Aגyópı日ноı бтף Mopıaкй Bıо入oyía

George Vernikos - gvernikos@gmail.com

Aגyópı日ноı бтף Mopıaкй Bıо入oyía

George Vernikos - gvernikos@gmail.com
... каı єби́ поıо́ऽ عíбаı?
... каı єби́ поıо́ऽ عíбаı?

Гıш́pүos Σ. Bepvíkos, PhD Comparative Genomics

... Kaı عбú тоIós عíбаı?

http://www.sanger.ac.uk/

http://bioinformatics.biol.uoa.gr/

... Kaı عбÚ ாоıós عíбаı?

... каı єби́ тоıо́s عíбаı?

... Kaı عбú тоIós عíбаı?

... каı عбú тоIós عíбаı?

Bioinformatics Godfathers

Society: http://www.iscb.org/

Bioinformatics Godfathers

Bioinformatics Godfathers

Biological Sequence Analysis

1. Sequence Alignment
2. Markov Chains \& Hidden Markov Models
3. Phylogenetic Trees
4. Sparse Bayesian Learning \& The Relevance Vector Machine

Bioinformatics ... at the high school level

A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms (http://dx.doi.org/doi:10.1371/journal.pcbi.1002244) Suzanne Gallagher, William Coon, Kristin Donley, Abby Scott, Debra Goldberg. PLoS Comput Biol, Vol. 7, No. 10. (27 October 2011), el002244.

Ten Simple Rules for Teaching Bioinformatics at the High School Level
(htpp://dx.doi.org/doi:10.1371/iournal.pcbi.1002243) David Form, Fran Lewitter. PLoS Comput Biol, Vol. 7, No. 10. (27 October 2011), el 002243.

Teaching Bioinformatics at the Secondary School Level (htpp://dx.doi.org/doi:10.1371/journal.pcbi.1002242) Fran Lewitter, Philip Bourne. PLoS Comput Biol, Vol. 7,
 No. 10. (27 October 2011), el 002242.
ctacgaatccagcccggttacgatcatagctatttaaggaattttattgcgtccttcctttccggcggcgaacgccagcgcgtcatgatagccatggcgctga ttgaggaccatctgcgctttcatgcagcgctcatgtatcgattgccacaaatgtctttaccggtctcgtacatcgcagcaatgatctcatcgagcgaaataca gggttcgcttacgcgactcatcgccatcgtcgccgcgtttatcgctttcacggcagagatggcatttctctctatgcagggaatttgtaccgacccagttcagc gtatgcaggccgcgataaagcatccgtagctcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatgcaccagc tgcatcacgtcccatatttgcgccagataattctgcaacgtctgtggcgagtggcggcacagctcattttcatcatcagcgccgccacggacaggccgtta cgccgacacagcgccagcaactgcgcggcatgactaaattcaaagggcatgcgtgcatcttctgcggtcgctgcgaagaggtgtgcccgaacggaga tcgacattctccggctggcaacccagcagcccaagatacagggcggtatccacattgtggcacttgcggcttaacgataacgcgccatacagctcgatttt gatgggctgcaggccgagcgtgagcagggcattactattgacgtcgcggtgcgtctaaaagcgcggtatcaactggattatgccttttcgaatacggttga aatacgcgataacgttctgacggataacattaccttgccgattatgaacgccgcaaacaaaaaacagacgctggttgacctggctgcccggttaaatatt gccacggagaatattattgcctgcggtgatggcgccaacgatctgattcccgtggcgtaactgtagataaaatgactgaactgcgtgccgatgttagaaca tgctggcaccggtattgcctggaaagcgaagccggttgtacgggaaaaaatccaccatcagattaattatcacggtttcgaattgcttcttttcttattgaaga ggcgctattatcttcggtcgtgcgaccccggtagagctgtaccattaaagatcgtcccggtacgttaggttgcccaacgtggggcagtggcgtaacgacc cgacggaactggcccaggtcaaggccagcccggtcaacctgagcttctggcagatttttgtgaaatatatcctgaccaatccactggtatggatcattattat atctttatcctggtggaaggggactccgcgggcggcgcccacgttcag
ctacgaatccagcccggttacgatcatagctatttaaggaattttattgcgtccttcctttccggcggcgaacgccagcgcgtcatgatagccatggcgctga ttgaggaccatctgcgctttcatgcagcgctcatgtatcgattgccacaaatgtctttaccggtctcgtacatcgcagcaatgatctcatcgagcgaaataca gggttcgcttacgcgactcatcgccatcgtcgccgcgtttatcgctttcacggcagagatggcatttctctctatgcagggaatttgtaccgacccagttcagc gtatgcaggccgcgataaagcatccgtagctcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatgcaccagc tgcatcacgtcccatatttgcgccagataattctgcaacgtctgtggcgagtggcggcacagctcattttcatcatcagcgccgccacggacaggccgtta cgccgacacagcgccagcaactgcgcggcatgactaaattcaaagggcatgcgtgcatcttctgcggtcgctgcgaagaggtgtgcccgaacggaga tcgacattctccggctggcaacccagcagcccaagatacagggcggtatccacattgtggcacttgcggcttaacgataacgcgccatacagctcgatttt gatgggctgcaggccgagcgtgagcagggcattactattgacgtcgcggtgcgtctaaaagcgcggtatcaactggattatgccttttcgaatacggttga aatacgcgataacgttctgacggataacattaccttgccgattatgaacgccgcaaacaaaaaacagacgctggttgacctggctgcccggttaaatatt gccacggagaatattattgcctgcggtgatggcgccaacgatctgattcccgtggcgtaactgtagataaaatgactgaactgcgtgccgatgttagaaca tgctggcaccggtattgcctggaaagcgaagccggttgtacgggaaaaaatccaccatcagattaattatcacggtttcgaattgcttcttttcttattgaaga ggcgctattatcttcggtcgtgcgaccccggtagagctgtaccattaaagatcgtcccggtacgttaggtttgcccaacgtggggcagtggcgtaacgacc cgacggaactggcccaggtcaaggccagcccggtcaacctgagcttctggcagatttttgtgaaatatatcctgaccaatccactggtatggatcattattat atctttatcctggtggaaggggactccgcgggcggcgcccacgttcag

RBS

ABC transporter
ctacoaatccaocccoottacoatcataoctatttaaggaattttattgcgtccttcctttccggcggcgaacgccagcgcgtcatgatagccatggcgctga ttge Cytochrome c heme-binding site atgtatcgattgccacaaatgtctttaccontctcgtacatcgcagcaatgatctcatcgagcgaaataca gggttcgcttacgcgactcatcgccatcgtcgccgcgtttatcgcttcacggcagag tRNA ttctctctatgcagggaatttgtaccgacccagttcagc gtatgcaggccgcgataaagcatccgtagctcagctggatagagtactcggctacgaaccgagcggtcggaggttcgaatcctcccggatgcaccagc tgcatcacgtcccatatttanmannotonttatannontntatananntanngcacagctcattttcatcatcagcgccgccacggacaggccgtta cgccgacacagcgcc $4 \mathrm{Fe}-4 \mathrm{~S}$ ferredoxins, iron-sulfur binding region gtgcatcttctgcggtcgctgcgaagaggtgtgcccgaacggaga tcgacattctccggctggcaacccagcagcccaagatacagggcggtatccacattntoncacttococcttaəcoataacgcgccatacagctcgatttt gatgggctgcaggccgagcgtgagcagggcattactattgacgtcgcggt! GTP-binding elongation factor ttatgcctttcgaatacggttga
 gccacggagaata Ribosomal protein L10 signature ctgattcccgtggcgtaactgtagataaaatgactgaactgcgtgccgatgttagaaca
 ggcgctattatcttcggtcgtgcgaccccggtagagctgtad Transcription termination factor signature Jggggcagtggcgtaacgacc cgacggaactggcccaggtcaaggccagcccggtcaacctaaacttctaocadatttttataaaatatatcctgaccaatccactggtatggatcattattat atctttatcctggtggaaggggactccgcgggcggcgccc DNA topoisomerase II signature

aatacgcgataacottctorenontancattar gccacggagaata Ribosomal protein L10 tgctggcaccggtattgcctggaaagcgaagd ggcgctattatcttcggtcgtgcgaccccggtad cgacggaactggcccaggtcaaggccagcc atctttatcctggtggaaggggactccgcgggc
 rontttcgaattgcttctttttcttattgaaga ure Jtggggcagtggcgtaacgacc tgaccaatccactggtatggatcattattat

Еıбаүшүท́ - ПıӨavótптєऽ

What is a probabilistic model?

- A system that simulates the object under consideration.
- Produces different outcomes with different probabilities.
- A probabilistic model can therefore simulate a whole class of objects.
- In this context, the objects will be sequences, and a model might describe a family of related sequences.

Еıбаүшүท́ - ПıӨavótптєऽ

A probability gives the odds of an event, given any parameters: Given that the mean is zero and the variance one, what are the odds that the draw will be between 1.1 and 1.2 ?

A likelihood gives the odds of parameters given data: We drew a 1.3 from the distribution; what are the odds that the mean is zero?

Observed frequencies are estimates of probabilities.

6-apes ...!

Maximum Likelihood Estimation

What are biological sequences?
Strings from a finite alphabet of residues, generally either four nucleotides (DNA) or twenty amino acids (Proteins).

Assuming that a residue a occurs at random with probability q_{a} independent of all other residues in the sequence, and the (protein or DNA) sequence is denoted:
$x_{1} \ldots x_{n \prime}$
the probability of the whole sequence is :
$\prod_{i=1}^{n} q_{x}$

Maximum Likelihood Estimation

What are biological sequences?
Strings from a finite alphabet of residues, generally either four nucleotides (DNA) or twenty amino acids (Proteins).

Assuming that a residue a occurs at random with probability q_{a} independent of all other residues in the sequence, and the (protein or DNA) sequence is denoted:
$x_{1} \ldots x_{n \prime}$
the probability of the whole sequence is :
$\prod_{i=1}^{n} q_{x}$

Residues occur at random?

Salmonella enterica subsp. enterica serovar Typhi str. CT18 [gbbct]: 368 CDS's (89135 codons)
fields: [triplet] [amino acid] [fraction] [frequency: per thousand] ([number])

Q Residues occur at random?

Maximum Likelihood Estimation

The parameters for a probabilistic model are typically estimated from large sets of trusted examples, often called a training set. For instance, the probability q_{a} for amino acid a can be estimated as the observed frequency of residues in a database of known protein sequences, such as UNI-PROT:

Maximum Likelihood Estimation

The parameters for a probabilistic model are typically estimated from large sets of trusted examples, offen called a training set. For instance, the probability q_{a} for amino acid a can be estimated as the observed frequency of residues in a database of known protein sequences, such as UNI-PROT:

Having so much data that, we expect the frequencies to be reasonable estimates of the underlying probabilities of our model. This way of estimating models is called maximum likelihood estimation (MLE).

Maximum Likelihood Estimation

The parameters for a probabilistic model are typically estimated from large sets of trusted examples, offen called a training set. For instance, the probability q_{a} for amino acid a can be estimated as the observed frequency of residues in a database of known protein sequences, such as UNI-PROT:

Having so much data that, we expect the frequencies to be reasonable estimates of the underlying probabilities of our model. This way of estimating models is called maximum likelihood estimation (MLE).

Maximum Likelihood Estimation

The parameters for a probabilistic model are typically estimated from large sets of trusted examples, offen called a training set. For instance, the probability q_{a} for amino acid a can be estimated as the observed frequency of residues in a database of known protein sequences, such as UNI-PROT:

Having so much data that, we expect the frequencies to be reasonable estimates of the underlying probabilities of our model. This way of estimating models is called maximum likelihood estimation (MLE).

It can be shown that using the frequencies with which the amino acids occur in the database as the probabilities q_{a} maximizes the total probability of all the sequences given the model (the likelihood).

Given a model with parameters θ and a set of data D, the maximum likelihood estimate for θ is that value which maximizes $P(D \mid \theta)$.

Conditional, joint and marginal probabilities

The probability of rolling i with die D_{1} is called:
$P\left(i \mid D_{1}\right)$, the conditional probability of rolling i given die D_{1}.

Conditional, joint and marginal probabilities

The probability of rolling i with die D_{1} is called:
$P\left(i \mid D_{1}\right)$, the conditional probability of rolling i given die D_{1}.

Picking a die at random with probability $P\left(D_{i}\right)$, the probability of picking die j and rolling an i is:
$P\left(i, D_{i}\right)=P\left(D_{i}\right) P\left(i \mid D_{i}\right)$, the joint probability.

Conditional, joint and marginal probabilities

The probability of rolling i with die D_{1} is called:
$P\left(i \mid D_{1}\right)$, the conditional probability of rolling i given die D_{1}.

Picking a die at random with probability $P\left(D_{i}\right)$, the probability of picking die j and rolling an i is:
$P\left(i, D_{i}\right)=P\left(D_{i}\right) P\left(i \mid D_{i}\right)$, the joint probability.
More generally, we can write: $P(X, Y)=P(X \mid Y) P(Y)$
If we know the conditional and joint probabilities, we can calculate a marginal probability:

$$
P(X)=\sum_{Y} P(X, Y)=\sum_{Y} P(X \mid Y) P(Y)
$$

Bayes' theorem

Bayes' theorem

"Consider an occasionally dishonest casino that uses two kinds of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50\% of the time. We pick up a die from a table at random."

The probability that we are after, is:
$P\left(D_{\text {looded }} \mid 3\right.$ sixes $)$, the posterior probability of the hypothesis that the die is loaded, given the observed data.

Bayes' theorem

"Consider an occasionally dishonest casino that uses two kinds of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50\% of the time. We pick up a die from a table at random."

The probability that we are after, is:
$P\left(D_{\text {looded }} \mid 3\right.$ sixes), the posterior probability of the hypothesis that the die is loaded, given the observed data.

However, what we can directly calculate is the probability of the data given the hypothesis: $P\left(3\right.$ sixes | $\left.D_{\text {loaded }}\right)$, the likelihood of the hypothesis.

Bayes' theorem

"Consider an occasionally dishonest casino that uses two kinds of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50\% of the time. We pick up a die from a table at random."

The probability that we are after, is:
$P\left(D_{\text {looded }} \mid 3\right.$ sixes), the posterior probability of the hypothesis that the die is loaded, given the observed data.

However, what we can directly calculate is the probability of the data given the hypothesis: $P\left(3\right.$ sixes | $\left.D_{\text {looded }}\right)$, the likelihood of the hypothesis.

Knowing the likelihood we can calculate the posterior probabilities, using the Baye's theorem:

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Bayes' theorem

In the case of our die, Baye's theorem can be written:

$$
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right)=\frac{P\left(3 \text { sixes } \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P(3 \text { sixes })}
$$

Bayes' theorem

"Consider an occasionally dishonest casino that uses two kinds of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50% of the time. We pick up a die from a table at random."

In the case of our die, Baye's theorem can be written:

$$
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right)=\frac{P\left(3 \text { sixes } \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P(3 \text { sixes })}
$$

We have been told, that $P\left(D_{\text {loaded }}\right)=0.01$
and that $P\left(\right.$ 3sixes $\left.\mid D_{\text {loaded }}\right)=0.5^{3}=0.125$

Bayes' theorem

"Consider an occasionally dishonest casino that uses two kinds of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50% of the time. We pick up a die from a table at random."

In the case of our die, Baye's theorem can be written:

$$
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right)=\frac{P\left(3 \text { sixes } \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P(\text { ssixes })}
$$

We have been told, that $P\left(D_{\text {locded }}\right)=0.01$ and that $P\left(3\right.$ sixes $\left.\mid D_{\text {loodsd }}\right)=0.5^{3}=0.125$
Thus:

$$
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right)=\frac{\left(0.5^{3}\right)(0.01)}{\left(0.5^{3}(0.01)+\left(\frac{1^{3}}{6}\right)(0.99)\right.}=0.21
$$

Bayes' theorem

"Consider an occasionally dishonest casino that uses. of dice. Of the dice 99% are fair but 1% are loaded six comes up 50% of the time. We pick up a die fror random."

Hmmm... is this a loaded die?

In the case of our die, Baye's theorem can be
$P\left(D_{\text {loaded }} \mid 3\right.$ sixes $)=\frac{P\left(3 \text { sixes } \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P(3 \text { sixes })}$
We have been told, that $P\left(D_{\text {looded }}\right)=0.01$
and that $P\left(3\right.$ sixes $\left.\mid D_{\text {looded }}\right)=0.5^{3}=0.125$
Thus:

$$
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right)=\frac{\left(0.5^{3}\right)(0.01)}{\left(0.5^{3}(0.01)+\left(\frac{1^{3}}{6}\right)(0.99)\right.}=0.21
$$

Bayes' theorem

"Assuming that, on average, extracellular proteins have a slightly different amino acid composition than intracellular proteins (e.g. cysteine is more common in extracellular than intracellular proteins), lets try to use this information to judge whether a new protein sequence $x=x_{1} \ldots x_{n}$ is intracellular or extracellular."

Bayes' theorem

"Assuming that, on average, extracellular proteins have a slightly different amino acid composition than intracellular proteins (e.g. cysteine is more common in extracellular than intracellular proteins), lets try to use this information to judge whether a new protein sequence $x=x_{1} \ldots x_{n}$ is intracellular or extracellular."

1. We split our training examples from UNI-PROT into intracellular and extracellular proteins.

Bayes' theorem

"Assuming that, on average, extracellular proteins have a slightly different amino acid composition than intracellular proteins (e.g. cysteine is more common in extracellular than intracellular proteins), lets try to use this information to judge whether a new protein sequence $x=x_{1} \ldots x_{n}$ is intracellular or extracellular."

1. We split our training examples from UNI-PROT into intracellular and extracellular proteins.
2. We estimate a set of frequencies $q_{a}{ }^{\text {int }}$ for intracellular proteins, and a corresponding set of extracellular frequencies $q_{a}{ }^{\text {ext }}$.

Bayes' theorem

"Assuming that, on average, extracellular proteins have a slightly different amino acid composition than intracellular proteins (e.g. cysteine is more common in extracellular than intracellular proteins), lets try to use this information to judge whether a new protein sequence $x=x_{1} \ldots x_{n}$ is intracellular or extracellular."

1. We split our training examples from UNI-PROT into intracellular and extracellular proteins.
2. We estimate a set of frequencies $q_{a}{ }^{\text {int }}$ for intracellular proteins, and a corresponding set of extracellular frequencies $q_{a}{ }^{\text {ext }}$.
3. We estimate the probability that any new sequence is extracellular, $p^{\text {ext }}$, and the corresponding probability of being intracellular, $\mathrm{p}^{\text {int }}$. Assuming that every sequence must be either entirely intracellular or entirely extracellular i.e. $p^{\text {int }}=1-p^{e x t}$, we can write Bayes' theorem:

$$
P(e x t \mid x)=\frac{p^{e x t} \prod_{i} q_{x i}^{e x t}}{p^{e x t} \prod_{i} q_{x i}^{e x t}+p^{i n t} \prod_{i} q_{x i}^{i n t}}
$$

Bayes' theorem

"Assuming that, on average, extracellular proteins have a slightly different amino acid composition than intracellular proteins (e.g. cysteine is more common in extracellular than intracellular proteins), lets try to use this information to judge whether a new protein sequence $x=x_{1} \ldots x_{n}$ is intracellular or extracellular."

1. We split our training examples from UNI-PROT into intracellular and extracellular proteins.
2. We estimate a set of frequencies $q_{a}{ }^{\text {int }}$ for intracellular proteins, and a corresponding set of extracellular frequencies $q_{a}{ }^{\text {ext }}$.
3. We estimate the probability that any new sequence is extracellular, $p^{\text {ext }}$, and the corresponding probability of being intracellular, $\mathrm{p}^{\text {int }}$. Assuming that every sequence must be either entirely intracellular or entirely extracellular i.e. $p^{\text {int }}=1-p^{e x t}$, we can write Bayes' theorem:
$p^{\text {ext }}, p^{\text {int }}:$ prior probs
$P(e x t \mid x)$: posterior probs

Bayesian parameter estimation

Bayes' theorem can also be used to estimate the parameters θ of a model:

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

Bayesian parameter estimation

Bayes' theorem can also be used to estimate the parameters θ of a model:

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

One way of using Bayes' theorem to estimate good parameters, is to choose the parameter values for θ that maximize $P(\theta \mid D)$, a process known as maximum a posteriori (MAP) estimation.

Bayesian parameter estimation

Bayes' theorem can also be used to estimate the parameters θ of a model:

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

One way of using Bayes' theorem to estimate good parameters, is to choose the parameter values for θ that maximize $P(\theta \mid D)$, a process known as maximum a posteriori (MAP) estimation.
"We are given a die that we expect will be loaded, but we don't know in what way. We are allowed to roll it ten times, and we have to give our best estimates for the parameters p_{i}. We roll $1,3,4,2,4,6,2,1,2,2$.

Bayesian parameter estimation

Bayes' theorem can also be used to estimate the parameters θ of a model:

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

One way of using Bayes' theorem to estimate good parameters, is to choose the parameter values for θ that maximize $P(\theta \mid D)$, a process known as maximum a posteriori (MAP) estimation.
"We are given a die that we expect will be loaded, but we don't know in what way. We are allowed to roll it ten times, and we have to give our best estimates for the parameters p_{i}. We roll $1,3,4,2,4,6,2,1,2,2$."

The ML estimate for p_{5}, based on the observed frequency, is 0 . Remember though that we have not seen enough data to be sure that this die never rolls a five.

Bayesian parameter estimation

Bayes' theorem can also be used to estimate the parameters θ of a model:

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

One way of using Bayes' theorem to estimate good parameters, is to choose the parameter values for θ that maximize $P(\theta \mid D)$, a process known as maximum a posteriori (MAP) estimation.
"We are given a die that we expect will be loaded, but we don't know in what way. We are allowed to roll it ten times, and we have to give our best estimates for the parameters p_{i}. We roll $1,3,4,2,4,6,2,1,2,2$.

The ML estimate for p_{5}, based on the observed frequency, is 0 . Remember though that we have not seen enough data to be sure that this die never rolls a five.

One well-known approach to this problem is to adjust the observed frequencies used to derive the probabilities by adding some fake extra pseudocounts.

MAP vs ML

> ML MAP
> $\div \quad \vdots(0.125)$

Figure 1.2 Maximum likelihood estimation (ML) versus maximum a posteriori (MAP) estimation of the probability ps (x axis) in Example 1.1 with five pseudocounts per category. The three curves are artificially normalised to have the same maximum value.

MAP vs ML

Figure 1.2 Maximum likelihood estimation (ML) versus maximum a posteriori (MAP) estimation of the probability ps (x axis) in Example 1.1 with five pseudocounts per category. The three curves are artificially normalised to have the same maximum value.

MAP vs ML

In this example what is our maximum likelihood estimate
 for p_{3}, the probability of rolling a three?
 What is the Bayesian estimate
 if we add one pseudocount per category?
 What if we add five
 pseudocounts per category?

Figure 1.2 Maximum likelihood estimation (ML) versus maximum a posteriori (MAP) estimation of the probability ps (x axis) in Example 1.1 with five pseudocounts per category. The three curves are artificially normalised to have the same maximum value.

Artemis Demo

Source: http://www.sanger.ac.uk/resources/software/artemis/

Further (Biological-Oriented) Reading

http://eclass.di.uoa.gr/courses/D461/ Yגıкó MaӨ'̆́нато̧/Вıß入ıоүрачía

