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Resolving the structural features of genomic islands:
A machine learning approach
Georgios S. Vernikos and Julian Parkhill1

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom

Large inserts of horizontally acquired DNA that contain functionally related genes with limited phylogenetic
distribution are often referred to as genomic islands (GIs), and structural definitions of these islands, based on
common features, have been proposed. Although a large number of mobile elements fall well within the GI
definition, there are several concerns about the structural consensus for GIs: The current GI definition was put
forward 10 yr ago when only 12 complete bacterial genomes were available, a large number of GIs deviate from that
definition, and in silico predictions assuming a full/partial GI structural model bias the sampling of the GI structural
space toward “well-structured” GIs. In this study, the structural features of genomic regions are sampled by a
hypothesis-free, bottom-up search, and these are exploited in a machine learning approach with the aim of explicitly
quantifying and modeling the contribution of each feature to the GI structure. Performing a whole-genome-based
comparative analysis between 37 strains of three different genera and 12 outgroup genomes, 668 genomic regions
were sampled and used to train structural GI models. The data show that, overall, GIs from the three different
genera fall into distinct, genus-specific structural families. However, decreasing the taxa resolution, by studying GI
structures across different genus boundaries, provides models that converge on a fairly similar GI structure, further
suggesting that GIs can be seen as a superfamily of mobile elements, with core and variable structural features,
rather than a well-defined family.

[Supplemental material is available online at www.genome.org.]

Horizontally acquired DNA sequences that contain functionally
related genes with limited phylogenetic distribution, that is,
present in some bacterial genomes while being absent from
closely related ones, are often referred to as genomic islands
(GIs). The location of those mobile elements often correlates
with distinct structural features such as tRNA genes, direct re-
peats (DRs), and mobility genes, which has led to a definition of
the GI structure that includes these features (Box 1; Hacker et al.
1997; Hacker and Kaper 2000; Schmidt and Hensel 2004).

Some of the GI-associated features are shared by other ge-
nomic elements such as integrated plasmids, bacteriophages, ex-
tracellular polysaccharide biosynthesis loci (Zhang et al. 1997;
Hacker and Kaper 2000), and other gene clusters under specific
constraints; these may or may not be recently horizontally ac-
quired. However, GIs usually differ from bacteriophages and plas-
mids in the lack of autonomous replication origins (Schmidt and
Hensel 2004).

GIs are also present in Gram-positive bacteria, but they can
differ structurally from those present in Gram-negative bacteria;
overall they do not exhibit specific junction sites (e.g., DRs), they
are rarely inserted adjacent to RNA loci, and they are often stably
integrated in the host genome because of the lack of mobility
genes (Hacker et al. 1997).

Insertion of GIs into the bacterial chromosome is often a
site-specific event. About 75% of GIs currently known have been
inserted at the 3�-end of a tRNA locus (Hacker and Kaper 2002;
Williams 2002). Other genes, though, may also act as insertion
sites for GIs, for example, the cag pathogenicity island (PAI) has
been inserted within the glr (glutamate racemase) gene of Helico-

bacter pylori (Censini et al. 1996). Often GIs are flanked at their
boundaries by DRs with an average length of ∼20 bp (Kaper and
Hacker 1999; Schmidt and Hensel 2004).

Several Web-based suites exploit the GI structural definition
(Box 1) with the aim of implementing and automating the in
silico prediction of genomic regions that share some or all of the
GI-related signatures; those regions are subsequently annotated
as novel GIs. For example Islander (Mantri and Williams 2004)
and IslandPath (Hsiao et al. 2003), two Web-based suites, com-
bine and overlap several GI-related features trying to predict ge-
nomic regions as close as possible to the GI structural definition.

Although a large number of mobile elements fall well within
the GI definition, there are several concerns about the structural
consensus of GIs: Firstly, the current definition of the GI struc-
ture was put forward 10 yr ago (Hacker et al. 1997) when only 12
complete bacterial genomes were available; currently (May 2007)
there are 558 complete published genomes and 1144 ongoing,
enabling a more realistic sampling of the GI structural space for
any potential structural variation to be captured. Secondly, there
is a large number of GIs that deviate strongly from the GI defi-
nition (see Table 1). Thirdly, in silico prediction methods that
assume a full or partial structure similar to the GI structural defi-
nition or search for GIs with some level of similarity to already
known GI structures bias the sampling of the GI structural space
toward “well-structured” GIs.

A fundamental property of GIs, independent of any a priori
structural definition, is their horizontal origin: GIs are horizon-
tally acquired mobile elements of limited phylogenetic distribu-
tion. Based on this concept, the search of the GI structural space
is feasible in a hypothesis-free framework without the need to
make any a priori assumptions about the GI structure that rely on
previously seen examples of GIs.

The aim of this analysis is to study the structural variation of
GIs and revisit the GI definition, taking into account only the
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fundamental property of GIs, that is, their horizontal origin. In-
stead of exploiting a top-down approach searching for GIs that
follow the GI structural definition, we reverse this framework by
pursuing a hypothesis-free, bottom-up search: In a first step GIs
are defined as genomic regions with limited phylogenetic distri-
bution consistent with recent acquisition (as identified by maxi-
mum parsimony), and in a second step those regions are struc-
turally annotated. In a third step, the structural features sampled
from this hypothesis-free search are exploited in a machine
learning approach with the aim of explicitly quantifying and
modeling their contribution to the GI structural definition.

A similar approach of a hypothesis-free identification of GIs,
defined as genomic regions with limited phylogenetic distribu-
tion, was applied in eight Streptococcus agalactiae strains (Tettelin
et al. 2005). Gene loss and gene gain are two distinct mechanisms
that can both lead to limited phylogenetic distribution of a DNA

sequence. However, Tettelin et al. (2005) did not apply any re-
striction (e.g., maximum parsimony) in order to differentiate
gene gain from gene loss and defined as putative GIs any region
(>5 kb) that was absent from at least one of the eight reference
genomes.

In the present study, we focus on three different bacterial
genera—Salmonella, Staphylococcus, and Streptococcus—for four
major reasons: There are enough (>10) sequenced genomes for
each genus, this collection of strains covers both Gram-negative
and Gram-positive groups and has both commensal and patho-
genic representatives, and HGT plays a key role in the evolution
of these three lineages (Lawrence and Ochman 1997; Broker and
Spellerberg 2004; Towers et al. 2004; Tettelin et al. 2005; Rosini et
al. 2006; Waterhouse and Russell 2006; Novick and Subedi 2007;
Vernikos et al. 2007).

Results

Implementing a whole-genome-based comparative analysis be-
tween 37 reference strains of three different genera and 12 out-
group genomes, a training set of 668 regions was built (Table 2).
This training set, that includes both putative GIs (differentiated
from gene loss events by a maximum parsimony approach) and
randomly sampled regions (non-GIs), was used to study the
structural variation of GIs and quantify the contribution of each
feature to a GI structural model. As a starting point, GI structural
models for each genus were built implementing a machine learn-
ing method, that of the Relevance Vector Machine (RVM) (Tip-
ping 2001). In addition, in order to capture potential genus-
specific signatures as well as to evaluate the ability of the RVM
models to make generalizations on unseen data from different

Box 1. Common features of genomic islands

1. Large inserts of horizontally acquired DNA (10 to 200 kb)
2. Sequence composition different from the core backbone com-

position
3. Insertion usually adjacent to RNA genes
4. Often flanked by direct repeats or insertion sequence (IS) ele-

ments
5. Limited phylogenetic distribution, that is, present in some ge-

nomes but absent from closely related ones
6. Often mosaic structures of several individual acquisitions
7. Genetic instability
8. Presence of mobility genes (e.g., integrase, transposase)

Table 1. A selection of annotated genomic islands that show structural variation

Coordinates Host GI Size G% + C% deviation Repeats Integrase RNA Gram

839352..853808 S. aureus MW2 vSa3 14457 �4.49 1 1 1 +
1891660..1923796 S. aureus MW2 vSaß 32137 �4.24 0 0 1 +
1932974..1959426 S. aureus Mu50 vSaß 26453 �4.16 0 1 1 +
2133112..2148791 S. aureus Mu50 vSa4 15680 �2.56 1 1 0 +
2251120..2266138 S. epidermidis RP62A vSe1 15019 �1.43 1 0 0 +
1519667..1558081 S. epidermidis ATCC15305 vSe2 38415 �6.4 1 1 1 +
1012154..1023023 S. haemolyticus JCSC1435 vSh1 10870 �2.87 1 1 0 +
2117669..2133994 S. haemolyticus JCSC1435 vSh2 16326 �4.06 1 1 1 +
2578642..2593348 S. haemolyticus JCSC1435 vSh3 14707 �1.74 0 1 0 +
385739..432833 S. agalactiae NEM316 PAI3 47095 1.64 1 0 0 +
711791..759003 S. agalactiae NEM316 PAI7 47213 1.62 1 0 0 +
1013026..1060093 S. agalactiae NEM316 PAI8 47068 1.66 0 0 0 +
1163554..1197443 S. agalactiae NEM316 PAI10 33890 2.04 0 0 1 +
1255736..1261279 S. agalactiae NEM316 PAI11 5544 �6.37 1 1 1 +
302172..361067 S. typhi CT18 SPI-6 58896 �0.57 0 0 1 �
605515..609992 S. typhi CT18 SPI-16 4478 �9.98 1 1 1 �
1085156..1092735 S. typhi CT18 SPI-5 7580 �8.52 0 1 1 �
1625084..1664823 S. typhi CT18 SPI-2 39740 �4.91 0 0 1 �
2460780..2465939 S. typhi CT18 SPI-17 5122 �13.39 0 0 1 �
2742876..2759156 S. typhi CT18 SPI-9 16281 4.62 0 0 1 �
2859262..2899034 S. typhi CT18 SPI-1 39773 �6.22 0 0 0 �
3053654..3060017 S. typhi CT18 SPI-15 6364 �3.01 1 1 1 �
3132606..3139414 S. typhi CT18 SPI-8 6809 �14.03 1 1 1 �
3883111..3900458 S. typhi CT18 SPI-3 17348 �5 0 0 1 �
4321943..4346614 S. typhi CT18 SPI-4 24672 �7.74 0 0 0 �
4409511..4543072 S. typhi CT18 SPI-7 133562 �2.42 1 1 1 �
4683690..4716539 S. typhi CT18 SPI-10 32850 �5.51 0 1 1 �

Features of GIs that deviate from the GI structural definition (Box 1) are highlighted in gray. For the G% + C% deviation (GC � GCmean), GIs that
deviate <1% from the average G% + C% content are highlighted as compositionally nondeviating regions. The representation of the repeats, integrase,
and RNA features is binary: 1 if present, 0 if absent.
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lineages, cross-genus GI models were built using different mix-
tures of training and test data sets. Overall, 11 structural GI mod-
els were built and analyzed (Table 3); the structural details of each
model are discussed in detail in the following sections.

GI structural models

Each GI model (Table 3) is the weighted sum of K basis functions,
where K denotes the number of features used to describe a GI
structure. In this analysis, eight structural features were used:

(A) IVOM: The Interpolated Variable Order Motif score that mea-
sures both low- and high-order compositional deviation
from the backbone composition (Vernikos and Parkhill
2006).

(B) INTEGRASE: Presence or absence (binary) of integrase and/or
integrase-like protein domains.

(C) PHAGE: Presence or absence (binary) of phage-related pro-
tein domains.

(D) SIZE: The size (in base pairs) of each genomic region.
(E) RNA: Presence or absence (binary) of non-coding RNA in the

proximity of each region.

(F) DENSITY: The gene density (number of genes per kilobase) of
each region.

(G) REPEATS: Presence or absence (binary) of DRs or inverted
repeats (IRs) flanking the boundaries of each genomic re-
gion.

(H) INSP: The insertion point of each genomic region; two states
were evaluated: insertion point within a coding sequence
(CDS) locus (disrupting the corresponding CDS) or insertion
within an intergenic part of the chromosome.

Each feature is evaluated during the training process of the
RVM, and its overall contribution to the structural model is ex-
pressed by the corresponding feature weight. For example, a fea-
ture frequently related to GI structures (but absent from ran-
domly sampled regions) receives typically higher weight (i.e.,
contributes more to the model) compared to a feature found
equally frequently both in GIs and non-GIs; in the latter case, the
feature weight will be lower or even zero (i.e., feature ignored).

In the following section, the contribution of each structural
feature to the corresponding GI model is evaluated through a
function (R) that quantifies the relative feature importance,
rather than the actual feature weight (W). Briefly, the importance
R of each feature is expressed as the product of the corresponding
weight W and the corresponding standard deviation (SD) of the
feature values in the training set. We prefer to assess the feature
contribution to the model, through the R rather than the W
value, because R takes into account the variability of the data set,
normalizing the values with the corresponding SD. Consider, for
example, two different structural features; the values of the first
feature in the training set have higher dispersion relative to the
values of the second feature. If both features have comparable W
values, then the first feature will be more important than the
second one, meaning that, because of its variability, it is more
informative than the second feature. Based on that, it is not

Table 2. A list of the positive (putative GIs) and the negative
(non-GIs) control regions, sampled from the 37 reference
chromosomes used in this analysis

Data sets Positive examples Negative examples Total

Salmonella 211 210 421
Streptococcus 54 53 107
Staphylococcus 66 74 140
Gram � 211 210 421
Gram + 120 127 247
Gram +/� 331 337 668

Table 3. A list of 11 structural GI models, built based on different training sets

Training sets include (1) 421 Salmonella regions, (2) 107 Streptococcus regions, (3) 140 Staphylococcus regions (including two
regions overlapping rRNA operons), (4) 138 Staphylococcus regions (no rRNA operons), (5) 245 Staphylococcus–Streptococcus
regions, (6) 559 Salmonella–Staphylococcus regions, (7) 528 Salmonella–Streptococcus regions, (8) 666 Salmonella–Staphylococcus–
Streptococcus regions. Training sets 9–11 include three subsets of ∼140 different Salmonella-specific regions combined with the
Staphylococcus- and Streptococcus-specific regions. Each model, expressed through function Si, is the weighted sum of eight basis
functions (structural features): The Interpolated Variable Order Motif (IVOM) score that measures both low- and high-order
compositional deviation from the backbone composition and is expressed as the relative entropy between the query and the
genome-backbone (variable order) compositional distribution, the insertion point (INSP) of each genomic region; two states were
(binary) evaluated: insertion point within a CDS locus (disrupting the corresponding CDS) or insertion within an intergenic part
of the chromosome, the size (SIZE) of each genomic region, the gene density (DENS = number of genes per kilobase) of each
region, presence or absence (binary) of direct/inverted repeats (REPEATS) flanking the boundaries of each genomic region,
presence or absence (binary) of integrase and/or integrase-like (INT) protein domains, presence or absence (binary) of phage-
related protein domains (PHAGE), presence or absence (binary) of non-coding RNA (RNA) in the proximity of each region.
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unusual for some features to have a very high value of W but a
low value of R.

Genus-specific

Salmonella

Using 211 positive (putative GIs) and 210 negative (randomly
sampled) examples (Table 2; Supplemental Table 1), a model that
describes the structure of GIs present in the Salmonella lineage
was built (Fig. 1; Table 3). Overall under
this model, the most “important” (infor-
mative) features are IVOM (RIVOM =
0.65), SIZE (RSIZE = 0.38), PHAGE
(RPHAGE = 0.27), RNA (RRNA = 0.26), IN-
TEGRASE (RINT = 0.13), and REPEATS
(RREPEATS = 0.085); in this model, the
DENSITY and INSP features were ig-
nored. Note that the SIZE feature re-
ceived a negative weight (WSIZE =
�4.956); the same applies for all the
other GI models apart from the one built
based on the Streptococcus data set (see
below) in which the SIZE feature is com-
pletely ignored (WSIZE = 0).

In order to investigate further the
structural variation of GIs, in terms of
preference for insertion within a specific
locus and for different type of repeats
flanking their boundaries, the RNA fea-
ture was further subdivided into tRNA
and misc_RNA (any kind of non-coding
RNA apart from tRNA) features; the same
applies for the REPEATS feature that was
further divided into DRs and IRs. The
relative “importance” of those six struc-
tural features was evaluated pairwise:

(RNA, INSP), (tRNA, misc_RNA), and (DRs, IRs) (Fig. 2). The re-
sults show that for GIs present in Salmonella chromosomes, in-
sertion within an RNA (RRNA = 0.72) rather than a CDS locus
(RINSP = 0.0) is the most informative feature when classifying un-
known regions as GIs. In the case of RNA locus, insertion of GIs
within a tRNA (RtRNA = 0.60) is slightly more informative than
insertion within a misc_RNA locus (RmiscRNA = 0.51). In terms of
type of repeats flanking the boundaries of GIs, DRs (RDRs = 0.63)
rather than IRs (RIRs = 0.0) is the most informative feature.

Figure 1. Radar diagram illustrating (A) the feature weight and (B) “importance” of the eight structural features under different GI models, based on
11 training data sets. Features: (IVOM) feature composition; (INSP) insertion point; (SIZE) the size of each region; (DENSITY) gene density; (REPEATS)
repeats flanking each region; (INTEGRASE) integrase-like protein domains; (PHAGE) phage-related protein domains; (RNA) non-coding RNAs. Each apex
in the octagon-like diagram corresponds to one of the eight structural features, while the height of the plot at the corresponding apex is indicative of
the actual (A) feature weight or (B) importance.

Figure 2. Bar chart illustrating (A) the feature weight and (B) “importance” of six structural features
(evaluated pairwise), under three different dual-featured GI models, trained on Salmonella, Staphylococcus,
and Streptococcus-specific regions, respectively. Features: [RNA, INSP], [tRNA, misc_RNA], [DRs, IRs].
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Staphylococcus

The model that describes the structure of GIs present in Staphy-
lococcus genomes was built based on 66 putative GIs and 74 ran-
domly sampled regions (Table 2; Supplemental Table 1). Overall
under this model, the most predictive informative structural fea-
tures are PHAGE (RPHAGE = 0.65), SIZE (RSIZE = 0.51), INTEGRASE
(RINT = 0.25), and REPEATS (RREPEATS = 0.07); the remaining fea-
tures were ignored. Two randomly sampled regions had the two
highest IVOM scores in this data set of 140 examples. These two
regions (Staph.Epid_RP62.non.12 and Staph.MRSA252.non.21 in
Supplemental Table 1) overlap with two rRNA operons. rRNA
operons often deviate compositionally from the genome back-
bone composition mainly because of specific, well-preserved
functional constraints rather than their horizontal origin (Verni-
kos and Parkhill 2006; Vernikos et al. 2007). Excluding those two
regions and repeating the training, the GI model assigned
weights to previously ignored features and modified each weight
overall: DENSITY (RDENS = 0.92), IVOM (RIVOM = 0.74), PHAGE
(RPHAGE = 0.35), SIZE (RSIZE = 0.34), INTEGRASE (RINT = 0.30); the
rest of the features were ignored (Fig. 1; Table 3).

When GI models are trained (pairwise) only on selected
structural features, insertion within a CDS locus (RINSP = 1.1) is
more informative than insertion within an RNA locus
(RRNA = 0.26). Between the different types of non-coding RNAs,
insertion within a tRNA (RtRNA = 0.64) rather than a misc_RNA
(RmiscRNA = 0.0) is the most informative feature. In terms of type
of repeats, again DRs is the most informative feature (RDRs = 0.85,
RIRs = 0.0) (Fig. 2). It is worth noting that under these three par-
tial GI models, some previously ignored (under the full GI model
above) structural features, that is, RNA, INSP, and REPEATS, are
now informative predictors, further suggesting that those fea-
tures were redundant predictors under the full model in which all
eight features were evaluated.

Streptococcus

The training set for the Streptococcus genus consists of 54 and 53
positive and negative control examples, respectively (Table 2;
Supplemental Table 1). Under this model, the most informa-
tive GI structural features are INTEGRASE (RINT = 0.67),
IVOM (RIVOM = 0.56), INSP (RINSP = 0.53), and REPEATS
(RREPEATS = 0.48). The remaining four features were ignored
(Fig. 1; Table 3), giving the highest sparsity GI model that ex-
ploits only four (of the eight) basis functions.

In terms of pairwise evaluation of selected structural features
(Fig. 2), GIs present in Streptococcus genomes follow the same
pattern of insertion point preference with the Staphylococcus GIs,
that is, insertion within a CDS locus (RINSP = 1.84) is more infor-
mative than insertion within an RNA locus (RRNA = 0.45); the
same applies for the type of non-coding RNAs (RtRNA = 0.013,
RmiscRNA = 0.0) and the type of repeats (RDRs = 1.33, RIRs = 0.0).

Cross-genus

Staphylococcus–Streptococcus

Combining 138 Staphylococcus and 107 Streptococcus genomic re-
gions, a data set of 245 (Gram-positive) examples was built in
order to study the structural variation of GIs across genus/species
boundaries. In this cross-genus GI model, the most informative
features are PHAGE (RPHAGE = 0.41), INSP (RINSP = 0.39), IVOM
(RIVOM = 0.374), INTEGRASE (RINT = 0.37), SIZE (RSIZE = 0.272),

and REPEATS (RREPEATS = 0.270); the remaining structural fea-
tures were ignored (Fig. 1; Table 3; Supplemental Fig. S2a).

Salmonella–Staphylococcus

A cross-genus data set of 421 Salmonella- and 138 Staphylococcus-
specific regions was built and used to train a GI structural model;
under this model, the most informative features are IVOM
(RIVOM = 0.62), SIZE (RSIZE = 0.40), PHAGE (RPHAGE = 0.34),
INTEGRASE (RINT = 0.21), RNA (RRNA = 0.15), and REPEATS
(RREPEATS = 0.12). The remaining features were ignored (Fig. 1;
Table 3; Supplemental Fig. S2b).

Salmonella–Streptococcus

Combining the Salmonella- and Streptococcus-specific regions, a
data set of 528 examples was built. Under this cross-genus GI
model, the most informative structural features are IVOM
(RIVOM = 0.48), SIZE (RSIZE = 0.39), PHAGE (RPHAGE = 0.28),
INTEGRASE (RINT = 0.25), RNA (RRNA = 0.24), INSP (RINSP = 0.20),
and REPEATS (RREPEATS = 0.16) (Fig. 1; Table 3; Supplemental Fig.
S2c).

Salmonella–Staphylococcus–Streptococcus

In order to study the structural variation of GIs across the three
genera, taking into account the difference in the dimensionality
of the three genus-specific data sets (421 Salmonella-, 138 Staphy-
lococcus-, and 107 Streptococcus-specific regions), we followed two
different approaches: In the first approach, a training set
(N = 666) was built combining the full Salmonella and the other
two genus-specific data sets; in the second approach, the Salmo-
nella data set was split into three subsets (N ≈ 140 each), each of
which was combined with the full Staphylococcus and Streptococ-
cus data sets giving three training sets (namely, set1, set2, and
set3) of ∼385 examples each; in each set, the three different gen-
era contribute approximately the same number of examples.

Training the RVM on the full (N = 666) cross-genus data set
(all), the most informative GI structural features are IVOM
(RIVOM = 0.48), SIZE (RSIZE = 0.39), PHAGE (RPHAGE = 0.35),
INTEGRASE (RINT = 0.25), INSP (RINSP = 0.24), RNA (RRNA = 0.17),
and REPEATS (RREPEATS = 0.15) (Fig. 1; Table 3; Supplemental Fig.
S3a).

Using each of the three smaller data sets (sets 1–3) to train
the RVM, the most informative features under the three GI mod-
els are (for each model, respectively) IVOM (RIVOM = 0.49, 0.43,
0.39), PHAGE (RPHAGE = 0.42, 0.25, 0.56), SIZE (RSIZE = 0.37, 0.32,
0.41), INTEGRASE (RINT = 0.29, 0.30, 0.31), INSP (RINSP = 0.34,
0.34, 0.0), REPEATS (RREPEATS = 0.19, 0.17, 0.27), DENSITY
(RDENS = 0.0, 0.0, 0.26), and RNA (RRNA = 0.0, 0.19, 0.0) (see Fig.
1; Table 3; Supplemental Fig. S3). Based on the four RVM train-
ings (all, set1, set2, and set3), the four models that capture the
structural variation of GIs across the three genera have converged
over fairly similar GI structures, with the exception of genus-
specific features, that is, the RNA feature for Salmonella, the INSP
feature for Streptococcus, and the DENSITY feature for Staphylococ-
cus (see Supplemental Fig. S3e and Discussion).

Prediction accuracy—benchmarking

In order to evaluate the prediction accuracy of the RVM classifier,
each data set was split into five smaller subsets of approximately
the same size, and the RVM was trained on four-fifths of the data
set and tested on the remaining one-fifth; this process was re-
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peated five times (for each data set), classifying non-overlapping
test sets each time (fivefold cross-validation). Moreover, in order
to evaluate further the generalization properties of each GI struc-
tural model, we performed six “genus-blind” cross-validations,
training a model only on examples of one genus and testing it on
examples of the other two. This blind test was performed in order
to investigate how different genus-specific models would per-
form in classifying regions from unknown taxa. In order to esti-
mate the relative accuracy and generalization properties of each
model, we performed a receiver operating characteristic (ROC)
curve analysis. The area under the ROC curve (AUC) is a measure
of the accuracy of a given classifier; the closer the AUC is to 1, the
more accurate the classifier (see Supplemental Material for de-
tails).

Overall, throughout the 10 fivefold cross-validations, the
different GI models made good generalizations on unseen data,
classifying with high accuracy (AUC: 0.82–0.94) unknown ex-
amples (GIs and non-GIs) (Fig. 3; Supplemental Fig. S4). Between
the three different genus-specific GI models, the Streptococcus
(Strep) model is the most accurate, followed by the Salmonella
(Salm) and the Staphylococcus (Staph) models (AUC: 0.94, 0.83,
and 0.82, respectively).

Between the three different GI models, trained on a mixture
of examples from two different genera, the Staph-Strep (Gram-
positive) model is the most accurate, followed by the Salm-Staph
and the Salm-Strep models (AUC: 0.881, 0.846 and 0.841, respec-
tively). Overall, the Salm-Staph model performs better than the
corresponding two genus-specific Salm and Staph models (Fig. 3);
similarly the Salm-Strep and Staph-Strep models are overall more
accurate than the Salm and Staph models, respectively.

GI models trained on a mixture of
examples from all the three genera show
fairly similar performance (AUC: 0.84–
0.88). More specifically, the three GI
models trained on data sets in which the
three genera are equally represented
(i.e., set1, set2, and set3) perform equally
well (AUC: 0.87, 0.86, 0.88) and slightly
better than the model trained on all
(N = 666) examples (AUC: 0.84), under-
lining the increased sparsity property of
the RVM method.

The evaluation of the three genus-
specific GI models, under a “genus-
blind” cross-validation framework, indi-
cates that the RVM classifier can very ac-
curately predict unseen examples from
close or distantly related genera that are
not included in the training set (Fig. 3).
More specifically, using the Salm model
to classify Staphylococcus- and Streptococ-
cus-specific regions can be overall more
(AUC: 0.87 vs. 0.82) or similarly (AUC:
0.91 vs. 0.94) accurate compared to the
corresponding genus-specific models, re-
spectively. The Staph model shows high
accuracy (AUC: 0.81 and 0.89) in classi-
fying Salmonella- and Streptococcus-
specific regions, respectively; overall,
this model is slightly less accurate than
the corresponding genus-specific models
(AUC: 0.83 and 0.94, respectively). Simi-

lar conclusions can be drawn for the performance (AUC: 0.79 and
0.85) of the Strep model when classifying Salmonella- and Staphy-
lococcus-specific regions, respectively. Again this model is more
accurate in classifying Staphylococcus-specific regions than the
Staph model (AUC: 0.85 and 0.82, respectively), but is less accu-
rate in classifying Salmonella-specific regions than the Salm
model (AUC: 0.79 and 0.83, respectively).

Discussion

The aim of this analysis was to study the structural variation of
GIs, quantifying and modeling the “importance” of genetic fea-
tures that can be informative when classifying GIs and non-GI
regions, enabling a quantitative rather than a descriptive defini-
tion of the actual GI structure to be proposed. The basic principle
behind this analysis is a hypothesis-free framework, in which no
a priori assumptions are made about the GI structure.

Implementing a machine learning-oriented approach, geno-
mic regions (both GIs and randomly sampled regions) from 37
chromosomes of three different genera were exploited in order to
build genus-specific as well as cross-genus GI structural models.
Overall, the three genus-specific GI models show both core and
variable structural features with distinct genus-specific signa-
tures. For example, the IVOM and INT features are informative in
all three GI models; on the other hand, the RNA, INSP, and
DENSITY features are Salmonella-, Streptococcus-, and Staphylococ-
cus-specific features, respectively (Fig. 1; Table 3). Moreover, in
the Strep model apart from the INSP feature, the INT and
REPEATS features contribute more to the overall structural model
compared to the other two genus-specific models (Fig. 1), while

Figure 3. A bar chart illustrating the average performance of the RVM classifier, under different
training and test data sets. Each data set is split into five subsets of approximately equal size; four of
the five subsets are used to train an RVM model, while the omitted subset is used to test the perfor-
mance of this model. This process is repeated five times on non-overlapping test sets (fivefold cross-
validation). The performance of the RVM models was evaluated through the receiver operating char-
acteristic (ROC) curve. The area under the ROC curve (AUC) is a measure of the model’s accuracy: The
closer the curve follows the left-hand and the top border of the ROC space, the more accurate the
classification model. A perfect classifier would give an AUC of 1, while a classifier that makes a random
guess would give an AUC of 0.5. The average value and �1 SD of the AUC over the five subsets of the
fivefold cross-validation is calculated for the first 10 data sets. The AUC values for the last six data sets
(with the asterisk) summarize the performance of the RVM, when trained on the whole data set of the
first genus and tested on the whole data set of the second genus, for example, for the Salm-Strep* data
set, the 421 Salmonella-specific regions were used to train a GI model that was tested on the 107
Streptococcus-specific regions.
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the SIZE and PHAGE features seem to be informative only in the
Salm and Staph structural GI models.

Care should be taken when interpreting the “importance” of
each of the eight structural features. In this analysis, GI models
are built evaluating how informative each feature is, taking into
account cross-feature relationships and information redundancy.
Mapping the eight features in a high-dimensional space enables
cross-feature relationships to be captured: If some features con-
tain information present already in other features (redundant
information), then for the sake of model sparsity, those features
(basis functions) will be ignored by setting their weight to zero
value. That, however, does not necessarily mean that those fea-
tures may not be informative when seen on their own, that is, in
single-featured GI models (Supplemental Fig. S6). Therefore, it is
more intuitive to interpret the importance of each feature as it is
relative (in combination with the rest of the features) rather than
its absolute importance under a GI model. For example, in the
Strep model, the PHAGE feature is ignored when building a
model evaluating all the eight features. However, when the
PHAGE feature is evaluated in a single-featured model, it turns
out to be the second most informative feature (Supplemental Fig.
S6); this observation is in line with previous studies showing the
impact of bacteriophage elements in the evolution of Strepto-
cocci (Broudy et al. 2001; Banks et al. 2003; Fischetti 2007). Per-
haps some of the information in the PHAGE feature is already
present in some other features (e.g., phage integrase protein do-
mains of the INTEGRASE feature) making the PHAGE feature a
redundant predictor under a multifeatured GI model.

The same observation applies for the SIZE feature. In a mul-
tifeatured model, SIZE is a very informative feature for the Salm
and Staph models; however, in a single-featured model (i.e.,
evaluated on its own), the SIZE feature is ignored in all three
genera models (Supplemental Fig. S6). This further suggests that
in multifeatured models, some structural features correlate with
the SIZE feature. Moreover, throughout this analysis, the SIZE
feature received a negative weight in all GI models apart from the
Strep model. Generally, during the training process some features
may correlate positively or even negatively (e.g., the SIZE feature)
with class membership. This does not necessarily suggest that
true GIs are always of small size, but rather that the SIZE feature
is negatively correlated with some other features. This observa-
tion becomes much clearer in the case of the Strep model in
which both the SIZE and the PHAGE features received a weight of
zero. However, in the other 10 models, the same two features
received a negative and a positive weight, respectively (Table 3).
Perhaps the SIZE feature is inversely correlated with the PHAGE
feature, suggesting that GIs of phage origin are on average larger
than GIs of different origin. Indeed, for the Salmonella and the
Staphylococcus data set, the average size of GIs of phage origin is
significantly larger than the size of GIs of different origin (p-
value = 1.17 � 10�7 and 1 � 10�5, respectively). In order for
the reverse correlation of the SIZE and some features to be cap-
tured in the model, the SIZE feature has to have a negative
weight.

The fact that in the Strep GI model, three structural features
(i.e., INTEGRASE, REPEATS, and INSP) are unusually highly in-
formative (relative to the other two genus-specific models), while
at the same time, those three features are frequently involved in
the mobilization of genomic DNA (i.e., integration/excision),
leaves open the possibility of a GI model that is capturing a
distinct Streptococcus-specific mechanism of genetic element mo-
bilization, via integration preferably within CDS loci. It is worth

noting that the Strep GI model shows the highest sparsity ex-
ploiting only half of the basis functions (four out of the eight
structural features), compared to the Staph (five out of eight) and
the Salm (six out of eight) GI models, proposing a much simpler
structural model, in order to describe GIs in the Streptococcus
lineage (Table 3); this observation is in line with the outstanding
classification accuracy of the Strep GI model (AUC: 0.94�) (Fig. 3).

The distinct structural feature with the highest contribution
to the Staph GI model, while being ignored in the other two
genus-specific models, is the DENSITY feature (Fig. 1; Supple-
mental Fig. S1). Overall, the average gene density of GIs present
in Staphylococcus genomes is significantly (p-value = 1.4 � 10�6)
higher than that of randomly sampled regions; in Salmonella and
Streptococcus lineages, this feature is less informative when pre-
dicting GIs (p-value = 1.7 � 10�3 and 1.3 � 10�2, respectively).
Again, it is possible that this genus-specific GI model is capturing
the underlying origin of GIs present in Staphylococcus genomes,
suggesting chromosomes of higher gene density than that char-
acterizing the Staphylococcus lineage as the potential source of
those GIs, one obvious possibility being bacteriophage genomes.

Increasing further the resolution within certain GI structural
features (i.e., insertion within a CDS or RNA locus, tRNA, or
misc_RNA and DRs or IRs), training the RVM pairwise only on
those selected features, the genus-specific signatures of each
model become more evident (Fig. 2). For the prediction of GIs in
the Salmonella lineage, integration within a non-coding RNA lo-
cus is much more informative than within a CDS locus. The
opposite observation can be made for the Staphylococcus and
Streptococcus models. In the case of non-coding RNA, insertion
within a tRNA or a misc_RNA locus is almost equally informative
for the prediction of Salmonella GIs, while in Staphylococcus and
Streptococcus lineages, insertion within a tRNA locus is much and
slightly more informative than insertion within a misc_RNA, re-
spectively. In all three genera, the predominant type of repeats
associated with GIs is DRs.

Although the three genus-specific GI structural models
show distinct signatures, suggesting well-defined GI families
with core and variable regions, when the RVM training takes
place on a mixture of cross-genus examples, the various GI mod-
els converge over fairly similar GI structures (Fig. 1; Supplemental
Figs. S2–S3). This observation further supports the idea that GIs
overall represent a superfamily of mobile elements with signifi-
cant structural variation, rather than a well-defined family when
looking across genus boundaries. When the predictive accuracy
and generalization properties of the cross-genus models are
evaluated, many of those models perform overall equally well or
better compared to the corresponding genus-specific models (Fig.
3). This observation perhaps suggests that in some cases the RVM
method has overfitted slightly on a subset of a genus-specific
training data set, misclassifying the remaining subset; when
more training examples from other genera are included in the
training data set, models with much lower degrees of overfitting
are trained.

Between the cross-genus GI models, trained on a mixture of
two different genera examples, the Staph-Strep model shows the
highest accuracy compared to the Salm-Staph and Salm-Strep
models. Perhaps this cross-genus GI model is capturing structural
properties of GIs found in Gram-positive bacteria that are less or
not informative for the prediction of GIs in Gram-negative bac-
teria (Hacker et al. 1997).

Even when the cross-validation is based on a GI model that
is trained on a genus-specific data set and tested on examples of
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a different genus, the prediction accuracy remains remarkably
high, further supporting the concept of the GI superfamily. For
example, the accuracy of the model trained on Salmonella ex-
amples and tested on Streptococcus examples is very similar to that
of the Streptococcus-specific model (Fig. 3). Moreover, the genus-
specific GI model with the highest sparsity, that is, the Strep
model, discriminates GIs remarkably well from randomly
sampled regions when tested on examples from the other two
genera (Supplemental Fig. S5).

Overall, the evaluation of the eight structural features across
the 11 training data sets shows that the IVOM, PHAGE, SIZE, and
INTEGRASE features are, on average, the most informative ones,
followed by the INSP, REPEATS, DENSITY, and RNA features (Fig.
4). It seems that the four most informative structural features are
important predictors when classifying GIs from any of the three
genera, suggesting that there are core features of a superfamily of
mobile elements, whereas the other four, less-informative fea-
tures are capturing genus-specific properties of GIs (being infor-
mative only when predicting GIs from a single genus), suggesting
these may be variable features of distinct genus-specific GI families.

The analysis carried out in this study forms the first attempt
to quantify the actual GI structure in a probabilistic framework
taking into account the contribution of all the informative struc-
tural features. Instead of vaguely describing putative GIs, we can
explicitly quantify our level of confidence that they fit an em-
pirically derived structure. This probabilistic scoring framework
enables a systematic description of GI elements, which can be
ranked based on their underlying structural information and sub-
sequently classified into distinct structural families.

Although this methodology provides some new insights
about the structural variation of GIs, there are some limitations
that have to be taken into account:

(1) The RVM method shows increased sparsity, providing
simple models that can very accurately capture the underlying
structural variation in some cases (e.g., the Strep model). On the
other hand, the RVM method overfitted twice, to some extent, to
the Staphylococcus data set: firstly, the two Staph models (with
and without the two rRNA operons) show significantly different
weights, and secondly the Staph model models the Staphylococcus
data set more poorly than any of the other two genus-specific

models (Salm and Strep), perhaps overfitting to the DENSITY
feature. To test whether this is, indeed, the case for the Staph
model, we removed the DENSITY feature from the training and
test data sets and repeated the cross-validation using the three
models (Salm, Staph, Strep), re-evaluating their performance on
the Staphylococcus data set. The data support the suggestion that
the poorer performance of the Staph model on the Staphylococcus
data set, relative to the other two genus-specific models, is due to
overfitting of the model to 20% of the data set that had examples
with significantly higher gene density than the rest of the data
set. The new Staph model outperforms the other two models
when tested on the Staphylococcus data set; more specifically, the
AUC before and after the removal of the DENSITY feature for the
three models is as follows, respectively: (Staph = 0.824, 0.875),
(Salm = 0.872, 0.865), (Strep = 0.850, 0.850).

(2) The RVM method, as implemented in the present study,
gave an error margin of 10%–20%. Possible sources of this error
margin include significant structural intersection of the GIs and
the randomly sampled regions; some randomly sampled regions
were sampled close to classical GI-related structural features (e.g.,
tRNA) simply by chance, while a few GIs lack most (or all) of the
classical GI-related features (since no a priori structural assump-
tions were made). Moreover, the phylogenetic sample used in the
present study strongly affects the validity of the training data
sets; overall, 11–13 strains and four outgroups were analyzed for
each reference genus. Regions of limited phylogenetic distribu-
tion (under a maximum parsimony evaluation) were defined as
GIs, while inter-GI chromosomal regions were randomly
sampled. Under this framework, there are two possibilities to be
taken into account: Firstly, some predicted GIs might not actu-
ally represent true GIs, if the phylogenetic resolution is further
increased, that is, including more reference strains and more dis-
tantly related outgroups. Secondly, some randomly sampled re-
gions might have been sampled over “ancient” GIs that were
acquired prior to the divergence of the reference and the out-
group lineages. Consequently, care should be taken when inter-
preting the results of this analysis; the parameters of the RVM
models and the validity of the actual training data sets directly
affect the conclusions drawn about the structural variation of
GIs. These conclusions are specific only for the three data sets

analyzed, the structural annotation
methodology and the machine learning
method implemented in this study.

The species sample used in this
analysis is inevitably small in the con-
text of a wide, representative sampling
of the GI structural space. However, it
forms a proof of concept showing that
the components of a GI structure can ex-
plicitly be quantified through a probabi-
listic framework. Under this concept,
more species and many more structural
components (e.g., the distance of GIs
from the origin of replication oriC, their
relative time of acquisition, number of
pseudogenes per island, and coding
strand bias) can be taken into account
and evaluated, enabling the construc-
tion of more sophisticated and more de-
tailed structural models.

Overall in this analysis, we showed
that GIs tend to fall within structural

Figure 4. Bar chart illustrating the average “importance,” across 11 structural GI models, of the eight
structural features evaluated in this analysis. The eight features have been sorted (in decreasing order)
based on their average importance. Error bars show �1 SD.
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families with well-defined signatures when looking within cer-
tain lineage boundaries, but when the taxa resolution decreases,
that is, looking at GIs across different species, universally distrib-
uted structural GI components emerge. Perhaps overall, GIs
should be seen as a superfamily of mobile elements with unifying
and variable structural features rather than a single, well-defined
family.

Methods

The methodology followed throughout this analysis is summa-
rized as a flowchart in Figure 5 and described in the following
sections.

Genomic data set
A list of all the 49 strains used in this comparative analysis is
provided in Table 4. Throughout this analysis, we focused on the
analysis of 37 reference bacterial strains from three different gen-
era, namely, Salmonella, Staphylococcus, and Streptococcus. In order
to differentiate a limited phylogenetic distribution pattern due to
a gene gain or a gene loss event (under a maximum parsimony
evaluation), 12 more distantly related bacterial strains that
formed outgroups for the three reference genera were also in-

cluded in this analysis. The 12 outgroup genomes were used only
in the maximum parsimony evaluation of the predicted regions
and do not form part of the actual data set for which the data
were produced. Briefly, 11 Salmonella strains with four outgroups
(Escherichia coli, Shigella), 13 Staphylococcus strains with four out-
groups (Bacillus, Listeria), and 13 Streptococcus strains with four
outgroups (Lactobacillus, Lactococcus, Enterococcus) were analyzed.

Best reciprocal FASTA
For each of the three genera, all genomes were (pairwise) com-
pared against the other including the four outgroups. In order to
infer the orthologous genes in each pair of genomes compared,
we applied a best reciprocal FASTA method as implemented in
Vernikos et al. (2007) (for details, see Supplemental material).
Overall, 1952, 741, and 429 orthologous genes were identified in
the Salmonella, Staphylococcus, and Streptococcus data sets (includ-
ing the corresponding four outgroups), respectively (Supplemen-
tal Fig. S7).

Phylogenetic analysis
For the construction of the reference tree topology, modules of
the PHYLIP package version 3.65 (Felsenstein 1989) were imple-
mented. More specifically, for the whole-genome sequence align-

Figure 5. Flowchart summarizing the major steps in the methodology followed throughout this analysis: A phylogenetic analysis using both whole-
genome sequence (if applicable) and the amino acid sequence of the core gene products was carried out enabling the construction of the reference tree
topology for each genus. In a second step, a comparative analysis (genomewise) was performed between the chromosomes of each genus and the
corresponding outgroups, leading to the identification of regions with limited phylogenetic distribution. In a third step, a maximum parsimony model
(based on the reference tree topology) was applied in order to differentiate gene gain from gene loss events and exclude regions with limited
phylogenetic distribution due to a gene loss event. The remaining regions formed the positive control data set (i.e., putative GIs) of this analysis. The
negative control data set (i.e., non-GIs) was built implementing a random sampling approach, sampling regions only within the inter-GI parts of the
chromosome; both positive and negative examples were annotated structurally. In a final step, the structural features of each region were used as input
vectors to a machine learning method (RVM) leading to the construction of structural GI models.
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ments (Salmonella and Staphylococcus data sets), the DNADIST
module with the gamma-based method for correcting the rate
heterogeneity among sites was used. We also used the NEIGH-
BOR module, which implements the Neighbor-Joining (NJ)
method (Saitou and Nei 1987), and the DNAML module, which
implements the Maximum Likelihood (ML) method for DNA se-
quences (Felsenstein and Churchill 1996). For the construction
of tree topologies using the amino acid sequence alignment of
the core gene products for each genus (and the corresponding
outgroups), we used the PROTDIST, NEIGHBOR, and PROML
modules of PHYLIP. Different tree topologies for a given lineage
were evaluated further through the PROML and TREE-PUZZLE
(Schmidt et al. 2002) methods, exploiting the model with the
highest number of parameters; for each genus, the tree topology
with the highest likelihood was selected as the reference one. All
the parameters were determined from the data using the TREE-
PUZZLE software. Tree topologies were drawn using the TREE-
VIEW software (Page 1996).

Comparative analysis—GI detection

The genomic sequences of each genus and the corresponding
outgroups were compared using a genome-wide, all-against-all
BLAST (Altschul et al. 1997) comparison; the results were visual-
ized through ACT (Carver et al. 2005) and manually inspected.
Genomic regions (�2 CDSs) of limited phylogenetic distribution
that were present in some of the strains while being absent from
the rest were processed further (at this stage, core genomic re-
gions shared by all strains were excluded). In a second step, re-
gions of limited phylogenetic distribution were analyzed apply-
ing a maximum parsimony model, in order to differentiate gene
gain (HGT) from gene loss; the maximum parsimony model is
based on the reference tree topology of each genus (Supplemen-
tal Figs. S8–S10). The comparative based approach followed to
identify GIs assuming a parsimony model has been described
previously (Vernikos et al. 2007). Briefly, a genomic region that
shows limited phylogenetic distribution that can more likely be

Table 4. The list of 49 strains used in this comparative analysis

Organism Reference Accession Number

Escherichia coli K-12 MG1655 Blattner et al. (1997) U00096
E. coli O157:H7 EDL933 Perna et al. (2001) AE005174
E. coli CFT073 Welch et al. (2002) AE014075
Shigella flexneri serotype 2a 301 Jin et al. (2002) AE005674
Salmonella bongori 12419 http://www.sanger.ac.uk/Projects/Salmonella/ N/A
S. arizonae RSK2980 http://genome.wustl.edu/genome_index.cgi N/A
S. enterica serovar Typhi CT18 Parkhill et al. (2001) AL513382
S. enterica serovar Typhi TY2 Deng et al. (2003) AE014613
S. enterica serovar paratyphi A SARB42 McClelland et al. (2004) CP000026
S. enterica serovar paratyphi A AKU_12601 http://genome.wustl.edu/genome_index.cgi N/A
S. enterica serovar Typhimurium SL1344 http://www.sanger.ac.uk/Projects/Salmonella/ N/A
S. enterica serovar Typhimurium LT2 McClelland et al. (2001) AE006468
S. enterica serovar Typhimurium DT104 http://www.sanger.ac.uk/Projects/Salmonella/ N/A
S. enterica serovar Enteritidis PT4 http://www.sanger.ac.uk/Projects/Salmonella/ N/A
S. enterica serovar Gallinarum 287/91 http://www.sanger.ac.uk/Projects/Salmonella/ N/A
Bacillus subtilis 168 Kunst et al. (1997) AL009126
Bacillus anthracis Ames http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org=gba AE017334
Listeria innocua Clip11262 Glaser et al. (2001) AL592022
Listeria monocytogenes EGD-e Glaser et al. (2001) AL591824
Staphylococcus saprophyticus ATCC 15305 Takeuchi et al. (2005) AP008934
Staphylococcus haemolyticus JCSC1435 Takeuchi et al. (2005) AP006716
Staphylococcus epidermidis ATCC 12228 Zhang et al. (2003) AE015929
Staphylococcus epidermidis RP62A McGillivary et al. (2005) CP000029
Staphylococcus aureus MRSA252 Holden et al. (2004) BX571856
Staphylococcus aureus RF122 Herron-Olson et al. 2007 AJ938182
Staphylococcus aureus Mu50 Takeuchi et al. (2005) BA000017
Staphylococcus aureus N315 Takeuchi et al. (2005) BA000018
Staphylococcus aureus MSSA476 Holden et al. (2004) BX571857
Staphylococcus aureus MW2 Takeuchi et al. (2005) BA000033
Staphylococcus aureus USA300 Diep et al. (2006) CP000255
Staphylococcus aureus COL McGillivary et al. (2005) CP000046
Staphylococcus aureus NCTC 8325 http://www.genome.ou.edu/staph.html CP000253
Lactobacillus johnsonii NCC 533 Pridmore et al. (2004) AE017198
Lactobacillus plantarum WCFS1 Kleerebezem et al. (2003) AL935263
Enterococcus faecalis V583 Paulsen et al. (2003) AE016830
Lactococcus lactis IL1403 Bolotin et al. (2001) AE005176
Streptococcus pneumoniae R6 Hoskins et al. (2001) AE007317
Streptococcus pneumoniae TIGR4 Tettelin et al. (2001) AE005672
Streptococcus Suis P1/7 http://www.sanger.ac.uk/Projects/S_suis/ N/A
Streptococcus thermophilus CNRZ1066 Bolotin et al. (2004) CP000024
Streptococcus thermophilus LMG 18311 Bolotin et al. (2004) CP000023
Streptococcus agalactiae NEM316 Glaser et al. (2002) AL732656
Streptococcus agalactiae A909 Tettelin et al. (2005) CP000114
Streptococcus uberis 0140J http://www.sanger.ac.uk/Projects/S_uberis/ N/A
Streptococcus equi 4047 http://www.sanger.ac.uk/Projects/S_equi/ N/A
Streptococcus pyogenes MGAS10750 Beres et al. (2006) CP000262
Streptococcus pyogenes MGAS2096 Beres et al. (2006) CP000261
Streptococcus pyogenes MGAS9429 Beres et al. (2006) CP000259
Streptococcus pyogenes Manfredo Ramsden et al. (2007) AM295007
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explained by a gene gain rather than a gene loss event, based on
a reference tree topology, is considered to be a putative GI. For
example, a region that is present in the Salmonella lineage and
absent from E. coli MG1655 might well be either a true HGT in
the former or deletion in the latter. However, if, for example, the
same region is also present in E. coli EDL933 and E. coli CFT073,
then we can infer more reliably that this event represents prob-
ably a deletion (in E. coli MG1655) rather a true HGT in the
Salmonella lineage. Conversely, a sequence that is confined to
one lineage is more likely to have been horizontally acquired
than to have been deleted independently from multiple lineages
(Lawrence and Ochman 1998). Genomic regions identified under
this framework formed the positive control set of this analysis;
overall, 331 putative GIs were sampled from the 37 reference
chromosomes (Table 2; Supplemental Fig. S11).

Random sampling
For the construction of the negative control data set, that is,
genomic regions that are not GIs, a random sampling approach
was followed. For each genome with identified putative GIs, an
equal number of non-GI regions was randomly sampled, sam-
pling the size distribution of the corresponding genus-specific
GIs (Supplemental Fig. S12). Overall, this analysis yielded 337
non-GIs, giving a total number of 668 training sets (Table 2;
Supplemental Table 1). Random sampling was “forced” to occur
only within inter-GI regions of each chromosome. Note that the
results of the random sampling approach were manually curated,
removing randomly sampled regions that had been already
sampled from other chromosomes of different strains of the same
genus; the manual curation filtered out any redundancy in the
training set that could possibly affect the training and evaluation
process. For these reasons, the numbers of positive and negative
examples for each genus are slightly different.

Machine learning
In order to build structural models of GIs, eight features were
taken into account: The IVOM score (relative entropy), insertion
point (1 if within a CDS locus, 0 otherwise), size of each region
(in base pairs), gene density (genes/kilobase), repeats (binary: 1 if
present, 0 otherwise), phage-related protein domains (binary),
integrase(-like) protein domains (binary), and non-coding RNA
(binary). Furthermore, the RNA feature was further divided into
tRNA and misc_RNA subcategories; the same applies for the re-
peats feature, which was further divided into DRs and IRs sub-
categories.

The aim of the machine learning in this analysis is dual: GI
structural models will be trained in order to quantify (i.e., assign
weights) the relative contribution of each feature to the GI struc-
ture, and in a second step, the derived models will be used to
classify previously unseen examples (GIs and non-GIs), enabling
evaluation of the generalization properties of each model and
capturing of any potential variation in the GI structure. For this
purpose, 668 training sets were used to train 11 GI models using
a Biojava (http://www.biojava.org) implementation of the Rel-
evance Vector Machine (RVM) (Tipping 2001).

The RVM is a method for sparse, Bayesian-based learning
with applications in classification and regression analysis. RVM is
a model of identical functional form to the well-known Support
Vector Machine (SVM) that nonetheless overcomes a few of the
disadvantages of the latter (Tipping 2001). RVM models exploit
overall fewer basis functions relative to an SVM model, offering
the advantage of increased sparsity, building simpler models
with better generalization properties on unseen data. The RVM
method has been previously applied in detecting binding sites

in human protein-coding sequences (Down et al. 2006), in the iden-
tification of transcriptional start sites in mammalian DNA (Down
and Hubbard 2002), and in a vertebrate gene finding method
(Carter and Durbin 2006). For further details about technical as-
pects of the RVM method, refer to the Supplemental Material.

Further analysis
Details about the multiple sequence alignments, the structural
annotation of GIs, the ROC curve analysis, and the cross-
validation carried out in this study can be found in the Supple-
mental Material.
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