# The myth? about phylogenetic trees



## The myth? about phylogenetic trees





### **Complex Evolutionary Relationships**

"Evolutionary relationships between taxa are most often represented as phylogenetic trees and many different algorithms for the tree construction have been developed.

This is of course justified by the assumption that evolution is a branching or tree-like process. However, a set of real data often contains a number of different and sometimes conflicting signals and thus does not always clearly support a unique tree."

Huson 1998

•4 Species

•3 Genes

•3 Trees

•4 Species

•3 Genes

•3 Trees

Gene 1 Species A: ATGCGTGACT...TGA Gene 1 Species B: ATGCGTGCCT...TGA Gene 1 Species C: ATGCGTGCCT...TGA Gene 1 Species D: ATGCGTGACT...TGA



•4 Species

•3 Genes

•3 Trees

Gene 1 Species A: ATGCGTGACT...TGA Gene 1 Species B: ATGCGTGCCT...TGA Gene 1 Species C: ATGCGTGCCT...TGA Gene 1 Species D: ATGCGTGACT...TGA

Gene 2 Species A: ATGCGTGCCT...TGA Gene 2 Species B: ATGCGTGCCT...TGA Gene 2 Species C: ATGCGTGACT...TGA Gene 2 Species D: ATGCGTGACT...TGA





•4 Species

•3 Genes

•3 Trees

Gene 1 Species A: ATGCGTGACT...TGA Gene 1 Species B: ATGCGTGCCT...TGA Gene 1 Species C: ATGCGTGCCT...TGA Gene 1 Species D: ATGCGTGACT...TGA

Gene 2 Species A: ATGCGTGCCT...TGA Gene 2 Species B: ATGCGTGCCT...TGA Gene 2 Species C: ATGCGTGACT...TGA Gene 2 Species D: ATGCGTGACT...TGA

Gene 3 Species A: ATGCGTGCCT...TGA Gene 3 Species B: ATGCGTGACT...TGA Gene 3 Species C: ATGCGTGCCT...TGA Gene 3 Species D: ATGCGTGACT...TGA













Split 1: {ABC | DEF}



**Split 1:** {ABC | DEF} **Split 2:** {FAB | EDC}



Split 1: {ABC | DEF}
Split 2: {FAB | EDC}
Split 3: {EFA | DCB}

## Splits decomposition

•Splits decomposition method, in contrast to MP and ML (parameter optimization), is a transformation based approach.

•Evolutionary data are transformed into a sum of weakly compatible splits and then represented by a split graph.

•For ideal data, this is a tree

•For less ideal data this gives a tree-like network as evidence for different and conflicting phylogenies.

•Split decomposition (Bandelt 1992) does not attempt to force data onto a tree.

# A Split is ...

A "split" is a partition of the taxa into two nonempty subsets, such as the partition obtained when we remove a branch from a phylogenetic tree. For example, removing the branch indicated by the arrow, splits the taxa into two groups {B, C, D, E} and {o, A, F, G, H, I, J, K}.





|    | Α | В | С | D | $\mathbf{E}$ | F | G | Η | weights |
|----|---|---|---|---|--------------|---|---|---|---------|
| 1  | ٠ | 0 | 0 | 0 | 0            | 0 | 0 | 0 | 7.92    |
| 2  | 0 | ٠ | 0 | 0 | 0            | 0 | 0 | 0 | 3.31    |
| 3  | 0 | 0 | ٠ | 0 | 0            | 0 | 0 | 0 | 1.74    |
| 4  | 0 | 0 | 0 | • | 0            | 0 | 0 | 0 | 3.72    |
| 5  | 0 | 0 | 0 | 0 | ٠            | 0 | 0 | 0 | 8.94    |
| 6  | 0 | 0 | 0 | 0 | 0            | ٠ | 0 | 0 | 3.88    |
| 7  | 0 | 0 | 0 | 0 | 0            | 0 | • | 0 | 5.63    |
| 8  | 0 | 0 | 0 | 0 | 0            | 0 | 0 | • | 6.21    |
| 9  | ٠ | ٠ | 0 | 0 | 0            | 0 | 0 | 0 | 1.12    |
| 10 | • | ٠ | • | 0 | 0            | 0 | 0 | 0 | 1.28    |
| 11 | 0 | ٠ | ٠ | • | •            | 0 | 0 | 0 | 2.83    |
| 12 | 0 |   | ٠ | ٠ | 0            | 0 | 0 | 0 | 3.63    |
| 13 | 0 | 0 | 0 | 0 | •            | • | • | 0 | 1.28    |
| 14 | 0 | 0 | 0 | 0 | 0            | • | • | • | 1.95    |



|   |    | A | D | C | D | Ľ | г | G | п | weights |
|---|----|---|---|---|---|---|---|---|---|---------|
| / | 1  | ٠ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.92    |
| 1 | 2  | 0 | ٠ | 0 | 0 | 0 | 0 | 0 | 0 | 3.31    |
| ; | 3  | 0 | 0 | ٠ | 0 | 0 | 0 | 0 | 0 | 1.74    |
| , | 4  | 0 | 0 | 0 | • | 0 | 0 | 0 | 0 | 3.72    |
| ļ | 5  | 0 | 0 | 0 | 0 | • | 0 | 0 | 0 | 8.94    |
| ( | 6  | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | 3.88    |
| , | 7  | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 5.63    |
| i | 8  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 6.21    |
|   | 9  | • | • | 0 | 0 | 0 | 0 | 0 | 0 | 1.12    |
| 1 | 0  | • | • | • | 0 | 0 | 0 | 0 | 0 | 1.28    |
| 1 | .1 | 0 | • | • | • | • | 0 | 0 | 0 | 2.83    |
| 1 | 2  | 0 |   | ٠ | ٠ | 0 | 0 | 0 | 0 | 3.63    |
| 1 | 3  | 0 | 0 | 0 | 0 | • | • | • | 0 | 1.28    |
| 1 | 4  | 0 | 0 | 0 | 0 | 0 | • | • | • | 1.95    |

### Split Network

Formally, for a given taxon set X and set of splits S; we define a split network N to be a connected graph in which some of the nodes are labelled by taxa and all edges are labelled by splits, such that

(N1) Removing all edges associated with a given split S in S divides N into two connected components, one part containing all taxa on one side of S and the other part containing all taxa on the other side.

(N2) The edges along any shortest path in  $\overline{N}$  are all associated with different splits.

# Split System

#### •Compatible System of Split Σ:

For any 2 splits S1{A1,A1} and S2={A2,A2} in S one of the 4 intersections:

A1 $\cap$ A2, A1 $\cap$ A2, A1 $\cap$ A2 or A1 $\cap$ A2

is empty.

(Thus any phylogenetic tree gives rise to a compatible  $\Sigma$  system)

#### •Weakly Compatible System of Split Σ:

For any 3 splits S1, S2 and S3 and all Ai in Si at least one of the 4 intersections:

A1∩A2∩A3, A1∩A2∩A3, A1∩A2∩A3 or A1∩A2∩A3

is empty.

(any 2 splits are allowed to be incompatible)

#### ABCDEF

**Split 1:** {AB | CDEF} **Split 2:** {ED | ABCF} Split 1: {ABC | DEF}
Split 2: {FAB | EDC}
Split 3: {EFA | DCB}

SplitsTree: Application of Phylogenetic Networks in Evolutionary Studies, Daniel H. Huson

SplitsTree Demo



# Case Study: Salmonella lineage

|      | K               | L             | M             | N                 | 0             | Р        | Q             | R                                                                                   |
|------|-----------------|---------------|---------------|-------------------|---------------|----------|---------------|-------------------------------------------------------------------------------------|
| 1    | S.bongori 12419 | E.coli EDL933 | E.coli CFT073 | S.flezneri 2a 301 | E.coli MG1655 | Tree Num | Diff-ConsNetw | tree                                                                                |
| 2    | SBG0351         | Z0495         | c0505         | SF0334            | b0397         | 165      | 2             | (ECO,((EDL,SF),(SBO,((((MCC,SSP),(STY,TY2)),((SEN,SG),(SL,(STM,SDT)))),SAR))),CFT); |
| 3    | SBG0494         | Z0725         | c0671         | SF0497            | Ь0585         | 242      | 2             | ((SB0,(SAR,((SL,(STM,SDT)),(((MCC,SSP),(TY2,STY)),(SG,SEN))))),((EDL,SF),ECO),CFT); |
| 4    | SBG1146         | Z2802         | c2172         | SF1455            | b1768         | 710      | 2             | (EDL,(ECO,(CFT,(SBO,((((SG,SEN),(SL,(STM,SDT))),(((SSP,MCC),TY2),STY)),SAR)))),SF); |
| 5    | 5 SBG1948       | Z3245         | c2602         | SF2141            | b2076         | 869      | 2             | ((SBO,(SAR,(((TY2,STY),(MCC,SSP)),((SEN,SG),((SDT,STM),SL))))),((ECO,SF),EDL),CFT); |
| E    | SBG2960         | Z4576         | c3973         | SF3252            | b3212         | 1392     | 2             | ((ECO,(CFT,(SBO,(SAR,((((SSP,MCC),STY),TY2),((SEN,SG),(SL,(STM,SDT))))))),SF,EDL);  |
| 7    | SBG3398         | Z5198         | c4630         | SF3758            | b3706         | 1600     | 2             | ((SB0,(SAR,(((MCC,SSP),(TY2,STY)),(SEN,(SG,((STM,SDT),SL))))),((SF,EDL),ECO),CFT);  |
| 8    | SBG3293         | Z5047         | c4446         | SF3660            | b3620         | 1641     | 2             | ((ECO.(CFT.(SBO.(SAR.((SG.SEN).(((TY2,STY).(SSP,MCC)).(SL.(STM,SDT))))))),SF,EDL);  |
| 9    | SBG3219         | Z4956         | c4354         | SF3574            | b3539         | 1678     | 2             | (((SAR,(((SEN,SG),(SL,(STM,SDT))),((STY,TY2),(SSP,MCC)))),SBO),(EDL,(ECO,SF)),CFT); |
| 1    | D SBG3118       | Z4771         | c4193         | SF3439            | b3416         | 1732     | 2             | ((CFT,(SBO,(SAR,(((SEN,SG),((STM,SDT),SL)),((MCC,SSP),(TY2,STY)))))),(ECO,SF),EDL); |
| 1    | 1 SBG3673       | Z5631         | c5003         | SF4172            | b4033         | 1812     | 2             | (((SF,EDL),ECO),((SAR,(((TY2,STY),(MCC,SSP)),((SG,SEN),(SDT,(SL,STM))))),SBO),CFT); |
| 1    | 2 SBG3693       | Z5652         | c5031         | SF4151            | b4054         | 1828     | 2             | ((SB0,(((STY,TY2),(((SEN,SG),((STM,SDT),SL)),(SSP,MCC))),SAR)),((EDL,SF),ECO),CFT); |
| 1    | 3 SBG0008       | Z0009         | c0013         | SF0010            | Ь0009         | 6        | 4             | ((((MCC,SSP),(TY2,STY)),(SAR,((SEN,SG),((STM,SDT),SL)))),(((SF,ECO),EDL),CFT),SBO); |
| 1    | 4 SBG0092       | Z0075         | c0082         | SF0061            | Ь0066         | 45       | 4             | ((SAR,(SBO,(((STY,TY2),(SSP,MCC)),((SG,SEN),((SDT,STM),SL))))),(SF,(EDL,ECO)),CFT); |
| 1:   | 5 SBG0093       | Z0076         | c0083         | SF0062            | Ь0067         | 46       | 4             | ((SBO,(SAR,(((SL,(STM,SDT)),((MCC,SSP),(TY2,STY))),(SG,SEN)))),((ECO,SF),EDL),CFT); |
| 1    | 6 SBG0342       | Z0482         | c0493         | SF0322            | b0386         | 159      | 4             | ((SBO,(SAR,((SSP,MCC),((TY2,STY),(((STM,SL),SDT),(SG,SEN)))))),((SF,EDL),ECO),CFT); |
| 1    | 7 SBG0357       | Z0501         | c0513         | SF0340            | b0403         | 171      | 4             | ((SBO,(SAR,(((SEN,SG),(SDT,(STM,SL))),((MCC,SSP),(STY,TY2))))),(EDL,(ECO,SF)),CFT); |
| 1    | 8 SBG0422       | Z0581         | c0584         | SF0410            | b0465         | 208      | 4             | ((SBO,(SAR,((SSP,MCC),((TY2,STY),((SEN,SG),((SDT,SL),STM))))),((EDL,SF),ECO),CFT);  |
| 1    | 9 SBG0443       | Z0604         | c0604         | SF0429            | b0484         | 222      | 4             | (((EDL,CFT),SF),(SBO,(SAR,(((SL,(STM,SDT)),(SG,SEN)),((TY2,STY),(SSP,MCC))))),ECO); |
| 2    | D SBG0496       | Z0727         | c0673         | SF0498            | b0586         | 243      | 4             | (((((STY,TY2),((MCC,SSP),((SG,SEN),(STM,(SDT,SL))))),SAR),SBO),((EDL,SF),ECO),CFT); |
| 2    | 1 SBG0862       | Z1297         | c1083         | SF0948            | b0947         | 442      | 4             | ((SBO,(SAR,((SEN,SG),(((TY2,STY),(MCC,SSP)),((STM,SL),SDT))))),((EDL,SF),ECO),CFT); |
| 2    | 2 SBG1025       | Z1722         | c1353         | SF1088            | b1084         | 492      | 4             | (((ECO,CFT),((SAR,(((SDT,STM),SL),((SG,SEN),((STY,TY2),(MCC,SSP))))),SBO)),EDL,SF); |
| 2    | 3 SBG1575       | Z2532         | c1745         | SF1280            | b1276         | 563      | 4             | (((ECO,EDL),(((((SG,SEN),(SL,(STM,SDT))),((MCC,SSP),(TY2,STY))),SAR),SBO)),SF,CFT); |
| 2    | 4 SBG1531       | Z2450         | c1797         | SF1331            | b1325         | 584      | 4             | ((SBO,(SAR,((TY2,STY),((SSP,MCC),((SEN,SG),(SDT,(STM,SL)))))),((SF,EDL),ECO),CFT);  |
| 2    | 5 SBG1322       | Z2581         | c1982         | SF1612            | b1591         | 623      | 4             | ((ECO,(SF,EDL)),(SBO,(((SG,SEN),(((MCC,SSP),(STY,TY2)),(STM,(SDT,SL)))),SAR)),CFT); |
| 2    | 6 SBG1298       | Z2610         | c2001         | SF1632            | b1609         | 633      | 4             | (((CFT,(SBO,(SAR,((STY,TY2),((SG,SEN),((MCC,SSP),(SL,(STM,SDT))))))),ECO),EDL,SF);  |
| 2    | 7 SBG1264       | Z2661         | c2038         | SF1673            | b1646         | 655      | 4             | ((ECO,EDL),(CFT,(SBO,(SAR,((((SG,SEN),((SDT,STM),SL)),(MCC,SSP)),(TY2,STY))))),SF); |
| 2    | 8 SBG1210       | Z2711         | c2078         | SF1713            | b1683         | 662      | 4             | (EDL,(ECO,((SBO,(SAR,((SL,(STM,(SDT,(SG,SEN)))),((MCC,SSP),(STY,TY2))))),CFT)),SF); |
| 2    | 9 SBG1153       | Z2792         | c2161         | SF1465            | b1760         | 703      | 4             | ((SBO,(SAR,(((SDT,STM),SL),((SEN,SG),(((TY2,STY),MCC),SSP))))),((EDL,SF),ECO),CFT); |
| 3    | D SBG1704       | Z2882         | c2244         | SF1390            | b1835         | 765      | 4             | (CFT.(ECO.(EDL,((SAR,(((SEN,SG),(SL,(STM,SDT))),((MCC,SSP),(STY,TY2)))),SBO))),SF); |
| 3    | 1 SBG1717       | Z2897         | c2258         | SF1857            | b1846         | 772      | 4             | ((SBO,(SAR,((SG,SEN),((SL,(STM,SDT)),((STY,TY2),(MCC,SSP)))))),((SF,EDL),CFT),ECO); |
| 3    | 2 SBG1813       | Z3047         | c2374         | SF2000            | b1956         | 833      | 4             | (((SAR.((STY,TY2),((((STM,SDT),SL),(SEN,SG)),(SSP,MCC)))),SBO),(EDL,(ECO,SF)),CFT); |
| 3    | 3 SBG1977       | Z3379         | c2660         | SF2215            | b2130         | 884      | 4             | (((SAR,(((TY2,STY),(MCC,SSP)),((SG,SEN),((STM,SDT),SL)))),SBO),((ECO,CFT),SF),EDL); |
| 3    | 4 SBG2063       | Z3471         | c2754         | SF2297            | b2213         | 929      | 4             | (((SF,EDL),ECO),(SBO,(SAR,((STY,TY2),((((SL,STM),SDT),(SEN,SG)),(MCC,SSP))))),CFT); |
| 3    | 5 SBG2080       | Z3501         | c2784         | SF2325            | b2243         | 943      | 4             | ((ECO,(CFT,(SBO,(SAR,(((SSP,MCC),(TY2,STY)),(SDT,(SL,(STM,(SEN,SG))))))),EDL,SF);   |
| 3    | 6 SBG2090       | Z3515         | c2799         | SF2336            | b2257         | 947      | 4             | ((ECO,(EDL,SF)),(SBO,(SAR,(((SG,SEN),((STY,TY2),(SSP,MCC))),((SL,STM),SDT)))),CFT); |
| 1 01 | T ODOOMOD       | 70004         | 0000          | 050440            | 1.0044        | 40.05    |               |                                                                                     |

# Case Study: Salmonella lineage

|    | K               | L             | M             | N                 | 0             | Р        | Q             | R                                                                                              |  |
|----|-----------------|---------------|---------------|-------------------|---------------|----------|---------------|------------------------------------------------------------------------------------------------|--|
| 1  | S.bongori 12419 | E.coli EDL933 | E.coli CFT073 | S.flezneri 2a 301 | E.coli MG1655 | Tree Num | Diff-ConsNetw | tree                                                                                           |  |
| 2  | SBG0351         | Z0495         | c0505         | SF0334            | Ь0397         | 165      | 2             | (ECO.((EDL,SF).(SBO.((((MCC,SSP).(STY,TY2)).((SEN,SG).(SL.(STM,SDT)))).SAR))).CFT);            |  |
| 3  | SBG0494         | Z0725         | c0671         | SF0497            | b0585         | 242      | 2             | ((SB0,(SAR,((SL,(STM,SDT)),(((MCC,SSP),(TY2,STY)),(SG,SEN))))),((EDL,SF),ECO),CFT);            |  |
| 4  | SBG1146         | Z2802         | c2172         | SF1455            | b1768         | 710      | 2             | (EDL,(ECO,(CFT,(SBO,((((SG,SEN),(SL,(STM,SDT))),(((SSP,MCC),TY2),STY)),SAR)))),SF);            |  |
| 5  | SBG1948         | Z3245         | c2602         | SF2141            | b2076         | 869      | 2             | ((SBO,(SAR,(((TY2,STY),(MCC,SSP)),((SEN,SG),((SDT,STM),SL))))),((ECO,SF),EDL),CFT);            |  |
| 6  | SBG2960         | Z4576         | c3973         | SF3252            | b3212         | 1392     | 2             | ((ECO,(CFT,(SBO,(SAR,((((SSP,MCC),STY),TY2),((SEN,SG),(SL,(STM,SDT))))))),SF,EDL);             |  |
| 7  | SBG3398         | Z5198         | c4630         | SF3758            | b3706         | 1600     | 2             | ((SBO,(SAR,(((MCC,SSP),(TY2,STY)),(SEN,(SG,((STM,SDT),SL))))),((SF,EDL),ECO),CFT);             |  |
| 8  | SBG3293         | Z5047         | c4446         | SF3660            | b3620         | 1641     | 2             | ((ECO,(CFT,(SBO,(SAR,((SG,SEN),(((TY2,STY),(SSP,MCC)),(SL,(STM,SDT))))))),SF,EDL);             |  |
| 9  | SBG3219         | Z4956         | c4354         | SF3574            | b3539         | 1678     | 2             | (((SAR.(((SEN,SG),(SL,(STM,SDT))),((STY,TY2),(SSP,MCC)))),SBO),(EDL,(ECO,SF)),CFT);            |  |
| 10 | SBG3118         | Z4771         | c4193         | SF3439            | b3416         | 1732     | 2             | ((CFT,(SBO,(SAR,(((SEN,SG),((STM,SDT),SL)),((MCC,SSP),(TY2,STY))))),(ECO,SF),EDL);             |  |
| 11 | SBG3673         | Z5631         | c5003         | SF4172            | b4033         | 1812     | 2             | <pre>(((SE_EDL)ECD).((SAR.(((TY2,STY).(MCC,SSP)).((SG,SEN).(SDT.(SL,STM))))).SBO).CFT);</pre>  |  |
| 12 | SBG3693         | Z5652         | c5031         |                   |               |          |               | Y2).(((SEN,SG).((STM,SDT),SL)).(SSP,MCC))).SAR)).((EDL,SF).ECO).CFT);                          |  |
| 13 | SBG0008         | Z0009         | c0013         |                   |               |          |               | (TY2,STY)),(SAR,((SEN,SG),((STM,SDT),SL)))),(((SF,ECO),EDL),CFT),SBO);                         |  |
| 14 | SBG0092         | Z0075         | c0082         |                   |               | TP       | <b>100</b>    | STY,TY2),(SSP,MCC)),((SG,SEN),((SDT,STM),SL))))),(SF,(EDL,ECO)),CFT);                          |  |
| 15 | SBG0093         | Z0076         | c0083         |                   | ) J L         | L        |               | SL.(STM,SDT)).((MCC,SSP).(TY2,STY))).(SG,SEN)))).((ECO,SF).EDL).CFT);                          |  |
| 16 | SBG0342         | Z0482         | c0493         |                   |               |          |               | SSP,MCC).((TY2,STY).(((STM,SL),SDT).(SG,SEN)))))).((SF,EDL).ECO).CFT);                         |  |
| 17 | SBG0357         | Z0501         | c0513         | SF0340            | 60403         | 171      | 4             | <pre>((SB0,(SAF,(((SEN,SG),(SDT,(STM,SL))),((MCC,SSP),(STY,TY2))))),(EDL,(EC0,SF)),CFT);</pre> |  |
| 18 | SBG0422         | Z0581         | c0584         | SF0410            | b0465         | 208      | 4             | ((SBO,(SAR,((SSP,MCC),((TY2,STY),((SEN,SG),((SDT,SL),STM))))),((EDL,SF),ECO),CFT);             |  |
| 19 | SBG0443         | Z0604         | c0604         | SF0429            | b0484         | 222      | 4             | (((EDL,CFT),SF),(SBO,(SAR,(((SL,(STM,SDT)),(SG,SEN)),((TY2,STY),(SSP,MCC))))),ECO);            |  |
| 20 | SBG0496         | Z0727         | c0673         | SF0498            | b0586         | 243      | 4             | (((((STY,TY2).((MCC,SSP).((SG,SEN).(STM.(SDT,SL))))),SAR),SBO).((EDL,SF),ECO),CFT);            |  |
| 21 | SBG0862         | Z1297         | c1083         | SF0948            | b0947         | 442      | 4             | ((SBO,(SAR,((SEN,SG),(((TY2,STY),(MCC,SSP)),((STM,SL),SDT))))),((EDL,SF),ECO),CFT);            |  |
| 22 | SBG1025         | Z1722         | c1353         | SF1088            | b1084         | 492      | 4             | (((ECO,CFT),((SAR,(((SDT,STM),SL),((SG,SEN),((STY,TY2),(MCC,SSP))))),SBO)),EDL,SF);            |  |
| 23 | SBG1575         | Z2532         | c1745         | SF1280            | b1276         | 563      | 4             | (((ECO,EDL),(((((SG,SEN),(SL,(STM,SDT))),((MCC,SSP),(TY2,STY))),SAR),SBO)),SF,CFT);            |  |
| 24 | SBG1531         | Z2450         | c1797         | SF1331            | b1325         | 584      | 4             | ((SB0,(SAR,((TY2,STY),((SSP,MCC),((SEN,SG),(SDT,(STM,SL)))))),((SF,EDL),ECO),CFT);             |  |
| 25 | SBG1322         | Z2581         | c1982         | SF1612            | b1591         | 623      | 4             | ((ECO,(SF,EDL)),(SBO,(((SG,SEN),(((MCC,SSP),(STY,TY2)),(STM,(SDT,SL)))),SAR)),CFT);            |  |
| 26 | SBG1298         | Z2610         | c2001         | SF1632            | b1609         | 633      | 4             | (((CFT,(SBO,(SAR,((STY,TY2),((SG,SEN),((MCC,SSP),(SL,(STM,SDT))))))),ECO),EDL,SF);             |  |
| 27 | SBG1264         | Z2661         | c2038         | SF1673            | b1646         | 655      | 4             | ((ECO,EDL),(CFT,(SBO,(SAR,((((SG,SEN),((SDT,STM),SL)),(MCC,SSP)),(TY2,STY))))),SF);            |  |
| 28 | SBG1210         | Z2711         | c2078         | SF1713            | b1683         | 662      | 4             | (EDL,(ECO,((SBO,(SAR,((SL,(STM,(SDT,(SG,SEN)))),((MCC,SSP),(STY,TY2))))),CFT)),SF);            |  |
| 29 | SBG1153         | Z2792         | c2161         | SF1465            | b1760         | 703      | 4             | ((SB0,(SAR,(((SDT,STM),SL),((SEN,SG),(((TY2,STY),MCC),SSP))))),((EDL,SF),ECO),CFT);            |  |
| 30 | SBG1704         | Z2882         | c2244         | SF1390            | b1835         | 765      | 4             | (CFT,(ECO,(EDL,((SAR,(((SEN,SG),(SL,(STM,SDT))),((MCC,SSP),(STY,TY2)))),SBO))),SF);            |  |
| 31 | SBG1717         | Z2897         | c2258         | SF1857            | b1846         | 772      | 4             | ((SB0,(SAR,((SG,SEN),((SL,(STM,SDT)),((STY,TY2),(MCC,SSP)))))),((SF,EDL),CFT),ECO);            |  |
| 32 | SBG1813         | Z3047         | c2374         | SF2000            | b1956         | 833      | 4             | (((SAR,((STY,TY2),((((STM,SDT),SL),(SEN,SG)),(SSP,MCC)))),SBO),(EDL,(ECO,SF)),CFT);            |  |
| 33 | SBG1977         | Z3379         | c2660         | SF2215            | b2130         | 884      | 4             | (((SAR,(((TY2,STY),(MCC,SSP)),((SG,SEN),((STM,SDT),SL)))),SBO),((ECO,CFT),SF),EDL);            |  |
| 34 | SBG2063         | Z3471         | c2754         | SF2297            | b2213         | 929      | 4             | (((SF,EDL),ECO),(SBO,(SAR,((STY,TY2),((((SL,STM),SDT),(SEN,SG)),(MCC,SSP))))),CFT);            |  |
| 35 | SBG2080         | Z3501         | c2784         | SF2325            | b2243         | 943      | 4             | ((ECO.(CFT.(SBO.(SAR.(((SSP,MCC).(TY2,STY)).(SDT.(SL.(STM.(SEN,SG)))))))),EDL,SF);             |  |
| 36 | SBG2090         | Z3515         | c2799         | SF2336            | b2257         | 947      | 4             | ((ECO,(EDL,SF)),(SBO,(SAR,(((SG,SEN),((STY,TY2),(SSP,MCC))),((SL,STM),SDT)))),CFT);            |  |

#### **One tree – 15 Genomes**

⊢−10.01



#### **One Network – 15 Genomes**



# 15 Genomes and the big picture



| Differences against | Number of Trees |               |           |            |  |  |  |  |
|---------------------|-----------------|---------------|-----------|------------|--|--|--|--|
| consensus Tree      | Staphylococcus  | Streptococcus | Neisseria | Salmonella |  |  |  |  |
| 0                   | 0               | 10            | 11        | 0          |  |  |  |  |
| 2                   | 1               | 34            | 49        | 11         |  |  |  |  |
| 4                   | 7               | 70            | 183       | 43         |  |  |  |  |
| 6                   | 27              | 76            | 467       | 90         |  |  |  |  |
| 8                   | 56              | 95            | 434       | 158        |  |  |  |  |
| 10                  | 74              | 62            | 46        | 207        |  |  |  |  |
| 12                  | 118             | 51            | 0         | 261        |  |  |  |  |
| 14                  | 155             | 16            | 0         | 344        |  |  |  |  |
| 16                  | 161             | 12            | 0         | 335        |  |  |  |  |
| 18                  | 108             | 2             | 0         | 259        |  |  |  |  |
| 20                  | 22              | 1             | 0         | 153        |  |  |  |  |
| 22                  | 4               | 0             | 0         | 76         |  |  |  |  |
| 24                  | 1               | 0             | 0         | 15         |  |  |  |  |

