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Summary

Software reliability is a critical component of computer system availability, so it is
important that Tandem's customers experience a small number of software failures in their
production environments. Software reliability growth models can be used as an indication
of the number of failures that may be encountered after the software has shipped and thus
as an indication of whether the software is ready to ship. These models use system test data
to predict the number of defects remaining in the software. Software reliability growth
models have been applied to portions of several releases at Tandem over the past few years.
This experimental research has provided some insights into these models and their utility.
The utility of a software reliability growth model is related to its stability and predictive
ability. Stability means that the model parameters should not significantly change as new
data is added. Predictive ability means that the number of remaining defects predicted by
the model should be close to the number found in field use. The major results from the
research are:

• While still in the experimental stage, software reliability growth models can be used at
Tandem to provide reasonable predictions of the number of defects remaining in the field.
The model results are shown below and appear to be extremely good. However, no single
methodology has been consistently used to make the predictions. We have had to modify
the data or model technique for each different release, e.g., developing a special 2-stage
model for release 2 and 3, so no single methodology seems capable of capturing all the
variability of different releases.

Release Predicted Residual Defects
1 33

2/3 33
4 10

• Simple models perform as well or better than complex models. We evaluated 9 different
software reliability growth models that appear in the literature, and the simple exponential
model outperformed the other models in terms of both stability and predictive ability.
• Execution (CPU) time is the best measure of the amount of testing. Using calendar time
or number of test cases to measure the amount of testing did not provide credible results.
• Problem reports were a good surrogate for defects. This enhances our ability to make
real-time decisions during the test phase because we do not have to wait until problems can
be analyzed to determine if they are new defects or rediscoveries of known defects.
• Grouped (weekly) data was sufficient for the models. There is no need to have daily logs
of defects and execution time.
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Software Reliability Growth Models

"All Models are Wrong - Some are Useful."
George E. P. Box

1.0 Introduction

For critical business applications, continuous availability is a requirement. and software
reliability is an important component of continuous application availability. Tandem
customers expect continuous availability, and our process pair technology protects us from
most transient software defects. However, rare kinds of single software defects can cause a
system failure [Lee,93]. To avoid these failures and to decrease software support costs,
Tandem needs to deliver reliable software.

Developing reliable software is one of the most difficult problems facing the software
industry. Schedule pressure, resource limitations, and unrealistic requirements can all
negatively impact software reliability. Developing reliable software is especially hard when
there is interdependence among the software modules as is the case with much of existing
software. It is also a hard problem to know whether or not the software being delivered is
reliable. Mter the software is shipped, its reliability is indicated by from customer feedback
- problem reports, system outages, complaints or compliments, and so forth. However, by
then it is too late; software vendors need to know whether their products are reliable before
they are shipped to customers. Software reliability models attempt to provide that
information.

There are essentially two types of software reliability models - those that attempt to predict
software reliability from design parameters and those that attempt to predict software
reliability from test data. The first type of models are usually called "defect density" models
and use code characteristics such as lines of code, nesting of loops, external references,
input/outputs, and so forth to estimate the number of defects in the software. The second
type of models are usually called "software reliability growth" models. These models
attempt to statistically correlate defect detection data with known functions such as an
exponential function. If the correlation is good, the known function can be used to predict
future behavior. Software reliability growth models are the focus of this report.

Most software reliability growth models have a parameter that relates to the total number of
defects contained in a set of code. If we know this parameter and the current number of
defects discovered, we know how many defects remain in the code (see Figure 1-1).
Knowing the number of residual defects helps us decide whether or not the code is ready to
ship and how much more testing is required if we decide the code is not ready to ship. It
gives us an estimate of the number of failures that our customers will encounter when
operating the software. This estimate helps us to plan the appropriate levels of support that
will be required for defect correction after the software has shipped and determine the cost
of supporting the software.

Software reliability growth models have been applied to portions of four software releases
at Tandem over the past 4 years. This research, while still experimental, has provided a
number of useful results and insights into software reliability growth modeling. This report
describes the methodology we used and the results obtained from modeling Tandem
software.
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Figure I-I. Residual Defects

Defects Discovered

1. 1 Background

Software quality is very important at Tandem, but being a commercial company, we don't
follow the rigid defense and aerospace software development process, e.g., DOD2167A.
We do, however, have a product life cycle, complete with product requirements
documents, external and internal specifications, design reviews, code inspections, and so
forth. Each product development group has a development organization and a quality
assurance (QA) organization. The development organization is responsible for developing
the software and performing unit tests. The QA organization is responsible for developing
test software and performing integration and system test. When the development
organization is satisfied with the functionality and quality of the product, it delivers the
software to the QA organization for test. This release milestone is called release to QA
(RQA). When the QA organization is satisfied with the functionality and qUality of the
product, it approves the software for shipment, a milestone called QAOK.

Failures found in the development or test process are reported using Tandem Problem
Reports (TPRs). In theory all failures should be reported using TPRs. However, when
coding and unit testing the software, it might take a developer longer to submit a TPR than
to fix the problem and retest. Therefore, developers do not usually submit TPRs for their
own products until after RQA. After a product has reached the RQA point, all failures of
that product are required to be reported via TPRs. Therefore, we have good defect data
reporting after RQA. During development or test, a product group may experience a failure
of another product. These failures are also reported using TPRs, so TPRs may come from
sources other than the product test group.

TPRs are reported against the release that is being tested. It is possible that a defect was put
into the software in a previous release and was not found until a later release, but it is very
difficult to determine the exact time when an error was made. It is also possible that the
original code was not defective until other parts of the code changed. Reporting defects
against the release in which they are found may over count defects that should have been
attributed to a previous release, but it should similarly under count defects from the current
release that are not found until later releases. It also replicates the way customers view the
release.
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There are different types of Tandem software releases. Some are large modifications to
many products, some are minor modifications to some products, and some are defect repair
for only one or a few products. The major software releases follow the product life cycle
process and have large, coordinated QA efforts from most QA groups. We applied
software reliability modeling to these major releases. Interim releases and defect repair do
not always follow a complete life cycle and QA process. The processes are tailored to fit the
amount of change in the release. There is considerable variability in these types of releases,
and we did not attempt to model them.

There are many different software reliability growth models, and many different ways to
represent the data that is used to create those models. The current software reliability
literature is inconclusive as to which models and techniques are best, and some researchers
believe that each organization needs to try several approaches to determine what works best
for them. This effort is an ongoing experimental effort that attempts to determine the best
approach for Tandem. For the models to be useful, they must add value to the corporate
decision making process, e.g., they are used to help determine when to ship a product or
size the sustaining effort after the product is shipped. In order for the results to be used for
these types of corporate decisions, the results must be stable and must predict the field
failure rate with reasonable accuracy (see Section 2.5).

Terminology

As defined by IEEE, an error is a human action that results in afauIt. Encountering a fault
during system operation can cause afai/ure. A bug is synonymous with fault, and a defect
is very similar. This paper follows those defmitions. The words defect and bug are used to
mean code that does not satisfy the user requirements, either because a requirement is
incorrectly designed or implemented (the vast majority) or was not implemented. A failure
is what a customer or tester encountered that caused them to report the defect.

1.2 Approach and Organization

Software reliability growth models have been applied to portions of several releases over
the past few years. Since this document is accessible by non-Tandem employees, the
specific products and releases are not mentioned and the data has been appropriately
transformed. The models have been applied to the QA test period - from RQA to QAOK.
The purpose of this report is to describe Tandem's experience with reliability growth
models over the past few years. The report contains the data we gathered and the
techniques used to analyze the data. Section 2 presents software reliability growth model
theory while Section 3 describes Tandem's experience with various models and techniques.
Section 2.1 describes the data necessary for software reliability growth models, and
Section 2.2 presents several model types. In Section 2.3, different statistical techniques for
model parameter evaluation are presented. Section 2.4 introduces some ideas for evaluating
model utility. Section 3.1 presents the raw data used for the models. Section 3.2 presents
the basic results we achieved and our evaluation of the model utility. Sections 3.3-3.8
present the results obtained by varying model parameters.

There are many variables to be considered in developing a software reliability growth
model methodology. These variables are listed in Table 1-1. We have experimented with
many combinations of these variables over the last few years, and the results of those
experiments are also shown in Table 1-1. The sections of the report that describe the
parameters and contain the results of varying them are also shown in the table.
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Parameter Options Result Summary Report Section
Amount of Execution (CPU) time Execution time is the 2.1.1, 3.3
Testing Calendar time only option that works

Number of test cases
Defect Data Defects TPRs are a good 2.1.2, 3.4

TPRs surrogate for defects
Grouped Data Defect occurrence time Grouped data works fine 2.1.3, 3.7

Weekly (grouped) summary and is easier to collect
Growth Many (Table 2-1) Simple exponential (G- 2.2, 3.5
Model Type 0) model works best
Statistical Maximum likelihood Alternative least squares 2.3, 3.6
Technique Classical least squares provides the best point

Alternative least squares estimates. Maximum
l~elihoodispreferred

for confidence intervals.

Table 1-1. Model Parameter Options

2.0 Software Reliability Growth Models

Reliability is usually defined as the probability that a system will operate without failure for
a specified time period under specified operating conditions. Reliability is concerned with
the time between failures or its reciprocal, the failure rate. In this report we are considering
data from a test environment, so we report defect detection rate rather than failure rate. A
defect detection is usually a failure during a test, but test software may also detect a defect
even though the test continues to operate. Defects can also be detected during design
reviews or code inspections, but we do not consider those sorts of activities in this report.
Time in a test environment is a synonym for amount of testing, which can be measured in
several ways. Defect detection data consists of a time for each defect or group of defects
and can be plotted as shown in Figure 2-1. We can derive defect detection rates from this
data.

Number
of

Defects

Test Time

Figure 2-1. Example Defect Detection Data
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A cumulative plot of defects vs amount of testing such as Figure 2-1 should show that the
defect discovery rate decreases as the amount of testing increases. The theory is that each
defect is fixed as it is discovered. This decreases the number of defects in the code, so the
defect discovery rate should decrease (the length of time between defect discoveries should
increase). When the defect discovery rate reaches an acceptably low value, the software is
deemed suitable to ship. However, it is difficult to extrapolate from defect discovery rate in
a test environment to failure rate during system operation, primarily because it is hard to
extrapolate from test time to system operation time. Instead, we look at the expected
quantity of remaining defects in the code. These residual defects provide an upper limit on
the number of unique failures our customers could encounter in field use.

Software reliability growth models are a statistical interpolation of defect detection data by
mathematical functions. The functions are used to predict future failure rates or the number
of residual defects in the code. There are different ways to represent defect detection data as
discussed in Section 2.1. There are many types of software reliability growth models as
described in Section 2.2, and there are different ways to statistically correlate the data to the
models as discussed in Section 2.3. Current software reliability literature is inconclusive as
to which data representation, software reliability growth model, and statistical correlation
technique works best. The advice in the literature seems to be to try a number of the
different techniques and see which works best in your environment. In Section 3, we
describe the application of the techniques in the Tandem environment.

2. 1 Software Reliability Growth Model Data

There are two relevant types of data for software reliability growth models. The first is the
time at which the defect was discovered, discussed in Section 2.1.1, and the second is the
number of defects discovered, discussed in Section 2.1.2. Aggregated or grouped data is
described in Section 2.1.3.

2.1.1 Test Time Data

For a software reliability growth model developed during QA test, the appropriate measure
of time must relate to the testing effort. There are three possible candidates for measuring
test time:

- calendar time
- number of tests run
- execution (CPU) time.

Test time can simply be calendar time, particularly if there is a dedicated test group that
continuously runs the test machines. However, the test effort is often asynchronous, so
number of tests run or execution time is normally used in place of calendar time. Number
of tests run would be a good measure if all tests had a similar probability of detecting a
defect, but often that is not the case. We have some test suites that execute 100 tests in an
hour and other more sophisticated tests that take 24 hours to execute. The longer test cases
usually stress the software more and thus have a higher probability of finding a defect per
test case run. We have developed software reliability growth models using calendar time,
number of tests, and execution (CPU) time as a measure of time. The results, showing that
execution time is the best measure of test time, are described in Section 3.3.

2 . 1 .2 Defect Data

At Tandem, potential defect discoveries are recorded as Tandem Problem Reports (TPRs).
TPRs are analyzed by software developers to determine if a new defect has been detected.
TPRs are not always defects because they may represent a non-defect and because multiple
people or groups may discover the same defect. Non-defect TPRs can represent confusion
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about how to use a set of software or what the software is supposed to produce. These
TPRs are not counted as defects and are usually closed with a notation that a question has
been answered or that the software performed as expected. Defects that have been found by
multiple people or groups are usually called duplicates or rediscoveries. Rediscoveries are
not included in the defect counts since the original defect report is counted. TPRs that do
not represent new defects (non-defects and rediscoveries) are called "smoke" by software
developers. The amount of smoke generated during QA test varies over time and by
release, but 30-40% of all TPRs is a good estimate of the number of smoke TPRs. The
large percentage of smoke TPRs is caused by significant parallel usage for the products
under test, resulting in duplicate TPRs. The amount of smoke after the software is shipped
to customers is usually higher since many different customers may encounter the same
failure.

TPRs are classified as to the severity of the defect. The severities range from 3 (most
severe) to 0 (least severe). The severity levels are assigned depending on how urgently the
customer needs a solution as shown below.

Severity
o
1
2
3

Customer Impact
No Impact: Can tolerate the situation indefInitely.
Minor: Can tolerate the situation, but expect solution eventually.
Major: Can tolerate the situation, but not for long. Solution needed.
Critical: Intolerable situation. Solution urgently needed.

Only severity 2 and 3 defect data are used for the software reliability growth models. This
is because the models are based on QA testing, and test personnel usually only submit
severity 2 and 3 TPRs because severity 0 and 1 TPRs do not usually impact their testing.
Therefore, it would not be possible to predict severity 0 and 1 defect rates based on the test
data.

Defect only TPRs (no smoke) represent the number of unique defects in the code and are
thus the appropriate data to use in software reliability growth models. However, it is useful
to model total TPRs as a surrogate for defects because it takes time to analyze a TPR and
determine if the TPR is a new defect or smoke. Our estimates are that 50% of the TPRs are
analyzed within 1 week and 90% are analyzed within 2 weeks. Therefore, reliable defect
data lags total TPR data by about 2 weeks. If we are trying to make a decision about
shipping the software, we want to use the most current data, not data that is 2 weeks old,
so a model based on TPRs is valuable if it provides a reasonable prediction for residual
defects. Most of this report describes models that were developed using software defect
data. However, in Section 3.4, we describe the results of modeling TPRs instead of unique
defects.

2.1.3 Grouped Data

The best possible data would be a list of the failure occurrence times, where time may mean
calendar time, execution time, or test case number. Unfortunately, we are only able to
gather weekly or "grouped" data, that is, we know the amount of failures and test time that
occurred during a week. TPRs have a time stamp that indicates when they are fIled, but QA
personnel sometimes batch their work and may not submit the TPRs found during a week
of testing until the end of the week. Therefore, the TPR time stamps are unreliable on a
daily basis but are reliable on a weekly basis. We have done experiments by randomizing
our weekly data to create exact failure occurrence times, and it appears that the model
results are the same for either grouped data or exact failure occurrence times (see Section
3.7).
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2.2 Software Reliability Growth Model Types

Software reliability growth models have been grouped into two classes of models 
concave l and S-shaped. These two model types are shown in Figure 2-2. The most
important thing about both models is that they have the same asymptotic behavior, i.e., the
defect detection rate decreases as the number of defects detected (and repaired) increases,
and the total number of defects detected asymptotically approaches a finite value. The
theory for this asymptotic behavior is that:
(1) A finite amount of code should have a finite number of defects. Repair and new

functionality may introduce new defects, which increases the original finite number of
defects. Some models explicitly account for new defect introduction during test while
others assume they are negligible or handled by the statistical fit of the software
reliability growth model to the data.

(2) It is assumed that the defect detection rate is proportional to the number of defects in the
code. Each time a defect is repaired, there are fewer total defects in the code, so the
defect detection rate decreases as the number of defects detected (and repaired)
increases. The concave model strictly follows this pattern. In the S-shaped model, it is
assumed that the early testing is not as efficient as later testing, so there is a ramp-up
period during which the defect detection rate increases. This could be a good
assumption if the first QA tests are simply repeating tests that developers have already
run or if early QA tests uncover defects in other products that prevent QA from finding
defects in the product being tested. For example, an application test may uncover as
defects that need to be corrected before the application can be run. Application test
hours are accumulated, but defect data is minimal because as defects don't count as
part of the application test data. After the as defects are corrected, the remainder of the
application test data (after the inflection point in the S-shaped curve) looks like the
concave model.

Number
of

Defects

Number
of

Defects

Concave

Test Time

Figure 2-2. Concave and S-Shaped Models

S-Shaped

Test Time

There are many different representations of software reliability models. In this paper we
use the model representation shown in Figure 2-2. This representation shows the expected
number of defects at time t and is denoted Jl(t), where t can be calendar time, execution

time, or number of tests executed as described in Section 2.1. An example equation for Jl(t)
is the Goel-Okumoto (G-O) model:

1The word concave is used for this class of models because they are all concave functions, i.e.,
continually bending downward. Functions that bend upward are called convex functions. S
shaped functions are first convex and then concave.
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J.1(t) = a(l-e-bt), where
a = expected total number of defects in the code
b = shape factor = the rate at which the failure rate decreases, i.e., the rate at which

we approach the total number of defects.

The Goel-Okumoto model is a concave model, and the parameter "a" would be plotted as
the total number of defects in Figure 2-2. The Goel-Okumoto model has 2 parameters;

other models can have 3 or more parameters. For most models, J.L(t) = aF(t), where a is the
expected total number of defects in the code and F(t) is a cumulative distribution function.

Note that F(O) = 0, so no defects are discovered before the test starts, and F(00) = 1, so

J.1(00) = a and a is the total number of defects discovered after an infinite amount of testing.
Table 2-1 provides a list of the models that were evaluated as part of this effort. A
derivation of the properties of most of these models can be found in [Musa,87].

Model Name Model Type J.L(t) Reference Comments

Goel-Oku Concave a(l_e-bt) Goel,79 Also called Musa model or
moto (G-O) a;:::O,b>O exponential model

G-OS- S-Shaped a(1-(1+bt)e-bt) Yamada,83 Modification of G-O model
Shaped a;:::O,b>O to make it S-shaped

(Gamma function instead of
exponential)

Hossain- Concave a( l-e-bt)/(1+ce-bt) Hossain,93 Solves a technical condition
Dahiya/G-O a;:::O,b>O,c>O with the G-O model.

Becomes same as G-O as c
approaches O.

Gompertz S-Shaped t Kececioglu, Used by Fujitsu, Numazu
a(bc

) 91 Works
a~O,Og,:::;I,O<c<1

Pareto Concave a(l-(l +t/~)l-a Littlewood, Assumes failures have
81 different failure rates and

a;:::O,~>O,O:::;a:::;1 failures with highest rates
removed first

Weibull Concave a(l_e-btC) Musa,87 Same as G-O for c=1

a~O,b>O,c>O

Yamada Concave a( l-e-ra( l-e-~t») Yamada,86 Attempts to account for
Exponential testing effort

a;:::O,ra>O,~>O

Yamada S-Shaped ( ~t2/2) Yamada,86 Attempts to account for
Raleigh a(l-e-ra( l-e - ») testing effort

a;:::O,ra>O,~>O

Log Poisson Infmite (l/c)ln(cat+l) Musa,87 Failure rate decreases but
Failure does not approach 0

c>O,a>O

Table 2-1. Software Reliability Growth Model Examples

The Log Poisson model is a different type of model. This model assumes that the code has
an infinite number of failures. Although this is not theoretically true, it may be essentially
true in practice since all the defects are never found before the code is rewritten, and the
model may provide a good fit for the useful life of the product.

8



The models all make assumptions about testing and defect repair. Some of these
assumptions seem very reasonable, but some are questionable. Table 2-2 contains a list and
discussion of these assumptions.

Assumption Reality
Defects are repaired Defects are not repaired immediately, but this can be partially
immediately when accommodated by not counting duplicates. Test time may be artificially
they are discovered accumulated if a non-repaired defect prevents other defects from being

found.
Defect repair is Defect repair introduces new defects. The new defects are less likely to
perfect be discovered by test since the retest for the repaired code is not

usually as comprehensive as the original testing.
No new code is New code is frequently introduced throughout the entire test period,
introduced during both defect repair and new features. This is accounted for in parameter
QA test estimation since actual defect discoveries are used, but may change the

shape of the curve, i.e., make it less concave. The multi-stage model,
discussed in Section 2.4, is an attempt to account for new code
introduction.

Defects are only Defects are reported by lots of groups because of parallel testing
reported by the activity. Ifwe add the test time for those groups, we have the problem
product testing of equivalency between an hour of QA test time and an hour of test
group time from a group that is testing a different product. This can be

accommodated by restricting defects to those discovered by QA, but
that eliminates important data. This problem means that defects do not
correlate perfectly with test time.

Each unit of time This is certainly not true for calendar time or test cases as discussed
(calendar, earlier. For execution time, "corner" tests sometimes are more likely to
execution, number find defects, so those tests create more stress on a per hour basis.
of test cases) is When there is a section of code that has not been as thoroughly tested
equivalent as other code, e.g., a product that is under schedule pressure, tests of

that code will usually find more defects. Many tests are rerun to ensure
defect repair has been done properly, and these reruns should be less
likely to find new defects. However, as long as test sequences are
reasonably consistent from release to release, this can be accounted for
if necessary from lessons learned on previous releases.

Tests represent Customers run so many different configurations and applications that
operational profIle it is difficult to define an appropriate operational profile. In some

cases, the sheer size and transaction volume of the production system
makes the operational environment impractical to replicate. The tests
contained in the QA test library test basic functionality and operation,
error recovery, and specific areas with which we have had problems in
the past. Additional tests are continually being added, but the code also
learns the old tests, i.e., the defects that the old tests would have
uncovered have been repaired.

Failures are Our experience is that this is reasonable except when there is a section
independent of code that has not been as thoroughly tested as other code, e.g., a

product behind schedule that was not thoroughly unit tested. Tests run
against this section of code may fmd a disproportionate share of
defects. [Musa,87,P242] has a detailed discussion of the
independence assumption.

Table 2-2. Software Reliability Model Assumptions

9



It is difficult to detennine how the violation of the model assumptions will affect the
models. For instance, introducing new functionality may make the curve less concave, but
test reruns could make it more concave. Removing defects discovered by other groups
comes closer to satisfying the model assumptions but makes the model less useful because
we are not including all the data (which may also make the results less statistically valid). In
general, small violations probably get lost in the noise while significant violations may
force us to revise the models, e.g., see the discussion of Release 4 test hours at the end of
Section 3.1. Given the uncertainties about the effects of violating model assumption, the
best strategy is to try the models to see what works best for a particular style of software
development and test.

Multi-Stage Models

One of the assumptions made by all the models is that the set of code being testing is
unchanged throughout the test period. Clearly, defect repair invalidates that assumption,
but it is assumed that the effects of defect repair are minimal so that the model is still a good
approximation. If a significant amount of new code is added during the test period, there is
a technique that allows us to translate the data to account for the increased code change.
Theoretically, the problem is that adding a significant amount of changed code should
increase the defect detection rate. Therefore, the overall curve will look something like
Figure 2-3, where D 1 defects are found in T1 time prior to the addition of the new code and
an additional D2-D1 defects are found in T2-T1 time after that code addition. The problem is

to translate the data to a model Jl(t) that would have been obtained if the new code had been
part of the software at the beginning of the test. This translation is discussed in Chapter 15

of [Musa,87]. Let Jll (t) model the defect data prior to the addition of the new code, and let

Jl2(t) model the defect data after that code addition. The model Jl(t) is created by

appropriately modifying the failure times from Ill(t) and 1l2(t). This section describes how

to perform the translation assuming Il(t), III (t), and 1l2(t) are all G-O models. In theory,
this technique could be applied to any of the models in Table 2-1, including the S-shaped
models.

Number
of

Defects

Test Time

Figure 2-3. Two Stage Model Transformation
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Assume that model J..L1 (t) applies to the time period 0-T1and that model J..L2(t) applies to the
time period from T 1-T2 as shown in Figure 2-3. The first step in the translation is to

determine the parameters ofthe models J..L1(t) and J..L2(t) to get J..L1(t) = a1(1-e-b1t) and J..L2(t) =

a2( 1_e-b2t). The calculations for J..L1 (t) are the standard techniques described in Section 2.3

using the data in time period 0-Tl' The calculations for J..L2(t) are also the standard
techniques assuming that the test started at time T1 and produced Dr D1defects. In other
words, subtract D1from the cumulative defects and subtract T} from the cumulative time

when calculating J..L2(t).

The next step is to calculate the translated time for the defects observed prior to the insertion
of the new code. The time for each defect is translated according to the following equation
(equation 15.18 in [Musa,87]).

1:j = (-llb2)ln{1-(a1/a2)(1-e-blti)}

Next, calculate the translated time for the defects observed after the insertion of the new
code. Start by calculating the expected amount of time it would have taken to observe D1
defects if the new code had been part of the original code released at the start of the test.2

This time 1: is calculated from D1= a2(l-e-bit) or 1: =(-llb2)ln{ 1-D1/a2}' This time should
be shorter than T1because the failure rate would have been higher at the start of test if there
were more defects at the start of test. Then all failure times from the T1-T2 time period are

translated by subtracting T1-1:, i.e., 1:j = 1j-(T1-1:). This essentially translates the defect times
in the T 1-T2 time period to the left, meaning that we would have expected to have found
more defects earlier if there were more to find at the beginning of the test.

Finally, we use the standard techniques from Section 2.3 to determine the parameters a and
bin J..L(t) = a(1_e-bt), where the defect times are adjusted as described previously. The
adjustments made to the failure times provide the failure times that would have theoretically
been observed if the new code had been released at the beginning of the test rather than part
of the way through the test.

2.3 Parameter Estimation

A software reliability model is a function such as those shown in Table 2-1. Fitting this
function to the data means estimating its parameters from the data. One approach to
estimating parameters is to input the data directly into equations for the parameters. The
most common method for this direct parameter estimation is the maximum likelihood
technique described in Section 2.3.1. A second approach is fitting the curve described by
the function to the data and estimating the parameters from the best fit to the curve. The
most common method for this indirect parameter estimation is the least squares technique.
The classical least squares technique is described in Section 2.3.2. and an alternative
squares technique is described in Section 2.3.3. The alternative least squares technique was
used most often since it provided the best results. A comparison of the results obtained by
using each of these techniques is described in Section 3.6.

2Actually, this step is slightly more complicated. 01 is replaced by the expected number of
defects observed in T} according to modelll} (t), i.e., 01 is replaced by III (TI)' In our experience, O}
and III (T1) are essentially identical.
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2.3.1 Maximum Likelihood

The maximum likelihood technique consists of solving a set of simultaneous equations for
parameter values. The equations define parameter values that maximize the likelihood that
the observed data came from a distribution with those parameter values. Maximum
likelihood estimation satisfies a number of important statistical conditions for an optimal
estimator and is generally considered to be the best statistical estimator for large sample
sizes. Unfortunately, the set of simultaneous equations it defines are very complex and
usually have to be solved numerically. For a general discussion of maximum likelihood
theory and equation derivation, see [Mood,74] and [Musa,87]. Here, we only show the
equations that must be solved to provide parameter estimates and confidence intervals for
the Goel-Okumoto (G-O) model.

The expected number of defects for the G-O model is
Jl(t) = a(1_e-bt), where
a = expected total number of defects in the code
b = shape factor = the rate at which the failure rate decreases.

From Equation (12.117) of [Musa,87], the parameter b can be estimated by solving:
(1) LW (f.-f. )(t.e-blj _ t . e-bt;-')/(e-bti_e-bti-')=f t 1(I_ebtW) where

j =1 1 1-1 1 '1-1 W W '

W = current number of weeks of QA test
~ = cumulative test time at the end of the ith week
fj = cumulative number of failures at the end of the ith week.

From Equation (12.134) of [Musa,87], the a per cent confidence interval (e.g., 95%) for b
is given by:
(2) b ± ZI_an!(Io(b))o.s, where

ZI-al2 is the value of the standard Normal, e.g., 1.645 for 90% confidence interval,
lo(b) = L

j

W=1(f
j

- f
j
_1)(tj

- ~_1)2e-b(lj +ti-')/(e-btj-,_ e-btj)2 _fwtw2ebtwI(eblw _ 1)2

The parameter a and its confidence interval can then be estimated by solving:
(3) a = fw!(1 - e-btw ), where b is one ofthe values obtained above.

When implementing these equations, equation (1) is solved numerically to derive an
estimate of b, and the appropriate confidence interval for b is then calculated from (2). The
parameter a is then estimated using (3) and the estimate of b. Confidence intervals for a are
calculated using (3) and the values from (2).

2.3.2 Classical Least Squares

The maximum likelihood technique solves directly for the optimal parameter values. The
least squares method solves for parameter values by picking the values that best fit a curve
to the data. This technique is generally considered to be the best for small to medium
sample sizes. The theory of least squares curve-fitting (see [Mood,74]) is that we want to
find parameter values that minimize the "difference" between the data and the function
fitting the data, where the difference is defined as the sum of the squared errors. The
classical least squares technique involves log likelihood functions and is described in
[Musa,87,Section 12.3]. From [Musa,87,Equation 12.141], the expression to be
minimized for the G-O model is
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(4) L
j

W
=/In((fj-fj_l)/(~-tj_l))-ln(b) -In(a-fD)2, where, as in Section 2.3.1,

w =current number of weeks of QA test
~ =cumulative test time at the end of the ith week
fj=cumulative number of failures at the end of the ith week.

Confidence intervals are given by [Musa, p. 358] as:

(5) a ± tw-2,etJ2 (Var(a»O.5 where

tw-2,aJ2 is the upper a/2 percentage point of the t distribution with w-2 degrees of
freedom

Var(a) is the variance of a; calculation of the variance is described in Appendix 1.

The confidence interval for b is the same as the above equation with b replacing a. These
confidence intervals are derived by assuming that a and b are normally distributed. Note
that the confidence intervals are symmetric in contrast to the asymmetric confidence
intervals provided by maximum likelihood.

2.3.3 Alternative Least Squares

An alternative approach to least squares is to directly minimize the difference between the
observed number of failures and the predicted number of failures. For this approach the
quantity to be minimized is:

(6) Lj
W=/fj - J..1(tj»2, where, as in Section 2.3.1,

w =current number of weeks of QA test

J..1(~) = the cumulative expected number of defects at time ~

~ = cumulative test time at the end of the ith week
fj= cumulative number of failures at the end of the ith week.

This technique is easy to use for any software reliability growth model since the
minimization can be done by an optimization package such as the Solver in Microsoft®
Excel. It is not normally described in textbooks because it does not lead to a set of
equations that can be solved, but with the increased availability of optimization packages,
the minimization can be solved directly instead of reducing it to a set of equations. Note that
any of software reliability growth models from Table 2-1 can be used in this equation by
using the appropriate J..1(t). For the G-O model, Equation (6) becomes:

Confidence intervals for the parameters in Equation (7) are the same as for classical least
squares and are given by Equation (5). The calculations required for these confidence
intervals is described in Appendix 1. Note that these confidence intervals are symmetric.

2.3.4 Solution Techniques and Hints

The Solver in Microsoft® Excel was used to solve the minimizations defined in the
preceding sections. However, since these are non-linear equations, the solution found may
not be appropriate (a local optimum rather than a global optimum) or it may not be possible
to determine a solution in a reasonable amount of time. To help avoid this problem, it is
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useful to define parameter values that are close to the final values. This may require some
experimentation prior to running the optimization. Ifa solution has been obtained using the
previous week's data, those parameter values are usually a good starting point. If this is the
first attempt to solve the minimization, parameter values should be selected that provide a
reasonable match to the existing data. This is easy to do in a spreadsheet with one column
of data and a second column of predicted values based on a given function and the chosen
parameter values.

Transforming the test hour data should not affect the total number of defects parameter.
However, before the parameters become stable, transforming the test hour data may help
numerical stability. For example, we used per cent of planned test hours completed rather
than actual test hours completed in week 7 for Release 3 (one week before we began to get
parameter stability). Per cent test hours predicted 400 total defects while actual test hour
data predicted 5000 total defects. Neither answer is close to the right value of about 100,
but using per cent test hours was closer, and the solution was reached much more quickly.

2.3.5 Theoretical Comparison of Techniques

This section compares the three parameter estimation techniques from a theoretical
perspective. We focus on their ease of use, confidence interval shape, and parameter
scalability. The more important comparison of model stability and predictive ability on
actual data is contained in Section 3.6.

Since optimization packages are readily available, Equations (1) - maximum likelihood, (4)
- classical least squares, and (6) - alternative least squares are all straightforward to solve.
However, Equation (1) only applies to the G-O model, and a new maximum likelihood
equation must be derived for each software reliability growth model. These equations can
be difficult to derive, especially for the more complex models. Equation (4) applies to the
exponential family of models that includes the G-O model. It is fairly easy to modify this
equation for similar models. Equation (6) is the easiest to use since it applies to any
software reliability growth model, so the alternative least squares method is the easiest to
apply.

Confidence intervals for all of the estimation techniques are based on assuming that
estimation errors are normally distributed. For the maximum likelihood technique, this
assumption is good for large sample sizes because of the asymptotically normal properties
of this estimator. However, it is not as good for the smaller samples that we typically have.
Nevertheless, the maximum likelihood technique provides the best confidence intervals
because it requires less normality assumptions and because it provides asymmetric
confidence intervals for the total defect parameter. The lower confidence limit is larger than
the number of experienced defects, and the upper confidence limit is farther from the point
estimate than the lower confidence limit to represent the possibility that there could be
many defects that have gone undetected by testing. Conversely, for the least squares
techniques, the lower confidence limit can be less than the number of experienced defects
(which is obviously impossible), and the confidence interval is symmetric. Also, additional
assumptions pertaining to the normality of the parameters is necessary to derive confidence
intervals for the least squares techniques.

The transformation technique consists of multiplying the test time by an arbitrary (but
convenient) constant and multiplying the number of defects observed by a different
arbitrary constant. For this technique to work, the predicted number of total defects must be
unaffected by the test time scaling and must scale the by same amount as the defect data.
For example, we may experience 50 total defects during test and want to scale that to 100
for confidentiality or ease of reporting. To do that transformation, the number of defects
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reported each week must be multiplied by 2. If 75 total defects were predicted by a model
based on the unscaled data, then the total defects predicted from the scaled data should be
150. Fortunately, all three of the parameter estimation techniques provide this linear scaling
property as shown in Appendix 2. In addition the least squares confidence intervals scale
linearly as shown in Appendix 2, but the maximum likelihood confidence intervals do not.

2.4 Definition of a Useful Model

Since none of the models will match any company's software development and test process
exactly, what makes the model useful? The answer to this question relates to what we want
the model to do. During the test, we would like the model to predict the additional test
effort required to achieve a quality level (as measured by number of remaining defects) that
we deem suitable for customer use. At the end of the test, we would like the model to
predict the number of remaining defects that will be experienced (as failures) in field usage.
This leads to two criteria for a useful model: (1) The model must become stable during the
test period, i.e., the predicted number of total defects should not vary significantly from
week to week, and (2) The model must provide a reasonably accurate prediction of the
number of defects that will be discovered in field use.

(1) The model must become stable during the test period and remain stable until the end of
the test (assuming the test process remains stable).

If the model says that there are 50 remaining defects one week and 200 the next, no
one is going to believe either prediction. For a model to be accepted by management, the
predicted number of total defects should not vary significantly from week to week. Stability
is subjective, but in our experience a good rule of thumb is that weekly predictions from the
model should vary by no more than 10%. Also, the confidence intervals around the total
defect parameter should be shrinking. It would be nice if the model was immediately stable,
but parameter estimation requires a reasonable amount of data. In particular, the data must
begin to show concave behavior since the speed at which the failure rate decreases is critical
to estimating the total number of defects in the code. The literature (e.g.,
[Musa,87,P.194,P.311] and [Ehrlich,90,P.63]) and our experience indicate that the model
parameters do not become stable until about 60% of the way through the test. This is
sufficient since management will not be closely monitoring the model until near the end of
expected test completion.

(2) The model must provide a reasonably accurate prediction of the number of defects that
will be discovered in field use.

Since field use is very different from a test environment, no model derived from the
test environment can expect to be perfectly accurate. However, if the number of defects is
within the 90% confidence levels developed from the model, the model is reasonably
accurate. Unfortunately, the range defined by the 90% confidence levels may be much
larger than software development managers would like. In our experience, 90% confidence
intervals are often larger than twice the predicted residual defects.

3.0 Model Applications

Over the past few years, we have collected test data from a subset of products for four
software releases. To avoid confidentiality issues, the specific products and releases are not
identified, and the test data has been suitably transformed. The literature has very little real
data from commercial applications, possibly due to confidentiality concerns. We hope this
transformation technique will stimulate other software reliability practitioners to provide
similarly transformed data that can be used for model development and testing by
theoreticians.
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The test data collected included three representations of the amount of testing and two
representations of defects as described in Section 2.1. For each of the software releases,
we evaluated the test data using the software reliability growth models described in Section
2.2, the statistical techniques described in Section 2.3, and the model evaluation criteria
described in Section 2.4. This section describes the results of those evaluations. Section
3.1 contains the test data, Section 3.2 contains the basic results, and Sections 3.3-3.8
contain results obtained by varying a model parameter or evaluation technique.

3.1 Test Data

We collected data from four separate software releases. As shown in Table 3-1, we
artificially set the system test time for Release 1 to 10,000 hours and the number of defects
discovered in Release 1 to 100. All data was ratioed proportionately, e.g., all test hours
were multiplied by 10,000 and divided by the real number of test hours from Release 1. As
mentioned in Section 2.3.5, the predicted number of total defects scales by same amount as
the defect data and is unaffected by the test time scaling. The releases were tested for
different lengths of time (both calendar and execution) as shown in the table. The data in
Table 3-1 is shown graphically in Figure 3-1. All the data exhibits the shape of the concave
models, e.g., Figure 1-1.

Release 1 Release 2 Release 3 Release 4
Test Execu- No. of Execu- No. of Execu- No. of Execu- No. of
Week tion hrs defects tion hrs defects tion hrs defects tion hrs defects

1 519 16 384 13 162 6 254 1
2 968 24 1,186 18 499 9 788 3
3 1,430 27 1,471 26 715 13 1,054 8
4 1,893 33 2,236 34 1,137 20 1,393 9
5 2,490 41 2,772 40 1,799 28 2,216 11
6 3,058 49 2,967 48 2,438 40 2,880 16
7 3,625 54 3,812 61 2,818 48 3,593 19
8 4,422 58 4,880 75 3,574 54 4,281 25
9 5,218 69 6,104 84 4,234 57 5,180 27

10 5,823 75 6,634 89 4,680 59 6,003 29
11 6,539 81 7,229 95 4,955 60 7,621 32
12 7,083 86 8,072 100 5,053 61 8,783 32
13 7,487 90 8,484 104 9,604 36
14 7,846 93 8,847 110 10,064 38
15 8,205 96 9,253 112 10,560 39
16 8,564 98 9,712 114 11,008 39
17 8,923 99 10,083 117 11,237 41
18 9,282 100 10,174 118 11,243 42
19 9,641 100 10,272 120 11,305 42
20 10,000 100

Note: all data has been scaled by artIfiCIally setting the executIon time III Release 1 to
10,000 hours and the number of defects discovered in Release 1 to 100 and ratioing all
other data proportionately.

Table 3-1. Test Data
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Figure 3-1. Test Data for All Releases

The execution hours for Releases 1-3 are obtained from the product QA groups testing the
release subsets used in this report. Other QA and development groups reported defects
against the release subsets, but the test effort was reasonably synchronized across all
groups, so we feel that the product QA test hours fairly represents the software test effort.
For Release 4, the test effort was not well synchronized, and a larger portion of the defects
were reported by groups other than the product QA groups. Therefore, we added the test
hours from product QA groups that were not directly testing the release subset but were
reporting many defects. We feel this is a better representation of the software test effort.

3.2 Results From the Standard Model

As will be shown in the following sections. we achieved the best results using execution
time to measure the amount of testing, defect data rather than problem reports, and the G-O
(exponential) software reliability growth model. We gathered data weekly and used the
alternative least squares described in Section 2.3.3 technique to estimate the parameters.
The most important parameter is the predicted total number of defects from which we can
determine the predicted number of residual defects. A few of these calculations are shown
in Tables 3-2 through 3-5. As can be seen from the tables, the total defect parameter
becomes stable (meaning the week to week variance is small) after approximately 60% of
calendar test time and 70% of execution time. It took longer for Release 3 to stabilize,
probably because there is less total data.
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Test Execution Percent No. of Predicted Total Predicted
Week Hours Execution Hours Defects No. of Defects Residual Defects

10 5,823 58% 75 98 23
11 6,539 65% 81 107 26
12 7,083 71% 86 116 30
13 7,487 75% 90 123 33
14 7,846 78% 93 129 36
15 8,205 82% 96 129 33
16 8,564 86% 98 134 36
17 8,923 89% 99 139 40
18 9,282 93% 100 138 38
19 9,641 96% 100 135 35
20 10,000 100% 100 133 33

Table 3-2. Release 1 Results

Test Execution Percent No. of Predicted Total Predicted
Week Hours Execution Hours Defects No. of Defects Residual Defects

10 6,634 65% 89 203 114
11 7,229 70% 95 192 97
12 8,072 79% 100 179 79
13 8,484 83% 104 178 74
14 8,847 86% 110 184 74
15 9,253 90% 112 184 72
16 9,712 95% 114 183 69
17 10,083 98% 117 182 65
18 10,174 99% 118 183 65
19 10,272 100% 120 184 64

Table 3-3. Release 2 Results

Test Execution Percent No. of Predicted Total Predicted
Week Hours Execution Hours Defects No. of Defects Residual Defects

8 3,574 71% 54 163 109
9 4,234 84% 57 107 50

10 4,680 93% 59 93 34
11 4,955 98% 60 87 27
12 5,053 100% 61 84 23

Table 3-4. Release 3 Results
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Test Execution Percent No. of Predicted Total Predicted
Week Hours Execution Hours Defects No. of Defects Residual Defects

10 6,003 53% 29 84 55
11 7,621 67% 32 53 21
12 8,783 78% 32 44 12
13 9,604 85% 36 45 9
14 10,064 89% 38 46 8
15 10,560 93% 39 48 9
16 11,008 97% 39 48 9
17 11,237 99% 41 50 9
18 11,243 99% 42 51 9
19 11,305 100% 42 52 10

Table 3-5. Release 4 Results

Tables 3-2 through 3-5 demonstrate that the predicted total number of defects becomes
stable for the simple exponential model, which is the fIrst criterion for a useful model. The
second criterion is that the predicted residual defects reasonably approximate fIeld use.
Table 3-6 compares the predicted residual defects with the fIrst year of fIeld experience. All
of the predictions are surprisingly close to fIeld experience and well within the confIdence
limits except for Release 2. A two-stage model, combining Releases 2 and 3, did a better
job of predicting residual defects and is described later in this section. One criticism of the
results in Table 3-6 might be that we had to modify the simple model to obtain them, i.e.,
the two-stage model for Releases 2 and 3 and the additional test hours from parallel test
groups for Release 4. However, these modifIcations were made as the models were being
developed because the differences among releases was evident during the QA test phase
rather than in hindsight. Having settled on the basic model structure, it was easy to make
these types of model modifIcations.

Release Predicted Residual Defects Defects in First Year
1 33 34
2 64 8
3 23 20
4 10 9

2/3 33 28

Table 3-6. Model Predictions vs. Field Experience

The defects in Table 3-6 include defects found by customers and defects found through
internal usage as long as the defects found internally were not part of the next major QA test
cycle. The defects found by customers tend to be confIgurations that are difficult to
replicate in QA, e.g., a very large system running continuously for months. The third
column in Table 3-6 includes known defects and TPRs that were still open for analysis at
the end of the fIrst year. Additional defect data gathered for some releases shows that the
number of defects found after the fIrst year is balanced by the number of open TPRs that
tum out to be rediscoveries or non-defects. Therefore, the number of defects for the fIrst
year shown in Table 3-6 is expected to be close to the total number of defects that will be
attributed to that release.
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Two-Stage Model Results

Since Release 2 greatly overestimated the number of residual defects, we examined the
details of this release. Release 2 was a preliminary release used by very few customers.
Release 3 was very similar to Release 2 with some functionality and performance
enhancements, and the Release 2 and Release 3 testing overlapped (Release 2 test week 17
was the same as Release 3 test week 1). Therefore, Release 2 and 3 can really be treated as
a single release that was tested from Release 2 RQA until Release 3 QAOK in which
Release 3 RQA corresponds to the release of additional functionality into the test process.
This is the classic setup for the two-stage model described in Section 2.2. Figure 3-2
shows what the data looks like for the two-stage model. This figure shows that the data has
the shape of a two-stage model shown in Figure 2-3. Note that the data has an inflection
point at about 9,700 hours, which was Release 3 RQA. When we evaluate this data using
the two-stage model techniques described in Section 2.2, the predicted total number of
defects is 214. From Table 3-1, the total defects in Releases 2 and 3 is 181, so the
predicted number of residual defects is 33. From Table 3-6, there were 28 defects in the
first year for Releases 2 and 3 combined, which compares favorably with the prediction of
33.
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Figure 3-2. Combined Data for Releases 2 and 3

3.3 Results for Different Representations of Test Time

All previously presented results have been calculated using execution time to represent
amount of testing rather than calendar time or number of test cases. The reason for this is
that our results using calendar time and number of test cases have been poor. Tables 3-2
through 3-5 show that execution time does not correlate well to calendar time, meaning that
the testing effort is not spread uniformly throughout the test period. There are times when
major defects or schedule conflicts may prevent test execution. Calendar time accumulates
during these periods while execution time does not, which is one reason that calendar time
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models do not seem to produce credible results. Table 3-7 shows the results of fitting the
Release 4 defects to calendar time. We were unable to get a result until week 15 because the
curve fit did not converge. After week 15, the prediction was very unstable, especially in
comparison to the very stable execution time results, as can be seen from Table 3-7. Similar
results with the other releases indicates that execution time is a much better measure of the
amount of testing than calendar time in our environment.

Test Execution Percent No. of Predicted Total Predicted Total
Week Hours Execution Hours Defects No. of Defects - No. of Defects -

Execution Time Calendar Time
10 6,003 53% 29 84
11 7,621 67% 32 53
12 8,783 78% 32 44
13 9,604 85% 36 45
14 10,064 89% 38 46 No Prediction
15 10,560 93% 39 48 457
16 11,008 97% 39 48 178
17 11,237 99% 41 50 125
18 11,243 99% 42 51 101
19 11,305 100% 42 52 85

Table 3-7. Release 4 Results for Calendar Time

We also had poor results using number of test cases to represent amount of time. Table 3-8
shows the test case data and results for Release 3. The total number of test cases has been
translated to 10,000. Note that the number of test cases increases faster than the execution
hours. This occurs because many simple automated tests that do not take much execution
time are run early in the test phase. Again, the prediction was unstable and did not match
the field results. Similar results with the other releases indicates that execution time is a
much better measure of the amount of testing than number of test cases in our environment.

Test Execution Percent No. of Percent No. of Predicted Total Predicted Total
Week Hours Execution Test Test Defects No. of Defects- No. of Defects-

Hours Cases Cases Execution Time Test Cases
1 162 3% 671 7% 6
2 499 10% 1,920 19% 9
3 715 14% 2,150 22% 13
4 1,137 23% 3,112 31% 20
5 1,799 36% 3,802 38% 28
6 2,438 48% 5,009 50% 40
7 2,818 56% 6,443 64% 48
8 3,574 71% 7,630 76% 54 163 No Prediction
9 4,234 84% 9,263 93% 57 107 204

10 4,680 93% 9,690 97% 59 93 152
11 4,955 98% 9,934 99% 60 87 137
12 5,053 100% 10,000 100% 61 84 132

Table 3-8. Release 3 Results for Number of Test Cases
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3.4 Results From Modeling Problem Reports.

Our results from using problem reports instead of defects showed that problem reports are
an excellent surrogate for defects. These results are shown in Tables 3-9 and 3-10 for
Releases 2 and 3.

Test No. of Predicted Total No. of Predicted Total Predicted Total
Week TPRs No. of TPRs Defects No. of Defects No. of Defects

Based on TPRs
1 19 13
2 31 18
3 49 26
4 62 34
5 71 40
6 84 48
7 101 61
8 123 315 75 193
9 142 289 84 177

10 151 288 89 203 177
11 159 284 95 192 174
12 169 278 100 179 170
13 175 279 104 178 171
14 183 285 110 184 175
15 185 285 112 184 175
16 188 282 114 183 173
17 191 278 117 182 171
18 193 278 118 183 170
19 195 278 120 184 171

Table 3-9. Release 2 Results for TPRs

Test No. of Predicted Total No. of Predicted Total Predicted Total
Week TPRs No. of TPRs Defects No. of Defects No. of Defects

Based on TPRs
1 8 6
2 12 9
3 22 13
4 35 20
5 47 28
6 62 40
7 75 48
8 84 213 54 163 127
9 89 159 57 107 95

10 94 143 59 93 86
11 100 145 60 87 87
12 101 147 61 84 88

Table 3-10. Release 3 Results for TPRs
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The predictions based on TPRs become stable earlier than predictions based on defects
because there is more data. We used the ratio of TPRs to defects to predict a total number
of defects from the TPR model. This ratio is usually about 60% (recall that the other 40%
of TPRs are mainly rediscoveries caused by parallel usage of the products under test). As
an example, for Release 2 the ratio of defects to TPRs was 120/195 = 62%. The predicted
number of TPRs is 278 at Week 19 of Release 2 testing. Taking 62% of 278 yields 171,
which is reasonably close to the final prediction of 184 from the defect model.

During system test, we would use the results from a few weeks preceding the current test
week to predict a ratio of defects to TPRs and then use this ratio and the current test week
TPR prediction to predict expected defects. The results for Release 3 show that, despite a
change in the defect to TPR ratio from 64% in Week 9 to 60% in Week 12, this technique
still provides a reasonable prediction of residual defects.

3.5 Results for Different Models

We fit all the different software reliability growth models described in Section 2.3 to the
data shown in Table 3-1. The results for Release 1 are shown in Table 3-11. The numbers
in the table show the predicted number of total defects for each model at various times in
the test process. Note that most of the models become reasonably stable at about the same
time as the G-O model but that their predictions of the total number of defects are
significantly different than the G-O model. The S-shaped models (G-O S-shaped,
Gompertz, Yamada Raleigh) all tended to under predict the total defects. This is expected
since the data has the shape of a concave model rather than an S-shaped model. The other
concave models (Pareto, Yamada Exponential) all tended to over predict the number of total
defects. The models that are variants of the G-O model (Hossain-Dahiya/G-O and Weibull)
both predicted exactly the same parameters as the G-O model. The Log-Poisson model is
an infinite failure model and does not have a parameter that predicts that total number of
defects. To estimate the total number of defects from this model, we estimated the time at
which the G-O model would have found 90% of the residual defects and then determined
the number of failures that the Log-Poisson model would have predicted at that point in
time. The relatively good performance of the Log-Poisson model may be the result of this
artificial total defect estimation technique. Our conclusion from these results is that the G-O
model was significantly better for our data than the other models.

Total Defects predicted several weeks after RQA

Model Name 10 Weeks 12 Weeks 14 Weeks 17 Weeks 20 Weeks
Goel-Oku moto (G-O) 98 116 129 139 133
G-O S-Shaped 71 82 91 99 102
Gompertz 96 110 107 114 112
Yamada Raleigh 77 89 98 107 111
Pareto 757 833 735 631 462
Yamada Exponential 152 181 204 220 213
Hossain-Dahiya/G-O All results same as G-O model
Weibull All results same as G-O model
Log Poisson 140 153 161 166 160
There were 134 total defects found for Release 1, 100 m QA test, 34 after QA test

Table 3-11. Release 1 Results for Various Models
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3 .6 Different Correlation Techniques

Throughout this paper we have presented results obtained using the alternative least squares
technique described in Section 2.3.3. Table 3-12 shows the results obtained with the other
two statistical techniques for all the releases. For Release 1, the alternative least squares
technique is more stable than the other two techniques. The standard least squares
technique requires that the number of defects change each week because the weekly change
is used as the denominator of an equation, so we were unable to solve for the parameters
using this technique in weeks 19 and 20. For Releases 2 and 4, the alternative least squares
technique appears to be slightly more stable than the maximum likelihood technique. For
Release 3, the maximum likelihood technique appears to be slightly more stable than the
alternative least squares technique. However, the differences between these two techniques
do not appear to be significant. The standard least squares technique appears to be very
unstable in some cases, e.g., weeks 16-18 of Release 1, week 19 of Release 2, and week
18 of Release 4. Since the alternative least squares technique is the easiest to use, is slightly
more stable, and correlates slightly better to the results from field data, it is our preferred
technique.

Release 1 Release 2 Release 3 Release 4
Test Def- ML LS LS* Def- ML LS LS* Def- ML LS LS* Def- ML LS LS*
Wk ects ects ects E ects

1 16 13 6 1
2 24 18 9 3
3 27 26 13 8
4 33 34 20 9
5 41 40 28 11
6 49 48 40 16
7 54 61 48 19
8 58 75 54 124 163 142 25
9 69 84 57 86 107 87 27

10 75 113 98 139 89 158 203 163 59 79 93 76 29 65 84 85
11 81 122 107 149 95 162 192 164 60 76 87 72 32 43 53 49
12 86 134 116 169 100 153 179 152 61 78 84 78 32 38 44 36
13 90 144 123 188 104 166 178 170 36 46 45 48
14 93 146 129 183 110 191 184 206 38 51 46 57
15 96 148 129 181 112 179 184 176 39 54 48 61
16 98 150 134 182 114 172 183 165 39 52 48 55
17 99 142 139 148 117 174 182 168 41 57 50 66
18 100 133 138 126 118 179 183 188 42 63 51 325
19 100 126 135 ** 120 188 184 217 42 62 52 **
20 100 122 133 **

* ClaSSIcal LS technIque
** Couldn't solve because the number of defects didn't change from previous week

Table 3-12. Statistical Technique Comparison
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Table 3-13 shows the confidence interval results for Release 4. As discussed in Section
2.3.5, the maximum likelihood confidence intervals are asymmetric while the least squares
confidence intervals are symmetric. Unfortunately, the maximum likelihood confidence
intervals are very wide. The confidence interval range is more than three times larger the
predicted residual defects (range at week 19 is 106-51=65 and predicted residual defects are
62-42=20). The classical least squares lower confidence limit is less than the defects
experienced, which obviously cannot be true. The confidence intervals derived from the
alternative least squares technique are very small - the confidence intervals for weeks 12-14
do not even include the [mal total defect point estimate. Since these did not seem credible, a
second technique based on the Poisson distribution (described in Appendix 1) was used to
determine confidence intervals. These confidence seem a little more reasonable but have the
same problem of the lower confidence limit being less than the defects experienced. None
of these confidence intervals seems very satisfactory although the maximum likelihood
confidence intervals are the most credible.

MLResults Classical LS Results Alternative LS Results**
Test No. of Total Lower Upper Total Lower Upper Total Lower Upper
Week Defects Defects 5%CL 95%CL Defects 5%CL 95%CL Defects 5%CL 95%CL

11 32 43 36 68 49 20 78 53 46 41 60 65
12 32 38 35 46 36 31 42 44 39 33 50 55
13 36 46 40 65 48 26 70 45 40 34 50 56
14 38 51 44 78 57 20 94 46 42 35 51 57
15 39 54 46 82 61 21 100 48 43 36 52 59
16 39 52 45 74 55 32 78 48 44 37 53 60
17 41 57 48 88 66 22 110 50 46 38 54 61
18 42 63 51 111 325 -3,196 3,846 51 47 39 55 63
19 42 62 51 106 * 52 48 40 56 64

*Couldn't solve because the number of defects dIdn't change from prevIous week
**First set of confidence limits, based on t distribution, from Equation (5) in Section
2.3.2. Second set, based on Poisson distribution, from Equation (A6) in Appendix 1.

Table 3-13. Confidence Interval Comparison for Release 4

3 . 7 Grouped Data Stability

As mentioned in Section 2.1.3, we have access only to weekly data rather than exact defect
detection data. To simulate exact data, we took the data for Release 4 and distributed the
defects throughout the week in which they arrived. We did this randomly (using the
random number generator in Excel) and using a fixed pattern, e.g., 2 failures in a week
were assumed to be evenly spaced - at 2.3 and 4.7 days. Table 3-14 shows the results. We
thought that having this extra data might cause the prediction to stabilize sooner, but that
was not the case. Note that the predictions from the simulated exact data and the weekly
grouped data are essentially identical. Our conclusion is that the weekly grouped data
works fine for our development process. This is useful because it means that we do not
have to try to change the data input and collection processes.
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Test Execution No. of Predicted Total Predicted Total Predicted Total
Week Hours Defects No. of Defects - No. of Defects - No. of Defects -

Grouped Data Ungrouped Data Ungrouped Data
(Random) (Fixed)

10 6,003 29 84 149 116
11 7,621 32 53 60 61
12 8,783 32 44 57 54
13 9,604 36 45 46 46
14 10,064 38 46 47 47
15 10,560 39 48 47 48
16 11,008 39 48 48 48
17 11,237 41 50 49 49
18 11,243 42 51 49 49
19 11,305 42 52 50 50

Table 3-14. Release 4 Results for Ungrouped Data

3.8 Rerun Test Hours

The test hours that have been used in all the models include test hours for tests that were
run a fIrst time and test hours for tests that were rerun. Tests are rerun to either ensure that
a defect has been correctly repaired or that fIxing a defect did not cause another failure. One
hypothesis is that the rerun test hours are less likely to fInd defects than tests run for the
fIrst time because the tests have once been successfully (usually) executed. We tested this
hypothesis by counting rerun test hours at only 50% of the value of the initial test execution
time. We fIt the G-O model to the adjusted hours for Release I with the results shown in
Table 3-15. The results do not indicate that this technique is any better than our usual
technique for fItting the data. We also tried different factors such as 25% for adjusting the
data but did not get any better results than we did with the original data. This, together
with our excellent results from treating all execution hours as equivalent, leads us to
conclude that there is no need to adjust the test hours for modeling our data.

Test No. of Predicted Total No. of Defects - Predicted Total No. of Defects -
Week Defects Rerun hours discounted by 50% Rerun Test Hours Not Discounted

10 75 97 98
12 86 116 116
14 93 134 129
17 99 157 139
20 100 159 133

Table 3-15. Release 1 Results for Discounting Rerun Test Hours
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Appendix 1 Least Squares Calculations

An alternative to classical least squares is to minimize the likelihood function directly rather
than the log-likelihood function. In this case, we assume that the difference between the
cumulative number of defects in week i and the model prediction for week i is a normally
distributed random variable with mean O. In other words,

fi = Jl(ti) + Ei, where

Ej are independent, identically distributed, normal random errors with mean 0 and
. 2

common vanance 0 .

The least squares technique is to minimize the sum of the squared errors, Le., minimize:

Lj
W=IEj 2= Lj

W
=1 (fj - Jl(1j))2, which is Equation (6) in Section 2.3.3, with

w =current number of weeks of QA test
li = cumulative test time at the end of the ith week
fj=cumulative number of failures at the end of the ith week.

For the G-O model, Equation (6) becomes:

(AI) Lj
w=l(fj - a(1_e-bt;))2, which is Equation (7) in Section 2.3.3.

The confidence interval for a assuming that a is nonnally distributed is

(A2) a ± tw-2,al2 (Var(a))O.5 , which is Equation (5) in Section 2.3.2.

The calculation of the variance of a is described in [Musa,87,Section 12.3] for the classical
least squares technique described in Section 2.3.2. In this Appendix, the calculation of the
variance of a for the alternative least squares technique is derived.

The assumptions that the errors Ei are normally distributed with a common variance 0
2

means that the following equation can be used for the variance of a and b (see e.g.
[Musa,87,Equation 12.150]):

(A3) Var(a) = (02/SS ) Lj
w=I[(O/Ob) (a(l_e-bti ))]2, where

0 2=L
j

W =1 (fj - a(l-e-bt; ))2 l(w-2)

SS = a2LjW=I(l_e-bti)2 LjW=lt/(l-e-bti)2 - a2 {LjW=ltj(1_e-bti)2}2

(o/ob) is a partial derivative with respect to b, so (o/ob) (a(l_e-bti ) = alie-btj.

(A4) Var(b) =(02/SS) L
j

w=I[(%a) (a(l-e-bt;))f, where

(o/oa) is a partial derivative with respect to a, so (o/Ba) (a(l_e-bti ) = 1_e-btj .

To find a confidence interval for a, Equation (A2) can be used directly by assuming that a is
normally distributed and substituting from Equation (A3). This method was used to derive
the first set of confidence intervals reported in Section 3.6. Alternately, Equation (A4) can
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be used to derive a confidence interval for a assuming that b is nonnally distributed, and we
can fmd a confidence interval for a by substituting the confidence limits for b into:

A different method for calculating confidence intervals is to assume that fj is a Poisson

random variable with expected value J.1(!j). Then, from P.270 of [Musa,87], the a per cent
confidence interval (e.g., 95%) for fi is given by:

J.1(!j) ± Zl-lXI2 J.1(tj )O.5, which, since J.1(oo) =a, becomes:

(A6) a ± Zl-lXI2 aO.
5

.

Equation (A6) was used to derive the second set of confidence intervals reported in Section
3.6. This is not a very satisfying fonn for a confidence interval because it depends only on
the parameter and not on the data used to derive the parameter.

Appendix 2 Parameter Scaling

In this appendix, we show that the parameter estimates scale linearly for all statistical
techniques. Also, we show that the confidence intervals for the least squares method scale
linearly while the confidence intervals for the maximum likelihood method do not. Linear
parameter scaling means that if we multiply the number of defects observed by a factor k

1
,

then the estimate of the total number of defects will also be scaled by a parameter k
1
. It is

very important that the parameter estimates scale linearly since the data has been scaled. If
they did not, then the data translation technique used throughout this report would not be
useful because other researchers could not duplicate the results. It is also important that test
time scaling does not affect the predicted total number of defects, Le., if we scale the test
time by a factor k

2
, then the estimate of the total number of defects will be unchanged.

Confidence interval scaling means that the confidence intervals should scale by the same
factor as the total number of defects. For example if the estimated total defects parameter
was 100 with upper and lower confidence intervals of 80 and 120 and we multiplied the
number of defects observed in each test interval by 2, then the scaled total defects parameter
should be 200 and the scaled confidence intervals should be 160 to 240. It is less
important, but unfortunate, that the confidence intervals do not scale linearly for the
maximum likelihood technique.

For the maximum likelihood technique, the following equation must be solved (see Section
2.3.1):
(A7) ~ W (f f )( -bt- -bt; 1)/( -bt- -bt- 1) f /( 1 bt) h~i=I i- i-I tie '-!j.Ie - e '-e ,- = wtw -ew,were

w =current number of weeks of QA test
!j = cumulative test time at the end of the ith week
fi=cumulative number of failures at the end of the ith week.

If we replace the number of failures fi by k/i and replace the test time ti by k
2
!j, the same

solution is obtained for Equation (A7) if the parameter b is replaced by b1k
2

. From
Equation (3) in Section 2.3.1, the total defects parameter is then

k f /(1 - e-(bIk2)(k2tw») =k f /(1 - e-btw ) =k a
I W I W l'

where a is the total defects parameter obtained prior to scaling the data. Thus, the total
defects parameter scales linearly.
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From Equation (2) in Section 2.3.1, the a per cent confidence interval (e.g., 95%) for b is
given by:
(AS) b ± ZI_an/(Io(b))O.5, where

I (b) = ~ W (f. _f. )(t. _t. )2 -b(tj +tj.1)/(e,bti.1_e-bti)2 _ f t 2ebtw/(ebtw _ 1)2° j =1 1 1-1 1 1-1 e W W

If we replace the number of failures fj by k
1
fj and replace the test time ~ by kz~ in the

equation for lo(b), the result is k
1
kz

210(b). If we then substitute into Equation (AS), the
result is

2 0.5 (b))0.5]b/k2 ± Zl-al2l(k\k2 loeb)) =(l/k2)[b ± Zl.al2l(k1lo · .
Note that the extra factor of k in the denominator prevents the confidence mterval for b
from scaling linearly. Then, siice the confidence interval for the parameter a is also derived
from the parameter b, the confidence interval for parameter a does not scale linearly.

For the classical least squares technique, the following equation must be solved for the 0-0
model (see Section 2.3.2):
(A9) Lj

W=1(1n«fj-fj.l)/(lj-tj.l))-ln(b) -In(a-fj))2

If we replace the number of failures fj by k/j and replace the test time lj by k
2
lj in Equation

(A9), the result is
(AlO) L

j

W=1 (In((fj-fj.l)l(lj-tj_l)) + In(k1) -In(kz) -In(b) -In(a-k/j))z

If we replace a with k
1
a and b with b1k2, we get the Equation (A9) with the same

minimum. Thus, a scales linearly. The confidence intervals for a are:
a ± tw-Z,<XI2 (var(a))0.5

Since var(kla) = k
1

2var(a), the confidence intervals scale linearly.

For the alternative least squares technique, the equation to minimize is:

(All) Lj
W

=1 (fj - ~(tj))Z

= L
j

W=1 (fj - a(l_e-btj
))2 for the 0-0 model

If we replace the number of failures fj by k1fj and replace the test time lj by k2lj in Equation
(All), the result is
(A12) L. w (k f. _a(l_e-k2btj ))2

I =1 1 I

If we replace a with k1a and b with b/k2 in Equation (A12), we get an equation with the
same minimum as Equation (All). Thus, a scales linearly. The first method of finding
confidence intervals for the alternative least squares technique is the same as the classical
least squares technique. As shown above, these confidence intervals scale linearly. The
second technique defines the confidence intervals for a as a ± ZI-<XIZ (a)0.5. Ifwe replace a

with k1a, the confidence intervals are k
1
a ± ZI-al2 k10.5a0.5. Therefore, the confidence

interval for parameter a does not scale linearly.
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