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Biological Sequence Analysis

http://eclass.di.uoa.gr/courses/D461/

Υλικό Μαθήµατος/Βιβλιογραφία

1. Sequence Alignment

2. Markov Chains & Hidden Markov Models

3. Phylogenetic Trees

4. Sparse Bayesian Learning & The Relevance 
Vector Machine 



A First Attempt to Bring Computational Biology into 
Advanced High SchoolHigh SchoolHigh SchoolHigh School Biology Classrooms 
(http://dx.doi.org/doi:10.1371/journal.pcbi.1002244) 
Suzanne Gallagher, William Coon, Kristin Donley, Abby 
Scott, Debra Goldberg. PLoS Comput Biol, Vol. 7, No. 
10. (27 October 2011), e1002244. 

Ten Simple Rules for Teaching Bioinformatics at the High High High High 
SchoolSchoolSchoolSchool Level 
(http://dx.doi.org/doi:10.1371/journal.pcbi.1002243) 
David Form, Fran Lewitter. PLoS Comput Biol, Vol. 7, 
No. 10. (27 October 2011), e1002243. 

Teaching Bioinformatics at the Secondary SchoolSecondary SchoolSecondary SchoolSecondary School Level 
(http://dx.doi.org/doi:10.1371/journal.pcbi.1002242) 
Fran Lewitter, Philip Bourne. PLoS Comput Biol, Vol. 7, 
No. 10. (27 October 2011), e1002242. 

Bioinformatics 
… at the high school level
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Εισαγωγή – Πιθανότητες

What is a probabilistic model? What is a probabilistic model? What is a probabilistic model? What is a probabilistic model? 

•A system that simulates the object under consideration.

•Produces different outcomes with different probabilities.

•A probabilistic model can therefore simulate a whole class of objects.

•In this context, the objects will be sequences, and a model might describe a family
of related sequences.



Εισαγωγή – Πιθανότητες

A probability gives the odds of an event, given any parameters: Given that the 
mean is zero and the variance one, what are the odds that the draw will be between 
1.1 and 1.2? 

A likelihood gives the odds of parameters given data: We drew a 1.3 from the 
distribution; what are the odds that the mean is zero?

Observed frequencies are estimates of probabilities.

Probability

Likelihood Frequency



6-αρες ...!

A familiar probabilistic system with a set of discrete
outcomes is the roll of a six-sided die. A model of a roll 
of a (possibly loaded) die would have six parameters:

p1 … p6

and the probability of rolling i is pi. 

The parameters pi must satisfy the conditions:

A model of a sequence of three consecutive rolls of
a die might be that they were all independent, so that 
the probability of sequence [1,6,3] would be the product 
of the individual probabilities:
p1 p6 p3

0ip ≥
6

1
1ii

p
=

=∑



Maximum Likelihood Estimation

What are biological sequences?

Strings from a finite alphabet of residues, generally either four nucleotides (DNA) or
twenty amino acids (Proteins). 

Assuming that a residue a occurs at random with probability qa independent of all 
other residues in the sequence, and the (protein or DNA) sequence is denoted:

x1 ... xn,

the probability of the whole sequence is :

1

n

xii
q

=∏
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Maximum Likelihood Estimation

The parameters for a probabilistic model are typically estimated from large sets
of trusted examples, often called a training set. For instance, the probability
qqqqaaaa for amino acid a can be estimated as the observed frequency of residues in
a database of known protein sequences, such as UNI-PROT:

Having so much data that, we expect the frequencies to be reasonable estimates
of the underlying probabilities of our model. This way of estimating models is
called maximum likelihood estimation (MLE).

It can be shown that using the frequencies with which the amino acids occur in the 
database as the probabilities qa maximizes the total probability of all the sequences 
given the model (the likelihood).

Given a model with parameters θ and a set of data D, the maximum likelihood 
estimate for θ is that value which maximizes P( D | θ).

20,000,000
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Conditional, joint and marginal probabilities

D1 D2

The probability of rolling i with die D1 is called:

P(i | D1), the conditional probability of rolling i given die D1.

Picking a die at random with probability P( Dj ), the probability of picking die j and 
rolling an i is:

P( i , Dj ) = P(Dj) P(i | Dj), the joint probability.

More generally, we can write: P(X,Y) = P(X|Y) P(Y)

If we know the conditional and joint probabilities, we can calculate a marginal
probability:
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Bayes’ theorem

RollRollRollRoll OutcomeOutcomeOutcomeOutcome

1 Six

2 Six

3 Six

Hmmm… is this 
a loaded die?

“Consider an occasionally dishonest 
casino that uses two kinds of dice. Of
the dice 99%99%99%99% are fairfairfairfair but 1%1%1%1% are 
loadedloadedloadedloaded so that a sixsixsixsix comes up 50%50%50%50%
of the time. We pick up a die from a 
table at random.”



Bayes’ theorem

The probability that we are after, is:

P( Dloaded | 3 sixes), the posterior probability of the hypothesis that the die is loaded, 
given the observed data.

However, what we can directly calculate is the probability of the data given the 
hypothesis: P( 3 sixes | Dloaded), the likelihood of the hypothesis.

Knowing the likelihood we can calculate the posterior probabilities, using the Baye’s
theorem:
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Bayes’ theorem

In the case of our die, Baye’s theorem can be written:

We have been told, that P( Dloaded) = 0.01 

and that P( 3sixes | Dloaded) = 0.5
3= 0.125

Thus:
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Hmmm… is this a 
loaded die?

… most probably 
(79%) this is a fair die!



Bayes’ theorem

“Assuming that, on average, extracellular proteins have a slightly different amino 
acid composition than intracellular proteins (e.g. cysteine is more common in 
extracellular than intracellular proteins), lets try to use this information to judge 
whether a new protein sequence x = x1 … xn is intracellular or extracellular.”

1. We split our training examples from UNIUNIUNIUNI----PROT PROT PROT PROT into intracellular and 
extracellular proteins.

2. We estimate a set of frequencies qa
int for intracellular proteins, and a 

corresponding set of extracellular frequencies qa
ext.

3. We estimate the probability that any new sequence is extracellular, pext, and 
the corresponding probability of being intracellular, pint. Assuming that every 
sequence must be either entirely intracellular or entirely extracellular i.e. 
pint = 1 – pext, we can write Bayes’ theorem:
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Bayesian parameter estimation

Bayes’ theorem can also be used to estimate the parameters θ of a model:

One way of using Bayes’ theorem to estimate good parameters, is to choose the 
parameter values for θ that maximize P( θ|D), a process known as maximum a 
posteriori (MAP) estimation.

“We are given a die that we expect will be loaded, but we don't know in what way. 
We are allowed to roll it ten times, and we have to give our best estimates for the 
parameters pi. . . . We roll 1, 3, 4, 2, 4, 6, 2, 1, 2, 2. “

The ML estimate for p5, , , , based on the observed frequency, is 0. Remember though
that we have not seen enough data to be sure that this die never rolls a five.

One well-known approach to this problem is to adjust the observed frequencies
used to derive the probabilities by adding some fake extra pseudocounts.
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In this example what is our 
maximum likelihood estimate 
for p3, the probability of rolling 
a three? 

What is the Bayesian estimate 
if we add one pseudocount per 
category? 

What if we add five 
pseudocounts per category?



Artemis Demo

Source: http://www.sanger.ac.uk/resources/software/artemis/
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