Exersice 1: Consider the following data points $[1, 0]^T$, $[1, 1]^T$, $[0, 1]^T$, $[0, 0]^T$. The first two of them stem from class ω_1 (+1), while the remaining stem from class ω_2 (-1).

- Use the perceptron algorithm (with $\rho = 1$) to determine a linear classifier for the problem.
- What would be the behavior of the perceptron algorithm if $[1, 0]^T$, $[0, 1]^T$ were stem from class ω_1 (+1) and $[0, 0]^T$, $[1, 1]^T$ were stem from ω_1 (+1)?

Exersice 2: Consider the following data points $[1, 1]^T$, $[-2, -1]^T$, $[-1, -2]^T$, $[-3, -3]^T$, $[-1, -1]^T$, $[1, 2]^T$, $[2, 1]^T$, $[3, 3]^T$. The first four of them stem from class ω_1 (+1), while the remaining stem from class ω_2 (-1).

- Determine the optimal linear classifier with respect to (a) the sum of squares error criterion and (b) the mean squared error criterion. Comment on the resulting classifiers
- For each classifier, classify the points $[0, 0]^T$, $[1, 0]^T$ and $-1, 0]^T$.

Exersice 3: Consider the following data points $[1, 1]^T$, $[-1, 1]^T$, $[-1, -1]^T$, $[1, -1]^T$. The first two of them stem from class ω_1 (+1), while the remaining stem from the class ω_2 (-1).

- Determine the optimal support vector machine (SVM) classifier.
- Classify the points $[0.5, 0]^T$ and $[0, -0.5]^T$.

April 27, 2015