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In order to analyze the structure inherent to a matrix 
of dissimilarities (such as evolutionary distances) we 
propose to use a new technique called split decomposi- 
tion. This method accurately dissects the given dissimi- 
larity measure as a sum of elementary “split” metrics 
plus a (small) residue. The split summands identify re- 
lated groups which are susceptible to further inter- 
pretation when casted against the available biolog- 
ical information. Reanalysis of previously published 
ribosomal RNA data sets using split decomposition il- 
lustrate the potential of this approach. Q if102 Academic 

press, Inc. 

INTRODUCTION 

Phylogenetic analysis of molecular sequence data of- 
ten is carried out by first calculating pairwise similar- 
ity coefficients, converting these into evolutionary dis- 
tances, and finally applying some distance-matrix 
method in order to estimate an unrooted phylogenetic 
tree. Goodness-of-fit would be judged by comparing the 
evolutionary distances with the additive distances 
read off the estimated tree. So, data are fit to a best 
(or at least, near-optimal) tree, whether or not they 
bear any resemblance with additive tree data. In prac- 
tice, one tries to avoid methodological artifacts by 
applying different tree approximation methods (some 
operating on sequence data, others using derived dis- 
tances) and then putting up with a strict consensus 
tree. Still, one may fall into the trap of systematic error 
when the methods are subject to the same bias and all 
disguise true phylogenetic relationships. 

We therefore propose to accompany any phylogenetic 
analysis by a nonapproximative method as well that 
4rtutwa f&F m 4&lMive @;rc;tapiaae;f &a4ifaae 
extent) and hence is able to detect some of those dis- 
tinctive minor features in distance data which are 
dominated by others and not supported by estimated 
trees. This goal can be achieved by split decomposition, 
developed by Bandelt and Dress (1992), which may be 

regarded as a kind of factor analysis for distance matri- 
ces. It decomposes any dissimilarity matrix d into a 
number of “binary factors,” described as “splits” 
weighted by “isolation indices,” plus a residual inde- 
composable term (here interpreted as noise). For phy- 
logenetic analysis split decomposition serves two 
purposes: (a) to exhibit tentative phylogenetic relation- 
ships even when they are overridden by parallel 
events, and (b) to detect groupings brought about by 
pronounced convergence or systematic error. 

As to point (a), assume a phyletic line separates two 
pairs of taxa 1,2 and 3,4; then with respect to phyletic 
distance p the sum p12 + p34 (of distances between 1 
and 2, 3 and 4) is smaller than p13 + p24 = p14 + ~23 

(“additivity” alias “4-point condition”). Evolutionary 
distances d, presenting only an estimate of true phy- 
letic relationships, normally do not even respect the 
ordering d,, + d34 < d,, + d,, and d,, + d,, < d,, + 
d23, but one could hope that at least d12 + d,, is not 
the largest of the three sums. 

Given this as a working hypothesis, we would then 
expect such a pattern to be observed whenever the two 
taxa 1 and 2 are chosen from a group ,$ which is sepa- 
rated from its complementary group SC by a phyletic 
line, while taxa 3 and 4 are chosen from the comple- 
ment X Consequently, any complementary pair 9, X 
satisfying this (comparatively weak) condition will be 
called a d-split. 

To any such d-split one can, moreover, associate a 
positive weight, the isolation index (see Eq. (2) below), 
which in the case of additive distances would yield the 
length of the corresponding branch in the representing 
tree. However, there may be more d-splits than those 
supported by true phylogenetic relationships. These, 
typically exhibiting a low isolation index, often reflect 
traits of penetrating parallelism. 

To ill&&,e point (bl, imagine that an observed dis- 
tance matrix d is the sum d = p + e of a matrix p of 
linearly scaled phyletic distances plus an error term e 
such that e itself happens to be realized by some tree 
different from the one representingp. Then the d-splits 
would consist exactly of all splits which are either p- 
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splits or e-splits or both (with isolation indices of p and 
e adding up to the indices for 6). Which of the splits 
belong to p and which to e, though, cannot be decided 
unambiguously. If the error term e has considerably 
smaller entries than p, then the d-splits with larger 
isolation indices would belong to p rather than e. 

The theory of split decomposition predicts at most 
(t) d-splits for any n by n distance matrix (Bandelt 
and Dress, 1992; Theorem 3, p. 60, and Corollary 4, 
p. 62). This bound is considerably larger than 2n - 3, 
the maximum number of splits in a tree connecting n 
taxa, yet it is small enough to have all d-splits com- 
puted efficiently. Reanalysis of numerous distance ma- 
trices derived from sets of n. aligned ribosomal RNA 
sequences (with n between 10 and 25, say> confirms 
that biologically relevant data typically bring about 
2n splits, a large portion of which fit together on a 
single tree, and leave a small residue. In contrast, ran- 
domly generated distance matrices tend to have a 
rather large residue and to produce mostly trivial 
splits, separating one taxon from all the remaining 
ones, and only very few others, generally separating 
no more than two or at most three taxa from the rest. 

In this paper we present a few illustrative case stud- 
ies which we have chosen more or less arbitrarily from 
the existing literature and which we believe to be 
somewhat representative. 

METHODS 

Split Decomposition 

Assume we are given a matrix d = (d& of dissimilar- 
ities between pairs of taxa 1, . . . , n. For any four taxa 
i, j, K, I we compare the three distance sums d, + dkl, 
dik + djl, d, + djk. If i, j, k, 1 were located on a tree 
such that there is a link separating i, j from k, I, then 
the sum d, + dbl (with respect to the additive path 
length metric d) would be the smallest among those 
three sums. This pattern would thus be shown by any 
two pairs i, j and k, I separated by a fixed link of the 
tree, so that this link and its length can be recon- 
structed from the associated distance matrix. Since 
real data are far from such an ideal tree situation, we 
relax the criterion for accepting a partition of the taxa 
into two parts 3,5? as a split supported by the distance 
matrix d: we require that for any choice of i, j in 3 and 
k, 1 in &? the sum of the internal distances is at least 
not the largest among the three distance sums of the 
quartet i, j, k, I, that is, 

d, + dkl< max {dik + djl, dil + dj,}; (1) 

we then say that 3, R is a split with respect to (dJ or 
a d-split, for short. Every d-split receives a positive 
weight, viz., the quantity 

- A. mintmax {dG + dkl, d, 
“33 - 2 ij~3 

k,& (2) 

+ djl, dil + djk} - dg - dkl), 

which is called the isolation index of 3, 9. All other 
partitions of the taxa into two parts 3,R (that do not 
qualify as d-splits) thus have index 0. Notice that the 
isolation index of a split $3 of an ideal tree is exactly 
the length of the link whose removal results in the two 
components 3 and Q. 

Now, every split 3, 9 gives rise to a split metric 6,,s 
that assigns distance 1 to two taxa from different parts 
3, 9 and zero distance otherwise. As has been proved 
in Bandelt and Dress (1992), the sum d1 of all split 
metrics weighted by their isolation indices with re- 
spect to d approximates d from below: 

d = do + CX~,~. 65,a, 
splits k&Q 

(3) 

while the residue do = d - d1 is a metric which does 
not admit any further splits with positive isolation in- 
dex. In case of real data the residue do is notoriously 
nonzero, but still fairly small in comparison to the 
split-decomposable summand d1 = d - do. In order to 
measure the effectivity of the split decomposition sim- 
ply compare the average entries of the two matrices d 
and dl: the splittable percentage 

,I:= ctzjdi/ c di$lOO% 
taxa ij 

(4) 
then indicates how much of the given distances be- 
tween taxa, on the average, is recovered from the 
weighted sum of split metrics. 

To give an example, consider the (artificial) data ma- 
trix d for seven taxa A, B, C, D, E, F, G, given in 
Table 1. The d-splits and isolation indices are readily 
determined according to the procedure described be- 
low. In Table 1 a split such as {A, B, C, D}, {E, F, G} 
is coded by the shorthand EFG. Since the residue is 
zero here (that is, d = d’), the given distance between 
two taxa X and Y equals the sum of the isolation indi- 
ces corresponding to those code words which contain 
exactly one of the letters X, Y. 

Finding the d-Splits 
It is not difficult to compute the d-splits efficiently, 

since the number of all d-splits is bounded by (i) 
where n is the number of taxa. One proceeds recur- 
sively as follows: enumerate the taxa as 1, 2, . . . , n, 
and suppose the d-splits restricted to the subset (1, . . . , 
i - 1) are already determined; then for each d-split 3, 
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Table 1 

A Distance Matrix d and Its d-Splits (Coded by Their 
Minority Parts) 

ABCDEF 

Isolation 
index Split 

6 EFG 
4 AFG 
2 DEF 
1 CDE 

53 of this subset check whether 3 U (i}, $3 or 3, $3 U (i} 
qualifies as a d-split of the enlarged subset (1, . . . , 
i - 1, i}; further check whether (1, . . . , i - l}, {i} is 
a d-split of the enlarged set. This procedure stops after 
i = n has been processed, providing us with the com- 
plete list of d-splits of the full set. 

The total number of steps is bounded by a polyno- 
mial in n of degree 6 (with a small leading coefficient). 
For example, the total number of inequalities (1) that 
have to be checked in case n = 8 is less than 1000 in 
the worst case and considerably smaller in general, so 
that this analysis could even be performed by hand for 
fewer than 10 taxa. A computer program (written in 
C) is available upon request. 

Graphical Representation 
The splits of a tree are in one-to-one correspondence 

with the links and thus are easily read from the dia- 
gram. More generally, any split-decomposable metric 
d’ can be represented by a mesh-like graph, the links 
of which are weighted by the corresponding isolation 
indices. The graphs in question can be chosen among 
the subgraphs of @dimensional cubes (where n is 
the number of taxa), but fortunately they are normally 
not too weird and can often be drawn in the plane with- 
out intersection of links. In contrast to the tree situa- 
tion, a single split now corresponds to a family of sev- 
eral “parallel” links, which constitutes a cutset, that is, 
removing these links disconnects (“splits”) the graph. 
Successive application of the following rule determines 
a cutset: for each “cell,” i.e., a cycle without short-cuts, 
opposite edges belong to the same cutset (and hence 
receive the same weight). The distance between two 
taxa i and j is then obtained as the sum of all weights 
along a path connecting i andj which has the smallest 
number of links. Note that there may be more than 
one representing graph meeting the requirements and 

E 
FIG. 1. Two different (equally good) graphical representations of 

the matrix d of Table 1, indicating the four d-splits along with their 
isolation indices. 

having a minimal number of nodes; see Fig. 1. This 
graph also appears as a subgraph in Figs. 2 and 4 
below. 

In order to generate such graphs one proceeds itera- 
tively by incorporating one split after the other: sup- 
pose a minimal graph representing a subcollection of 
splits has been constructed, then this graph is ex- 
panded so that the next split gets realized as well, 
thereby obeying the above rules on cycles, cf. Bandelt 
(1992). Observe that the order in which the splits are 
processed may affect the final outcome. For example, 
the split AFG in the upper graph of Fig. 1 cannot be 
the last one that gets processed since otherwise the 
predecessor graph would not have been minimal. 
Greedy Tree Selection 

If the collection of splits for a matrix d is suf6ciently 
large, then it probably includes the splits of trees in- 
ferred from the data by other methods. Therefore, in 
order to estimate a tree, one could select a maximal 
subset of splits fitting into a tree, so that a certain 
optimality criterion is met. Indeed, for data sets of me- 
dium size the splits obtained from an estimated tree 
often coincide with the d-splits whose indices exceed a 
certain threshold value. 

Recall that a set of splits is realizable on a tree if 
and only if the splits are pairwise compatible, i.e., any 
two splits &, 3i and &, R’z of that set have parts, & 
and $z say, with empty intersection. For example, ev- 
ery trivial split, opposing one taxon to all others, is 
compatible with all splits. 

An optimality criterion would require maximizing 
an appropriately defined function, e.g., the sum, of the 
isolation indices (of the chosen splits); optimal solu- 
tions could then, of course, be found by branch and 
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bound methods. This bears some resemblance to the 
compatibility method of Meacham and Estabrook 
(1985) and the closest tree selection in Hendy and 
Penny’s (1991) spectral analysis. 

Even the greedy selection strategy seems to work 
surprisingly well (when compared to standard methods 
of tree inference): successively select a new d-split that 
has the highest isolation index and is still compatible 
with the splits collected so far. The Sarich (1969) data 
of immunological distances between eight mammalian 
species can serve as an illustration. We find exactly 14 
d-splits, 13 of which are compatible and thus fit on a 
tree, while the single “outcast” has minimum isolation 
index (and is incompatible with the split with maxi- 
mum index). This is in perfect agreement with the 
findings of Hendy and Penny (1991) who analyzed the 
spectrum for these data. The selected tree is, by the 
way, also in agreement with the one estimated by 
Fitch (19811, but differs from the one proposed by 
Yushmanov and Chumakov (1988). 

Another good example is provided by the amino acid 
differences between translated aroA gene sequences 
for nine eubacteria and two eukaryotes; see Table 1 of 
Griffin and Griffin (1991). We find 19 compatible d- 
splits plus 3 skew d-splits having much smaller isola- 
tion indices (altogether yielding a splittable percent- 
age of more than 92%). This supports the unrooted tree 
depicted in Fig. 4(b) (Griffin and Griffin, 1991). 

In extreme cases, all d-splits turn out to be pairwise 
compatible and yield the tree obtained by other meth- 
ods. For example, the archaebacterial tree based on 
16s ribosomal RNA sequences, displayed in Fig. 10 of 
0stergaard et al. (1987), is almost perfectly recovered 
from the d-splits that are indeed pairwise compatible 
in this case. Only the very short link in the tree, sepa- 
rating the halobacterial pair Halobacterium uolcanii 
and H. morrhuae from the other archaebacteria (in- 
cluding H. cutirubrum), is not recovered by a d-split; 
this holds for both matrices d given in Fig. 9 (IZlster- 
gaard et al., 1987), presenting sequence dissimilarities 
and evolutionary distances, respectively. 

RESULTS 

Detecting Sequence Convergence 

Incompatible d-splits are obtained when split decom- 
position is applied to distances derived from a set of 
aligned sequences some of which have undergone mas- 
sive parallel substitutions. The subsequent cases are 
instructive: first, parallel amino acid replacements in 
cow and langur lysozymes, and second, thermophilic 
convergence in eubacterial ribosomal RNA: 

1. Stewart and Wilson (1987). compared the amino 
acid sequences of lysozymes from cows, langurs, ba- 
boons, humans, rats, and horses; cf. Table 4 of Li and 
Graur (1991, p. 78). They noted that there are four 

amino acids uniquely shared by cows and langurs. We 
find six nontrivial splits with respect to amino acid 
differences: one separating rat, cow, and horse from 
man and monkeys at an isolation index of 3.0, and five 
splits each separating a pair of taxa from the rest, viz. 
rat and horse (with index 7.01, horse and cow (5.51, cow 
and langur (3.5), langur and baboon (0.51, and baboon 
and rat (0.5). In particular, the convergence in the cow 
and langur lineages is manifest in the d-splits, but 
(with respect to isolation indices) it is less pronounced 
than the parallelism involving the horse and rat lin- 
eages. Since the two nontrivial d-splits with largest 
indices are incompatible, one concludes that inferring 
phylogenetic trees from these data would not yield reli- 
able results, while concerning parallel evolution they 
offer rather interesting and valuable information. 

2. It has been reported that the GC content in ribo- 
somal RNA sequences of thermophilic bacteria is com- 
paratively high; cf. Li and Graur (1991). This can bias 
phylogenetic inference, as was clearly demonstrated by 
Weisburg et al. (1989) in the case of 16s ribosomal 
RNA sequences of 11 eubacteria: De Soete’s algorithm, 
performed for the matrix of evolutionary distances cal- 
culated from all gap-free positions, groups together the 
three thermophiles-Thermotoga maritima, Thermo- 
microbium roseum, and Thermus aquaticus. Other dis- 
tance matrix methods (e.g., ADDTREE and Neigh- 
bour-Joining) yield the same result. For a survey on 
tree reconstruction methods, see Swofford and Olsen 
(1990). 

If only relatively conserved positions are used, then 
T. aquaticus appears to be phyletically closest to Dei- 
nococcus radiodurans; see Fig. 2 of Weisburg et al. 
(1989). 

So we performed split decomposition for both data. 
The splittable percentage is 73% in either case. The 
former distances (employing all gap-free positions) 
yield five nontrivial splits, four of which are compati- 
ble. The skew one, the “thermophilic” split separating 
T. maritima, T. roseum, and T. aquaticus from the 
other eubacteria, receives an index of only 2.0, while 
the Deinococcus-Thermus split has an index 11.0. 
Thus, the greedy tree selection discards the former 
split. The resulting multifurcation tree is in agreement 
(after collapsing four links) with tree B from Fig. 2 
(Weisburg et al., 19891, estimated from the relatively 
conserved positions. The latter distances, based on 
those positions only, give just three compatible splits 
(occurring in tree B), but lack the “thermophilic” split 
as well as the Deinococcus-Thermus split. 

Leffers et al. Data 

Leffers et al. (1987) compared the 23s ribosomal 
RNA sequences of six archaebacteria, six eubacteria 
(including two chloroplasts), and four eukaryotes, ,and 
gave the percentages of sequence similarity (based on 
approximately 2600 nucleotides). These similarity val- 
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The Splits along 
Dissimilarities (per 

TABLE 2 

with Their Isolation Indices for the Data Based on Fig. 9 of Leffers et al. (1987): Sequenae 

Respectively - 
1000 Positions) and Evolutionary Distances (Estimated Mutational Events per 1000 Positions), 

Isolation index 

Sequence Evolutionary 
dissimilarity distance 

163.5 214.5 
121 144.5 
116 132 
115 133.5 
111 127 
90 102.5 
82 85.5 
65 68 
64 68.5 
56.5 55 
42.5 44.5 
36.5 33 
27 30 
18.5 18 
17.5 12.5 
17 14.5 

Split 

M 
G 
F 
E 
N 
B 
A 
C 
D 
J 
I 
H 
K 
0 
P 
L 

Isolation index 

Sequence Evolutionary 
dissimilarity distance 

100 148.5 
99 223.5 
84 90 
63 75.5 
61.5 123 
60 68 
47.5 68 
46.5 59.5 
37.5 47.5 
21.5 31.5 
11.5 14 
6 2.5 
3.5 1.5 
3 0 
2.5 0 
0.5 0 
0.5 1 
0.5 0 
0.5 0 
0.5 0 
0.5 0 

Split 

CD 
MNOP 
OP 
KL 
GHIJKL 
HI 
JKL 
AB 
NOP 
EF 
ABCDEF 
HIJ 
HIJKL 
GHI 
JL 
GHIJKLM 
CDEF 
ABOP 
DEF 
MN0 
NO 

Skeiv 

+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

Note. Each split is coded by its minority part. Skew splits ( + ) are those which are incompatible with at least one split from the estimated 
phylogenetic tree in Fig. 10 of Leffers et al. (1987). Taxon symbols are (A) Desulfirococcus mobilis; (B) Thermoproteus tenax; (C) Halococcus 
morrhuae; (D) Halobacterium halobium; (E) Methunococcus vanillii; (F) Methunobacterium thermoautrophicum; (G) Esch&chiu coli; 
(H) Bacillus stearothermophilus; (I) Bacillus subtilis; (J) Anacystis nidulans; (K) Zea mays chloroplast; (L) tobacco chloroplast; (M) Physarum 
polycephalum; (N) Sacchuromyces cerevisine; (0) Xenopus Zaevis; (P) mouse. 

ues were then transformed logarithmically by the 
Jukes and Cantor method into estimated evolution- 
ary distances. For our reanalysis we used both data 
sets, where sequence similarities (= percentages of 
matched positions) were converted into sequence dis- 
similarities ( = percentages of mismatched positions). 
For convenience, the values of either matrix are multi- 
plied by 10 or 1000, respectively, so that the numbers 
of mismatched positions and expected mutations, re- 
spectively, refer to 1000 positions. 

Table 2 below displays the list of splits and isolation 
indices for both data sets. Figure 2A depicts the graph- 
ical composition of all these splits in the case of se- 
quence dissimilarities drawn to scale according to the 
isolation indices, while Fig. 2B shows the network 
structure of that graph with all edges given the same 
length. When passing from sequence dissimilarities to 
evolutionary distances, the smaller indices of the 16 
trivial splits opposing one taxon each to the remaining 
ones do not change considerably, while the larger ones 
(say from 90 upward) increase moderately, as is to be 
expected. There are 21 nontrivial splits for the se- 
quelice dissimilarities, 10 of which receive indices 
smaller than 10. From the latter ones 7 drop out (i.e., 

get index 0) when evolutionary distances are consid- 
ered instead; on the other hand, two indices increase 
drastically, viz., for the splits separating the eukary- 
otes or the eubacteria, respectively, from the other 
taxa. The split separating the archaebacteria from the 
two other kingdoms has a fairly low isolation index: 
11.5 and 14, respectively. This is not surprising in view 
of the ongoing controversy about the phylogenetic sta- 
tus of the archaebacteria; see Kjems and Garrett 
(1990) for a recent contribution. On the other hand, no 
split from Table 2 would reject the monophyletic status 
of archaebacteria. Observe that for either data matrix 
all splits are present (with positive isolation index) 
that correspond to the links of the estimated phyloge- 
netic tree shown in Fig. 10 of Leffers et al. (1987); the 
other splits in our Table 2 are marked as “skew” (to 
this reference tree). 

This tree is returned by the greedy tree selection 
from the splits with respect to either matrix. In the 
case of evolutionary distances, there is only one skew 
split, viz. HIJ (that is, the split which separates {H, I, 
J} from the rest), which is incompatible with the splft 
JKL having index 68. That Anucystis nidukzns tJ> and 
the two Bacilli (H, I) give rise to a split may partially 



SPLIT DECOMPOSITION ANALYSIS OF DISTANCE DATA 247 

HalobH(D) 

TharmopT(B) 

Youse(P) 

ZaamapChl(K) 

PhysarumP(M) 

J 

FIG. 2. A. A graphical representation of the split-decomposable part of the matrix of sequence dissimilarities according to Table 2 with 
edge lengths proportional to the isolation indices (drawn to scale). B. A graph, isomorphic to the graph in A, but with all edges given the 
same length, Taxon symbols are as in A and Table 2. 
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be explained by the fact that the other three members 
of the eubacterial kingdom, Escherichia coli (G) and 
the two chloroplasts (K, L), show a higher degree of 
mutability. Summarizing, we can state that according 
to the isolation indices of splits the evolutionary dis- 
tances clearly support a unique tree, the only skew 
split being HIJ with index 2.5. A similar conclusion 
could also be drawn from the reanalysis of the same 
data set in Bandelt and Dress (1989), where “weak 
clusters” were employed. 

When one focusses on a particular subgroup of taxa, 
e.g., the archaebacteria in the study of Leffers et al. 
(19871, then the corresponding distance submatrix 
should be investigated separately. Since a single quar- 
tet of taxa, two of which are in either part of a potential 
split, can cause the rejection of this split (see the defi- 
nition of isolation index), the total number of splits 
(with positive index) tends to be relatively small for 
larger data sets. So, some of the “local” information 
on parallelism and systematic error reflected in the 
distance matrix for a subgroup of taxa is lost in split 
analysis (i.e., transferred to the residue) when other, 
distantly related taxa are taken into account. 

We therefore computed the splits and their indices 
for those 6 archaebacteria: for either distance type, 14 
splits are obtained; 5 of the 8 nontrivial splits are 
skewed with respect to the reference tree. The residue 
here is easy to describe: it is associated with the graph 
K2,3, in which two nodes are linked to three other nodes 
respectively such that all six links are of the same 
length. It is thus not difficult to present a geometric 
picture from which the splits as well as the residue are 
conveniently read off, thereby recovering the distances 
as the lengths of shortest paths; see Fig. 3. The skew 
split with largest index (viz., 5.5 or 10, respectively) is 
ABF (alias CDE), which separates the thermophiles 
Desulfurococcus mobilis (A), Thermoproteus tenax (B), 
and Methunobacterium thermoautrophicum (F) from 
the other three archaebacteria. 

The same type of analysis can be performed for, say, 
the six eubacteria. As skew splits one then obtains 
HIJ, IJ, and JL with respect to either distance mea- 
sure. Observe that the residue is much larger for the 
evolutionary distances. A similar observation can be 
made for several other subsets of taxa; see Table 3. The 
transformation from sequence dissimilarities to evolu- 
tionary distances increases the residual parts, while 
the number of skew splits decreases. There is thus 
a trade-off between indecomposable “noise” and the 
incompatibility between splits for these data, which 
needs further analysis. 

Weisburg et al. Data 

Remarkably, it is not always true that the number 
of splits for estimated evolutionary distances is smaller 
than the one for uncorrected sequence dissimilarities. 
The 16s ribosomal RNA data for 10 species of eubac- 

FIG. 3. Exact representation of the evolutionary distances be- 
tween the six archaebacteria (drawn to scale). 

teria, provided by Weisburg et al. (19911, constitute an 
exception: the evolutionary distances admit 25 splits 
(shown in our Fig. 4) including all 17 splits from the 
estimated tree (in Fig. 3, Weisburg et al., 19911, while 
two of the skew splits (viz. ACD and ADE) are not 
present in the dissimilarity data. The splittable per- 
centages are 88.9% (evolutionary distance) and 83.3% 
(dissimilarity), respectively. It may be noted that 
the Jukes and Cantor transformation increases also 
the variation in these data. This correlates with the 
high isolation degrees of two incompatible splits, viz. 
ADEFG with index 13.5 (per 1000 sites) and AC with 
index 9, while the corresponding indices equal 2 and 1 
in the case of uncorrected dissimilarities. 

The greedy tree selection recovers the tree proposed 
by Weisburg et al. (1991) when evolutionary distances 
are used. For the sequence dissimilarities another tree 
results, where the pair Rhodospirillum rubrum and 
Rhodopseudomonas palustris would branch off first 
(given E. coli as an outgroup). In any case, the deeper 
branchings in both trees seem to be somewhat un- 
certain. 

Figure 5 demonstrates how the computer graphics 
program based on our theory and written by Rainer 
Wetzel step by step creates the network shown in Fig. 
4B (taxa symbols are as in Fig. 4A) by incorporating 
one split after another into the evolving network. The 
following splits have been incorporated consecutively: 
ABCI-DEFGHJ, ADE-BCIFGHJ, ACD-BEFGHIJ, 
ACDE-BFGHIJ, ABC-DEFGHIJ, ADEFG- 
BCFGHIJ, ABCHIJ-DEFG, ACDEFG-BHIJ, 
ADEFGHIJ-BC, AC-BDEFGHIJ, AD-BCEFGHIJ, 
ABCFGHIJ-DE, ABCDEFG-HIJ, ABCDEFGJ-HI, 
ABCDEIJH-FG, and-in the last network-all splits 
one versus rest. 
Huss and Sogin Data 

In contrast to the latter data set, the system of splits 
for the 18s ribosomal RNA data investigated by Huss 
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TABLE 3 

The Relative Sizes of the Split-Decomposable Parts and the Numbers of All Splits and All Skew Splits, 
Respectively, for Various Subsets of Taxa 

Splittable percentage 
of the total distance 

Sequence Evolutionary 
dissimilarity distance 

87.9 82.2 
91.2 88.6 
95.3 92.1 
95.9 94.1 
98.0 97.0 
99.3 98.8 

100 100 

No. all splits : No. skew splits 

Sequence Evolutionary 
dissimilarity distance 

37:8 3O:l 
28~7 27:6 
25:8 21:4 
26:9 22:5 
12:3 12:3 
14:5 14:5 

6:l 6:l 

No. 
taxa 

16 
12 
10 
10 

6 
6 
4 

Taxon groups 

All three kingdoms 
Archaebacteria and eubacteria 
Archaebacteria and eukaryotes 
Eubacteria and eukaryotes 
Eubacteria 
Archaebacteria 
Eukaryotes 

EColi(A) 

RhodospirRubr(C) 

BacAbortus(1~ b . AnaplYug(D) 

R&halQuint(H) 

\ \ 

x 
RlckettaProw(F) 

EbrlRlst(E) 

H 

I 

A 

FIG. 4. A. A graphical representation of the split-decomposable part of the evolutionary distances between Rickettsiales and other 
eubacteria drawn to scale (data from Table 4 of Weisburg et al. (1991)). Taxon symbols are: (A) Escherichia coli; (B) Rhodopseudomonus 
palustris; (C) Rhodospirillum rubrum; (D) Anaplasma marginale; (E) Ehrlichiu risticii; (F) Rickettsia prowazekii; (G) Rickettsia ricketsii; 
(H) Rochnlimuea quintana; (I) Bacillus abortus; (J) Agrobacterium tumefaiens. B. A graph, isomorphic to the graph in A, but with all edges 
given the same length. Bold lines indicate links corresponding to the splits with isolation index larger than 10 (per 1000 sites). Taxon 
symbols are as in A. 
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together with the “fast-clock” organism ChZoreZZu pro- 
tothecoides from the other green algae. This split is 
unlikely to bear phylogenetic information as it is in- 
compatible with two (compatible) splits receiving indi- 
ces 8.5 and 4.5 (dissimilarity)/4 (evolutionary dis- 
tance), respectively. 

and Sogin (1990) is easier to interprete-at the ex- 
pense of having smaller splittable percentages, 79.9% 
(dissimilarity) and 78.8% (evolutionary distance). Iso- 
lation indices do not change considerably here when 
passing from sequence dissimilarities to evolutionary 
distances (estimated by the Jukes and Cantor method); 
see Table 4. The greedy tree selection, departing from 
the splits with respect to sequence dissimilarities, 
yields the tree displayed in Fig. 2 of Huss and Sogin 
(1990), except that the link separating IJKL from the 
rest (the shortest one on that tree) is not recovered by 
a d-split; it is not even supported by a partial d-split 
as shown by a secondary analysis performed only for 
the Chlorococcales (including Nunochlorum). In the 
case of evolutionary distances the tree split ABCDEF 
(separating higher plants and Chlamydomonas from 
the other green algae) is lost. One of the skew splits, 
viz. ABCDEH with index 1.5 (per 1000 sites) for either 
type of distance, can be interpreted as a distance arti- 
fact: it splits higher plants (the outgroup organisms) 

CONCLUSIONS 

Split decomposition can enhance phylogenetic analy- 
sis of distance data by detecting opposite groupings 
(“splits”) of organisms that are defined by distinctive 
distance features, caused by common ancestry, conver- 
gence, or systematic or random errors. A major part of 
random noise contained within the data is transferred 
to the split-prime residue, which is removed from the 
data in the course of analysis. This residue typically 
covers 10 to 30% of the total distance in the case of 
ribosomal RNA data (with about 10 to 25 taxa), 
whereas for randomly chosen metrics this amount eas- 
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FIG. 5-Continued 

ily exceeds 50%. Some portion of random and system- 
atic error survives in the split-decomposable part and 
is manifest in the incompatibilities of splits. A split is 
likely to fall into this category when its isolation index 
is relatively small and it is incompatible with splits 
having much larger indices. Therefore, selecting a 
clique of compatible splits in a greedy fashion ac- 
cording to isolation indices often recovers most of the 
phylogenetic trees that are estimated by other meth- 
ods, but normally leaves unresolved the most uncer- 
tain furcations. 

A graphical representation of the split-decomposable 
part of a distance matrix furthers the understanding 
of tentative phylogenetic relationships plus inherent 
parallelism. If the number of taxa is very small, then it 
is possible sometimes even to integrate the split-prime 
residue into the diagram as well, thus visualizing the 
full decomposition of the distance matrix. 

For very large data sets that include fairly distant 

groups of taxa, one can additionally perform a second- 
ary analysis of “partial d-splits.” To this end the whole 
set of taxa is partitioned into smaller subcollections 
identified by compatible splits with large isolation in- 
dices. 

When several distance matrices for one and the same 
set of organisms are available (for instance, through 
different weighting schemes of characters or particular 
methods of correction), it can be instructive to compare 
the corresponding splittable percentages and the struc- 
ture of the resulting split systems, in order to evaluate 
the phylogenetic content of the respective distance ma- 
trices. 

In closing, we may speculate on further potential 
applications of our method. In view of its ability to 
process incompatible splits, split decomposition per- 
haps can also serve as a tool for investigating reticu- 
late evolution. It is, however, not obvious how to 
clearly discriminate between random and systematic 



252 BANDELT AND DRESS 

TABLE 4 

The Nontrivial Splits along with Their Isolation In- 
dices (per 1000 Sites) for the Sequence Dissimilarities 
and Evolutionary Distances, Respectively, between 
Green Algae and Higher Plants (Data from Huss and 
Sogin (1990)) 

Bandelt, H.-J., and Dress, A. W. M. (1989). Weak hierarchies associ- 
ated with similarity measures-An additive clustering technique. 
Bull. Math. Biol. 51: 133-166. 

Bandelt, H.-J., and Dress, A. W. M. (1992). A canonical decomposi- 
tion theory for metrics on a finite set. Advances Math. 92: 47-105. 

Dopazo, J., Dress, A., and von Haeseler, A. (1990). Split decomposi- 
tion: A new technique to analyse viral evolution. Preprint 90-037, 
SFB 343, Universitat Bielefeld. 

Isolation index 

Sequence Evolutionary 
dissimilarity distance Split Skew 

41.5 48 ABCDE 
14 14 NO 
13.5 14 BC 

9.5 10.5 BCDE 
8 8.5 GH 
4.5 4.5 MN0 
4.5 4.0 GHIJKL 
4 3.5 DE 
1.5 1.5 ABCDEH + 
1 1 AD + 
1 0.5 MO + 
1 0.5 KL 
0.5 1 IJ 
0.5 0 ABCDEF 

Note. The nonskew splits fit in the estimated phylogenetic tree in 
Fig. 2 (ibidem). Each split is coded by its minority part. Taxon sym- 
bols are (A) Zamia pumila; (B) Oryza satiua; (C) Zeu mays; (D) Lyco- 
persicon esculentum; (El Glycine max; (F) Chlamydomonas rein- 
hardtii; (G) Prototheca wickerhamii; (H) Chlorella protothecoides; 
(I) Chlorella minutissima; (J) Nanochlorum eucaryotum; (K) Chlo- 
rella vulgaris; (L) Chlorella kessleri; (Ml Ankistrodesmus stipitatus; 
(N) Chlorella fusca; (0) Snedesmus obliquus. 

Fitch, W. M. (1981). A non-sequential method for constructing trees 
and hierarchical classifications. J. Mol. Evol. 1% 30-37. 

Griffin, H. G., and Griffin, A. M. (1991). Cloning and DNA sequence 
analysis of the serC--aroA operon from Salmonella gallinarum; 
evolutionary relationships between the prokaryotic and eukary- 
otic aroA-encoded enzymes. J. Gen. Microbial. 137: 113-121. 

Hendy, M. D. (1989). The relationship between simple evolutionary 
tree models and observable sequence data. Systemat. Zool. 38: 
310-321. 

Hendy, M. D., and Penny, D. (1991). Spectral analysis of phyloge- 
netic data. Preprint. 

Huss, V. A. R., and Sogin, M. L. (19901. Phylogenetic position of some 
Chlorella species within the Chlorococcales based upon complete 
small-subunit ribosomal RNA sequences. J. Mol. Evol. 31: 
432-442. 

Kjems, J., and Garrett, R. A. (1990). Secondary structural elements 
exclusive to the sequences flanking ribosomal RNAs lend support 
to the monophyletic nature of the archaebacteria. J. Mol. Evol. 31: 
25-32. 

error on the one hand and hybridization events on the 
other. It is equally difficult, at the population level, to 
discriminate between dendritic evolution and evolu- 
tionary process conforming to the quasispecies model 
(compare, for example, the fine meshed diagram re- 
lating some eubacterial species shown in Fig. 4 above 
with the less complex Fig. 4b from Dopazo et al. (19901, 
depicting mutual relationships between certain vi- 
ruses). 
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