
Vol. 21 no. 22 2005, pages 4125–4132

doi:10.1093/bioinformatics/bti658BIOINFORMATICS ORIGINAL PAPER

Sequence analysis

Optimal word sizes for dissimilarity measures and estimation of

the degree of dissimilarity between DNA sequences
Tiee-Jian Wu1,�, Ying-Hsueh Huang2,3 and Lung-An Li2
1Department of Statistics, National Cheng-Kung University, Tainan, Taiwan 70101, 2Institute of
Statistical Science, Academia Sinica, Taipei, Taiwan 11529 and 3Institute of Bioinformatics,
National Yang-Ming University, Taipei, Taiwan 11221

Received on May 25, 2005; revised on August 24, 2005; accepted on August 31, 2005

Advance Access publication September 6, 2005

ABSTRACT

Motivation: Several measures of DNA sequence dissimilarity have

beendeveloped.Thepurposeof this paper is 3-fold.Firstly,wecompare

the performance of several word-based or alignment-based methods.

Secondly, we give a general guideline for choosing thewindow size and

determining theoptimalword sizes for severalword-basedmeasuresat

different window sizes. Thirdly, we use a large-scale simulationmethod

to simulate data from the distribution of SK–LD (symmetric Kullback–

Leibler discrepancy). These simulated data can be used to estimate the

degree of dissimilarity b between any pair of DNA sequences.

Results: Our study shows (1) for whole sequence similiarity/

dissimilarity identification the window size taken should be as large

as possible, but probably not.3000, as restricted by CPU time in prac-

tice, (2) for each measure the optimal word size increases with window

size, (3) when the optimal word size is used, SK–LD performance is

superior in both simulation and real data analysis, (4) the estimate b̂b of

b based on SK–LD can be used to filter out quickly a large number of

dissimilar sequences and speed alignment-based database search

for similar sequences and (5) b̂b is also applicable in local similarity

comparisonsituations.Forexample, it canhelp in selectingoligoprobes

with high specificity and, therefore, has potential in probe design for

microarrays.

Availability:ThealgorithmSK–LD,estimate b̂b andsimulation software

are implemented inMATLABcode, and are available at http://www.stat.

ncku.edu.tw/tjwu

Contact: tjwu@stat.ncku.edu.tw

Supplementary information: Tables A1–A3, and Remarks 1–11 at

http://www.stat.ncku.edu.tw/tjwu

1 INTRODUCTION

In the past two decades, the number of DNA sequence records

has grown exponentially over time. The characterization of new

sequence data presents the biologist with many methods of sequence

comparison. Several measures of DNA sequence similarity/

dissimilarity have been developed in the past. The purpose of this

paper is 3-fold. First, we compare the performance of several word-

based or alignment-based methods. Second, we give a general

guideline for choosing the (sliding) window size and determine

the optimal word sizes for several word-based measures at differ-

ent window sizes. Third, we approximate the distribution of the

SK–LD (symmetric Kullback–Leibler discrepancy) In, where n
denotes the word size, and use such approximation to estimate

the degree of dissimilarity, denoted by b herein, between any

pair of DNA sequences.

Throughout we focus on the U-I (uniform-independent) model

of base composition, where the probability of encountering any one

of the four bases (or letters), A, C, G and T, is taken to be 0.25

independent of the other bases. This model is appropriate because

all sequences we generate in this paper can be treated as sequences

drawn from the unlimited nucleotide virtual pool, see Sege and

Saxberg (1982) for details of this viewpoint. Furthermore, the inde-

pendence of bases is an approximation to the actual dependence in

DNA sequences. Arratia et al. (1990) evaluated this approxima-

tion and found it to be quite good. Section 2 briefly reviews several

word-based dissimilarity measures and shows that the time com-

plexity of computing SK–LD is significantly lower than that of an

alignment-based method. Section 3 contains the main results. All

results are obtained through extensive simulations that involve gen-

erating a large number of pairs of m–s (mother–son) sequences,

where a mother sequence is randomly generated according to the

U-I model of base composition, and the son sequence is a mutated

version of the mother sequence. The type of mutation considered is

the point mutation including three equally likely operations,

namely, inserting, deleting and substituting a base at a randomly

selected position of the mother sequence, while the selection of

a base for insertion and substitution is done uniformly over the

possible bases. The point mutation is the most common type of

copying error and are actual chemical changes to the structure of

the constituent DNA. See, e.g. Alberts et al. (1994) for details. In

Section 3.1, we use the Spearman’s rank statistic to determine the

optimal word size for the word-based methods ED (Euclidean dis-

tance) d2
n, SED (standardized Euclidean distance) S2

n, In and SC–RD

[symmetric Cressie–Read family of discrepancies (Cressie and

Read, 1984)] Iln , respectively, at window size varying from 10 to

6100. We then compare their performance with Hamming distance

(see, e.g. Pinheiro et al., 2000) and the benchmark method BLAST

[Basic Local Alignment Search Tool (Altschul et al., 1990, 1997)]

that requires sequence alignment. The results are shown in Figure 2.

Figures 2a and b show, when the optimal word size is used, SK–LD

performs the best among all the aforementioned methods. Figure 2c

shows, for whole sequence similarity/dissimilaity comparison, the

window size taken should be as large as possible (but probably

not >3000, as restricted by CPU time in practice). A practical�To whom correspondence should be addressed.
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implementation is to let the window size be the minimum of

3000 and the lengths of the two DNA sequences under comparison.

Section 3.2 constructs Table A1 at http://www.stat.ncku.edu.tw/

tjwu that approximates the percentile point of the distribution of

SK–LD (at optimal word size) based on a large set of simulated data.

This table can be used to obtain estimate b̂b of b between any pair

of DNA sequences. Real data analysis in Section 4 shows b̂b per-

formance that is superior with a wide range of real sequences having

U-I, skewed or first order to fifth order Markov chain base com-

positions, and is very robust to the misspecification of the model

of base composition in practically realistic settings. In particular,

b̂b performs more favorably than BLAST and the alignment-free

PSM (probabilistic similar measure) of Pham and Zuegg (2004)

and improves the combined KL-D in Wu et al. (2001). Moreover,

a complete genome analysis in Section 4.4 shows b̂b is also applic-

able in local similarity comparison situations. Specifically, it shows

b̂b can help in selecting oligo probes with high specificity and has

potential in probe design for gene expression microarrays. Finally,

some remarks (Remarks 1–11) are given at http://www.stat.ncku.

edu.tw/tjwu

2 DISSIMILARITY MEASURES

Many rigorous DNA sequence comparison algorithms like FASTA

(Pearson and Lipman, 1988; Pearson, 1990) and BLAST involve

sequence alignment at some stage and become computationally

prohibitive when comparison against a large database is required.

Comparison algorithms using word frequencies as a measure of

dissimilarity do not require sequence alignment. They measure

the frequencies of words within a DNA sequence and then compare

these frequencies between DNA sequences using statistical dis-

tances. In this way they can determine the relative dissimilarity

in a large database of DNA sequences very rapidly. They have

already been used as pre-selection filters to filter out highly dis-

similar sequences and speed alignment-based database search for

similar sequences. These filtration methods are currently being

increasingly explored to optimize database search and gradually

being incorporated in widely used bioinformatics applications. It

is noteworthy that these word-based algorithms can also find some

new functional similarities or dissimilarities that are invisible to

other algorithms like FASTA (Blaisdell, 1989a; Hide et al., 1994)

and are useful in detection of coding regions (Fichant and Gautier,

1987) and evolutionary tree reconstruction (Blaisdell, 1989a,b).

Several word-based algorithms (Blaisdell, 1986, 1989a; Cressie

and Read, 1984; Hide et al., 1994; Pevzner, 1992a,b; Torney

et al., 1990; Wu et al., 1997, 2001, among others) have been

developed. Vinga and Almeida (2003) review these algorithms

and predict that the next few years will see some of them become

widely used for functional annotation and phylogenetic study.

An n-word is a subsequence of n adjacent letters. Let a be any

n-word within a strand of DNA of length m + n � 1. Define Xi ¼ 1

if a begins at position i and Xi ¼ 0 otherwise. Also, define

Na ¼
Pm

i¼1 Xi as the frequency of a. Given two strands of DNA

sequences Q and L (for the query and a library sequence in a

database), let VL,n¼ (NL,a1
/m, . . . ,NL,a4n/m) be the vector of relative

frequencies of n-words over a segment WL, which is a window of

length m + n � 1 from the sequence L, where a1, . . . ,a4n are all of

the possible n-words. Let VQ,n ¼ (NQ,a1
/m, . . . ,NQ,a4n/m) and WQ be

defined similarly for Q. Thus, Z0
n ¼ ðzn1‚ . . . ‚zn4nÞ ¼ VL‚n � VQ‚n is

an expression of the dissimilarity of WL and WQ with respect to word

composition. In what follows, WL and WQ are shifted over L and Q,

respectively. A distance (say, window distance) is taken for each

pair W¼ (WL,WQ). The distance between L and Q is taken to be the

minimum of all window distances. The (squared) ED

d2
n ¼ min

W
d2
n‚W with d2

n‚W ¼ Z0
n · Z0

n ¼
X4n

i¼1

z2
ni ð1Þ

is the simplest distance (cf., e.g. Pevzner, 1992a,b; Torney et al.,
1990). It can be improved upon when some information on the

variance/covariance is known. A distance better than the ED is

the SED (cf., Wu et al., 1997)

S2
n ¼ min

W
S2
n‚W with S2

n‚W ¼
X4n

i¼1

z2
ni=Varðm�1Nai

Þ ð2Þ

that is, the variances of frequencies of n-words are accounted

for. See Gentleman and Mullin (1989) or Wu et al. (1997) for

the evaluation of variances. Next, if we view both VL,n and VQ,n

as discrete distributions over the 4n possible n-words, then the

Cressie–Read family of discrepancy between VL,n and VQ,n is def-

ined by IlL‚Qð ¼ IlðVL‚n‚VQ‚nÞÞ ¼ flðlþ 1Þg�1
P4n

i¼1 fðNL‚ai
=

NQ‚ai
Þl � 1gNL‚ai

=m, 1 < l < 1, where the values at l ¼ 0,

�1 are defined by continuity. To avoid the possibility that

IlL‚Q ¼ 1, we need to modify IlL‚Q. By the approach in Frith

et al. (2004), the discrepancy becomes

~II
l

L‚Q ¼ fðmþ 0:5Þlðlþ 1Þg�1

·
X4n

i¼1

ffðNL‚ai
þ «nÞ=ðNQ‚ai

þ «nÞgl � 1gðNL‚ai
þ «nÞ‚

ð3Þ

where «n¼ 0.5 · 4�n. Since ~IIlL;Q is not symmetric in its arguments, it

is better to use the SC–RD defined by

Iln ¼ min
W

Iln‚W with Iln‚W ¼ ð~IIlL‚Q þ ~IIlQ‚LÞ=2‚ ð4Þ

which is symmetric. Notice that the information theory-based

measure SK–LD In is a member of the SC–RD family. In fact,

In ¼ I0
n with

~II0
L‚Q¼ðmþ0:5Þ�1

X4n

i¼1

flogfðNL‚ai
þ«nÞ=ðNQ‚ai

þ«nÞggðNL‚ai
þ«nÞ:

ð5Þ

Furthermore, Iln and d2
n can be computed fairly fast because they do

not depend on the model of base composition and do not require

computation of variances. Wu et al. (2001) showed that both ~II0
L‚Q

and S2
n have better sensitivity and selectivity than d2

n. Now, let lQ, lL
and l denote the lengths of the query, library and window, respect-

ively. It can be shown (Remark 1) that for computing both In and d2
n

the time complexity is O(lQlLl
�1), which becomes the linear

O(max{lQ,lL}) if we take l ¼ min{lQ, lL}. This time complexity

is significantly lower than that of an alignment-based method,

whose time complexity of finding the smallest penalty alignment

(Waterman, 1989) is the quadratic O(lQlL). We report the actual

CPU time and memory space required on a PC in computing SK–

LD over a test dataset in Section 4.2.
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3 METHODOLOGY

In Section 1 we have described in detail the way of generating pairs

of m–s sequences. In order to use Equations (1)–(5) to compute

d2
n, S2

n, In and Iln between a mother and her son, we take the window

size l ¼ min{lm, ls} where lm and ls denote the length of the mother

and her son, respectively. The difference between lm and ls is small

(evidently, El¼ Els ¼ lm). Nevertheless, the window is shifted from

left to right over the longer sequence between the mother and her

son, and we take 90% overlap on the windows throughout our

simulation.

3.1 Comparison of measures and their

optimal word sizes

For several particular examples of real genomic databases Hide

et al. (1994) give a heuristic solution to the problem of optimizing

the word size for d2
n. In this section, we shall give a simple and

general solution to this problem for each of d2
n, S2

n, In and Iln .

We generate 5000 independent mother sequences of the same

length, while the lengths considered are 10, 20, 50, 100 + 50j,

j ¼ 0, 1, 2, . . . , 120 bases, respectively. For each mother, we gen-

erate a son sequence at each of the following 100 mutation rates:

1%, 2%, . . . , 100%, where a mutation rate g% means the son is

obtained by randomly selecting g% of the bases in the mother

sequence for mutation and other bases are unchanged. For an altern-

ative way of generating m-s pairs, see Remark 2.

It is quite worth analyzing the sensitivity of word-based dis-

similarity measures to mutation, window size and word size. We

have done analysis on the sample mean and variance of scores for

ED [see also Torney et al. (1990)], SED, SK–LD and some other

members of SC–RD family. Since the lessons learned are the same,

we shall just present the results for SK–LD here. Figure 1a shows

the sample mean of the 5000 SK-LD scores, resulting from the

above 5000 independent m–s pairs, at every mutation rate g% ¼
1%, 2%, . . . , 100% for window sizes 250 and 1600, and word size

n ¼ 2, 4, . . . and 10 (results for other cases of window size and

n are similar), where for each window size and n the mean score is

normalized—divided by the mean score at 100% mutation. It shows

that the window size has a smaller influence than n on the SK–LD

mean score. For each n as g increases, the mean score increases. The

mean score increases rapidly when g is small and slowly when g

is large, and this phenomenon becomes more distinct as n gets

larger. In terms of the slope of the curves, the larger the n the larger

the slope at smaller g, and the smaller the n the larger the slope at

larger g. Therefore, from the viewpoint of discerning the mean

scores, longer word sizes are better for lower mutation rates and

shorter word sizes are better for higher mutation rates. On the other

hand, Figure 1b shows the logarithm of the sample SD of the 5000

SK–LD scores at every word size n ¼ 1,2, . . . , 20 for window size

600 and g varying from 5 to 100%, where for each n the SD of

scores is normalized—divided by the SD of scores at 100% muta-

tion. It shows that for larger n the SD tends to be smaller at larger g,

and for smaller n the SD tends to be smaller at smaller g (results

for other cases of window size and g are similar). Therefore, from

the viewpoint of minimizing the SD of scores, longer word sizes

are better for higher mutation rates and shorter word sizes are

better for lower mutation rates. These two conflicting viewpoints

demonstrate that the choice of word size implies a trade-off between

discerning the mean and minimizing the variance, i.e. between

reducing systematic and random errors. This implies that moderate

word sizes are preferable because they balance the systematic and

random errors and lead to smaller overall error over the whole

spectrum of mutation rates g% ¼ 1%, 2%, . . . , 100%. In what fol-

lows we shall describe a method based on rank statistics that exactly

chooses moderate word sizes as optimal solutions.

Let Xig denote the dissimilarity score between the i-th mother

and her son at mutation rate g% and Rig the rank of Xig among

{Xig, 1 � g � 100} arranged in ascending order of magnitude,

where the smallest (least dissimilarity) score is taken as rank 1.

In theory, Xig should increase as g increases (i.e. an upward

trend). Therefore, the average value �AA of 5000 Ai scores, with

Ai ¼
P100

g¼1 ðRig � gÞ2
being the Spearman’s rank statistic for

testing an upward trend, is used to compare the performance of

dissimilarity measures, where the measure with the smallest �AA
favors the upward trend the most and is considered to be most

advantageous. The ranks for BLAST are computed by putting the

Fig. 1. (a) Relation between the sample mean of 5000 SK–LD scores and

mutation rate g% ¼ 1%, 2%, . . . , 100%. For each window size and word size

n the mean scores are normalized—divided by the mean score at 100%

mutation. (b) gives the relations between 1 � n � 20 and the logarithm of

sample SD of 5000 SK–LD scores at window size 600 and g ¼ 5%,

10%, . . . , 100%, where for each n the SD of scores is normalized—

divided by the mean and SD of scores at 100% mutation. Similar patterns

present for other settings of n, g or window size in (a) and (b).
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100 similarity scores in descending order of magnitude, where the

largest (most similarity) score is taken as rank 1. The scores that are

<20 (the version BLASTN 2.1.3 is used in our study, see http://

www.ncbi.nlm.nih.gov/BLAST, which only provides this bound for

very non-similar pairs of sequences) are treated as ties. If several

scores are tied, then they are assigned the same rank which is the

average of all the tied ranks (called mid-ranks in the area of rank

statistics). For an alternative way of comparing the performance of

measures, see Remark 3.

Figure 2a shows that at every window size considered (only the

results at some selected window sizes are shown for clarity), if the

optimal word size, obtained by searching over 1 � n � 20, is used,

then the performance of SK–LD is the best among the family of

SC–RD. Indeed, the curves in Figure 2a are symmetric with respect

to l ¼ �1/2 and are nearly horizontal over the interval [�1,0] with

the value at l ¼ 0 a little smaller than those at �1 < l < 0. For the

rest, we concentrate on the comparison of SK–LD with other type of

measures. The comparison of d2
n, S2

n, In with the Hamming distance

and BLAST at window size 600 is given in Figure 2b, where

the optimal word size, associated with the smallest �AA, is marked.

It shows that when the optimal word size is used, the performance of

SK–LD is the best, followed by SED, then ED, then BLAST, and

Hamming distance is the least favorable. The same performance

rankings also hold at all the other window sizes considered. We also

find that the optimal word size for each measure increases with

window size, as shown in Figure 2c (only the case of SK–LD at

some selected window sizes is shown to save space). For example,

at window sizes that are multiples of 50 and are (1) in the groups

100–250, 300–700, 750–2500, 2550–4950 and 5000–6100, the

optimal word sizes for SK–LD are 5, 6, 7, 8 and 9, respectively;

(2) in the groups 100–250, 300–1150, 1200–5100 and 5150–6100,

the optimal word sizes for ED are 5, 6, 7 and 8, respectively; and

(3) in the groups 100–350, 400–850, 900–1550 and 1600–3000,

the optimal word sizes for SED are 5, 6, 7 and 8, respectively

(See Remark 4 for a discussion). They also show that for each

measure, the smallest �AA, resulting from using the optimal word

size, decreases with window size. This implies that, for whole

sequence similarity/dissimilarity comparison, the window size

taken should be as large as possible (but probably not >3000, as

restricted by CPU time in practice). A practical implementation is

Fig. 2. Over 5000 comparisons: (a) the least log( �AA), resulting from using optimal word size, for the word-based measure SC–RD at l 2 [�3,3] and different

window sizes, where �AA denotes the average score of the Spearman’s rank statistic for testing an upward trend; (b) log( �AA) among different similarity/dissimilarity

measures at window size 600; and (c) log ( �AA) among different window sizes for the word-based measure In. In (b) and (c) the optimal word size associated with that

window size is marked. Similar results are obtained for other cases of window sizes in (a)–(c).
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to let the window size be the minimum of 3000 and the lengths of

the two DNA sequences under comparison.

For the rest, n�l denotes the optimal word size associated with

window size l for SK–LD. The scatter plot (not shown to save space)

of the pairs ðl‚ n�l Þ, l 2 B ¼ {10, 20, 50, 100 + 50j: j ¼ 0, 1,

2, . . . , 120} shows n�l increases with l. Moreover, the correla-

tion coefficient of these pairs is 0.871 and that of the pairs

ðlogl‚n�l Þ is 0.957. This provides strong statistical evidence of

the monotonic relationship between n�l and l. Table 1 give the

(interpolated) optimal word size for SK–LD at every window

size between 10 and 6100, where the boundaries (i.e. l ¼ 11, 12,

24, 25, etc.) are determined by actual simulation (see Remark 5 for

a discussion). It is worth noting that the optimal n we recommend

for the ED d2
n is consistent with the word size used in examples of

Torney et al. (1990) and Hide et al. (1994). See Remark 6 for

details.

3.2 Estimation of the degree of dissimilarity

This section describes how to estimate the degree of dissimilarity b

between any pair of DNA sequences using the SK–LD In. Note that

0 � b� 1 with b¼ 0 standing for the least dissimilar case and b¼ 1

for the most dissimilar case. At each window size l ¼ 11, 12, 24,

25,70, 71, 268, 269, 715, 716 (see boundaries between groups in

Table 1) and 10, 20, 50 and 100 + 50j, j¼ 0, 1, 2, . . . , 48 we generate

5000 In scores, 1 � n � 20, resulting from 5000 independent m–s

pairs, with the length of every mother being l, at each of the 100

mutation rates g%, g ¼ 1, 2, . . . , 100. If we identify the degree of

dissimilarity bwith the mutation rate, then at each window size l and

word size n: (1) the 5000 In scores at each mutation rate g% (¼b)

can be viewed as a random sample from the population Un,g of all

In scores resulting from the unlimited virtual pool of all m–s pairs

of DNA sequences at that mutation rate b and (2) the 500 000 In
scores, resulting from pooling together the scores for all mutation

rates, can be viewed as an approximately random sample from the

population Un ¼ [100
g¼1 Un‚g . Therefore, a b-th quantile of Un can be

estimated by the counterpart of the empirical distribution function

associated with the 500 000 In scores. Picking n ¼ n�l leads to

Table A1. Thus, based on the statistic In�
l
, we can use Tables A1

to estimate b. This way of estimating b may be called the pooling

method (see Remark 7 for a discussion).

Figure 3 shows the relation between b̂b and all window sizes (for

clarity only the case when window size �25 is shown) included in

Table A1 at some selected SK–LD scores, where the jumps of the

curves are due to change of word size and occur at vertical lines at

70.5, 268.5 and 715.5 (as boundaries between word sizes 4 and 5, 5

and 6, and 6 and 7, respectively, see Table 1). Figure 3 shows that

for every fixed SK–LD score, b̂b is monotonically decreasing with

window size. Therefore, the method of linear interpolation can be

applied to obtain the approximate estimate b̂bl of b at any window

size l satisfying l1 � l � l2, where both l1 and l2 are window sizes

that are included in Tables A1 and are closest to l. Although the true

relationship between the estimate and window size may not be

linear, the linear interpolation should provide a good approximation,

especially when l2 � l1 is small. Let b̂bj denote the estimate of b

by matching the observed SK–LD score In�
l

against Table A1 with

window size lj and optimal word size n�lj (note that we have designed

Table A1 so that n�l1 ¼ n�l2 ¼ n�l and l2�l1 � 50 always). Then

b̂bl is between b̂b1 and b̂b2. Thus, b̂bl ¼ ab̂b1 þ ð1 � aÞb̂b2, where

a ¼ (l2�l)/(l2�l1). A numerical example is given in Section 4.2.

4 EXPERIMENTAL RESULTS

Throughout the data analysis, for any pair of DNA sequences under

comparison, the window size is taken to be the minimum of their

lengths for Experiments #1–#3 and the probe length for Experiment

#4, and the SK–LD is computed at the optimal word size (Table 1),

which leads to b̂b via Table A1. Since the word size may vary with

the pair of sequences under comparison, the present setup is more

efficient than the one in Wu et al. (1997, 2001) in which the word

size is not optimally chosen and does not vary with window size. For

base compositions of all the DNA sequences used in our experi-

ments (which vary from U-I, skewed to Markov chain of order up to

5), see Remarks 8–11.

Table 1. The optimal word size n�l of SK–LD for DNA sequence comparison using window size l

l 10–11 12–24 25–70 71–268 269–715 716–2539 2540–4999 5000–6100

n�l 2 3 4 5 6 7 8 9

Fig. 3. Relation between b^ and all window sizes (only the case when window

size � 25 is shown for clarity) included in Table A1 for In�
l
¼ 1‚ . . . ‚7. The

jumps of the curves are due to changes of word size n ¼ n�l and occur

at the vertical lines at 70.5, 268.5 and 715.5 (as the boundaries between word

sizes 4 and 5, 5 and 6, and 6 and 7, respectively, see Table 1). Note that

approximately I4 � 4.864 for 25 � l � 70, I5 � 5.737 for 71 � l � 268,

I6 � 6.693 for 269 � l � 715 and I7 � 7.712 for 716 � l � 2500. Results for

other cases of In�
l

are similar.
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4.1 Experiment #1

Six DNA sequences are taken from the threonine operons

of Escherichia coli K-12 (gi:1786181) and Shigella flexneri
(gi:30039813) of Genbank. The three sequences taken from each

threonine operons are thrA (aspartokinase I-homoserine dehydro-

genase I, 2463 bp), thrB (homoserine kinase, 933 bp) and thrC
(threonine synthase, 1287 bp), using the ORF’s 337–2799 (ec-thrA),

2801–3733 (ec-thrB) and 3734–5020 (ec-thrC) in the case of

E.coli K-12, and using 336–2798 (sf-thrA), 2800–3732 (sf-thrB)

and 3733–5019 (sf-thrC) in the case of S.flexneri. In addition,

a sequence (rand-thrA) is randomly generated according to the

base probabilities and length of ec-thrA for comparison.

The estimated degree of dissimilarity b̂b using SK–LD and

similarity scores using BLAST, at the default (search) parameter

setting, between the 7 sequences are shown in Table 2. BLAST

scores at many other parameter settings have also been obtained but

not shown in Table 2 to save space. The results obtained by b̂b agree

with those by the chaos game representation (Almeida et al., 2001),

by PSM of Pham and Zuegg (2004) and by BLAST at a few para-

meter settings (e.g., the setting: -G 5 -E 2 -q -2 -r 3 -W 8), in which

the thrA sequences are closer to thrC than to thrB, and thrB closer

to thrA than to thrC. However, for BLAST, the result obtained at

most parameter settings is the same as that at the default parameter

setting which shows a slightly different relationship between the

three sequences. Specifically, it put the thrB sequences closer to

thrA than to thrC, and thrC closer to thrB than to thrA. The differ-

ence is also illustrated by the dendrogram in Figure 4. Moreover, the

dendrogram shows that all the real DNA sequences are more closely

clustered using b̂b than using BLAST at the default setting. This

suggests that, at distinguishing a randomized sequence from a group

of related real DNA sequences as a whole, b̂b is no worse than

BLAST at all parameter settings and better than BLAST at most

parameter settings.

4.2 Experiment #2

Both b̂b (or equivalently, SK–LD) and BLAST are used to perform a

search for dissimilarities/similarities of the query sequence HSLI-

PAS (1612 bp) human lipoprotein lipase against a test dataset of 63

library sequences chosen from many different divisions of Genbank

and vary from mammals, invertebrates, viruses, plants, bacteria, etc.

[see Table A2 at http://www.stat.ncku.edu.tw/tjwu. It expands

both Table 2 of Hide et al. (1994) and Table 1 of Wu et al.

1997)]. The 63 sequences of the test dataset vary in length

from 322 to 2 462 499 bases. Every member of the test dataset is

classified as being related or not related in biological function to

the query sequence. There are 35 sequences classified as being

related (they are numbered from 1 to 35 herein), and 28 sequences

classified as being not related (they are numbered from 36 to

63 herein).

The b̂b and BLAST scores between HSLIPAS and 63 library

sequences are sorted from the highest to lowest similarity, respect-

ively, and the sensitivity and selectivity are used to quantify their

performances. Sensitivity is defined to be the number of HSLIPAS-

related sequences found among the first 35 library sequences.

Selectivity is measured in terms of consecutive correct classif-

ications, which means, starting from the first sequence, the total

number of sequences are counted until the first non-HSLIPAS-

related library sequence occurs. Thus, a score of 35 for sensitivity

and selectivity is a perfect score for this collection of sequences.

We find the sensitivity and selectivity for b̂b are 34 and 30,

respectively, and those for BLAST are 29 and 22, respectively,

at the default parameter setting and are no better than 33 and 28,

respectively, at other parameter settings (the optimal result is

obtained, e.g. at: -G 5 -E 2 -q -1 -r 1 -W 7). Hence, b̂b performs

better than BLAST. Also, b̂b improves the combined K-LD (Wu

et al., 2001), whose sensitivity and selectivity are 31 and 24,

respectively. Finally, the sensitivity and selectivity of PSM of

Table 2. Score matrix among thrA-thrC using dissimilarity measure SK–LD (upper triangle) and similarity measure BLAST (lower triangle) at the default

search parameter setting

ec-thrA ec-thrB ec-thrC sf-thrA sf-thrB sf-thrC rand-thrA

ec-thrA 0.4294 0.3801 0.0249 0.4461 0.3733 0.5470

ec-thrB 26.26 0.4507 0.4124 0.0245 0.4435 0.8025

ec-thrC <20 22.30 0.3982 0.4662 0.0238 0.6387

sf-thrA 4629.30 26.26 <20 0.4235 0.3888 0.5636

sf-thrB 26.26 1731.10 22.30 26.26 0.4589 0.8716

sf-thrC <20 22.30 2464.60 <20 22.30 0.6378

rand-thrA <20 24.28 22.30 <20 22.30 22.30

Note: The diagonal entries are all 0’s for SK–LD, and 4883, 1850, 2551.8, 4883, 1850, 2551.8 and 4883 for BLAST.
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Fig. 4. Hierarchical dendrogram (using complete linkage) of thrA, thrB, thrC
and rand sequences on the basis of the matrices of similarity/dissimilarity

scores in Table 2, using (a) b^, (b) BLAST at the default search parameter

setting.
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Pham and Zuegg (2004) are 32 and 26, respectively. Thus, b̂b

performs more favorably than PSM.

As a numerical example to explain how to use Tables A1 to

estimate b, we compare the library SSLPLRNA (2963 bp) and

the query HSLIPAS. We take l ¼ 1612 and n�l ¼ 7 (Table 1) to

obtain In�
l
¼ 4:2294. Since l1 < l < l2 with l1 ¼ 1600 and l2 ¼ 1650

and a ¼ (1650 � 1612)/(1650 � 1600) ¼ 0.76, it follows by

linear interpolation (see Section 3.2) and Table A1 that b̂b ¼
ð0:76Þð0:1382Þ þ ð0:24Þð0:1381Þ ¼ 0:13818.

It is worth mentioning that, using a PC with Pentium 4 processor

running at 3.4 GHz CPU and 1 GB RAM, it takes only �4.4 CPU

seconds to finish the computation of SK–LD between the query and

all the 59 library sequences: #1–#31 and #36–#63 (varying from 322

to 22 257 bp and average ¼ 3845 bp in length, see Table A2), and

189 CPU seconds between the query and all the 4 library sequences:

#32–#35 (varying from 1 173 390 to 2 462 499 bp and average ¼
1 838 935 bp in length). Here the total memory space required, in

addition to that for running the MATLAB program, varies from 4 to

22 MB over all library sequences. Therefore, our algorithm is fairly

efficient.

4.3 Experiment #3

A protein is translated from a gene composed of several exons in

the DNA sequence. Most likely, some of the exons are shuffled

during evolution. Human and mouse genomes are not far away in

the evolution tree and share many common segments. However,

segments in a chromosome of mouse might have their similar seg-

ments in more than one chromosome of human. This is an example

of DNA subsequences shuffling during evolution.

Fifteen severe acute respiratory syndrome ORF sequences, vary-

ing in length from 231 to 8628 bases, are chosen from Genbank.

The names of their loci are AY707461, AY536760, AY536759,

AY536758, AY702026, AY648300, AY569693, AY365036,

AY525636, AY444813, AY322205S4, AY451866, AY707854,

AY609081, AY322205S3 (labelled herein as g1, . . . , g15). We

choose g1 (1605 bp) as the query sequence and cut it into three

segments of equal lengths, by permuting them, we obtain five

new sequences g11, . . . , g15. Let T(a,b) denote the similarity/

dissimilarity score between sequences a and b using the measure T.

We compare the ratio T(g1,gi)/T(g1j,gi) for T ¼ SK–LD or BLAST.

We find that for the five groups ( j ¼ 1, . . . , 5), while each group

contains 14 ratios (i¼ 2, . . . , 15), the group mean varies from 0.944

to 0.97 and SD from 0.057 to 0.088 for SK–LD, whereas the group

mean varies from 1.244 to 1.978 and SD from 0.261 to 1.045 for

BLAST at the default parameter setting (similar results are obtained

at other parameter settings). Therefore, SK–LD is much less sens-

itive than BLAST to segment shuffling. Such a property of SK–LD

is desirable in reconstructing the evolution tree because shuffled

DNA sequences (if no other biological factor is present to affect the

changes) should not be far away from one another in the tree.

4.4 Experiment #4

In Experiments #1�#3, we focus on whole sequence similiarity/

dissimilarity identification. However, in many applications it is

the local similarity that matters the most. As a demonstration of

the applicability of our method in local similarity comparison situ-

ations, we choose the T7 phage genome (39 937 bp), which includes

60 genes with lengths varying from 90 to 3957 bp, as the test dataset

to show how b̂b can help in selecting oligo probes for use in gene

expression microarray design. For simplicity, we focus on the

selection of a single 70mer oligo probe for each gene.

Pick any gene, say G0, and any window W0 of size l¼ 70 bp from

G0. The SK–LD between the window W0 and the remaining set F
of 59 genes, with optimal word size n�l ¼ 4 (Table 1), is defined by

I4(W0,F ) ¼ minG2FI4(W0,G) where I4(W0,G) is the SK–LD

between W0 and G (recalling Section 2). The window that maxim-

izes I4(W0,F ) over all W0 is taken as a probe for G0 and its cor-

responding b̂b value can be obtained from Table A1. By rejecting 13

redundant genes (with b̂b ¼ 0) and a gene that is excessively similar

to non-target genes (with b̂b � 0:25; threshold value other than 0.25

may be used), we obtain a probe for each of the remaining 46 genes.

Their loci names, probes and b̂b can be found in Table A3 at http://

www.stat.ncku.edu.tw/tjwu.

The above approach does not use BLAST at all. It uses b̂b along

with a threshold value set by the user to avoid probes with excessive

sequence similarity to a non-target gene that may be present during

the hybridization. Thus it should increase the specificity of indi-

vidual probes. A probe must satisfy three conditions (Hughes et al.,
2001; Kane et al., 2000; Nordberg, 2005) to be specific: (1) total

percent identity must be �75–80% with a non-target gene; (2) it

must not include a stretch of identical sequence >15 contiguous

bases with a non-target gene; (3) it must not include any low com-

plexity region (e.g. long stretches of the same base, homopolymeric

runs, etc.).

We compare our method with OP (OligoPicker, Wang and Seed,

2003) and YODA (Nordberg, 2005). OP also selects 46 probes

corresponding to the same 46 genes as ours, while YODA only

selects 45 probes corresponding to 45 genes contained in ours

Table 3. Comparison of average rank of BLAST scores of probes to non-target genes in designing a 70mer oligo probe for each gene from T7 phage genome

Method BLAST parameter Method

BLAST parameter b̂b OP YODA b̂b OP YODA

Default 53.93 76.86 76.37 -G 5 -E 3 -q -2 -r 3 -W 8 60.50 65.42 81.34

-G 5 -E 2 -q -1 -r 1 -W 8 59.91 64.86 82.52 -G 5 -E 3 -q -3 -r 2 -W 11 53.43 74.60 79.19

-G 5 -E 2 -q -1 -r 2 -W 9 64.14 72.28 70.61 -G 5 -E 3 -q -2 -r 1 -W 10 51.71 76.12 79.40

-G 5 -E 2 -q -2 -r 1 -W 7 53.13 74.43 79.67 -G 6 -E 2 -q -2 -r 1 -W 11 53.88 75.25 78.07

-G 5 -E 2 -q -2 -r 3 -W 11 52.39 74.83 80.02 -G 6 -E 2 -q -2 -r 1 -W 12 56.40 75.18 75.56

NOTE: OP stands for OligoPicker. Default: -G 5 -E 2 -q -3 -r 1 -W 11. The BLAST score of a probe equals the largest BLAST score between that probe and all non-target genes.

We combine all 137 (¼ 46 + 46 + 45) BLAST scores of probes and rank them in ascending order of magnitude (use mid-rank for tied scores, see Section 3.1), where the i-th smallest

BLAST score is taken as rank i. Each entry is the average rank of a method.
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(YODA rejects gene T7p25). All the 137 (¼ 46 + 46 + 45) probes

satisfy the specificity conditions (1)–(3), as can be seen by using the

Hamming distance, BLAST and DUST programs (Hancock and

Armstrong, 1994). For example, using Hamming distance the aver-

age percent identity and SD of probes with non-target genes selected

by b̂b, OP and YODA are 49.16 and 2.3%, 48.82 and 2.5 and 50.19%

and 3%, respectively, and there is little difference among them.

Next, let the BLAST score of a probe equal the largest BLAST

score between that probe and all non-target genes, and then combine

all such 137 BLAST scores and rank them in ascending order of

magnitude (recalling Section 3.1). Evidently, a smaller average rank

corresponds to less similarity, and hence higher specificity. Table 3

shows probes selected by b̂b has much smaller average rank than

those by OP and YODA. In conclusion, our study, although very

primitive, shows b̂b can help in locating probes with high specificity

and has potential for probe design.

5 DISCUSSION

After computing a similarity/dissimilarity score between any pair

of DNA sequences, we are sometimes not certain about the relat-

ive magnitude of the score since the terms ‘small score’, ‘moderate

score’, and ‘large score’ are relative terms. Consequently, the term

‘dissimilar sequences’ is not clearly defined using these scores. This

motivates us to introduce in Section 3.2 the so-called ‘degree of

dissimilarity’ b between any pair of DNA sequences and develop a

method to estimate the degree of dissimilarity based on SK–LD

score. In this way a clear cut definition of ‘dissimilar sequences’ is

made possible through the estimated values b̂b of b, by b̂b > g% for

some g. The exact choice of g depends on the user’s objective. For

example, if b̂b is used as a filter in the database search, then small g

results in filtering out a large number of dissimilar sequences, and

thus dramatically speeds the database search for similar sequences.

The subjects of future research are (1) the expansion of Table A1 to

include larger window sizes (currently it only includes results up to

window size 2500 due to restriction on our computing environ-

ment), (2) the extension of our method to (hidden) Markov chain

model of base composition and other types of mutation, (3) the

extensive investigation of the specificity, along with sensitivity

and consistency [see, e.g. Nordberg (2005) for definitions], of single

or multiple oligo probes selected by b̂b for use in microarray design,

(4) the enhancement of our simple consecutive base sliding word

model to incorporate frame shifts (e.g. using not just one but three

sliding words each picking up 1 in every 3 bases and can be com-

puted independently for statistical characteristics), and/or to use

nonconsecutive base word models similar to those presented in

Huang et al. (2004) and (v) the use of our method in protein

sequence comparisons (specifically, the use of our method in pro-

ducing a better amino acid matching table such as the BLOSUM or

PAM matrices).
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