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Abstract

Frank Wright [Gene 87 (1990) 23] derived a formula for calculation of a quantity termed the ‘effective number of codons’ (N̂c)
based on codon homozygosities. This quantity is a number between 20 and 61 and tells to what degree the codon usage in a gene is

biased, i.e., it approaches 20 codons for the extremely biased genes, and approaches 61 for the genes where all possible codons are

used with no preference. Among the different measures of codon bias N̂c is considered the most useful and has found widespread use

in papers dealing with codon usage phenomena. In this paper, the mathematical behaviours of codon homozygosities and N̂c are

evaluated, using Escherichia coli as the model organism. The results indicate that the classical formula for calculation of N̂c could

appropriately be substituted under circumstances, where there is bias discrepancy, i.e., when one amino acid (or more) within a

degeneracy group is associated with strong codon bias while at the same time others in the same degeneracy group have little bias.

An alternative estimator, termed N̂c�, is proposed and tested against N̂c, and performs better when there is such bias discrepancy.

� 2004 Elsevier Inc. All rights reserved.
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Codon usage bias is a phenomenon that is defined by

the fact that 61 codons encode 20 amino acids, making

18 of them degenerate. In all organisms studied so far, it
has been shown that codon usage is directed by a

complex set of factors. The composition of genomes is

to a large extent determined by the mutational pressure

that has acted on an organism, and this is generally re-

flected in the codon usage; organisms with a high GC-

content (such as members of the Streptomyces genus)

tend to use mainly GC-rich codons while the opposite is

true for AT-rich species (such as Campylobacter jejuni)
[1,2]. In addition, in many species selective factors, no-

tably gene expressivity is a major determinant of codon

usage [3], for a review, see [4], since codon usage in

highly expressed genes has a preference for abundant

tRNA species [5]. Some codon usage measures are based

on this phenomenon, such as the ‘codon adaptation

index’ [6]. However, these measures are species-depen-

dent as optimal codons differ. As a measure of species-
qAbbreviations: Nc, effective number of codons; aa, amino acid;
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independent synonymous codon bias in genes, the

‘effective number of codons’ (N̂c) was introduced by

Wright in 1990 [7]. It is today one of the most widely
used estimators for codon bias and has some advantages

over other measures (reviewed in [8]). N̂c tells to what

degree all 61 codons (with the standard genetic code) are

in use in a gene. In extremely biased genes the effective

number of codons can approach 20, while in unbiased

genes it will approach 61.

To calculate the bias, one needs to quantify codon

homozygosity (F̂ ) for all amino acids having synony-
mous codons

F̂ ¼
n
Pk
i�1

p2i

� �
� 1

n� 1
; ð1Þ

where n is the total count for the amino acid in the gene,

and pi is the codon frequency for the ith synonymous

codon for the particular amino acid. For the individual

amino acid we can calculate the effective number of

codons as

N̂cðaaÞ ¼ 1

F̂aa
: ð2Þ
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The effective number of codons in the gene is then ac-
cording to Wright calculated by:

N̂c ¼ 2þ 9

F̂2
þ 1

F̂3
þ 5

F̂4
þ 3

F̂6
; ð3Þ

where �̂F 2 is the average homozygosity for the amino

acids having a degeneracy of two (histidine, glutamine,

etc.) and so on. Wright also suggested solutions in cases

where amino acids were missing. If, for example, a gene

does not contain threonine, then
�̂F 4 will be the average

of the codon homozygosities of glycine, valine, alanine,

and proline:

�̂F 4 ¼
F̂pro þ F̂gly þ F̂ala þ F̂val

4
: ð4Þ

This is equivalent to assuming that the codon homozy-

gosity for threonine in this situation equals the average

codon homozygosity of the others within that degeneracy

group. How good an approximation is this? In this paper,

one of the goals is to test this assumption by evaluation of
the correlation between estimated codon homozygosities

and observed codon homozygosities where possible.

There is a chance that N̂c, calculated through use of

Eq. (3), will exceed 61. In that case, Wright recommends

re-adjusting the result down to 61. He did not give any

reason why this correction should not be applied to in-

dividual amino acids in stead. A hypothetical example:

one could have a situation where the apparent number
of effective alanine and glycine codons is 6 (arises when

the codon homozygosity is 1/6, which is the case if three

of the synonymous codons are present twice while the

fourth synonymous codon is present three times in a

gene) and with no other overshooters, but where the N̂c
calculated the classical way (Eq. (3)) turns out to be 62.

In this case, one should according to Wright re-adjust to

61. However, doesn’t this still leave three of the effective
codons unaccounted for? Also, Wright suggested, with

little argumentation, using F̂3 ¼ ð �̂F 2 þ �̂F 4Þ=2 when the

isoleucine estimator was not possible to calculate. In this

paper, these issues are subjected to further examination

in an attempt to improve the accuracy of the estimate.
Materials and methods

Choice of reference strain. In his original paper, Wright used

Escherichia coli K12 as a reference organism. This is adopted here. E.

coli K12 is fully sequenced and is in many other ways the best char-

acterised microorganism. Furthermore, a recent paper describing use

of effective number of codons for individual amino acids [9] was based

on this strain.

Analysis of the behaviour of codon homozygosity. Using lysine as an

example, it was tested how the codon homozygosity varies with

varying content of lysine codons. This was done by generating simu-

lated genes with 1–20 AAA codons and 1–20 AAG codons and sub-

sequently calculating the codon homozygosity for lysine in the

simulated genes. Plots of codon homozygosity as function of the

counts of AAA and AAG codons were generated.
Test of homozygosity estimates. Wright recommended estimating

the codon homozygosity in accordance with the example in Eq. (4) in

cases where an amino acid was present in too low counts to allow

calculation of its codon homozygosity. While the efficiency of this

estimate cannot be tested directly, it was tested to what degree Eq. (4)

estimates the codon homozygosity in cases where the actual codon

homozygosity could also be calculated. This was carried out with the

five amino acids having a fourfold degeneracy. The estimated codon

homozygosities were then plotted against and the actual codon ho-

mozygosities. If the estimate is appropriate, then the plot should yield

a straight line having a slope of one and an intercept of zero.

The special case of isoleucine. It is virtually always possible to

calculate average codon homozygosities ( �̂F ) for the group of twofold,

fourfold, and sixfold degenerate amino acids, simply because it is very

unlikely that not one single homozygosity (F̂ ) can be calculated within

each degeneracy group (bear in mind that, strictly, just one F̂ value

suffices in order to obtain an �̂F value). In this regard isoleucine may be

problematic since it is the only amino acid that is encoded by three

codons. Wright recommended without argumentation that the codon

homozygosity for isoleucine be estimated as

F̂3 ¼
�̂F 2 þ �̂F 4

2
: ð5aÞ

This looks intuitive, but it is quite unclear on what mathematical

reasoning it is based. To explain my concern, consider the following

example:

In the case of a completely unbiased gene, we have �̂F 2 ¼ 0.5 and
�̂F 4 ¼ 0.25 (two and four codons, respectively). In such an unbiased

gene we would according to Eq. (5a) arrive at F̂3 ¼ 0.375, corre-

sponding to 2.67 effective isoleucine codons (insertion in Eq. (2))—

obviously this is problematic; the intuitive value must be 3, because the

gene is completely unbiased, so all three isoleucine codons will (sta-

tistically) be used. Eq. (5a), though it looks intuitive, is thus incorrect.

The relationship between codon homozygosities is not linear (if

there is a relationship), instead it is, with the argumentation above, the

effective number of codons (F �1 estimates) that relate linearly. For
�̂F
�1

2 ¼ 1 (extreme bias, one codon effectively used for the twofold de-

generate aa) the best estimate is F̂ �1
3 ¼ 1 (corresponding to one iso-

leucine codon used). Similarly, if �̂F
�1

2 ¼ 2 (no bias) we get F̂ �1
3 ¼ 3

(three isoleucine codons in use). Then the actual estimate for F̂3 based

on �̂F 2 is (verify this by insertion):

1

F̂3
¼ 2

�̂F 2

� 1

m

�̂F 3 ¼
2
�̂F 2

� 1

 !�1

: ð5bÞ

With the same argumentation it is easily shown that F̂3 can be esti-

mated through �̂F 4 by the equation:

�̂F 3 ¼
2

3 �̂F 4

þ 1

3

 !�1

: ð5cÞ

And also, F̂3 can be estimated through �̂F 6 by the equation:

�̂F 3 ¼
2

5 �̂F 6

þ 3

5

 !�1

: ð5dÞ

Combining �̂F 2 and
�̂F 4 in an estimate, as was probably the intention of

Eq. (5a), yields:

�̂F 3 ¼

�
2
�̂F 2
� 1
��1

þ 2
3 �̂F 4

þ 1
3

� ��1

2
: ð6Þ

Note how different this is compared to Eq. (5a). Ultimately, combining

the three estimates in one, we arrive at

�̂F 3 ¼
�

2
�̂F 2
� 1
��1

þ
�

2
3 �̂F 4

þ 1
3

��1

þ 2
5 �̂F 6

þ 3
5

� ��1

3:
ð7Þ



Fig. 1. Uncorrected codon homozygosity for a twofold degenerate

amino acid (here exemplified by lysine), calculated through use of Eq.

(1), in simulated genes. The dashed line discriminates values that need

to be corrected; values below this line are too low since the standard

genetic code only allows two codons. nAAA and nAAG are the counts

of AAA and AAG codons, respectively, in the simulated gene. Values

generally become too low when the counts of AAA and AAG are

approximately equal. This curve is representative for all amino acids

having a twofold degeneracy.
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Note the inherent properties of these two expressions in contrast to

Eq. (5a): for a completely biased gene, we have homozygosities of 1,

so the resulting F̂3 will be 1 also. For a completely unbiased gene, we

have �̂F 2 ¼ 0.5, �̂F 4 ¼ 0.25, and �̂F 6 ¼ 1/6, making all three terms in

the nominator equal to 3, whereby the resulting F̂3 is 3, as it should

be.

The different estimates were plotted against the observed values for

F̂3 and correlation analysis was performed in order to evaluate how

good the estimates are.

An alternative formula for the effective number of codons. In his

paper, Wright wrote (the theory has its basis in consideration of the

effective number of alleles, Ne, for a given locus):

“The method here can be thought of as adding together the ‘Ne’

values for each of the 20 ‘loci’.” Inspection of Eq. (3) tells us that this is

actually not exactly what his formula does. It does not add together the

‘Ne’ (Nc) values for the ‘20 loci’ (amino acids), rather it adds the av-

erage Nc for amino acids within the degeneracy groups. The concept of

Eq. (3) is strictly contradictory to the quote given above; however, it

appears more intuitive to me (and this is also the concept of the quote)

to calculate the effective number of codons by addition of the indi-

vidual effective numbers of codons:

N̂c� ¼ N̂cala þ N̂carg þ N̂casp þ � � � þ N̂cval; ð8Þ

where each of the individual values is calculated according to Eq. (2),

and where each individual Nc-value is adjusted if it exceeds the number

of synonymous codons. Values for N̂c� were calculated this way and

compared to the classical N̂c.
Test of N̂c� and N̂c using simulated genes. The phenomenon of

having strong bias for one or more amino acids within a degeneracy

group while others members of the degeneracy group have little bias

may introduce spurious deviation in the outcome of N̂c. As a highly

extreme and hypothetical example consider a situation where there

are six serine and arginine codons in effective use (no bias at all)

while there is complete bias of leucine with one effective codon. In

this situation �̂F 6 becomes 0.75 and the right-most part of Eq. (3)

becomes 4, even though there are 13 leucine codons. This example is

of course rather extreme, but the data revealed that this phenomenon

is not uncommon (we shall hereafter call it ‘bias discrepancy,’ when

or more one amino acids within a degeneracy group are associated

with strong codon bias while at the same time others in the same

degeneracy group have little bias). Therefore, different scenarios were

derived in which the true effective number of codons was controlled

through a multinomial distribution of codons with realistic codon

probabilities. Simulated genes were used to test N̂c� (with and

without rounding) and N̂c under circumstances where there was no

bias discrepancy and under circumstances where there is bias dis-

crepancy. The simulated genes varied in length from 200 codons to

2500 codons, and had an amino acid composition corresponding to

that actually observed in E. coli. The simulation algorithm imple-

mented a random number generator written in accordance with the

recommendation of Press et al. [11], and picked codons on basis of

the codon probabilities of the different scenarios. Sequences were

resampled 500 times and average and standard deviation of the es-

timators were calculated.

Data generation and statistics. The bioinformatic software used in

this paper was programmed by the author of this paper. For software

availability, see Section 3.5. The data presented were processed from

the complete E. coli sequence (GenBank Accession No. NC_000913).

Genes were only included if they had correct start and stop codons, no

internal stop codons, and an intact frame. GraphPad Prism 3

(GraphPad, CA, USA) was used for correlation analysis. Linear re-

gression was used when a linear relationship was expected; otherwise

non-parametric correlation was used (Spearman’s rank). The

Kolmogorov–Smirnov test was run on the output of the resampling

experiments in order to test if the data can be assumed Gaussian. A

probability level corresponding to less than 5% chance was considered

significant.
Results and discussion

Behaviour of codon homozygosity

Fig. 1 shows how codon homozygosity behaves, ex-

emplified by varying lysine codon content in genes. The

curve is generally applicable but it becomesmore complex

for amino acids having a higher degeneracy. It can be seen

that the codon homozygosity tends to too low values
when the individual codons are present in approximately

equal counts, and especially when the overall counts are

low. This suggests that rare amino acids, onwhich there is

generally little difference in codon usage for the individual

synonyms (for example, cysteine), will contribute more to
�̂F than more abundant amino acids or amino acids where

there is a marked difference in codon usage between the

synonyms (for example, lysine), when calculating N̂c the
classical way by use of Eq. (3). For a specific example

dealing with this phenomenon, see later (the lrp gene).

Estimates of codon homozygosities

Where possible, the observed codon homozygosity for

fourfold degenerate amino acids was calculated along
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with the estimated values. Table 1 lists the results of these
correlations. For good estimators, the real value of the

slope should be close toone and the intercept close to zero.
Table 1

The estimate of codon homozygosity for the individual amino acids

(based on average of homozygosities for the others) were correlated

with the actual homozygosity, as Faa;est: ¼ aFaa þ b

Estimate Slope, a Intercept, b r2

Fala 0.1944 0.2776 0.0351

Fgly 0.1728 0.2689 0.0579

Fpro 0.0903 0.2761 0.0754

Fthr 0.1252 0.2806 0.0487

Fval 0.1379 0.2914 0.0264

The correlation is weak. The estimation method is not very likely to

give a good estimate. In all cases, the 95% confidence interval for the

slope is below I, and the 95% confidence interval intercept above 0.

Fig. 2. Estimated homozygosity as function of actual homozygosity for

alanine in genes ofE. coli. The appropriateness of the estimation is tested

by least-squares-fitting to a straight line according to Fala;est: ¼ aFala þ b.
Ideally, the best fit line should yield a ¼ 1 and b ¼ 0. The actual results

are that a ¼ 0:1944 and b ¼ 0:2776, r2 ¼ 0.0351 (4245 data points). The

95% confidence intervals are 0:1624 < a < 0:2254 and 0:2683 < b <

0:2870. Because of the low correlation coefficient and the deviation from

a ¼ 1 and b ¼ 0, alanine codon homozygosity is not well estimated by

the method proposed by Wright.

Table 2

Correlation of isoleucine homozygosity estimates with the observed values a

Estimate Slope

F̂3 ¼
�̂F 2þ �̂F 4

2
0.0997

�̂F 3 ¼ 2
�̂F 2
� 1

� ��1

0.0622

�̂F 3 ¼ 2
3 �̂F 4

þ 1
3

� ��1

0.1524

�̂F 3 ¼ 2
5 �̂F 6

þ 3
5

� ��1

0.2702

�̂F 3 ¼

�
2
�̂F 2

� 1

��1

þ
�

2
3�̂F 4

þ 1
3

��1

2
0.1073

�̂F 3 ¼

�
2
�̂F 2
�1

��1

þ
�

2
3�̂F 4

þ1
3

��1

þ
�

2
5�̂F 6

þ3
5

��1

3
0.1634
This is not the case for any of the five homozygosities, and
the correlation coefficients are very low. A graphical il-

lustration of estimated alanine homozygosity versus ob-

served homozygosity is given inFig. 2. It canbe concluded

that in the absence of an amino acid, estimating it by

averaging the homozygosities of the others is not a good

method.

The special case of isoleucine deserves special atten-

tion. Table 2 lists the correlation observed with the
different homozygosity estimates (Eqs. (5a)–(5d), (6),

(7)) and the observed homozygosities. The table shows

that the classical way of estimating F̂3 (Eq. (5a)) is rather
inefficient as are the other estimates, too. Generally we

observe very poor correlations, r2 < 0:1 in all cases, the

slopes differ significantly from one, and the intercepts

differ significantly from zero.

The reason for these deviations may lie in the dif-
ferential usage of codons in the degeneracy classes. In a

recent paper [9], I examined how translationally opti-

mal codons as well as other codons are used in genes of

E. coli, because selection of translational efficiency is

know to play a major role in this bacterium and many

other prokaryotes [5,11]. For example, there is only

one optimal codon for proline, but there are two for

alanine, glycine, and threonine, while valine is some-
what uncertain; there are three optimal codons ac-

cording to Ikemura, but only one was identified, which

showed a clear pattern of optimality in my recent pa-

per. The point is, if codon usage is strongly determined

by optimal codons and not all amino acids in a de-

generacy group have an equal number of optimal co-

dons, then this might account for some of the lacking

correlations. I have run similar analysis on the genome
of Helicobacter pylori, which is reported to be a species

subjected to less translational selection on codon usage

[12], but the correlations are not better (data not

shown). This suggests that the problem with lack of

correlation is a matter of the methodology rather than

a species-specific codon usage phenomenon. The con-

clusion so far must be that codon homozygosities

cannot be efficiently estimated in all cases. The lack of
ccording to Eqs. (5a)–(5d), (7), (8)

Intercept r2

0.4003 0.0518

0.3740 0.0104

0.3432 0.0602

0.3734 0.0822

0.3586 0.0535

0.3626 0.0942
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correlation seems to justify a slightly different approach
for calculation of the effective number of codons in a

gene. To do so, one must deal with problematic genes,

i.e., when the actual counts of codons otherwise seem

to call for an estimate.

A problematic example: the lrp gene

The lrp gene of E. coli encodes a transcriptional

regulator of branched chain amino acid metabolism.

Using the standard method of Wright, N̂c can be cal-

culated to be 60.3. However, if we inspect the gene more

closely it becomes apparent that the codon counts in this

gene are somewhat skewed, in that the counts of indi-
vidual codons for a particular amino acid are quite

similar, whereby uncorrected N̂c needs readjustment (as

exemplified in Fig. 1). In fact, the Nc for 11 out of the 20

amino acids needs individual readjustment! Table 3 lists

some of these. Note how alanine behaves quite different

from the other fourfold degenerates; this gene is a good

example of principle illustrated in Fig. 1, how low codon

counts at approximately equal amount may yield a very
low codon homozygosity, and conversely a high ap-

parent value for the effective number of codons for in-

dividual amino acids. If we calculate the individual

number of codons for every amino acid except for cys-

teine (and correct for overshooting) and add them (as

suggested by Eq. (8)), we arrive at N̂c ¼ 49:8, but the

gene only contains two cysteine codons, thus an Nc for

cysteine cannot be included since the codon homozy-
gosity becomes zero. Since Nc(Cys) must be a number

between 1 and 2, it seems logical that N̂c� then will be

somewhere in the interval 50.8–51.8, however, it is not

satisfactory to get an interval as result. I cannot devise a

ready-to-run suggestion what to do in this situation,

apart from the conservative approach of simply ex-

cluding those genes that do not allow proper calculation

of the individual number of codons for all amino acids.
This means that mainly the shorter genes would be

discarded or unsuitable for the calculation. But, because

Wright pointed out that N̂c calculated his way is over-

estimated for shorter genes, the limitations of N̂c� may

in this regard be similar to those of Nc.
Table 3

The lrp gene, selected uncorrected and corrected number of codons for

individual amino acids

Amino acid Uncorrected Nc

(AA)

Corrected Nc

(AA)

Ala 10 4

Gly 4 4

Pro 5 4

Thr 5.14 4

Val 5.25 4

Arg 2.45 2.45

Leu 3.20 3.20

Ser 9.33 6
Direct comparison of N̂c� and N̂c

It is thus proposed that N̂c� could be an alternative

to N̂c. Fig. 3A shows how N̂c� and N̂c correlate.

The correlation is quite good: rs ¼ 0:8249, P < 0:0001.
Fig. 3. Relationship between N̂c� and N̂c calculated the classical way.

There is a good correlation between the two parameters (upper curve,

A): rs ¼ 0.8249 (1968 points). The lower curve (B) shows a plot of the

difference between N̂c� and N̂c versus N̂c. N̂c is larger than N̂c� at high
values of N̂c and vice versa.



Fig. 4. Difference between N̂c and N̂c� plotted against gene length

measured in codons. The difference tends to decrease with increasing

gene length, rs ¼ �0:3041; P < 0:0001 (1968 points).

Table 4

Codon frequencies in two scenarios used for simulation and testing of

the estimators of the effective number of codons

Codon Amino

acid

p, without bias

discrepancy

p, with bias

discrepancy

TTC Phe 0.788675 0.726285

TTT Phe 0.211325 0.273715

AAA Lys 0.788675 0.8669

AAG Lys 0.211325 0.1331

AGC Ser 0.481627 0.381832

AGT Ser 0.103675 0.123634

TCA Ser 0.103675 0.123634

TCC Ser 0.103675 0.123634

TCG Ser 0.103675 0.123634

TCT Ser 0.103675 0.123634

TGG Trp 1 1

TAC Tyr 0.788675 0.726285

TAT Tyr 0.211325 0.273715

CTA Leu 0.481627 0.812164

CTC Leu 0.103675 0.037567

CTG Leu 0.103675 0.037567

CTT Leu 0.103675 0.037567

TTA Leu 0.103675 0.037567

TTG Leu 0.103675 0.037567

CCA Pro 0.58541 0.460852

CCC Pro 0.138197 0.179716

CCG Pro 0.138197 0.179716

CCT Pro 0.138197 0.179716

AGA Arg 0.481627 0.381832

AGG Arg 0.103675 0.123634

CGA Arg 0.103675 0.123634

CGC Arg 0.103675 0.123634

CGG Arg 0.103675 0.123634

CGT Arg 0.103675 0.123634

CAA Gln 0.788675 0.726285

CAG Gln 0.211325 0.273715

GTA Val 0.58541 0.460852

GTC Val 0.138197 0.179716

GTG Val 0.138197 0.179716

GTT Val 0.138197 0.179716

GCA Ala 0.58541 0.460852

GCC Ala 0.138197 0.179716

GCG Ala 0.138197 0.179716

GCT Ala 0.138197 0.179716

GGA Gly 0.58541 0.840097

GGC Gly 0.138197 0.053301

GGG Gly 0.138197 0.053301

GGT Gly 0.138197 0.053301

GAC Asp 0.788675 0.8669

GAT Asp 0.211325 0.1331

GAA Glu 0.788675 0.726285

GAG Glu 0.211325 0.273715

ATA Ile 0.666667 0.666667

ATC Ile 0.166667 0.166667

ATT Ile 0.166667 0.166667

ATG Met 1 1

ACA Thr 0.58541 0.840097

ACC Thr 0.138197 0.053301

ACG Thr 0.138197 0.053301

ACT Thr 0.138197 0.053301

TGC Cys 0.788675 0.8669

TGT Cys 0.211325 0.1331

CAC His 0.788675 0.8669

CAT His 0.211325 0.1331

AAC Asn 0.788675 0.726285

AAT Asn 0.211325 0.273715

Both scenarios correspond to a total of 40.5 effective codons.
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The difference between N̂c and N̂c� is plotted as function

of N̂c in Fig. 3B. It can be seen that N̂c is larger than N̂c�

for genes having a low bias (high values of N̂c). As

mentioned the value of N̂c is generally high (overesti-
mated) for shorter genes. Fig. 4 shows a plot of N̂c–N̂c�

as function of gene length (codons). The figure is not

exceedingly clear, but there is a tendency towards posi-

tive values of N̂c–N̂c� for short genes

(rs ¼ 0:3041; P < 0:0001). Wright [7] found that N̂c
overestimates at shorter lengths, so N̂c� may from this

point of view be a good alternative. One should however

remember that N̂c� can only be calculated if there are at
least two codons for each amino acid with synonymous

codons in the sequence.

Simulation results

I shall here present data for a scenario with a typical

bias level, that is, 40.5 effective codons. In Table 4 the

codon probabilities for the simulation experiments are

given. They represent two scenarios, one without bias

discrepancy and one with bias discrepancy. In the sce-

nario with no bias discrepancy all twofold degenerate aa

haveNc ¼ 1:5, isoleucine,Nc ¼ 2, the fourfold degenerate

aa have Nc ¼ 2:5, and the sixfold degenerate have
Nc ¼ 3:5 (these numbers sum up to 40.5 effective codons).

In the scenario with bias discrepancy, five of the twofold

degenerate aa have Nc ¼ 1:67, the others in that group

have Nc ¼ 1:3. Isoleucine has Nc ¼ 2. Three of the four-

fold degenerate aa have Nc ¼ 3:23, the two others in that

group have Nc ¼ 1:4. Two of the sixfold degenerate aa

have Nc ¼ 4:5, the last aa in that group has 1.5 Fig. 5A

shows how N̂c and N̂c� behave as function of gene length
when there is no bias discrepancy. It can be seen that N̂c is
the best estimator under these circumstances. All esti-

mators tend to overestimate the actual value at short gene

lengths. It can also be seen that using homozygosity

rounding improves N̂c�. Fig. 5B shows a similar graph for

the scenario with bias discrepancy. It can be seen that N̂c�



Fig. 5. (A) Behaviour of N̂c and N̂c� on simulated genes, where there is no bias discrepancy and where the true number of effective codons is held

constant at 40.5 (dashed line). Points represent averages of 500 individual resamplings and bars represent standard deviations. Symbols: j, N̂c; s,

N̂c� calculated without rounding; d, N̂c� calculated with rounding. N̂c is a better estimator under these circumstances. (B) Similar to (A), but with

bias discrepancy. N̂c� (with rounding (d)) is a better estimator under these circumstances. Note that N̂c because of the bias discrepancy converges

towards 36 instead of 40.5 (see text for details).
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outperforms N̂c at these conditions, where N̂c� asymp-

totically approaches a value of 36.0 effective codons. This

can easily be verified by insertion of the codon probabil-

ities from Table 4 in Eq. (1), followed by insertion of the

homozygosities in Eq. (3), remembering that F !
P

p2

when n ! 1 as is the case with the multinomial distri-
bution used for simulation. So strictly speaking N̂c only
converges towards the correct value when there is no bias

discrepancy, otherwise this estimator has an intrinsic

methodological error.
Conclusion remarks

This study has demonstrated that the classical way of

calculating the effective number of codons in a gene is

associated with some disadvantages, and that it could

alternatively be calculated through addition of individual

number of codons for individual amino acids, yielding the

alternative quantity N̂c�. Which formula to use is very

difficult to give a recommendation about, but should de-

pend on the individual gene and purpose of the study.
Generally speaking, Wright’s N̂c applies to more se-

quences than N̂c� because the latter does not accept ho-
mozygosity estimates by averaging in cases where

individual amino acids are absent. On the other hand, the

resampling results show that the estimate provided by N̂c�
is better than N̂c in cases where there are bias discrepan-

cies. Data such as those presented in Fig. 2 suggest that

there is ‘sometimes’ a bias discrepancy, and if ‘sometimes’

here means ‘most often’ then N̂c� (with rounding) should

probably be used, while Wright’s method must be con-

sidered better if ‘sometimes’ means ‘rarely.’ It is therefore
a future objective to establish if bias discrepancy is a

common phenomenon in all life forms. A mathematical

way to quantify observed bias discrepancy could pave the

way forward; itmight be possible to define a limit that tells

when N̂c� should preferentially be used instead of N̂c.
References

[1] S.A. Gray, M.E. Konkel, Codon usage in the A/T-rich bacterium

Campylobacter jejuni, Adv. Exp. Med. Biol. 473 (1999) 231–235.

[2] F. Wright, M.J. Bibb, Codon usage in the G+C-rich Streptomy-

ces genome, Gene 113 (1992) 55–65.

[3] M. Gouy, C. Gautier, Codon usage in bacteria: correlation with

gene expressivity, Nucleic Acids Res. 10 (1982) 7055–7074.

[4] H. Akashi, Gene expression and molecular evolution, Curr. Opin.

Genet. Dev. 11 (2001) 660–666.

[5] T. Ikemura, Codon usage and tRNA content in unicellular and

multicellular organisms, Mol. Biol. Evol. 2 (1985) 13–34.

[6] P.M. Sharp, W.-H. Li, The codon adaptation index—a measure of

directional synonymous codon usage bias, and its potential

applications, Nucleic Acids Res. 15 (1987) 1281–1295.



964 A. Fuglsang / Biochemical and Biophysical Research Communications 317 (2004) 957–964
[7] F. Wright, The ‘effective number of codons’ used in a gene, Gene

87 (1990) 23–29.

[8] J.M. Comeron, M. Aguade, An evaluation of measures of

synonymous codon usage bias.382, J. Mol. Evol. 47 (1998)

268–274.

[9] A. Fuglsang, The effective number of codons for individual amino

acids: some codons are more optimal than others, Gene 320 (2003)

185–190.

[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,

Numerical Recipes in C—The Art of Scientific Computing,
second ed., Cambridge University Press, New York, USA,

1998.

[11] S. Kanaya, Y. Yamada, Y. Kudo, T. Ikemura, Studies of codon

usage and tRNA genes of 18 unicellular organisms and quanti-

fication of Bacillus subtilis tRNAs: gene expression level and

species-specific diversity of codon usage based on multivariate

analysis, Gene 238 (1999) 143–155.

[12] B. Lafay, J.C. Atherton, P.M. Sharp, Absence of translationally

selected synonymous codon usage bias in Helicobacter pylori,

Microbiology 146 (2000) 851–860.


	The &lsquo;effective number of codons&rsquo; revisited
	Materials and methods
	Results and discussion
	Behaviour of codon homozygosity
	Estimates of codon homozygosities
	A problematic example: the lrp gene
	Direct comparison of Ncircc* and Ncircc
	Simulation results

	Conclusion remarks
	References


