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ABSTRACT

This paper describes a new system, GLIMMER, for
finding genes in microbial genomes. In a series of tests
on Haemophilus influenzae, Helicobacter pylori and
other complete microbial genomes, this system has
proven to be very accurate at locating virtually all the
genes in these sequences, outperforming previous
methods. A conservative estimate based on experiments
on H.pylori and H.influenzae is that the system finds
=97% of all genes. GLIMMER uses interpolated Markov
models (IMMs) as a framework for capturing
dependencies between nearby nucleotides in a DNA
sequence. An IMM-based method makes predictions
based on a variable context; i.e., a variable-length
oligomer in a DNA sequence. The context used by
GLIMMER changes depending on the local composition
of the sequence. As a result, GLIMMER is more flexible
and more powerful than fixed-order Markov methods,
which have previously been the primary content-based
technique for finding genes in microbial DNA.

INTRODUCTION

The mumber of new microbial genomes has dramatically mcreased
since the first genome, Haemophilus influenzae, was sequenced n
1995 (1). Ten whole genomes have been completed, and at least 30
others are expected to be completed in the next two years. Tlus
abundance of data demands new and lughly accurate mmputaﬁmml
analysis tools mn order to explore these genomes and maxinuze the
scientific know ledge gamed from them. ‘One of the first steps m the
analysis of a nucrobial genome 15 the identification of all its genes.
Because these genomes fend to be gene-nch, typically confammng
00% codine seaence the oene discoverv nroblem takes on a

1 new genomes still have no sigmificant homology to known genes
(1). For these genes. we must rely on computational methods of
scoring the codmg region to 1cle11uﬁ the genes. The best-known
program for this task is GeneMark (5), which uses a Markov chain
model] to score codmg regions. GeneMark has been lughly effective
and was used m the H.influenza and more recent genome projects.
We have developed a new system, GLIMMER_ thatusesa ’reclnﬂque
called mterpolated Markov models (IMMSs) to find coding regions
in microbial sequences. IMMSs are m principle more pow erful than
Markov chams, and the computational experiments described below
demeonstrate that they produce more accurate results when used to
find genes m bacterial DNA.

Markov models are a well-known tool for analyzing biological
sequence data, and the predonunant model for microbral sequence
analysis 15 a fxed-order Markov chamn (5,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed munber
of preceding bases in the sequence. For example. a 5-order model.
which 1s the basis of GeneMark, uses the five previous bases to
predict the next base. However, learning such models accurately can
be difficult when there 1s msufficient tranmung data to accurately
estimate the probabulity of each base occwming after every possible
combination of five preceding bases. In general. a #%-order Markov
model for DNA sequences requires 4F * 1 probabilities to be
estimated from the tramung data (e.g., 4096 probabilities for a
S™_order model). In order to estimate these probabilities, many
occurrences of all possible fmers must be present m the data.

An IMM overcomes tlus problem by combiming probabilities
from confexts of varying lengths to make predictions. and by only
usmg those contexts (oligomers) for which suthicient data are
available. In a typical nucrobial genome some Smers will occur too
mfrequently to give reliable estimates of the probability of the next
base, while some 8mers may occur frequently enough to give very
reliable estumates. In principle. using longer oligomers 1s always
nreferable fo nsine shorter ones it onlv if anffiment data 1=



models (IMMs) as a framework for capturing
dependencies between nearby nucleotides in a DNA
sequence. An IMM-based method makes predictions
based on a variable context; i.e., a variable-length
oligomer in a DNA sequence. The context used by
GLIMMER changes depending on the local composition
of the sequence. As a result, GLIMMER is more flexible
and more powerful than fixed-order Markov methods,
which have previously been the primary content-based
technique for finding genes in microbial DNA.

INTRODUCTION

The number of new microbial genomes has dramatically inereased
since the first genome, Haemophilus influenzae, was sequenced in
1995 (1). Ten whole genomes have been completed. and at least 30
others are expected to be completed i the next two years. Tlus
abundance of data demands new and lughly accurate mmpmancmal
analysis tools i order to explore these genomes and maxmuze the
smennﬁc knowledge gamecl from them. Dne of the ﬁ.ﬁt steps 1n the

Because ﬂlE":'E genomes tend to be gene-nch, H‘pl(‘ﬂll‘i, confaining
90% coding sequence, the gene d15-cmen problem takes on a
different character than it does in eukaryotic genomes, especially
lugher eukaryotes whose genomes may have <10% coding
sequence. In particular, the most difficult problem 15 determining
which of two or more overlappmg open readng frames (orfs)

represent true genes. Other difficult problems mclude idenifying the
start of translation and finding regulatory signals such as promoters
and termumators.

The most reliable way to identify a gene m a new genome i1s to
find a close homolog from another orgamsm. This can be done today
very effectively using programs such as BLAST (3 (3) and FASTA {4)
to search all the entries in GenBank. However, many of the genes

find genes m bacterial DNA.

Markov models are a well-known tool for analyzing biological
sequence data, and the predomunant model for nucrobial sequence
analysis 15 a frxed-order Markov chamn (5.,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed munber
of preceding bases in the sequence. For example a S™-order model.
which 1s the basis of GeneMark, uses the five previous bases fo
predict the next base. However, learning such models accurately can
be difficult when there i1s msufficient framng data to accurately
estimate the probability of each base occuming affer every possible
combination of five preceding bases. In general. a X-order Markov
model for DNA sequences requires 4% * 1 probabilities to be
estimated from the tramung data (e.g., 4096 probabilities for a
S order model). In order to estumate these probabilities, many
occurrences of all possible Amers must be present i the data.

An IMM overcomes this problem by combmng probabilities
from contexts of varying lengths to make predictions, and by only
usmg those contexts (oligomers) for which sufficient data are
available. In a typical nucrobial genome some Smers will oceur too
mdrequently to give rehable estimates of the probability of the next
base, while some 8mers may occur frequently enough to give very
reliable estumates. In prineiple. using longer ohgomers 1s always
preferable to usmg shorter ones. but only if sufficient data 1s
available to produce good probability estimates. An IMM uses a
linear combmation of probabilities obtained from several lengths of
oligomers to make predictions, grving lugh weights to ohgomers that
occur fraquently and low weights to those that do not. Thus an IMM
uses a longer context to make a prediction whenever possible, taking
advantage of the greater accuracy produced by lugher-order Markowv
models. Where the statistics on longer ohigomers are msufficient to
produce good eshimates, an IVMM can fall back on shorter oligomers
to make 1ts predictions.

Using IMMs we have developed a new system, called
GLIMMER., to identify coding regions m mucrobial DNA
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m new genomes still have no sigmficant homology to known genes
(1). For these genes. we mwst rely on computational methods of
scormng the codmng region to 1clenuﬁ the genes. The best-known
program for thus task is GeneMark (5), which uses a Markov chain
model to score codmg regions. GeneMark has been lughly effectrve
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Markov chams, and the computational experiments described below
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find genes m bacterial DNA.
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analysis 15 a foxed-order Markov chamn (5,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed munber
of precedmg bases m the sequence. For example. a | 5%.order model.
which 15 the basis of GeneMark, uses the five previous bases to
preduct the next base. However, learming such models accurately can
be difficult when there 1s msufficient tramung data to accurately
estimate the probability of each base occurmng after every possible
combination of five preceding bases. In general. a k®-order Markov
model for DNA sequences requires 4% © 1 probabilities to be
estimated from the tramung data (eg., 4096 probabilities for a
™ order model). In order to estimate these pmbahhﬂes many
occurrences of all possible fmers must be present mn the data.

An IMM overcomes this problem by combming probabilities
from contexts of varying lengths to make predictions. and by only
usmg those contexts (oligomers) for which sufficient data are
available. In a typical nucrobial genome some Smers will occur too
mfrequently to grve rehable estimates of the probability of the next
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Markm Inodels are a well-known tool for analyzmg biological
sequence data, and the predomunant model for microbral sequence
analysis 15 a foxed-order Markov chamn (5,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed munber
of precedmg bases m the sequence. For example. a | 5%.order model.
which 15 the basis of GeneMark, uses the five previous bases to
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scientific know ledge gamed from them. “One of the first steps 1 the
analysis of a mucrobial genome 1s the identification of all its genes.
Because these genomes fend to be gene-nich, typically confamnmg
90% coding sequence, the gene discov ery problem takes on a
different character than it does in enkaryotic genomes, especially
higher eukaryotes whose genomes may have <10% coding
sequence. In particular, the most difficult problem 1s determining
which of two or more overlappme open reading frames (orfs)
represent frue genes. Other dafficult problems mclude idenftifying the
start of translation and finding regulatory signals such as promoters
and termunators.

The most reliable way to identify a gene m a new genome is to
find a close homolog from another orgamusm. This can be done today
very effectrvely using programs such as BLAST (3 (3) and FASTA (4)
to search all the entries in GenBank. However, many of the genes

find genes m bacterial DNA.

Markov models are a well-known tool for analyzing biological
sequence data, and the predomunant model for nucrobial sequence
analysis 15 a foeed-order Markov chamn (5,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed munber
of preceding bases in the sequence. For example a S™-order model.
which 15 the basis of GeneMark, uses the five previous bases fo
preduct the next base. However, learning such models accurately can
be difficult when there 1s msufficient framng data to accurately
estimate the probability of each base occuming afier every possible
combination of five preceding bases. In general. a K-order Markov
model for DNA sequences requires 4% * 1 probabilities to be
estimated from the tramung data (e.g., 4096 probabilities for a
5‘“'1 cutlex mﬂdel} In 01‘:15-1 to estunate Lheae pmbabﬂ.m»es many

An IMM overcomes this pmblem by mmbmmg probabilities
from contexts of varying lengths to make predictions, and by only
usmg those contexts (oligomers) for which sufficient data are
available. In a typical nucrobial genome some Smers will occur too
mirequently to give rehable estimates of the probabulity of the next
base, while some 8mers may occur frequently enough to give very
reliable estimates. In prineiple. using longer ohgomers 1s always
preferable to using shorter ones. but only if sufficient data 1s
available to produce good probability estimates. An IMM uses a
linear combmnation of probabilities obtained from several lengths of
oligomers to make predictions, grving lugh weights to ohigomers that
occur frequently and low weights to those that do not. Thus an IMM
uses a longer context to make a prediction whenever possible, taking
advantage of the greater accuracy produced by lugher-order Markov
models. Where the statistics on longer oligomers are msufficient to
produce good estimates, an IMM can fall back on shorter oligomers
fo make its pracictions.

GL]IVH\{ER to 1u:lf_*11t1ﬁr mdmg 1‘eg1ons 1 nucmbml DNA.
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Figure 1. Sample 1-state Markov model for simple sequence modeling.

GLIMMER. uses a novel approach, based on frequency of
occurrence and predictive value, to deternune the relative weights
of oligomers that vary m length from 1 to 8. After first creating
IVMMSs for each of the six possible reading frames, GLIMMER

then uses them to score entire orfs. When two high-scoring orfs
overlap, the overlap region 1s scored separately to determine
which orf is more ljkelv tobea gene We han e tested GLIVMMER.

genomes and fmmcl th.at 1t 15 very accurate in 1dent1ﬁ‘111g genes,

as we explamn in Methods and Results. The system has 1'ecenth
been used to find the genes in two newly completed genomes:

Borrelia burgdorfert, the bacteria that causes Lyme disease (14), and
Treponema pallichon, the bactena that causes syphilis (Fraserer al.,
manuscript m preparation). Amnotation for these and other
completed genomes will be available on the GLIMMER. web site.

INTERPOLATED MARKOV MODELS
Aarkov chains

Our probabihistic model of DNA sequences represents a sequence as
a process that may be descnibed as a sequence of random vanables
X7, A5, . where X; corresponds to position 7 i the sequence. Each
random vanable X; takes a value from the set of bases (g, ¢, g, f). The
probability that a vanable X7 takes will depend on the local context;

that 15 the hazes immediatalv adiacent to the hase at nosition 7 We

bases i the three codon positions. Even with a 0%-order modsl, the
frequency of g mn codon posiion 1 will be different from its
frequency in another frame, so even this very weak model has some
ability to identify the nght reading frame for a gene.

In a 13%-order model. the output of a state depends on the state
immediately previous; 1.e., a base is dependent on the previous
base. Thus instead of four probabilities in each state, we compute
sixteen: p(ala). p(alc), ..., p(f]f). In order to score a new sequence,
the model constders two bases at a time, the current base and the
previous one. Likewise, in a 22%_order model. the output of a state
depends on the two previous bases. So to predict a base mn the third
codon position with our 284_order model. we look at the first and
second codon positions. To predict a base in the first codon
posttion, the 22¢order model looks at the second and third codon
positions m the previous codon.

Using the Markov models for each of the six possible frames plus
a model of non-coding DNA. we can straightforwardly produce a
simple algonthm for finding genes. Simply score every orf using all
seven models, and choose the model with the highest score. The
scores can be normahzed so they represent the probabihity that a
sequence 15 codmg. If the model correspondmg to the true coding
region m the correct frame scores the highest. then the orf can be
labeled as a gene. This sumple algorithm ignores the difficult
problem of how to handle overlappmg genes, which we address m
the Algonthm and System Design section, which contains the details
of GLIMMER. (To be effective, an algonithm must do much more
than thus mtentionally simple description. For example, all scores
could be nearly equal, or the hughest score could still be quate low,
so the algonthm needs to have a tlweshold score below wlich no
region 15 classified as coding )

Interpolated models



INTERPOLATED MARKOV MODELS
Markov chains

Our probabilistic mode] of DNA sequences represents a sequence as
a process that may be descnibed as a sequence of random vanables
X1, X3, ... where X; corresponds to posihion i m the sequence. Each
random variable X; takes a value from the set of bases (g, ¢, g 7). The
probability that a vanable X7 takes will depend on the local context;
that 1s. the bases immediately adjacent to the base at positioni. We
sometimes refer to (a, ¢, g 1) as the set of possible states that a
variable can take. In other words, vanable X; 1s m state a if X =
As an illustration, consider the simple example of a Markov model
i Figure 1. This 1-state model can be used to model any length
DNA sequence. In each position, the probabality of a 15 0.2. Thus the
sequence aaaaa would have a probability of (0.2)7 = 0.00032. In this
way we can score any sequence by computing the probabulity that

A first order Markov chain 15 a sequence of random variables
where the probability that X; takes a particular value only depends
on the preceding vanable X;_;. A k% order Markov chamn is a
natural generalization of tlus defimtion where the probability
distribution of X; depends only on the k preceding bases. Note that
for DNA sequences a first-order Markov chain 1s specified
completely by a matrix of 16 probabilities: p(ala). p(alc). ..., p(t?).

There are two essential computational issues that must be
considered in bwlding and using these probabilistic models:
(1) the learning problem, which mvolves learning a good model
for coding regions m microbial DNA and (11) the evaluation
problem, which mvolves assigning a score to a new DNA
sequence that represents the likelihood that the sequence 1s
coding. GLIMMER'’s solutions to both these computational
1ssues are described in the Interpolated models section below.

problem of how to handle overlappmeg genes, which we address 1
the Algonthm and Systemn Design section. which contams the details
of GLIMMER. (To be effective, an algorithm must do much more
than thus mtentionally simple desenption. For example, all scores
could be nearly equal. or the hughest score could still be quate low,
s0 the algonthm needs to have a threshold score below wluch no
region 1s classified as codng )

Interpolated models

In general, we would always like to use the highest-order Markov
model possible. The higher-order model should always do at least
as well as, and frequently better than, lower-order models. Thus
can be explamed by a simple example.

Suppose that the base m the thurd codon position depends only on
the second cr:-don posifion. Then we might observe m a given
genome that P'(ag g7) = 0.22; 1e. the probability of ob&en‘mg
adenine in the third codon posttion given that guamne occurs m the
second 15 0.22. Thus 15 a first-order dependency. Suppose that the
prior probability of adenme P(a3) 15 0.30. Clearly we will perform
better by usmg the first-order statishc, smce adenme occurs less
frequently m the third position followmg guanme than 1t does
otherwise. Now consider using both the first and second codon
positions to predict a3. Given our assumption that only the second
posttion matters, we should find that P(as |g1]| = P{a3|ga xl) where
x1 indicates any base in the first codon position. Thus the 2d-order
model will pe:fcrnn exactly the same as the 15-order model If it
tums out that the third codon Jomuml depends on both the first and
second positions, then the 2%%-order model will perform better

The problem that arises in practice 1s that, as we move to lugher
order models, the number of probabihties that we must estumate
from the data 1 1nc1?ase5 exponentially. For DNA sequence data, we
need to leam 4%~ ! probabilities in a #-order Markov model. Our



random vanable_X; takes a value trom the set of bases (g, ¢, g ). Lhe
probability that a vanable JX; takes will depend on the local context;
that 15, the bases immediately adjacent to the base at positioni. We
sometimes refer to (a, ¢, g ) as the set of possible states that a
variable can take. In other words, varable X; 1s m state a if X, = a1
As an illustration, consider the simple example of a Markov model
m Figure 1. This 1-state model can be used to model any length
DNA sequence. In each position, the probability of a 15 0.2. Thus the
sequence aaaaa would have a probability of (0.2)° = 0.00032. In this
way We can score any sequence by computing the probability that
it was generated by the model.

A first order Markov cham 1s a sequence of random variables
where the probability that X; takes a particular value only depends
on the preceding variable X;_;. A k% order Markov cham is a
natural generalization of this defimtion where the probability
distribution of X; depends only on the k preceding bases. Note that
for DNA sequences a first-order Markov chamn 1s specified
completely by a matrix of 16 probabilities: p(ala). plalc). ... p(]t).
There are two essential computational issues that must be
considered i bwlding and using these probabilistic models:
(1) the learning problem, which mvolves learning a good model
for coding regions i microbial DNA and (1) the evaluation
problem, which mvolves assigning a score to a new DNA
sequence that represents the likelihood that the sequence 1s
codmg GMIER 5 50111t1m15 to both theae computatlr:-nal

Zenes 111 11ICTo I"Fi DNA we

need to buld at least six 5"u]:rmodels one for each of the possible

readmg frames (three forward and three reverse). We can also buld
a seventh, separate model for non-coding regions, though tlus 1s not
strictly necessary. Each model makes different predictions for the

Interpolated models

In general, we would always like to use the highest-order Markov
model possible. The higher-order model should always do at least
as well as, and frequently better than. lower-order models. Tlus
can be explamed by a sumple example.

Suppose that the base m the third codon position depends only on
the second codon posifion. Then we mught observe m a grven
genome that P(a;'ggjl = 0.22; 1e., the probability of observing
adenme m the third codon position given that guamne occurs m the
second 1s 0.22. Tlus 15 a first-order dependency. Suppose that the
prior pmbabi]it\f of adenne P(az) 1s 0.30. Clearly we will perform
better by using the first-order statistic, since ademne occurs less
frequently m the third position fr:-]lov.mg guanine than it does
otherwise. Now consider using both the first and second codon
positions to predict a3. Given our assumption that only the second
posttion matters, we should find that P(as |g-.|]| = PI:H3|E¢ xl} where
xy indicates any base in the first codon position. Thus the 24_order
model will perform exactly the same as the 15torder model. If it
tums out that the third codon m}msﬂmn depends on both the fust and
second positions, then the 22%-order model will perform better.

The problem that arises m practice 1s that, as we move to lugher
order models, the munber of probabilities that we must estumate
from the data mcreases exponentially. For DNA sequence data, we
need to leamn 4%~ 1 probabilities in a #-order Markov model. Our
six submodels actually need 6x4% 71 probabilities. So a 5™-order
model needs 24 576 probabilities. In a microbial genome such as
Hinfluenzae with 1.8 mulhon bases, we will observe each of the
4096 possible 6mers often enough to get accurate estunates for a
St order model although for rare hexamers we may not have
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Figure 1. Sample 1-state Markov model for simple sequence modeling.

GLIMMER. uses a novel approach, based on frequency of
occurrence and predictive value, to deternune the relative weights
of oligomers that vary m length from 1 to 8. After first creating
IMMSs for each of the six possible reading frames, GLIMMER
then uses them to score entire orfs. When two lugh-scoring orfs
overlap, the overlap region 15 scored separately to deternune
which orf 1s more likely to be a gene. We have tested GLIMMER
using the H.influenzae, Helicobacter pylori and Escherichia coll
genomes and found that 1t 15 very accurate i 1dentifying genes,
as we explain in Methods and Results. The system has recently
been used to find the genes in two newly completed genomes:
Borvelia burgdorferi, the bacteria that causes Lyme disease (14), and
Treponema pallidim, the bactena that causes syphilis (Fraserer al.,
manuscript m preparation).  Amnotation for these and other
completed genomes will be available on the GLIMMER. web site.

INTERPOLATED MARKOV MODELS

Markov chains

Our probabihistic model of DNA sequences represents a sequence as
a process that may be described as a sequence of random vanables
X7, A5, ... where X; corresponds fo position 7 m the sequence. Each
random variable ¥; takes a value from the set of bases (g, ¢, g ). The

bases m the three codon positions. Even with a 0%-order model. the
frequency of g mn codon position 1 will be different from its

frequency m another frame. so even this very weak model] has some
ability to identity the right ne-aclma frame fm a gene.

umnedlateh prevmu's 1e.a base 1s dependent on the previous
base. Thus instead of four probabilities in each state, we compute
sixteen: p(aja). p(a|c), ..., p(f]f). In order to score a new sequence,
the model considers two bases at a time, the current base and the
previous one. Likewise, in a 29-order model. the output of a state
depends on the two previous bases. So to predict a base in the third
codon position with our 224_order model, we look at the first and
second codon positions. To predict a base i the first codon
position, the 2®%-order model looks at the second and third codon
posttions m the previous codon.

Using the Markov models for each of the six possible frames plus
a model of non-coding DNA we can straightforwardly produce a
simple algonthm for findmg genes. Simply score every orf using all
seven models, and choose the model with the highest score. The
scores can be normahized so they represent the probability that a
sequence 15 codmg. If the model correspondmg to the true coding
region m the correct frame scores the highest. then the orf can be
labeled as a gene. This sumple algorithm ignores the difficult
problem of how to handle overlappmg genes, which we address m
the Algonthm and System Design section. which contamns the details
of GLIMMER. (To be effective, an algonithm must do much more
than this mtenfionally simple descniption. For example, all scores
could be nearly equal, or the hughest score could still be quate low,
so the algonthm needs to have a tlhweshold score below which no
region 1s classified as coding.)
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probability that a variable 7 takes will depend on the local context:
that 15, the bases immediately adjacent to the base at positioni. We
sometimes refer to (a, ¢, g ) as the set of possible states that a
variable can take. In other words, vanable &} 15 m state g if X = a.
As an illustration, consider the simple example of a Markov model
i Figure 1. This 1-state model can be used to model any length
DNA sequence. In each position, the probability of a 15 0.2. Thus the
sequence aaaaa would have a probability of (0.2)° = 0.00032. In this
way we can score any sequence by computing the probability that
it was generated by the model.

A first order Markov chain is a sequence of random vanables
where the probability that &} takes a particular value only depends
on the preceding variable X;_;. A kb order Markov chain is a
natural generalization of thus defimtion where the probability
distribution of X; depends only on the k preceding bases. Note that
for DNA sequences a first-order Markov chamn 1s specified
completely by a matrix of 16 probabilities: p(aja). plalc). ... p(z]r).
There are two essential computational issues that must be
considerad m bwlding and using these probabilistic models:
(1) the learming problem, which mvolves learning a good model
for coding regions m mucrobial DNA and (1) the evaluation
problem, which mvolves assigning a score to a new DNA
sequence that represents the likelihood that the sequence 1s
coding. GLIMMER’s solutions to both these computational
1ssues are described m the Interpolated models section below.

Touse a Markov chain model to find genes in nucrobial DINA_ we
need to buld at least six submodels, one for each of the possible
reading frames (three forward and three reverse). We can also buld
a seventh, separate model for non-coding regions, though this 1s not
strictly necessary. Each model makes different predictions for the

Interpolated models

In general, we would always like to use the highest-order Markov
model possible. The higher-order model should always do at least
as well as. and frequently better than lower-order models. Thus
can be explained by a sunple example.

Suppose that the base m the third codon position depends only on
the second codon position. Then we might observe m a given
genome that P(a; g3) = 0.22; 1e, the probability of ohmmg

adenine in the third codon position given that guanme occurs m the
second 15 0.22. Thus 15 a first-order dependency. Suppose that the
prior pmbabﬂin of adenme P(az) 15 0.30. Clearly we will perform

better by using the first-order statistic, since ademne occurs less
frequently m the third position followmg guanine than it does
otherwise. Now consider using both the first and second codon
positions to predict a3. Given our assumption that only the second
posttion matters, we should find that P(as |111]| =P(a 3|ga xl) where
x1 mndicates any base i the first codon position. Thus the 29_order
model will perform exactly the same as the 15 order model. If it
furms out that the third codon m}msmnn depends on both the fust and
second positions, then the 22%-order model will perfonn better.

order models, ﬂle munbe: of p.robabﬂmes that we mus-t Evstunate
from the data 1 mmveases exponentially. For DNA sequence data, we
need to leam 4%~ ! probabilities in a ¥-order Markov model. Our
six submodels actually need 6x4F 1 probabilities. So a S%-order
model needs 24 576 probabilities. In a microbial genome such as
Hinfluenzae with 1.8 mulhon bases, we will observe each of the
4096 possible 6mers often enough to get accurate estimates for a
S®_order model although for rare hexamers we may not have
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enough data. For a 6%-order model, which requires probabilities for
all Tmers. there are a substantial numiber of 7mers that do not oceur
sufficiently often. and for 71 and 8%-order models the problem 1s

worse. However even for 8™order models. there are some

oligomers that occur often enough to be extremely useful predictors.
We would like a Markov model that uses these higher-order stafistics
whenever suffictent data 1s avalable. Thus 15 one of the key

tr:- mcmpmate xanable length predmme models (7.8). We
experimented with these alternatives before converging on the
approach described here ]

To be more precise, an IMM uses a combmation of all the
probabilities based on 0, 1, 2, ... k previous bases, where & 15 a
parameter given to the algorithm In GLIMMER. we use £=8. Thus
for oligomers that occur frequently, the IMM can use an 8% order
model, while it might use a 5™ or even lower-order model for rare
olgomers. In order to ‘smooth’ its predictions. an IMM uses
predictions from the lower-order models, where much more data 1s
available, to adjust the predictions made from lugher-order models.

During tramming, GLIMMER. computes the probability of each
base a, ¢, g, t, following all kers for 0 < k =< 8 Then, for each
faner 1t computes a weight to use in combiung the predictions of
different order models. Details of the algorithm for computing
these weights are given m the Algonthm and system design
section. Once the weights are computed, GLIMMER. evaluates
new sequences by computing the probability that the model M
generated the sequence S, P (S|M). Thus probability 1s computed as

RSB = S DIVL(S)

xm=]

It 1s worth remarkmg that GLIMMER. builds a non-homogenous
Matlov model: 1.e  different models are ereated for each of the thres
codon posttions. This type of “3-pentodic” Markov cham was
mtroduced i GeneMark (5) to account for patterns that depend on
the reading frame.

ALGORITHM AND SYSTEM DESIGN
Setting INM parameters

In this section we describe how GLIMMER computes the values
of the A parameters for the k-order IMM described n the
preceding section. In addition, we explamn the solution to the
learming problem mentioned in the mtroduction. Fust, a set of
known coding sequences must be assembled nto a traimng set.
To be certain these are truly coding 1s somewhat problematic for
a new genome. The solution we have adopted 1s to use only very
long m'fs and sequences with homology to known genes from
other organisms. These can easily be identified a priori without
hmﬁmg anything else about the genome beimng analyzed.

From the traming set of genes. the frequencies of occurrence of
all possible substring patterns of length 1 to k+ 1 are tabulated in
each of the six reading frames. (The last base mn the substring
defines the reading frame.) For sumplicity, let us consider just a
single reading frame and use fi5) to denote the number of
occurrences of siring (sequence) S = 557 §,. (This same
procedure 15 repeated for each of the six reading frames ) From
these frequencies we get mitial estumates of the probability of
base 5, occurring given the context string §.;, Se—j+1. -, 1.
denoted by S ; (1 e., the 7 bases just p191'10115 to pasﬂmn x} We
compute the probabﬂm of base s, given the 7 previous bases as
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P = S IVMML(S)

x=1

where S, 1s the oligomer ending at position x, and » 15 the length
of the sequence. IMMj (S;). the 8®-order mterpolated Markov
model score, 1s computed as

IMM(Se) = 88 - 1) * BrlS) + [1 = A4S - )]« IMM _1(S0)

where A;(S; — 1) 15 the numeric weight associated with the kmer
ending at position x — 1 mn the sequence Sand Py(S,) 1s the estimate
obtained from the trammg data of the probability of the base
located at x in the FP-order model. Thus, the 8®-order IMM score
of an oligomer 15 a linear combination of the predictions made by
the 8% 78 and lesser-order models all the way down to the
0™_order model. which is just the simple prior probabilities of a,
c. g t The above equation 1s the solution to the evaluation
pmblem mentioned in the mtroduction.

plE'fE’:l‘ﬂhlE‘ to a ﬁxed—ﬂrda Markowv model Fcu example, b‘i. E;l"l.”lllﬁ
zero weights to all oligomers except Smers, an IMM will pﬂfmm
idenfically to a 5 SH_order Markov model However, if there are any
6mers that occur frequently enough m the tramnmg data to be usefil,
and 1f these 6mers predict a different distribution of bases than the
corresponding Smers, then the IMM will outperform the S%_order
model. Not only longer but also shorter oligomers will help improve
performance: even if a 5™-order model is better than a 4®-order
model, there may be some rare Smers for which msufficient data are
avatlable. A 5™-order model has no choice but to use the unreliable
predictions from these rare Smers, but an IMM can fall back on the
much more rehiable predictions made by the 4mers m such cases.
The experiments described below indicate that both of these
phenomena occur and both serve to give IMMSs an advantage over
fixed-order Markov models.

base 5, occurring given the context string §,.;. Se_j+1. -, S—1.
denoted by S ; (1 e., the 7 bases just p:evmus to pasﬂmn x) We
compute the prc::babﬂlh of base 5, given the 7 previous bases as

f {S't’?)
EEE{MST}f{Sx.f' b)

The value of 24(S,) that we associate with B(S;) can be regarded as
a measure of our confidence m the accuracy of this value as an
estimate of the true probability,. GLIMMER uses two criteria to
determune A;(S;). The fust of these 1s simply ﬂ\equenm, of
occurrence. If the number of occurrences of context string S, ; m the
traiing data exceeds a specific threshold value, then A;(S;) 15 set fo
1.0. Thus, when there are sufficiently many sample occurrences of
a context string m the trammg data, then those sample probabilities
are used. The current default value for thus threshold m GLIMMER
15 400, which grves ~95% confidence that the sample probabilities
are within +0.05 of the true probabilities from which the sample was
taken. (Other thresholds were tested expenimentally, but none
provided any noticeable improvement )

When there are msufficiently many sample occurrences of a
context string fo estimate the pmbablhh of the next base with
confidence, we employ an additional criterion to assign a A value.
For a given context string S, ; of length 7, we compare the observed
frequencies of the followmg base. (S, ;. a), AS.;. c). fi5;. g) and
S5, 1), with the previously calculated IMM probabilities using the
next shorter context, IMM; 1 (Sci—1, 2), IMM—1 (Sci-1, ©), IMME_1
(S;i-1. @ and IMM;_; (S;;—1.t). Using a X2 test, we determine how
likely 1t 15 that the four observed frequencies are consistent with the
IMM values from the next shorter context. When the frequencies
caffer sigmuficantly from the IMM values, we prefer to use them as
better pﬂedmtms of the next base, ie., give them a higher A value.
Conversely, when the ﬂ‘equenc:les are consistent with the IVMM
values, they offer little predictive value and hence we give them a

P:(S‘xj = P(Sx Sx.r’} =
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of the sequence. IMMj (S;). the 8®-order mterpolated Markov
model score, 1s computed as

IMM(Se) = 88 - 1) * BrlS) + [1 = A4S - )]« IMM _1(S0)

where A;(S; — 1) 15 the numeric weight associated with the kmer
ending at position x — 1 mn the sequence Sand Py(S,) 1s the estimate
obtained from the trammg data of the probability of the base
located at x in the FP-order model. Thus, the 8®-order IMM score
of an oligomer 15 a linear combination of the predictions made by
the 8% 78 and lesser-order models all the way down to the
0™_order model. which is just the simple prior probabilities of a,
c, g, t The abme Equatmn 15 the solution to the evaluation

From this cleﬁmtmu 1t 15 clear that an IMM 1s m principle always
preferable to a fixed-order Markov model. For example, by giving
zero weights to all oligomers except Smers, an IMM will perform
idenfically to a 5 SH_order Markov model However, if there are any
6mers that occur frequently enough m the tramnmg data to be usefil,
and 1f these 6mers predict a different distribution of bases than the
corresponding Smers, then the IMM will outperform the S%_order
model. Not only longer but also shorter oligomers will help improve
performance: even if a 5™-order model is better than a 4®-order
model, there may be some rare Smers for which msufficient data are
avatlable. A 5™-order model has no choice but to use the unreliable
predictions from these rare Smers, but an IMM can fall back on the
much more rehiable predictions made by the 4mers m such cases.
The experiments described below indicate that both of these
phenomena occur and both serve to give IMMSs an advantage over
fixed-order Markov models.

base 5, occurring given the context string §,.;. Se_j+1. -, S—1.
denoted by S ; (1 e., the 7 bases just p:evmus to pasﬂmn x) We
compute the prc::babﬂlh of base 5, given the 7 previous bases as
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The value of 24(S,) that we associate with B(S;) can be regarded as
a measure of our confidence m the accuracy of this value as an
estimate of the true probability,. GLIMMER uses two criteria to
determune A;(S;). The fust of these 1s simply ﬂ\equenm, of
occurrence. If the number of occurrences of context string S, ; m the
traiing data exceeds a specific threshold value, then A;(S;) 15 set fo
1.0. Thus, when there are sufficiently many sample occurrences of
a context string m the trammg data, then those sample probabilities
are used. The current default value for thus threshold m GLIMMER
15 400, which grves ~95% confidence that the sample probabilities
are within +0.05 of the true probabilities from which the sample was
taken. (Other thresholds were tested expenimentally, but none
provided any noticeable improvement )

When there are msufficiently many sample occurrences of a
context string fo estimate the pmbablhh of the next base with
confidence, we employ an additional criterion to assign a A value.
For a given context string S, ; of length 7, we compare the observed
frequencies of the followmg base. (S, ;. a), AS.;. c). fi5;. g) and
S5, 1), with the previously calculated IMM probabilities using the
next shorter context, IMM; 1 (Sci—1, 2), IMM—1 (Sci-1, ©), IMME_1
(S;i-1. @ and IMM;_; (S;;—1.t). Using a X2 test, we determine how
likely 1t 15 that the four observed frequencies are consistent with the
IMM values from the next shorter context. When the frequencies
caffer sigmuficantly from the IMM values, we prefer to use them as
better pﬂedmtms of the next base, ie., give them a higher A value.
Conversely, when the ﬂ‘equenc:les are consistent with the IVMM
values, they offer little predictive value and hence we give them a

P:(S‘xj = P(Sx Sx.r’} =



enough data. For a 6®-order model, which requires probabilities for
all Tmers, there are a substantial number of 7mers that do not oceur
suffictently often. and for 7% and 8%-order models the problem is
worse. However, even for 8™order models. there are some
oligomers that occur often enough to be extremely useful predictors.
We would like a Markov model that uses these higher-order statistics
whenever sufficient data 15 available. This 15 one of the key
advantages of using an IMM. [Note that there exust other techmques
to mcorporate vanable length predictive models (7,8). We
experimented with these altemnatives before converging on the
approach described here ]

To be more precise, an IMM uses a combmnation of all the
probabilities based on 0. 1, 2, ... k previous bases, where £ 15 a
parameter given to the algonthm. In GLIMMER_ we use £=8. Thus
for ohgomers that occur frequently, the IMM can use an st order
model while 1t mught use a 5t or even lower-order model for rare
D]lngIHE‘I‘S In order to ‘smooth’ its predictions, an IMM uses
precictions from the lower-order models. where much more data 1s
available, to adjust the predictions made from higher-order models.

Dunng tramming, GLIMMER. computes the probability of each
base a, ¢, g, t, following all kmers for 0 < k < & Then, for each
fmer 1t computes a weight to use m combining the predictions of
different order models. Details of the algorithm for computing
these weights are given m the Algonthm and system design
section. Once the weights are computed, GLIMMER. evaluates
new sequences by computing the probability that the model M
generated the sequence S. P (S|M). Thus probability 1s computed as

RSDD = > IMML(S)

x=]

It 1s worth remarkmg that GLIMMER. builds a non-homogenous
Matkov model: 1.e  differant models are creatad for each of the three

codon posttions. This type of “3-penodic™ Markov cham was
wtroduced m GeneMark (5) to account for pafterns that depend on
the reading frame.

ALGORITHM AND SYSTEM DESIGN
Setting INIM parameters

In this section we describe how GLIMMER. computes the values
of the A parameters for the k-order IMM described in the
preceding section. In addition, we explain the solution to the
learming problem mentioned in the mtroduction. Furst, a set of
known coding sequences must be assembled into a traimng set.
To be certain these are truly coding 1s somewhat problematic for
a new genome. The solution we have adopted 1s to use only very
long m'fs and sequences with homology to known genes from
other orgamusms. These can easily be identified a priori without
hmvmlg anything else about the genome being analyzed.

From the training set of genes, the frequencies of occurrence of
all possible substring patterns of length 1 to &£+ 1 are tabulated in
each of the six readmg frames. (The last base m the substring
defines the reading frame ) For simplicity, let us consider just a
single reading frame and use f{S) fo denote the number of
occurrences of string (sequence) S = 5157 5, (Tlus same
procedure 1s repeated for each of the six reading frames.) From
these frequencies we get mitial estimates of the probability of
base s, occurring grven the context string S;, Sy—+1. . Se—1-
denoted by S, ; (1 e., the 7 bases just p191'10115 to pnsﬂmn x} We
compute the probabﬂm of base s, given the i previous bases as
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single reading frame and use f{S) fo denote the number of
occurrences of string (sequence) S = 5157 5, (Tlus same
procedure 1s repeated for each of the six reading frames.) From
these frequencies we get mitial estimates of the probability of
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During trammng, GLIMMER. computes the probability of each
base a, ¢, g, t, following all kers for 0 < k << 8. Then, for each
kamer 1t computes a weight to use in combinng the predictions of
different order models. Details of the algonithm for computing
these weights are given m the Algonthm and system design
sechion. Once the weights are computed, GLIMMER. evaluates
new sequences by compuiing the probability that the model A
generated the sequence S, P (S|M). This probability 1s computed as

P = S IVML(S)

x=1

where S, 1s the oligomer ending at position x. and # 15 the length
of the sequence. IMMj (S;). the 8®-order mterpolated Markov
model score, 15 computed as

IMM(Se) = AelSe - 1) PelS) + [1 = A4S - )] = IMM _1(S))

where A;(S; _ 1) 1s the numeric weight associated with the fmer
ending at position x — 1 in the sequence S and P (S, ) 1s the estumate
obtained from the traming data of the probability of the base
located at x in the ¥B-order model. Thus, the 8%-order IMM score
of an oligomer 15 a limear combination of the predictions made by
the 8% 78 and lesser-order models all the way down to the
0™_order model. which is just the simple prior probabilities of a,
c. g, t. The above equation 1s the solution to the evaluation
problem mentioned n the introduction.

From thus definttion 1t 15 clear that an IMM 1s m principle always
preferable to a fixed-order Markov model. For example, by giving
zero weights to all oligomers except Smers, an IMM will perform
idenfically to a 5 SH_grder Markov model However, if there are any
6mers that occur frequently enough m the traming data to be useful,
and 1f these 6mers predict a different distribution of bases than the
corresponding Smers, then the IMM will outperform the 5%-order

From the traiming set of genes, the frequencies of occurrence of
all possible substring patterns of length 1 to £+ 1 are tabulated in
each of the six readmmg frames. (The last base m the substring
defines the reading frame.) For sumplicity, let us consider just a
single reading frame and use fiS) to denote the number of
occurrences of string (sequence) S = 5157 5, (This same
procedure 1s repeated for each of the six reading frames ) From

these frequencies we get mutial estumates of the probability of
base s, occurring given the context string §,.;. Se_j+1. -, S—1.
denoted by S, ; (1 e., the 7 bases just plevmus to pasmon x) We
compute the probabﬂm of base 5, given the 7 previous bases as

f (Srr}
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P:(ij = P{Sx Sx.r’} =

a measure 'Df our confidence in the acc‘umm of this value as an
estimate of the true probability. GLIMMER uses two criteria to
determme A;(S;). The fust of these 15 simply ﬂ\equenm of
occurrence. If the number of occurrences of context string S, ; m the
traming data exceeds a specific threshold value, then 4;(S;) 15 set to
1.0. Thus, when there are sufficiently many sample occurrences of
a confext siring m the trammg data, then those sample probabilities
are used. The current default value for thus threshold m GLIMMER
15 400, which grves ~-95% confidence that the sample probabilities
are within +0.05 of the frue probabilifies from which the sample was
taken. (Other thresholds were tested expenimentally, but none
provided any noticeable improvement )

When there are msufficiently many sample occurrences of a
context strng fo estimate the pmbabllm of the next base with
confidence, we employ an additional criterion to assign a A value.
For a given context string S, ; of length 7, we compare the observed
frequencies of the following base, (S, ;, a), AS;;. c). AS5;;. g and
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of the sequence. IMMj (S;). the 8®-order mterpolated Markov
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where A;(S; _ 1) 1s the numeric weight associated with the fmer
ending at position x — 1 in the sequence S and P (S, ) 1s the estumate
obtained from the traming data of the probability of the base
located at x in the ¥B-order model. Thus, the 8%-order IMM score
of an oligomer 15 a limear combination of the predictions made by
the 8% 78 and lesser-order models all the way down to the
0™_order model. which is just the simple prior probabilities of a,
c. g, t. The above equation 1s the solution to the evaluation
problem mentioned n the introduction.

From thus definttion 1t 15 clear that an IMM 1s m principle always
preferable to a fixed-order Markov model. For example, by giving
zero weights to all oligomers except Smers, an IMM will perform
idenfically to a 5 SH_grder Markov model However, if there are any
6mers that occur frequently enough m the traming data to be useful,
and 1f these 6mers predict a different distribution of bases than the
corresponding Smers, then the IMM will outperform the 5%-order

knowing anything else about the genome bemg analyzed.

From the traiming set of genes, the frequencies of occurrence of
all possible substring patterns of length 1 to £+ 1 are tabulated in
each of the six readmmg frames. (The last base m the substring
defines the reading frame.) For sumplicity, let us consider just a
single reading frame and use fiS) to denote the number of
occurrences of string (sequence) S = 5157 5, (This same
procedure 1s repeated for each of the six reading frames ) From
these frequencies we get mutial estumates of the probability of
base s, occurring given the context string §,.;. Se_j+1. -, S—1.
denoted by S, ; (1 e., the 7 bases just plevmus to pasmon x) We
compute the probabﬂm of base 5, given the 7 previous bases as
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The value of A;(S5,) that we associate with B(S;) can be regarded as
a measure of our confidence m the accuracy of this value as an
estimate of the true probability. GLIMMER uses two criteria to
determme A;(S;). The fust of these 15 simply ﬂ\equenm of
occurrence. If the number of occurrences of context string S, ; m the
traming data exceeds a specific threshold value, then 4;(S;) 15 set to
1.0. Thus, when there are sufficiently many sample occurrences of

P:(ij = P{Sx Sx.r’} =

a confext siring m the trammg data, then those sample probabilities
are used. The current default value for thus threshold m GLIMMER
15 400, which grves ~-95% confidence that the sample probabilities
are within +0.05 of the frue probabilifies from which the sample was
taken. (Other thresholds were tested expenimentally, but none
prcmded any nﬂnceahle unp:m ement )

context strng fo ea.n_mate the pmbabllm of the next hase with
confidence, we employ an additional criterion to assign a A value.
For a given context string S, ; of length 7, we compare the observed
frequencies of the following base, (S, ;, a), AS;;. c). AS5;;. g and



where S, 15 the oligomer ending at position x, and # 15 the length
of the sequence. IMMg (5;). the 8M-order mterpolated Markov
model score, 1s computed as

IMME(Se) = MelSe — 1) ® Pe(Se) + [1 = AlSe - )]« IMM _1(S))

where A;(S; _ 1) 15 the numeric weight associated with the Aner
ending at position x — 1 mn the sequence Sand Py(S; ) 1s the estimate
obtained from the traming data of the probability of the base
located at x in the KB-order model. Thus, the 8%-order IMM score
of an oligomer 15 a linear combination of the predictions made by
the 8 7% gand lesser-order models all the way down to the
0™_order model. which is just the simple prior probabilities of a,
c. g, t. The above equation 1s the solution to the evaluation
problem mentioned in the introduction.

From thus definttion 1t 15 clear that an IMM 1s m principle always
preferable to a fixed-order Markov model. For example, by giving
zero weights fo all oligomers except Smers, an IMM will perform
idenfically to a 5 S_grder Markov model However, if there are any
6mers that occur frequently enough m the traming data to be useful,
and 1f these 6mers predict a different distribution of bases than the
corresponding Smers, then the IMM will outperform the St-order
model Not only longer but also shorter oligomers will help improve
performance: even if a 5™-order model is better than a 4™-order
model, there may be some rare 5mers for which msufficient data are
available. A 5™-order model has no choice but to use the unreliable
predictions from these rare Smers, but an IMM can fall back on the
much more rehable predictions made by the 4mers m such cases.
The experuments described below mdicate that both of these
phenomena occur and both serve to give IMMSs an advantage over
fixed-order Markov models.
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The value of A;(S,) that we associate with B(S,) can be regarded as
a measure of our confidence m the accuracy of this value as an
estimate of the true probability,. GLIMMER. uses two criteria to
determme A;(S;). The fust of these 15 simply ﬂ\eqwenm of
occurrence. If the number of occurrences of context string S, ; m the
traiming data exceeds a spectfic threshold value, then A:(S;) 15 set to
1.0. Thus, when there are sufficiently many sample occurences of
a confext siring m the trammng data, then those sample probabilities
are used. The current default value for thus threshold m GLIMMER.
15 400, which gives ~95% confidence that the sample probabilities
are within +0.05 of the frue probabulities from which the sample was
taken. ({]the: thresholds were tested experimentally. but none

P:(ij = P{Sx S:'f.f:l =

When thﬂe are msufﬁmﬂlth many sample occurrences of a
context string to estimate the pmbabﬂm of the next base with
confidence, we employ an additional criterion to assign a A value.
For a given context string S, ; of length i, we compare the observed
frequencies of the fD]lmI.‘mE base. ﬂS“ a), fS::. ¢, S g} and
iS4, ), with the prew:ru&h, calculated IMM probabilities usmg the

next shorter context, IMM;—1 (S;i-1. a), IMM;—1 (Sxi-1, ), IMM;—1

(Si-1. 2 and IMM;_; (S, ;1. 1). Using a A2 test, we determine how
likely 1t 1s that the four observed frequencies are consistent with the
IMM values from the next shorter context. When the frequencies
chffer sigmificantly from the IMM values, we prefer to use them as
better predictors of the next base, 1e give them a higher A value.
Conversely, when the frequencies are consistent with the IMM
values. they offer hitle predictive value and hence we give them a




lower A value. Specifically, we calculate the %2 confidence ¢ that the
frequencies are not consistent with the IMM probabulities and set

0.0 _
ife < 0.50
4_5[1 E*fmﬁff(-fl-iz-..jfbj

A:(Sx ]j = ife = 0.50

Thus, we assign higher A values based on a combmation of
predictive value, determined by 2 significance, and accuracy,
determined by frequency of occurrence. This A value now defines
the probabilities IMM; (S, ;. b) for b e {a. c. g. t} according to
equation 1. [Other methods of assigning A values for IMMs have
been developed (9,10). We experimented with these methods mn
addition to the one described above, and comparative results will
be given m a follow up paper. Roberts (11), cited m (12) also
describes a method for buildine nonuniform Markov models.

The GLIMNMIER systemn

The GLIMMER system consists of two programs. The first of these,
called buwld-mmm takes an mput set of sequences and bulds and
outputs the IMM for them as described above. These sequences can
be complete genes or just partial orfs. The second program called
ghimmer, then uses this IMM to 1dentify putatrve genes m an entire
genome. Glimmer does not use shding windows to score regions.
Instead, 1t first identifies all orfs longer than some spectfied threshold
value, and scores each one m all six reading frames. Those that score
lugher than a designated threshold m the correct reading frame are
then selected for fiwther processmg. These selected orfs are then
examined for overlaps. If two orfs m different reading frames
overlap (by more than some designated muninmun length), the
overlapping region alone 1s scored separately. The overlap region’s
six readg frame scores are then compared with those of the two
overlapping orfs to see wluch frame scores lughest. In general, when
a loneer orf overlaps a shorter orf and the overlap remon scores

both of these criteria: (1) the orf 15 =500 bases long, which provides
the basis for a statistical argument that the gene 15 lughly likely to be
a coding region, since orfs of thus length almost never occur mn
non-coding DNA (1) The orf does not overlap any other orf longer
than 500 bp. Usmg these criteria, we were able to collect 1168 orfs
from the cwrent version of Hinfluenzae (GenBank accession
L42023), wluch contans 1717 annotated genes. Thuty-two of these
did not match CDS entnes, but we mcluded them anyway. Tlus
gives us a completely automatic tranung procedure for GLIMMER,
requunng no human mtervention.

Tlus expermment compared GLIMMER's IVMM to a conventional
fixed-length Markov model on the Hinfluenzae genome data. We
followed identical traming protocols for both the IMM and a
fixed-length ST order Markov model [This S%-order Markov
model 15 the same model as that used by GeneMark (6). Because we
did not have access to the GeneMark source code. we could not
retram that system on our data, so we implemented our own model
based on pubhshed descriptions of GeneMark ] All post-processing
to resolve overlaps was also identical for both methods. Thus the
only difference was the model itself: m one case an mterpolated
Markov model, and m the other case a 5®-order Markov model
Note that we also implemented A and 6™ order Markov models,
but the 5%-order model performed better than these. The results are
shown m Table 1.

Table 1. Comparison of the IMM model used in GLIMMER. to a2 5% order
Markov model

Model Genes Genes Additional
found miszed genes

GLIMMEE. IMDM 1680 (97.8% 37 209

5th_Order Markov 1574 (91.7%) 143 104

The first colunm indicates how many of the 1717 annotated genes in Hinflusnzae
were found by each alzorithm. The “additional genes” coluwmn shows how many extra



The GLIMMER svstem

The GLIMMER system consists of two programs. The first of these,
called buwld-mmm takes an mput set of sequences and bulds and
outputs the IMM for them as described above. These sequences can
be complete genes or just partial orfs. The second program called
glimmer, then uses this IMM to 1dentify putatrve genes m an entire

genome. Glimmer does not use shding windows to score regions.
Instead, 1t first identifies all orfs longer than some spectfied threshold
value, and scores each one m all sxx reading frames. Those that score
lugher than a designated threshold m the correct readmg frame are
ﬂ1en selected for further 0CeSSING. These Eelected mfs are then

m-alap (by more than some designated muninmun lengﬂl)__ the
overlapping region alone 1s scored separately. The overlap region’s
six reading frame scores are then compared with those of the two
overlapping orfs to see wluch frame scores lughest. In general, when
a longer orf overlaps a shorter orf and the overlap region scores
lughest m the reading frame of the longer orf, then the shorter orf 15
eliminated as a gene candidate. The final output of the program 1s
a list of putative gene coordinates m the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These “suspect” gene candidates (usually a
very small percentage of the total) can then be exanuned mamually
to determune 1if they are in fact genes. Samples of GLIMMER
outputs for the Hpylor? genome are available on the GLIMMER
web site at  httpr/www.es jhu.edu/labs/compbio/ghmmerhtml,
wlich also contams results for Ecoli and Hinfluenzae. The
GLIMMER system, mcluding all source code, 1s freely available
from tlus site.

retram that system on our data, so we implemented our own model
based on pubhshed descriptions of GeneMark ] All post-processing
to resolve overlaps was also identical for both methods. Thus the
only difference was the model itself: m one case an mterpolated
Markov model, and m the other case a 5™ order Markov model
Note that we also implemented 4% and 6™-order Markov models,
but the 5P-order model performed better than these. The results are
shown in Table 1.

Table 1. Comparizon of the IMM model used in GLIMMER. to a 5% order
Markov model

Model Genes Genes Additional
found missed genes

GLIMMEE. IMIM 1680 (97.8% 37 209

5th_Order Markov 1574 (91.7%0) 143 104

The first colunm indicates how many of the 1717 annotated genes in Hinflusnzae
wete found by each algorithm. The “additional genes” column shows how many extra
genes, not mcleded i the 1717 annotated enfries, were called genes by each method.

Of the 37 genes mussed by GLIMMER's IMM, only one was
found by the 5%-order model. In contrast, the IMM found 107 genes
that th.e st order model missed. For this mumn. a pre-set threshold
prevented both systems from tinding genes shorter than 100 bp. and
six of the 37 genes nussed by GLIMMER were below thus threshold.
Of the remanung 31 genes, only one was longer than 500 bp. Fmally,
note that this was a completely ‘self-tramed’ experiment in which
database matches were not used for training; augmenting the frammng
set with these addiional genes will almost cerfamly mprove
performance further. Of the 209 additional genes called by the
systerm. some can be eluninated from consideration by comparison

winth fAimeticmal PR A camancac Tha ramamdar mmasr oo mmarr ot ha



The GLIMNMIER systemn

The GLIMMER system consists of two programs. The first of these,
called buwld-mmm takes an mput set of sequences and bulds and
outputs the IMM for them as described above. These sequences can
be complete genes or just partial orfs. The second program called
glimmer, then uses this IMM to 1dentify putatrve genes m an entire
genome. Glimmer does not use shding windows to score regions.
Instead, 1t first identifies all orfs longer than some spectfied threshold
value, and scores each one 1n all SIX 1‘eadmg ﬁame's Those that score

exammed for overlaps. If two orfs m different reading frames
overlap (by more than some designated muninmun length), the
overlapping region alone 1s scored separately. The overlap region’s
six reading frame scores are then compared with those of the two
overlapping orfs to see wluch frame scores lughest. In general, when

a longer orf overlaps a shorter orf and the overlap region scores
lughest m the reading frame of the longer orf, then the shorter orf 15
eliminated as a gene candidate. The final output of the program 1s
a list of putative gene coordinates m the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These ‘su&pect' gene candidates (usually a

to deteunme if the*. are fact genes. Emnples of GLIMMER
outputs for the Hpy iori genome are available on the GLIMMER
web site at  httpr/www.es jhu.edu/labs/compbio/ghmmerhtml,
wlich also contams results for Ecoli and Hinfluenzae. The
GLIMMER system, mcluding all source code, 1s freely available
from tlus site.

retram that system on our data, so we implemented our own model
based on pubhshed descriptions of GeneMark ] All post-processing
to resolve overlaps was also identical for both methods. Thus the
only difference was the model itself: m one case an mterpolated
Markov model, and m the other case a 5™ order Markov model
Note that we also implemented 4% and 6™-order Markov models,
but the 5P-order model performed better than these. The results are
shown in Table 1.

Table 1. Comparizon of the IMM model used in GLIMMER. to a 5% order
Markov model

Model Genes Genes Additional
found missed genes

GLIMMEE. IMIM 1680 (97.8% 37 209

5th_Order Markov 1574 (91.7%0) 143 104

The first colunm indicates how many of the 1717 annotated genes in Hinflusnzae
wete found by each algorithm. The “additional genes” column shows how many extra
genes, not mcleded i the 1717 annotated enfries, were called genes by each method.

Of the 37 genes mussed by GLIMMER's IMM, only one was
found by the 5%-order model. In contrast, the IMM found 107 genes
that th.e st order model missed. For this mumn. a pre-set threshold
prevented both systems from tinding genes shorter than 100 bp. and
six of the 37 genes nussed by GLIMMER were below thus threshold.
Of the remanung 31 genes, only one was longer than 500 bp. Fmally,
note that this was a completely ‘self-tramed’ experiment in which
database matches were not used for training; augmenting the frammng
set with these addiional genes will almost cerfamly mprove
performance further. Of the 209 additional genes called by the
systerm. some can be eluninated from consideration by comparison
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overlap (by more than some designated muunnun length), the
overlapping region alone 1s scored separately. The overlap region’s
six readmg frame scores are then compared with those of the two
overlapping orfs to see wluch frame scores hughest. In general, when
a longer orf overlaps a shorter orf and the overlap region scores
highest m the reading frame of the longer orf, then the shorter orf 15
elinunated as a gene candidate. The final output of the program 1s
a hist of putative gene coordinates m the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These ‘suspect” gene candidates (usually a
very small percentage of the total) can then be exanuned manually
to determme 1if they are in fact genes. Samples of GLIMMER.
outputs for the Hpylor? genome are available on the GLIMMER.
web site at  http:/wwwes jhn edu/labs/compbio/glimmer html,
wlich also contams results for E.coli and Hinfluenzae. The
GLIMMER system, includmg all source code, 15 freely available
from tlus site.

METHODS AND RESULTS

To evaluate the effectiveness of our IMM, we compared 1t to a
conventional fixed-order model on data from Hinfluenzae
genome. As a second confirmung test, we ran it on the recently
sequenced H.pylori genome and did a careful comparison of the
genes found by GLIMMER to those annotated m the public
databases and to the genes found by the GeneMark system.

Comparison on H.influenzae

Haemophilus influenzae has many putative genes whose existence
has not been confirmed biologically. For this experiment. we wanted
to tramn GLIMMER. using 'D-I]l} genes that had a very lugh likelihood
of bemg real; therefore. we chose for traming a set of orfs that satisfy

GLIMMEE. IMM
510_Order Markov

1680 (97.8% 37 209
1574 (91.7%%) 143 104

The first columm indicates how many of the 1717 annotated genes in Hinflusnzae
wete found by each algorithm . The “additional genes” eolumn shows how many extra
genes, not incleded mn the 1717 annotated entries, were called genes by each method.

Of the 37 genes mussed by GLIMMER's IMM, only one was
found by the 5%-order model. In contrast, the IMM found 107 genes
that the S® order model missed. For this nm, a pre-set threshold
prevented both systems from finding genes shorter than 100 bp. and
stx of the 37 genes nussed by GLIMMER were below tlus threshold.
Of the remaming 31 genes, r:ml} one was longer than 500 bp. Fmally,
note that this was a completely “self-tramed’ expeniment in wlich
database matches were not usad for trammng; augmenting the framing
set with these additonal genes will almost certamly mmprove
performance finther. Of the 209 additional genes called by the
system, some can be elminated from consideration by comparison
with functional RNA sequences. The remamnder may or may not be
expressed genes, and finther biological evidence 1s requured to
resolve these genes.

Gene finding accuracy on H pylori

Finally, in a test designed to run the system as 1t will be used on new,
complete genomes. we ran GLIMMER on the complete, recently
sequenced genome of Hpylori (13), the bactermun that causes
stomach ulcers. A traming set of brute force orfs that were =500 nt
were collected from the complete genome of Hpylori. (This trammg
set was collected from the genome without reference to any
annotation. exactly as it would be for a brand new sequence.) The
resultmg IMM mode] was then compared to the annotated set of
genes 1denfified for flus orgamsm The 1590 genes annotated for
Helicobacter were 1denfified by mtegrating the followmg sets of



lower A value. Specifically, we calculate the %2 confidence ¢ that the
frequencies are not consistent with the IMM probabilities and set

ifc = 0.50
ife = 0.50

0.0

AfSe-1) = {4_51:: > staegn (5:52...55)
Thus, we assign higher A values based on a combmation of
predictive value, determined by 2 significance, and accuracy,
determined by frequency of occurrence. This A value now defines
the probabilities IMM; (S, ;. b) for b e {a. c. g. t} according to
equation 1. [Other methods of assigning A values for IMMs have
been developed (9,10). We experimented with these methods mn
addition to the one described above, and comparative results will
be given m a follow up paper. Roberts (11), cited m (12) also
describes a method for bulding nonuniform Markov models.]

The GLIMNMIER systemn

The GLIMMER system consists of two programs. The first of these,
called bwld-imm takes an mput set of sequences and bulds and
outputs the IMM for them as described above. These sequences can
be complete genes or just partial orfs. The second program called
ghimmer, then uses this IMM to 1dentify putatrve genes m an entire
genome. Glimmer does not use shding windows to score regions.
Instead, 1t first identifies all orfs longer than some spectfied threshold
value. and scores each one m all sxx reading frames. Those that score
lugher than a designated threshold m the correct readme frame are

both of these criteria: (1) the orf 15 =500 bases long, which provides
the basis for a statistical argument that the gene 1s lughly likely to be
a coding region, since orfs of tlus length almost never occur m
non-coding DNA (1) The orf does not overlap any other orf longer

than 500 bp. Usmg these criteria, we were able to collect 1168 orfs
from the cwent version of Hinfluenzae (GenBank accession
L.42023), whuch contamns 1717 annotated genes. Thuty-two of these
did not match CDS entnes, but we mcluded them anyway. Tlus
gives us a completely automatic tranung procedure for GLIMMER,
requunng no human mtervention.

fixed-length Markov model on the Hinfluenzae genome data. We
followed identical traming protocols for both the IMM and a
fixed-length ST order Markov model [This S%-order Markov
model 15 the same model as that used by GeneMark (6). Because we
did not have access to the GeneMark source code. we could not
retram that system on our data, so we implemented our own model
based on pubhshed descriptions of GeneMark ] All post-processing
to resolve overlaps was also identical for both methods. Thus the
only difference was the model itself: m one case an mterpolated
Matkov model, and i the other case a S®-order Markov model
Note that we also iumplemented 4™ and 6™ order Markov models,
but the St-order model performed better than these. The results are
shown m Table 1.

Table 1. Comparison of the IMM model used in GLIMMER. to 2 5% order
Markov model



value. and scores each one m all six reading frames. Those that score
higher than a designated threshold m the correct readmg frame are
then selected for fiwther processmg. These selected orfs are then
exammed for overlaps. If two orfs m different reading frames
overlap (by more than some designated munimum length), the
overlapping region alone 15 scored separately. The overlap region’s
six readmg frame scores are then compared with those of the two
overlapping orfs to see whuch frame scores hughest. In general, when
a longer orf overlaps a shorter orf and the overlap region scores
lughest m the reading frame of the longer orf, then the shorter orf 15
eliminated as a gene candidate. The final output of the program 1s
a list of putative gene coordmates m the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These “suspect” gene candidates (usually a
very small percentage of the total) can then be exanuned manually
to determume 1if they are i fact genes. Samples of GLIMMER.
outputs for the Hpylor? genome are available on the GLIMMER.
web site  at  httpr/www.es jhuedu/labs/compbio/ghmmer html,
which also contams results for Ecoli and Hinfluenzae. The
GLIMMER. system, mcluding all source code, 15 freely available
from tlus site.

METHODS AND RESULTS

To evaluate the effectiveness of our IMM, we compared 1t to a
conventional fixed-order model on data from H.influenzae
genome. As a second confirmung test, we ran 1t on the recently
sequenced H.pylori genome and did a careful comparison of the
genes found by GLIMMER to those annotated m the public
databases and to the genes found by the GeneMark system.

Comparison on H.influenzae

Table 1. Comparizon of the IMM model used in GLIMMER to a 5%-order
Markov maodel

Model Genes Additional
genes
1680 (97.8% 37 209

1574 (91.7%%) 143 104

Genes

found

miszed

GLIMMEE. INMDA
5th_Order Markov

The first column indicates how many of the 1717 annotated genes in Himflusnzae
were found by each alzonithm . The “additional genes” column shows how many extra
genes. not included in the 1717 annotated enftries, were called genes by each method.

Of the 37 genes mussed by GLIMMER's IMM, only one was
found by the 5™-order model. In contrast, the IMM found 107 genes
that the 5% order model missed. For this nu, a pre-set threshold
prevented both systems from finding genes shorter than 100 bp. and
st of the 37 genes nussed by GLIMMER were below thus threshold
Of the remamng 31 genes, r:mly one was longer than 500 bp. Fmally.
note that this was a completely ‘self-tramed’ experiment m which
database matches were not used for traiming; augmenting the traming
set with these addiional genes will almost cerfamly improve
performance fiwther. Of the 209 additional genes called by the
systerm, some can be eliminated from consideration by comparison
with functional RINA sequences. The remainder may or may not be
expressed genes, and fiuther biological evidence 1s requured to
resolve these genes.

Gene finding accuracy on Hpylori

Fmally, mn a test designed to run the system as 1t will be used on new,
complete genomes. we ran GLIMMER on the complete, recently
sequenced genome of Hpylori (13), the bactermum that causes
stomach ulcers. A ramning set of brute force orfs that were =500 nt
were collected from the complete genome of H.pylort. (Tlus tramung
set was collected from the genome without reference to anv
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overlapping region alone 1s scored separately. The overlap region’s
six readmg frame scores are then compared with those of the two
overlapping orfs to see wluch frame scores lughest. In general, when
a longer orf overlaps a shorter orf and the overlap region scores
lughest m the reading frame of the longer orf, then the shorter orf 15
elimiated as a gene candidate. The final output of the program is
a list of putatrve gene coordinates m the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These ‘suspect” gene candidates (usually a
very small percentage of the total) can then be exammed manually
to determume if they are in fact genes. Samples of GLIMMER
outputs for the Hpylori genome are available on the GLIMMER.
web site  at  htp:/www.es jhu edu/labs/compbio/ glimmer html!
wluch also contamns results for E.coli and Hinfluenzae. The
GLIMMER. system, including all source code, 15 freely available
from tlus site.

METHODS AND RESULTS

To evaluate the effectiveness of our IMM, we compared 1t to a
conventional fixed-order model on data from H.influenzae
genome. As a second confirnung test, we ran it on the recently
sequenced H.pylori genome and did a careful comparison of the
genes found by GLIMMER to those annotated m the public
databases and to the genes found by the GeneMark system.

Comparison on H.influenzae

Haemophilus influenzae has many putative genes whose existence
has not been confirmed biologically. For this experiment, we wanted
to tram GLIMMER. usmng only genes that had a very lugh hikelihood
of bemg real; therefore, we chose for tranung a set of orfs that satisfy

GLIMMEE. IMM
51h_Qrder Markov

1680 (97 8% 37 209
1574 (91.7%0) 143 104

The first colunm indicates how many of the 1717 annotated genes in Hinflusnzae
were found by each alzorithm . The “additional genes” colunm shows how many extra
genes. not mcluded in the 1717 annotated entries. were called genes by each methed.

Of the 37 genes nussed by GLIMMER's IMM, only one was
found by the 5%-order model. In contrast, the IMM found 107 genes
that the S™ order model missed. For this num, a pre-set threshold
prevented both systems from finding genes shorter than 100 bp. and
six of the 37 genes nussed by GLIMMER were below thus threshold.
Of the remaming 31 genes, r:ml}' one was longer than 500 bp. Finally.
note that this was a completely ‘self-tramed’ expenment m which
database matches were not used for training; angmenting the traimng
set with these addiional genes will almost certamly improve
performance further. Of the 209 additional genes called by the
system, some can be eliminated from consideration by comparison
with functional RNA sequences. The remamnder may or may not be
expressed genes, and further biological evidence is required to
resolve these genes.

Gene finding accuracy on H.pylori

Fmally, m a test designed to nm the system as 1t will be used on new,
complete genomes, we ran GLIMMER on the complete, recently
sequenced genome of Hpylort (13), the bacternum that causes
stomach ulcers. A tramning set of brute force orfs that were =500 nt

were collected from the complete genome of Hpylort. (This tramng
set was collected from the genome without reference to any
annotation, exactly as it would be for a brand new sequence.) The
resultmg IMM mode] was then compared to the annotated set of
genes identified for fhus orgamsm The 1590 genes anmotated for
Helicobacter were 1dentified by mtegrating the followmg sets of




mformation: (1) evaluatmg brute force orfs for protem-level
sequence sumularity matches to the public archives, (1) predicting
coding regions using the GeneMark system and () collecting
‘mfergenic’ orfs that were found between the genes with database
matches and the genes called by GﬁleMark We consider the
Hpylori sequence annotation to have been mtensively evaluated by
the research comnmuuty, and as yet, no umdentified genes have been
reported smce the H.pylori publication.

The amnotated genes were compared to the results of the
GLIMMER algorithm and 1548 of the 1590 genes were found to
have been correctly idenfified. An additional 314 potential orfs were
found by the system m the Hpylori genome Some of these
additional genes can be elimmated by dlSCHl‘dlllE those that conflict
with ribosomal and transfer RINAs, but the remamde: cannot be
ruled out as authentic genes without further biological evidence. The
set of 42 umdentified genes, representing a potental false negative
rate of 2.6%, were examumned further. Nineteen of these genes from
the Hpylori anmotation were under 100 nt m length. and possibly
below the length for meanmgful detection by composifional
methods. Orfs that have matches to proteins in the current public
archives serve as the most reliable and mdependent venfication that
an orf 1s an authenfic gene; of these orfs. only seven were present in
the 42 genes that GLIMMER did not idenfify. Tlus suggests a
minimal false negame rate of 0.44% for GLIMMER.

length of 90 bp; thus IE'IIEﬂl can be changed with a simple mnnnand
line parameter. With a numnmm gene length of 180 bp (60 amumo
acids), for example, GLIMMER calls 286 fewer genes m H.pylor.

Fmally, we conducted a linuted companson to the GeneMark
system (6). To keep the companson sunple, we only considered the
974 genes from Hpylort that had database matches to other
organisms; these can safely be considered to be ‘true’ genes.
GLIMMER., was tramed exclusively on orfs longer than 500 bp,

be re-mun repeatedly until 1t converges. Tlus terative algonithm wall
also be available as an option i the GLIMMER. system.

CONCLUSION

Evaluatmg the accuracy of a mucrobial gene finder 1s dafficult,
because the genes annotated in GenBank do not always have
biological evidence to back up thew existence. As the annotation
becomes more stable, more accurate estumates of accuracy will be
possible. At the same time, better gene finders should result because
the avalable trammng data will improve. Although GLIMMER'S
sensitivity 1s nearmg 100% already, there are several important areas
of fuhwe mprovements. One 1s to mprove its specthicity by
reducmg the number of false positives (after first confimmng that the
unannotated genes found by the system are m fact false). Specificity
can already be reduced substannall‘i, at the cost of shightly reducing
sensifrvity, by mcreasmg the mummum length orf that GLIMMER
will consider as a gene. Another 1s to mcorporate separate pattern
analysis algonthms that will allow the system to find promoters,
enhancers, termmators and other signals that ocour mn mntergenic
regions. Accurate location of these signals 15 an umportant problem
m 1ts own right. and a system that mtegrates the content scoring
approach of GLIMMER. with a good signal identification algorithm
should produce better results than etther approach could

mdependently
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