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The method of Hidden Markov Models is used to allow for unequal and unknown evolutionary rates at different 
sites in molecular sequences. Rates of evolution at different sites are assumed to be drawn from a set of possible 
rates, with a finite number of possibilities. The overall likelihood of phylogeny is calculated as a sum of terms, 
each term being the probability of the data given a particular assignment of rates to sites, times the prior probability 
of that particular combination of rates. The probabilities of different rate combinations are specified by a stationary 
Markov chain that assigns rate categories to sites. While there will be a very large number of possible ways of 
assigning rates to sites, a simple recursive algorithm allows the contributions to the likelihood from all possible 
combinations of rates to be summed, in a time proportional to the number of different rates at a single site. Thus 
with three rates, the effort involved is no greater than three times that for a single rate. This “Hidden Markov 
Model” method allows for rates to differ between sites and for correlations between the rates of neighboring sites. 
By summing over all possibilities it does not require us to know the rates at individual sites. However, it does not 
allow for correlation of rates at nonadjacent sites, nor does it allow for a continuous distribution of rates over sites. 
It is shown how to use the Newton-Raphson method to estimate branch lengths of a phylogeny and to infer from 
a phylogeny what assignment of rates to sites has the largest posterior probability. An example is given using p- 
hemoglobin DNA sequences in eight mammal species; the regions of high and low evolutionary rates are inferred 
and also the average length of patches of similar rates. 

Introduction 

It has long been recognized that the assumption of 
equal rate of evolution implicit in many methods of an- 
alyzing phylogenies from molecular data is unrealistic. 
Maximum likelihood methods of inferring phylogenies 
from molecular sequences have always made this as- 
sumption (Neyman 1971; Felsenstein 198 1). It is also 
implicit in almost all distance matrix methods using mo- 
lecular sequences (e.g., Jukes and Cantor 1969; Kimura 
1980). By assuming a given prior distribution of rates 
among sites one can correct these distance matrix meth- 
ods for rate variation among sites (Olsen 1987; Jin and 
Nei 1990). However, such corrections do not restrict the 
effect of rate variation so that the same sites are inferred 
to have high rates of evolution across all members of 
the set of sequences. They also do not allow for any 
correlation in rates of evolution along the molecule. 

Maximum likelihood methods can allow for vari- 
ation in rates of evolution. For example, the PHYLIP 
package distributed by one of us (J.E) has, in its 
DNAML and DNAMLK programs, versions 3.1-3.4, a 
“Categories” option that allows us to decide which rate 
category each site falls into, with the relative rates of 
evolution in different categories specified by us. This 
assumes that we know the relative rates of evolution in 
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different sites, which is often not the case. Distance ma- 
trix methods can also be modified to allow for such site- 
specific rates, as is done in the program DNADIST in 
PHYLIP 3.5. 

A halfway realistic treatment of rate variation 
among sites would have the following properties: 

1. It must allow rates to differ among sites. 
2. It must not assume that we know the relative rates 

of change at the individual sites, but must instead 
infer these from the data. 

3. It must allow there to be some correlation between 
the rates of evolution at adjacent sites. 

We will describe here a method of carrying out 
maximum likelihood estimation of phylogenies which 
satisfies these criteria. It will assume that there is a dis- 
crete set of possible rates (for example, one could as- 
sume that there were four different possible rates of evo- 
lution that stood in the ratios 0: 1:2.3:8.9). It will also 
assume that we can assign prior probabilities to these 
different rates, so that we feel able to say that the prob- 
ability that a given site is in these four categories is (say) 
0.10:0.32:0.22:0.36. but we will not assume that we 
know which category of rate any given site is in. Fur- 
thermore we will allow correlation of rates among sites 
that are adjacent in the molecule. 

We note that Yang (1993) and Kelly and Rice 
(1995) have developed methods of analyzing rate vari- 
ation in a maximum likelihood analysis of phylogeny 
that satisfy conditions 1 and 2 above and allow for a 
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potentially infinite number of rate categories, so that we 
do not need to place any prior restriction on which rates 
are possible. This great generality is achieved at a cost: 
condition 3 is not met, and their calculations become 
difficult beyond a small number of species. Our ap- 
proach will be less general in the rates it allows but more 
general in allowing autocorrelation and in being usable 
in cases with many species. Yang (1994) has tested a 
similar discrete approximation, replacing a gamma dis- 
tribution of rates by a discrete distribution with four 
well-chosen classes, and found it to perform well. 

Sites 

Phylogeny 1 2 3 4 5 6 7 8 

CACGACGA 

CGTAACGA 

C G A G A C G G . . . 

CAAAACGG 

A A G T G C G C 

Hidden Markov chain: 

Our method uses the method of Hidden Markov 
Models (Baum and Petrie 1966), which has been widely 
used in signal processing in communications and was 
first applied to molecular sequences by Churchill (1989). 
Hidden Markov Models have also recently been applied 
to inferences of sequence alignment of proteins (Haus- 
sler et al. 1993; Baldi et al. 1994; Krogh et al. 1994). 
Krogh et al. also refer to some other recent applications 
of Hidden Markov Models to molecular biology. 

Rates of 
10.0 0 0 O-0 0 0 0 0 

f 
evolution 2.0 O-0 0 0 0 0 0 \ f 0 ... 

0.3 0 0 0 0 o-o+. 0 

FIG. 1.-A representation of the model used in this paper. The 
phylogeny for the species is shown to the left of the sequences, the 
potential and actual hidden states for each site are shown below them. 

The method we describe requires an amount of 
computation that is greater than that for simple maxi- 
mum likelihood inference of phylogenies by a factor 
roughly equal to the number of different rate categories. 
Thus, in the four-category example mentioned above, 
the amount of computation required to infer phylogenies 
is roughly four times as great as with a single rate. The 
method is implemented in versions 3.5 and later of the 
programs DNAML and DNAMLK in the PHYLIP pack- 
age, which have been in distribution since March of 
1993. 

molecule and assigns rates to sites. The rates are chosen 
from a finite pool of available rates, and the Markov 
process is assumed to be stationary and irreducible, so 
that we can talk of the equilibrium probabilities5 of the 
rates. The transition probabilities P, of this Markov pro- 
cess are assumed to be known. This Markov process is 
hidden from our view, as we cannot directly observe 
which sites evolve at which rates. 

The present methods are quite similar to the auto- 
discrete-gamma model of Yang (1995), which was de- 
veloped independently of them. He has used a bivariate 
Gamma distribution to model autocorrelation of rates 
among sites and, in order to effectively approximate this 
model, has derived from it an autocorrelated Hidden 
Markov Model of rate variation. His model differs in 
detail from the present model but is similar in logical 
structure and may give similar estimates of the phylog- 
eny. 

Once the sites have their rates assigned, each site 
will be assumed to evolve independently along the true 
phylogeny with that rate. Figure 1 depicts the model. 
Thus all correlation between sites will be assumed to be 
the consequence of the clustering (if any) of high and 
low rates at adjacent sites. A more complex model 
would be needed to deal with causes of correlation such 
as compensating substitutions in RNAs, both because 
the members of the pair of sites undergoing compen- 
sating substitutions may be widely separated along the 
molecule, and because the actual evolutionary events at 
the sites show a dependence that goes beyond their as- 
signment to the same rate category. 

In this paper we outline the theory and computa- 
tional methods for computing likelihood for a phylogeny 
with evolutionary rates that follow a Hidden Markov 
Model. We then explain the model of base substitution 
that is used in our implementation of this method and 
the method of searching for the tree of highest likeli- 
hood, using a Newton-Raphson method that is specific 
to that base substitution model. We also give a data ex- 
ample using mammalian hemoglobin sequences. 

The likelihood of a given phylogeny T is the sum, 
over all assignments of rate categories, of the probability 
of the data D given that combination of rates, multiplied 
by the prior probability of that combination of rates. If 
ci denotes the category that a given rate combination 
assigns to site i, so that the rate assigned to site i is Ye,, 
then if there are n sites we may write the likelihood of 
a given phylogeny as 

L = Prob(D 1 T) 

The Model 

= 2 c e-s c Prob(c,, c2, . . . , c,) 
Cl c2 C, 

X ProW 1 T, q, rc2, . . . , Q,>. (1) 

The variation in evolutionary rates in our model is The assumption that each site evolves independently 
laid down by a Markov process that operates along the once the rate categories ci are determined allows us to 
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express the last probability as a product of terms, so that 
if Di are the data at site i, 

L = c c se. c Prob(ci, c2, . . . , c,) 
Cl c2 C, 

X fi Prob(Di 1 T, rci). 
i=l 

(2) 

Simplifying the Calculation 

The Hidden Markov Model specifies that each 
combination of rate categories cl, c2, . . . , c,, is the out- 
come of a stationary Markov chain, and thus its prior 
probability is simply the product of the prior probability 
of cl times a product of transition probabilities of that 
Markov chain: 

ProWI, c2, . . . , c,) = L,pC,,c2 pC2,c3 . . . pC,_,,c,. (3) 

It might be thought that there would be severe problems 
in computing (2), because if there are k rate categories, 
the number of combinations of categories will be k”. 
Thus with 1,000 sites and 3 rate categories there are 
31,000 ‘y 1o477 terms to sum. In fact, the calculation can 
be done far more easily, using an algorithm that is sim- 
ilar in structure to the algorithm that calculates likeli- 
hood along a phylogeny. Let us denote by D@) the data 
set consisting of sites k through n only. Then we can 
use (3) to write the likelihood as 

L = c fC, x c ... c Prob(c,, . 
Cl c2 c3 C, 

x Prob(D 1 T, rc,, rc29 - 

and then use (2) to rewrite it as 

L = c fc, c c ... c Prob(c,, . 
Cl c2 c3 Cll 

1 

X fi Prob(Di 1 T, rci) . 
i=l 

I 

- CrllCl) 

- , C”) 
1 

(4) 

. cnlcd 

(5) 

The term in parentheses on the right-hand side of (5) is 
the likelihood of the tree for D(l), given that site 1 has 
rate category cl. Let us call this conditional likelihood 
LC). We will, more generally, define ~5::) as the likeli- 
hood of T for the data Dck) given that site k has rate 
category ck. Then 

L = c fc,L$ (6) 
Cl 

We can use equation (2) to write 

L$? = Prob(Di I T, T-J c 2 - c Prob(c2, . . , ~1 cd 
c2 c3 Ctl 

X fi Prob(Di I T, rci). 

i=2 
(7) 

Equation (3) now allows us to write the conditional 
probability of c2, c3, . . . , c, given cl as PcL,c2Pc2,c3 . . . 
P c,-I$,’ which allows us to rewrite Lit) as 

Li:) = PrcWD, I T, Q,> c Pc,,c2 
c2 

X c ... c Prob(c2, . . , c,Icl> 
c3 Cll 

X fi Prob(Di I7’, rci) . 
i=2 1 

Noting that the expression in parentheses on the right- 
hand side of (8) is just Li:), we have an expression for 
the L$:) in terms of the Li:): 

L!:) = Prob(D, I T, rcJ c P,,,c2L~~~- 
c2 

This suggests that a general recursion might exist, 
calculating each of the L$) in terms of the Lik+l), and in 
fact this is easily shown by continuing the same argu- 
ment, repeatedly using (2) and (3), that 

Lit) = Prob(D, I T, Q,> c Pck,ck+lL$~,?)s 

ck+l 

(10) 

The exception to this equation is when k = n, in which 
case by definition 

Lg) = Prob(D, I T, T-J. (11) 

The pattern of computation reverses the order of 
the recursion in equation (10). First, we must compute 
all the Prob(D,l 57, I,~), which are the likelihoods at each 
site for each possible rate category. The amount of com- 
putation for this will be proportional to the product of 
the number of sites and the number of rate categories. 
Then we use (11) to determine the values of the L$i. 

Then (10) can be used to compute L(;;_*>, L(;;_t,! and so 
on down to Li:). There are n - 1 steps in this compu- 
tation, each one in the most general case requiring an 
effort proportional to the square of the number of rate 
categories. Finally equation (6) is used to compute L. 

The storage requirements of this computation are mod- 
est: we can store all of the values of Prob(D,I T, rck), 
there being n times the number of rate categories of 
these. The computation can be done with less storage 
than this, although in most cases that economy will be 
unnecessary. 

The computation described here proceeds from the 
last site, n to the first one. It could just as easily be done 
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in the other direction, in which case the formulas would 
be analogous, P, being replaced by the reverse transition 
probability Qji, where we have the usual formula for 
computing the transition probabilities for the reversed 
Markov chain 

Qji = hPdlf. (12) 

If the Markov chain is reversible, then the Q, and the 
P, will be identical. 

As stated here, the computation may require effort 
proportional to the square of the number of rate cate- 
gories. However, for the particular choice of P, used in 
our implementation of this method, described below, the 
computation in equation (10) can be done in a time lin- 
ear in the number of rate categories. 

The Most Probable Combination of Rates 

Our ability to calculate the likelihood of the phy- 
logeny T allows us to search for the maximum likeli- 
hood phylogeny. Once that is estimated, we may want 
to see some indication of what the rates of evolution are 
at the different sites. The likelihood has been computed 
by summing contributions from all possible combina- 
tions of rates. One combination that may be of particular 
interest is the combination that makes the largest con- 
tribution to the likelihoods at the sites, as its contribution 
will be: 

R = max Prob(c,, c2, . . . , c,) 
CI,C2....,C, 

X ProW 1 T, Q,, rc2, . . . , Q. (13) 

There is an algorithm, closely related to the one 
used to sum likelihoods in the previous section, that 
finds the combination of rates that achieves this maxi- 
mum. It is a version of the algorithm of Viterbi (1967), 
which is well explained by Forney (1973). In an ana- 
logue to the quantity L$ of the previous section, let us 
define Rc,k,, as the likelihood contribution for sites k 

through n for the combination of rates that has site k 
having rate category ck, and sites k + 1 through n having 
that combination of categories that maximizes the con- 
tribution of sites k through n, so that we define 

R$) = max { Prob(c,+ i, . . , c, 1 ck) 
c/c+1,....c, 

X ProWck)I T rck, rck+,, . . . ~~~11. (14) 

For k = n the definition (14) specifies that 

Rg’ = Prob(D, 1 T, r-J, (15) 

which we have already calculated. For all other values 
of k we have a relation analogous to (lo), but taking 
maxima rather than summing the contributions: 

R$) = Prob(D, I T, c,)max [Pck,&?$~~)]. (16) 
ck+ 1 

Using this successively on sites n - 1, n - 2, and so 
on down to 1, we end up with the RL:) for all possible 
categories cl for site 1. The largest of the quantities 
j&f, is the size of the largest contribution of a single 
combination of rate categories to the likelihood. 

This leaves us without yet knowing the combina- 
tion of categories cl, c2, . . . , c, that achieved this max- 
imum. However, as we used equation (16) for each site 
we computed, for each possible rate category at that site, 
the rate category ck+i at the next site that maximized 
the contribution. Suppose that we call this CL:), so that 
Cit) is the value of c~+~ that is selected by the maximi- 
zation in equation (16). These values of ck+i can be 
stored in the array S as the computation proceeds from 
site n down to site 1. At the end we know which rate 
category cl corresponds to the maximum contribution. 
We can then use CC,:) to find the value of c2 that is in- 
volved in the maximum contribution, and then Cc:) spec- 
ifies the category for site 3, and so on. Backtracking in 
this way we quickly read off the combination of rate 
categories that makes the largest contribution and report 
these. 

The combination of rate categories that makes the 
largest contribution to the likelihood is not necessarily 
the only one that might be of interest. We might also 
imagine finding, for each site, the rate category at that 
site that is involved in making the largest total contri- 
bution to the likelihood (so that the sum of the contri- 
butions of all combinations of rate categories that have 
category ck at site k is as large as possible). If for each 
combination of rate categories we divide their contri- 
bution to the likelihood by the overall likelihood, these 
quantities will sum to 1, and we can consider them as 
a probability distribution. The quantity R we were com- 
puting in equations (14)-( 16) is the size of the mode of 
that distribution. The present quantity is in effect for 
each site k the mode of the marginal distribution over 
ck. In general, the categories that together make the larg- 
est contribution to the likelihood will usually also be the 
ones that individually make the largest site-by-site mar- 
ginal contribution, but there can be cases in which the 
two methods will select different combinations of rates. 
We will see below that it is not hard to compute the 
combination of rate categories that have the largest mar- 
ginal contributions, using an algorithm similar to those 
given above, but making two passes through the sites, 
one from n down to 1, and one back up again. 

The Implementation 

The discussion above applies to any stationary 
Markov process for assigning rates to sites, and any 



Markov process that has such rates as a parameter and 
that controls the evolution of sites at those rates on a 
given phylogeny. The Hidden Markov Model method 
for allowing for rate variation has been implemented in 
version 3.5 of the programs DNAML and DNAMLK in 
the PHYLIP Phylogeny Inference Package, which is dis- 
tributed by one of us (JE) and is available for free, 
including distribution over Internet by anonymous ftp 
from evolution.genetics.washington.edu. This version 
was first made available in March 1993. While we em- 
phasize that the general method applies to many other 
models, in this section we will give some details of the 
particular models used in these programs. 

We are allowed to specify the number of different 
rate categories that will be possible, the relative rates rj 
of the different categories, and the equilibrium proba- 
bilities h of each category. The ri may be any nonneg- 
ative real numbers, and the& any set of frequencies that 
add to 1. Note that we can allow for invariant sites by 
simply having one category that has ri = 0. There also 
is an autocorrelation parameter, which we will call A. 
Each site is assumed to have a probability A that the rate 
at that site is the same as at the previous site. With 
probability 1 - A the rate is instead drawn at random 
from the equilibrium distribution of rates, including the 
possibility that the same rate is drawn again by chance. 

It is possible to estimate the values of the relative 
rates rj and probabilities J;: and the autocorrelation pa- 
rameter A, using the EM algorithm of Baum et al. 
(1970). However implementation of this algorithm for 
the rates would significantly increase computation re- 
quired (it could more readily be used to estimate the 
autocorrelation parameter alone). We have found in 
practice that it is more efficient to examine a few sets 
of rates and correlation values and choose one that 
yields the highest likelihood. 

The transition probability, under this model, from 
state i to state j will be 

P, = X6, + (1 - A)& (17) 

where 6, is the Kronecker delta function, which is 1 
when i = j and 0 otherwise. This model will achieve 
the stated equilibrium distributionf of rate categories. If 
A is near 1 there will be a large autocorrelation of rate 
categories among neighboring sites; if it is 0 there will 
be no autocorrelation. The expected size of a patch of 
sites would be l/( 1 - A), except that there is nothing in 
this model that prevents the next rate category that is 
chosen from being the same as the present one. The 
overall probability that the rate does not change from 
one site to the next is the weighted average of the P,,: 

c JP,, = A + (1 - A) c j-f, 
i i 

(18) 
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and this value can be used to compute the mean apparent 
patch size. If there are two rate categories of equal fre- 
quency, this number is (A + 1)/2. If there are 10 cate- 
gories of equal frequency, it is (0.9X + O.l), which is 
much closer to the value of A that would hold if adjacent 
patches never accidentally had the same rate. In the 
DNAML and DNAMLK implementations, we are asked 
to specify an “average patch length,” but this is actually 
taken to be l/(1 - A), and A is set from its value. In 
view of equation (18) this will be slightly incorrect. 

The Model of Base Change Used 
in the Programs 

,The computational scheme presented above will 
work for any model of base change for which we can 
specify evolutionary rates that may differ from site to 
site. In most models this is easily done by allowing the 
branch lengths in the phylogeny to be proportional to 
the rates of evolution (and thus to differ from site to 
site). In effect, we treat a site that has twice the rate of 
evolution as if it evolves along a branch that is twice as 
long. Thus if we have a model of evolution that has a 
transition probability that depends on both branch length 
t and evolutionary rate r so that it is M&t, r), the rates 
can be accommodated by multiplying the branch length 
by r if and only if 

My(t, r) = M&t, 1). (19) 

This is true for most models of base change, as they 
accommodate site-specific rates of evolution by replac- 
ing the time t by the product r$ for site k. 

The particular model that we have used in DNAML 
and DNAMLK version 3.5 is one that allows for in- 
equalities of equilibrium base composition and for in- 
equalities of the rate of transitions and transversions. It 
is related to the model given by Felsenstein (1981) but 
generalizes it to allow for unequal rates of transitions 
and transversions. Hasegawa, Kishino, and Yano (1988; 
also Kishino and Hasegawa 1989) have previously de- 
scribed this model in print, in the course of describing 
their own model that also allows for inequalities of base 
composition and transition/transversion rates. Their 
model is similar to the present one but not identical to 
it; in practice the similarity was such that they were 
willing to use the present model in many of their like- 
lihood computations using programs from the PHYLIP 
package. A similar but not identical model has also been 
developed by Rempe (1988). The present model has 
been used by J.E in versions of the PHYLIP package 
distributed since 1984. 

The model can be described as having two kinds 
of events, I and II. The first can generate either no 
change or a transition, the second no change, a transi- 
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tion, or a transversion. Suppose that the rates of these 
two events are called (Y and l3. Event I is the replacement 
of the nucleotide at the site by one that is randomly 
sampled from the equilibrium pool of purines (if the 
original base is a pm-me) or pyrimidines (if the original 
base is a pyrimidine). For example, a base that is an A 
is replaced by another A with probability ~,J(T~ + 7~&, 
and with a G with probability nJ(nA + 7~~). A base 
that is a C is replaced by another C with probability ~rrJ 
(ITS + nTTT), and with a T with probability ~TTIJ(~F~ + 7~~). 
Thus an event of type I may either cause no change or 
a transition. 

An event of type II replaces the base with one 
drawn from the pool of all four possible nucleotides, 
with probabilities equal to their equilibrium base com- 
position. Thus an A is replaced by another A with prob- 
ability TA, by a G with probability TG, by a C with 
probability nc, and by a T with probability 7~~ An event 
of type II can cause no change, a transition, or a trans- 
version. 

The overall rate of substitution per site will be 

+ p[%(l - TA) + nG(l - TG) 

+ Ml - nc> + TT(l - TT)I. (20) 
If nR and ny are the equilibrium base frequencies of pu- 
rines and pyrimidines, respectively, so that 

and 

IT R = n/, + TG (21) 

TY = TC + TT; (22) 

then we can simplify (20) to become 

PJ = G~A~G h + 27Fc7F&‘) R 

+ p(1 - 7ri - Irr& - ,rr$ - 7r$). (23) 

The ratio of transitions to transversions will be 

+ W~A~G + 27FC~T)1/(p2~R~Y)- (24) 

Expressing the instantaneous rates of transition b, 
between the different nucleotides in terms of the rates 
(x and p of type I and type II events we get for any two 
bases i and j 

bij = -6ij((;u + P) + •ij’~ 7Fj c =kEjk 

+ P'TFJ.9 (25) 
k 

where 6, is the usual Kronecker delta function, and eij 
is a similar function that is 1 when i and j are either 
both purines or both pyrimidines, and 0 otherwise. Note 
that the term s:, nkejk simply computes either TR or Ty, 
depending on whether j is a purine or a pyrimidine. This 
parameterization of the model is essentially the same as 
that given by Hasegawa, Kishino, and Yano (1988). 

Solving (23) and (24) for (Y and l3, we get 

2nR,+ - (2n/&- + 2nc7FT) 

o= (2 ~A”G/~R + 2lTclTTllTy) 
& (26) 

and 

p=1cL 
27FR7Fy 1 + R’ 

(27) 

We can express the instantaneous rates (25) in terms of 
l.~ and R by substituting (26) and (27) into (25). The 
results are straightforward and not particularly edifying 
and we will not give them here. 

An advantage of the present model is that it is easy 
to compute transition probabilities for any time t. If 
there has been at least one event of type II during this 
time, the probability of the resulting base being j is sim- 
ply nj, regardless of how many other events of either 
type have also occurred. If there has been no event of 
type II but at least one event of type I, the probability 
of the resulting base being j is simply njak nkcjk, re- 
gardless of how many other events of type I have oc- 
curred. As the probability of at least one event of type 
II is 1 - exp(- Pt), and the probability of no event of 
type II but at least one of type I is 

exp(-fW[l - exp(-41, 
the transition probabilities can be given as 

Mij(t, 1) = e- (U+B)tsij + e-@(l - e--al) 

X Eij + (1 - t?-“)‘rrj, 
(28) 

and they can be re-expressed in terms of the more mean- 
ingful parameters p, and R by substituting from (22) and 
(23) for (Y and p. 

Evaluating the Likelihoods Along the Tree 

Given that we can evaluate the likelihood of any 
given tree T for any given parameter value A, we still 
have to solve the problem of maximizing the likelihood 
over all T and all A. In practice the methods used in 
DNAML version 3.5 and DNAMLK version 3.5 are not 
sophisticated. Many of the particulars have been de- 
scribed earlier (Felsenstein 198 1) although the program 
in current distribution differs in many ways from that 



described in 198 1. For a given phylogeny in DNAML 
each branch length is iterated separately (in DNAMLK 
each ancestral node time is iterated separately), using 
the Newton-Raphson method, repeatedly evaluating the 
likelihood. This does not require a re-evaluation of like- 
lihoods throughout the tree each time, because the 
“pruning” algorithm can be used. 

This algorithm, a relative of the “peeling” algo- 
rithm in statistical human genetics, has been described 
by Felsenstein (1973, 1981), but a brief review here will 
be useful. Suppose that we define Z{.“)(s) as the likelihood 
of the tree for all data for site m at or above node i on 
the tree, given that site m in node i is in state s, and 
given that site m has rate category c. We can easily 
determine this for the tips of the tree. If, for example, 
tip i shows an A in site m, it follows immediately by its 
definition that @(A) = 1, and the I value for all three 
other bases b is @Q(b) = 0. We can work down the tree 
computing I values at each site for each node of the tree, 
by making use of the recursion for a node i whose im- 
mediate descendants, j and k, have Z values that have 
been previously computed and have branch lengths vj 
and vk leading to them: 

Z:?)(S) = 
I 

L 4 

This process proceeds down the tree toward the root. In 
an unrooted tree the root may be taken to be anywhere. 
The values of Z!:)(s) at the root are then combined in a 
weighted average 

T 

Llr”) = c llr,Z~~)(x), (30) 
x=A 

which computes the likelihood at that site for the whole 
tree, for rate category c, unconditioned on knowing the 
base at that node. 

Branch Lengths by the Newton-Raphson Method 

The preceding process allows us to compute site- 
and rate-category-specific likelihoods for the nodes at 
both ends of any given branch, by simply assuming the 
root to be in that branch and “pruning” the likelihoods 
from the tips down until they arrive at the nodes at the 
two ends of the branch. We can then use these to find 
the length of that branch that optimizes the likelihood. 
In PHYLIP 3.5 we did this by a simple, and excessively 
slow, line search of the branch lengths, using (29), (30), 
(lo), and (11) to compute the overall likelihood for each 
branch length. It was accelerated somewhat by making 
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a quadratic prediction of the optimal branch length after 
every three steps of the line search. 

In PHYLIP 4.0 this process is replaced by the New- 
ton-Raphson method, which is considerably faster. We 
could have done simultaneous Newton-Raphson itera- 
tion of all branch lengths. This might have been better 
but was computationally tedious. We have instead opted 
to iterate the lengths of one branch at a time. Appendix 
A shows the calculations of the first and second deriv- 
atives needed for this iteration. The equations for com- 
puting them can be obtained by taking derivatives in 
equations (10) and (11). 

Appendix A presents the formulas generally. Ap- 
pendix B shows the calculations, for the particular mod- 
el of DNA change used in DNAML, of the quantities 
Prob(& 1 T, rck), d Prob(D, 1 T, r,,)ldv, and &Prob (Dk 1 T, 
rJdv2. 

These derivatives are used in the formulas (6), (lo), 
(1 l), (Al)-(A3), (A4)-(A6) to obtain the derivatives of 
the likelihoods in a recursive calculation along the se- 
quence. In DNAML from PHYLIP 4.0 these derivatives 
are used to estimate the branch length by use of the 
Newton-Raphson method. This is modified so that it 
always moves in an uphill direction; if it overshoots, 
points Y,, 1/, l/s . . . of the way are tried successively 
until one finally results in an increase in the likelihood. 

Traversing through the tree, branch lengths are suc- 
cessively optimized until an adequate number of tra- 
versals has occurred. At that point the best branch 
lengths and likelihood are available for the given tree 
topology. The search among tree topologies is conduct- 
ed, in the terms of Swofford and Olsen (1990), by step- 
wise addition followed by branch-swapping by nearest- 
neighbor interchanges after each species is added. A fi- 
nal round of branch-swapping by subtree pruning and 
regrafting is available as an option. So are multiple runs 
with different input orders of species, the tree reported 
being the best one found among all the runs with dif- 
ferent input orders. 

It is also possible to estimate branch lengths by the 
EM algorithm (Dempster, Laird, and Rubin 1977), but 
we will not go into details about that here. 

Regional and Site-Specific Rates 

The preceding sections have explained how we can 
construct a method that allows rate variation from site 
to site in an autocorrelated pattern, in which it is not 
known in advance which sites will have high or low 
rates. However, this leaves us without a way to analyze 
data where there are codon site-specific rate variations. 
If we know which nucleotide sites are the first, second, 
and third positions in the codons, we would like to be 
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able to specify that these vary in rate of evolution, while 
also allowing regional rate variation. 

The simplest approach to this, used in version 4.0 
of DNAML and DNAMLK, is to let the rate at each site 
be the product of two rates, one of which is the site- 
specific rate that we have specified, and the other of 
which is the rate assigned by the Hidden Markov Model. 
In these programs we are asked to specify a number of 
rate categories, their rates of evolution, and to assign 
each site to a category. Thus a (tiny) protein with a short 
intron might have site-specific categories 1, 2, and 3, 
and 4, with 4 being the category for intron sites. We 
might preassign categories 

123123123123123123123123123123123123444444 

444444444444444444123123123123123123123123 

and also allow regional rate variation to be inferred by 
the Hidden Markov Model methods we have outlined 
above. The computations are no harder-we just make 
sure when computing the quantities Prob(D, 1 T, rc,) to 
have the rate for site i with regional rate category ci be 
not r,,, but pirc,, where pi is the preassigned rate for site 
i. Thereafter the computations go through as we have 
outlined, without any additional computations. 

A product of rates is, however, not entirely realistic. 
If third positions of codons are allowed to have a high 
rate of evolution because they are nearly unconstrained 
by natural selection against mutants, they will not nec- 
essarily have a higher rate of evolution in parts of the 
molecule that are under less constraint. A more realistic 
assumption would be a saturation. function such as 

1 - e-Pirc, 
(31) 

or 

Pir,lC1 + PFc,)- (32) 

With these functions, a third position might have a 
much higher rate of evolution than a second position if 
we are in a highly constrained region of the protein, but 
it might have only a slightly greater rate of evolution in 
a little-constrained region. We hope to implement such 
a saturation function in future versions of PHYLIP, if 
we can do so without confusing users. 

Possible Future Extensions 

The growing use of Hidden Markov Models in pro- 
tein structure modelling suggests that it should be pos- 
sible to combine those structural Hidden Markov Mod- 
els with the ones we used here. The main difficulty in 
doing so is that the hidden states in protein structure 
modelling are correlated not only along the molecule but 
spatially as well. For example, in RNA secondary struc- 

tures, sites that are well separated in the linear sequence 
may be part of the same loop. To model the evolutionary 
rates of sites in the loop properly, we would need to 
allow the hidden states to be correlated spatially, not 
simply autocorrelated along the molecular sequence. 

The present framework also does not allow the 
changes themselves to be correlated. Compensating sub- 
stitutions are a major source of information about sec- 
ondary structure in RNAs and may be of comparable 
use in proteins. The present models allow two sites to 
have correlated rates, but once those rates are assigned 
there is then assumed to be independent change at the 
two sites. Tillier (1994; Tillier and Collins 1995) has 
modelled RNA base-pair substitution using six-state 
model (AU, GU, GC, UA, UG, CC) with seven param- 
eters. This constrains the substitution events to be cor- 
related. It would be of great interest to combine her 
approach with Hidden Markov Models of stem and loop 
states, particularly if a way can be found to represent 
the pairing of states in the Hidden Markov Model. Of 
course, the same problems and opportunities exist for 
proteins, although the difficulties are expected to be 
greater. 

In addition to states representing structure, we 
might have states representing expected purine/pyrimi- 
dine content. One state might represent being in an AT- 
rich region, the other being in a GC-rich region. The 
mathematics involved is essentially identical to that out- 
lined above, except that the transition probability matrix 
M, used in equations (29), (B l), and (A 1) would differ 
between AT-rich and GC-rich states by having a differ- 
ent equilibrium distribution of nucleotides. Multiple AT- 
rich and GC-rich states could be used to model different 
base composition states. How may different states will 
be needed to model base composition variation realis- 
tically is not known. 

Hidden Markov Models could be developed to de- 
tect change points in the tree topology along the length 
of a set of aligned sequences. Topology changes can 
result from recombination, gene conversion, or horizon- 
tal transfer events that may have occurred within the 
history of the sequences. The methods developed by 
Hein (1993) are based on parsimony rather than likeli- 
hood methods but they make use of algorithms similar 
to the Hidden Markov Model algorithms. The states of 
the Hidden Markov Model in this case would be tree 
topologies and thus the number of states may be un- 
manageably large for even moderate numbers of se- 
quences. The problems of detecting and modeling re- 
combination events will become increasingly important 
as more within-species sequence samples are collected. 
A likelihood-based approach to modeling recombination 
is described by von Haeseler and Churchill (1993). 
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FIG. 2.-The phylogeny estimated for the eight hemoglobin p 
DNA sequences. The shorter branches are not statistically significant. 

A Data Example 

To illustrate the technique, we have collected from 
Genbank release 82 the coding sequences (omitting in- 
trons and flanking sequences) of eight mammalian p- 

Tachygloss 
Didelphis 
Tarsius 
Flattus 
Capra 
Oryctolag. 
Homo 
LellWr 

Tachygloss 
Didelphis 
Tarsius 
Rattus 
Capra 
Oryctolag. 
Homo 
LealIlT 

Tachygloss 
Didelphis 
Tarsius 
Rattus 
Capra 
Oryctolag. 
Homo 
LelUUr 

Tachygloss 
Didelphis 
Tarsius 
Rattus 
Capra 
Oryctolag. 
How, 

LellllZ 

1 60 
ATGGTGCATT TGAGTGGTTC TGAGAAGACT GCTGTCACCA ACCTGTGGGG GCATGTGAAC 
........ C. . ..C.TC.G A G.......A C TGCA....T. C.A.C...T C TA.G...C .G 
......... . . ..C..C.G A A ...... G.C ..C.....T G C ......... CA.G..AG .. 
...... ..C C .A.C..A.G. ..... ..G ..... ..T.AT G C ......... AA.G ...... 
. ..------ C . ..C..C.G A G......G .. ..C .... ..G G.T.C ..... CA.0 ... ..A 
......... C ..TCCA..G A G......T .. ..G.....T G C ......... CA.G ... ..T 
...... ..c c . ..C.CC.G A G......T .. ..C..T..T G C ......... CA.G ...... 
. ..ACTTTG C .... ..C.G A G.....TG .. CA ..... ..T CT ........ CA.G...G .T 
1111111222 1112222122 2111111222 2221111222 2111111122 2111111222 
111 2 221 2 1111 2 22 2 111 111 2 2 

61 120 
GTCAATGAAC TCGGTGGCGA GGCCCTTGGC AGGCTGCTGG TCGTCTACCC CTGGACCCAG 
..TG.CC.G A CT.....T ............. ..A....C. .T ............. ..AC C 
..GG.A..T G .T.....T ...... ..G ....................... A ......... 
CCTG .. ..T G .T ............ ..G ............. .T ........ T ......... 
..GG ..... G .T....CT ...... ..G ............. .T ............ ..T ... 
..GG.A . ..G .T.....T ...... ..G ..... ..--- ... .T ........ A ......... 
..GG ... ..G .T.....T ...... ..G ............. .G ........ T ......... 
..AG.GA ..G .T .......... ..T.G ....................... A ......... 

2222222222 2111111111 1111111111 1111111111 1211111111 2111111111 
2 2 1111 11 1111 1 111 Ill 11111 1111111 111111 1 

121 
AGGTTCTTCG 
. . . ..T..T. 
. . . . . . . . T. 
. . ..A...T. 

AATCCTTCGG 

GGAG...T.. 
.C . . . ..T.. 
.TAG...T.. 
.GCA...T.. 
.G.....T.. 
.G.....T.. 
.G.....T.. 
2222111111 
22211111 

TGACCTGTCC 
. ..T...... 
G . . . . . . . . . 

G......... 

G . ..T..... 
G . . . . . . . . . 
G..T...... 
G . . . . . . . . . 
1111111111 
1 11111 

AGCGCCGATG 
TCTC.T.GC. 
.CTC.T.CC. 
TCT...TC.. 
TCT..T.... 
TCT..AC... 
.CTC.T.... 
TCTC.TK.. 
2222222211 

2 221 

CTGTGATGGG 
. . ..C...TC 
. . ..T... A. 
..A.C..... 
. . ..T...AA 
. . ..T...A. 
. . ..I....* 

. . ..T..... 
1111111122 
11 11122 

160 
AAACGCCAAG 
. ..TT.T... 
C..T..T... 
T...C.T... 
C..T..T... 
C..TC.T... 
C . ..C.T... 
G . ..C.T... 
2112211111 
1 2211111 

161 240 
GTCAAGGCCC ATGGTGCCAA GGTGCTGACC TCCTTCGGCG ATGCCCTGAA GAACCTCGAC 
..TC.A.... . . . . . ..T.. . . ..T..... . . . . . . ..T. .A..AG.C.. .C.TT.G... 
_......... . . ..CAAA.. . . . . . . ..A. G....TA.T. .C.G.A..GC TC.T..G... 
..G....... . . ..CAAG.. . . ..A.A.A. G.....AAT. . ..G...... AC..T.G... 
..G....... . . ..CAAG.. . . . . ..AGA. . . . ..TA.TA .C.G.A.... .C.T..T... 
..G..... T. . . ..CAAG.. . . . . . ..G.T G.....A.T. .G.GT..... TC....G... 
..G..... T. . . ..CAAG.. A.....CGGT G....TA.T. . ..G....GC TC....G... 
..G....... . . ..CAAG.. . . . . . . ..GT G....TA.T. .A.GT...C. TC....G... 
1111111111 1111122211 1111222222 2111122211 1222221122 2222211111 

Ill 1 111 11 1111 222 Ill 1 2 22 111 

hemoglobins. Their species names and accession num- 
bers are: Tachyglossus aculeatus (L23800), Didelphis 

virginiana (JO3643), Capra hircus (M15387), Rattus 
norvegicus (M17084), Oryctolagus cuniculus (K03256), 
Tarsius syrichta (JO4429), Lemur macaco (M15734), 
and Homo sapiens (U013 17). These have been aligned 
using ClustalV (Higgins and Sharp 1989), which is eas- 
ily done; only two gaps have to be introduced. A series 
of runs has been done with site-specific categories rep- 
resenting the three codon positions, and with two re- 
gional rates. The best combination of parameters that 
has been found so far has rates 1.0:0.6:2.7 for the codon- 
position relative rates, and rates 1.0:8.0 for the two re- 
gional rates. The frequencies of the two regions are in- 
ferred to be 0.75:0.25, and the parameter h is inferred 
to be 0.5454, which means that one expects to choose 
a new regional rate every 2.2 bases on average. 

The phylogeny is shown in figure 2. It is outgroup- 
rooted on the branch leading to the echidna Tachyglos- 
sus, and shows the opossum Didelphis branching off 

241 300 
Tachygloss AACCTCAAGG GAACCTTCGC CAAGCTGAGC GAACTGCACT GCGACAAGCT GCACGTGGAC 
Didelphis ... ..G .... .T..T.AT .... ..T .. ..T ..G..C .... .T ......... ..T ...... 
Tarsiua .......... .C.....T .. T ...... ..T ..G ....... .T.....AT. ......... . 
Rattus .......... .C.....T .. TC.T ... ..T ... ..C .... .T ......... ..T ... ..T 
Capra G ......... .C.....T .. TC ..... ..T ..G ....... .T..T .............. . 
Oryctolag. ........ A. .C.....T .. T ...... ..T .......... .T ................. . 
Homo .......... .C.....T .. ..CA ... ..T ..G ....... .T ................. . 
LelllW .......... .C.....T .. TC.A ... ..T ..G ....... .T......T. ......... . 

1111111111 1111111111 2222111111 1111111111 1111111111 1111111111 
111111111 1111 11 11111 1 1 1111 111111 1 111 111111 

301 360 
Tachygloss CCCGAGAATT TCAATCGCCT GGGTAACGTG CTGGTCGTGG TCCTGGCCCG TCAC'ITCAGC 
Didelphis ..T ..... C. .. ..GATG ... ..G..TA .C A.T..GA.C T G......TG A G.....TG .. 
Tarsius ..T ........ ..GG.T.T. . ..C..T ...... ..GTGT. .G ..... ..A C.....TG .. 
Rattus ..T.....C. . ..GG.T .... ..C..TA .. A.T..GA.T. .GT...G ..A C...C.GG .. 
Capra ..T ..... C. .. ..G.T .... ..c ......... ..G..T. .G.....T .. C...CATG .. 
Oryctolag. ..T ..... C. . ..GG.T .... ..c ......... ..T..T. .G...T.T .A . ..T..TG .. 
Homo ..T.....C. . ..GG.T .... ..C .......... ..TGT. .G ..... ..A .... ..TG .. 
Lemur ..TC .... C. . ..C..T .... ..C ......... ..G..T. .G.....TG A A.....TG .. 

1111111111 1112222111 1111112211 1111122222 2111122222 2111111111 
111 111 1 11 1111 1 22 11 222 21 Ii 

361 420 
Tachygloss AAGGAATKA CCCCCGAGGC CCAGGCTGCC TGGCAGAAGC TGGTGTCTGG TGTITCCCAC 
Didelphis ... ..T..T. .T..T..AT G T....T . ..T .......... .C...G .... A...G .. ..T 
Tarsius ..A ......... ..GC . ..T T ......... .AT .... ..G ... ..G ..... ..GG.TA CT 
Rattus ............. ..TGT .. A ......... .TC .... ..G ... ..G .... A..GG..AG T 
Capra .GT ......... ..GCT .CT G.......A G .TT .... ..G ... ..G ...... ..G..A .T 
Oryctolag. ..A ....... .T..TC . ..T G ......... .AT .... ..G ... ..G ..... ..GG..A .T 
Homo ..A ......... ..ACCA .T G ......... .AT.....A G ... ..G ..... ..GG.TA .T 
Lemur ..T.C ..... G...G.C ..T G ......... .Tl'......G ... ..G ..... ..GG..A .T 

1221111111 1111222222 2111111111 1221111111 1111111111 1111111111 
1 11111 222222 111 1 11111 11111 111 1 1 

421 444 
Tachygloss GCCCTGGCCC ACAAGTACCA CTGA 
Didelphis ...................... A. 
Tarsius . ..T .... T. .............. 
Rattus ........ T. .......... ..A. 
Capra ........... ..GA..T .. ..A. 

Oryctolag. ........ T. .. ..A ......... 
Homo ............... ..T .. ..A. 

Lemur ..T.....T. .............. 
1111111111 1111111111 1121 
111 111 1 111 1 11 1 21 

FIG. 3.The P-hemoglobin coding sequences used in the data example. The dots are sites at which the sequence is the same as in Tuchyglossus. 
The two rows of digits below each section of sequences are the regional rate categories inferred for each site. The first shows the single combination 
of regional rate assigmnents that contributes most to the likelihood. The second shows an assignment for each site provided that 95% or more of the 
likelihood is contributed by that rate being assigned to that site (otherwise no assignment is shown). Category 1 has the lower rate. 
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next, and the placental mammals as a monophyletic 
group. The positions of the rat Rattus, lemur, and rabbit 
Oryctohgus are of dubious correctness, but the branches 
defining this structure are small. When a likelihood ratio 
test is made of those branches by holding them to length 
zero while optimizing the lengths of all other branches, 
they each prove to be statistically insignificant, in nei- 
ther case resulting in a reduction of more than 0.5 units 
of log-likelihood. By the same method the group of pla- 
cental mammals and the separation of the goat Cupru 
from the other placental mammals both prove to be sig- 
nificant, leading to a drop of more than 8 units of log- 
likelihood when these branches are forced to have length 
zero. We should note that this procedure, of accepting a 
branch when we can reject a length of zero, is not con- 
servative, as we could reject a length of zero even 
though there were trees of a different topology that 
achieved a likelihood close to the best tree (Ziheng 
Yang, personal communication). 

Of greater interest will be the inferences about 
which regions have high and low rates of change. Figure 
3 shows the sequences, using the dot-differencing con- 
vention according to which a dot means “the same as 
the first sequence.” Below each block of 50 bases is 
shown the two inferences of rates. The upper line of 1s 
and 2s shows the combination of regional rates which 
makes the largest contribution to the likelihood. The line 
below it shows a 1 or a 2 when the fraction of all like- 
lihood that is accounted for by rate combinations that 
have a 1 or 2 in that position is more than 95%. Oth- 
erwise it shows a space. 

Certain features are unsurprising, such as conser- 
vation of the codon for the heme-binding histidines 
(sites 190-192 and 277-279). The eight a-helical 
regions of the protein (A: sites 13-60, B: 61-105, C: 
106-126, D: 151-171, E: 172-231, F: 259-282, G: 298- 
354, and H: 370-435) show within them patches of high 
and low rates. What is more striking is that in the non- 
helical regions (all the remaining ones except sites l-3 
whose amino acid product does not appear in the final 
protein), there are markedly fewer high rates than low. 
In the rate combination that is most probable a posterior-i 
the helical regions have a high rate in 101 out of 244 
sites, but the nonhelical regions only in 14 out of 82 
sites. Though not easily statistically testable, this fits in 
with the notion that the helical regions are under less 
constraint than the nonhelical ones. 
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APPENDIX A 

Derivative of Likelihoods for the 
Newton-Raphson Method 

For the Newton-Raphson iteration of a branch 
length v one needs the first and second derivatives of 
the likelihood. The first can be computed from (10) and 
(11) by taking the derivatives with respect to branch 
length of the likelihoods on their left-hand sides: 

q= d Prob(Q 1 T, QJ 
dv dv c 

p 
ck,ck+, Lg:) 

ck+l 

+ Prob(D, 1 T, r,,) c f’ck,ck+, dL!j” (Al) 

ck+ 1 

and 

dLp) = d Prob(D, 1 T, r, ) 

dv dv ’ 
642) 

Using (A2) and (Al) we can recursively compute 
the quantities dL$) from k = n down to k = 1. The 
derivative of the overall likelihood with respect to the 
branch length is simply, from (6) 

dL 

dv = c, c.f 
dL;;) 

” dv ’ 643) 

Similarly, we can compute the second derivative of 
the likelihood with respect to the branch length by dif- 
ferentiating again, getting 

#L(k) k d2Prob(&I T, rck) 
d,,; = dv2 c 

p 
cl&k+ 1 L::::’ 

ck+ 1 

+ 2d Prob(Q 1 T, r,,> 
dv c 

p 
Ck,ck+ I 

ck+ 1 

+ Prowl 1 r ck) c Pck,ck+I 
&L(k+ 1) 

d;’ ’ 
ck+l 

(A41 

and 

&L(“) 

d,,; = 
d2Prob(D, I T, rc ) 

dv2 ’ 

and at the end 

d2L dzL<‘, 
s = c, Cf 

1 

c1 dv; ’ 

@5) 

(A@ 

Thus the quantities L($, dL(fi/dv, and &L$/dv2 can 



be computed recursively by proceeding from k = n 
down to k = 1, and at the end the values for k = 1 can 
be combined using (6), (A3), and (A6) to get the like- 
lihood and its first and second derivatives with respect 
to this branch length. 

APPENDIX B 
Derivatives of Sitewise Likelihoods in DNAML 

In the DNAML program the quantities Prob(D, 1 T, 
T-J, d Prob(Dk 1 T, r,,)/dv, and &Prob(D, 1 T, r,,)/dv* are 
obtained by taking the root of the tree to be at the node 
(j) at one end of the branch, the node at the other end 
being node k. If the length of the branch is v,, the overall 
likelihood at site i given that the rate category for that 
site is ci is 

Prob(Di I T, r,,> 

and the first and second derivative of (Bl) can be com- 
puted by substituting (28) into it and them noting that 
it can be written as 

Prob(Di 1 T, Y,~) 

= K e-(a+P)rc,” 1 + K2e-arc,v(1 - e-arc,v) 

+ K3(1 - e-&v), (B2) 

which is easily rearranged into 

PrOb(Di I T, TC~) = (K, - K2)e-‘“+“r~,v 

where 

+ (K2 - K,)e-PrcIv + K3 (B3) 

K, = c ~,Z~~~(x)Z~,.(x), (B4) 
X 

K2 = c ~,zj$x) 2 
X Y 

and 

~xy@i69, @W 

036) 

so that the derivatives are simply 

d Prob(Di I T, rci) 

dv 

= -r,,(a + P)(K, - K2)e-(a+P)rclv 

and 

- rCip(K2 - K3)e-Prc,V 037) 
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d*Prob(D, I T, rc ) 

dv* 

= ~-~~(a + p)*(K1 - K2)e-(Q+P)rctV 

+ rzip2(K2 - K,)e-Prcrv. 
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