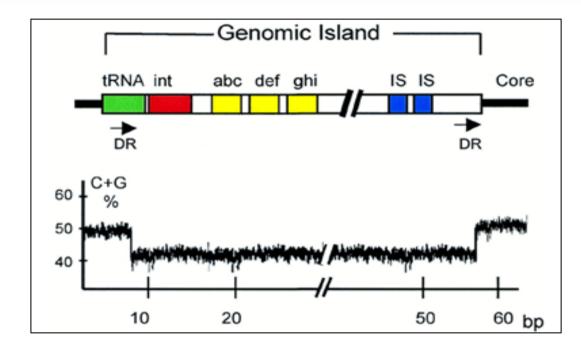
Resolving the Structural Features of Genomic Islands

Genomic Island Structure



Large inserts of horizontally acquired DNA (10 to 200kb)

•Sequence composition different from the core backbone composition

Insertion usually adjacent to RNA genes

•Often flanked by direct repeats or insertion sequence (IS) elements

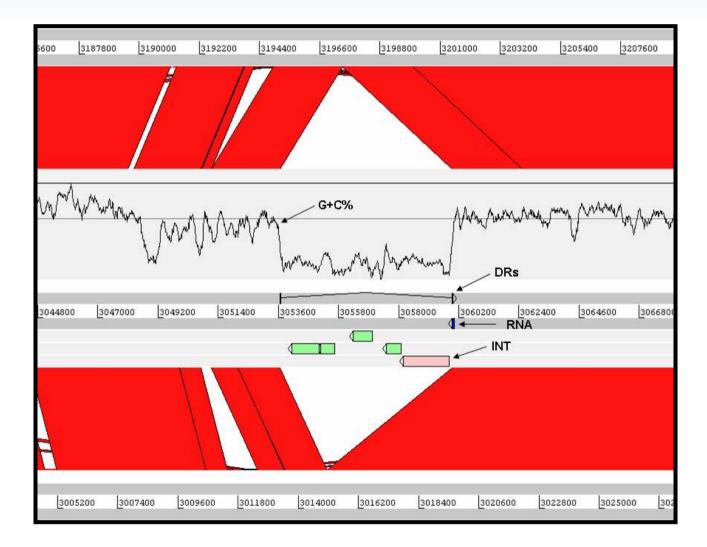
•Limited phylogenetic distribution i.e. present in some genomes but absent from closely related ones

Often mosaic structures of several individual acquisitions

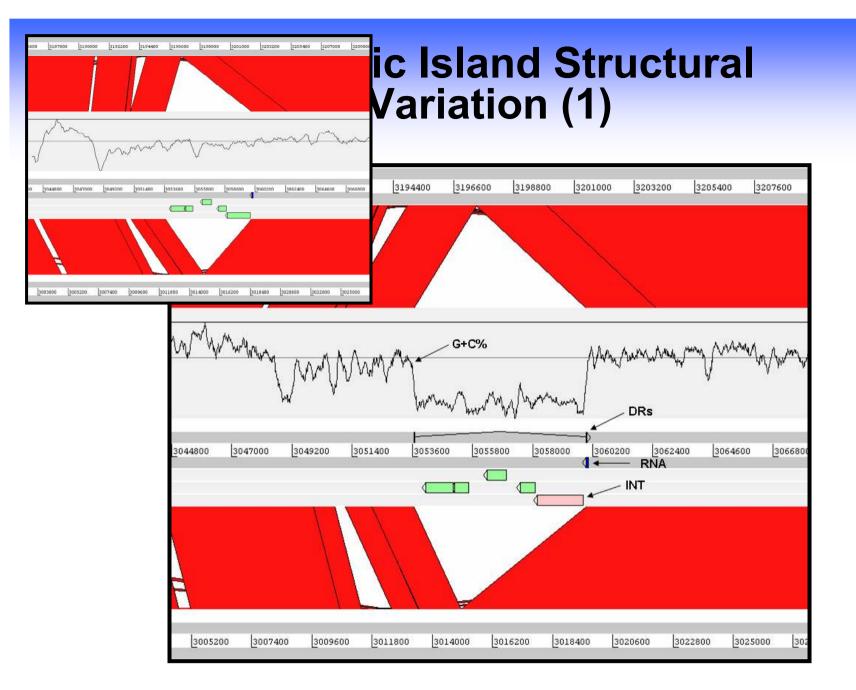
Genetic instability

Presence of mobility genes (e.g. integrase, transposase)

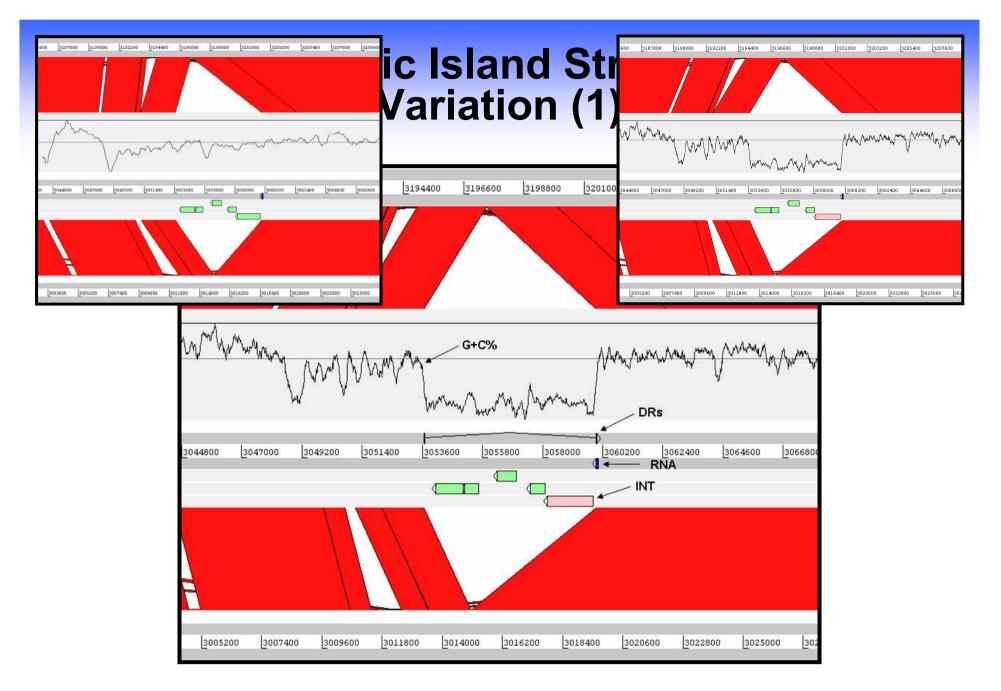
Genomic Island Structural Variation (1)



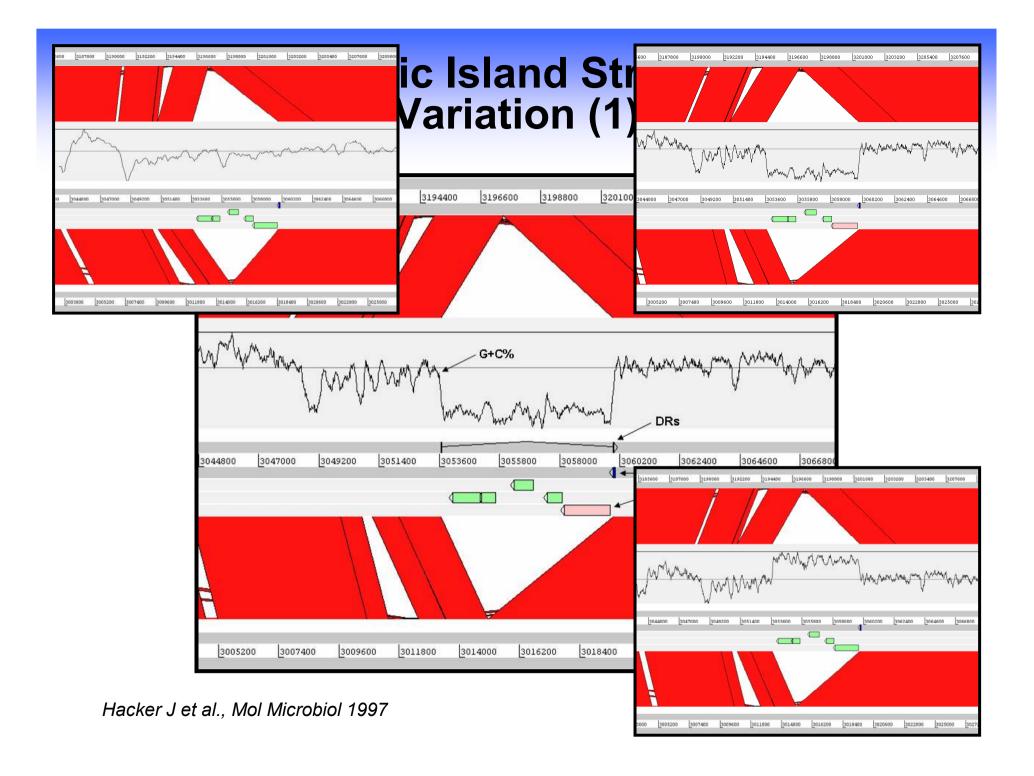
Hacker J et al., Mol Microbiol 1997

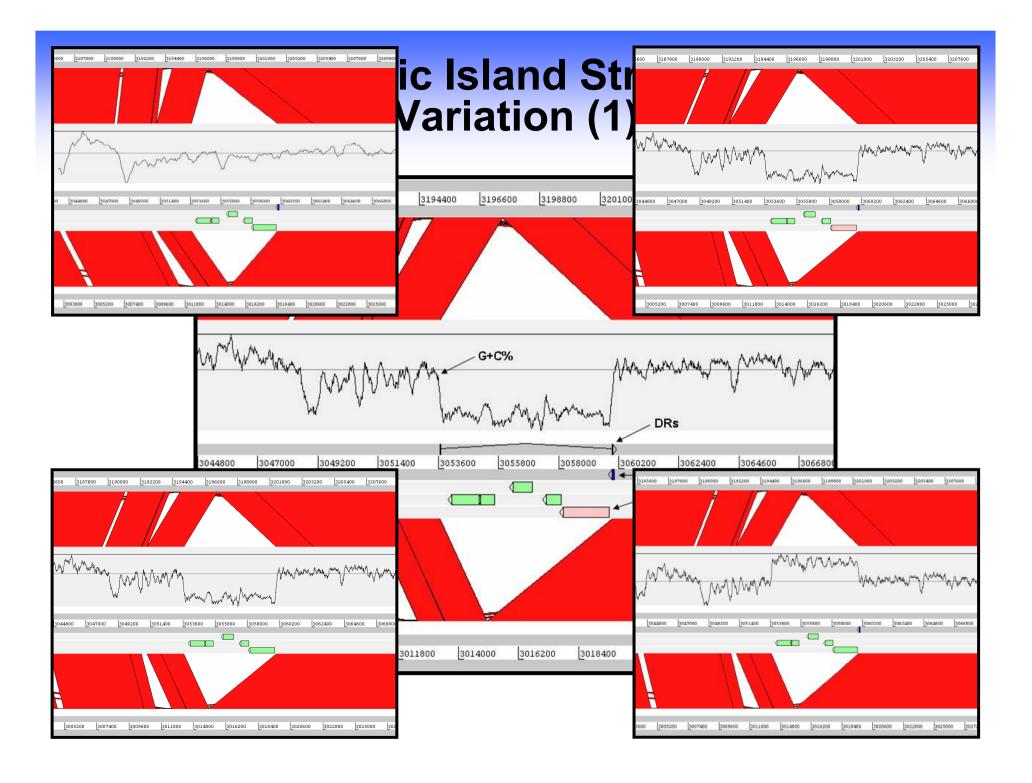


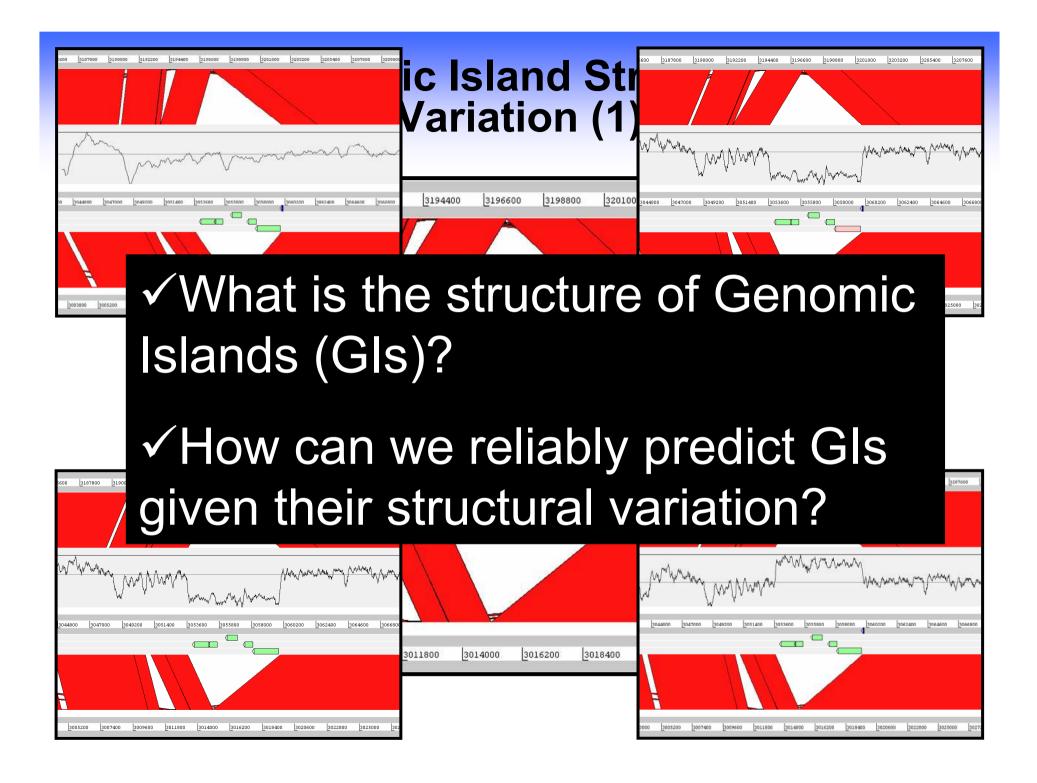
Hacker J et al., Mol Microbiol 1997



Hacker J et al., Mol Microbiol 1997



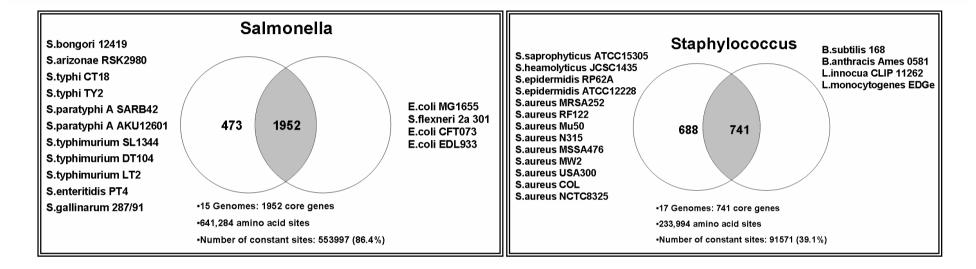


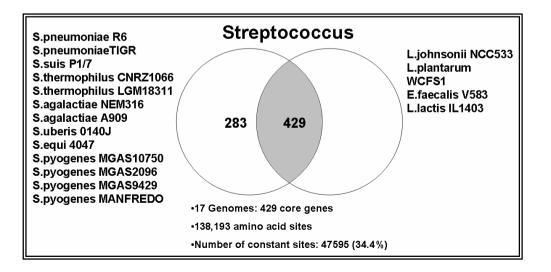


Genomic Island Structural Variation (2)

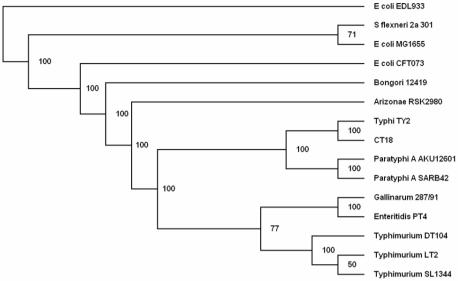
Coordinates	Host	GI	Size	G+C% deviation	Repeats	Integrase	RNA	Gram
839352853808	<i>S. aureus</i> MW2	vSa3	14457	-4.49	1	1	1	+
18916601923796	<i>S. aureus</i> MW2	vSaß	32137	-4.24	0	0	1	+
19329741959426	<i>S. aureus</i> Mu50	vSaß	26453	-4.16	0	1	1	+
21331122148791	<i>S. aureus</i> Mu50	vSa4	15680	-2.56	1	1	0	+
22511202266138	<i>S. epidermidis</i> RP62A	vSe1	15019	-1.43	1	0	0	+
15196671558081	S. epidermidis ATCC15305	vSe2	38415	-6.4	1	1	1	+
10121541023023	S. haemolyticus JCSC1435	vSh1	10870	-2.87	1	1	0	+
21176692133994	S. haemolyticus JCSC1435	vSh2	16326	-4.06	1	1	1	+
25786422593348	S. haemolyticus JCSC1435	vSh3	14707	-1.74	0	1	0	+
385739432833	S. agalactiae NEM316	PAI3	47095	1.64	1	0	0	+
711791759003	<i>S. agalactiae</i> NEM316	PAI7	47213	1.62	1	0	0	+
10130261060093	S. agalactiae NEM316	PAI8	47068	1.66	0	0	0	+
11635541197443	S. agalactiae NEM316	PAI10	33890	2.04	0	0	1	+
1255736126127	S. agalactiae NEM316	PAI11	5544	-6.37	1	1	1	+
302172361067	<i>S. typhi</i> CT18	SPI-6	58896	-0.57	0	0	1	-
605515609992	<i>S. typhi</i> CT18	SPI-16	4478	-9.98	1	1	1	-
10851561092735	<i>S. typhi</i> CT18	SPI-5	7580	-8.52	0	1	1	-
16250841664823	<i>S. typhi</i> CT18	SPI-2	39740	-4.91	0	0	1	-
24607802465939	<i>S. typhi</i> CT18	SPI-17	5122	-13.39	0	0	1	-
27428762759156	<i>S. typhi</i> CT18	SPI-9	16281	4.62	0	0	1	-
28592622899034	<i>S. typhi</i> CT18	SPI-1	39773	-6.22	0	0	0	-
30536543060017	<i>S. typhi</i> CT18	SPI-15	6364	-3.01	1	1	1	-
31326063139414	<i>S. typhi</i> CT18	SPI-8	6809	-14.03	1	1	1	-
38831113900458	<i>S. typhi</i> CT18	SPI-3	17348	-5	0	0	1	-
43219434346614	<i>S. typhi</i> CT18	SPI-4	24672	-7.74	0	0	0	-
44095114543072	S. typhi CT18	SPI-7	133562	-2.42	1	1	1	-
46836904716539	<i>S. typhi</i> CT18	SPI-10	32850	-5.51	0	1	1	-

Training Dataset Core Genes





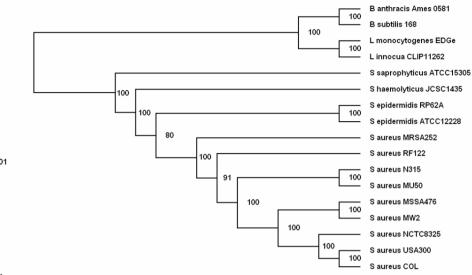
Training Dataset (Phylogeny)



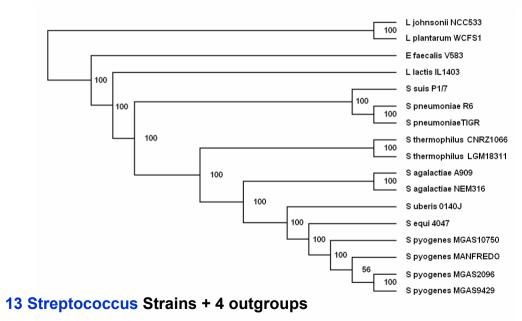
1952 core genes: NJ, 100x replicates, Kimura

11 Salmonella Strains + 4 outgroups

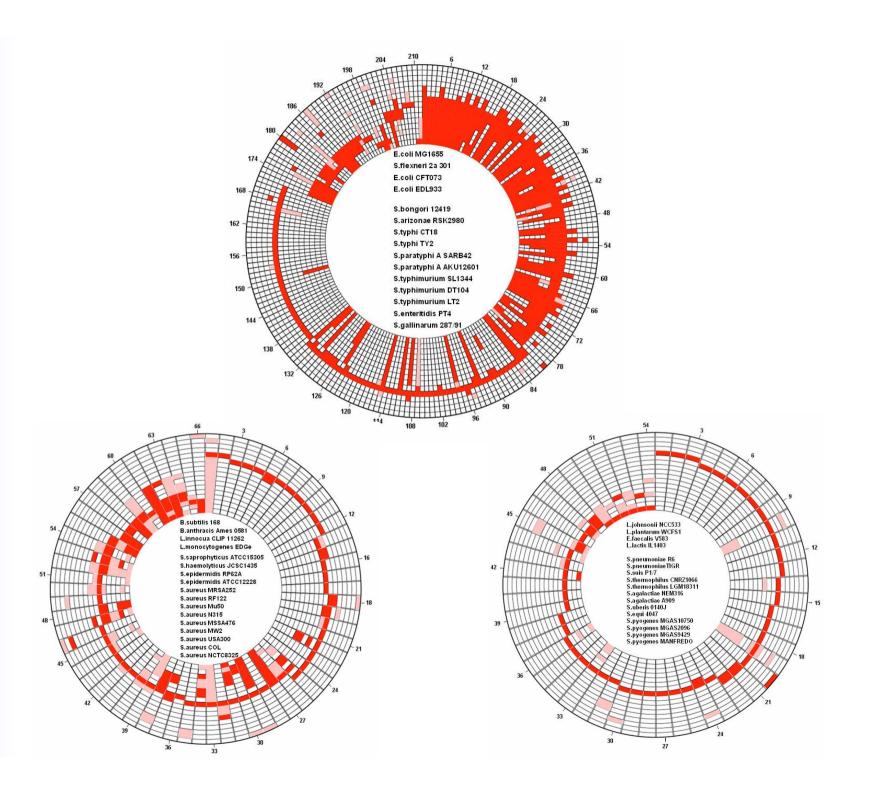
Datasets	Positive examples	Negative examples	Total	
Salmonella	211	210	421	
Streptococcus	54	53	107	
Staphylococcus	66	74	140	
Gram -	211	210	421	
Gram +	120	127	266	
Gram +/-	331	337	668	



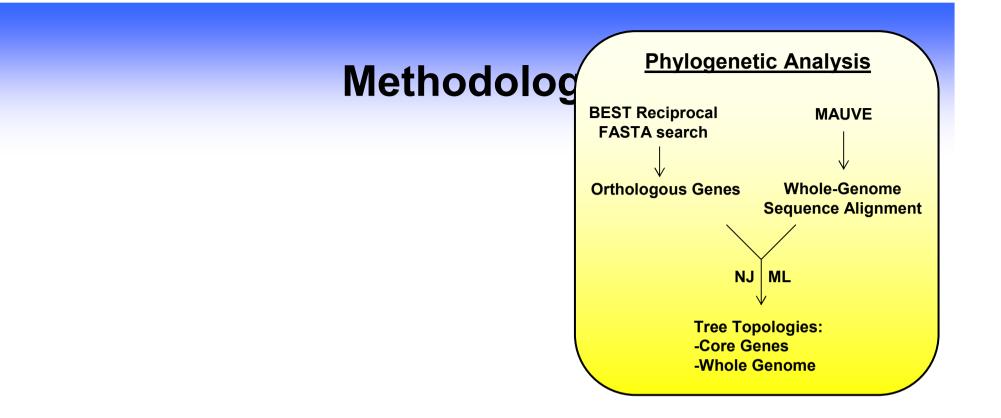
741 core genes: NJ, 100x replicates, Kimura 13 Staphylococcus Strains + 4 outgroups

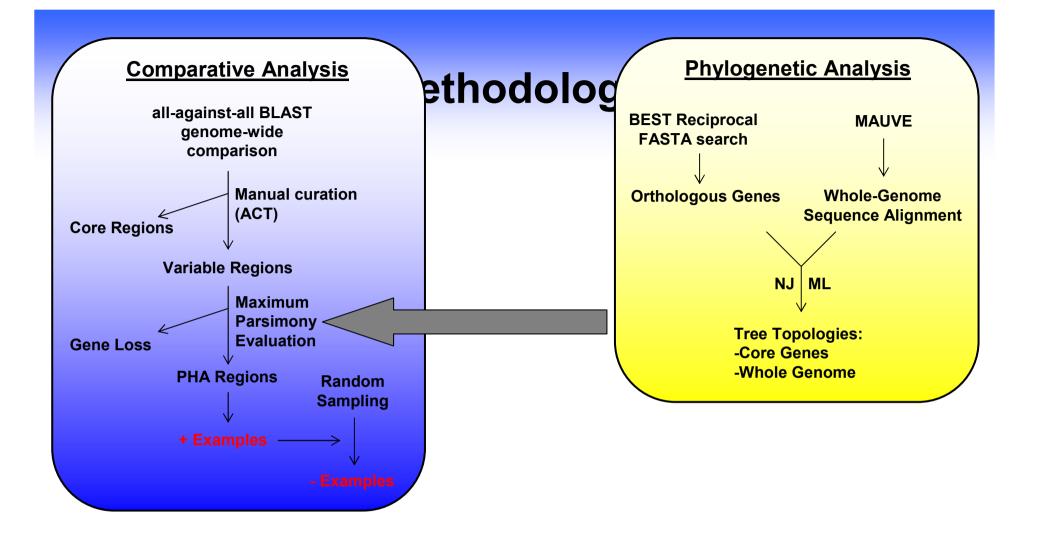


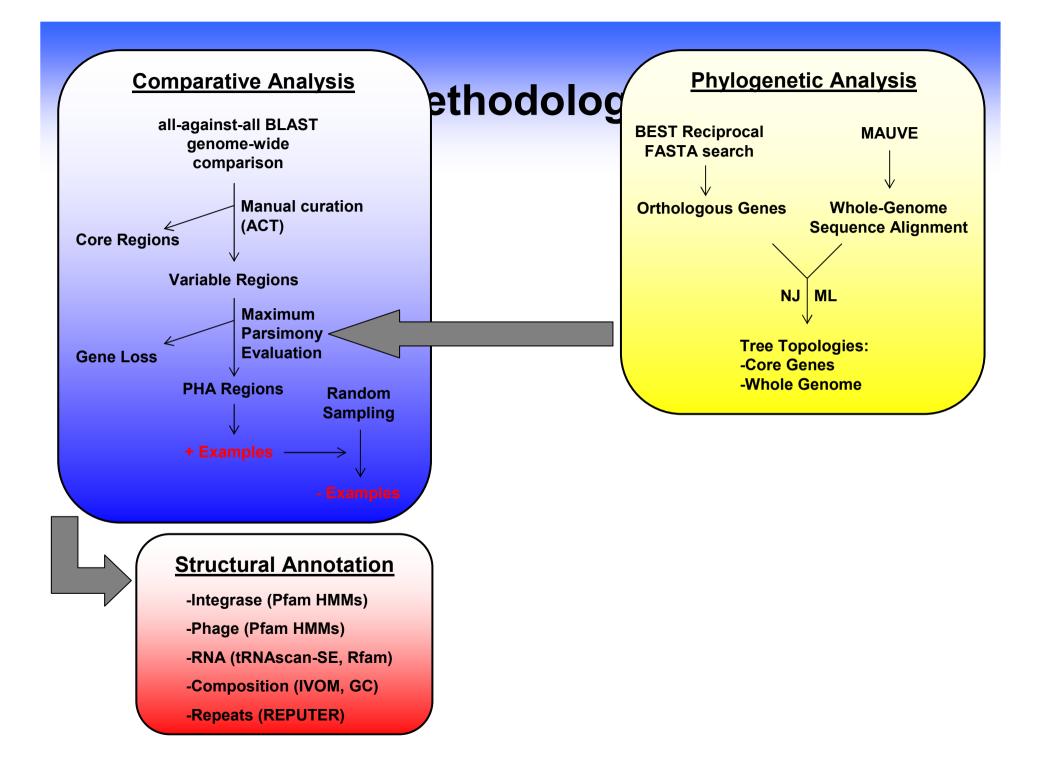
429 core genes: NJ, 100x replicates, Kimura

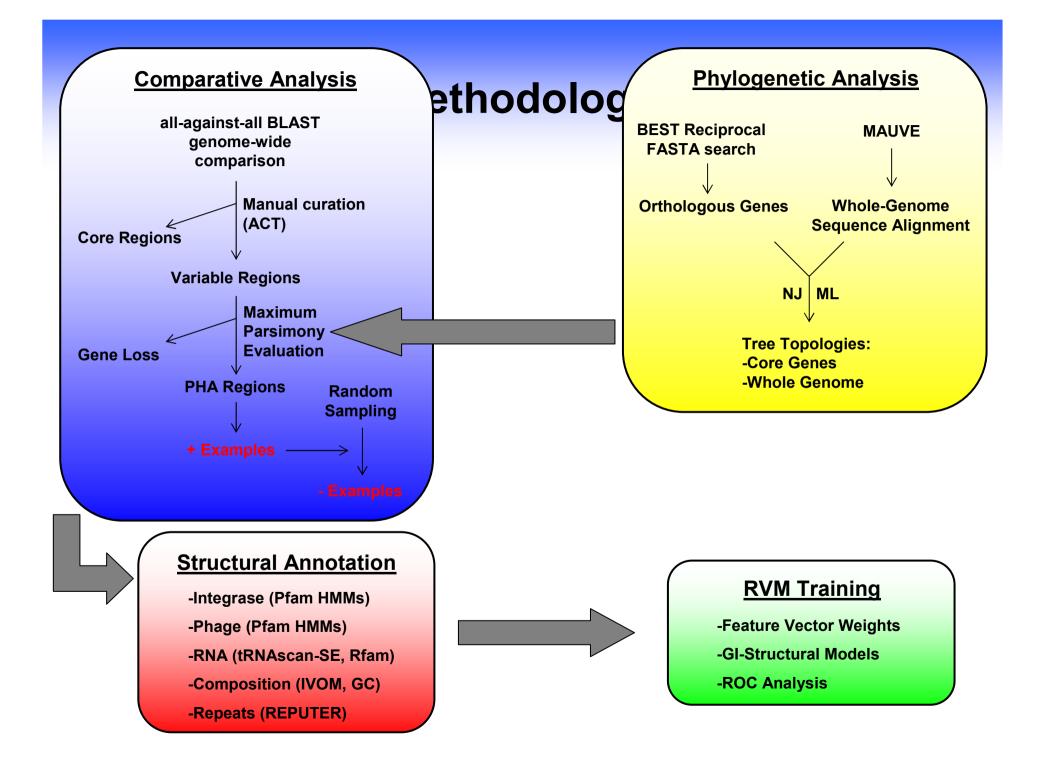


Methodology









Test dataset

Genomes	HGTs	Non HGTs	Total	
Salmonella	211	211	422	
Streptococcus	55	55	110	
Staphylococcus	78	78	156	
Gram -	211	211	422	
Gram +	133	133	266	
Gram +/-	344	344	688	

Test dataset

Genomes	HGTs	Non HGTs	Total	
Salmonella	211	211	422	
Streptococcus	55	55	110	
Staphylococcus	78	78	156	
Gram -	211	211	422	
Gram +	133	133	266	
Gram +/-	344	344	688	

Comparative analysis

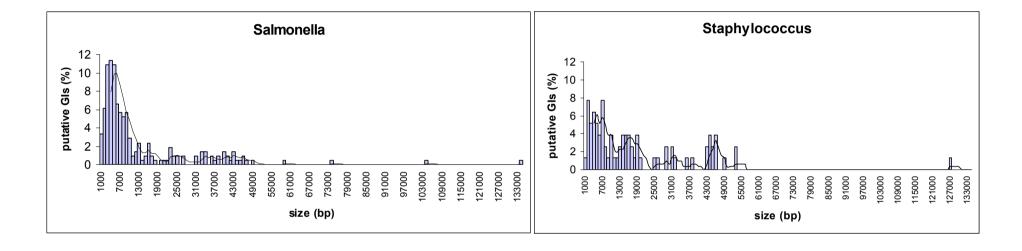
Test dataset

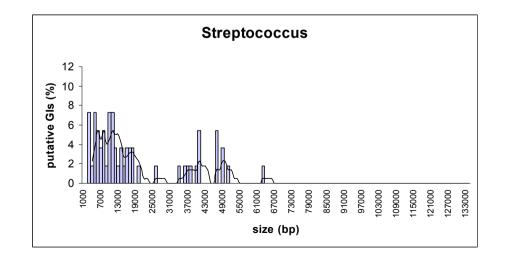
Genomes	HGTs	Non HGTs	Total	
Salmonella	211	211	422	
Streptococcus	55	55	110	
Staphylococcus	78	78	156	
Gram -	211	211	422	
Gram +	133	133	266	
Gram +/-	344	344	688	

analysis

Comparative Random Sampling following the size distribution of GIs

GI Size Distribution





Generalized Linear Models

Generalized linear models (GLMs) are a commonly used form of model for both classification (separate data into two or more classes) and regression (estimate the value of a continuous function) problems.

Generalized Linear Models

Generalized linear models (GLMs) are a commonly used form of model for both classification (separate data into two or more classes) and regression (estimate the value of a continuous function) problems. GLMs take the form:

$$\eta(x) = \sum_{m=1}^{M} \beta_m \phi_m(x) + K$$

where φ is a set of *M* basis functions (which can be arbitrary real-valued functions) and β is a vector of weights.

Generalized Linear Models

Generalized linear models (GLMs) are a commonly used form of model for both classification (separate data into two or more classes) and regression (estimate the value of a continuous function) problems. GLMs take the form:

$$\eta(x) = \sum_{m=1}^{M} \beta_m \phi_m(x) + K$$

where φ is a set of *M* basis functions (which can be arbitrary real-valued functions) and β is a vector of weights.

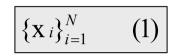
One way of looking at generalized linear models is that the basis functions define a projection of the data into a high-dimensional space (called feature space) where the data is either linear (for regression problems) or linearly separable (for classification problems). An important step in GLM learning is to find a feature space which allows a linear model to fit the training data, while not being of such high dimensionality that overfitting becomes a problem.

The **Relevance Vector Machine** (RVM) is a sparse method for training generalized linear models. This means that it will generally select only a subset (often a small subset) of the provided basis functions to use in the final model.

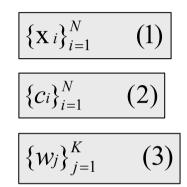
RVM download:

http://www.miketipping.com/index.php?page=rvm

http://www.vectoranomaly.com/downloads/downloads.htm



$$\{\mathbf{x}_{i}\}_{i=1}^{N}$$
 (1)
 $\{c_{i}\}_{i=1}^{N}$ (2)



N examples (training dataset)

$$\{\mathbf{x}_{i}\}_{i=1}^{N} \quad (1)$$

$$\{c_{i}\}_{i=1}^{N} \quad (2)$$

$$\{w_{j}\}_{j=1}^{K} \quad (3)$$

$$S_i = U + \sum_{j=1}^K w_j \cdot x_{ij} \qquad (4)$$

$$\{\mathbf{x}_{i}\}_{i=1}^{N} \quad (1)$$

$$\{c_{i}\}_{i=1}^{N} \quad (2)$$

$$\{w_{j}\}_{j=1}^{K} \quad (3)$$

$$S_i = U + \sum_{j=1}^K w_j \cdot x_{ij} \qquad (4)$$

$$\sigma(S_i) = \frac{1}{1 + e^{-S_i}} \qquad (5)$$

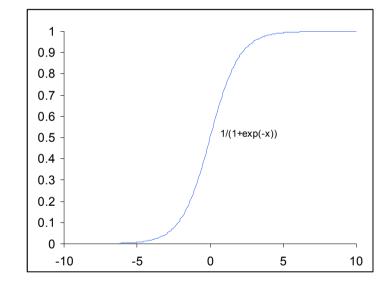
$$\{x_i\}_{i=1}^{N} (1)$$

$$\{c_i\}_{i=1}^{N} (2)$$

$$\{w_j\}_{j=1}^{K} (3)$$

$$S_i = U + \sum_{j=1}^K w_j \cdot x_{ij} \qquad (4)$$

$$\sigma(S_i) = \frac{1}{1 + e^{-S_i}} \qquad (5)$$



N examples (training dataset)

$$\{x_{i}\}_{i=1}^{N} \quad (1)$$

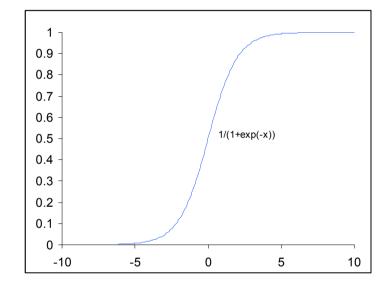
$$\{c_{i}\}_{i=1}^{N} \quad (2)$$

$$\{w_{j}\}_{j=1}^{K} \quad (3)$$

$$S_i = U + \sum_{j=1}^K w_j \cdot x_{ij} \qquad (4)$$

$$\sigma(S_i) = \frac{1}{1 + e^{-S_i}} \qquad (5)$$

$$R_j = w_j \cdot SD_j \qquad (6)$$



The probability that the data set is correctly labelled given some classifier model:

$$P(c \mid x, w) = \prod_{i=1}^{N} \sigma(S_i)^{c_i} (1 - \sigma(S_i))^{1 - c_i}$$
(7)

The probability that the data set is correctly labelled given some classifier model:

$$P(c \mid x, w) = \prod_{i=1}^{N} \sigma(S_i)^{c_i} (1 - \sigma(S_i))^{1 - c_i}$$
(7)

Assuming that the training data is correctly labeled, Bayes' theorem allows us to turn this expression around and infer likely values of the weights given some labeled data.

$$P(w \mid x, c) \propto P(w)P(c \mid x, w) \qquad (8)$$

The probability that the data set is correctly labelled given some classifier model:

$$P(c \mid x, w) = \prod_{i=1}^{N} \sigma(S_i)^{c_i} (1 - \sigma(S_i))^{1 - c_i}$$
(7)

Assuming that the training data is correctly labeled, Bayes' theorem allows us to turn this expression around and infer likely values of the weights given some labeled data.

$$P(w \mid x, c) \propto P(w)P(c \mid x, w) \qquad (8)$$

In this expression, we have introduced an extra probability distribution, P(w), which is our prior belief in the values of the weights. If we merely wished to perform classical GLM training, we would have no preference for any particular value of the weights, and would encode this by providing a very broad ("non-informative") prior. However, as discussed previously, we believe that simple models are more likely to make useful generalizations. A preference for simplicity can be encoded using an Automatic Relevance Determination prior. In this case, we introduce an additional vector of parameters, α . Each element of the vector controls the width of the prior over the corresponding weight:

The probability that the data set is correctly labelled given some classifier model:

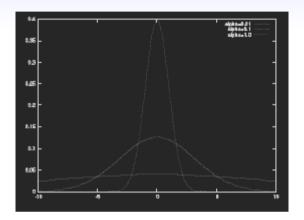
$$P(c \mid x, w) = \prod_{i=1}^{N} \sigma(S_i)^{c_i} (1 - \sigma(S_i))^{1 - c_i}$$
(7)

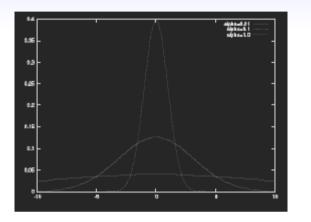
Assuming that the training data is correctly labeled, Bayes' theorem allows us to turn this expression around and infer likely values of the weights given some labeled data.

$$P(w \mid x, c) \propto P(w)P(c \mid x, w) \qquad (8)$$

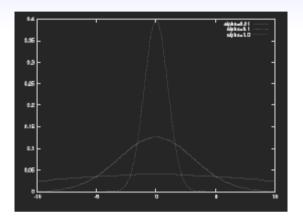
In this expression, we have introduced an extra probability distribution, P(w), which is our prior belief in the values of the weights. If we merely wished to perform classical GLM training, we would have no preference for any particular value of the weights, and would encode this by providing a very broad ("non-informative") prior. However, as discussed previously, we believe that simple models are more likely to make useful generalizations. A preference for simplicity can be encoded using an Automatic Relevance Determination prior. In this case, we introduce an additional vector of parameters, α . Each element of the vector controls the width of the prior over the corresponding weight:

$$P(w) = \prod_{i} \mathcal{G}(w_i \mid 0, a_i^{-1}) \qquad (9)$$





<u>The RVM "trick"</u> is to define the inverse variances of these Gaussian distributions, α , as variables, and to infer their values as well. This form of prior is known as an automatic relevance determination (ARD) in Mackay 1994. The inclusion of an ARD prior rewards simplicity.

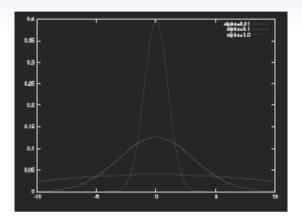


<u>The RVM "trick"</u> is to define the inverse variances of these Gaussian distributions, α , as variables, and to infer their values as well. This form of prior is known as an automatic relevance determination (ARD) in Mackay 1994. The inclusion of an ARD prior rewards simplicity.

To include these new parameter in the inference process, we also need to specify a hyperprior over values of α . For the RVM, a very broad gamma distribution is used.

Considering just a single basis function, there are two possibilities:

• The basis function provides additional information about the specified classification problem. When its weight is set to some non-zero value, the amount of misclassified training data is reduced. This increases the value of equation 7, and therefore the probability of that model given the data.



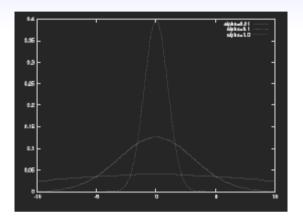
<u>The RVM "trick"</u> is to define the inverse variances of these Gaussian distributions, α , as variables, and to infer their values as well. This form of prior is known as an automatic relevance determination (ARD) in Mackay 1994. The inclusion of an ARD prior rewards simplicity.

To include these new parameter in the inference process, we also need to specify a hyperprior over values of α . For the RVM, a very broad gamma distribution is used.

Considering just a single basis function, there are two possibilities:

• The basis function provides additional information about the specified classification problem. When its weight is set to some non-zero value, the amount of misclassified training data is reduced. This increases the value of equation 7, and therefore the probability of that model given the data.

• If the basis function provides no information because it is irrelevant to the problem, there is no value of the weight that will lead to a significant increase in the likelihood. At this point, the prior term in the model comes into play: by setting the α_i parameter to a large value, the prior distribution $P(W_i)$ becomes sharply peaked around zero. By then setting *Wi* to zero, the posterior probability of the model is maximized.



<u>The RVM "trick"</u> is to define the inverse variances of these Gaussian distributions, α , as variables, and to infer their values as well. This form of prior is known as an automatic relevance determination (ARD) in Mackay 1994. The inclusion of an ARD prior rewards simplicity.

To include these new parameter in the inference process, we also need to specify a hyperprior over values of α . For the RVM, a very broad gamma distribution is used.

Considering just a single basis function, there are two possibilities:

• The basis function provides additional information about the specified classification problem. When its weight is set to some non-zero value, the amount of misclassified training data is reduced. This increases the value of equation 7, and therefore the probability of that model given the data.

• If the basis function provides no information because it is irrelevant to the problem, there is no value of the weight that will lead to a significant increase in the likelihood. At this point, the prior term in the model comes into play: by setting the a_i parameter to a large value, the prior distribution $P(W_i)$ becomes sharply peaked around zero. By then setting *Wi* to zero, the posterior probability of the model is maximized.

•Similarly, when two basis functions offer redundant information, the posterior is maximized by using only one of them in the model. When a basis function has a sufficiently high α , it can be marked as irrelevant, and removed from the model. As a result, the RVM will learn simple models even when presented with a large starting set of basis functions. In addition, the computational cost if each iteration falls with the number of dimensions under consideration.

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training examples that lie either on the margin or on the 'wrong' side of it.

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical <u>disadvantages</u>:

•Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support vectors required typically grows linearly with the size of the training set.

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical <u>disadvantages</u>:

•Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support vectors required typically grows linearly with the size of the training set.

•Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in classification, a 'hard' binary decision. Ideally, we desire to estimate the conditional distribution in order to capture uncertainty in our prediction. Posterior probability estimates have been coerced from SVMs via post-processing (Platt, 2000), although we argue that these estimates are unreliable.

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical <u>disadvantages</u>:

•Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support vectors required typically grows linearly with the size of the training set.

•Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in classification, a 'hard' binary decision. Ideally, we desire to estimate the conditional distribution in order to capture uncertainty in our prediction. Posterior probability estimates have been coerced from SVMs via post-processing (Platt, 2000), although we argue that these estimates are unreliable.

•It is necessary to estimate the error/margin trade-off parameter 'C'. This generally entails a cross-validation.

SVM key feature, in the classification case: its target function attempts to minimise a measure of error on the training set while simultaneously maximising the 'margin' between the two classes (in the feature space implicitly defined by the kernel).

This is a highly effective mechanism for avoiding overfitting, which leads to good generalisation, and which furthermore results in a sparse model dependent only on a subset of kernel functions: those associated with training examples that lie either on the margin or on the 'wrong' side of it.

However, despite its success, we can identify a number of significant and practical <u>disadvantages</u>:

•Although relatively sparse, SVMs make unnecessarily liberal use of basis functions since the number of support vectors required typically grows linearly with the size of the training set.

•Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in classification, a 'hard' binary decision. Ideally, we desire to estimate the conditional distribution in order to capture uncertainty in our prediction. Posterior probability estimates have been coerced from SVMs via post-processing (Platt, 2000), although we argue that these estimates are unreliable.

•It is necessary to estimate the error/margin trade-off parameter 'C'. This generally entails a cross-validation.

RVM - none of the above limitations: •Exploits overall fewer basis functions •Increased sparsity •Avoid overfitting •Simpler models •Probabilistic Bayesian Learning with posterior probability estimates

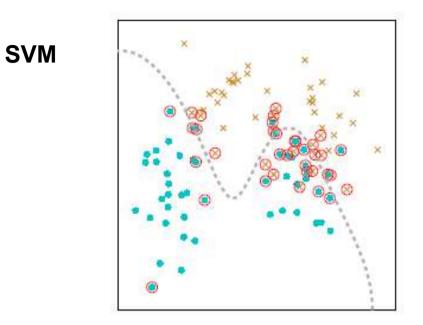


Figure 5: Support vector classifier of the Ripley for which there are 38 kernel functions.

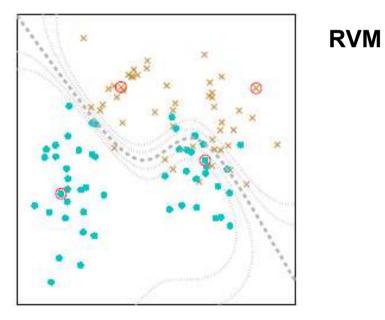
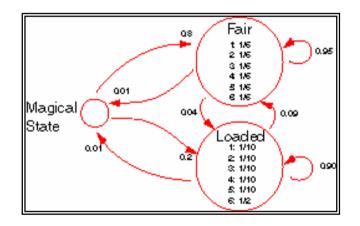


Figure 6: Variational relevance vector classifier of the Ripley dataset for which there are 4 kernel functions.

Biojava Project



http://biojava.org/wiki/Main_Page

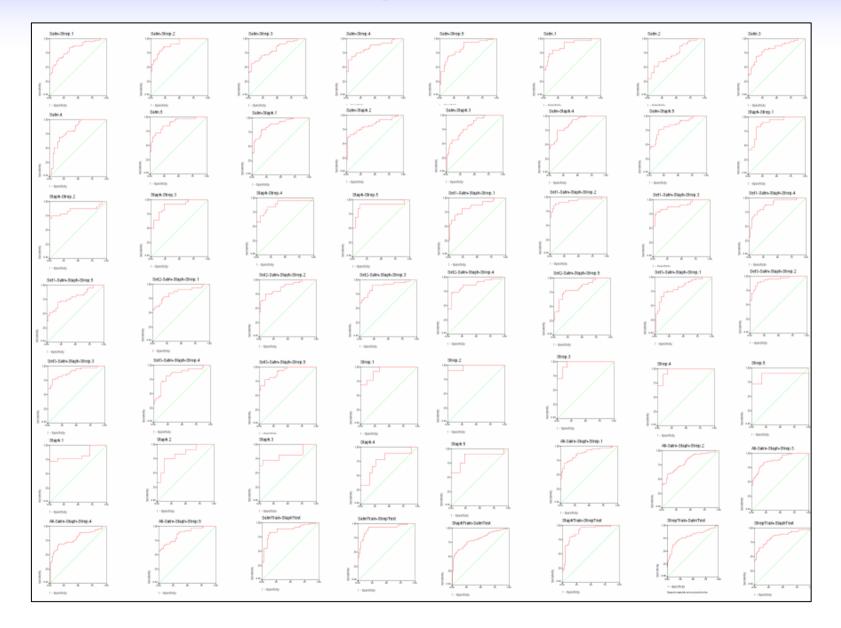
Specificity and Sensitivity

$$Sp = \frac{TN}{TN + FP} \quad (1)$$

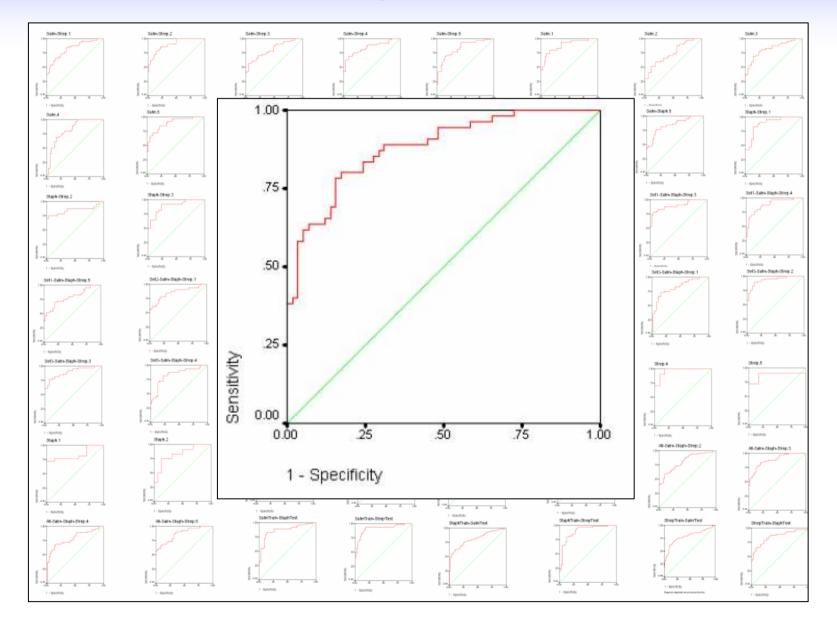
$$Sn = \frac{TP}{TP + FN} \quad (2)$$

$$Ac = \frac{TP + TN}{(TP + FP) + (TN + FN)} \quad (3)$$

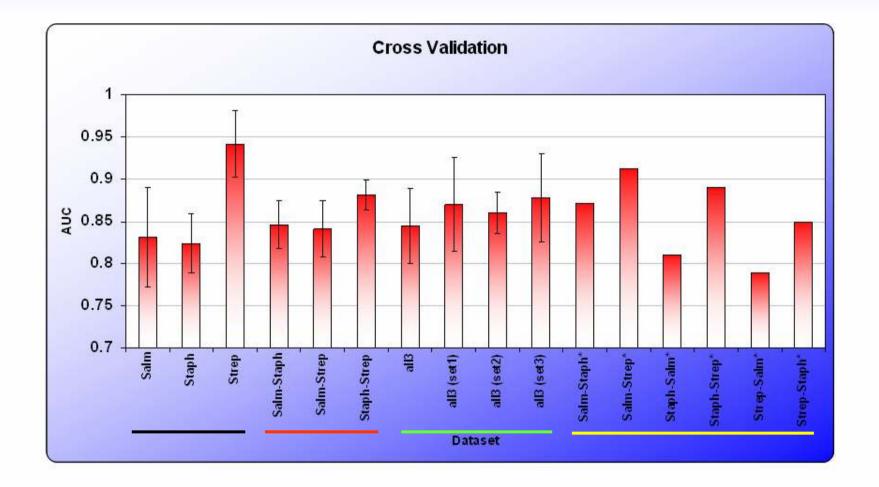
<u>Receiver Operating Characteristic Curve</u>

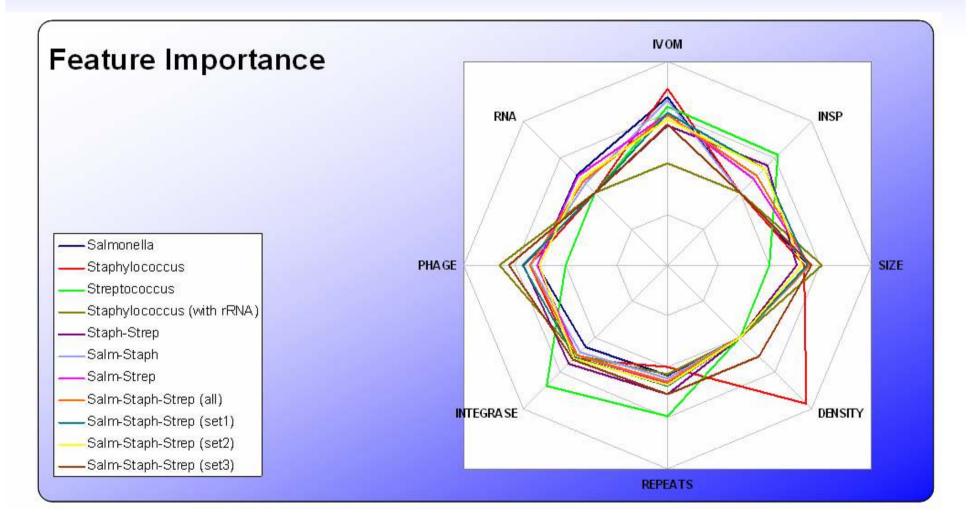


<u>Receiver Operating Characteristic Curve</u>

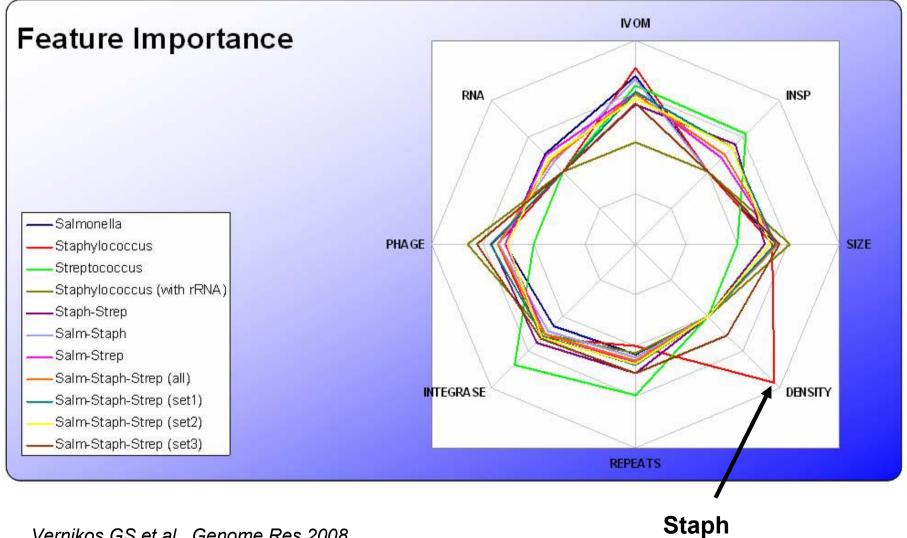


Cross Validation

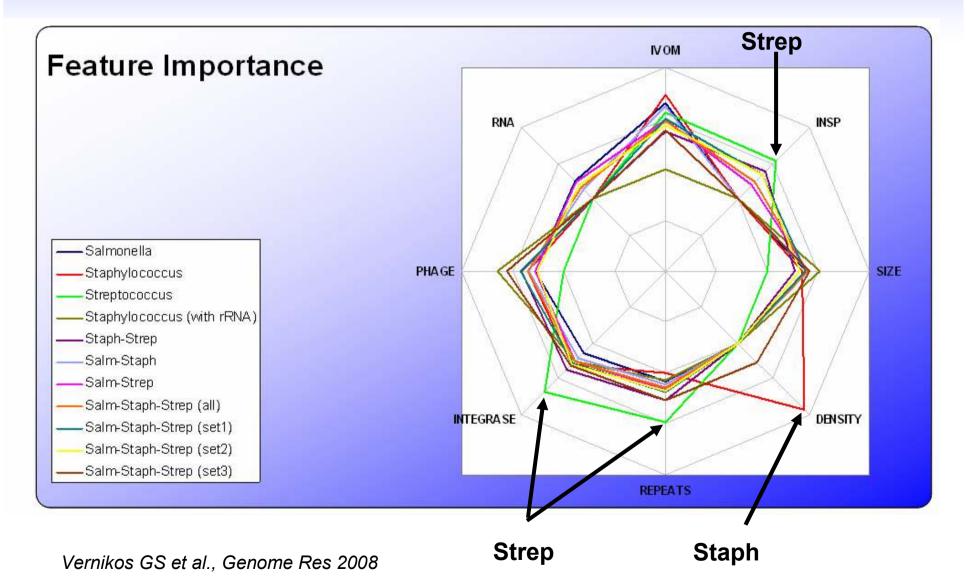


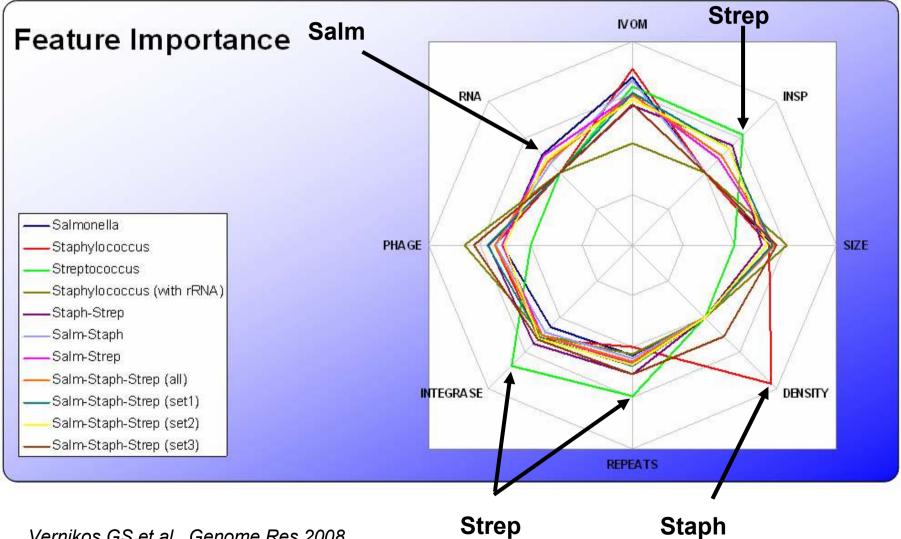


Vernikos GS et al., Genome Res 2008

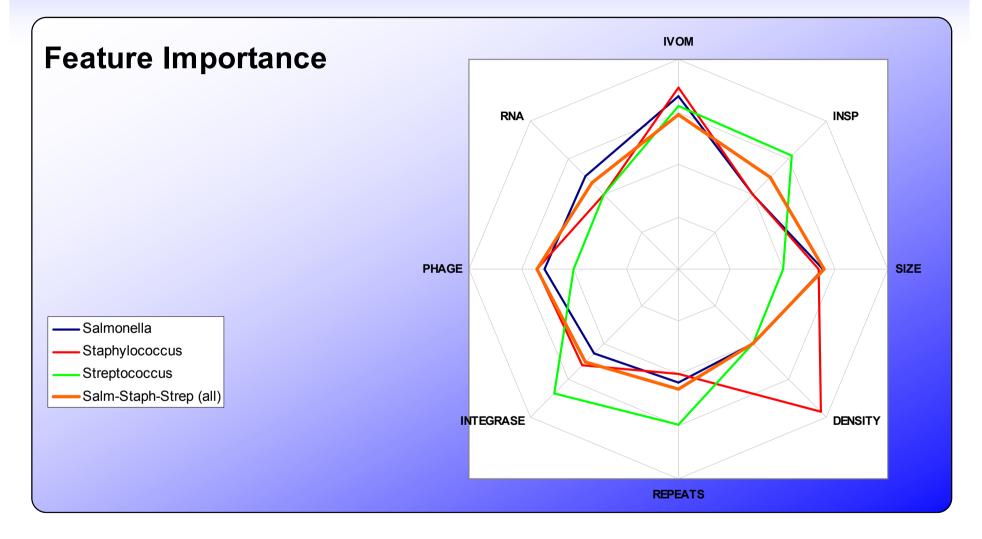


Vernikos GS et al., Genome Res 2008



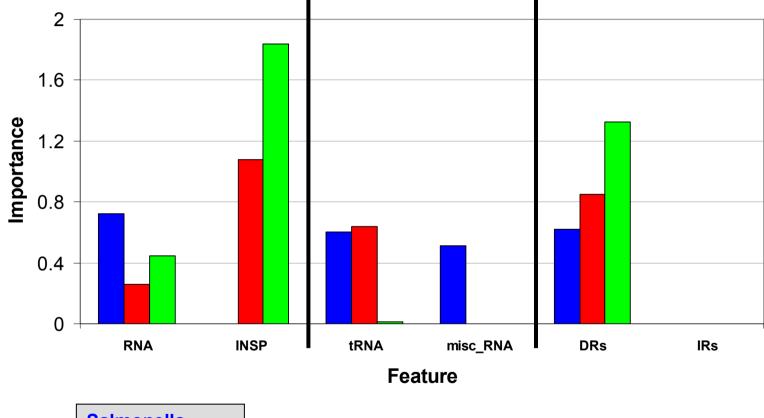


Vernikos GS et al., Genome Res 2008



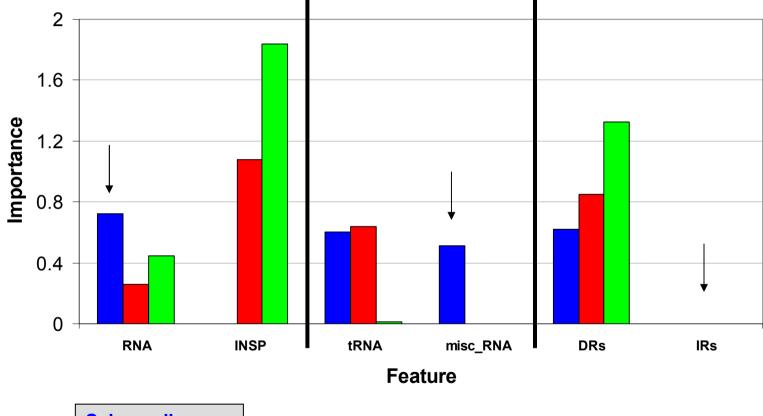
Vernikos GS et al., Genome Res 2008

GI structural models (higher resolution)

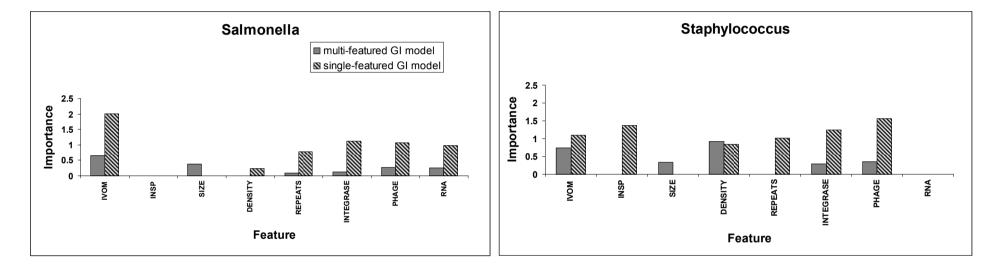


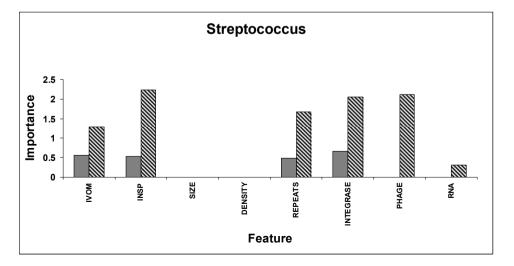
Salmonella Staphylococcus Streptococcus

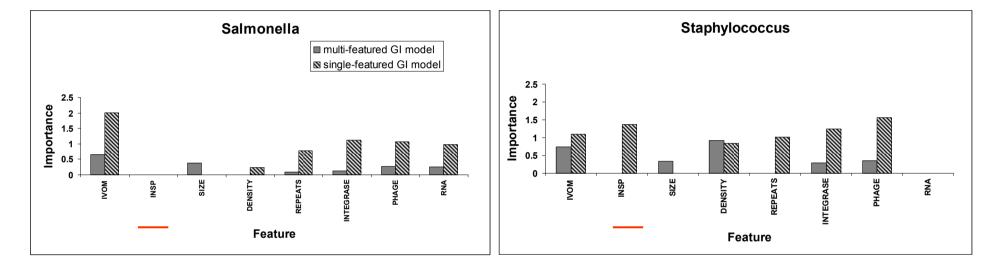
GI structural models (higher resolution)

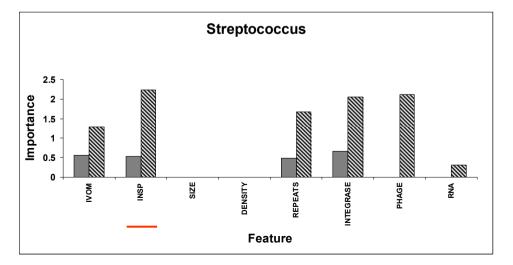


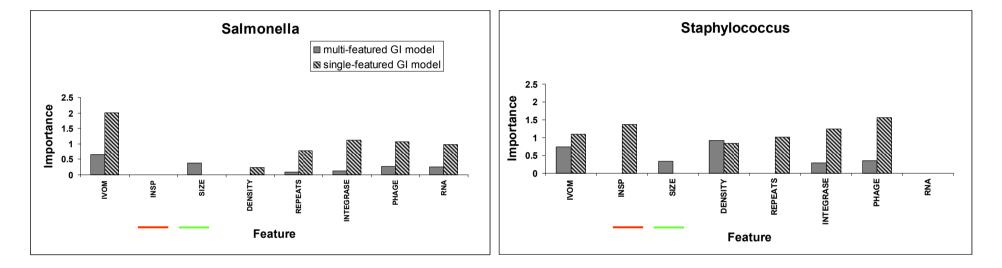
Salmonella Staphylococcus Streptococcus

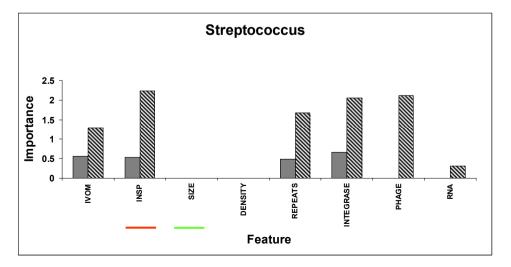


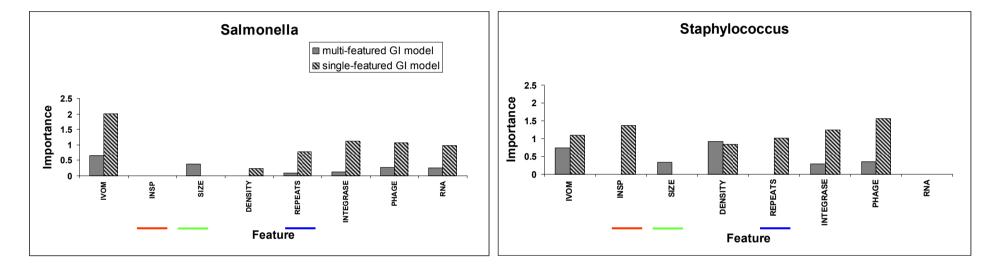


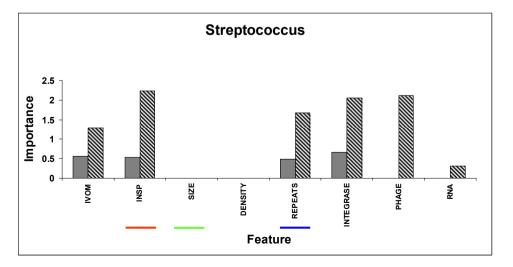


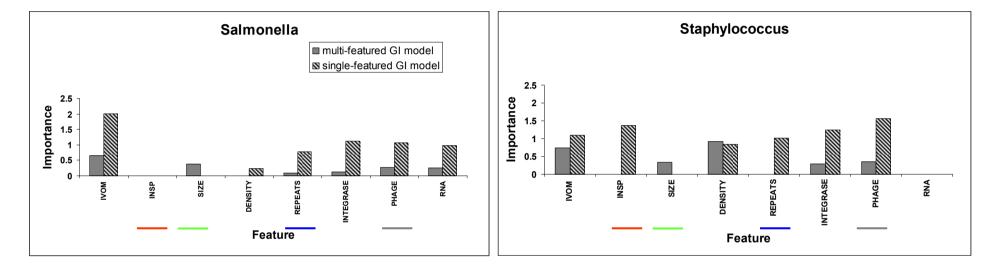


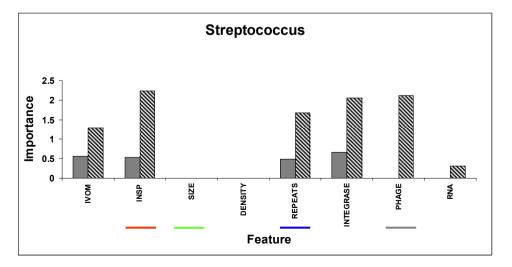


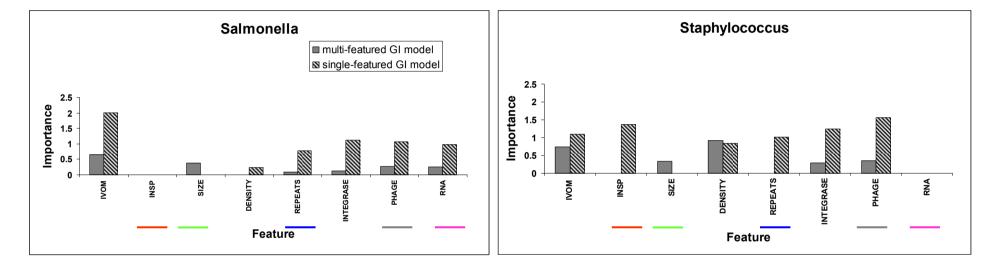


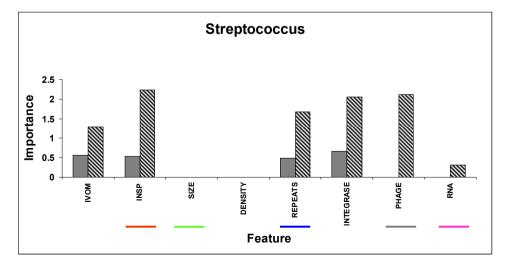


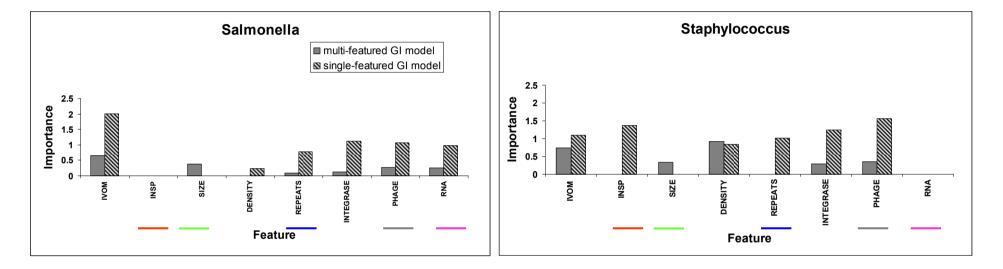


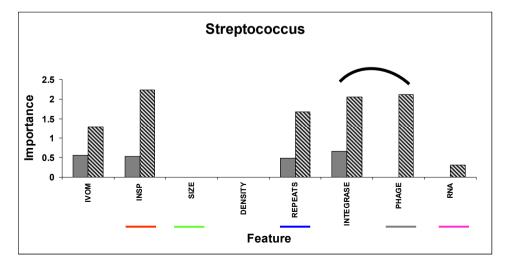












Generalized Linear Models

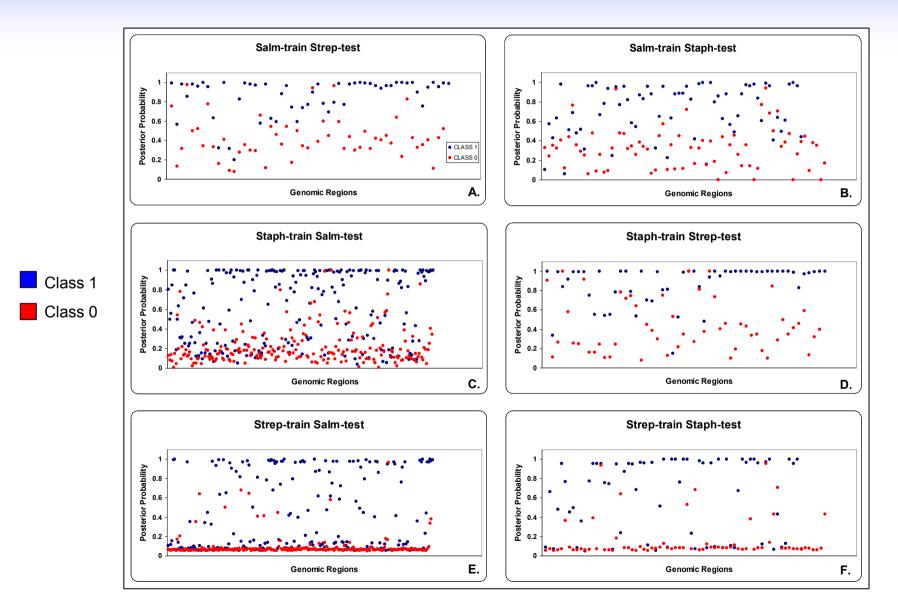
1) Si = -0.764 + 6.203 (x) IVOM + 0.000(x) INSP + -4.956(x) SIZE + 0.000(x) DENS + 0.635(x) REPEATS + 0.995(x) INT + 2.086(x) PHAGE + 1.968(x) RNA
2) Si = -2.978 + 4.151 (x) IVOM + 3.219(x) INSP + 0.000(x) SIZE + 0.000(x) DENS + 2.185(x) REPEATS + 3.351(x) INT + 0.000(x) PHAGE + 0.000(x) RNA
3) Si = -0.005 + 0.000 (x) IVOM + 0.000 (x) INSP + -4.324 (x) SIZE + 0.000 (x) DENS + 0.360 (x) REPEATS + 1.303 (x) INT + 3.995 (x) PHAGE + 0.000 (x) RNA
4) Si = -4.583 +12.752 (x) IVOM + 0.000(x) INSP + -2.843(x) SIZE + 2.486(x) DENS + 0.000(x) REPEATS + 1.552(x) INT + 2.157(x) PHAGE + 0.000(x) RNA
5) Si = -1.544 + 3.756 (x) IVOM + 2.842(x) INSP + -2.583(x) SIZE + 0.000(x) DENS + 1.297(x) REPEATS + 1.892(x) INT + 2.554(x) PHAGE + 0.000(x) RNA
6) Si = -0.923 + 6.528 (x) IVOM + 0.000(x) INSP + -4.462(x) SIZE + 0.000(x) DENS + 0.771(x) REPEATS + 1.404(x) INT + 2.441(x) PHAGE + 1.159(x) RNA
7) Si = -0.763 + 4.330 (x) IVOM + 2.516(x) INSP + -4.941(x) SIZE + 0.000(x) DENS + 1.030(x) REPEATS + 1.630(x) INT + 2.027(x) PHAGE + 1.842(x) RNA
8) Si = -0.879 + 4.659 (x) IVOM + 2.795(x) INSP + -4.434(x) SIZE + 0.000(x) DENS + 0.897(x) REPEATS + 1.553(x) INT + 2.433(x) PHAGE + 1.319(x) RNA
9) Si = -1.293 + 5.285 (x) IVOM + 3.072 (x) INSP + -3.914 (x) SIZE + 0.000 (x) DENS + 1.007 (x) REPEATS + 1.668 (x) INT + 2.847 (x) PHAGE + 0.000 (x) RNA
10) Si = -1.057 + 4.234 (x) IVOM + 3.003(x) INSP + -3.396(x) SIZE + 0.000(x) DENS + 0.927(x) REPEATS + 1.722(x) INT + 1.664(x) PHAGE + 1.539(x) RNA
11) Si = -1.627 + 3.552 (x) IVOM + 0.000 (x) INSP + -4.138 (x) SIZE + 0.727 (x) DENS + 1.449 (x) REPEATS + 1.728 (x) INT + 3.685 (x) PHAGE + 0.000 (x) RNA

- 1) Salmonella
- 2) Streptococcus
- 3) Staphylococcus (with rRNA)
- 4) Staphylococcus
- 5) Staph-Strep
- 6) Salm-Staph
- 7) Salm-Strep
- 8) Salm-Staph-Strep (all3)
- 9) Salm-Staph-Strep (set1)
- 10) Salm-Staph-Strep (set2)
- 11) Salm-Staph-Strep (set3)

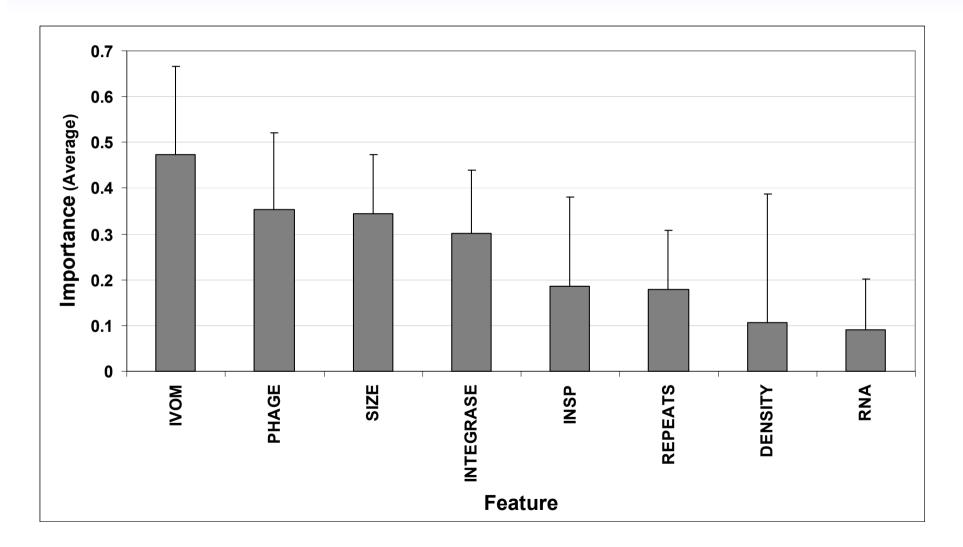
Generalized Linear Models

1) Si	=	-0.764	+	6.203	(x) IVOM	+	0.000(x) INSP	+	-4.956(x) SIZE + 0.000(x) DENS
2) Si	=	-2.978	+	4.151	(x) IVOM	+	3.219(x) INSP	+	0.000(x)SIZE + 0.000(x)DENS
3) Si	=	-0.005	+	0.000	(x) IVOM	+	0.000(x) INSP	+	-4.324(x) SIZE + 0.000(x) DENS
4) Si	=	-4.583	+1	L2.752	(x) IVOM	+	0.000(x) INSP	+	-2.843(x) SIZE + 2.486(x) DENS
5) Si	=	-1.544	+	3.756	(x) IVOM	+	2.842(x) INSP	+	-2.583(x) SIZE + 0.000(x) DENS
6) Si	=	-0.923	+	6.528	(x) IVOM	+	0.000(x) INSP	+	-4.462(x) SIZE + 0.000(x) DENS
7) Si	=	-0.763	+	4.330	(x) IVOM	+	2.516(x) INSP	+	-4.941(x) SIZE + 0.000(x) DENS
8) Si	=	-0.879	+	4.659	(x) IVOM	+	2.795(x) INSP	+	-4.434(x) SIZE + 0.000(x) DENS
9) Si	=	-1.293	+	5.285	(x) IVOM	+	3.072(x) INSP	+	-3.914(x) SIZE + 0.000(x) DENS
10)Si	=	-1.057	+	4.234	(x) IVOM	+	3.003(x) INSP	+	-3.396(x) SIZE + 0.000(x) DENS
11)Si	=	-1.627	+	3.552	(x) IVOM	+	0.000(x) INSP	+	-4.138(x) SIZE + 0.727(x) DENS

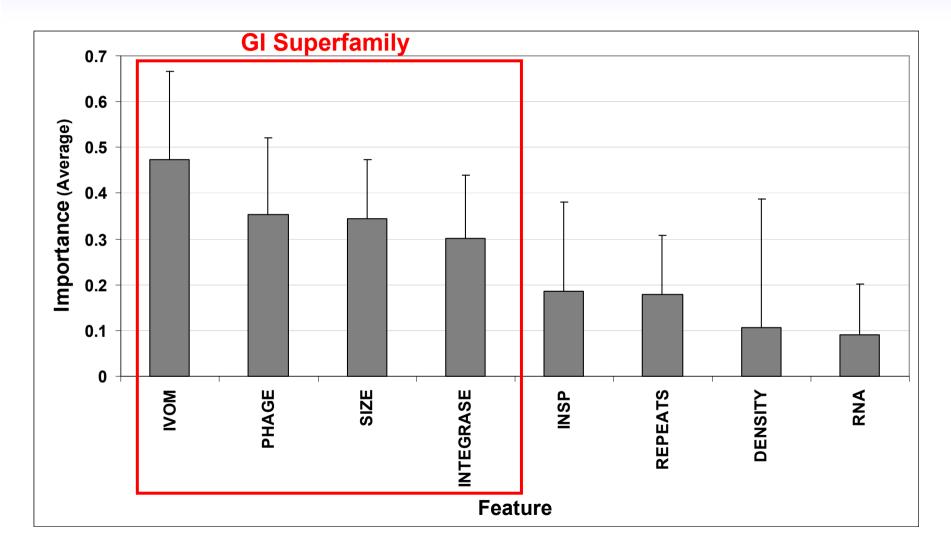
"Genus-blind" cross validation



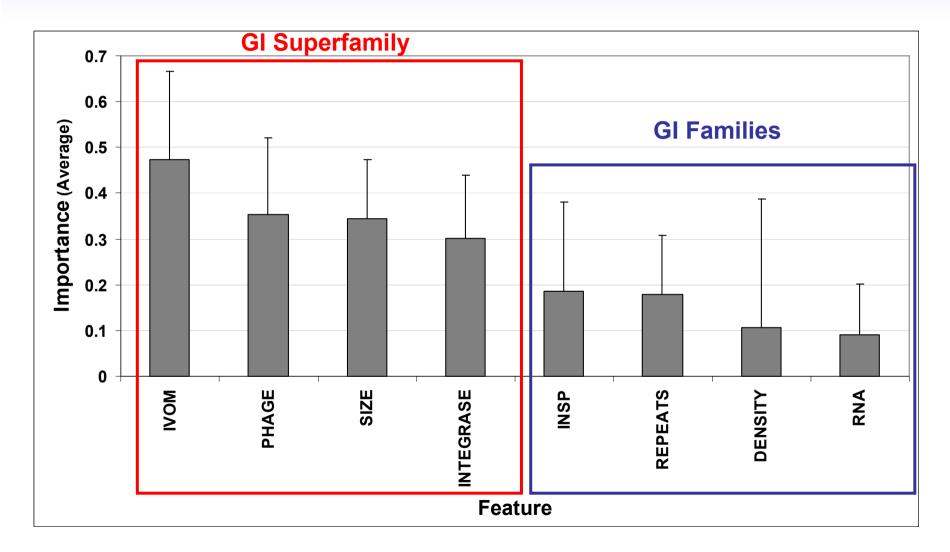
Feature contribution to the model (RVM weights)

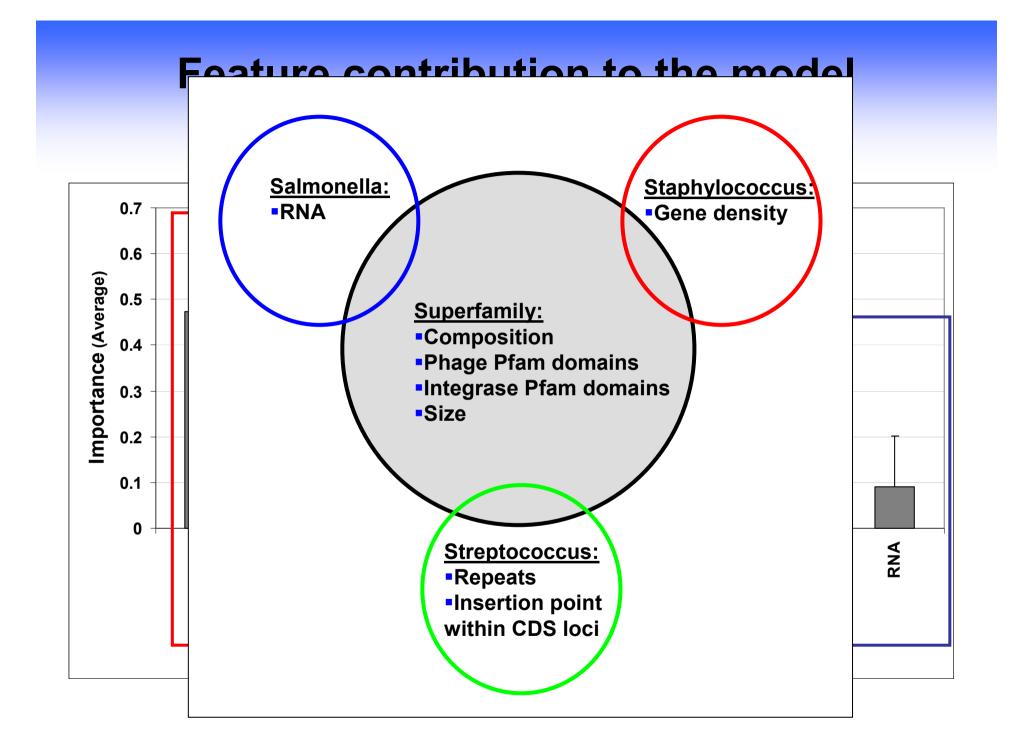


Feature contribution to the model (RVM weights)



Feature contribution to the model (RVM weights)





Error Margin

- 1. 10-20%
- 2. Structural intersection between true GIs and random regions
- 3. Some random regions were sampled close (e.g. tRNA locus) to true GIs
- 4. Phylogenetic resolution:
 - A. Some GIs might not be true GIs if we increase the resolution
 - B. Some random regions might be sampled over ancient GIs (not included in the true GI dataset)

Summary

✓ Training on cross-genera dataset \rightarrow GLMs converge over similar GI structure

 ✓ GIs represent a superfamily of mobile elements with <u>core</u> and <u>variable</u> structural features rather than a well-defined family

✓When the taxa resolution increases, i.e. looking within genera/species boundaries, distinct families of GI structures emerge