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Computational Detection and Location
of Transcription Start Sites in Mammalian
Genomic DNA
Thomas A. Down1 and Tim J. P. Hubbard
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom

Transcription, the process whereby RNA copies are made from sections of the DNA genome, is directed by
promoter regions. These define the transcription start site, and also the set of cellular conditions under which
the promoter is active. At least in more complex species, it appears to be common for genes to have several
different transcription start sites, which may be active under different conditions. Eukaryotic promoters are
complex and fairly diffuse structures, which have proven hard to detect in silico. We show that a novel hybrid
machine-learning method is able to build useful models of promoters for >50% of human transcription start
sites. We estimate specificity to be >70%, and demonstrate good positional accuracy. Based on the structure of
our learned models, we conclude that a signal resembling the well known TATA box, together with flanking
regions of C-G enrichment, are the most important sequence-based signals marking sites of transcriptional
initiation at a large class of typical promoters.

The vast majority of protein coding eukaryotic genes are tran-
scribed using the polII RNA polymerase. A polII promoter con-
sists of a group of transcription factor binding sites clustered
around (but primarily upstream of) one or more transcription
start sites (Werner 2000). While there has been some success
in identifying consensus binding sequences for specific tran-
scription factors, there is still uncertainty about the detailed
organization and function of promoters. Therefore, an in
silico promoter model should be a powerful tool for genome
annotation, and might also give clues about the nature of
promoters.

A number of computational methods have been pro-
posed for detecting transcription start sites. The simplest ap-
proach is to use a DNA weight matrix to detect the TATA box
motif (Bucher 1990), thought to be the core of most eukary-
otic promoters. More sophisticated methods use hidden
Markov models (Audic and Claverie 1997) or neural networks
(Knudsen 1999). Many of these methods were reviewed and
evaluated by Fickett and Hatzigeorgiou (1997). All methods
were shown to suffer from poor sensitivity, many false posi-
tives, and poor positional accuracy. A recent development in
promoter recognition is the PromoterInspector program
(Scherf et al. 2000). This was trained using a brute-force algo-
rithm to discover a set of sequence motifs overrepresented in
promoter regions. It has a much lower false-positive rate than
any of the programs reviewed above. However, it only at-
tempts to detect ‘promoter regions’ (defined as regions of the
genome containing promoter-like motifs), rather than locat-
ing transcription start sites.

We have developed a new program, Eponine , which
aims to predict the exact location of transcription start sites
(TSS). Eponine models consist of a collection of positioned
constraints, each represented by a DNA weight matrix
(Bucher 1990). A weight matrix is a simple generative model

for a short, ungapped sequence motif. It consists of a series of
‘columns,’ each of which contains a probability distribution
over the four symbols of the DNA alphabet. The consensus
sequence (the most likely sequence to be generated by the
model) is found by simply taking the most likely symbol from
each column. Similarly, motifs matching this consensus se-
quence will receive the highest score when the weight matrix
is used to scan genomic sequence.

Weight matrices are good sensors for simple, compact
motifs, but are not, on their own, able to model more com-
plex structures where there is some flexibility in the distance
between parts of a signal. We built complex models by com-
bining each weight matrix with an associated discrete prob-
ability distribution describing its position relative to the TSS.
Thus, a score for one of these ‘positioned matrices’ can be
calculated as:

��i;S� = log �
j=−�

+�

P� j� � W �a + i + j;S�

where P(j) is a discrete probability distribution; W(x;S) is the
weight matrix score, aligning the first column to position x on
sequence S; a is the center position of the distribution, relative
to the TSS; and i is the position of the true TSS during training,
and is varied along the length of the sequence when scanning
a sequence with the trained model.

These can be combined to give complex models by tak-
ing the weighted sum of a number of these positioned matrix
scores. This is equivalent to the well known generalized linear
model (GLM) form (McCullagh and Nelder 1983). Such mod-
els can be trained using established procedures such as the
relevance vector machine (Tipping 2001). The Eponine
trainer combines an efficient implementation of the RVM al-
gorithm with a Monte Carlo sampling process for selecting an
optimal set of positioned matrices (see Methods).

Linear combination of positioned matrices provides a
flexible alternative to approaches which use hidden Markov
models to build complex structures from simple sequence mo-
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tifs (Grundy et al. 1997). The Eponine trainer is able to learn
both a set of motifs and a structural model in a single training
process, and can potentially build models with overlapping
motifs.

RESULTS
Model training was carried out in two stages, each using the
RVM-hybrid method. Initial models were trained from the
eukaryotic promoter database (EPD)-derived data set. There
was some variability between models produced by separate
training runs, indicating that insufficient training data were
available to support a single, consistent model. Second gen-
eration models were trained from the mouse cDNA-derived
data set. Not all of these represent full-length mRNAs, so the
initial model was used to select a set of 599 traces which were
likely to contain true promoters. Training on these selected
mouse sequences gave simpler and much more consistent
models, as shown in Figure 1. These models consist of four
elements: (1) a diffuse preference for CpG enrichment down-
stream of the start site. This corresponds with the observation
that promoters are associated with a CpG island; (2) a
TATAAA motif, with a tightly focused distribution centered at
position �30 relative to the transcription start site. This cor-
responds to the widely reported TATA box and (3 and 4) two
GC-rich matrices closely flanking the TATA box. These key
features can all be recognized in the initial models trained
from the EPD dataset, but they are weaker and are combined
with various other rules not consistent between training runs.

To test the positional specificity of the predictor, we ran
the final model over the set of EPD entries (Fig. 2a). Predic-
tions were clustered in the interval [�10:20] relative to the
annotated start site. This suggests that the model can detect
transcription start sites with good positional accuracy, espe-
cially since it is very hard to map start sites with perfect ac-
curacy [the stated criterion for accepting entries in EPD is
mapping of the TSS within �5 bp (Perier et al. 2000)]. A
smaller peak is observed around �40, which we cannot cur-
rently explain, and must assume to be composed of false posi-
tives.

To investigate the performance of the models for detect-
ing promoters in large pieces of genomic DNA, we ran the
same model on the 33.4 Mb assembled sequence of human
chromosome 22 (Dunham et al. 1999). Release 2.3 of the
chromosome 22 annotation includes 618 distinct genes (ex-
cluding pseudogenes). Of this set, 284 have an annotated TSS
based on experimentally determined mRNAs, a high propor-
tion of which are expected to be full-length transcripts. At the
time of this writing, we believe this to be the largest piece of
sequence with such a high proportion of experimentally an-
notated transcripts, making it ideal for this kind of evalua-
tion. It should be noted, however, that chromosome 22 is a

particularly GC-rich chromosome, with a high gene density
(Dunham et al. 1999), so results for this chromosomemay not
translate exactly into results over the whole genome. Simi-
larly, there may be some bias in the subset of genes for which
a transcript is annotated. Scanning both strands of this se-

Figure 3 Construction of the pseudochromosome, selecting only
those regions where a full mRNA (transcript) is annotated. In the case
where an mRNA-annotated gene is followed by a coding-sequence-
only gene in the same orientation, the sequence is cut at the midpoint
between the two genes.

Figure 1 Schematic of Eponine core promotor model, showing
the constraint distributions and weight-matrix consensus sequences.

Figure 2 Density of predictions from Eponine relative to the an-
notated TSSs of (a) EPD entries and (b) chromosome 22 mRNAs. In
the latter case, directionality of predictions was ignored (in common
with the rest of the chromosome-scale evaluation in this paper).
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quence, the Eponine model, with a threshold of 0.999, made
2086 predictions. For 152 of the annotated TSSs, at least one
prediction fell within 2kb, giving a sensitivity of 54% (Fig.
2b). Moreover, for 96 of these at least one prediction fell
within 100 bases. Lowering the threshold further gave very
little increase in the sensitivity (results not shown).

When considering the specificity of Eponine , 2086 pre-
dictions over a 33.4 Mb region containing 618 genes might
seem to imply a high false-positive rate. However, the predic-
tions were not uniformly distributed, and clustering with a
gap tolerance of 1 kb reduced them to 368 clusters (average of
5.6 predictions per cluster). Some of this clustering comes
from predictions being made on both strands very close to-
gether. Although all of the training examples were presented
in the forward orientation only, 47% of forward-strand pre-
dictions on chromosome 22 were accompanied by reverse-
strand prediction within 100 bases (in the bulk of cases, the
reverse-strand prediction was around 60 bases upstream of the
forward-strand prediction). If one prediction from each pair is
assumed to be a false positive, the number of predictions per
cluster would drop to 4.4. Interestingly, other methods of
promoter prediction have also resulted in poor strand speci-
ficity: in particular, PromoterInspector is reported to be
entirely strand-independent. In the present work, the strand-
edness of predictions was ignored for all methods. The re-
mainder of the clustering could perhaps be explained if Epo-
nine is predicting alternative TSSs used in transcription; how-
ever, this needs to be confirmed experimentally.

Measuring the precise specificity of the method is diffi-
cult, because we have no information about the position of
the TSS for the 334 known genes where there is no full-length
mRNA. To estimate specificity, we built a ‘pseudochromo-
some,’ that is, a long piece of sequence containing the mRNA-
annotated genes and the sequence upstream of them, but
omitting all known genes without mRNA annotation and
pseudogenes (Fig. 3). The result was a 16.4 Mb sequence con-
taining 215 clusters (a total of 1284 individual predictions),
giving a specificity of 73.5%. Table 1 shows a comparison
of the performance of promoter-finding methods on
the pseudochromosome. Three of these methods (Eponine ,
PromoterInspector , and CpG islands) appear to offer com-
parable levels of sensitivity. We compared the sets of chromo-

some 22 promoters detected by the three methods (Fig. 4),
and observed that the sets overlap substantially. From a uni-
fied set of 199 promoters detected by at least one of the meth-
ods, 132 (66%) are detected by all three. Eighty-five promoters
(30%) are not detected by any of the methods examined here.
We have made efforts to train a separate model on just this
subset of promoters; however, initial models are not very con-
sistent, suggesting that this data set is currently too small.

Given the composition of the Eponine TSS model, it
might be suggested that better results could be obtained by
combining the results of TATA-box and CpG island searching
programs. However, since more than 99% of CpG islands in
our test set had a TATA box nearby, a straightforward inter-
section of the two methods will give results very similar to
those for CpG islands alone. It may be possible to combine
CpG island and TATA box predictors to give better selectivity,
but to do so would require careful weighting of the scores of
the two methods.

DISCUSSION
We have shown that our hybrid machine-learning method is
able to build classification models both with high predictive
accuracy and which are suggestive about the sequence re-
quirements for TSSs. Examination of the learned models ap-
pears to confirm the classical view that the TATA-box motif is
important in eukaryotic transcription initiation. However, we

Table 1. Comparison of Various Promoter- and TSS-Detection Methods on the Chromosome 22–Derived Pseudo Chromosome

Method Predictions
True

positives
False

positives
Sensitivity

(%)
Selectivity

(%)

Eponine 215 152 57 53.5 73.5
PromoterInspector 278 157 100 55.3 64.0
CpG 306 187 116 65.8 62.1
TATA-2.6 540 37 500 13.0 7.4
TATA-6.5 39869 283 37581 99.6 5.7

Sensitivity is defined here as the proportion of annotated mRNA starts that are detected by a given method (within 2 kb). Selectivity is the
proportion of predictions that are confirmed by the presence of an annotated mRNA start.
PromoterInspector predictions for chromosome 22 (Scherf et al. 2001) were obtained from their web site. These applied to an older
assembly of the chromosome and so were mapped onto the latest assembly using SSAHA (Ning et al., 2001). 99.4% of predictions were
successfully mapped in this way. CpG islands were extracted from the chromosome 22 annotation repository. Note that this set of CpG island
predictions was available to annotators working on this chromosome, so there is some possibility of bias in favor of this method. TATA-box
motifs were detected using the log-odds weight matrix published by Bucher (Bucher 1990). The cutoff threshold of �6.5, recommended by
Fickett (Fickett and Hatzigeorgiou 1997), gave 84,886 predictions: many more than any other method. We also used the far more stringent
threshold of �2.6. This gave 1196 predictions, more in line with the other methods tested.
For Eponine and TATA box predictions, strand information was ignored (i.e., a prediction on the wrong strand will still be considered correct).
PromoterInspector predictions and CpG islands do not provide any information about direction of transcription.

Figure 4 Intersection of ‘correct’ predictions of promoters by
Eponine , PromoterInspector and CpG islands of chromosome
22 mRNAs.
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show that the TATA box alone has little or no predictive
power for detecting TSSs in genomic DNA. The model sug-
gests that it is the combination of a TATA box with CG-rich
‘flanking’ signals and an overall enrichment in CpG dinucleo-
tides which gives the best indication that a TSS may be
present. We hope that the annotation provided by Eponine
will be useful for further genome analysis, experimental de-
sign, and future promoter research—particularly research into
the prevalence of alternative TSSs. We anticipate that our
learning method can be used to investigate other features of
genomic DNA sequence and may provide new understanding
of the sequence requirements that underlie them.

METHODS

RVM-Hybrid Sampling
Classification models were built using our own implementa-
tion of the relevance vector machine (RVM) (Tipping 2001).
This is a Bayesian method of machine learning which can
train probabilistic classification models in generalized linear
modal (GLM) form. The RVM is a sparse training algorithm—
it takes a set of suggested basis functions and selects the sets
which are most helpful in classifying the provided training
data, using a ‘pruning’ prior which discards basis functions
which do not have enough support from the training data.
However, in order to analyze promoters it is necessary to ex-
plore an extremely large model space of possible weight ma-
trices and position distributions. To facilitate this, we ex-
panded the RVM implementation to allow sampling from this
large rule space. The working set is initialized with weight
matrices of lengths 4 to 8, selected at random, and with ran-
dom, gaussian position distributions. As rules in the initial
working set are discarded by the pruning algorithm, new ex-
amples are added. These may be produced by the same logic
used to initialize the working set, or represent small changes
to existing rules. In our implementation, the allowed sam-
pling moves are as follows: (1) adjust the center position of a
distribution; (2) adjust the width parameter of a position dis-
tribution; (3) adjust the weights in a DNA weight matrix; (4)
construct a new DNA probability distribution at random,
then add it as a column at one end (randomly chosen) of a
weight matrix; and (5) remove a column from one end of a
weight matrix.

This gives a hybrid machine-learning approach, combin-
ing the RVM with elements of a Monte Carlo sampling ap-
proach. Using this hybrid method, a model can be efficiently
built from a large space of potential candidate rules.

EPD Training Set
As an initial set of positive examples, we extracted all mam-
malian promoters from the EPD database (Perier et al. 2000).
We then discarded those with less than 500 bases of upstream
sequence available, and those located on human chromo-
some 22. This left 313 sequences, of which 50 were kept aside
for test purposes, the remainder forming the training set.

Mouse cDNA-Derived Training Set
In order to build a larger training set, we used the FANTOM
collection of full-length enriched cDNAs (Kawai et al. 2001).
Because upstream sequence was required, we searched the
first 100 bp of each cDNA sequence against the Mouse Ge-
nome Project trace repository (http://trace.ensembl.org/) us-
ing the SSAHArapid searching program (Ning et al., 2001).
After selecting only those hits with at least 42 bases (three
SSAHAwords) of exact homology and at least 150 bases of
sequence upstream of the mapped mRNA 5� end, we obtained
trace sequences corresponding to 9958 mRNAs.

Negative Examples
To build a classification model, two sets of training data are
required. To provide negative training examples, we selected
random fragments from human chromosome 20. For all train-
ing runs, we supplied an equal number of positive and nega-
tive examples.
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