EJB
are related in Appendix D.

The Java 2 Platform, Enterprise Edition (J2EE) builds on the existing technolo-
gies in the Java 2 Platform, Standard Edition (J2SE). J2SE includes the base Java
support and the various libraries (.awt, .net, .io) with support for both applets
and applications. Because J2EE builds on J2SE, a J2EE-compliant product must
not only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry will likely result in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

At the time of this writing (May 1999), Sun Microsystems had not finalized the
Java 2 Platform, Enterprise Edition (J2EE) specifications. Sun expects to complete
them by Fall 1999. This means you are likely to see J2EE products emerging in the
marketplace sometime in the year 2000.

To understand more about the real value of J2EE, we now explore each API in
more detail.

Enterprise JavaBeans (EJB)

EJB is a component architecture that allows developers to quickly create scalable
enterprise applications. It provides complex middleware enterprise features at
no cost to application developers. With EJB, you can now focus your energies

32 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

on writing the applications that solve real-world problems, rather than on all
the overhead that goes with distributed server-side systems. You can think of
EJB almost as a suite of common functionality that most applications need.
Through the EJB model, you won’t need to reinvent those wheels.

To this, EJB adds legacy integration flexibility. You can rewrite your components
from scratch to be EJB-compliant, or you can wrap an existing component;
there’s no need to build your enterprise system from the ground up. Many ven-
dors of EJB products (IBM and BEA come to mind) provide well-defined mi-
gration paths for existing legacy system customers to jump aboard the EJB
bandwagon without abandoning their existing enterprise information system.
This is critical for companies that may have their entire business running in
millions of lines of COBOL running off CICS systems.

EJB also offers “plug-and-play” enterprise features. With EJB, you barely need
to know anything at all about middleware to construct components designed
to run in a scalable, multi-tier architecture. Rather than writing to middleware
APIs (which is the old CORBA style of distributed object computing), your com-
ponents gain middleware services implicitly and transparently from the EJB
server, without writing one line of middleware code yourself. The application
server implicitly handles transactions, persistence, security, state management,
component lifecycle, threading, and more.

The cross-platform, cross-vendor nature of the EJB standard is another ex-
tremely important benefit that EJB brings to the table. It means that there’s now
a common standard for distributed component architectures to which all vendors
can integrate. It also means that there’s going to be intense competition in the
EJB market. EJB levels the playing field by defining one standard component
API. This means you can expect the new EJB-compliant products that emerge
in the market to be both reliable and high-performing because middleware ven-
dors can be compared in the same light. There is one standard, allowing the
vendors to focus on the quality of their EJB products. The standard also allows
application developers to focus on writing best-of-breed applications, rather than
supporting every brand of middleware out there. This is the promise of EJB.

Remote Method Invocation (RMI) and RMI-IIOP

The EJB standard depends on several other APIs in J2EE; the most visible of
these is Java Remote Method Invocation (RMI). RMI is a mechanism for invok-
ing methods remotely on other machines. It is tightly integrated with the Java
language itself; if you know Java, it won’t take much to learn RMI. EJB relies
on RMI as a communications API between components and their clients.

RMI is seamless—you almost don’t even know you’re using it when you program
your distributed application. RMI allows Java programmers to communicate in

33Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

a distributed object fashion using an almost identical programming style to cod-
ing a standalone Java applet or application. That is the beauty in RMI—it ab-
stracts networking issues away from you, such as marshalling parameters,
handling machine byte-order, and so on, which are all necessary for network
communications. RMI also contains other niceties such as dynamic class down-
loading, automatic activation of remote objects, and a distributed garbage col-
lector to clean up unused remote objects. Because many Java programmers
already know RMI, we cover it in Appendix A.

RMI-IIOP

Sun Microsystems (in a joint venture with IBM and others) has more recently
developed a more portable version of RMI as well, which can use the Object
Management Group’s (OMG’s) Internet Inter-ORB Protocol (IIOP) as a commu-
nications protocol. IIOP is a very robust protocol, and it adds several qualities
of service than RMI can support in its native protocol. IIOP is also necessary
for J2EE deployments to integrate with CORBA systems. We explain RMI-IIOP
in Chapter 11.

Java Naming and Directory Interface (JNDI)

The Java Naming and Directory Interface (JNDI) is a standard for naming and

directory services. Enterprise JavaBeans relies on JNDI for looking up distrib-
uted components across the network. JNDI is a key technology required for
client code to connect to an EJB component.

JNDI hinges on the notion of a directory service. A directory service stores in-
formation about where resources (such as components) reside, as well as other
information such as username and passwords. In EJB, when client code requests
access to a component, directory services are used to locate and retrieve a com-
ponent to service that client (see Figure 1.12). You can think of the directory
service as a matchmaker that connects clients to components.

Historically, there are many types of directory services, as well as protocols to
access them. Some examples include Novell’s NDS and the Internet standard
LDAP. These are all competing standards, so each type of directory service is
accessed differently. And each directory service stores information in a propri-
etary way. If you write an application that accesses a particular directory ser-
vice, it becomes a real mess if you want to switch to a different directory service.

The Java Naming and Directory Interface (JNDI) solves this problem by bridg-
ing the gap between different directory services. With JNDI, you can write por-
table naming and directory service code, rather than writing nonportable code
that works only with a particular directory service or standard. You can do this
because JNDI abstracts your code from any particular directory service, enabling

34 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

you to simply plug in a different kind of directory service without changing your
code. In the future, if new directory service standards emerge, JNDI will most
probably be updated to reflect those changes.

EJB strictly depends on JNDI, so we’ve devoted a section to it, but we’ve left it
as Appendix B because some of you may already be familiar with JNDI.

Java Database Connectivity (JDBC)

The Java Database Connectivity (JDBC) 2.0 package is a standard Java exten-
sion for data access that allows Java programmers to code to a unified relational
database API. By using JDBC, Java programmers can represent database connec-
tions, issue SQL statements, process database results, and more in a relatively
portable way. Clients program to the unified JDBC API, which is implemented
by a JDBC Driver, an adapter that knows how to talk to a particular database in
a proprietary way (see Figure 1.13). JDBC is similar to the Open Database Con-
nectivity (ODBC) standard, and the two are quite interoperable through JDBC-
ODBC bridges. JDBC 2.0 contains built-in support for database connection
pooling, further enhancing the database independence of your application code.

Because EJB does not strictly depend on JDBC, we do not cover JDBC explic-
itly in this book. We do show how to use JDBC in the EJB world; see Chapter 8
for that information.

JNDI Unified
Client API

Client

LDAP Service
Provider

NDS Service
Provider

File System
Service Provider

Figure 1.12 The Java Naming and Directory Interface.

35Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

Java Transaction API (JTA) and Java Transaction Service (JTS)

A transaction is a unit of work that makes a set of guarantees about its execu-
tion. For example, one guarantee that transactions give you is that any code
executing within the scope of a transaction is guaranteed either to all be ex-
ecuted or to not execute at all. Transactions are one of the most useful constructs
EJB brings to the table, and they are required to maintain a consistent system
state. Transactions allow for multiple users to be modifying the same data, yet
each to be isolated from one another—in essence, a very sophisticated form of
synchronization.

To facilitate transactions, Sun Microsystems has produced two APIs: the Java

Transaction API (JTA) and the Java Transaction Service (JTS). These two
products embody how transactions can be performed in Java (see Figure 1.14).

JTA is a high-level transaction interface that your applications use to control
transactions. You need to understand how the JTA works in order to perform
transactions in Java.

Figure 1.13 Java Database Connectivity.

Client

JDBC Driver

JDBC API

Relational
Database(s)

36 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

JTS is a set of low-level transaction interfaces that EJB uses behind the scenes
(your client code doesn’t directly interact with JTS). JTS makes it possible for
multiple vendors to collaborate when performing transactions in a distributed,
heterogeneous environment. JTS is based on the Object Transaction Service

(OTS), which is part of CORBA.

Enterprise JavaBeans strictly depends on JTA, but it does not depend on JTS.
As an application programmer, you may need to learn the JTA for performing
advanced transaction control. We’ll go into more detail about the JTA, as well
as touch on the JTS, in Chapter 10.

Java Messaging Service (JMS)

A messaging service allows for distributed objects to communicate in an asyn-
chronous, reliable manner. By passing messages asynchronously rather than
synchronously, the overall system scalability is increased. Processes can respond

Figure 1.14 Java Transaction API and Java Transaction Service.

Java Transaction
Service

Client

Java Transaction
API

Persistent Stores

Transaction
Manager(s)

Resource
Manager(s)

Transaction
Coordinator

We learn more about how
transactions work in
Chapter 10.

37Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

to messages at their leisure, and they could potentially be offline when a mes-
sage is initially sent.

You can perform asynchronous messaging by using an Enterprise Messaging

Product (these are grouped together under the title Message Oriented Middleware,
or MOM). These messaging systems are very proprietary. As with directory ser-
vices, choosing a MOM vendor often entails binding yourself to a particular
vendor.

Sun Microsystems has released an API called the Java Messaging Service (JMS)
that can be used as a portable messaging service. By using a common API, dis-
tributed objects can communicate in a scalable, transactional, fault-tolerant,
asynchronous, and, most important, vendor-independent manner. The JMS is il-
lustrated in Figure 1.15.

Unfortunately, the EJB 1.1 specification does not define the integration points
necessary to fully leverage JMS in EJB components, so we do not explicitly cover
JMS in this book. The EJB 2.0 specification is expected to address this outstand-
ing issue.

Java Servlets and Java Server Pages (JSPs)

Servlets are networked components that you can use to extend the functional-
ity of a Web server. Servlets are request/response oriented in that they take

Figure 1.15 Java Messaging Service.

Object A Object B

1: Put
Message

Java
Messaging

Service

2: Store
message

3: Get
Message

4: Retrieve
Message

5: Give
message

38 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

requests from some client host (such as a Web browser) and issue a response
back to that host. This makes servlets ideal for performing Web tasks, such as
rendering an HTML interface to an e-commerce catalog. Note, however, that
servlets are not necessarily tied to Web servers, and they can be used as generic
request/response-oriented components. Servlets differ from EJB components
in that the breadth of server-side component features that EJB offers is not
readily available to servlets. Servlets are much better suited to handling simple
request/response needs, and they do not require sophisticated management by
an application server.

Java Server Pages (JSPs) are very similar to servlets. In fact, JSP scripts are com-
piled into servlets. The largest difference between JSP scripts and servlets is that
JSP scripts are not pure Java code, but they are much more centered around look-
and-feel issues. You would use JSP when you want the look and feel of your de-
ployment to be physically separate and easily maintainable from the rest of your
deployment. JSPs are perfect for this, and they can be easily written and main-
tained by non-Java savvy staff members (JSPs do not require a Java compiler).

We illustrate connecting servlets with EJB components in Chapters 12 and 15.

Java IDL

As we’ve mentioned, CORBA is a massive middleware effort developed by the
Object Management Group (OMG). The OMG represents hundreds of compa-
nies that have invested in this cross-platform architecture. CORBA is language
independent; it doesn’t matter what you code your programs in with CORBA,
so long as CORBA supports the language in which you’re developing.

Java IDL is an implementation of the CORBA specification in Java, and it allows
for connectivity and interoperability with heterogeneous objects. Java IDL is one
specific implementation of CORBA; there are many such implementations. And
while Java IDL does not implement everything that is specified in CORBA, Java
IDL ships free with the Java 2 platform. We cover Java IDL briefly in Chapter 11.

JavaMail

Sun’s JavaMail API allows your applications to use e-mail capabilities. The
JavaMail object model is quite simple to use, and it is easy to pick up if you’ve
been programming with Java (it follows similar methodologies, such as excep-
tion handling and event handling). Like most of the other J2EE APIs (JNDI comes
to mind), JavaMail defines a set of interfaces to which you write your applica-
tion code, and those interfaces shield your code from the specific protocols or
mail service implementations used. Your Internet mail code effectively becomes
portable across platforms, as well as across mail protocols. JavaMail also ships

39Server-side Component Architectures

Go back to the first page for a quick link to buy this book online!

with a set of convenience classes to simplify application development, and it
also ships with a few service providers that implement the most popular mail
protocols. JavaMail depends on the JavaBeans Activation Framework (JAF)
to encapsulate message data and to handle interactions with that data. This
makes J2EE depend on JAF, meaning that a vendor that provides a J2EE prod-
uct must provide JAF as well.

Connectors

J2EE is being enhanced to include integration with existing information systems
via connectors. A connector is a vendor-specific bridge that links an existing
system to the Java 2 Platform, Enterprise Edition. Using connectors, you can
write cross-platform, cross-vendor J2EE code that leverages existing invest-
ments. These existing investments could be Enterprise Resource Planning (ERP)
systems, message-oriented middleware (MOM) systems, mainframe systems
such as IBM’s CICS and IMS, BEA’s Tuxedo, or existing legacy databases.

Connectors are useful because they will automatically manage the hairy details
of middleware navigation to existing systems, such as handling transaction and
security concerns. Sun’s connector specification should also provide standard
interfaces that vendors can write to, enabling you to plug any connector into
any J2EE product, which means your legacy access code should be portable
across application servers. Note that connectors are different from the other
J2EE APIs because connectors are very vendor-specific (the API for an IBM CICS
connector would most certainly be different from an SAP R/3 connector).

When Sun Microsystems completes the connector specification (most likely not
until well into the year 2000), you should see a connector marketplace emerge,

CORBA and EJB

EJB and CORBA share much functionality—many of the qualities of service that EJB
offers are also in CORBA. In fact, you can think of EJB as CORBA plus standards for how
your components should be written and managed, increasing productivity.

A massive amount of development effort has gone into CORBA. It would be a shame
if Enterprise JavaBeans did not integrate with CORBA. Fortunately, Sun Microsystems
and the OMG are both supporting EJB/CORBA interoperability, and they have produced
standards that will allow that to happen.

The EJB/CORBA mapping specification, along with RMI-IIOP, lifts the restriction that
EJB must be solely Java-based. You can expose EJB components as CORBA objects,
which generalizes EJB and makes it well suited for cross-language interoperability. This
is a very powerful idea, which we’ll examine further in Chapter 11.

40 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

where connector providers such as IBM, BEA, SAP, Baan, Peoplesoft, or other
companies provide J2EE connectors to specific existing systems. Until then, you
have several choices for connecting to existing information systems, such as
using a proprietary connector solution (SAP will likely ship one before J2EE
connectors are finalized), using CORBA to integrate with existing systems, or
growing an in-house solution.

The Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a universal standard for structur-
ing content in electronic documents. XML is extensible in that businesses can
use XML to craft new structure to their documents as needed. The XML stan-
dard does not suffer the version control problems of other markup languages
such as HTML because there are no predefined tags in XML—rather, you de-
fine your own tags for your business needs. This makes XML the ideal document
format for transferring business data electronically, and it has a wide variety of
other applications as well. We cover XML in Appendix C.

J2EE uses XML in several ways. Java Server Pages (JSPs) use XML as a data
document format for authoring Web script. EJB 1.1 uses XML to describe com-
ponents, which we cover in Appendix D. Sun may also mandate that J2EE prod-
ucts make APIs available for applications to parse and interpret XML documents
as well.

Summary

By now, you should have a solid idea about the issues involved in server-side
computing. You should also understand why a server-side component architec-
ture is needed and why it provides the ability to rapidly develop applications
without having to write complex middleware services. You’ve also seen why the
J2EE was invented, what the J2EE value proposition is, and the technologies
behind J2EE.

So far, we’ve taken a snapshot of the various APIs that J2EE encompasses. We’re
just getting started, so hang in there! There are many more interesting concepts
to learn ahead.

C HAPTE R 2

41

Go back to the first page for a quick link to buy this book online!

C hapter 1 introduced the motivation behind creating the EJB component archi-
tecture and the J2EE development platform for multi-tier deployments. In this
chapter, we’ll dive into EJB in detail, including the specific benefits EJB prod-
ucts offer to server-side components. This chapter will remain at a fairly high
level, reserving the programming details of EJB for Part II.

As we alluded to in Chapter 1, Enterprise JavaBeans takes a divide-and-conquer

approach to server-side computing. In fact, the EJB standard contracts allow
for a collaboration of six different parties. Each of these parties is an expert in its
own field and is responsible for a key part of a successful Enterprise JavaBeans
deployment. Because each party is a specialist, the total time required to build
an enterprise-class deployment is significantly reduced. This chapter begins with
a discussion of the distinct role that each of these parties undertakes.

You’ll then learn about the physical parts of an EJB deployment, including the
following:

�� What is an enterprise bean? You’ll see the types of beans available, and
you’ll learn about the appropriate times to use them.

�� What are the responsibilities of an EJB server and container? You’ll learn
about the specific middleware services the EJB server and container pro-
vide to EJB components.

This is a perfect chapter for people in a hurry who want to know some details
about how EJB works. Whether you’re a developer, an IT manager, or simply
someone who’s curious about EJB, this chapter is applicable. It provides a solid
background on EJB, without getting into the programming details.

Enterprise JavaBeans Overview

42 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Because EJB is such a huge subject, you can expect to encounter many new
concepts here. You may need to read this chapter twice to fully grasp the mate-
rial. And, of course, everything we cover here will be explained in further de-
tail as the book unfolds.

Who’s Who in Enterprise JavaBeans

In the world of Enterprise JavaBeans, business solutions are developed in four
stages:

1. Vendors of business logic, such as sales force automation vendors, enterprise
resource planning vendors, financial services vendors, and e-commerce
vendors, can modularize their products into reusable EJB components.
Each component has a well-known but limited duty. These components
adhere to the EJB specification, which means anyone with knowledge of
EJB and Java 2 Enterprise Edition programming should be able to use the
components.

2. The business components need to run in a distributed multi-tier fashion for
a scalable, enterprise-class deployment. To achieve this, the components
need a variety of tricky middleware, such as connection pooling, security,
and life-cycle management. Rather than explicitly writing these middleware
services over and over again, EJB enables middleware vendors to provide
these system-level services in an application server. How do the compo-
nents leverage these middleware services? In traditional server-side pro-
gramming, you as a component developer would need to explicitly write
to middleware APIs, such as persistence APIs, security APIs, or transaction
APIs. In the EJB world, however, things are much easier. An application
server provides middleware services for you in a transparent way, without
your explicitly coding to middleware APIs. This is possible because the EJB
specification lays out the rules governing middleware that both components
and application servers must follow. For example, your components can
get automatic persistence by setting attributes on your component that
describe the component’s need for persistence. The application server
understands these attributes because the EJB specification defines them,
and the application server complies with the specification. As a compo-
nent developer, this means your life is simplified greatly because you can
rapidly develop persistent components without coding to, debugging, or
even understanding persistence APIs. Transparent middleware is a signifi-
cant achievement because it allows developers to concentrate on applica-
tion logic, rather than system-level middleware issues.

3. With application servers and reusable components for sale in a market-
place, a customer can purchase these and combine them to solve a business

43Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

problem in a server-side deployment. Purchased components, though,
won’t magically work together—especially if different vendors write the
components. To address the customer’s business needs, a third party (such
as a systems integrator) combines these components into a workflow en-
vironment. The party makes recommendations for which components
need to be purchased and hooks the components together, adding some
custom code to the equation. During this process, coding efforts focus on
integrating the business logic of the purchased components, rather than
dealing with the overhead of the proprietary middleware that each compo-
nent may use. Each of the components has adhered to the same EJB con-
tracts and so can make use of the same underlying middleware.

4. The entire system is finally deployed, distributed among multiple machines
across a network in a multi-tier environment. The system must be main-
tained and upgraded as it evolves over time.

As EJB matures, this scenario will become more and more of a reality. Assum-
ing vendors stick to the EJB contracts, a world of true plug-and-play Enterprise
features can be actualized. And even though it may not be entirely true today,
the vision of portable EJB components deployable across heterogeneous appli-
cation servers will solidify over the next few years.

The Six Parties

The foundations for EJB portability are the contracts and roles that each party
must follow. Going with the divide-and-conquer theme, EJB partitions the re-
sponsibility of an EJB deployment to up to six different parties. Here is a brief
overview of those parties:

The bean provider provides reusable business components that companies can
purchase and use to help solve business problems. Beans are not complete
applications, but rather are deployable components that can be assembled into
complete solutions. An example of a bean provider that ships reusable compo-
nents today is BEA, which provides the WebLogic Commerce Server 1.7.1 for
building e-business applications. In the future, traditional enterprise software
vendors (such as SAP and Trilogy) will offer their software as enterprise beans
or will provide connectors to their current technology.

The container provider supplies the low-level runtime execution environment
needed to run EJB applications.

The server provider supplies the application server logic to contain, manage,
and deploy components. Currently there is no distinction between EJB container
providers and EJB server providers. Examples of EJB container/server prod-
ucts are BEA’s WebLogic, Sun Microsystems’ NetDynamics, IBM’s WebSphere,
Oracle’s Oracle 8i, Persistence Software’s PowerTier, and Inprise’s Inprise

Application Server.

44 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

The application assembler is the overall application architect, perhaps for a
specific deployment. He or she is responsible for understanding how various
components fit together and writes the applications that use components. He
or she may even author a few components along the way. An example of an
application assembler is a systems integrator, a consulting firm, or an in-house
programmer.

The deployer takes prewritten components, usually chosen by the application
assembler, and applies his or her deployment expertise to install the compo-
nents in one or more application servers.

The system administrator oversees the well-being of a deployed system.

These parties interact as shown in Figure 2.1.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer to this is that EJB enables companies or
individuals to become experts in roles and that division of labor leads to best-
of-breed deployments. For example, an EJB deployer does not need to be an
expert at developing (designing and implementing) enterprise software but does
need to be an expert at deploying an already developed EJB solution into a
particular domain. This empowers EJB deployers to master deploying solutions,
and it enables other parties (such as bean providers and application assemblers)
to worry about developing solutions.

The EJB specification makes each role very clear and distinct, enabling experts
in different areas to participate in a deployment without loss of interoperability.
Note that there is also room for some of these roles to be combined as well. For
example, the EJB server and EJB container may indeed come from the same
vendor. For some of the parties, EJB merely suggests the possible duties that

Figure 2.1 The six parties of EJB.

Bean Provider

EJB Container/Server
 Provider

Deployer System Administrator
(Maintains Deployment)

Application
Assembler

Construct
Enterprise Beans

Build Application Deploy System

Supply

EJB Container/S
erve

r

45Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

the party might assume, such as the system administrator overseeing the well-
being of a deployed system. For other parties, such as the bean provider and
container provider, EJB defines a set of strict interfaces and guidelines that must
be followed or the entire model will break down. By clearly defining the roles
of each party, EJB lays a foundation for a distributed, scalable component ar-
chitecture where multiple vendors’ products can interoperate.

We will now examine the responsibilities of each of the players in the Enterprise
JavaBeans realm in more detail.

The Bean Provider

The bean provider is the party who supplies enterprise beans—components that
expose methods for performing application logic. The bean provider might be
a vendor of components that can be resold over and over again on the market—
possibly through an indirect sales channel. The bean provider might be an in-
house developer as well.

Enterprise beans are distributed, server-side components. They provide useful
functionality that can be assembled to form larger applications. Enterprise beans
may also be reusable components, but this is not guaranteed. Don’t believe any-
one who tells you that enterprise beans are reusable by definition because that
is false. You need to design your beans correctly if you want them to be reus-
able. You need to consider the different applications, domains, and users of your
enterprise beans, and you need to develop your beans with as much flexibility
as possible. Developing a truly reusable set of beans will likely require many
iterations of feedback from customers using your beans in real-world situations.

Roughly speaking, bean reusability can fall into three different levels:

Reuse as given. The application assembler uses the acquired bean as it is to
build an application. The bean functionality cannot be tailored to fit the ap-
plication. This is typically what bean providers are offering in the market.

Reuse by customization. The application assembler configures the acquired
bean by modifying the bean properties to fit the specific needs of the appli-
cation. Bean customization typically occurs during development time. To al-
low for a more flexible maintenance environment, some bean providers allow
runtime bean customization.

Reuse by extension (subclass). The application assembler creates custom
application-specific beans by subclassing the prebuilt acquired beans. The
behavior of the resulting bean is tailored for the application. This level of
reusability is generally more powerful but difficult to achieve. Reuse by ex-
tension is made available by only a few bean providers.

46 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

The more reusability levels that a bean provides, the more useful a bean is. By
leveraging prebuilt beans, organizations can potentially lower the development
time of building enterprise applications.

Enterprise beans can also range in size and scope. Smaller-grained enterprise
beans typically have very concrete, but limited, scoped duties. Larger-grained,
fuller-featured enterprise beans have a wider business scope, and they typically
interact with other smaller-grained enterprise beans.

For example, imagine you go to a music store to purchase a compact disc. The
cashier takes your credit card and runs it through a scanner. The scanner has a
small Java Virtual Machine running within it, which acts as a client of enterprise
beans. It contacts American Express, which has an EJB-compliant application
server containing a number of beans. The beans are responsible for conducting
the credit card transaction on behalf of that client.

Once the scanner has a reference to a credit card transaction bean, the bean
must first verify that your credit is good before billing your card. At that point,
the bean itself acts as a client and contacts another bean—a verifier bean—to
verify your credit rating. Once your credit is verified, the original bean can com-
plete the transaction. So beans can indeed be clients of other beans. This is a
very powerful, flexible model, and it allows for large-grained components to be
composed of smaller ones in a hierarchical fashion.

The EJB Server and EJB Container Providers

If you’ll recall, an application server provides middleware services to your ap-
plications, such as transaction services, security services, and others. These
services are needed for your application to be scalable, robust, and secure for
multiple concurrent users. EJB takes the notion of application servers and par-
titions them into two distinct parts:

The EJB container. The EJB container provides a playground where your en-
terprise beans can run. There can be many beans running within a container.
Bean containers are responsible for managing the beans running within them.
They interact with the beans by calling a few required methods that the bean
must expose. Containers may also provide access to a legacy system.

The EJB server. The EJB server provides a runtime environment for one or
more containers. EJB servers manage low-level system resources, allocating
resources to containers as they are needed. The relationship between the EJB
server and container is depicted in Figure 2.2.

47Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

Figure 2.2 The relationship between EJB servers and EJB containers.

No Clear Separation Between Container and Server

Unfortunately, the EJB specification does not explicitly define the separation of roles
between EJB servers and EJB containers yet. There is no concrete interface between the
two entities. Until EJB addresses this issue, one vendor’s EJB container will be not be
installable within another vendor’s EJB server. For now, you may be tied to one vendor
for both the container and server.

To deal with the lack of a good EJB server/container contract, EJB server vendors are
publishing proprietary APIs for custom EJB containers to run within their servers, such
as BEA’s WebLogic EJB server.

EJB Server

EJB Container 1 EJB Container 2

Enterprise
Bean 1

Enterprise
Bean 2

Enterprise
Bean 3

Enterprise
Bean 4

Client Code, such as
servlets or applets

<<invokes>> <<invokes>>

48 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Highlights of Server and Container Responsibilities

In traditional server-side programming (such as with CORBA), you needed to
write to complex middleware APIs to gain an application server’s middleware
services. But in the EJB world, you can harness complex middleware in your
enterprise applications without writing to middleware APIs—instead, you can
simply declare the middleware services that your application needs, and the
application server will provide that middleware transparently to your applica-
tion code. You can focus away from the middleware and concentrate on your
application’s business code.

Here are just some of the services that containers/servers must provide for you.

Implicit distributed transaction management. Transactions allow for you
to perform robust, deterministic operations in a distributed environment by
setting attributes on your enterprise beans. We’ll get into the details of trans-
actions and how you can use them effectively in Chapter 10. For now, know
that the EJB server provides a transaction service—a low-level implementa-
tion of transaction management and coordination. The transaction service
must be exposed through the Java Transaction API (JTA). The JTA is a high-
level interface that you can use to control transactions, which we also cover
in Chapter 10.

Implicit security. Security is a major consideration for multi-tier deployments.
The Java 2 Platform, Standard Edition yields a robust security service that
can authorize and authenticate users, securing deployments from unwanted
visitors. EJB adds to this the notion of transparent security, allowing compo-
nents to reap the benefits of a secure deployment without necessarily cod-
ing to a security API.

Implicit resource management and component life cycle. The EJB server
implicitly manages resources for your components, such as threads, sockets,
and database connections. The life cycle of the components themselves are
also managed, allowing for components to be reused by the EJB server as
necessary.

Implicit persistence. Persistence is a natural requirement of any deployment
that requires permanent storage. EJB offers assistance here by automatically
saving persistent object data to an underlying storage and retrieving that data
at a later time.

Implicit remote accessibility. EJB products will automatically convert your
stand-alone, network-less components into distributed, network-aware beings.

Implicit multiclient support. EJB servers automatically route concurrent re-
quests from clients. EJB servers provide built-in thread support, instantiat-
ing multiple copies of your component as necessary and channeling client
requests to those instances.

49Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

Implicit component location transparency. Clients of components are
decoupled from the specific whereabouts of the component being used.

In addition to these implicit services, the EJB server provides a number of ex-
plicit services. For example, the EJB server must provide a naming and direc-

tory service, allowing components to be located across the network. The EJB
server also ships with a set of deployment tools that allow the EJB deployer to
deploy components into the EJB server and customize those components as
needed.

Finally, EJB servers may go above-and-beyond the bare requirements, provid-
ing additional value-adds that are not required by the EJB specification. This
could be intelligent load balancing, transparent fail-over, server clustering, and
connectors for integration to legacy systems (such as BEA Tuxedo, IBM TXSeries,
SAP R/3, and so on).

The Application Assembler

As we’ve mentioned, the bean provider supplies reusable, deployable server-side
components. But when these components are purchased by a customer and put
to actual use, who actually assembles them to solve a business problem? The
answer is the application assembler.

The application assembler is the person, whether on staff or as an outside con-
sultant, who understands the complete application system and understands how
the various components fit together. He or she is the application architect—the
person who understands what the components do. His or her job is to build an
application from those components—an application that can be deployed in a
number of settings.

The application assembler could perform any or all of the following tasks:

1. Write the code that calls on components purchased from vendors.

2. Provide a workflow solution between a number of disparate components,
mapping between them.

3. Supply a user interface (perhaps using JFC, JSP, or servlets).

4. Write new enterprise beans to solve domain-specific problems. For exam-
ple, you might need to model a business process or business entity that is
specific to your business. This task will often fall into the hands of the
application assembler.

Note that EJB allows for distributed components (versus the traditionally rigid
client/server paradigm). Therefore, the application assembler could be involved
in the design and implementation of logic residing in several tiers in a multi-tier
architecture. Perhaps the code the application assembler writes is local to the

50 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

components, perhaps it is remote. EJB does not dictate the physical placement
of things.

The EJB Deployer

We’ve described how the container/server provider supplies the runtime man-
agement of the components and how the application assembler builds the spe-
cific applications. That is not enough, though, for a successful deployment. The
applications must still be deployed in a running operational environment. And
unfortunately, the application assembler (who is usually a developer or systems
analyst) may not be familiar with the specific operational environment that the
application must run in.

This is where the EJB deployer comes into play. EJB deployers are aware of
specific operational environments. They understand how to deploy beans within
servers and how to customize the beans for a specific environment (such as a
multi-tier deployment involving a firewall). The EJB deployer has the freedom
to adapt the beans, as well as the containers and servers, to the environment in
which the beans are to be deployed. He or she also has knowledge of a customer’s
existing naming and directory services and understands how to customize en-
terprise beans for that scenario.

Another concrete role of the deployer is mapping security settings. Most busi-
nesses store lists of their employees and their security levels in some directory
service structure, and the EJB deployer may be required to adapt the access level
of the beans to fit that particular environment. That way, the multi-tier applica-
tion developed by the application assembler is usable in the specific deployment
scenario.

To facilitate this process, EJB deployers must be aware of the differences be-
tween the various beans, servers, and containers on the market. An EJB deployer
can be a staff person or an outside consultant.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee the
stability of the operational solution. The system administrator is responsible for
the upkeep and monitoring of the deployed system and may make use of runtime
monitoring and management tools that the EJB server and containers provide.

For example, a sophisticated deployment might page a system administrator if
a serious error occurs that requires immediate attention. Note that EJB servers
and containers may not provide this explicit monitoring (and it is not required
by the EJB specification). Some EJB products, however, are developing hooks
into professional monitoring products, such as Tivoli and Computer Associates,

51Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

to aid with this. The Java 2 Platform, Enterprise Edition may in the future con-
tain specification rules that govern management as well.

Now that you’ve seen the EJB players, let’s move on to the business components
themselves—the enterprise beans.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed
in a distributed multi-tier environment. An enterprise bean can comprise one
or more Java objects because a component may be more than just a simple ob-
ject. Regardless of an enterprise bean’s composition, the clients of the bean deal
with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the Enterprise JavaBeans specification. The
specification requires that your beans expose a few required methods; these re-
quired methods allow the EJB container to manage beans uniformly, regardless
of which container your bean is running in.

Note that the “client” of an enterprise bean could be anything—perhaps a servlet,
an applet, or even another enterprise bean. In the latter case, a client request to
a bean can result in a whole chain of beans being called. This is a very powerful
idea because you can subdivide a complex bean task, allowing one bean to call
on a variety of prewritten beans to handle the subtasks. This hierarchical con-
cept is quite extensible.

Types of Beans

EJB 1.0 and 1.1 defines two different kinds of enterprise beans: session beans

and entity beans. Let’s take a look at how they compare.

Session Beans

A session bean represents work being performed for client code that is calling
it. Session beans are business process objects. They implement business logic,
business rules, and workflow. For example, a session bean could perform price
quoting, order entry, video compression, banking transactions, stock trades,
database operations, complex calculations, and more. They are reusable com-
ponents that contain logic for business processes.

Session beans are called session beans because they live for about as long as
the session (or lifetime) of the client code that’s calling the session bean. For
example, if client code contacted a session bean to perform order entry logic, the
application server (that is, the EJB container/server) is responsible for creating

52 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

an instance of that session bean component. When the client later disconnects,
the application server may destroy the session bean instance.

Session beans are usable by one client at a time—that is, they are not shared
between clients. When a client is using a session bean, that client is the only
client dealing with that session bean. This is in stark contrast to entity beans,
whose state is shared among many clients.

The EJB server is responsible for managing the lifetime of beans. That is, the
client does not directly instantiate beans—the EJB container does this automati-
cally. The EJB container similarly destroys session beans at the appropriate
times. This allows beans to be pooled and reused for multiple clients.

There are two subtypes of session beans—stateful session beans and stateless

session beans.

Stateful Session Beans

As we have said, session beans represent business processes. Some business
processes can be performed in a single method request, such as computing the
price of goods or verifying a credit card account. Other business processes are
more drawn out and can last across multiple method requests and transactions.

One example of a business process that lasts for multiple method calls is an
e-commerce Web store. As the user peruses an online e-commerce Web site, he
or she can add products to the online shopping cart. This implies a business
process that spans multiple method requests. The consequence of such a busi-
ness process is that the components must track the user’s state (such as a shop-
ping cart state) from request to request.

Another example of a drawn-out business process is a banking application. In
a bank, you may have code representing a bank teller that deals with a particu-
lar client for a long amount of time. That teller may perform a number of bank-
ing transactions on behalf of that client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that’s designed to service business processes
that span multiple method requests or transactions. To accomplish this, stateful
session beans retain state on behalf of an individual client. If a stateful session
bean’s state is changed during a method invocation, that same state will be avail-
able to that same client upon the following invocation.

Stateless Session Beans

Some business processes naturally lend themselves to a single request paradigm.
A single request business process is one that does not require state to be main-
tained across method invocations. Stateless session beans are components that
can accommodate these types of single request business processes. They are

53Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

EJB Design Strategies

anonymous method providers—anonymous because they are not aware of any
client history.

For instance, a stateless session bean could be a high-performance engine that
solves complex mathematical operations on a given input, such as compression
of audio or video data. The client could pass in a buffer of uncompressed data,
as well as a compression factor. The bean would return a compressed buffer
and would then be available to service a different client. The business process
has spanned one method request. The bean does not retain any state from pre-
vious requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean would take a credit card number, an expiration date,
a cardholder’s name, and a dollar amount as input. The verified would then re-
turn a yes or no answer depending on whether the card holder’s credit is valid.

Stateful or Stateless?

When deciding to use stateful session beans, you must first ask yourself whether the
business process you’re modeling inherently requires a stateful model. If it does, a stateful
session bean may be the ideal component to use. When using stateful session beans,
however, your inherent statefulness may limit your fault tolerance. For example, what
happens if an unexpected system-level error occurs, such as a bean crashing, the net-
work dying, or a machine rebooting? In a stateless model, the request could be trans-
parently rerouted to a different component because any component can service the
client’s needs. In stateful models, there is little that can be done to reroute the client’s
request because the client’s state is lost when the failure occurs (the state was kept
within the lost bean). Note, however, that some high-end EJB container implementa-
tions are adding on stateful recovery services as an optional value feature. These ser-
vices allow for even stateful components to be transparently recovered, by continually
persisting the bean’s active state and recovering from permanent storage in case of
failure.

If you have a drawn-out business process, there is another alternative to using stateful
session beans. You can go with a stateless model and pass the entire client state as
parameters to the stateless bean during method invocations. Passing of state in such a
way could lead to severe performance degradation. This is especially true if the client is
remotely located from the bean and if the state passed over the network is large. Thus,
you may achieve lightweight fault tolerance, but the overall scalability of your system
may be compromised by the added network latency expense.

We’ll explore the trade-offs between stateful and stateless models in more detail in
Chapter 6.

54 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Once the bean completes this task, it is available to service a different client
and retains no past knowledge from the original client.

Entity Beans

Another fundamental part of a business is the permanent data that the business
processes use. This is illustrated in the following examples:

�� A bank teller component performs the business process of banking opera-
tions. But the data used by the teller is the bank account data.

�� An order-entry component performs the business process of submitting
new orders for products, such as submitting an order for a new computer
to be delivered to a customer. But the data generated by the order-entry
component is the order itself, which contains a number of order line-items
describing each part ordered.

�� A stock portfolio manager component performs the business process of
updating a stock portfolio, such as buying and selling shares of stock. But
the data manipulated by the portfolio manager is the portfolio itself, which
might contain other data such as account and stock information.

In each of these scenarios, business process components are manipulating data
in some underlying data storage, such as a relational database. An entity bean

is a component that represents such persistent data. Entity beans model bank
accounts, orders, order line items, stock portfolios, and so on. Entity beans rep-
resent real data objects, such as customers, products, or employees.

Entity beans do not contain business process logic—they model data. Session
beans handle the business processes. Session beans might use entity beans to
represent the data they use, similar to how a bank teller uses a bank account.

An EJB 1.0 container/server is not required to support entity beans. An EJB 1.1
container/server is required to support them fully.

The value that entity beans provide is an object-oriented in-memory view of data
in an underlying data store. The traditional way for applications to deal with data
is to work with relational tables in a database, reading and writing that data as
needed. Entity beans, on the other hand, are object representations of this un-
derlying data. You can treat data in a relational store as real objects. You can
read an entire set of data out of a database at once into an in-memory entity bean
component. You can then manipulate this entity bean in memory by calling
methods on it. For example, you could call a withdraw() method on a bank
account entity bean, which would subtract money from a bank account by re-
ducing the value of a private member variable called balance. Once that bank
account entity bean object is persisted, the database will contain the new bank

55Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

account balance. Thus, entity beans allow you to combine the functionality of
persistent data with the convenience of object encapsulation. In essence, an
entity bean implements the data access logic layer in multi-tier architectures.
This is shown in Figure 2.3.

Because they model permanent data, entity beans are long lasting. They survive
critical failures, such as application servers crashing, because entity beans are
just representations of data in a permanent, fault-tolerant underlying storage.
If a machine crashes, the entity bean can be reconstructed in memory again by
simply reading the data back in from the permanent database. Because the da-
tabase survives crashes, the components that represent them do as well. This
is a huge difference between session and entity beans—entity beans have a life
cycle much longer than a client’s session, perhaps years long, depending on how
long the data sits in the database.

EJB Container/Server

Entity Bean

Client Code, such
as servlets or

applets

<<invokes>>

Permament Storage

Bank Account #
Owner's Name

Account Balance

<< save and load when necessary >>

Figure 2.3 Entity beans are a view into an underlying data store.

56 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

EJB Design Strategies

Session Beans versus Entity Beans

Now that you’ve seen the different types of enterprise beans, how do you decide what
logic to put in a session bean and what to put in an entity bean? The key differences
between the two are that session beans represent business processes and typically
contain business logic, and entity beans, on the other hand, embody permanent busi-
ness entities, such as business data, and typically contain data-related logic.

As a concrete example of this, consider an application that is responsible for generat-
ing prices of products for customers. If a customer wants to order 15 workstations, with
a certain bundle of memory and processors, the pricer would display a price detailing
the products and listing the price of each item.

A pricer component is well represented by a session bean: The pricer is having a
business process conversation with the client. The client code interacts with the pricer,
asking for prices of products that the customer has indicated, and then the client code
disconnects from the pricer component. After the conversation is over, the pricer is free
to service another client.

Later, when the customer wants to place an order, an order entity bean could repre-
sent the customer’s permanent request for goods to be delivered. The order bean would
represent database data that detailed the customer’s purchase. The order can then be
fulfilled by another application—perhaps another session bean that contains the logic to
do so. This is shown in Figure 2.4.

Notice the theme here: Session beans are performing application logic, which uses
persistent entity beans behind the scenes as the data that they’re manipulating. This is
very similar to the façade design pattern. A façade is a high-level interface that masks
lower-level subsystems. In the EJB distributed object architecture, session beans can be
used to provide a high-level interface façade to business processes, masking the lower-
level entity bean subsystems used behind the scenes.

Because entity beans model permanent business entities, entity beans typically achieve
a higher level of reuse than session beans. For instance, consider our banking example,
with a session bean that acts as a bank teller. This session bean knows how to with-
draw and deposit by calling methods on a bank account entity bean. One day, you may
decide to replace your session bean teller with a different teller bean. But you’d still
want all your customers’ bank accounts to remain the same.

Now consider our order-entry example. Here, your company’s product line, as well as
the purchase orders themselves, are data. Therefore, they are well represented as entity
beans—objects that are saved over time and are forever part of the database. The com-
ponents that generate and manipulate the products and the purchase orders are very
well modeled as session beans. You’d probably want to fine-tune and change these
session beans over time, as user requirements change.

Thus, in practice you can expect the reuse of session beans to be a bit lower than
that of entity beans. Session beans model a current business process, which can be

57Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

Figure 2.4 Combinations of beans in a pricing application.

EJB Container/Server

Pricer Session
Bean

Client Code, such
as servlets or

applets

1: call price()

Order Entity
Bean

2: create Order

Fulfillment
Application

Fulfillment
Session

Bean

3: Later on, a separate application fulfills the Order

4: Fulfillment Bean analyzes the generated Order

tweaked and tuned with different algorithms and approaches. Entity beans, on the other
hand, define your core business. Data such as purchase orders, customers, and bank
accounts do not change very much over time, and in practice entity beans achieve a
higher level of reuse.

Note that what we’ve presented here are merely guidelines, not hard-and-fast rules.
Indeed, a session bean can contain data-related logic as well, such as a session bean
performing a bulk database read via JDBC or SQL/J. The key to remember is that session
beans never embody permanent data, but merely provide access to data. Session beans
are not persistable; they represent business processes. By comparison, entity beans
embody data and are persistable. If you have a business process that you’d like to run
in a transactional, distributed, and secure environment, you can use session beans to
model that business process. If you have a permanent business entity, you can access
that entity as a distributed component by representing it as an entity bean.

58 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

Entity beans are distinct from session beans in another respect as well—mul-
tiple clients can use entity beans simultaneously. Think of this as multiple cli-
ents manipulating the same data in a database simultaneously. You can isolate
these clients from one another by using transactions. When used properly, trans-
actions guarantee that multiple clients who perform persistent operations act
completely independently of one another. We’ll find out more about transactions
in Chapter 10.

Entity beans are very useful when you have a legacy database with data already
inside. They are great for providing access to existing persistent data. In this
manner, the data that entity beans model could exist in a database before a com-
pany decided to employ Enterprise JavaBeans.

In fact, the database records representing an object could have existed before
the company even decided to go with a Java-based solution because a database
structure can be language-independent. Database records can be read in and
interpreted as objects in almost any language. EJB takes advantage of this and
allows for the transformation of a database’s data into a Java object. The bur-
den of this transformation can fall on the bean itself or the EJB container can
perform the transformation automatically.

This brings us to the next topic. There are two subtypes of entity beans avail-
able: bean-managed persistent entity beans and container-managed persistent

entity beans.

Bean-Managed Persistent Entity Beans

As we have seen, entity beans are persistent components because their state is
saved to a secondary storage such as a relational database. For example, by using
object-relational mapping technology, you can take an in-memory object and
map that object into a persistent series of relational database records. You can
then retrieve those records at a later time to reconstruct the object in-memory
and use it again. Another scheme is to use an object database as your persistent
store, which stores actual objects rather than relational records.

A bean-managed persistent entity bean is an entity bean that must be persisted
by hand. In other words, you as the component developer must write code to
translate your in-memory fields into an underlying data store, such as a relational
database or an object database. You handle the persistent operations yourself—
including saving, loading, and finding data—within the entity bean. Therefore,
you must write to a persistence API, such as JDBC or SQL/J.

Container-Managed Persistent Entity Beans

The good news is that EJB allows entity bean developers to not worry about
coding persistence logic. One service that EJB 1.0 containers may provide, and
EJB 1.1 containers must provide, is automatic persistence for your entity beans.

59Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

The container/server performs every function of your component’s data access
layer for you, including saving, loading, and finding component data. You do not
have to hard-code to a relational database API or an object database API, sav-
ing much coding time. Rather, you simply describe what you want persisted up-
front to the container, and it persists it for you, using whatever storage it happens
to have. This gives you theoretical database independence, allowing you to
switch one data store for another, since you don’t write any code to a database
API. The EJB container/servers on the market today perform a wide variety of
mapping functionality and tools—some simple, some complex. For example,
BEA’s WebLogic server performs fairly simple object/relational mapping. But
BEA also supports the Object People’s TOPLink, an enhanced persistence mod-
ule that allows for complex mapping.

When choosing between container-managed persistence and bean-managed
persistence, many issues are at stake. We’ll contrast the promises and realities
of automatic persistence fully in Part II.

Motivation for Multiple Bean Types

You may be wondering why the EJB paradigm is so robust in offering the vari-
ous kinds of beans. Why couldn’t Sun come up with a simpler model? Microsoft’s
N-tier vision, for example, does not include the equivalent of entity beans—com-
ponents that represent data in a permanent storage.

The answer is that Sun is not the only company involved in constructing the
Enterprise JavaBeans standard. In fact, many companies have been involved,
each with customers that have different kinds of distributed systems. To accom-
modate the needs of different enterprise applications, Sun decided to allow users
the flexibility of each kind of bean.

Admittedly, this increases the ramp-up time to learn EJB. But it also pays off in
the long run with increased functionality. By including session beans, Sun has
provided a mechanism to model business processes without writing middleware
in a distributed multi-tier environment. By including entity beans in the EJB
specification, Sun has taken the first steps toward persistent, distributed objects
usable by those business processes.

Overview of EJB Container and EJB Server
Responsibilities

Earlier in this chapter, we mentioned that EJB containers provide the implicit
services to your EJB components and that containers live within the runtime
environment of an EJB server. Because the EJB specification has not drawn the

60 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

line between a container and a server, we will use the words interchangeably in
this book.

EJB containers are responsible for managing your beans. Containers can inter-
act with your beans by calling your beans’ required management methods as
necessary. These management methods are your bean’s callback methods that
the container, and only the container, invokes. The management methods allow
the container to alert your bean when middleware events take place, such as
when an entity bean is about to be persisted to storage.

Single-Threaded versus Multithreaded Session Beans

One great benefit of EJB is you don’t need to write thread-safe code. You design your
enterprise beans as single-threaded components, and you never need to worry about
thread synchronization when concurrent clients access your component. Your EJB con-
tainer will automatically instantiate multiple instances of your component to service
concurrent client requests.

The container’s thread services can be both a benefit and a restriction. The benefit is
that you don’t need to worry about race conditions or deadlock in your application code.
The restriction is that some problems lend themselves very well to multithreaded pro-
gramming, and that class of problems cannot be easily solved in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? The answer is
that EJB is intended to relieve component developers from worrying about threads or
thread synchronization. The EJB container handles those issues for you by load-balancing
client requests to multiple instances of a single-threaded component. An EJB server
provides a highly scalable environment for single-threaded components, and adding the
abillity for beans to control threads opens up a Pandora’s box of problems. For example,
the ability for an EJB container to control a transaction (discussed in Chapter 10) be-
comes a very complicated problem if threads are being started and stopped randomly
by beans.

One alternative to threading is to use a transactional messaging API such as the Java
Messaging Service (JMS) that allows for asynchronous actions to occur in a distributed
object environment. JMS enables you to safely and reliably achieve multitasking, with-
out the beans themselves messing around with threads. JMS support is expected to be
in the 2.0 EJB specification, due out in late 2000.

The bottom line here is that EJB was not meant be a swiss-army knife, solving every
problem in existence. It was designed to assist with server-side business problems,
which are largely single-threaded. For applications that absolutely must be multithreaded,
EJB may not be the correct choice of distributed object architectures.

61Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

The most important responsibility of an EJB container is to provide an environ-
ment in which enterprise beans can run. EJB containers house the enterprise
beans and make them available for clients to invoke remotely. In essence, EJB
containers act as invisible middlemen between the client and the beans. They
are responsible for connecting clients to beans, performing transaction coordi-
nation, providing persistence, managing a bean’s life cycle, and other tasks. The
EJB container-bean relationship is depicted in Figure 2.5.

The key to understanding EJB containers is to realize that they are abstract

entities. Neither the beans nor the clients that call beans ever explicitly code
to the API of an EJB container. Rather, the container implicitly manages the
overhead of a distributed component architecture. The container is analogous
to a ‘behind the scenes’ stage manager in a theatre, providing the lighting and
backdrop necessary for a successful stage performance by the actors on stage.
But neither the actors nor the audience directly interact with the stage manager.
The same is true for EJB containers. Neither the beans nor the clients that call
the beans ever code directly to an EJB container API.

EJB containers are a huge challenge to write because they are so complex and
perform so many tasks. As of the time of this writing, there are 27 EJB containers
in development, varying widely in implementation. For example, BEA makes

Figure 2.5 An EJB container housing a bean.

EJB Container/Server

Enterprise
Bean

Client Code, such as
servlets or applets

<<invoke>>

<<delegate>>

At the point-of-interception,
the container gives beans
implicit services:

- resource management
- lifecycle
- state management
- transactions
- security
- persistence

62 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

an EJB container that is written entirely in Java, managing your Java-based
enterprise beans. Sybase, on the other hand, makes an EJB container written
in C++, which interacts with beans via the Java Native Interface. Oracle pro-
vides a container that physically runs within the context of a database. As you
can see, a container can be manifested in a number of functional environments.

We now present an architectural overview of the features an EJB container
provides.

Resource Management and Bean Life Cycle Management

As we’ve mentioned in Chapter 1, a multi-tier architecture’s overall scalability
is enhanced when an application server intelligently manages needed resources
across a variety of deployed components. The resources could be threads, socket
connections, database connections, and more. For example, database connec-
tions could be pooled by application servers and reused across heterogeneous
components. In the EJB realm, the container is responsible for providing all
resource management services behind the scenes.

In addition to resource management, the EJB container is responsible for con-
trolling the life cycle of the deployed enterprise bean components. As bean cli-
ent requests arrive, the EJB container dynamically instantiates, destroys, and
reuses beans as appropriate. For example, if a client requests a certain type of
bean that does not exist in memory yet, the EJB container may instantiate a new
in-memory instance on behalf of the client. On the other hand, if a bean already
exists in memory, it may not be appropriate to instantiate a new bean—espe-
cially if the system is low on memory. Instead, it might make more sense to re-
assign a bean from one client to another. It might also make sense to destroy
some beans that are not being used anymore. This is called instance pooling.

The take-away point here is that the EJB container is responsible for coordi-
nating the entire effort of resource management as well as managing the deployed
beans’ life cycle. Note that the exact scheme used is EJB container-specific.

State Management

State management is another value that containers bring to the table. To explain
the need for state management, we first must observe that users, as well as cli-
ent code, often take a lot of time to “think” in between method calls to a com-
ponent. The classic example of this is an HTML (Web) client interacting with a
human being. Web users often will click on a button that executes some busi-
ness logic in a component, but then they wait around and read text before initi-
ating another action. While the user is doing this, the application server could
reuse that component to service other clients.

63Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

This is exactly what happens in EJB. If a bean is stateless, it can be reassigned
to other clients dynamically by the EJB container. This is possible because there
is no state lost from the primary client. This reuse of beans results in incredible
resource gains—often only a few beans need to be instantiated to handle a
multitude of clients. If a client times out (for example, because of a crash), the
EJB container can destroy the bean or perhaps reuse it. This is all possible be-
cause the EJB container is constantly monitoring bean invocation activity.

On the other hand, if the bean is stateful, things get a little more complicated.
The EJB container must provide transparent state management for stateful
components. State management is necessary when you want to reuse a stateful
component to service multiple clients.

Consider the scenario where a client hasn’t used a stateful bean for a long time.
This stateful bean could be a stateful session bean or an entity bean (entity beans
are inherently stateful because they represent data). When a new client connects
and requests a component, the container may have reached its limit of instanti-
ated components. In this case, the container can take a component that hasn’t
been used in a while, then serialize (convert to a binary stream—see Appendix
A) the bean’s conversational state, and write the state out to disk. Now that the
original client’s state has been preserved, the bean can be reassigned to a dif-
ferent client, and it can retain state for that new client exclusively. Later on, if
the original client makes a request, the original client’s bean state can be read
back in from disk and used again, perhaps in a different in-memory bean object.

The management of state is a responsibility of the EJB container, and it is mostly
masked from component vendors. It is an implicit service provided by the EJB
architecture.

Transactions

Transactions are a safe way to have multiple components participate in distrib-
uted object operations. A transaction is a series of operations that appear to
execute as one large, atomic operation. Transactions allow multiple users to
share the same data, and they guarantee that any set of data they update will be
completely and wholly written, with no interleaving of updates from other clients.
In a sense, transactions are a very sophisticated form of concurrency control.

When properly used, transactions ensure that database data is kept consistent.
Transactions also ensure that two components’ database operations are isolated
from one another. Transactions prevent disaster from striking if your database
crashes, too. Without transactions, your database could easily become corrupt,
which is unnacceptable for such mission-critical applications as banking
applications.

64 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

The EJB server/container handles the underlying transaction operations, coordi-
nating efforts behind the scenes between transaction participants. The value-add
of EJB here is that transactions can be performed implicitly and automatically.
This allows beans to leverage transactions in deployments without writing to an
explicit transaction API. We cover transactions more thoroughly in Chapter 10.

Security

In any critical deployment, security is always going to be an issue. The role of
EJB containers in security is to handle the validation of users for tasks they wish
to accomplish. This is done via Access Control Lists (ACLs). An ACL is a list of
users and their rights. If the user has the correct rights, he or she can perform
the desired operation. The Java Development Kit 1.2 provides a robust security
model that allows for authentication (identifying that the user is who he or she
claims to be) and authorization (identifying that the user is of the correct role
to perform the desired operation).

EJB containers add transparent security to this. Rather than programmatically
accessing a security API, enterprise beans can automatically run as a certain
security identity. Alternatively, enterprise beans can programmatically ensure
that clients are authorized to perform desired operations.

Persistence

As we’ve mentioned earlier in the chapter, entity beans are persistent objects
that represent data in an underlying storage. EJB containers can provide the
transparent persistence of container-managed persistent entity beans. Note that
while the EJB 1.0 specification does not require that containers manage persis-
tence for beans, it is required in the 1.1 specification. We’ll see more about how
EJB persistence works in Part II.

Remote Accessibility and Location Transparency

Remote accessibility is the conversion of a network-naive component into a fully
networked component that can be invoked remotely. Enterprise JavaBeans in-
sulates the bean provider from all networking issues. Beans are written as stand-
alone, nonnetworked components. But once they are deployed in the EJB realm,
they become distributed components, deployable across multiple tiers.

EJB containers use the Java Remote Method Invocation (RMI) interfaces to
specify remote accessibility, which you can learn about by reading Appendix
A. The benefit of distributed communication technologies such as RMI is that
your client code is unaware of the physical location of the component it is call-
ing. The component could be located across the world, on a local area network

65Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

right next door to you, or on the client’s machine itself. It could even reside in
the client code’s address space (such as an application server that supports Java
servlets and enterprise beans in a single JVM). Whatever is the case, the client
should be totally unaware of where the component really is—whether the com-
ponent is local or remote should be transparent to the client. This is known as
location transparency.

Why is location transparency beneficial? Well, for one thing, you aren’t writing
your bean’s client code to take advantage of a particular deployment configu-
ration because you’re not hard-coding machine locations. This is an essential
part of reusable components that can be deployed in a wide variety of multi-
tier situations.

Location transparency also enables container vendors to provide additional
value-adds, such as the ability to take a machine on the network down tempo-
rarily to perform system maintenance, to install new software, or to upgrade
the components on that machine. During maintenance, location transparency
allows for another machine on the network to serve up components for a
component’s client because that client is not dependent on the hard locations
of any components. If a machine that has components on it crashes due to hard-
ware or software error, you may be able to reroute client invocations to other
machines without the client even knowing about the crash, allowing for an en-
hanced level of fault-tolerance.

Glue-Code and Bean Installation Tools

Each EJB container ships with a suite of glue-code tools. These tools are meant
to integrate beans into the EJB container’s environment. The tools generate
helper Java code, such as stubs, skeletons, data access classes, and other classes
that this specific container requires. Bean providers do not have to think about
the specifics of how each EJB container works because the container’s tools
generate its own proprietary Java code automatically.

The container’s glue-code tools are responsible for transforming an enterprise
bean into a fully managed, distributed server-side component. This involves logic
to handle resource management, life cycle, state management, transactions,
security, persistence, and remote accessibility—every service we’ve mentioned
so far. The automatic code generated handles these services in the container’s
proprietary way.

Specialized Container Features

Beyond the normal duties of a container, specialized containers can provide
additional qualities of service that are not required by the EJB 1.0 specification.
Most vendors have several different versions of their containers for sale, allowing

66 M A S T E R I N G E N T E R P R I S E J A V A B E A N S

Go back to the first page for a quick link to buy this book online!

customers to pay for what they get. These services help differentiate EJB con-
tainer vendors, allow for innovation, and foster best-of-breed products. They also
add an element of danger. If a bean depends on particular qualities of service, it
may not run in other containers.

For example, let’s take the case of a load-balancing service. Load-balancing is
the fair selection of components on behalf of their clients. These components
may reside in many containers, housed in multiple EJB servers, distributed
across the network. Given the fact that N-tier deployments can vary widely in
the actual physical locations of components, the actual load-balancing algorithm
is implementation dependent. This allows a lot of creativity for the EJB container
provider. For example, some containers may provide a way to perform customized
load balancing between distributed components. The customized load-balancer
might be tunable for particular deployments and might make the overall sys-
tem more scalable.

A high-end EJB container may also provide dynamic resizing of managed re-
sources and components. For example, if clients are less active at night than
during the day, perhaps a smaller pool of resources is necessary at night. Some
EJB containers may be intelligent enough to allow for this dynamic resizing of
pools, yielding precious machine resources to be used for other purposes.

Other examples of specialized container functions could include the following:

�� Integration to mainframe systems

�� COM+ integration

�� Transparent fail-over

�� Stateful recovery

�� Web server, servlet, and JSP support within the container

�� Server clustering

�� Dynamic redeployment of components in a running system

�� Support for a variety of persistence mechanisms, including relational and
object databases

�� Shared object caches to improve the number of times a database needs to
be accessed

�� Sophisticated monitoring support

�� Distributed transactions

�� Resolution of the transactional distributed diamond problem

�� Complex database persistence services

�� Visual development environment integration

67Enterprise JavaBeans Overview

Go back to the first page for a quick link to buy this book online!

�� Integrated XML facilities

�� CORBA integration and support

These are merely examples of the variety of services that a vendor could choose
to add. The key idea to keep in mind when choosing to use services such as these
is whether the services lock you into a particular vendor. If so, you need to ask
yourself if that’s a safe bet and if you want your components to be deployable
across a variety of middleware vendor products.

Summary

In this chapter, we’ve taken a whirlwind tour of Enterprise JavaBeans. We started
by looking at how EJB promotes a divide-and-conquer approach to server-side
computing by defining the roles of six parties in a successful EJB deployment.
We then went into what an enterprise bean is, and we looked at the different
kinds of beans, including session and entity beans, and their subtypes. We ana-
lyzed the trade-offs of when it was appropriate to use each kind of bean.

Finally, we took a look at the responsibilities of the EJB container and server.
We examined the services containers provide to distributed server-side compo-
nents, such as resource management, state management, and location transpar-
ency.

And congratulations—you’ve made it to the end of Part I! In these two chap-
ters, you’ve taken the first steps necessary to understanding and mastering
Enterprise JavaBeans. Now that you understand the high-level concepts, let’s
move on and begin programming with EJB.

