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Hidden Markov Models: a very general form of probabilistic model for 
sequences of symbols. Types of question we can answer with HMMs, include: 
“Does this sequence belong to a particular family?” “Assuming the sequence 
does come from some family what can we say about its internal structure?
(e.g. identify an alpha helix in a protein sequence)”.

The overwhelming majority of literature on HMMs sits on speech recognition, 
where HMMs were first applied in the 1970s (Rabiner 1989). After recording, a 
speech signal is divided into pieces, called frames, of 10-20 milliseconds. After 
some preprocessing each frame is assigned to one out of a large number 
(typically 256) of predefined categories. 

The speech signal is then represented as a long sequence of category labels 
and from that the speech recognizer has to find out what sequence of 
phonemes (or words) was spoken. The problems are that there are variations 
in the actual sound uttered, and there are also variations in the time taken to 
say various parts of the word.
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Hidden Markov Models

…in speech recognition 



In biology we have similar problems to deal with, e.g. we typically want to know 
what protein family a given sequence belongs to. Here the primary sequence of 
amino acids is analogous to the speech signal and the protein family to the spoken 
word it represents. The time-variation of the speech signal corresponds to having 
insertions and deletions in the protein sequences.

Example: CpG islands

In the human genome wherever the dinucleotide CG occurs, the C nucleotide is 
typically chemically modified by methylation.  There is a relative high chance of this 
methyl-C mutating into a T, with the consequence that in general CpG dinucleotides 
are rarer in the genome that would be expected from the independent probabilities 
of C and G. 

For biological important reasons the methylation process is suppressed in short 
stretches of the genome, such as around promoters or start regions of many genes. 
In these regions we see many more CpG dinucleotides than elsewhere, and in fact 
more C and G in general. Such regions are called CpG islands (Bird 1987). They are 
typically a few hundred to a few thousand bases long.
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CpG islands & Markov chains

A. Given a short stretch of genomic sequence, how would we decide if it comes from a CpG
island or not?

B. Given a long piece of sequence how would we find the CpG island in it, if there are any?

What short of probabilistic model should we use for CpG islands? We know that 
dinucleotides are important. We therefore want a model that generates sequences in which 
the probability of a symbol depends on the previous symbol. The simplest such model is a 
classical Markov chain:

where we see a state for each of the four letters A, C, G and T. A probability parameter is 
associated with each arrow in the figure, which determines the probability of a certain 
residue following another residue, or one state following another state. There probability 
parameters are called the transition probabilities, which we will write αst: 
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For any probabilistic model of sequences we can write the probability of the 
sequences as

by applying (PX,Y) = P(Y)P(X|Y) many times. 

The key property of a Markov chain is that the probability of each symbol xi depends 
only on the value of the preceding symbol xi-1, not the entire previous sequence, i.e. 
P(xi|xi-1, …., x1) = P(xi|xi-1) = αxi-1xi. 

The previous equation therefore becomes:
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Notice that as well as specifying the transition probabilities we must also give 
the probability P(x1) of starting in a particular state. It is possible to introduce 
an extra begin (B) and end (E) state to the model:

which is the probability of ending with residue t. We can treat those two new 
states are “silent” states.

Markov chains

… modelling the beginning and end of sequences
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Using Markov chains for discrimination

We can use equation 3.2 to calculate the values for a likelihood ratio test. From a 
set of human DNA sequences we extract a total of 48 putative CpG islands and 
derive two Markov chain models, one for the regions labeled as CpG islands (+ 
model) and the other from the remainder of the sequence (- model). The transition 
probabilities for each model are set using the equation

and its analogue for the - model,  where Cst
+ is the number of times letter t is 

followed by letter s in the labeled regions (i.e. the ML estimators for the transition 
probabilities):

+ A C G T - A C G T 

A 0.180 0.274 0.426 0.120 A 0.300 0.205 0.285 0.210 

C 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.302 

G 0.161 0.339 0.375 0.125 G 0.248 0.246 0.298 0.208 

T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292 
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where the first row in these case contains the frequencies with which an A
is followed by each of the four bases, and so on for the other rows, so 
each row sums to one.  These numbers are not the same; G following A is 
much more common than T following A.

To use these models for discrimination, we calculate the log-odds ratio

where x is the sequence and 
βxi-1xi are the log likelihood 
ratios of the corresponding 
transition probabilities. A table 
β is given below in bits:

β A C G T 

A -0.740 0.419 0.580 -0.803 

C -0.913 0.302 1.812 -0.685 

G -0.624 0.461 0.331 -0.730 

T -1.169 0.573 0.393 -0.679 
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Using Markov chains for discrimination

… CpG islands



“How do we find CpG islands in a long unannotated sequence?”

A simple approach would be to use the Markov chain models that we 
built earlier by calculating the log-odds score for a window size, say, 100 
nucleotides around every nucleotide in the sequence and plotting it. We 
would expect CpG islands to stand out with positive values.

However this is somehow unsatisfactory if we believe that CpG islands 
have sharp boundaries and are of variable lengths. Why use a window 
size of 100? A more satisfactory approach is to build a single model for 
the entire sequence and incorporate both Markov chains.
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Hidden Markov Models

To simulate in one model the “islands” in a “sea” of non-island genomic 
sequence, we want to have  both the Markov chains in the same model, with 
a small probability of switching from one chain to the other at each transition 
point.

We re-label the states as follows: A+, C+, G+, T+ which emit A, C, G, T in CpG
island regions and A–, C–, G–, T– which emit A, C, G, T in non-island regions. 
The transition probabilities in this model are set so that within each group 
they are close to the transition probabilities of the original component model, 
but with a small chance of switching into the other component. Overall there 
is more chance of switching from + to – than vice versa, so if left to run free, 
the model will spend more of its time in the – non-island states than in the 
island states.

The essential difference between a Markov chain and a hidden Markov model 
is that for a hidden Markov model there is not a one-to-one correspondence 
between the states and the symbols. It is no longer possible to tell what 
state the model was in when xi was generated just by looking at xi, i.e. there 
is no way to tell by looking at a single C symbol in isolation whether it was 
emitted by state C+ or state C–
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Hidden Markov Models

We need to distinguish the sequence of states from the sequence of symbols. 
Let us call the state sequence the path, π. The ith state in the path is called πi:

Because we have decoupled the symbol b from the states k, we must introduce 
a new set of parameters for the model, ek(b): 

the probability that symbol b is seen in state k (i.e. the emission probabilities). 

To illustrate emission probabilities we switch back to the casino example. In a 
casino they use a fair die most of the time, but occasionally they switch to a 
loaded die. The loaded die has probability 0.5 of a six and probability 0.1 for 
the numbers one to five. Assume that the casino switches from a fair to a 
loaded die with probability 0.05 and 0.1 for switching back.

1
( | )        (3.4)kl i ia P l kπ π −= = =
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Hidden Markov Models

Then the switch between dice is a Markov process:

What is hidden in the above model? If you can just see a sequence of rolls you 
do not know which rolls used a loaded die and which used a fair one, because 
that is kept secret by the casino; that is the state sequence is hidden.

It is now easy to write down the joint probability of an observed sequence x
and a state sequence π:
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Although it is no longer possible to tell what state the system is in by 
looking at the corresponding symbol, it is often the sequence of underlying 
states that we are interested in. 

To find out what the observation sequence “means” by considering the 
underlying states is called decoding in the jargon of speech recognition. 
There are several approaches to decoding; here we will discuss the most 
common one, called the Viterbi algorithm.

In general there may be many state sequences that could give rise to any 
particular sequence of symbols, for example:

[ C+G+ C+ G+ ] 

[ C– G– C– G– ]

[ C+G– C+  G– ] 

would all generate the symbol sequence CGCG. However they do so with 
very different probabilities.

Most probable state path

… the Viterbi algorithm
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Find the most probable path π



Most probable state path

… the Viterbi algorithm

A predicted path through the HMM will tell us which part of the sequence is 
predicted as a CpG island, because we assumed that each state was assigned to 
model either CpG islands or other regions. If we are to choose just one path, 
perhaps the one with the highest probability should be chosen:

The most probable path π* can be found recursively. Suppose the probability uk(i)
of the most probable path ending in state k with observation i is known for all 
states k. Then these probabilities can be calculated for the observation xi+1 as 

All sequences have to start in state 0 (the begin state), so the initial condition is 
that u0(0) =1. By keeping pointers backwards, the actual state sequence can be 
found by backtracing. The full algorithm is:

* argmax  ( , )      (3.7)P x
π

π π=
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Most probable state path

… the Viterbi algorithm

Initialisation (i = 0): 

Recursions (i = 1 … L):

Termination:

Tracecback (i = L … 1):
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Multiplying many probabilities always yields very small numbers that will 
give overflow errors on any computer. For this reason the Viterbi algorithm 
should always be done in log space.



The occasionally dishonest casino



To calculate the probability of an entire sequence P(x) for an HMM we must add the 
probabilities for all possible paths to obtain the full probability of x, because many 
different state paths can give rise to the same sequence x:

This probability can be calculated by a similar dynamic programming procedure to the 
Viterbi algorithm, replacing maximization steps with sums. This is called the forward 
algorithm.

The quantity corresponding to the Viterbi variable uk(i) in the forward algorithm is 

which is the probability of the observed sequence up to and including xi, requiring that 
πi = k.

The forward algorithm

( ) ( , )     (3.9)P x P x
π

π=∑



To calculate the probability of an entire sequence P(x) for an HMM we must add the 
probabilities for all possible paths to obtain the full probability of x, because many 
different state paths can give rise to the same sequence x:

This probability can be calculated by a similar dynamic programming procedure to the 
Viterbi algorithm, replacing maximization steps with sums. This is called the forward 
algorithm.

The quantity corresponding to the Viterbi variable uk(i) in the forward algorithm is 

which is the probability of the observed sequence up to and including xi, requiring that 
πi = k.

The forward algorithm

( ) ( , )     (3.9)P x P x
π

π=∑



To calculate the probability of an entire sequence P(x) for an HMM we must add the 
probabilities for all possible paths to obtain the full probability of x, because many 
different state paths can give rise to the same sequence x:
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The forward algorithm

Initialisation (i = 0): 

Recursions (i = 1 … L):

Termination:
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The backward algorithm

The Viterbi algorithm finds the most probable path through the model. But what if we 
want to know what the most probable state is for an observation xi? 

More generally we may want the probability that observation xi came from state k
given the observed sequence, i.e. P(πi = k|x). This is the posterior probability of state 
k at time i when the emitted sequence is known.

We first calculate the probability of producing the entire observed sequence with the 
ith symbol being produced by state k:

The first term is recognized as fk(i) that was calculated by the forward algorithm. The 
second term is called bk(i):
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The backward algorithm

It is analogous to the forward variable, but instead obtained by a backwards 
recursion starting at the end of the sequence:

Initialisation (i = L): 

Recursions (i = L-1, …, 1):

Termination:
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The backward algorithm

Equation 3.12 can be written as P(x,πi = k) = fk(i)bk(i) and from it we obtain 
the required posterior probabilities:

where P(x) is the result of the forward (or  backward) calculation.
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�What is the probability of observing X?

Forward algorithm

�What is the probability that the internal state at time i was a specific 
state k?

Backward algorithm

�What is the most probable path of hidden states?

Viterbi algorithm

[F] [B] [V] algorithms



We assume that we have a set of example sequences 
(training sequences) of the type that we want to model. Let 
these be x1, …, xn . Working in log space the log probability 
of the sequences is:

where θ represents the entire  current set of values of the 
parameters in the model (all the αs and es). 

HMMs … parameter estimation
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When the paths are known the estimation of the probability 
parameters is easy. We can simply count the number of times 
each particular transition or emission is used in the training 
dataset. Let these be Akl and Ek(b). Then the ML estimators for 
be αkl and ek(b) are:

HMMs … parameter estimation

when the state sequence is known
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When the paths are known the estimation of the probability 
parameters is easy. We can simply count the number of times 
each particular transition or emission is used in the training 
dataset. Let these be Akl and Ek(b). Then the ML estimators for 
be αkl and ek(b) are:

To avoid overfitting if there are insufficient data, we should 
add pseudocounts to the Akl and Ek(b) before suing 3.18.

Akl = number of transitions k to l in the training data + rkl.

Ek(b) = number of emissions of b from k in the training data + 
rk(b).
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When the paths are unknown for the training sequences, there is no 
longer a direct closed form equation for the estimated parameter
values, and some form of iterative procedure must be used. 

A standardly used algorithm is the Baum-Welch algorithm (Baum 
1972). It first estimates the Akl and Ek(b) by considering probable 
paths for the training sequences using the current values of αkl and 
ek(b). The BW algorithm is a special case of a very powerful general 
approach to probabilistic parameter estimation called EM algorithm.

Then 3.18 is used to derive new values of the αs and es. This 
process is iterated until some stopping criterion is reached. The 
overall log likelihood of the model is increased by the iteration, and 
hence the process will converge to a local maximum. 

Unfortunately there are usually many local maxima, and which one
you end up with depends strongly on the starting values of the 
parameters.
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More formally the Baum-Welch algorithm calculates Akl and Ek(b) as the 
expected number of times each transition or emission is used given the 
training sequences. To do this it uses the same forward and backward
values as the posterior probability decoding method. The probability
that αkl is used at position i in sequence x is:
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More formally the Baum-Welch algorithm calculates Akl and Ek(b) as the 
expected number of times each transition or emission is used given the 
training sequences. To do this it uses the same forward and backward
values as the posterior probability decoding method. The probability
that αkl is used at position i in sequence x is:

From this we can derive the expected number of times that αkl is used 
by summing over all positions and over all training sequences:

where fk
j(i) is the forward variable calculated for sequence j and bl

j(i) is 
the corresponding backward variable. 
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Similarly we can find the expected number of times that letter b
appears in state k:

where the inner sum is only over those positions i for which the 
symbol emitted is b.

Having calculated these expectations the new model parameters 
are calculated again via 3.18. We can iterate using the new 
values of the parameters to obtain new values of the As and Es 
but since we are converging in a continuous-values space we will 
never in fact reach the maximum, so we need to set a 
convergence criterion.
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HMMs … parameter estimation

when the paths are unknown

Summary of Baum-welch:

Initialisation: Pick arbitrary model parameters.

Recurrence:

Set all the A and E variables to their pseudocount values r or to zero.

For each sequence j = 1…n:

Calculate fk(i) for sequence j using the forward algorithm.

Calculate bk(i) for sequence j using the backward algorithm.

Add the contribution of sequence j to A (3.20) and E (3.21).

Calculate the new model parameters using 3.18

Calculate the new log likelihood of the model.

Termination: Stop if the change in log likelihood is less than some predefined 
threshold.



The occasional dishonest casino 

We are suspicious that a casino is using a loaded die, but we do not know for 
certain. Night after night we collect data observing rolls. When we have enough we 
want to estimate the model. From this sequence of observations a model was 
estimated using BW. Initially all the probabilities were set to random numbers.

You can see they are fairly similar although the estimated transition probabilities 
are quite different. This is problem of local maxim due to low number of 
observations.

We repeat with 30000 random rolls:

And this time we came closer to the true model:

The correct model 0.101 bits

Model estimated from 300 rolls 0.097 bits

Model estimated from 30000 rolls 0.100 bits

300 rollstrue model
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Source: http://www.biojava.org/wiki/BioJava:Tutorial:Simple_HMMs_with_BioJava

//The core of the program is the createCasino() method.
//This creates an instance of the MarkovModel class that implements the model.
public static MarkovModel createCasino() {

Symbol[] rolls=new Symbol[6];

//set up the dice alphabet
SimpleAlphabet diceAlphabet=new SimpleAlphabet();
diceAlphabet.setName("DiceAlphabet");

for(int i=1;i<7;i++) {
try {
rolls[i-1]= AlphabetManager.createSymbol((char)('0'+i),""+i,Annotation.EMPTY_ANNOTATION);
diceAlphabet.addSymbol(rolls[i-1]);
} catch (Exception e) {
throw new NestedError(
e, "Can't create symbols to represent dice rolls"
);
}
}

//Next, distributions representing the emission probabilities of the fair die and
//loaded die states are created (named fairD and loadedD respectively)
int [] advance = { 1 };
Distribution fairD;
Distribution loadedD;
try {
fairD =DistributionFactory.DEFAULT.createDistribution(diceAlphabet);
loadedD =DistributionFactory.DEFAULT.createDistribution(diceAlphabet);
} catch (Exception e) {
throw new NestedError(e, "Can't create distributions");
}
EmissionState fairS = new SimpleEmissionState("fair",Annotation.EMPTY_ANNOTATION, advance, fairD);
EmissionState loadedS = newSimpleEmissionState("loaded",Annotation.EMPTY_ANNOTATION, advance, loadedD);



//The HMM is then created with these states
SimpleMarkovModel casino = new SimpleMarkovModel(1,diceAlphabet, "Casino");
try {
casino.addState(fairS);
casino.addState(loadedS);
}
catch (Exception e) {
throw new NestedError(e, "Can't add states to model");
}

//Next, we need to model the transitions between the states.
try {

casino.createTransition(casino.magicalState(),fairS);
casino.createTransition(casino.magicalState(),loadedS);
casino.createTransition(fairS,casino.magicalState());
casino.createTransition(loadedS,casino.magicalState());
casino.createTransition(fairS,loadedS);
casino.createTransition(loadedS,fairS);
casino.createTransition(fairS,fairS);
casino.createTransition(loadedS,loadedS);
} catch (Exception e) {
throw new NestedError(e, "Can't create transitions");
}

//The emission distributions fairD and loadedD we set up earlier need to be initialised
try {

for(int i=0;i<rolls.length;i++) {
fairD.setWeight(rolls[i],1.0/6.0);
loadedD.setWeight(rolls[i], 0.1);
}
loadedD.setWeight(rolls[5],0.5);
} catch (Exception e) {
throw new NestedError(e, "Can't set emission probabilities");
}



//set up transition scores.
try {
Distribution dist;

dist = casino.getWeights(casino.magicalState());
dist.setWeight(fairS, 0.8);
dist.setWeight(loadedS, 0.2);

dist = casino.getWeights(fairS);
dist.setWeight(loadedS, 0.04);
dist.setWeight(fairS, 0.95);
dist.setWeight(casino.magicalState(), 0.01);

dist = casino.getWeights(loadedS);
dist.setWeight(fairS, 0.09);
dist.setWeight(loadedS, 0.90);
dist.setWeight(casino.magicalState(), 0.01);
} catch (Exception e) {
throw new NestedError(e, "Can't set transition probabilities");
}

//Having completed constructing the MarkovModel, all that remains is to return it to the caller.
return casino;

//Having created the MarkovModel, we create the corresponding dynamic programming object
DP dp=DPFactory.DEFAULT.createDP(casino);

//Now, at last, we have something we can use! To generate a sequence of dice throws with this model, we do
StatePath obs_rolls = dp.generate(300);

//Next, we want to test one of the DP algorithms in the DP object 
SymbolList roll_sequence =obs_rolls.symbolListForLabel(StatePath.SEQUENCE);
SymbolList[] res_array = {roll_sequence};
StatePath v = dp.viterbi(res_array,ScoreType.PROBABILITY);

//print out obs_sequence, output, state symbols.
for(int i = 1; i <= obs_rolls.length()/60; i++) {

for(int j=i*60; j





Source: http://www.cs.umb.edu/~srevilak/viterbi/

Viterbi Demo



Figure .: The architecture of the two-state (Native, Alien), second order HMM, used in 
a change-point detection framework.
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Algorithm:Algorithm:Algorithm:Algorithm: Change-point detection.
C: number of iterations
Init: i = 1;
α’ΝΑ: initial starting point for αΝΑ
extend the predictions upstream and downstream
set initial model:

prior distribution for the emission probabilities:
N state: trainable second order uniform (eN) 
distribution

A state: trainable second order uniform (eA) 
distribution

prior transition probabilities:
αΝΑ = α’ΝΑ (multiple starting points - trainable)
αΑN = 0 (untrainable)

BW training until convergence:
stopping criteria: LastScore - CurrentScore < 0.001
updated-trained emission, transition probabilities

Viterbi: most probable path π*, with score Si
if if if if Si > Simax then Simax = Si

ifififif i < C dodododo
i++;
new starting point α’ΝΑ
gotogotogotogoto step 2

report the path π* with Simax
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import java.io.*;
import org.biojava.bio.symbol.*;
import org.biojava.bio.seq.*;
import org.biojava.bio.seq.io.*;
import org.biojava.bio.dp.*;
import org.biojava.bio.*;
import org.biojava.bio.seq.db.*;
import org.biojava.bio.seq.impl.*;
import org.biojava.bio.dist.*;
import org.biojava.utils.*;
import java.util.*;

class ChangepointLeft{

public static SymbolList seqL;
public static int order;
public static int flatOrRandom;
public static int trainOrUntrain;
public static Distribution dist;
public static int duration;
public static ModelTrainer mt;
public static int transition_point=0;
public static int count=0;

//make alphabets
static FiniteAlphabet DnaAlphabet = DNATools.getDNA();

public static void main (String args[]) throws Exception{

if(args.length != 5) {
throw new Exception("Use: sequence.fa order.int flatD.bin trainableTrans.bin duration.int");
}

try{



File seqFile = new File(args[0]);
order = Integer.parseInt(args[1]);
flatOrRandom = Integer.parseInt(args[2]);
trainOrUntrain = Integer.parseInt(args[3]);
duration = Integer.parseInt(args[4]);

if((flatOrRandom != 0) & (flatOrRandom != 1)) {
throw new Exception("Use flatD.bin: only binary i.e. 0 or 1: . . 1/0 . .");
}
if((trainOrUntrain != 0) & (trainOrUntrain != 1)) {
throw new Exception("Use trainableTrans.bin: only binary i.e. 0 or 1: . . . 1/0 .");
}

SymbolTokenization rParser = DnaAlphabet.getTokenization("token");

SequenceBuilderFactory sbFact = new FastaDescriptionLineParser.Factory(SimpleSequenceBuilder.FACTORY);
FastaFormat fFormat = new FastaFormat();

SequenceIterator seqI = new StreamReader(new FileInputStream(seqFile),
fFormat,
rParser,
sbFact);

seqI.hasNext();

Sequence seq2 = seqI.nextSequence();
SequenceDB seqs = new HashSequenceDB();
seqL = seq2;

MarkovModel island = createModel();
DP dp=DPFactory.DEFAULT.createDP(island);

Sequence seq = new SimpleSequence(
SymbolListViews.orderNSymbolList(seq2, order),
null,
seq2.getName() + "-o" + order,
Annotation.EMPTY_ANNOTATION

);

seqs.addSequence(seq);



TrainingAlgorithm ta = new BaumWelchTrainer(dp);

ta.train(
seqs,
0.01,

new StoppingCriteria() {
public boolean isTrainingComplete(TrainingAlgorithm ta) {

try {
// XmlMarkovModel.writeModel(ta.getDP().getModel(), System.out); 
//out2.write(ta.getCycle() + "\t" + ta.getCurrentScore() + "\n");
}catch (Exception ex) {ex.printStackTrace();}
//System.out.println(ta.getCycle() + "\t" + ta.getCurrentScore());
//return (ta.getCycle() >=2);
return Math.abs(ta.getLastScore() - ta.getCurrentScore()) < 0.001;
}

}
);



//Viterbi

SymbolList [] rl = {SymbolListViews.orderNSymbolList(seq2, order)};

StatePath statePath = dp.viterbi(rl, ScoreType.PROBABILITY);

for(int i = 0; i <= statePath.length() / 60; i++) {

for(int j = i*60; j < Math.min((i+1)*60, statePath.length()); j++) {
//System.out.print(statePath.symbolAt(StatePath.STATES, j+1).getName().charAt(0));
char state=statePath.symbolAt(StatePath.STATES, j+1).getName().charAt(0);
count++;
//it prints the states in binary mode for art user_graph
if(state == 'a'){
//out.write("0 1");
}
else{
transition_point=count;
//out.write("1 0");
}

}

}

System.out.print(transition_point + " " + statePath.getScore());

}catch (Exception e) {
e.printStackTrace();

}

}



//creates the model
public static MarkovModel createModel() {

List l = Collections.nCopies(order, DNATools.getDNA());
Alphabet alpha = AlphabetManager.getCrossProductAlphabet(l);

int [] advance = { 1 };
Distribution typicalD;
Distribution atypicalD;

try{

//check if higher order; else normal dist
if(order >1){
typicalD = OrderNDistributionFactory.DEFAULT.createDistribution(alpha);
atypicalD = OrderNDistributionFactory.DEFAULT.createDistribution(alpha);
}
else{
typicalD = DistributionFactory.DEFAULT.createDistribution(alpha);
atypicalD = DistributionFactory.DEFAULT.createDistribution(alpha);
}

}catch (Exception e){
throw new AssertionFailure("Can't create distributions", e);

}



EmissionState typicalS = new SimpleEmissionState("typical", Annotation.EMPTY_ANNOTATION, advance, typicalD);
EmissionState atypicalS = new SimpleEmissionState("atypical", Annotation.EMPTY_ANNOTATION, advance, atypicalD);

SimpleMarkovModel island = new SimpleMarkovModel(1, alpha, "Island");

try{
island.addState(typicalS);
island.addState(atypicalS);

}catch (Exception e){
throw new AssertionFailure("Can't add states to model", e);
}

//set up transitions between states
try {

island.createTransition(island.magicalState(),typicalS);
island.createTransition(island.magicalState(),atypicalS);
island.createTransition(typicalS,island.magicalState());
island.createTransition(atypicalS,island.magicalState());
island.createTransition(typicalS,atypicalS);
island.createTransition(atypicalS,typicalS);
island.createTransition(typicalS,typicalS);
island.createTransition(atypicalS,atypicalS);

}catch (Exception e){
throw new AssertionFailure("Can't create transitions", e);

}



//set up emission probabilities
try {

SymbolList highOrderSeq = SymbolListViews.orderNSymbolList (seqL, order);
Hashtable symbol= new Hashtable();

for (Iterator i = highOrderSeq.iterator(); i.hasNext(); ) {
Symbol sym = (Symbol) i.next();

if(!symbol.containsKey(sym)){
//uniform weights for atypical emmision probs
atypicalD.setWeight(sym,0.25);
typicalD.setWeight(sym, 0.25);
symbol.put(sym, new Integer(1));
}

}

if(flatOrRandom == 0){
//it randomizes the atypical emission probs
DistributionTools.randomizeDistribution(atypicalD);
DistributionTools.randomizeDistribution(typicalD);
}

}catch (Exception e) {
throw new AssertionFailure("Can't set emission probabilities", e);
}



//set up transition scores.
try {

{
//if user option =1 then it trains ; if 0 then untrained
if(trainOrUntrain ==0){
//it keeps the transition probs untrainable
dist = new UntrainableDistribution (island.transitionsFrom(island.magicalState()));
}
else{
dist = island.getWeights(island.magicalState());
}
dist.setWeight(typicalS, 1.0);
//since it will always start at start at state typicalS
dist.setWeight(atypicalS, 0.0);
island.setWeights(island.magicalState(), dist);
}

{
// always trainable
dist = island.getWeights(typicalS);
float T_A = (float)1/duration;
float T_T = (float)1-T_A;
//1/region = 1/7500
dist.setWeight(atypicalS, T_A);
//1-1/7500
dist.setWeight(typicalS, T_T);
//zero since it will always end at atypical
dist.setWeight(island.magicalState(), 0.0);
island.setWeights(typicalS, dist);
}



{
// always trainable
dist = island.getWeights(typicalS);
float T_A = (float)1/duration;
float T_T = (float)1-T_A;
//1/region = 1/7500
dist.setWeight(atypicalS, T_A);
//1-1/7500
dist.setWeight(typicalS, T_T);
//zero since it will always end at atypical
dist.setWeight(island.magicalState(), 0.0);
island.setWeights(typicalS, dist);
}

{
//always untrainable
dist = new UntrainableDistribution (island.transitionsFrom(atypicalS));
//when it changes it persists for ever.
dist.setWeight(typicalS, 0.0000000000000000000000000000001);
dist.setWeight(atypicalS, 0.9999);
//it was 0.0001 but it throwed NaNs
dist.setWeight(island.magicalState(), 0.0000999999999999999999999999999);
island.setWeights(atypicalS, dist);
}

}catch (Exception e) {
throw new AssertionFailure("Can't set transition probabilities", e);
}

return island;
}

}



Viterbi …

online DEMO (exercise)

Source: http://www.cs.umb.edu/~srevilak/viterbi/

Target sequence: “ATGCATGCATGGGGCC”

Alphabet: [A, T, G ,C]

# of states: 2

Transition: There is 0.2 probability of switching from state1to state2. There is 0.9 

probability of switching from state2 to state1.

Emission: In state1 the frequency of observing A, T, G, C is their expected 

frequencies assuming a zero-th order alphabet. In state2 PA = PT =0.1 and PG = 

PC .

Initial probabilities: The probability of the model starting in state1 is 0.6.

Deliverables:

A. Build the model.

B. Run the prediction.

C. Record the most probable state path.

D. Design the HMM architecture.



hmmalign - align sequences to a profile HMM

hmmbuild - construct profile HMM(s) from multiple sequence alignment(s)

hmmconvert - convert profile file to a HMMER format

hmmemit - sample sequences from a profile HMM

hmmfetch - retrieve profile HMM(s) from a file

hmmpress - prepare an HMM database for hmmscan

hmmscan - search sequence(s) against a profile database

hmmsearch - search profile(s) against a sequence database

hmmsim - collect score distributions on random sequences

hmmstat - display summary statistics for a profile file

jackhmmer - iteratively search sequence(s) against a protein database

phmmer - search protein sequence(s) against a protein sequence database

SOURCE: http://hmmer.janelia.org/

HMMER



shell% curl -L -H 'Expect:' -H 'Accept:text/xml' -F seqdb=pdb -F algo=phmmer
-F seq='<test.seq' http://hmmer.janelia.org/search/phmmer

HMMER (cURL)



<?xml version="1.0" encoding="UTF-8"?>
<opt>
<data name='results' resultSize='224339'>
<_internal highbit='370.5' lowbit='19.0' numberSig='242' offset='42280'>
<timings search='0.283351' unpack='0.176821' />
</_internal>
<hits

name='2abl_A'
acc='2abl_A'
bias='0.1'
desc='mol:protein length:163 ABL TYROSINE KINASE'
evalue='1.1e-110'
ndom='1'
nincluded='1'
nregions='1'
reported='1'
score='370.5'
species='Homo sapiens'
taxid='9606' >
<domains

aliL='163'
aliM='163'
aliN='163'
aliaseq='MGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSIS

LRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAP'
alihmmfrom='1'
alihmmname='2abl_A'
alihmmto='163'
alimline='+gpsendpnlfvalydfvasgdntlsitkgeklrvlgynhngewceaqtkngqgwvpsnyitpvnslekhswyhgpvsrnaaeyllssgingsflvresesspgqrsislryegrvyhyrintasdgklyvssesrf

ntlaelvhhhstvadglittlhypap'
alimodel='lgpsendpnlfvalydfvasgdntlsitkgeklrvlgynhngewceaqtkngqgwvpsnyitpvnslekhswyhgpvsrnaaeyllssgingsflvresesspgqrsislryegrvyhyrintasdgklyvssesrfn

tlaelvhhhstvadglittlhypap'
alippline='8*****************************************************************************************************************

************************************************9'
alisqacc='2abl_A'
alisqdesc='mol:protein length:163 ABL TYROSINE KINASE'
alisqfrom='1'
alisqname='2abl_A'
alisqto='163'
bias='0.05'
bitscore='370.357543945312'
envsc='250.653518676758'
cevalue='4.21e-121'
ievalue='4.21e-121'

iali='1'
ienv='1'
is_included='1'
is_reported='1'
jali='163'
jenv='163'

/>

</hits>
.

.

.
</data>
</opt>



HMMER (perl)



#!/usr/bin/perl

use strict;
use warnings;
use LWP::UserAgent;
use XML::Simple;

#Get a new Web user agent.
my $ua = LWP::UserAgent->new;
$ua->timeout(20);
$ua->env_proxy;

my $url = "http://hmmer.janelia.org/search/phmmer";

#Parameters
my $seq = ">2abl_A mol:protein length:163 ABL TYROSINE KINASE

MGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHS

WYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAE
LVHHHSTVADGLITTLHYPAP";

my $seqdb = 'pdb';

#Make a hash to encode for the content.
my %content = ( 'seqdb' => $seqdb,

'content' => "<![CDATA[$seq]]>" );

#Convert the parameters to XML
my $xml = XMLout(\%content, NoEscape => 1);

#Now post it off
my $response = $ua->post( $url, 'content-type' => 'text/xml', Content => $xml );

#By default, we should get redirected!
if($response->is_redirect){

#Now make a second requests, a get this time, to get the results.
$response =
$ua->get($response->header("location"), 'Accept' => 'text/xml' );

if($response->is_success){
print $response->content;
}else{
print "Error with redirect GET:".$response->content;

die $response->status_line;
}
}else{
die $response->status_line;
}

send



retrieve
#!/usr/bin/perl

use strict;
use warnings;
use LWP::UserAgent;
use XML::Simple;
use XML::LibXML;

#Get a new Web user agent.
my $ua = LWP::UserAgent->new;
$ua->timeout(20);
$ua->env_proxy;

my $url = "http://hmmer.janelia.org/search/phmmer";

#Parameters
my $seq = ">2abl_A mol:protein length:163 ABL TYROSINE KINASE

MGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHS

WYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAE

LVHHHSTVADGLITTLHYPAP";

my $seqdb = 'pdb';

#Make a hash to encode for the content.
my %content = ( 'seqdb' => $seqdb,

'content' => "<![CDATA[$seq]]>" );

#Convert the parameters to XML
my $xml = XMLout(\%content, NoEscape => 1);

#Now post it off
my $response = $ua->post( $url, 'content-type' => 'text/xml', Content => $xml );

die "error: failed to successfully POST request: " . $response->status_line . "\n"

unless ($response->is_success and $response->is_redirect);

#By default, we should get redirected!
$response =
$ua->get($response->header("location"), 'Accept' => 'text/xml' );

die "error: failed to retrieve XML: " . $response->status_line . "\n"

unless $response->is_success;

my $xmlRes = '';

$xmlRes .= $response->content;
my $xml_parser = XML::LibXML->new();
my $dom = $xml_parser->parse_string( $xmlRes );

my $root = $dom->documentElement();

my ( $entry ) = $root->getChildrenByTagName( 'data' );
my @hits = $entry->getChildrenByTagName( 'hits' );

foreach my $hit (@hits){
next if($hit->getAttribute( 'nincluded' ) == 0 );
print $hit->getAttribute( 'name' )."\t".$hit->getAttribute( 'desc' )."\t".$hit->getAttribute( 'evalue' )."\n";

}



Hmm.java
import java.text.*;

/** This class implements a Hidden Markov Model, as well as
the Baum-Welch Algorithm for training HMMs.
@author Holger Wunsch (wunsch@sfs.nphil.uni-tuebingen.de)

*/
public class HMM {
/** number of states */
public int numStates;

/** size of output vocabulary */
public int sigmaSize;

/** initial state probabilities */
public double pi[];

/** transition probabilities */
public double a[][];

/** emission probabilities */
public double b[][];

/** initializes an HMM.
@param numStates number of states
@param sigmaSize size of output vocabulary

*/
public HMM(int numStates, int sigmaSize) {
this.numStates = numStates;
this.sigmaSize = sigmaSize;

pi = new double[numStates];
a = new double[numStates][numStates];
b = new double[numStates][sigmaSize];
}



Hmm.java
/** implementation of the Baum-Welch Algorithm for HMMs.
@param o the training set
@param steps the number of steps

*/
public void train(int[] o, int steps) {
int T = o.length;
double[][] fwd;
double[][] bwd;

double pi1[] = new double[numStates];
double a1[][] = new double[numStates][numStates];
double b1[][] = new double[numStates][sigmaSize];

for (int s = 0; s < steps; s++) {
/* calculation of Forward- und Backward Variables from the
current model */
fwd = forwardProc(o);
bwd = backwardProc(o);

/* re-estimation of initial state probabilities */
for (int i = 0; i < numStates; i++)
pi1[i] = gamma(i, 0, o, fwd, bwd);

/* re-estimation of transition probabilities */
for (int i = 0; i < numStates; i++) {
for (int j = 0; j < numStates; j++) {
double num = 0;
double denom = 0;
for (int t = 0; t <= T - 1; t++) {
num += p(t, i, j, o, fwd, bwd);
denom += gamma(i, t, o, fwd, bwd);
}
a1[i][j] = divide(num, denom);
}
}



Hmm.java
/* re-estimation of emission probabilities */
for (int i = 0; i < numStates; i++) {
for (int k = 0; k < sigmaSize; k++) {
double num = 0;
double denom = 0;

for (int t = 0; t <= T - 1; t++) {
double g = gamma(i, t, o, fwd, bwd);
num += g * (k == o[t] ? 1 : 0);
denom += g;
}
b1[i][k] = divide(num, denom);
}
}
pi = pi1;
a = a1;
b = b1;
}
}

/** calculation of Forward-Variables f(i,t) for state i at time
t for output sequence O with the current HMM parameters
@param o the output sequence O
@return an array f(i,t) over states and times, containing

the Forward-variables.
*/
public double[][] forwardProc(int[] o) {
int T = o.length;
double[][] fwd = new double[numStates][T];

/* initialization (time 0) */
for (int i = 0; i < numStates; i++)
fwd[i][0] = pi[i] * b[i][o[0]];

/* induction */
for (int t = 0; t <= T-2; t++) {
for (int j = 0; j < numStates; j++) {
fwd[j][t+1] = 0;
for (int i = 0; i < numStates; i++)
fwd[j][t+1] += (fwd[i][t] * a[i][j]);
fwd[j][t+1] *= b[j][o[t+1]];
}
}

return fwd;
}



Hmm.java /** calculation of Backward-Variables b(i,t) for state i at time
t for output sequence O with the current HMM parameters
@param o the output sequence O
@return an array b(i,t) over states and times, containing

the Backward-Variables.
*/
public double[][] backwardProc(int[] o) {
int T = o.length;
double[][] bwd = new double[numStates][T];

/* initialization (time 0) */
for (int i = 0; i < numStates; i++)
bwd[i][T-1] = 1;

/* induction */
for (int t = T - 2; t >= 0; t--) {
for (int i = 0; i < numStates; i++) {
bwd[i][t] = 0;
for (int j = 0; j < numStates; j++)
bwd[i][t] += (bwd[j][t+1] * a[i][j] * b[j][o[t+1]]);

}
}

return bwd;
}

/** calculation of probability P(X_t = s_i, X_t+1 = s_j | O, m).
@param t time t
@param i the number of state s_i
@param j the number of state s_j
@param o an output sequence o
@param fwd the Forward-Variables for o
@param bwd the Backward-Variables for o
@return P

*/
public double p(int t, int i, int j, int[] o, double[][] fwd, double[][] bwd) {
double num;
if (t == o.length - 1)
num = fwd[i][t] * a[i][j];
else
num = fwd[i][t] * a[i][j] * b[j][o[t+1]] * bwd[j][t+1];

double denom = 0;

for (int k = 0; k < numStates; k++)
denom += (fwd[k][t] * bwd[k][t]);

return divide(num, denom);
}



Hmm.java
/** computes gamma(i, t) */
public double gamma(int i, int t, int[] o, double[][] fwd, double[][] bwd) {
double num = fwd[i][t] * bwd[i][t];
double denom = 0;

for (int j = 0; j < numStates; j++)
denom += fwd[j][t] * bwd[j][t];

return divide(num, denom);
}

/** prints all the parameters of an HMM */
public void print() {
DecimalFormat fmt = new DecimalFormat();
fmt.setMinimumFractionDigits(5);
fmt.setMaximumFractionDigits(5);

for (int i = 0; i < numStates; i++)
System.out.println("pi(" + i + ") = " + fmt.format(pi[i]));

System.out.println();

for (int i = 0; i < numStates; i++) {
for (int j = 0; j < numStates; j++)
System.out.print("a(" + i + "," + j + ") = " +

fmt.format(a[i][j]) + " ");
System.out.println();
}

System.out.println();
for (int i = 0; i < numStates; i++) {
for (int k = 0; k < sigmaSize; k++)
System.out.print("b(" + i + "," + k + ") = " +

fmt.format(b[i][k]) + " ");
System.out.println();
}
}

/** divides two doubles. 0 / 0 = 0! */
public double divide(double n, double d) {
if (n == 0)
return 0;
else
return n / d;

}
}


