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The robustness (sensitivity to violation of assumptions) of the maximum-likelihood and neighbor-joining methods 
was examined using simulation. Maximum likelihood and neighbor joining were implemented with Jukes-Cantor, 
Kimura, and gamma models of DNA substitution. Simulations were performed in which the assumptions of the 
methods were violated to varying degrees on three model four-taxon trees. The performance of the methods was 
evaluated with respect to ability to correctly estimate the unrooted four-taxon tree. Maximum likelihood outper- 
formed neighbor joining in 29 of the 36 cases in which the assumptions of both methods were satisfied. In 133 of 
180 of the simulations in which the assumptions of the maximum-likelihood and neighbor-joining methods were 
violated, maximum likelihood outperformed neighbor joining. These results are consistent with a general superiority 
of maximum likelihood over neighbor joining under comparable conditions. They extend and clarify an earlier 
study that found an advantage for neighbor joining over maximum likelihood for gamma-distributed mutation 
rates. 

Introduction 

The performance of phylogenetic methods is usu- 
ally evaluated with respect to consistency (the ability to 
estimate the correct phylogeny with sufficient data), ef- 
ficiency (the ability to quickly converge on the correct 
phylogeny), and robustness (the ability to estimate the 
correct phylogeny even when the assumptions of the 
phylogenetic method are violated). Of these criteria, ro- 
bustness may be the most important, because the ideal- 
ized assumptions underlying phylogenetic methods are 
most likely violated with real data. Hence, the ability to 
correctly estimate phylogeny despite model violation is 
very important. Tateno et al. ( 1994) have recently per- 
formed a simulation study of robustness and found the 
neighbor-joining method (Saitou and Nei 1987) more 
robust than the maximum-likelihood method (Felsen- 
stein 198 1). The present study is an extension of the 
Tateno et al. ( 1994) study comparing the robustness of 
maximum likelihood and neighbor joining under a large 
number of evolutionary models. In contrast to their 
conclusion, I find maximum likelihood to be more ro- 
bust than neighbor joining. The reason for this discrep- 
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ancy is that Tateno et al. ( 1994) based many of their 
conclusions on inappropriate comparisons of the 
methods. 

Evaluating Robustness: Some Potential Pitfalls 

Evaluating the robustness of phylogenetic methods 
is not an easy task. The main difficulty is that there are 
a large number of known (and unknown) ways in which 
the assumptions of a phylogenetic method can be vio- 
lated. There are also different degrees to which that as- 
sumption can be violated. For example, if a method as- 
sumes, in part, a Jukes-Cantor model of DNA 
substitution, the Jukes-Cantor assumption can be vio- 
lated by simulating sequences with a transition:trans- 
version bias of 0.5 1 or 100.0. Invariably, and quite rea- 
sonably, researchers focus their attention on the 
robustness of just a few of the assumptions of a phylo- 
genetic method. 

The typical approach taken in evaluating the ro- 
bustness of a particular method is to generate data in 
such a way that the assumptions of the method are vi- 
olated to varying degrees. For example, one could sim- 
ulate data with and without a transition:transversion bias 
and examine the performance of maximum likelihood 
assuming a Jukes-Cantor (no transition:transversion 
bias) model. The first set of simulations gives an idea of 
the best-case scenario (all assumptions of the method 
are met), whereas the second set of simulations gives 
an idea of the robustness of maximum likelihood when 
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the assumption of equal rates among transitions and 
transversions is violated. 

When comparing the robustness of competing 
phylogenetic methods, however, it is important to keep 
a correspondence between the assumptions of the meth- 
ods compared. For example, when comparing the per- 
formance of maximum likelihood to neighbor joining, 
one should compare maximum likelihood with a Jukes- 
Cantor model to neighbor joining with Jukes-Cantor 
distances, maximum likelihood with a Kimura model 
to neighbor joining with a Kimura model, and so on. If 
a correspondence is not kept between the models of the 
competing methods and one method (say neighbor 
joining) performs better, it becomes impossible to rule 
out the possibility that if the same assumptions had been 
violated in the same manner that the performance of 
the methods would not be reversed. Such a simulation 
represents an uncontrolled experiment. 

Tateno et al. ( 1994) found neighbor joining more 
robust than maximum likelihood. However, they based 
many of their conclusions on what I feel are inappro- 
priate comparisons between methods. In particular, they 
compared the performance of neighbor joining assuming 
gamma distances to maximum likelihood assuming a 
Jukes-Cantor or Kimura model of DNA substitution. 
Table 1 summarizes the results from the Tateno et al. 
( 1994) paper (excluding the results from their parsimony 
analysis). From the information in table 1, Tateno et 
al. ( 1994, p. 265 ) concluded “that the ML [maximum- 
likelihood] method is slightly more sensitive than the 
NJG [neighbor-joining-with-gamma-distance ] method 
to violation of the assumptions made in the estimation 
of topology.” In this simulation, the assumptions of both 
the maximum-likelihood and neighbor-joining method 
with gamma distances are violated, and inasmuch as 
this is true, they do address the robustness of the two 
methods individually. However, the comparison they 
make between the two methods is seriously overstated. 
The assumptions that are violated for the two methods 
are different in this simulation. In the case of maximum 
likelihood, an incorrect transition:transversion bias is 
assumed. In the case of neighbor joining with gamma 
distances, rate heterogeneity among sites is assumed 
when in fact no rate heterogeneity exists. It is impossible 
to determine that if the assumptions of maximum like- 
lihood and neighbor joining were violated in the same 
manner, that maximum likelihood would not perform 
better than neighbor joining. 

Examination of the simulation results from table 
1 shows that maximum likelihood assuming a Jukes- 
Cantor model is more robust to violations than is neigh- 
bor joining assuming Jukes-Cantor distances. Similarly, 
even though the Kimura model is violated in many of 

the maximum-likelihood simulations (because an im- 
proper transition:transversion ratio was provided), 
maximum likelihood still performed better than the 
neighbor-joining method assuming Kimura distances; 
maximum-likelihood performance varied between 94% 
and 100% when the assumptions were violated, whereas 
neighbor-joining performance varied between 90% and 
100% even though the assumptions were not violated. 
Far from casting “some doubts about the ML method” 
(Tateno et al. 1994, p. 265)) these simulations show 
that maximum likelihood is more robust than the 
neighbor-joining method when the appropriate com- 
parisons are made, at least when the model generating 
the simulated data assumed equal rates among sites. A 
similar conclusion is reached for those simulations that 
evolved sequences under a gamma model of rate het- 
erogeneity. For example, when comparing the perfor- 
mance of the two methods with the Jukes-Cantor as- 
sumptions violated, maximum likelihood performs 
better than neighbor joining in 24 of the 30 comparisons 
for all three model trees (i.e., when the rate heterogeneity 
parameter is 0.5, maximum likelihood with a Jukes- 
Cantor model correctly estimates the tree 98% of the 
time, whereas neighbor joining with a Jukes-Cantor dis- 
tance estimates the correct tree 90%, etc., throughout 
the table). Similar results are obtained when the com- 
parison is made for the methods when they both assume 
the Kimura model. I next describe the results of simu- 
lations in which neighbor joining and maximum like- 
lihood are compared under comparable gamma-model 
assumptions. 

Material and Methods 

The details of the simulation followed the protocol 
of Tateno et al. ( 1994)) except that here I use maximum 
likelihood with an explicit gamma model. I used the 
same three model trees (fig. 1) and simulated data ( 1,000 
sites) with different transition:transversion biases (R 
= 0.5, 9.0, and 15.0) as well as different degrees of rate 
heterogeneity among sites (I used a gamma distribution 
to describe rate variation among sites with shape param- 
eter, a = CO, 2.0, 1 .O, and 0.5 ). When a = CO, no rate 
heterogeneity among sites exists. A total of 36 simula- 
tions were performed (3 trees X 3 transition:transversion 
biases X 4 levels or rate heterogeneity). A total of 1,000 
data sets were simulated for each combination of con- 
ditions. Maximum likelihood was implemented assum- 
ing a discrete gamma model with five rate categories 
(Yang 1993, 1994). 

Results 

In table 2, I summarize the results of simulations 
in which I replicated the results of the Tateno et al. 



Table 1 
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A Summary of the Results from the Tateno et al. (1994) Study 

R NJD NJK a = 0.5 

NJG ML 

a= 1 a=2 R = 0.5 R=9 R= 15 

Model tree A: 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 
15.1: : 

....... 

....... 
a = co: 

0.5 ......... 
9 ........... 
15 .......... 

Model tree B: 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 ........... 
15 .......... 

a = co: 
0.5 ......... 
9 ........... 
15 .......... 

Model tree . 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 ........... 
15 .......... 

a = co: 
0.5 ......... 
9 ........... 
15 .......... 

90 90 100 98 95 98 95 91 
77 87 95 91 86 88 99 99 
72 84 95 88 84 84 97 97 

98 98 100 100 100 100 99 99 
87 96 99 99 97 97 100 100 
83 93 100 98 95 95 100 100 

100 100 100 100 100 100 100 99 
96 99 100 100 99 99 99 99 
93 99 100 99 99 98 100 100 

100 
99 
99 

100 
100 
100 

100 
100 
100 

100 
100 
100 

100 
100 
100 

100 
100 
100 

100 
100 
100 

100 
100 
100 

2 2 89 43 15 48 23 18 
2 29 75 43 22 20 70 71 
3 23 70 41 20 20 76 77 

17 17 100 94 67 80 43 44 
5 60 95 82 56 41 91 92 
3 48 94 78 52 31 90 94 

51 51 100 100 95 97 80 80 
9 77 97 94 81 53 94 94 
5 68 96 94 80 34 94 95 

98 98 100 100 100 100 96 94 
21 92 99 99 99 72 100 100 
16 90 99 99 98 50 98 99 

98 98 98 98 98 97 95 95 
93 93 95 94 93 96 98 98 
92 93 94 93 93 93 95 95 

98 98 98 98 98 99 99 99 
97 97 97 97 97 97 97 97 
96 96 97 97 97 98 97 97 

98 98 98 98 98 100 98 98 
97 97 98 98 98 99 99 99 
97 97 98 97 97 98 98 98 

98 98 99 99 99 98 98 96 
98 98 99 99 98 98 99 99 
98 98 99 98 98 96 98 98 

NOTE.--R, transition:transversion bias; a, shape parameter of gamma distribution; NJD, neighbor joining with Jukes-Cantor distances; NJK, neighbor joining 
with Kimura distances; NJG, neighbor joining with gamma distances; ML, maximum likelihood. 
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FIG. 1 .-The model trees assumed in the Tateno et al. ( 1994) study and in this study. Branch lengths are expected number of substitutions 
per site. 

( 1994) study with the addition of maximum likelihood 
with gamma-distributed rate heterogeneity among sites. 
The simulations of table 2 were for model trees A, B, 
and C of figure 1. For each model tree, 12 different mod- 
els of evolution were assumed; three different transition: 
transversion biases and four different levels of rate het- 
erogeneity among sites were simulated (for a total of 12 
simulations). Figure 2 summarizes the results of four of 
the simulations performed in this study in a matrix. The 
appropriate comparisons between the neighbor-joining 
and maximum-likelihood methods are along the diag- 
onal, which has been shaded. Inappropriate compari- 
sons, some of which were made by Tateno et al. ( 1994)) 
are off the diagonal. 

Several conclusions can be made about these sim- 
ulations. The first is that, for any one simulation, one 
can find cases where neighbor joining performs as well 
as or better than maximum likelihood if one is willing 
to accept off-diagonal comparisons. The converse is also 
true; one can also find off-diagonal comparisons in which 
maximum likelihood performs better than neighbor 
joining. In short, if inappropriate comparisons are al- 
lowed (i.e., cases in which the model of DNA substi- 
tution assumed by the methods are different ) , virtually 
any conclusion about the relative performance of phy- 
logenetic methods can be made. 

The second result of these simulations is that max- 
imum likelihood generally performs better than neighbor 
joining when the assumptions of the methods are the 
same (e.g., in the case where both methods assume a 
Jukes-Cantor model of evolution). In those cases in 
which the assumptions of maximum likelihood and 
neighbor joining were completely satisfied, maximum 
likelihood performed better in 29 of the 36 simulations 
(in four of the remaining seven cases, maximum like- 
lihood and neighbor joining tied in performance). Sim- 
ilarly, maximum likelihood appears to be more robust 
than neighbor joining. In 133 of the 180 cases in which 
the assumptions of the maximum-likelihood and neigh- 

bor-joining methods were violated in the same manner, 
maximum likelihood outperformed neighbor joining. In 
17 of the 180 cases, the performance of the two methods 
was the same, and in 30 of the 180 cases, neighbor joining 
performed better than maximum likelihood. 

The final conclusion is that both methods had cases 
in which they failed with high probability. For example, 
when tree B of figure 1 was the model tree and sequences 
were generated using a Jukes-Cantor model with a high 
degree of rate heterogeneity among sites (a = 0.5)) 
neighbor joining with a Kimura model of evolution 
(transition:transversion bias, R = 15 ) outperformed 
maximum likelihood with a Kimura model of evolution 
(also with a transition:transversion bias, R = 15) by 
77.4%. Similarly, maximum likelihood outperformed 
neighbor joining by 97.3% when the same model of DNA 
substitution is assumed by the methods but the sequences 
were generated by a Jukes-Cantor model without rate 
heterogeneity among sites (a = a~ ). Clearly, neither 
method is optimal for all the conditions examined in 
this simulation. 

Discussion 

Based on the simulations of both the Tateno et al. 
( 1994) study and on this study, maximum likelihood 
appears to be more efficient and more robust than the 
neighbor-joining method. This conclusion contradicts 
the conclusions of Tateno et al. ( 1994). Although max- 
imum likelihood appears more robust than neighbor 
joining, one should remember that this conclusion is 
based on very limited simulations. Only three model 
trees of four taxa were examined in this study and in 
the Tateno et al. ( 1994) study. Given that the branch 
lengths of the model tree are among the most important 
determinants of the accuracy of phylogenetic methods 
(Felsenstein 1978; Jin and Nei 1990; Nei 199 1; Huel- 
senbeck and Hillis 1993; Charleston et al. 1994; Tateno 
et al. 1994; Huelsenbeck 1995), it is important to sim- 
ulate many more model trees (as has been done by 



Table 2 
Probability of Obtaining the Correct Phylogeny (in percent) for the Simulations Performed in This Study 

NEIGHBOR JOINING MAXIMUM LIKELIHOOD 

R a R a 

0.5 9 15 0.5 1 2 0.5 9 15 0.5 1 2 

Model tree A: 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 ........... 
15 .......... 

a = 02: 
0.5 ......... 
9 ........... 
15 .......... 

Model tree B: 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 ........... 
15 .......... 

a = co: 
0.5 ......... 
9 ........... 
15 .......... 

Model tree C: 
a = 0.5: 

0.5 ......... 
9 ........... 
15 .......... 

a= 1: 
0.5 ......... 
9 ........... 
15 .......... 

a = 2: 
0.5 ......... 
9 ........... 
15 .......... 

a = co: 
0.5 ......... 
9 ........... 
15 .......... 

90.3 100.0 99.8 100.0 98.2 95.3 98.4 93.1 91.7 99.9 99.6 99.0 
78.0 88.1 90.5 96.8 91.8 86.7 90.6 98.3 98.7 99.6 99.2 99.5 
71.0 79.6 82.1 94.6 88.2 82.5 84.3 97.6 97.3 99.3 99.6 98.6 

97.6 99.7 97.9 100.0 100.0 99.3 100.0 98.2 98.3 100.0 100.0 99.9 
87.0 95.1 96.8 99.1 97.9 96.1 96.5 99.7 99.8 99.9 99.8 99.9 
84.4 92.8 94.0 99.2 98.2 95.7 94.5 99.7 99.7 99.8 99.7 99.5 

99.9 98.5 98.8 100.0 100.0 100.0 100.0 99.8 99.3 100.0 100.0 100.0 
94.2 99.0 99.9 99.9 99.9 99.7 99.2 99.9 99.9 100.0 100.0 99.9 
91.8 97.0 98.3 99.9 99.6 98.8 98.0 99.7 99.8 99.9 100.0 99.8 

100.0 99.9 99.6 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 100.0 
99.3 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 
98.7 99.9 100.0 100.0 100.0 100.0 99.3 100.0 100.0 99.6 100.0 100.0 

2.7 97.2 94.9 88.8 44.3 16.0 46.8 22.1 17.5 96.7 88.2 72.8 
3.7 26.9 44.2 71.4 38.7 18.4 23.4 77.0 77.3 97.1 93.5 85.9 
2.7 13.6 21.5 71.6 38.1 20.1 18.4 71.3 77.5 94.0 91.8 86.1 

15.8 92.7 28.7 99.6 93.5 64.9 79.5 45.8 46.0 99.4 99.0 96.3 
4.9 56.2 84.0 92.6 78.0 51.2 36.9 92.2 92.0 98.2 98.4 96.4 
3.5 25.4 48.7 90.7 77.5 52.2 22.7 87.8 91.5 97.4 96.5 95.4 

51.9 51.1 2.9 99.8 99.7 96.1 95.5 77.7 77.3 99.7 99.7 99.7 
9.5 78.5 97.0 96.5 94.6 81.7 46.5 97.0 97.2 98.9 98.6 99.0 
5.2 38.4 68.4 96.1 93.8 81.0 35.7 95.0 96.6 98.0 98.6 97.7 

97.9 56.5 0.2 100.0 100.0 100.0 99.9 97.7 97.5 99.8 100.0 100.0 
21.7 93.0 99.5 98.3 98.4 97.9 67.4 99.5 99.3 98.5 99.1 99.7 
11.5 51.3 89.8 98.4 98.4 97.7 51.3 98.8 98.8 98.1 98.7 98.2 

96.7 97.3 97.3 97.4 97.2 96.8 98.1 97.1 96.5 97.8 98.6 97.5 
98.7 95.7 95.7 96.3 95.8 95.7 94.9 95.2 96.1 96.7 97.1 95.8 
93.7 94.1 94.1 94.0 93.8 93.7 93.6 95.8 95.3 96.0 96.8 95.6 

98.2 98.6 98.8 98.8 98.6 98.4 99.2 97.7 97.3 98.8 98.4 98.5 
96.4 96.3 96.3 97.4 96.6 96.6 96.8 98.0 97.5 97.7 97.5 98.2 
97.0 97.1 97.1 97.9 97.4 97.4 97.1 97.5 96.5 98.0 97.5 96.7 

98.6 98.8 98.9 99.0 98.8 98.7 99.3 98.3 98.1 98.9 99.0 98.5 
97.6 97.8 97.8 97.8 97.7 97.6 97.6 98.4 98.4 98.3 99.0 98.3 
96.7 96.9 96.9 97.9 97.6 97.2 97.9 97.6 98.4 98.5 97.9 98.2 

98.6 99.1 99.2 99.1 99.0 98.7 99.3 99.0 98.8 99.1 99.1 98.8 
98.1 98.2 98.2 98.7 98.3 98.1 98.3 99.0 98.1 99.1 98.8 98.8 
98.5 98.6 98.6 98.7 98.5 98.4 97.8 98.8 98.9 99.3 98.7 98.9 

NOTE-R transition:transversion bias; a, shape parameter of gamma distribution. Results are based on 1,000 simulated data sets for each combination of 
substitution model. 
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Neighbor Joining 

B r 

Kimura Gamma 

‘12 9 15 “2 1 2 

Gamma 

Neighbor Joining 

FIG. 2.-Comparing the performance of maximum likelihood and neighbor joining for several of the conditions examined in this study. 
The conditions simulated for each matrix are (A) tree = A, R = 15, a = 2; (B) tree = B, R = 1/Z, a = co; (C) tree = B, R = L/z, a = '/*; and (D) 
tree = C, R = 9, a = ‘/2. The performance of maximum likelihood for different implemented models is shown along the first column, and the 
performance of neighbor joining is shown along the first row for each matrix. The numbers with + or - represent how much better maximum 
likelihood performed for each comparison. The diagonal (shown in gray) represents what are called the “appropriate comparisons” in this 
article (i.e., those cases in which the assumptions of the methods match in terms of the model of DNA substitution assumed). 

Huelsenbeck and Hillis [ 1993 ] ; Huelsenbeck [ 1995 ] ) . This work was supported by National Science Foun- 
Furthermore, the robustness of maximum likelihood and dation grants DEB-9 106746 and DEB-922 1052 awarded 
neighbor joining was examined for only a few model to David Hillis. 
violations (transition:transversion bias and rate het- 
erogeneity). Obviously, the assumptions of phylogenetic 
methods can be violated in many more ways (e.g., non- 
independence among sites). It would be interesting to 
see whether maximum likelihood is also more robust 
than neighbor joining for other model violations. 

The results from this study and the Tateno et al. 
( 1994) study also point out the need in systematics for 
a way to test the model of evolution assumed by the 
phylogenetic method (in fact, Tateno et al. [ 1994 ] make 
this point very clearly in their discussion). Because the 
performance of methods depends so strongly on the 
match between the evolutionary processes generating the 
characters and the model assumed by the method, some 
way of testing one model of DNA substitution against 
another model seems imperative. Both maximum like- 
lihood and neighbor joining allow many of their as- 
sumptions to be tested (Goldman 1993; Rzhetsky and 
Nei 1995 ), an important point in favor of both of these 
methods. 
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