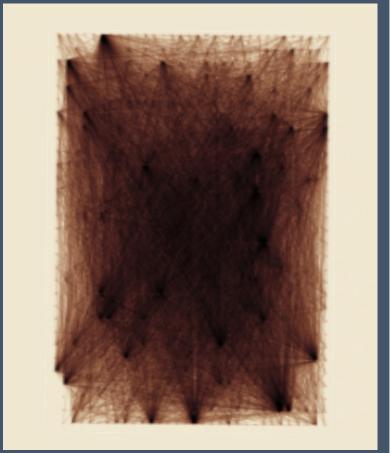

FROM MICROARRAYS TO NETWORKS



TUTORIAL

Anastasiadou's LAB

HELLO THERE!

Degree in MathematicsDepartment of Mathematics and Applied Mathematics, University of Crete. (UoC)

M.Sc in Bioinformatics

PhD candidate at Medical School of Athens

Department of Informatics and Telecommunications of the National and Kapodistrian University of Athens. (UoA)

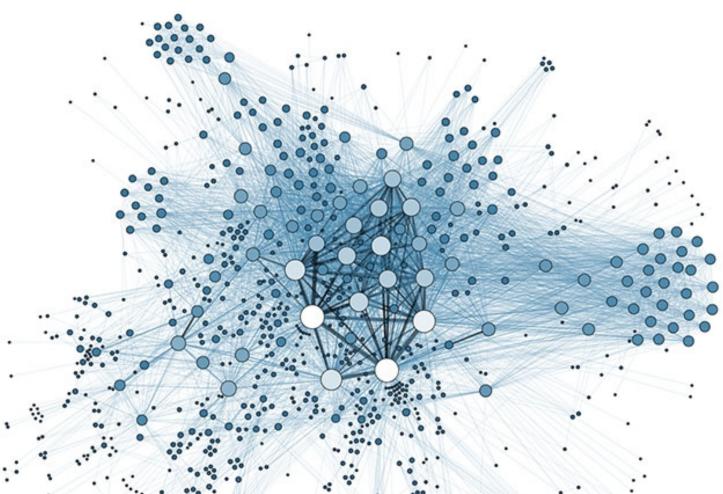
I am Vicky Filippa

You can find me here: vfilippa@di.uoa.gr vickyrougefilippa@gmail.com

FROM MICROARRAYS TO NETWORKS

MICROARRAYS

Obtain Data Manipulation of Data Differential Expression Analysis (DE) Suggested Biomarkers and Visualization of Results



AN OVERVIEW

NETWORKS

Co-Expression Edge-lists-Network Construction Types of Networks and Network Visualization Network Annotation and Metrics / Obtaining Information

1 MICROARRAYS

DNA microarrays:

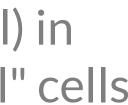
(otherwise known as gene or genomic chip, DNA chip or gene array) Are collections of microscopic unique DNA spots(probes) attached to a solid surface (glass, silicone). The probes can be long (500-1500bp) cDNA sequences.

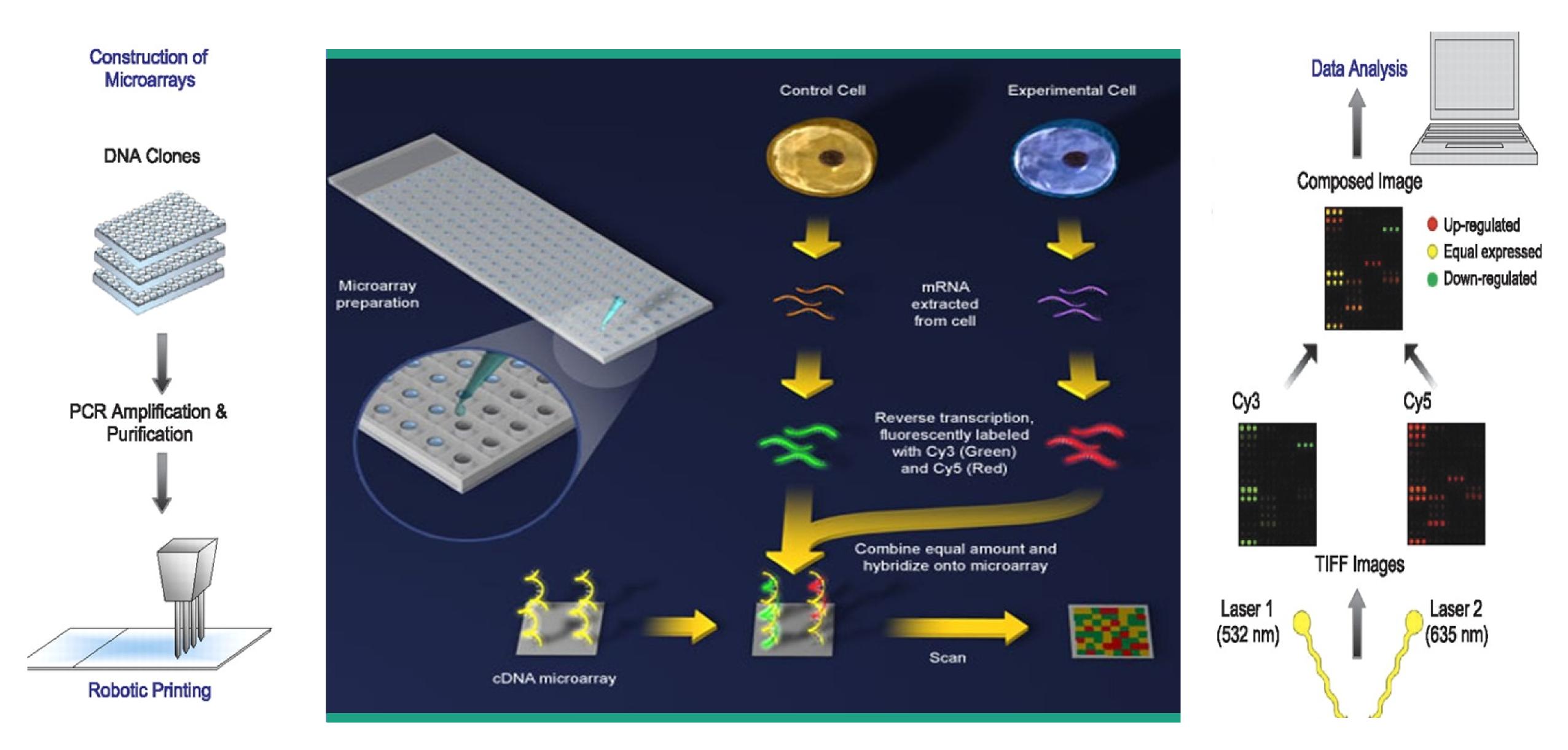
The cDNA technology is a complex electrical-opticalchemical process:

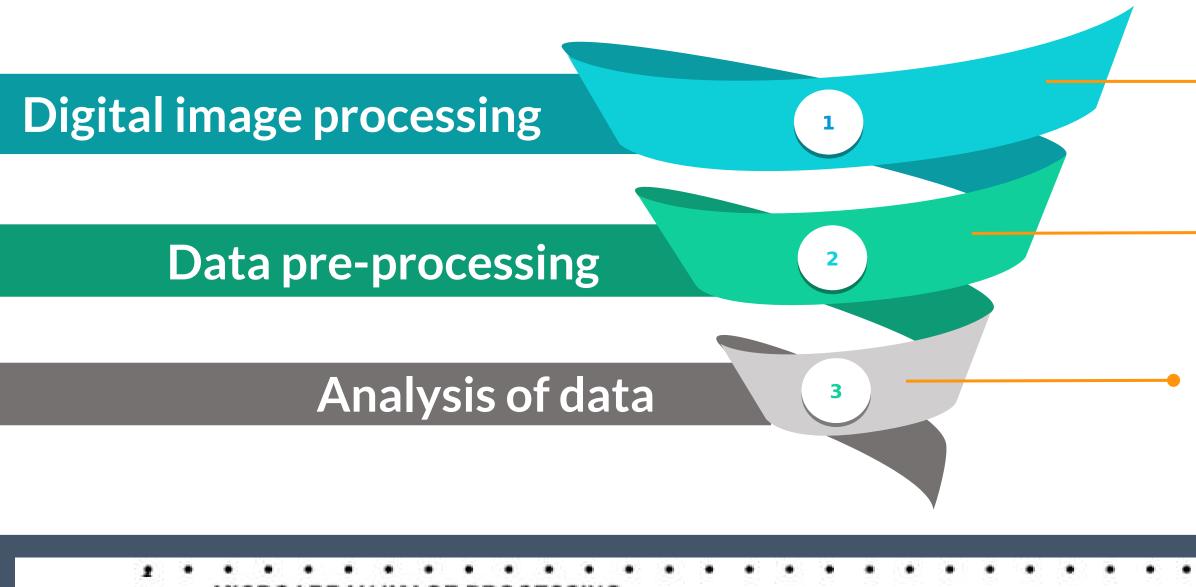
- cDNA slide fabrication
- mRNA preparation
- fluorescence dye labeling
- gene hybridization
- robotic spotting
- green and red fluorophores excitation by lasers
- imaging using optics
- slide scanning
- analog to digital conversion using either charge-coupled devices (CCD) or photomultiplier tubes (PMT)
- image storage and archiving

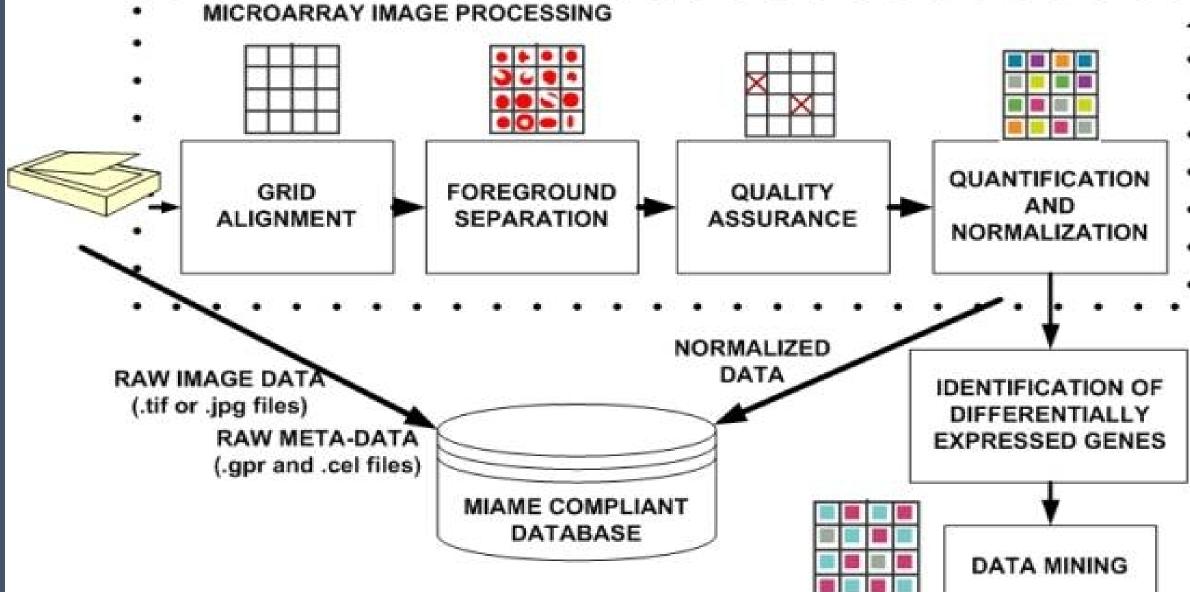
Only the pathological sample

Only the "control" sample


Equal amounts of the gene in pathological and "control" cells


More of the gene's amount(signal) in pathological cells than in "control" cells


No gene in either pathological or "control" cells



Microarrays Experiment

Steps taken on the data processing part

- Segmentation, grid application, export intensity through quantification of the signal
- Background correction, normalization, filtering

Statistical methods for the detection of significant differentially expressed genes

- Raw data for each assay (e.g., CEL or FASTQ files)
- Final processed (normalized) data for the set of assays in the study (e.g., the gene expression data count matrix used to draw the conclusions in the study)
- Essential sample annotation (e.g., tissue, sex and age) and the experimental factors and their values (e.g., compound and dose in a dose response study)
- Experimental design including sample data relationships (e.g., which raw data file relates to which sample, which assays are technical, which are biological replicates)
- Sufficient annotation of the array or sequence features examines (e.g., gene identifiers, genomic coordinates)
- Essential laboratory and data processing protocols (e.g., what normalization method) has been used to obtain the final processed data)

2 OBTAINING DATA -

2 OBTAINING DATA

Search GEO Database for proper datasets : The Gene Expression Omnibus Genomic Database (GEO), is a public repository of the National Center for Biotechnology Information (NCBI) of high performance experiments. https://www.ncbi.nlm.nih.gov/geo/

SNCBI Resources 🗹 I	How To 🖂
GEO DataSets	GEO DataSets (nafld) AND "Homo sapiens"[porgn:t Create alert Advanced
Entry type DataSets (1)	Summary - 20 per page - Sort by Default order -
Series (21) Samples (0)	Search results
Platforms (0)	Items: 1 to 20 of 22
Organism	
Customize	Filters activated: Expression profiling by array. <u>Clear all</u> t
Study type clear Expression profiling by array Methylation profiling by array Customize Author Customize Attribute name tissue (13)	<u>I Ostballattic, morbidiy obese patients with honaic</u>
strain (0) Customize	DataSet Accession: GDS4881 ID: 4881
Publication dates	PubMed Similar studies GEO Profiles Analyze Data
30 days	Gene expression profiling from high-fat medium (H
1 year	2. Sk-hep1 cells
Custom range	(Submitter supplied) Non-alcoholic fatty liver disease (N
<u>Clear all</u>	caused by unbalanced uptake of fatty acid. Novel drug therapies. We combine LOPAC® and High-Content sys

Show additional filters

	<u>Sign</u>
txid9606]	Search
Send to: 🚽	Filters: Manage Filters
	Top Organisms [Tree] Homo sapiens (22)
<pre><< First < Prev Page 1 of 2 Next > Last >> to show 446 items.</pre>	Find related data
coholic fatty liver disease: liver	Database: Select ▼ Find items
ing nonalcoholic fatty liver disease epatitis (NASH), post-bariatric surgery. FLD liver phenotypes and into	Search details
sformed count, 4 disease state, 3 protocol sets	<pre>nafld[All Fields] AND "Homo sapiens"[porgn] AND "Express profiling by array"[Filter]</pre>
aSet	Search
HFM)-treated and growth medium (GM)-treated	
NAFLD) is a major problem in obese peoples and identification is necessary to develop effective	Recent activity

stem to identify compounds significantly reducing intracellular lipid droplets after high fat medium (HFM) treatment. Among 1280 compounds, 5 show efficacy in Irn

(nafld) AND "Homo sapiens"[porgi ("Expression profiling by a... (22)

n to NCBI	
Help	
ion "	
See more	
<u>n Off</u> <u>Clear</u>	
n] AND GEO DataSets	

2 OBTAINING DATA

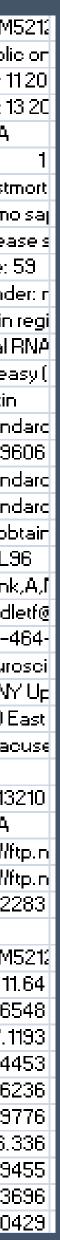
Search GEO Database for proper datasets : The Gene Expression Omnibus Genomic Database (GEO), is a public repository of the National Center for Biotechnology Information (NCBI) of high performance experiments. https://www.ncbi.nlm.nih.gov/geo/

Series GSE896	532	Qu	ery DataSets for GSE8
Status	Р	ublic on Nov 08, 2016	
Title	G a	enome-wide analysis of hepatic gene express lcoholic fatty liver disease and in healthy donors cid composition and other nutritional factors	•
Submission date Last update date Contact name E-mail Phone Organization na Department Street address City State/province ZIP/Postal code Country	ie [j ime [2 T C	lov 07, 2016 Dec 22, 2017 ohane P. Allard ohane.allard@uhn.on.ca 16-340-5159 University Health Network fedicine 200 Elizabeth St, 9-NU-973 foronto Ontario 15G 2C4 Canada	
Platforms (1)	G	SPL14951 Illumina HumanHT-12 WG-DASL V4.0 R	2 expression beadchip
Samples (63) ≝ More…	C	SM2385720 liver_SS_CL-86 SM2385721 liver_NASH_CL-87 SM2385722 liver_SS_CL-88	
Relations BioProject	F	RJNA352744	
Analyze with	GEO2	2R	
Download fam	nily		Format
SOFT formatted	_	ily file(s)	SOFT 😰
MINIML formatt	ed fa	mily file(s)	MINIML ?
Series Matrix Fi	le(s)		TXT 🖸

or GSE89632

s with nonhepatic fatty

> **AFFYMETRIX** AGILENT ILUMINA


GSM2385720 liver_SS_CL-86 GSM2385721 liver_NASH_CL-87 GSM2385722 liver_SS_CL-88 GSM2385723 liver_SS_CL-90 GSM2385724 liver_SS_CL-91 GSM2385725 liver SS CL-92 GSM2385726 liver_SS_CL-95 GSM2385727 liver_SS_CL-96 GSM2385728 liver_NASH_CL-97 GSM2385729 liver NASH CL-98 GSM2385730 liver_SS_CL-100 GSM2385731 liver_NASH_CL-103 GSM2385732 Ilver_NASH_CL-106 "DISEASE" GSM2385733 liver_SS_CL-108 **2 CONDITIONS** GSM2385734 liver_SS_CL-110 GSM2385735 liver_NASH_CL-111 GSM2385736 liver_NASH_CL-112 GSM2385737 liver_NASH_CL-113 GSM2385738 liver SS CL-114 GSM2385739 liver_NASH_CL-116 GSM2385740 liver SS CL-117 GSM2385741 liver_NASH_CL-118 GSM2385742 liver_NASH_CL-128 GSM2385743 liver_NASH_CL-132 GSM2385744 liver_SS_CL-134 GSM2385745 liver_SS_CL-136 GSM2385746 liver_SS_CL-140 GSM2385747 liver_SS_CL-142 GSM2385748 liver_NASH_CL-144 GSM2385749 liver_SS_CL-145 GSM2385750 liver_NASH_CL-147 GSM2385751 liver_NASH_CL-152 GSM2385752 liver_NASH_CL-155 GSM2385753 liver_NASH_CL-157 GSM2385754 liver_NASH_CL-160 GSM2385755 liver_SS_CL-161 GSM2385756 liver_NASH_CL-167 GSM2385757 liver_HC_HLD-1 GSM2385758 liver HC HLD-2 GSM2385759 liver_HC_HLD-3 GSM2385760 liver_HC_HLD-4 GSM2385761 liver_HC_HLD-5 GSM2385762 liver_HC_HLD-7 GSM2385763 liver_HC_HLD-8 "CONTROLS" GSM2385764 liver_HC_HLD-10 GSM2385765 liver_HC_HLD-11 GSM2385766 liver_HC_HLD-13 GSM2385767 liver_HC_HLD-14 GSM2385768 liver_HC_HLD-21 GSM2385769 liver_HC_HLD-23

SERIES MATRIX

!Sample_	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	3 GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	3 GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM52
!Sample_	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public or	Public				
!Sample_	Feb 11 20	Feb 1120	Feb 1120	Feb 1120) Feb 1120) Feb 11 20) Feb 1120) Feb 1120	Feb 11 20) Feb 1120) Feb 11 20	Feb 11 20	Feb 1120	Feb 1120) Feb 11 20) Feb 11 20) Feb 11 20	Feb 11 20) Feb 11 20) Feb 1120	Feb 1120) Feb 1120) Feb 1120) Feb 11 20	Feb 1120	Mar 112
!Sample_	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 2	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	Oct 13 20	. Oct 13 2				
!Sample_	RNA	RNA	RNA	RNA	RNA	RNA	BNA	RNA	RNA	RNA	RNA	RNA	RNA	RNA	BNA	RNA	RNA	RNA	RNA	RNA	RNA	RNA	BNA	RNA	RNA	RNA
!Sample_	1	1	1	1	1	-	1	1	1	1	1	1	1	-	1	1	1	1	-	1	1	1	1	1	1	
!Sample_	Postmort	Postmort	Postmort	Postmort	Postmort	t Postmor	t Postmort	Postmort	Postmor	: Postmort	Postmort	Postmort	Postmort	Postmor	t Postmort	Postmort	Postmort	Postmort	Postmor	t Postmort	Postmor	t Postmor	t Postmort	Postmort	Postmort	Postmo
!Sample_	Homo saj	Homo saj	Homo sa	Homo sa	Homo sa	l Homo sa	i Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	l Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	Homo sa	l Homo sa	l Homo saj	Homo sa	Homo s
!Sample_	disease s	disease s	diseases	diseases	diseases	disease :	disease :	diseases	disease :	disease s	diseases	disease s	diseases	disease	disease s	diseases	diseases	diseases	disease	disease s	disease :	disease :	s disease s	disease s	diseases	disease
!Sample_	age: 57	age: 73	age: 80	age: 84	age: 70	age: 82	age: 70	age: 80	age: 94	age: 70	age: 79	age: 67	age: 54	age: 73	age: 82	age: 72	age: 73	age: 75	age: 74	age: 72	age: 79	age: 67	age: 75	age: 81	age: 55	age: 55
-	_	_		_		_				=	_		_		f gender: r	_									_	
-	_	_	-	_					_			_			i brain reg				_						_	
-											_				total RNA					_				_		
!Sample_	RNeasy (RNeasy(RNeasy (RNeasy (RNeasy ((RNeasyl	(RNeasy (RNeasy (RNeasyl	RNeasy (RNeasy(RNeasy(RNeasy (RNeasyl	(RNeasy(RNeasy (RNeasy (RNeasy (RNeasy	(RNeasy (RNeasyl	(RNeasy I	(RNeasy(RNeasy (RNeasy(RNeasy
!Sample_	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin	biotin
!Sample_	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standa
!Sample_	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	9606	960
!Sample_	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standa
!Sample_	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standar	Standard	Standard	Standard	Standard	Standard	Standard	Standa
!Sample_	To obtair	- To obtair	- To obtair	To obtair	To obtair	To obtair	To obtair	To obtain	To obtair	To obtair	- To obtair	To obtair	To obtair	To obtair	To obtai	- To obtair	To obtair	To obtair	- To obtair	To obtair	To obtair	To obta				
!Sample_	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96	GPL96
!Sample_	Frank,A,I	Frank,A,I	Frank,A,I	Frank,A,I	[Frank,A,I	l Frank,A,	[Frank,A,I	Frank,A,I	Frank,A,	[Frank,A,I	Frank,A,I	Frank,A,F	Frank,A,I	Frank,A,	[Frank,A,I	Frank,A,	Frank,A,I	Frank,A,I	Frank,A,	[Frank,A,I	Frank,A,	l Frank,A,	[Frank,A,I	Frank,A,F	Frank,A,I	Frank,A
!Sample_	middletf@	middletf@	middletf@	middletf@	i middletf@	ā middletf(a middletf@	i middletf@	middletf@	z middletf@	i middletf@	middletf@	middletf@	middletf(a middletf@	i middletf@	i middletf@	middletf@	i middletfo	i middletf@	i middletf(i middletf@	ā middletf@	i middletf@	middletf@	middlet
!Sample_	315-464-	315-464-	315-464	315-464	315-464	- 315-464	- 315-464	315-464	315-464	315-464	315-464	315-464-	315-464	315-464	- 315-464	315-464	315-464	315-464	315-464	315-464	315-464	315-464	- 315-464	315-464-	315-464	315-46
!Sample_	Neurosci	Neurosci	Neurosci	Neurosci	i Neurosci	i Neurosc	i Neurosci	i Neurosci	Neurosc	i Neurosci	Neurosci	Neurosci	Neurosci	Neurosc	i Neurosci	i Neurosci	i Neurosci	Neurosci	i Neurosc	i Neurosci	Neurosc	i Neurosc	i Neurosci	i Neurosci	Neurosci	Neuros
-															SUNY Up											
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	750 East	-	-	-	-	-	-	-	-	-	-	
-															e Syraduse											
!Sample_	-	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ	ŃÝ
!Sample_	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	13210	1321
!Sample_		USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA		USA	USA	USA	USA	USA	USA	USA	USA	USA
-		ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	h ftp://ftp.r	h ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	htp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp.r	h ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp.r	h ftp://ftp.m	ftp://ftp.r	h ftp://ftp.r	h ftp://ftp.n	ftp://ftp.n	ftp://ftp.n	ftp://ftp
-	• •	· ·		· ·				· · ·			· · ·	· ·			h ftp://ftp.n		· ·		· ·			· · ·		· · ·	• •	
!Sample_	22283																									
!series_m	atrix_table	e_begin																								
		_	GSM508	GSM508	GSM508	GSM508	3 GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	3 GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM508	GSM52
1007_s_a	11.286	11.985	12.117	12.554	12.22	11.833	12.096	12.39	11.637	12.053	11.823	11.827	11.743	11.324	11.525	11.693	11.608	12.047	12.205	11.075	11.801	11.898	11.877	11.866	12.018	11.6
1053_at	5.8439	5.8409	5.7939	5.9169	5.8513	5.8303	5.8266	5.896	5.8289	5.9001	5.8436	5.8333	5.8274	5.8743	5.8516	5.9841	6.0419	5.8597	5.958	5.8624	5.9845	5.9387	5.9516	5.851	5.9288	5.654
	7.3687	7.3774	7.3197	7.6517	7.1858	7.6661	7.1125		7.4564	7.2357	7.3389	7.8559	7.3171	7.3556	7.0625	7.173			7.3357	7.3594	7.4564	7.44			7.0503	
121_at	9.4967	9.939				9.3762		9.858	9.2954	9.4759	9.8099	9.663			9.3443										9.2363	
1255_q	6.0813	5.5575			5.3776	5,4103	5.5126		5.4891	5.5909	5.6156	5.4347	5,8033	5.4955							5.3274	5.6793	5.7865			
1294_at	8.0129	8.4014			8.4227	8.477			8.2674	8.5618			8.1606	8.2388	8.2395	8.2247					8.2959	8.4626	8.0784	8.3181	8.0265	
1316_at	6.4968	6.8414				6.538			6.3958			6.7134														6.33
1320_at	6.0841	6.3006			6.1515									6.1795				6.0087	5.9978						5.9701	
1405_i_a																										
1431_at																										
	0.1110	J.LIUT		0.1000	0.1100	0.000		0.0000	0.1000			0.0000	0.0011		- 1.0 IOT	0.0000	J.OEIT	1.0100			1.0100			0.1100		

ANNOTATION TABLE/PLATFORM

#ID = Unique identifier for the probe (acro
#Transcript = Internal transcript id
#Species =
#Source = Transcript sequence source na
#Search_Key = Internal id useful for cust
#ILMN_Gene = Internal gene symbol
#Source_Reference_ID = Id in the source
#RefSeq_ID = Refseq id
#Entrez_Gene_ID = Entrez gene id
#GI = Genbank id
#Accession = Genbank accession number
#Symbol = Gene symbol from the source
#Protein_Product = Genbank protein acc
#Array_Address_Id = Decoder id
#Probe_Type = Information about what the
#Probe_Start = Position of the probe rela
#SEQUENCE = Probe sequence
#Chromosome = Chromosome
#Probe_Chr_Orientation = Orientation or
#Probe_Coordinates = genomic position
#Cytoband =
#Definition = Gene description from the s
#Ontology_Component = Cellular compo
#Ontology_Process = Biological process
#Ontology_Function = Molecular function
#Synonyms = Gene symbol synonyms fre
#Obsolete_Probe_Id = Identifier of probe
#GB ACC = GenBank accession
ID Transprint Chasics Course Course Law UMN Cone

ID Transcript	Species	Source	Search_Key	ILMN_Gene	Source_Reference_ID	RefSeq_ID	Entrez_Gene_ID GI	Accession	Symbol
ILMN_1736555 ILMN_13581	Homo sapiens	RefSeq	NM_001002844.1	ZNF280D	NM_001002844.1	NM_001002844.1	54816	50811874 NM_001002844.1	ZNF280D
ILMN_1664176 ILMN_29187	Homo sapiens	RefSeq	NM_006329.2	FBLN5	NM_006329.2	NM_006329.2	10516	19743802 NM_006329.2	FBLN5
ILMN_2223941 ILMN_29187	Homo sapiens	RefSeq	NM_006329.2	FBLN5	NM_006329.2	NM_006329.2	10516	19743802 NM_006329.2	FBLN5
ILMN_2399503 ILMN_172742	Homo sapiens	RefSeq	NM_001079514.1	UBN1	NM_001079514.1	NM_001079514.1	29855	118572602 NM_001079514.1	UBN1
ILMN_2290089 ILMN_172742	Homo sapiens	RefSeq	NM_001079514.1	UBN1	NM_001079514.1	NM_001079514.1	29855	118572602 NM_001079514.1	UBN1
ILMN_1762294 ILMN_23416	Homo sapiens	RefSeq	NM_025008.2	ADAMTSL4	NM_025008.3	NM_025008.3	54507	83281434 NM_025008.3	ADAMTSL4
ILMN_1687035 ILMN_23416	Homo sapiens	RefSeq	NM_025008.2	ADAMTSL4	NM_025008.3	NM_025008.3	54507	83281434 NM_025008.3	ADAMTSL4
ILMN_2174296 ILMN_168524	Homo sapiens	RefSeq	NM_014377.1	DNAJC2	NM_014377.1	NM_014377.1	27000	94538369 NM_014377.1	DNAJC2
ILMN_1697634 ILMN_183260	Homo sapiens	RefSeq	NM_173616.1	FLJ35894	XM_001131199.1	XM_001131199.1	283847	113426471 XM_001131199.1	FLJ35894
ILMN_1758315 ILMN_20716	Homo sapiens	RefSeq	NM_173653.1	SLC9A9	NM_173653.1	NM_173653.1	285195	27734934 NM_173653.1	SLC9A9
ILMN_2166696 ILMN_15984	Homo sapiens	RefSeq	NM_178127.2	ANGPTL5	NM_178127.2	NM_178127.2	253935	31342398 NM_178127.2	ANGPTL5
ILMN_1681234 ILMN_8091	Homo sapiens	RefSeq	NM_007185.3	TNRC4	NM_007185.3	NM_007185.3	11189	71164893 NM_007185.3	TNRC4
ILMN_1710329 ILMN_8872	Homo sapiens	RefSeq	NM_016132.2	MYEF2	NM_016132.3	NM_016132.3	50804	154146212 NM_016132.3	MYEF2
ILMN_1813671 ILMN_28181	Homo sapiens	RefSeq	NM_005984.1	SLC25A1	NM_005984.1	NM_005984.1	6576	21389314 NM_005984.1	SLC25A1
ILMN_1700633 ILMN_4184	Homo sapiens	RefSeq	NM_022060.2	ABHD4	NM_022060.2	NM_022060.2	63874	50658086 NM_022060.2	ABHD4
ILMN_1752229 ILMN_15521	Homo sapiens	RefSeq	NM_001001563.1	TIMM50	NM_001001563.1	NM_001001563.1	92609	48526508 NM_001001563.1	TIMM50
ILMN_2332691 ILMN_8100	Homo sapiens	RefSeq	NM_173087.1	CAPN3	NM_173087.1	NM_173087.1	825	27765073 NM_173087.1	CAPN3
ILMN 1734794 ILMN 10770	Homo sapiens	RefSeq	NM 139289.1	AKAP4	NM 139289.1	NM 139289.1	8852	21493038 NM 139289.1	AKAP4

oss all products and species)

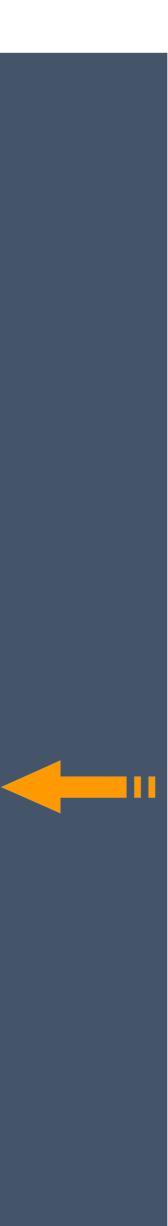
ame

om design array

e database

er

e database ession number


his probe is targeting tive to the 5' of the source transcript sequence

n the NCBI genome built of the probe on the NCBI genome build 36 vers

source

annotations from Gene Ontology project annotations from Gene Ontology project annotations from Gene Ontology project om Refseq

id before bgx time

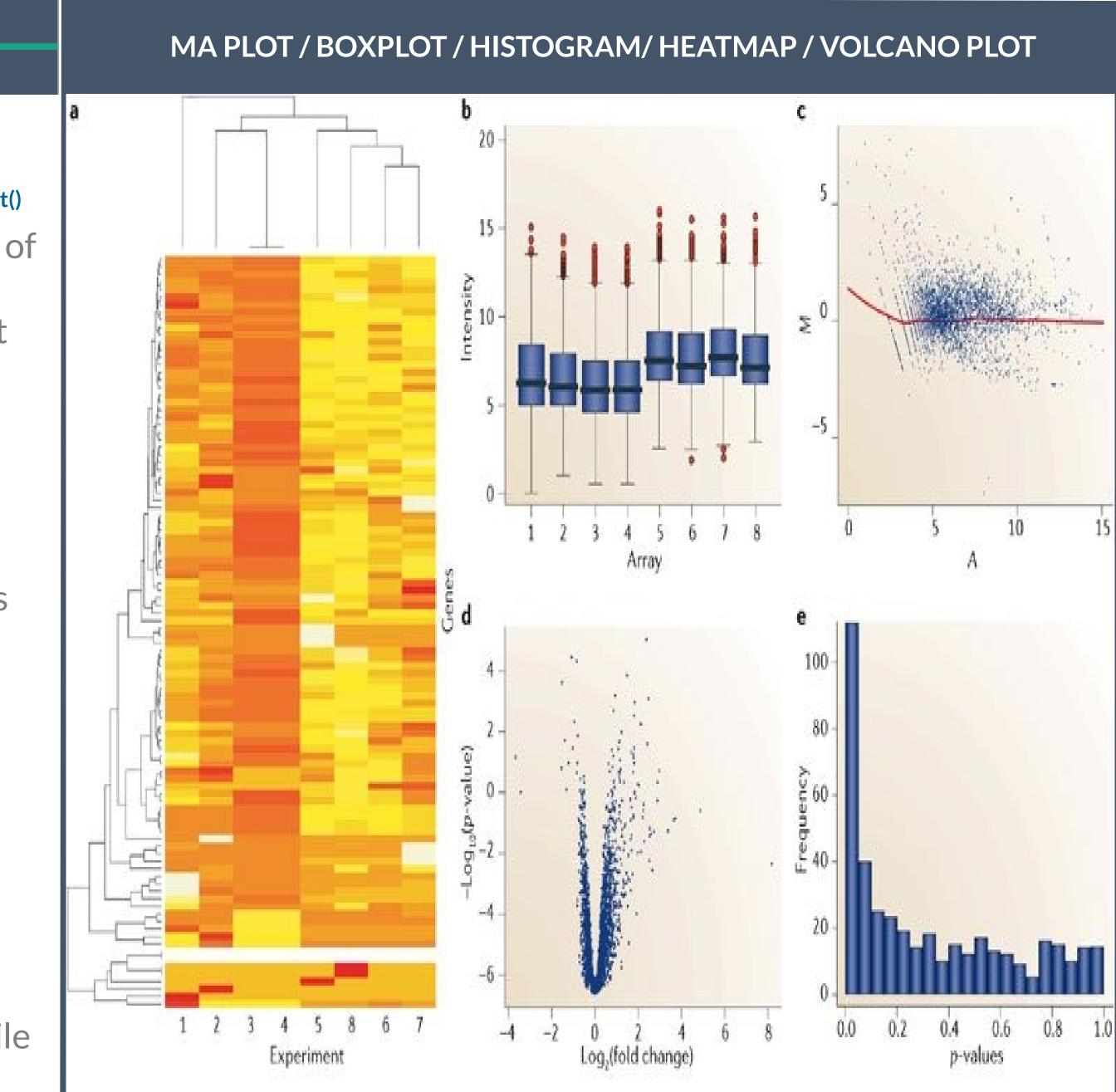
2 DATA PRE-PROCESSING

2 DATA PRE-PROCESSING

RMA (& GCRMA) MAS5 (no log2) Background correction Limma R package neqc(), backgroundCorrect()

Normalization of the intensity values by filtering the data of low intensity (of questionable quality). The normalization step is key to reducing volatility so that

to adjust data and to remove systematic errors.

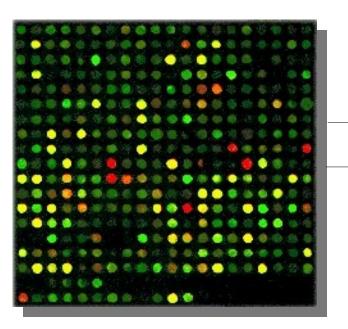

Logarithmic transformation of data (Improving Graphic Imaging and Interpretation) • The variance of the logarithmic intensity values depends less on the absolute values

- Normalization takes place additionally
- Normalizing high asymmetric distributions
- Gives a more real picture of the variance

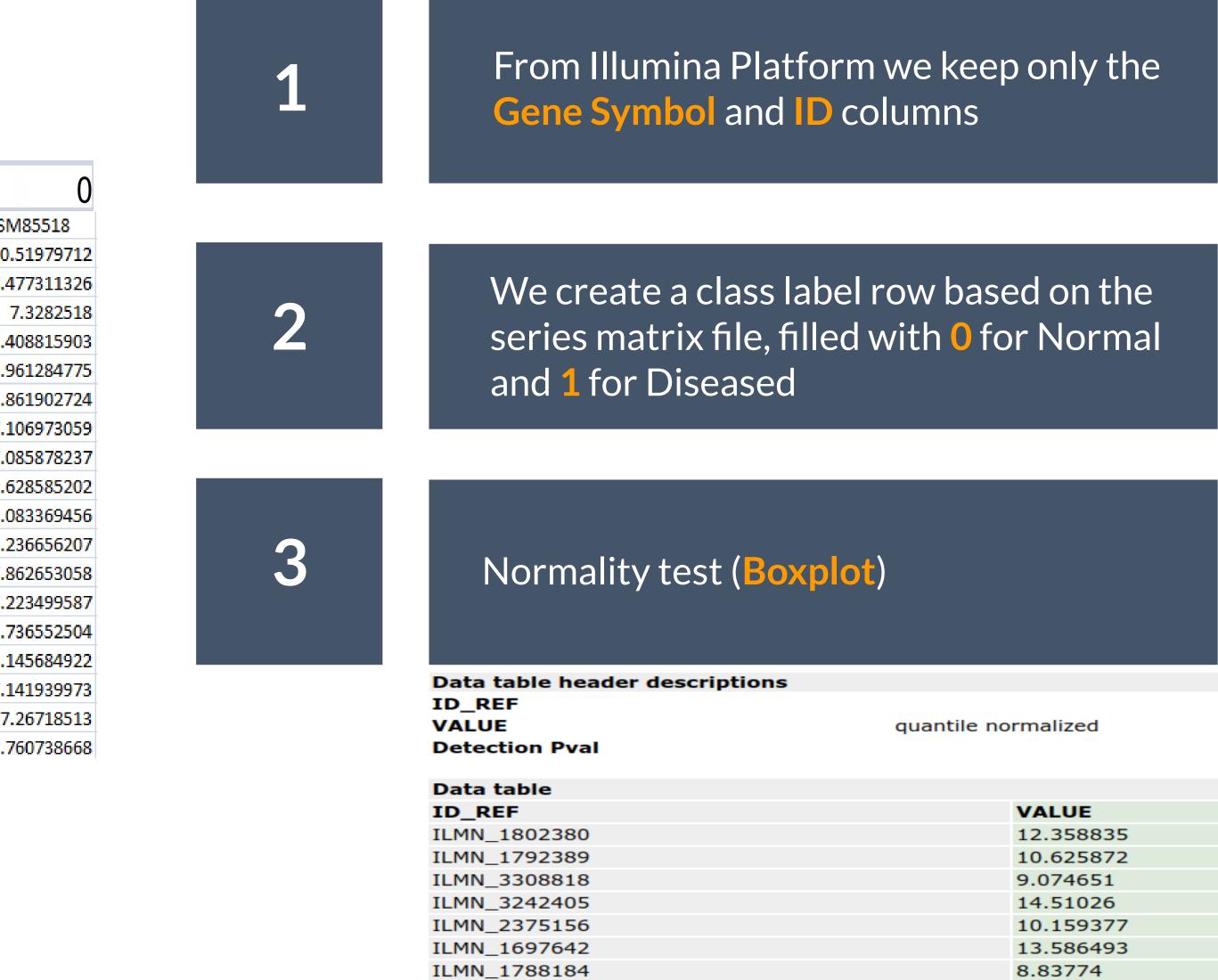
Normalization

(Correction of system error of fluorescence intensities) The noise must be removed to receive the real signal.

- Minimize systematic errors in expressions of the same tile
- Multiple tile comparison



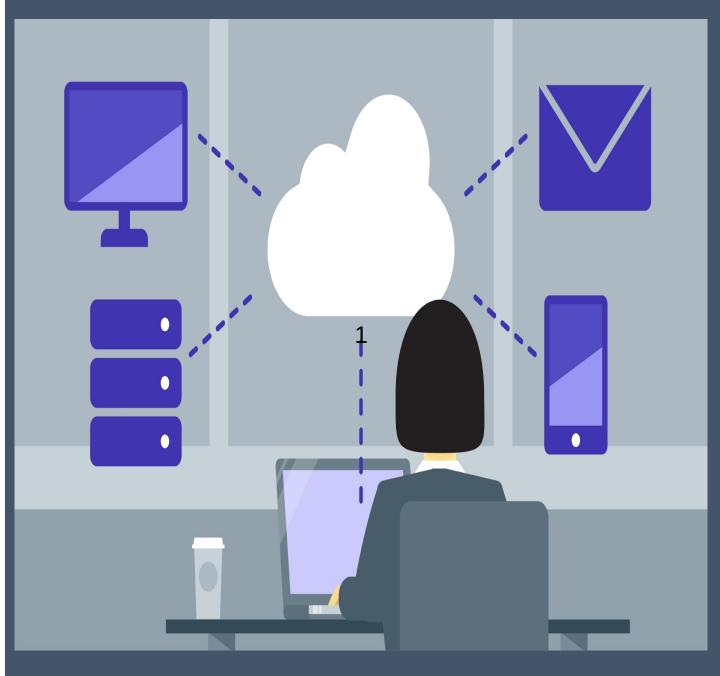
In order to proceed to Differential **Expression Analysis**


class label

	0	0	1	1	1	
 Probe_ids	GSM85513	GSM85514	GSM85515	GSM85516	GSM85517	GSN
1007_s_at	10.89995638	10.74526353	10.50083858	11.2726252	10.60303061	10.
1053_at	7.468384894	7.430974084	7.420949239	7.436356951	7.290826637	7.4
117_at	7.207236391	7.26356269	7.781946982	7.471031924	7.485945207	-
121_at	8.353033802	8.56736164	8.332319117	8.4445769	8.591138364	8.4
1255 <u>g</u> at	5.574130479	5.704594501	5.885603827	5.885586309	5.758336321	5.9
1294_at	8.069341874	8.179376232	7.927065718	8.201891815	8.340239995	7.8
1316_at	7.265441773	7.108672652	7.254406739	7.374890809	7.328710986	7.1
1320_at	6.790096837	6.913872911	6.897717413	6.868249603	7.09995898	7.0
1405_i_at	7.363228044	7.906012279	6.542664319	6.908755827	7.912683879	6.6
1431_at	6.21241268	6.087831923	6.24642086	6.299956669	6.219591861	6.0
1438_at	8.277196412	9.21636985	8.274914806	8.432758606	8.467300931	8.2
1487_at	7.591805822	7.999810386	7.948621465	7.642282983	7.829295792	7.8
1494_f_at	6.715724238	7.449884809	7.127940993	9.307620768	7.030783092	7.2
1552256_a	8.793423918	8.859005322	8.759661541	8.621644114	9.211286117	8.7
1552257_a	8.699622421	8.627003057	8.618195742	8.371665794	8.384612261	8.1
1552258_a	7.006313472	6.764953779	6.66018007	7.232681267	6.905257119	7.1
1552261_a	6.927855586	7.003592668	7.048399402	6.962205321	6.903561396	7.
1552263_a	6.868319881	6.743734981	6.247523567	6.7457923	6.673621769	6.7

Intensities

Data Manipulation



In order to proceed to Differential **Expression Analysis**

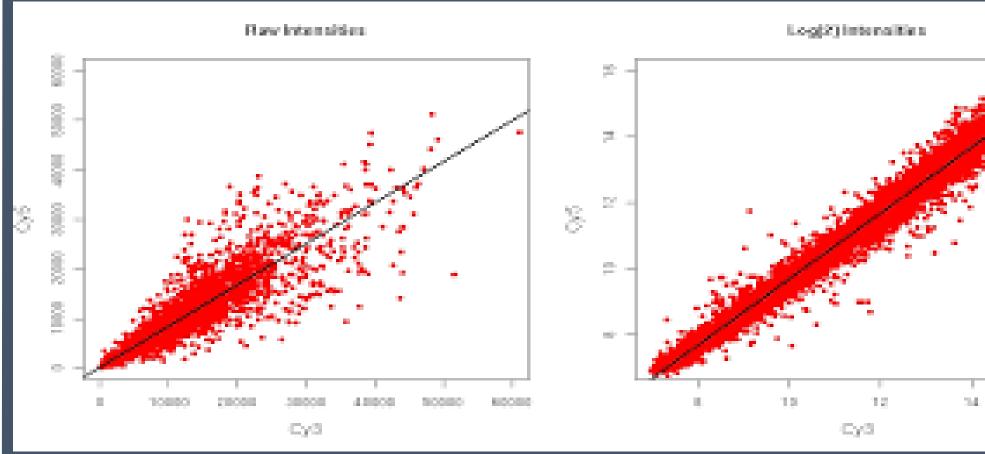
200012 x at

RPL21 /// RPL21P28 /// SNORA27 /// SNORD102

HNRNPU	ľ
HNRNPU	
EIF3A	T
EIF3A	- F
EIF3A	
HSP90B1	ľ
HSP90B1	
	HNRNPU EIF3A EIF3A EIF3A HSP90B1

200012_x_at	RPL21
200013_at	RPL24
200014_s_at	HNRNPC
200015_s_at	-
200016_x_at	HNRNPA1

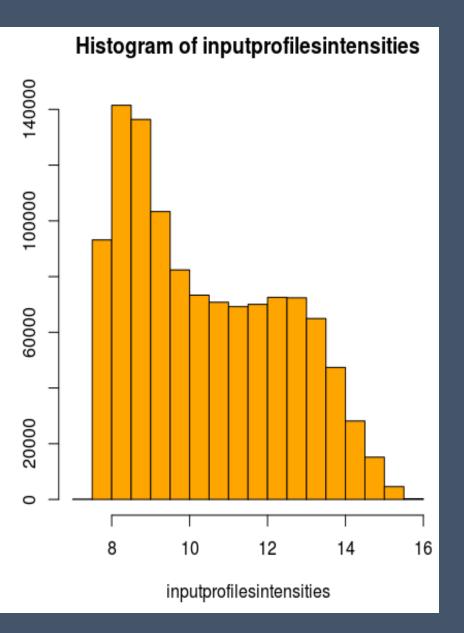
Data Manipulation


3 EXPLORATORY ANALYSIS

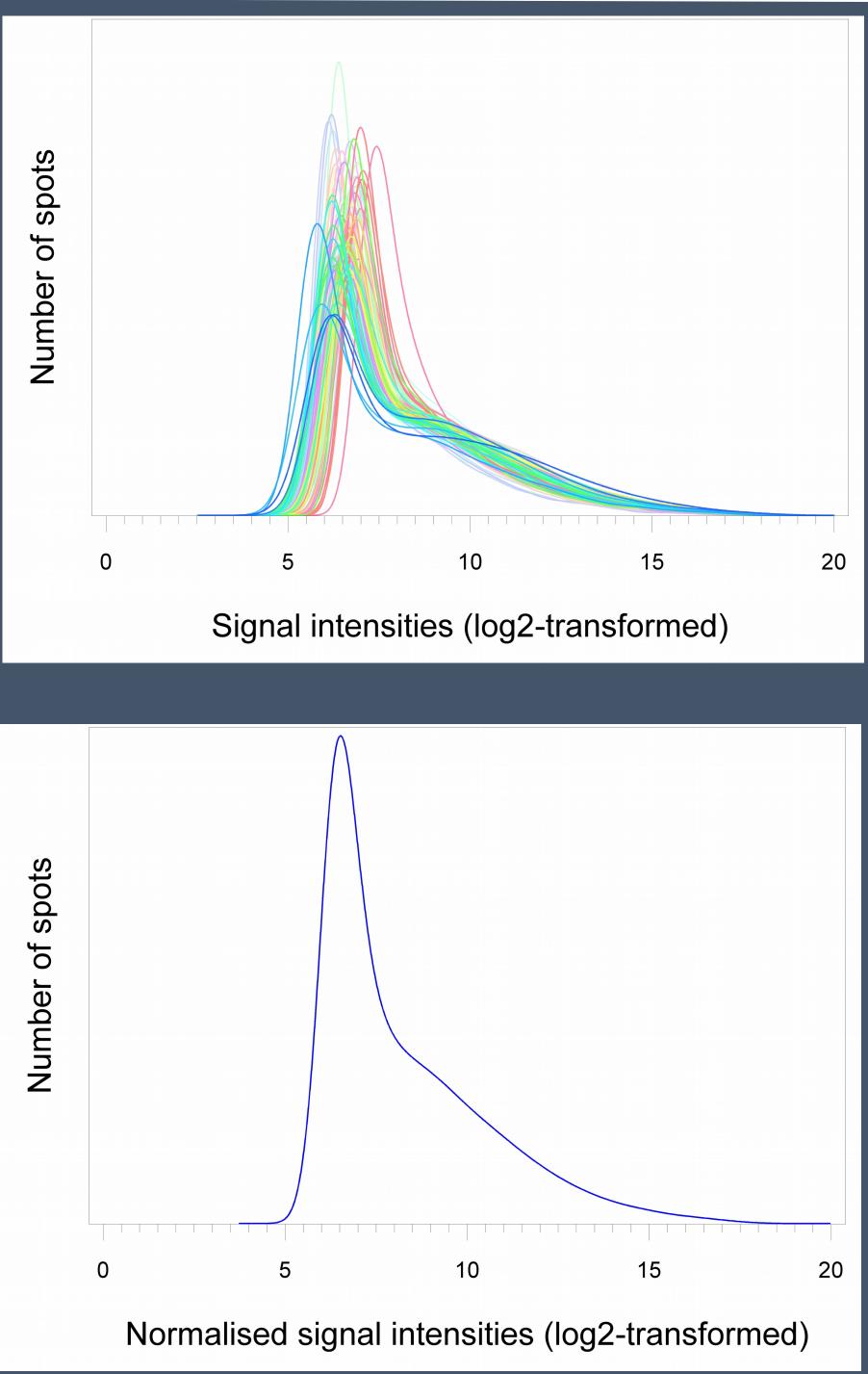
3 EXPLORATORY R ANALYSIS on our data

normIntensities<-normalizeQuantiles(Intensities) Boxplot(Intensities)

Samples


1.0

рсy


Frequei

Studio

hist(Intensities)

MA plot Before and after log2 transformation

4 DE ANALYSIS-STEPS

Differential Expression Analysis

Taking the normalised data and performing statistical analysis to discover quantitative changes in expression levels between experimental groups.To understand the effect of a drug we may ask which genes are **up-regulated** (increased in expression) or **down-regulated** (decreased in expression) between treatment and control groups.

Statistical Analysis /Control

Biological phenomenon or random variation in mRNA levels ?

t-test

Calculation of statistical t:

>> t, the smaller the likelihood that the two average values will be identical

<< t, the greater the likelihood that the two average values will be identical

Statistical Measures P-value

The lower the p-value, the lower the probability that the two mean of the values will be the same, and therefore the two conditions. Significant p-value < 0.05 !

Fold Change

Measure that describes the amount of change that occurs from an initial to a final state. Is calculated simply as the ratio of the difference between final value and the initial value over the original value.

Log2 transformation on expression data logFC

Average(Pathological Expression Values) = A Average(Normal Expression Values) = B

$$FC = \frac{A}{B} \rightarrow logFC = log\left(\frac{A}{B}\right) = logA - logB$$

The logarithm in the logFC is typically calculated for the base 2. That means one unit of the logFCs translates to a **two-fold** change in expression. The FCs can be calculated from the logFCs as FC = 2^logFC.

DE analysis and output table with statistics

Bioconductor OPEN SOURCE SOFTWARE FOR BIOINFORMATICS LIMMAR package

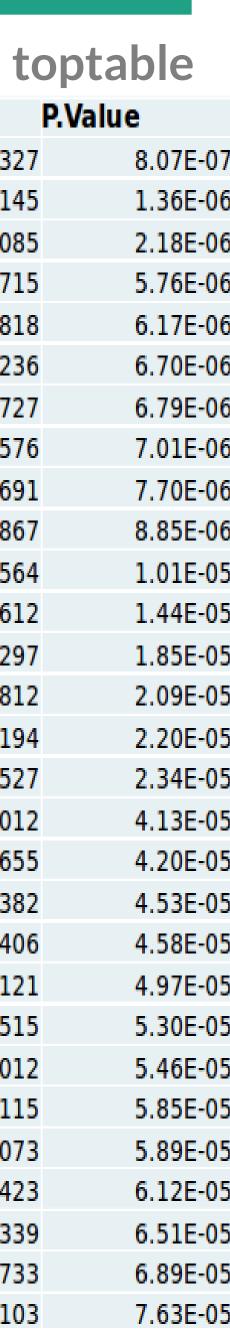
Functions used :

model.matrix
ImFit
ebayes
topTable

D	4
LMN	1343291
LMN	_1651209
LMN	_1651228
LMN	1651229
LMN	1651235
LMN	_1651236
LMN	_1651237
LMN	_1651238
LMN	_1651254
LMN	_1651260
LMN	_1651262
LMN	_1651268
LMN	_1651278
LMN	1651282
LMN	_1651285
LMN	_1651286

logFC [‡]	AveExpr 🗦	t	P.Value	adj.P.Val 🗦	в
-7.666201e-02	14.571054	-1.5676111441	1.248267e-01	0.53911119	-4.8195
-1.410753e-02	8.697243	-0.1562860927	8.765913e-01	0.97350558	-5.9481
-1.524472e-01	13.805876	-2.1449309794	3.806640e-02	0.34193062	-3.8810
-2.253579e-03	11.986144	-0.0237858585	9.811413e-01	0.99567184	-5.9595
3.458802e-02	8.929563	0.4302032298	6.693501e-01	0.91190915	-5.8713
-3.887025e-02	8.960563	-0.2439385567	8.085216e-01	0.95465784	-5.9313
2.809551e-01	9.066146	1.7814996938	8.240245e-02	0.46004121	-4.5003
1.102311e-01	9.267276	0.6689484677	5.073598e-01	0.84878748	-5.7467
6.487446e-03	13.887543	0.1142756747	9.095893e-01	0.98242598	-5.9535
1.236105e-01	8.365303	1.0115687257	3.178067e-01	0.74041973	-5.4761
1.844195e-01	13.689201	1.6612552116	1.044587e-01	0.50624480	-4.6841
1.100932e-01	9.465302	0.7922183627	4.328931e-01	0.81301728	-5.6616
-9.841123e-02	11.183806	-0.9587149614	3.434448e-01	0.75837183	-5.5248
-2.758284e-01	8.526321	-1.1105237055	2.733853e-01	0.70853806	-5.3785
-6.135972e-02	10.074949	-0.3718502307	7.119613e-01	0.92751915	-5.8936
-1.717950e-01	10.361193	-1.2577241367	2.157635e-01	0.65366638	-5.2175

Filtering and Sorting


platform_two_col

	5_001		
ID	Gene Symbol		
1007_s_at	DDR1		
1053 at	RFC2		
117_at	HSPA6		
121_at	PAX8		
1255 g at	GUCA1A		
1294_at	MIR5193		
1316_at	THRA		
1320 at	PTPN21		
1405_i_at	CCL5		
1431_at	CYP2E1		
1438 at	EPHB3		
1487_at	ESRRA		
1494_f_at	CYP2A6		
1598 g at	GAS6		
160020_at	MMP14		
1729_at	TRADD		
1773 at	CHURC1-FNTB		
177_at	PLD1		
179_at	DTX2P1-UPK3BP1-PMS2P11		
1861 at	BAD		
200000_s_at	PRPF8		
200001_at	CAPNS1		
200002 at	RPL35		
200003_s_at	MIR6805		
200004_at	EIF4G2		
200005_at	EIF3D		
200012_x_at	RPL21		
200013_at	RPL24		
200014_s_at	HNRNPC		
200015_s_at			
200016_x_at	HNRNPA1		

merge(platform_two_co

				opu
	Gene Symbol	ID	logFC	P.Val
		215812_s_at	0.497791327	/
		210854_x_at	0.502950145	j
		201658_at	-0.945885085	5
		219718_at	-0.448654715	;
		213843_x_at	0.471477818	3
		221806_s_at	0.990861236	5
		200601_at	0.792609727	/
		204275_at	0.318036576	5
		<u>م</u> t	1.065401691	L
ol, toptable, by= "ID")		3. T	0.625406867	1
		40	0.507797564	ł
		34206_at	0.358654612	2
		214096_s_at	0.501498297	1
udio		212778_at	1.131469812	2
uaio		212359_s_at	0.496572194	ł
		203206_at	0.354464527	/
		213752_at	0.579734012	2
		204328_at	0.569882655	5
		219114_at	-0.441640382	2
		202332_at	0.699775406	5
		218425_at	0.532921121	L
		205546_s_at	0.485561515	5
		214797_s_at	1.008443012	2
		221640_s_at	0.415141115	5
		220142_at	0.668142073	3
		206017_at	-0.56262423	3
		218714_at	0.617553339)
		41160_at	0.534257733	3
		564 at	0.682972103	}

Filtering and Sorting

Top significant DE genes

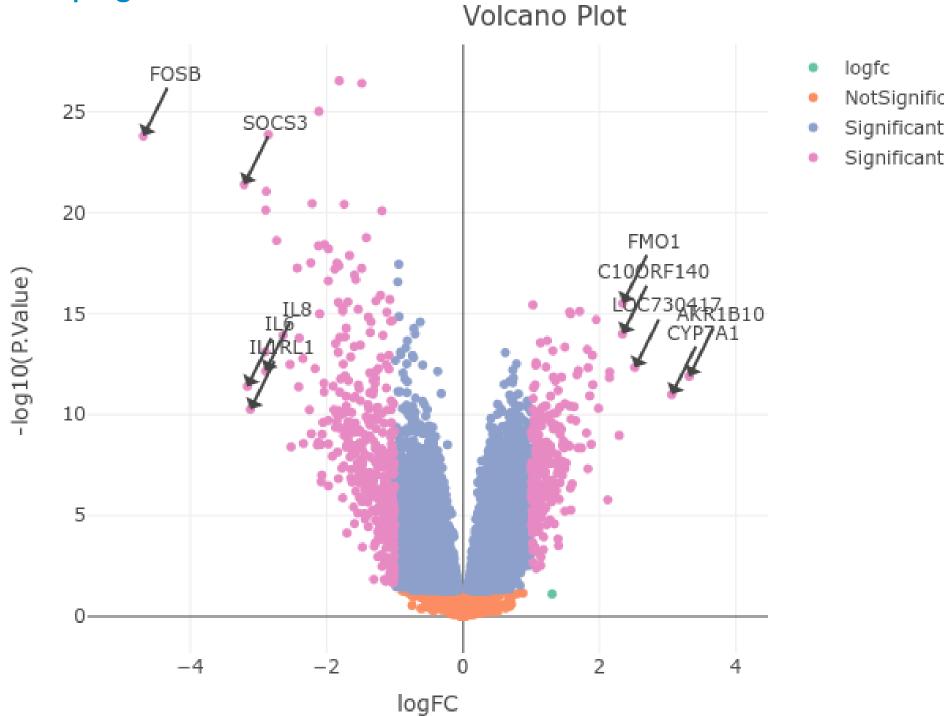
TOP 1000 GENES

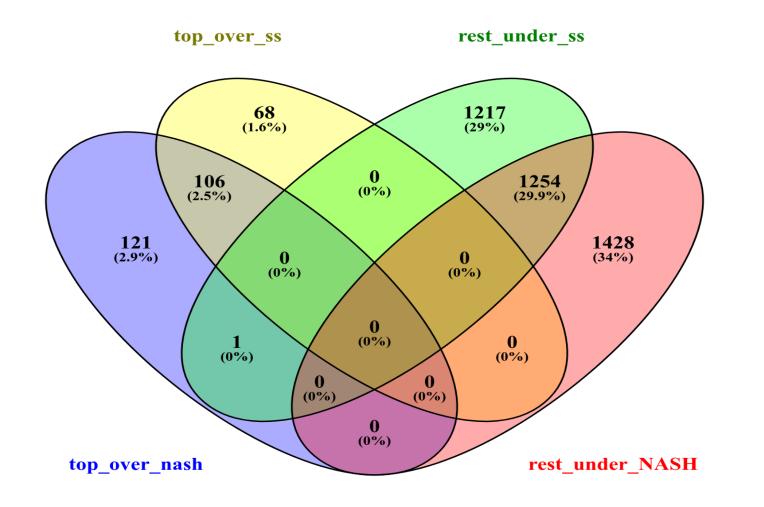
Gene Symbols	Probe ids	logFC	abs(logFC)	P.Value
FIGF	206742_at	-5.32513	5.32513	5.45E-30
COL17A1	204636_at	-3.83636	3.83636	6.64E-26
KCNJ16	219564 at	-2.72097	2.72097	2.01E-25
FXYD1	_ 205384 at	-4.98779	4.98779	2.75E-25
OXTR	206825 at	-5.04518	5.04518	3.94E-23
	_			
SCARA5	235849_at	-6.1398	6.1398	4.59E-23
SAMD5	228653_at	-4.76737	4.76737	9.00E-23
TNXA	216333_x_at	-3.11632	3.11632	1.21E-22
	•••	•••		
CASP6	211464_x_at	0.2008	0.2008	0.049858206
ZNF451	215012 at	0.4392	0.4392	0.049867915

5 VISUALIZATION

mirnas pheatmap

Heatmap Used in molecular biology to represent the level of expression of many genes across a number of comparable samples. Heatmap(), pheatmpap()


Volcano Plots


Is a type of scatter-plot that is used to quickly identify changes in large data sets composed of replicate data. It plots significance versus fold-change on the y and x axes, respectively.

ggplot2,plot.ly https://plot.ly/online-chart-maker/

VENN diagram VENNY, venndiagram() Shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves.

/home/vicky/Desktop/THESIS FINAL/ss vs nash/heatmap ss vs nash.pdf#master-page3

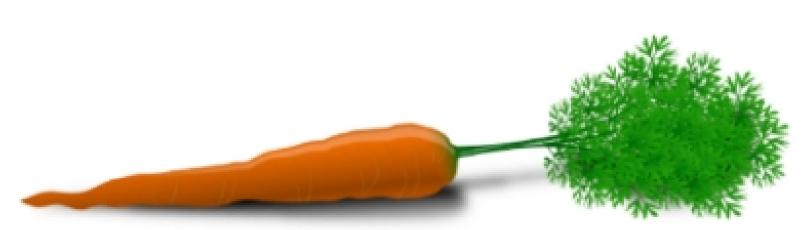
NotSignificant Significant&FoldChange

Top DE genes are suggested biomarkers

Additional steps for the in situ validation of the accuracy of the suggested biomarkers:

Weka is a collection of machine *learning* algorithms for data mining tasks. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization

Caret functionality


- Some preprocessing (cleaning)
- preProcess
- Data splitting
- createDataPartition
- createResample
- createTimeSlices
- train
- predict Model comparison confusionMatrix

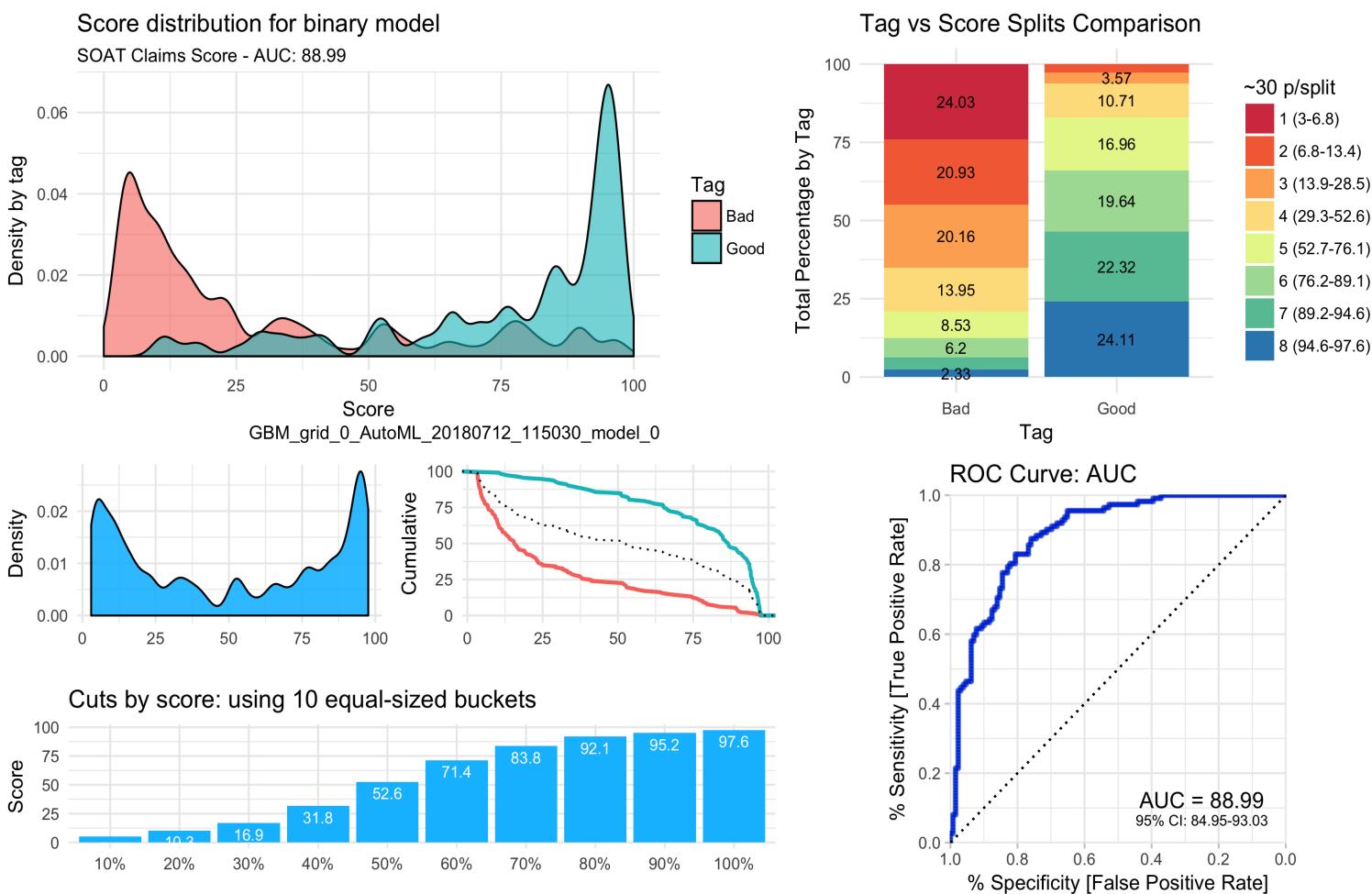
Machine learning algorithms in R

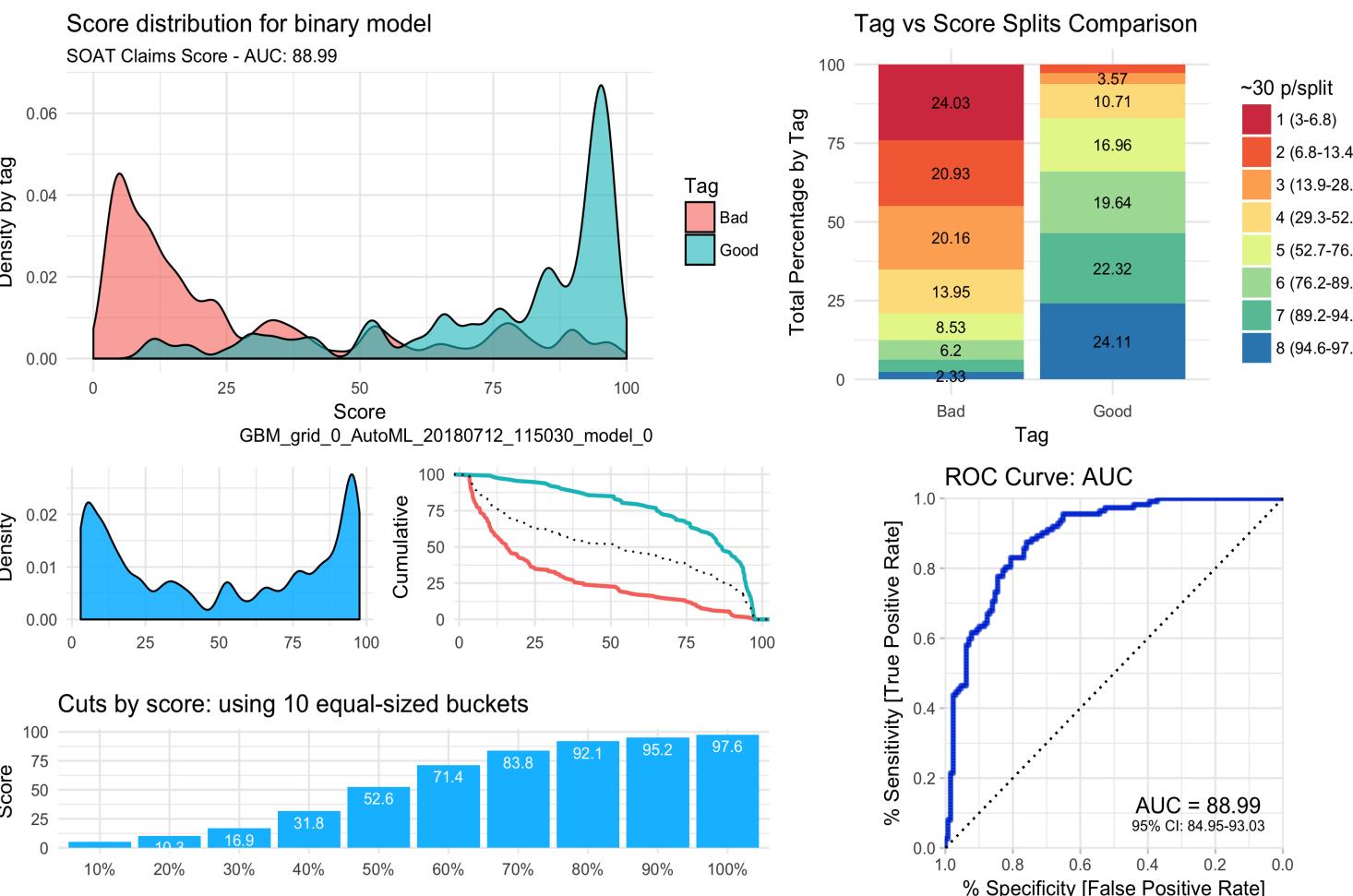
- Linear discriminant analysis
- Regression
- Naive Bayes
- Support vector machines
- Classification and regression trees
- Random forests
- Boosting
- etc.

the caret package

Training/testing functions

The caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models. The package contains tools for:


http://caret.r-forge.r-project.org/



Top DE genes are suggested biomarkers

Additional steps for the in situ validation of the accuracy of the suggested biomarkers:

Machine Learning Results in R: one plot to rule them all!

https://datascienceplus.com/machine-learning-results-one-plot-to-rule-them-all/

5 Enrichement Analysis

Enrichment Analysis

Gene set enrichment analysis (GSEA) (also functional enrichment analysis) is a method to identify classes of genes or proteins that are over-represented in a large set of genes or proteins, and may have an association with disease phenotypes. The method uses statistical approaches to identify significantly enriched or depleted groups of genes.

idiopathic pulmonary fibrosis DOID-0050156 human GSE24206 sample 867

asthma DOID-2841 human GSE43696 sample 827

Asthma DOID-2841 human GSE43696 sample 634

Psoriasis vulgaris C0263361 human GSE14905 sample 93

Idiopathic fibrosing alveolitis C0085786 human GSE21369 sample 321

idiopathic pulmonary fibrosis DOID-0050156 human GSE24206 sample 868

Alcoholic Hepatitis DOID-12351 human GSE28619 sample 477

idiopathic pulmonary fibrosis DOID-0050156 human GSE24206 sample 8

psoriasis DOID-8893 human GSE14905 sample 754

idiopathic pulmonary fibrosis DOID-0050156 human GSE24206 sample 871

Tools for performing GSEA

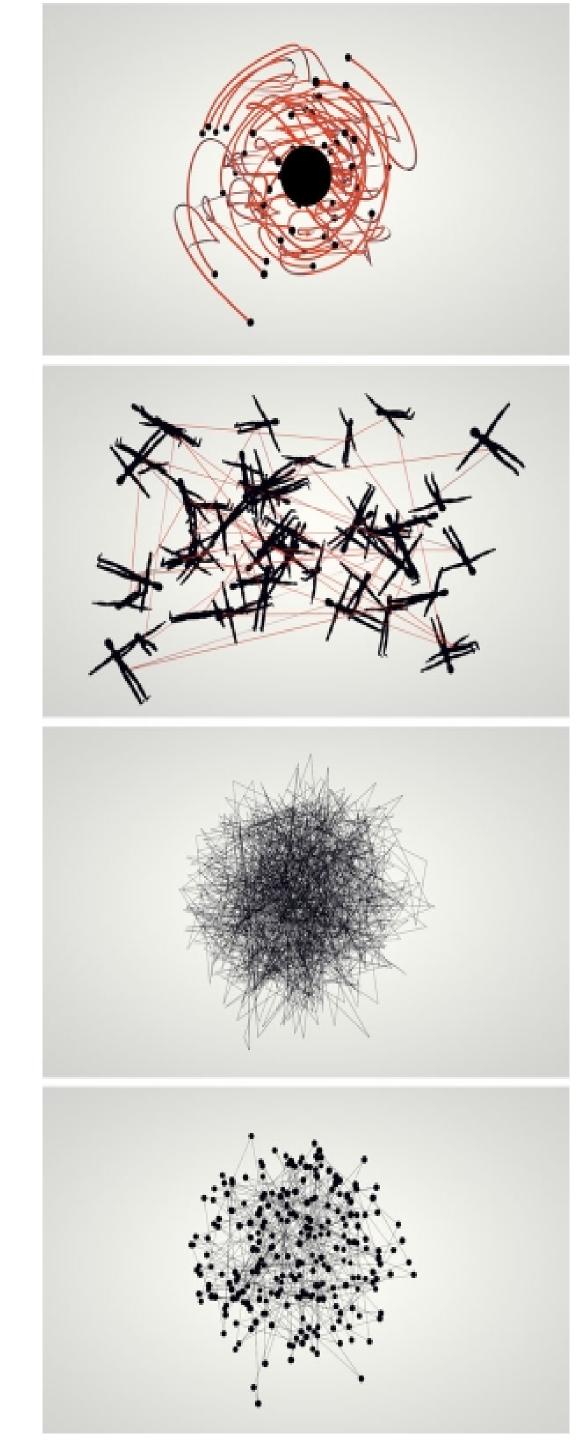
4

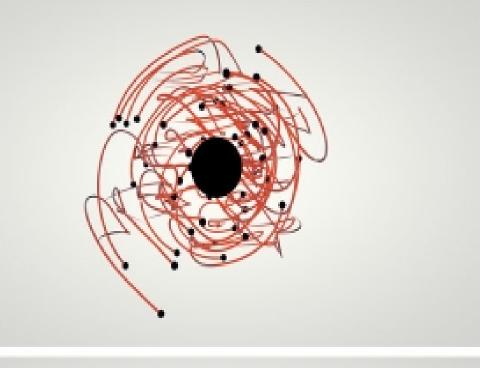
QuSAGE (R/Bioconductor)

http://bioconductor.org/packages/release/bioc/html/qusage.html

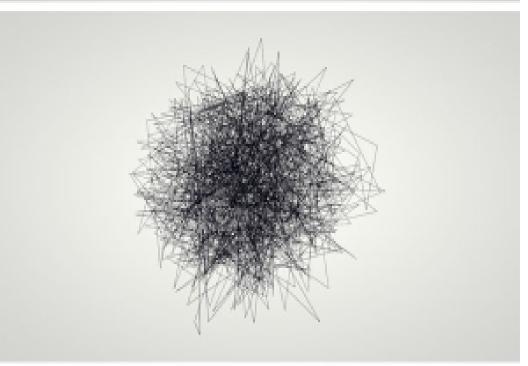
DAVID_ Database for Annotation, Visualization, and Integrated Discovery (Labor atory of Human Retrovirology and Immunoinformatics (LHRI); National Institute of Allergies and Infectious Diseases (NIAID); Leidos Biomedical Research, Inc. (LBR).pdf

/home/vicky/Desktop/THESIS FINAL/overview.pdf

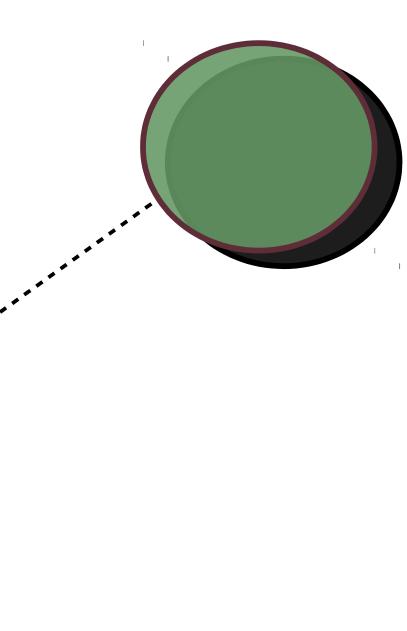




6 Networks -

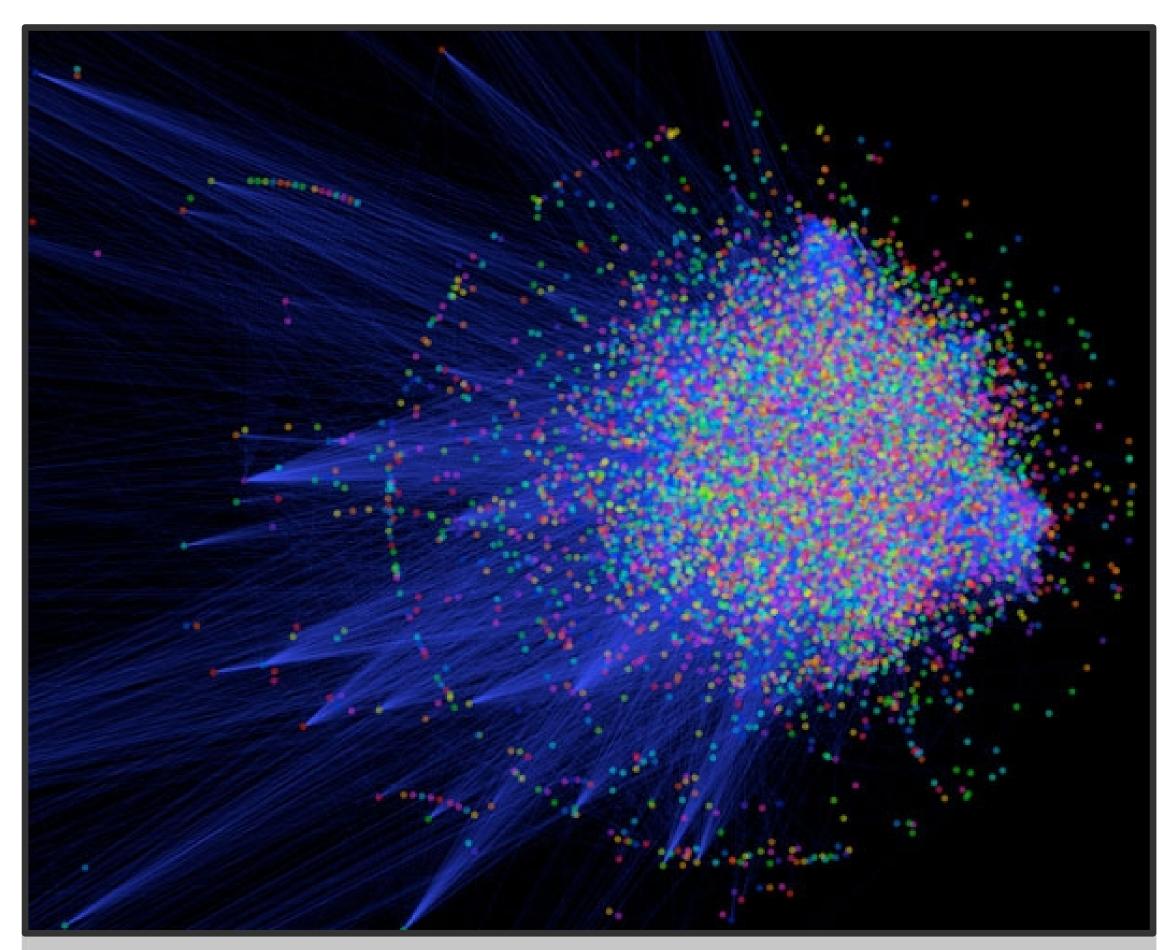

6 Networks

What is a network? A theoretical structure that describes the relationships between elements that represent it in its form.


Networks and Biology

Biological networks:

at all levels of study of the life sciences from the most tiny (molecular) to the most macroscopic (ecosystems)


Genes Proteins

Metabolites...

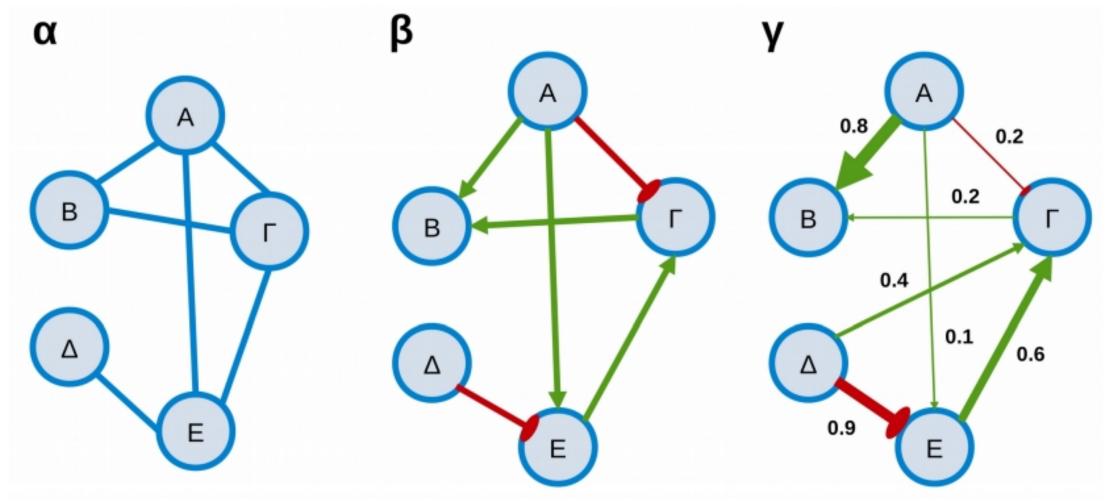
Physical Biochemical

functional

Regulatory Networks:

Regulation of expression between genes

Metabolic Networks


Nodes --> Enzymes and Metabolites Edges --> Chemical Reactions A description of the overall activity of the metabolism

Signaling/Propagation Networks Cell signaling processes

Nodes --> proteins

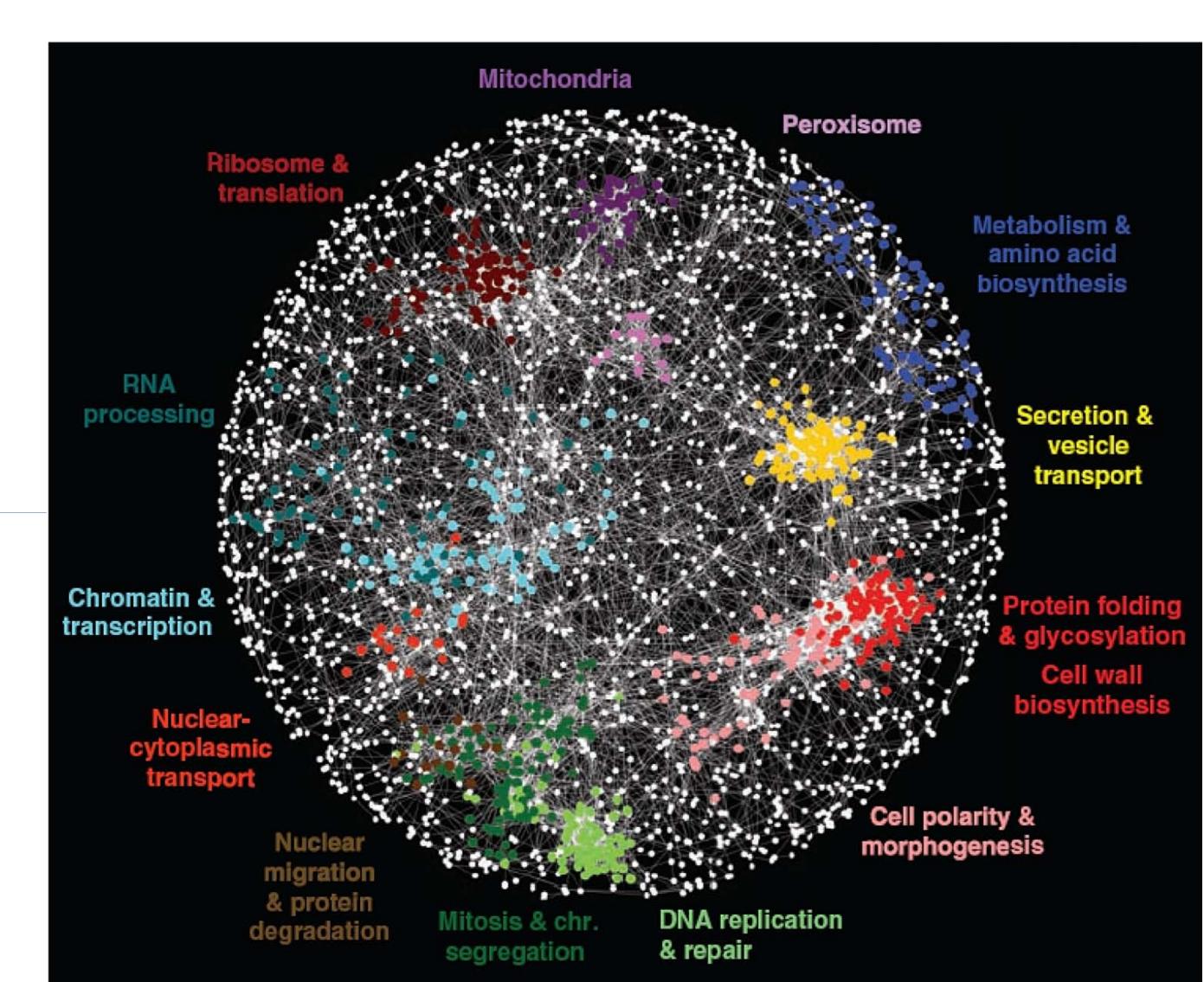
Edges --> Activation reactions that are stages in the transmission of a signal

Types of biological Networks

Protein Interaction Networks

•All protein-containing biological networks are networks of protein interactions Physical Interaction Relationships

Identifying such interactions --> extremely difficult experimental


Human Interactome > 200.000 interactions

DISEASE - complex interactions disorders **Absence - presence of** an interaction

> Limited mapping of disrupted molecular interactions

> > **Problem of** understanding investigating diseases

Molecular Interactions

- Biomolecular Interaction Network Database(BIND)
- Human Protein Reference Database (HPRD)
- Molecular Interaction Database (IntAct)
- Molecular Interactions Database (MINT)

Databases

Biological General Repository for Interaction Datasets (BioGRID)

7 Co-expression


Systems Biology - Development of Statistical Methods of Construction of Co-Expression Networks -Network Relationship Based on **Molecular Expression Profiles -Gene-Gene Discovery - Phenotype**

need to understand molecular interactions diseases

Network Inference Methods

Absence of molecular interactions mapping

> Rapid accumulation of molecular expression profiles

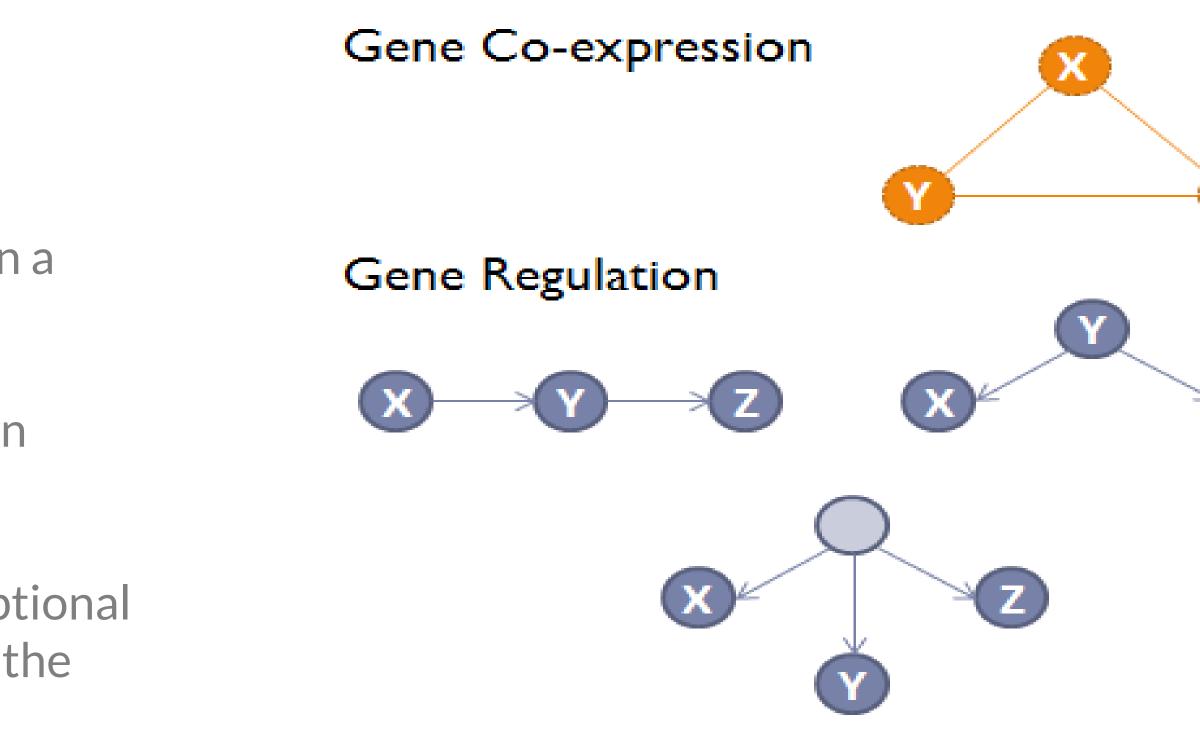
7 Co-expression

Gene co-expression network (GCN) Is an undirected graph.

Nodes --> genes

Edge --> a significant co-expression relationship between a pair of genes

Construction


looking for pairs of genes which show a similar expression pattern across samples.

Biological interest

Co-expressed genes are controlled by the same transcriptional regulatory program, functionally related, or members of the same pathway or protein complex.

Constructed using data sets from high-throughput gene expression profiling technologies such as Microarrays or RNA-Seq

Use **R** packages to move from the level of expression to the level of coexpression

The direction and type of relationships are not defined in gene coexpression networks

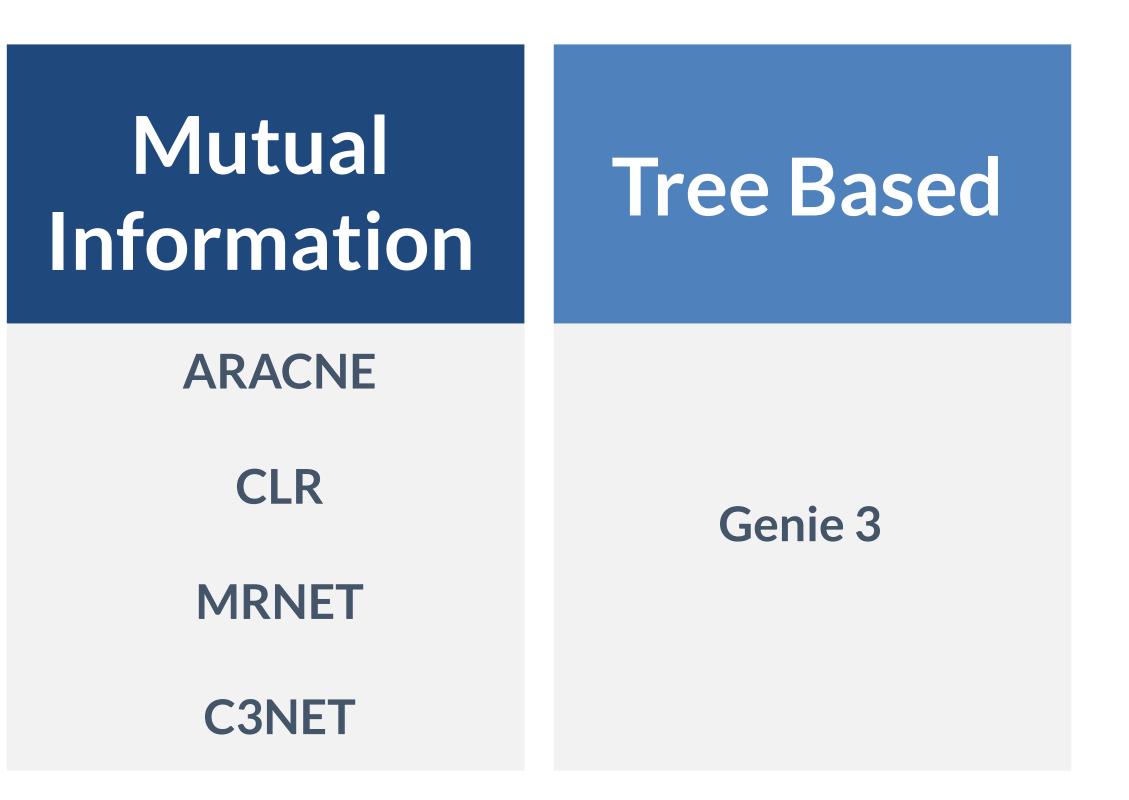
Input Gene expression data [Intensities file]

nxm matrix where n --> the number of genes we want to test m--> the number of samples

GeneSymbols	GSM506037	GSM506039	GSM506040	GSM506041	GSM506042	GSM506043	GSM506044	GSM506045	GSM506046
SYT1	10.33908	5.343771	5.582321	5.268273	5.225692	6.249693	5.426984	6.364965	7.592141
VSNL1	11.47426	7.370188	8.336997	6.543741	5.69627	10.65557	6.295036	6.405679	7.94896
OXR1	8.313855	5.417594	5.497601	5.252535	4.946619	6.36206	5.405048	6.352633	6.768559
ENC1	11.74219	7.562007	8.601264	8.365366	6.497138	9.249153	7.266273	8.545738	9.363238
PRKAR1A	11.29573	8.48222	8.733762	5.901087	7.204596	10.23476	10.423	9.959939	10.15759
TCF4	9.083672	6.547215	7.137525	8.105058	6.327345	6.793546	8.144326	8.259708	8.976389
SNAP25	11.90147	8.774288	9.846148	8.22824	7.821966	11.28837	8.404737	8.243678	9.227068
RFC5	9.445796	7.808323	8.229622	7.049702	6.752701	7.960366	8.12147	8.726924	8.842229
TAC1	8.264978	5.711597	6.566486	5.552792	5.639768	6.832999	5.955256	5.56833	6.624945
TTC3	10.64062	7.132298	7.552528	7.154346	6.25438	7.668864	9.20298	10.06523	10.11041
LPPR4	10.82668	7.562777	9.032742	7.015502	7.257954	9.142533	7.095432	7.889068	8.764746
PRKACB	9.939425	8.105348	8.48073	7.785791	5.832049	8.740435	8.258381	8.607728	9.566483
PDP1	10.18662	7.332411	7.367985	7.18908	6.550693	7.76814	7.482113	8.67154	9.317524
STMN2	11.76233	9.537437	10.67859	8.000459	6.469519	11.91599	7.806339	8.730346	10.10862
PSD3	11.14672	7.544622	7.410266	7.47527	6.449869	8.721755	8.306248	9.269829	10.00961
PREPL	10.11161	7.416642	8.37225	8.116906	7.392681	9.423034	7.537574	8.042512	8.792299
YWHAB	11.1723	8.040752	8.98805	6.870547	6.707229	10.23989	9.857018	9.75049	10.00768
SNX10	9.686013	7.586221	8.467611	6.598464	6.530436	8.797027	6.638717	7.276467	8.340045

Co-expression network construction

Co-expression network construction


Degree of similarity (coexpression measure) It is calculated among the pairs of genes Create a new table --> how similar the expression levels of 2 genes are alikes

	G ₁	G	G	G	G	G	G	G	G ₉	Guo
G1	[1.00									
G2	0.23	1.00	0.63	0.52	0.98	0.99	0.29	0.30	0.46	0.99
	0.61									
G ₄	0.71	0.52	0.99	1.00	0.69	0.41	0.97	0.66	0.52	0.40
G ₅	0.03	0.98	0.77	0.69	1.00	0.95	0.48	0.09	0.27	0.94
G_6	0.35	0.99	0.53	0.41	0.95	1.00	0.17	0.41	0.57	1.00
G7	0.86	0.29	0.93	0.97	0.48	0.17	1.00	0.83	0.72	0.16
G_8	1.00	0.30	0.56	0.66	0.09	0.41	0.83	1.00	0.98	0.42
G ₉	0.97	0.46	0.41	0.52	0.27	0.57	0.72	0.98	1.00	0.58
G10	0.97 0.37	0.99	0.51	0.40	0.94	1.00	0.16	0.42	0.58	1.00

Co-expression network construction

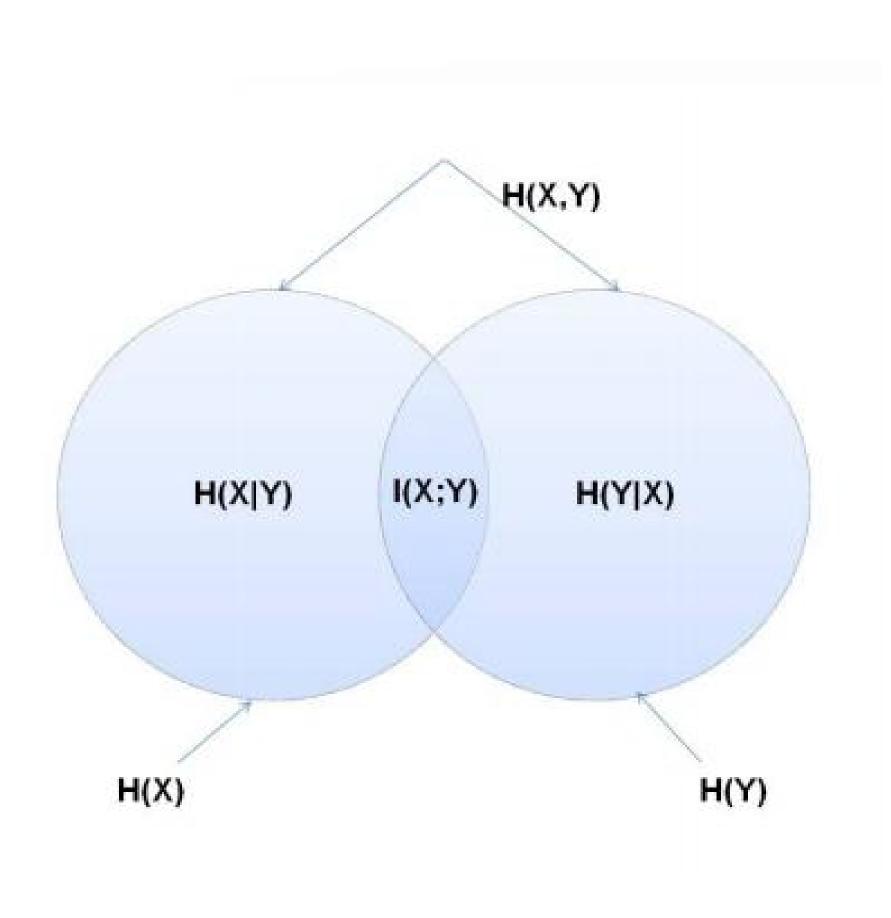
Co-expression measures

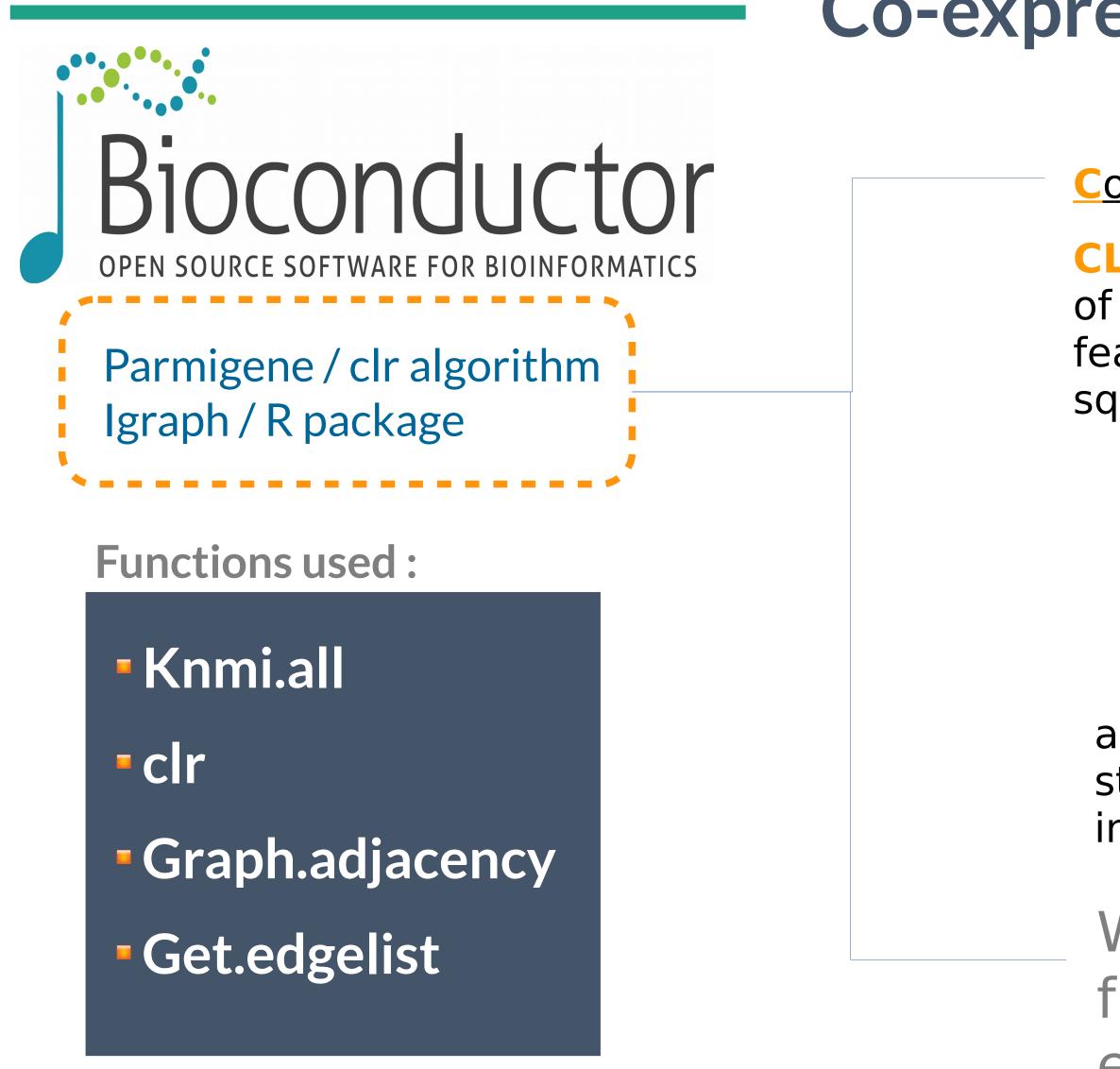
Correlation

Pearson Correlation

Spearman Correlation

Partial Correlation


Mutual information


Mutual information

- The information that is shared between two variables
- •How much the uncertainty decreases taking into account the expression levels of a gene when we know the expression levels of another gene

Joint Entropy

Co-expression matrix

Context Likelihood Or Relatedness Network

CLR algorithm is an extension of relevance network. Instead considering the mutual information I(Xi;Xj) between features Xi and Xj, it takes into account the sqrt(zi2+zj2), where

$$z_i = max\{0, \frac{I(X_i; X_j) - \mu_i}{\sigma_i}\}$$

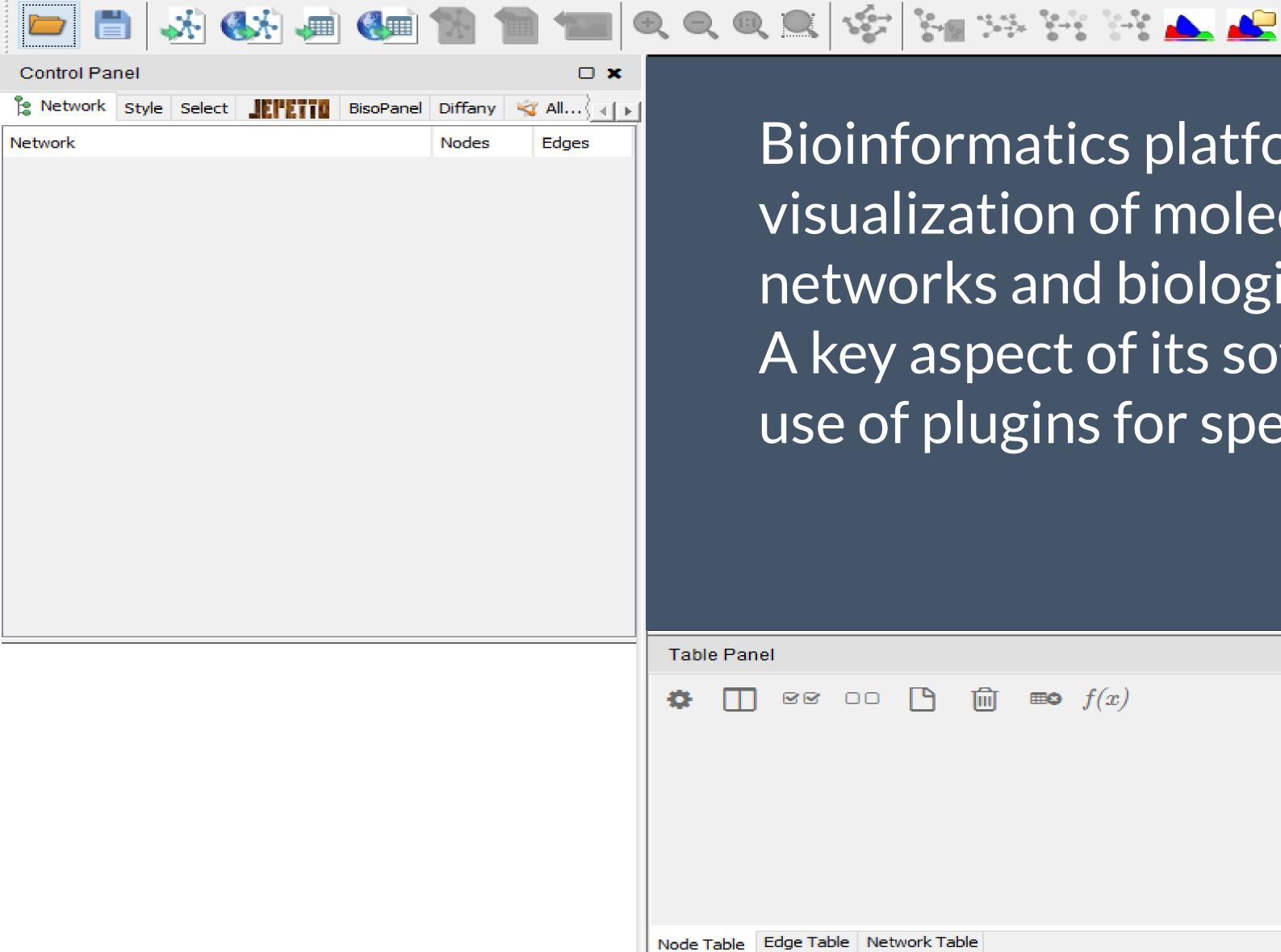
and mean(Xi) and sd(Xi) are, respectively, the mean and the standard deviation of the empirical distribution of the mutual information values I(Xi,Xk), k=1,...,n

We used iGraph package in order to switch from the co-expression matrix to the final edge list

score

*	FOSB [‡]	IL8 [‡]	ilirli ÷	\$OCS3	IL6 [‡]	≑	CYP7A1
FOSB	0.000000e+00	5.127012e+00	1.731682e+00	2.333716e+00	1.357592e+00	1.211002e+01	0.000000e+00
IL8	5.127012e+00	0.000000e+00	3.493319e-01	4.462795e+00	8.702143e+00	7.379213e+00	0.000000e+00
IL1RL1	1.731682e+00	3.493319e-01	0.000000e+00	1.383660e+00	5.539228e-01	2.210812e-01	1.498286e+00
SOCS3	2.333716e+00	4.462795e+00	1.383660e+00	0.000000e+00	3.414252e-01	3.446351e+00	1.615355e-01
IL6	1.357592e+00	8.702143e+00	5.539228e-01	3.414252e-01	0.000000e+00	1.967844e+00	0.000000e+00
FOS	1.211002e+01	7.379213e+00	2.210812e-01	3.446351e+00	1.967844e+00	0.000000e+00	6.237162e-01
CYP7A1	0.000000e+00	0.000000e+00	1.498286e+00	1.615355e-01	0.000000e+00	6.237162e-01	0.000000e+00

edgelist --> /home/vicky/Desktop/THESIS_FINAL/ss_vs_n ash/EDGE_LIST.html


Adjacency matrix

8 CYTOSCAPE

% Session: New Session

File Edit View Select Layout Apps Tools Help

Bioinformatics platform for the analysis and visualization of molecular interactions, networks and biological pathways. A key aspect of its software architecture is the use of plugins for specialized capabilities

8 CYTOSCAPE

% Session: New Session

File Edit View Select Layout Apps Tools Help

l			*	X
С	ontrol Pa	anel		
Ĩ\$	Network	Style	Select	JE
Net	twork			

AllegroLayout	>	I h		4000	G) @		-	0.0	10.0
App Manager		10	11111	_	17	<u> </u>	<u> </u>			•	18
BisoGenet clusterMaker clusterMaker Visualizations ClusterONE ClusterViz Cyrface CytoNCA Diffany EnrichmentMap GeneMANIA JEPETTO Centiscape2.0 KEGGParser MCODE MetScape ModuLand NCMine PINA4MS BiNGO	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	X (_iffan) odes		Image: All Edges			D It N	rav us etw etv	sca vs i es a vork vork e of	- nfo a lo <s <s< th=""><th>or ar fc a</th></s<></s 	or ar fc a
Reactome Fl Venn and Fuler Discourse	>					Tab	le Pan	el			
Venn and Euler Diagrams DyNet Network Importer DyNet Analyzer Load CytoGEDEVO Agilent Literature Search iRegulon	>					•				6	

Node Table Edge Table Network Table

Enter search term...

-GeneMANIA plugin

rmation from heterogeneous sources rge set of data from unified operating or 6 organizations re divided into 7 categories eractions)

而 $\blacksquare \circ f(x)$

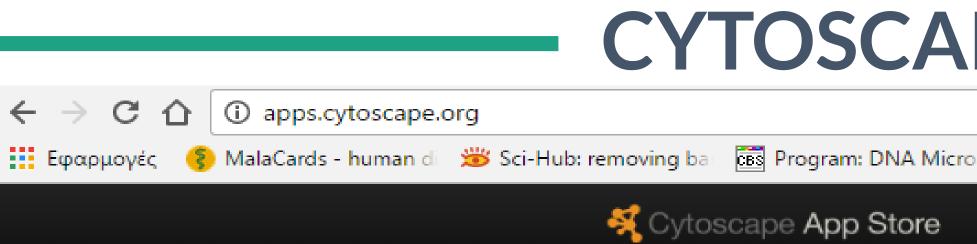
Types of Interactions BioGRID

Genetic Interaction:

Two genes are operably linked if the effects of disruption of a gene are modified by the disruption of another gene (**BioGRID**)

Co-localization: Two genes are linked if they are expressed in the same tissue or their products are in the same cellular region.

Predicted: Two genes are linked if their products interact with another organism - (bibliography)


Shared protein domains: Two gene products are linked if they have a similar structure - (InterPro, SMAR and Pfam)

Pathways: Two genes are linked if they are on the same path.(Reactome, BioCyc and Pathway Commons).

Co-Expression:

Two genes are linked if their expression levels are similar in a gene expression study. Most of these data - (Gene Expression Omnibus (GEO) and the corresponding publications).

Physical Interaction: Two gene products bind if they were found to interact in a protein-protein interaction study. Data - (**BioGRID and Pathway Commons**)

 \leftarrow

 \rightarrow

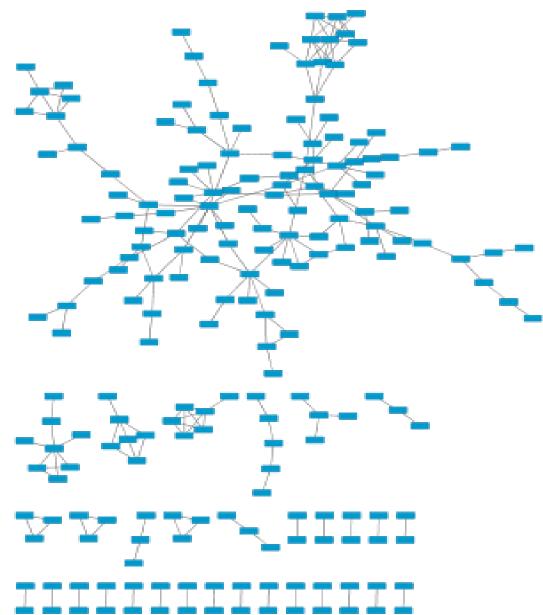
All Apps

Categories

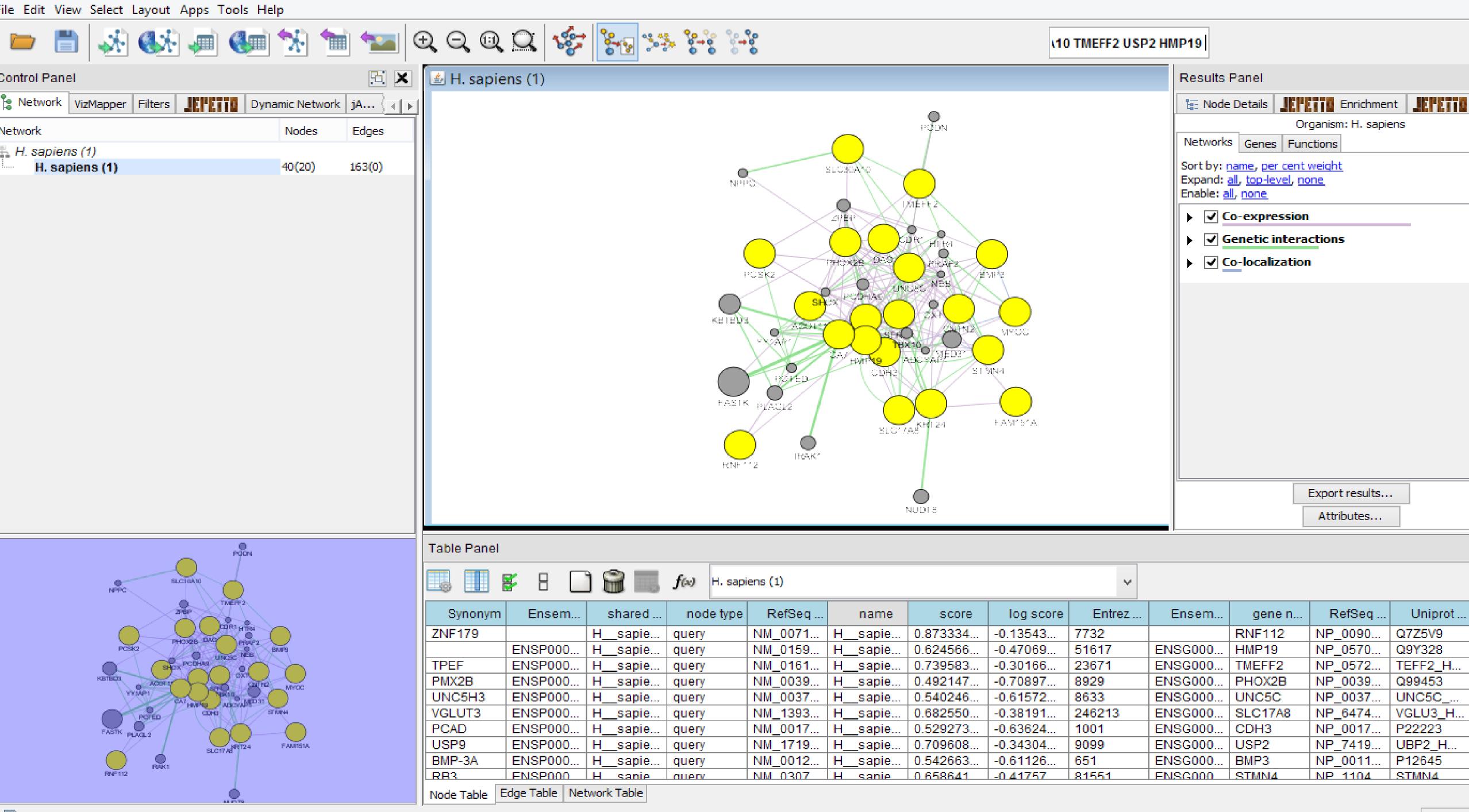
collections data visualization network generation graph analysis online data import network analysis integrated analysis clustering utility enrichment analysis data integration systems biology layout ontology analysis visualization pathway database network comparison local data import import interaction database

more »

CYTOSCAPE APP STORE


/enny	٨	Babelomics 4.3	关 MammaPrint	Test 옹 Biolog	gical Functions o	T <u>×</u> T Remove Du
			Submit an App 🝷	Search the A	App Store	Sign In
NI.					0-10-1-1-1	
N	ew	est Rel	eases		Get Started with t	ne App Store »
:	\geq	CytoCopte	R 🤹	>	ANIMO	3.0+
•	\bigcirc	A Cytoscape logic models	plug-in for training	• •	ANIMO (Analysis Interactive MOde	
		GTA	3.0		CyNetSVM	3.0+
		Module (clust network base	ter) detection in PPI		A Cytoscape App Biomarker Identifi	
	*	PTMOracle Co-visualisati	ion and co-analysis of	' T -	TiCoNE Time Course Netv	vork Enricher is
		PTM and PPI	data	്ര	an interactive clus	stering method
					more n	ewest releases »
Тс	p	Downlo	oaded Ap	ps		
4		ClueGO	3.0	þ	BiNGO	3.0+
2	E	Creates and functionally g	visualizes a rouped network of	Bingo	Calculates overre terms in the netw	-
C.	ar DAN		3.0		ClueDedia	3.0-
Ge	INEMAN	Imports intera	action networks from	*	CluePedia CluePedia: A Clu	
Ge	ENE MAN	Imports intera	-	*		
	INE MAN	Imports intera public databa	action networks from	A MCODE	CluePedia: A Clu	using integrated

CYTOSCAPE APP STORE -----



K Session: New Session			– 0 ×
File Edit View Select Layout Ap	ops Tools Help		
📂 🛗 👫 👫	AllegroLayout App Manager		
Control Panel	BisoGenet	> NetworkPatternStage1.txt	
Network Style Select GED EVO	clusterMaker		
Network	clusterMaker Visualizations		
NetworkPatternStage1.txt	ClusterONE		
NetworkPattern Stage1	ClusterViz		
	Cyrface		
	CytoNCA		
	Diffany		
	EnrichmentMap		
	GeneMANIA	About	
	iRegulon	Search	
	Agilent Literature Search	Choose Another Data Set	
	About CytoGEDEVO	Load Data Set	
	JEPETTO	Check For Data Updates	
	KEGGParser		
	MCODE		
	MetScape		
	ModuLand	\rightarrow	
	NCMine		
	PINA4MS		
	Reactome FI	>	
	Venn and Euler Diagrams		
	BiNGO	Table Panel	× □
- 1	Centiscape2.0	\bullet T ee oo P m = $f(x)$	
	DyNet Network Importer		
	DyNet Analyzer	shared name MCODE MCODE MCODE	
		HOXA7 HOXA7 Undustered 0.0	~
-1-7-7-24		HOXA5 HOXA5 Undustered 0.0 RHOU RHOU Undustered 0.0	
	1	MYOT MYOT Undustered 0.666666	
	<u>+</u>	LAMP3 LAMP3 Undustered 0.0	
	7	OAS3 OAS3 [Cluster 1] Clustered 4.0 SPINK5 SPINK5 Undustered 0.25	
te te gite d		C5orf23 C5orf23 Undustered 0.25	↓
		Node Table Edge Table Network Table	

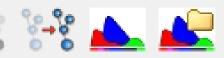
(x) H. sap	iens (1)				~				
node type	RefSeq		name	score	log score	Entrez	Ensem	gene n	RefSeq
iery	NM_0071	H_	_sapie	0.873334	-0.13543	7732		RNF112	NP_0090
lery	NM_0159	H_	_sapie	0.624566	-0.47069	51617	ENSG000	HMP19	NP_0570
iery	NM_0161	H_	_sapie	0.739583	-0.30166	23671	ENSG000	TMEFF2	NP_0572
lery	NM_0039	H_	_sapie	0.492147	-0.70897	8929	ENSG000	PHOX2B	NP_0039
lery	NM_0037	H_	_sapie	0.540246	-0.61572	8633	ENSG000	UNC5C	NP_0037
iery	NM_1393	H_	_sapie	0.682550	-0.38191	246213	ENSG000	SLC17A8	NP_6474
lery	NM_0017	H_	_sapie	0.529273	-0.63624	1001	ENSG000	CDH3	NP_0017
iery	NM_1719	H_	_sapie	0.709608	-0.34304	9099	ENSG000	USP2	NP_7419
iery	NM_0012	Η_	_sapie	0.542663	-0.61126	651	ENSG000	BMP3	NP_0011
ierv	NM 0307	н	sanie	0.658641	-0 41757	81551	ENSG000	STMN4	NP 1104

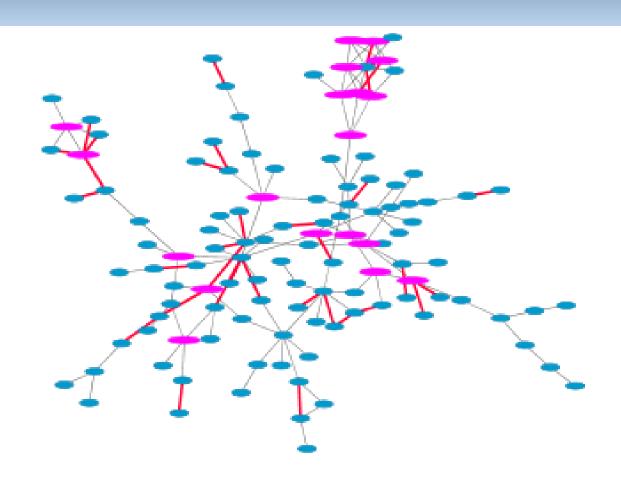
ier	
pie	ens
	•
•	
	Unincot
	Uniprot
-	Q7Z5V9 Q9Y328
•	TEFF2_H
	Q99453

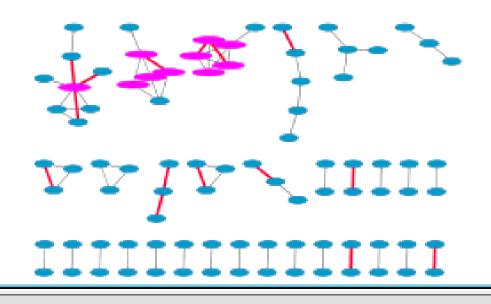
GENEMANIA EXPORT RESULTS -

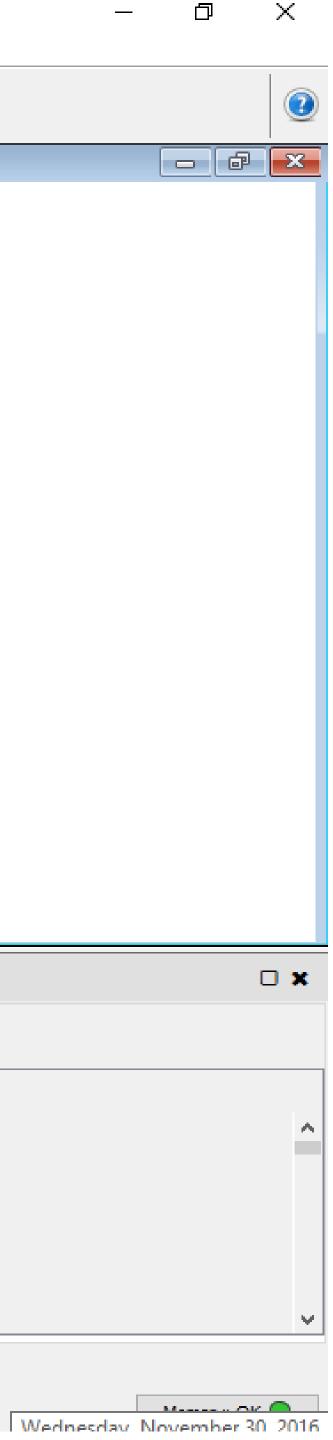
Gene 1	Gene 2	Weight	Туре
CDR1	PODN	0.11246	Co-expression
CDR1	ZPBP	0.054254	Co-expression
NPPC	PHOX2B	0.064768	Co-expression
YY1AP1	POTED	0.04958	Genetic interactions
YY1AP1	SHOX	0.027611	Genetic interactions
YY1AP1	USP2	0.305926	Genetic interactions
ZPBP	USP2	0.807896	Genetic interactions

NETWORK VISUALIZATION

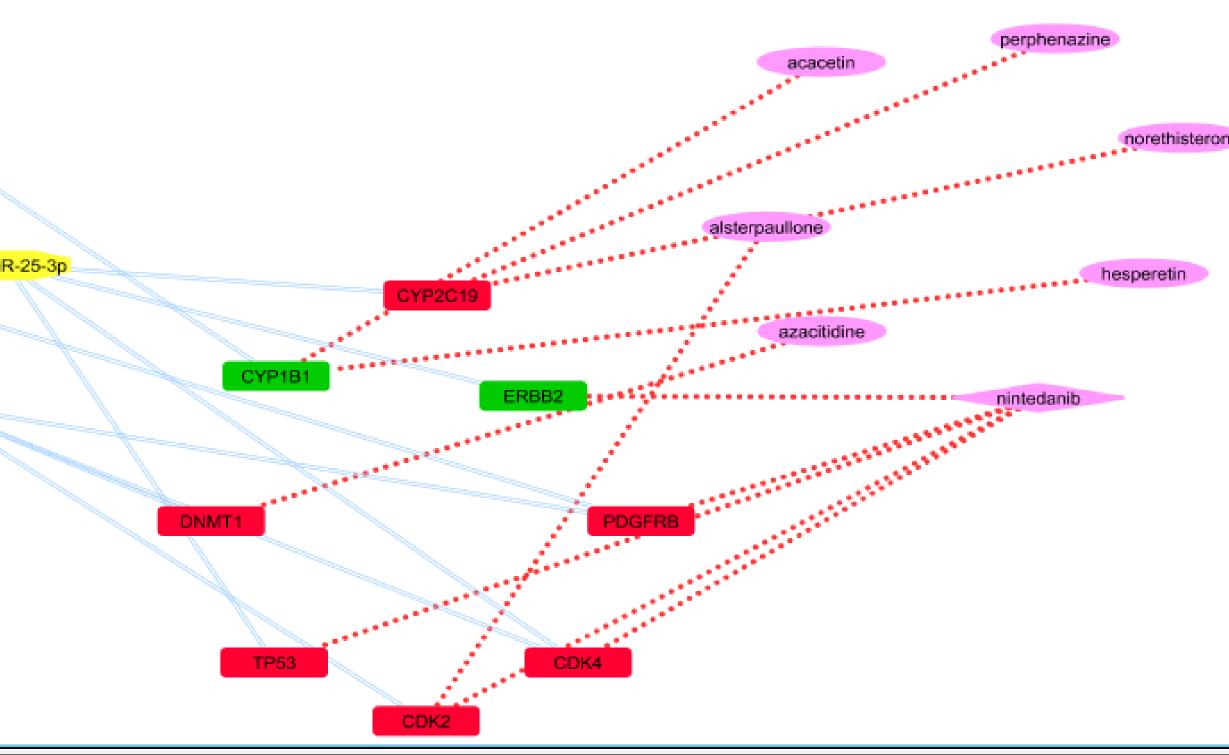

File Edit View Select Lay	out Apps Tools	Help								
Recent Session New					R 🔍			⊂ ¶α (→ α 0 Φ	10 TMEFF2 USP2	HMP19
Open	Ctrl+O		6 X							Results Panel
Save	Ctrl+S	ynamic Netw	ork jA 🖂							🔠 Node Details
Save As	Ctrl+Shift+S	Nodes	Edges	1						Organism: H. sapiens
Import		Dynam	nic Network		•					Networks Genes Functions
Export	I	Netwo			•	File	Ctrl+L			Sort by: <u>name</u> , <u>per cent weight</u> Expand: <u>all</u> , <u>top-level</u> , <u>none</u>
Run		Table			1	URL	Ctrl+Shift+L			Enable: <u>all, none</u>
		Vizmaj	p File			Public Databases	Alt+L			 ✓ Co-expression ✓ Genetic interactions
Print Current Network	Ctrl+P		ogy and Annotat							Co-localization
Quit	Ctrl+Q	Agilen	t Literature Searc	ch network						
										Export results
										Attributes
				Table Pan	el					
					E,		f(x) No I	Network	V	
				Node Table	Edge Ta	able Network Table				




🍕 Session: New Session


File Edit View Select Layout Apps Tools Help

			* 🐼 🛋 💓	*		4		Ð	Q,		Q	000		°.0 °.0 •	***** *****	°°°° °°+°° 0
Contr	ol Pan	el			• ×		🛃 Ne	twork	Patteri	nStage1	.txt					
🏦 Net	twork	Style	Select BisoPanel	×		-1										
defau	ult				•	Ĩ										
Propert	ies 🔻				* ∧	1										
Def.	Map.	Вур.														
			Border Paint		•											
4.0			Border Width		•											
			Fill Color		•											
30.0			Height		•											
	•>		Label		•											
			Label Color		•											
12			Label Font Size		•											
\bigcirc			Shape		•											
			Size	6	9 4											
255			Transparency		•											
70.0			Width		•		Tabl	e Pan	el							
Lo	ock nod	e width	and height				۰		S 6	e oc) [Ъ	ŵ	Ē	f(x))
							sh	ared		name		degr	ree			
							HOXA	7	НО	XA7			1			
							HOXA	.5	HO	XA5			1			
							RHOU		RH				1	_		
							MYOT		MY				2	2		
							LAMP		_	MP3			1	_		
							OAS3		OA OA				5			
							SPINK		_	NK5			7			
							C5orf	23	C50	orf23			1			
Node	Edge	Netwo	rk				Node 1	[able	Edge '	Table M	letwo	ork Tab	le			

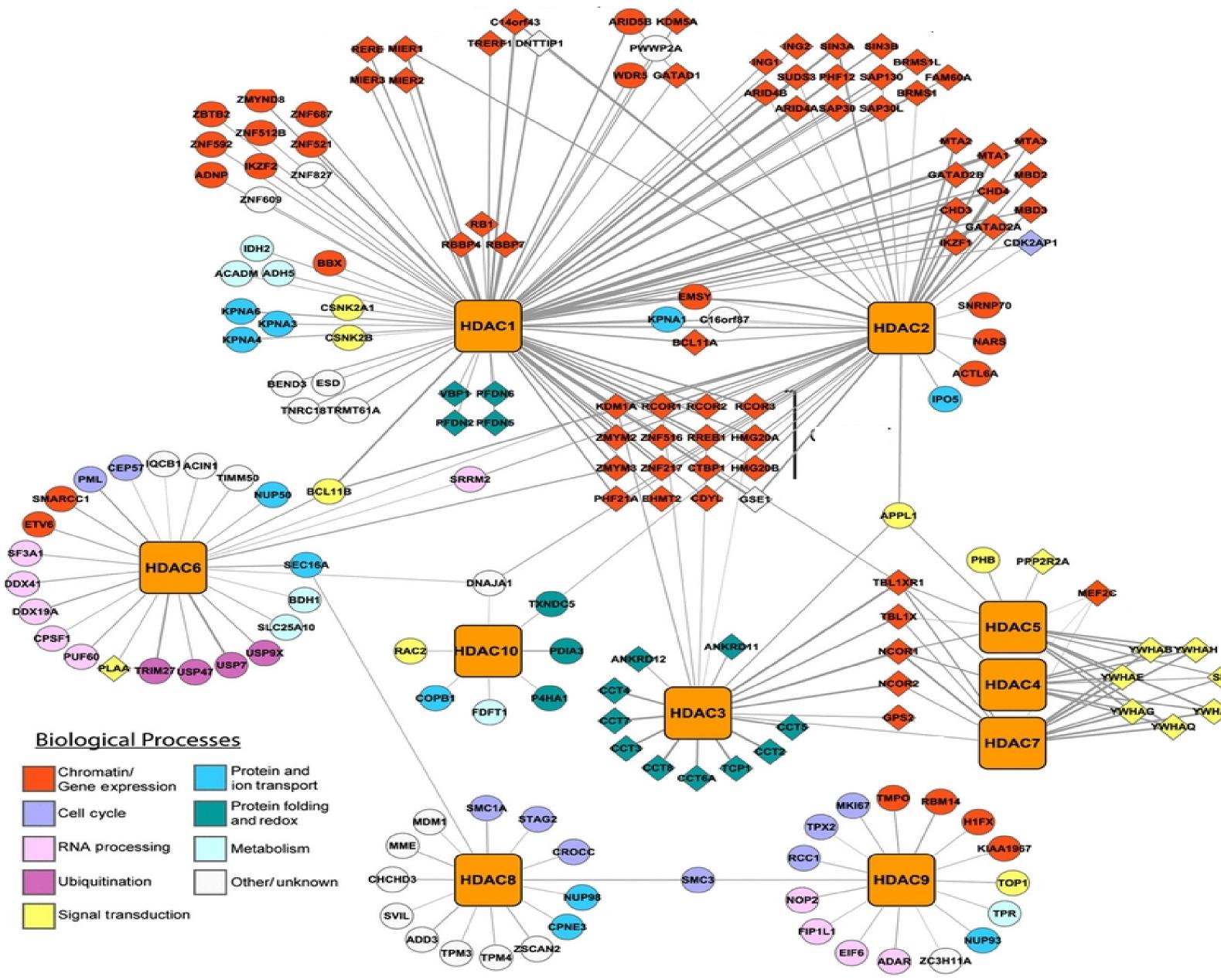


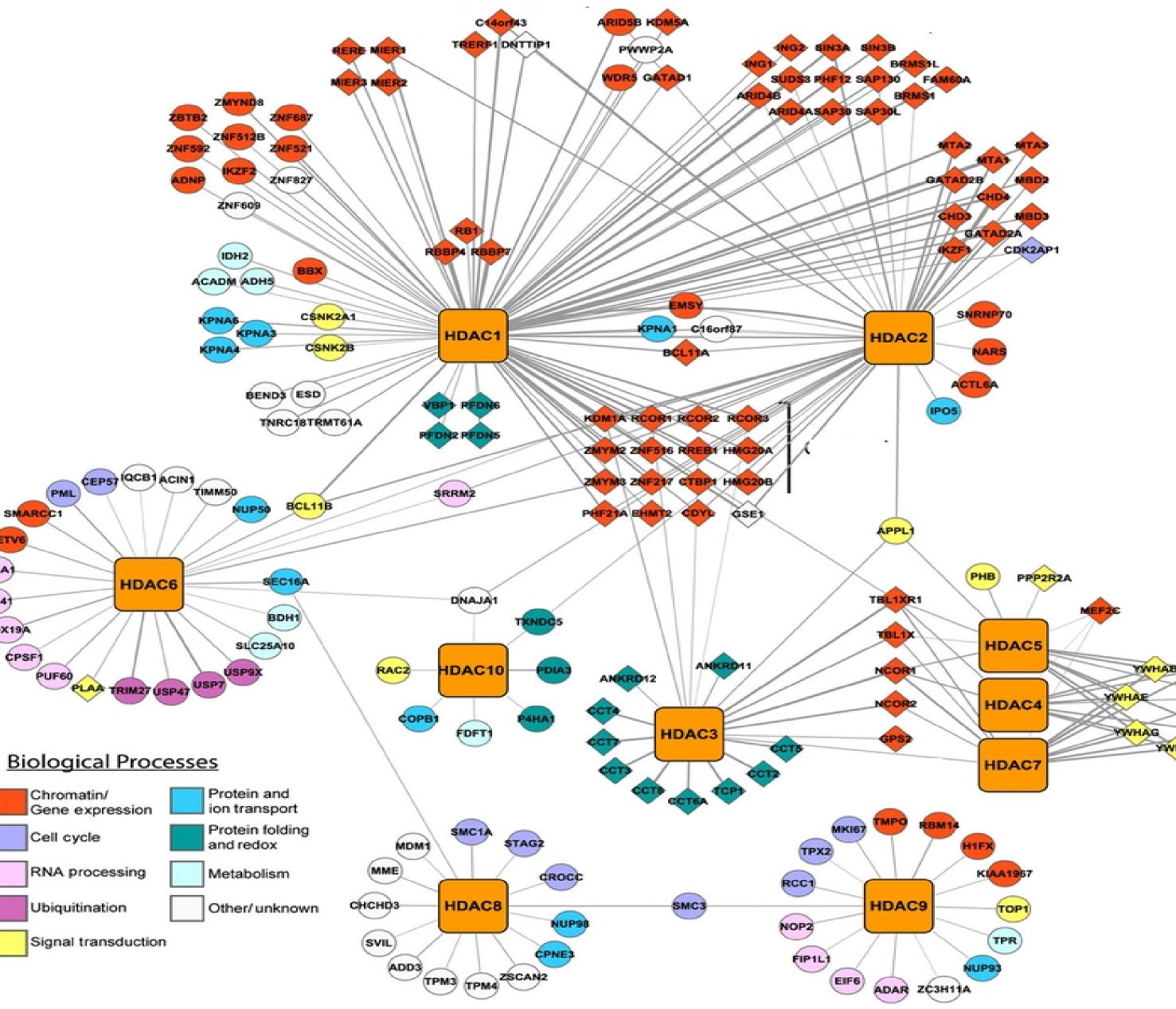
🌾 Session: New Session

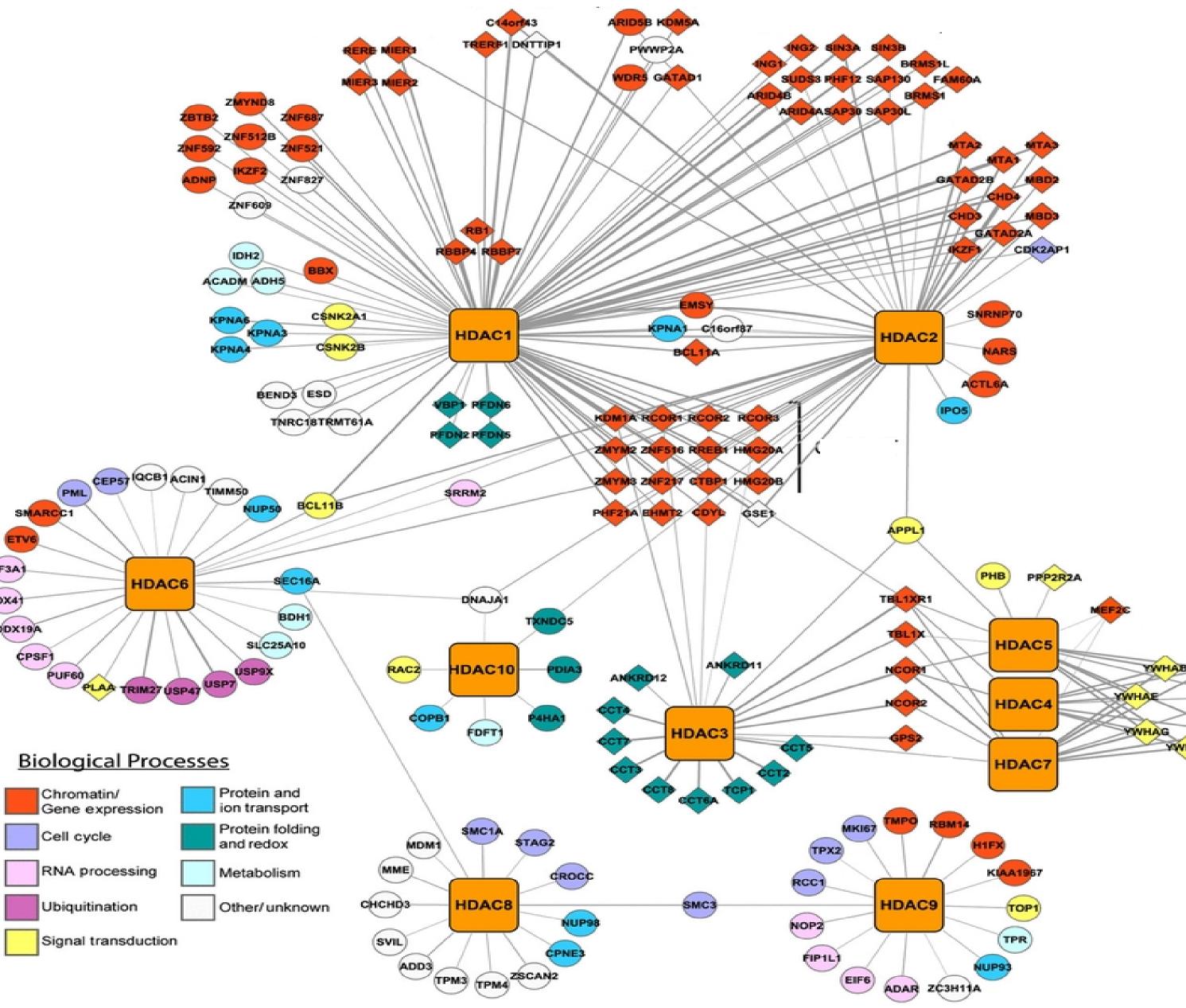
File Edit View Select Layout Apps Tools Help

The Edit View Select Layout Apps Tools The	ab.									
	*	1	€, €), (i),	Q	1000-			°.0 × 0→	
Control Panel		x D	🛃 Eo	lgeList.t	ct(1) Vie	ew				
🕆 Network Style Select Diffany BisoPanel	🧳 Allegro	Layout 📕 🕕	1							
Network	Nodes	Edges								
EdgeListVaggelis.txt EdgeListVaggelis.txt EdgeListVaggelismirs.txt	32(0)	28(0)					hsa-m	iR-208a	<mark>⊦-5</mark> p	
EdgeListVaggelismirs.txt	31(0)	30(0)								
EdgeList.txt EdgeList.txt EdgeList.txt(1)	41(0) 19(0)	58(30) 21(0)			hsa	-miR-29c	-Зр		hsa-n	niR-
			Tat	le Pane				1sa-miR	-29a-3p	
	marin	Densit er seine	•	Ш	BB	00	P	圃	8	f
	***	erpenhiderere		nared		gree		ame		
hanik 200 panik 250 panik	/	bepentin	acad	etin		1	acacet	in		
CVPIET	amaldre			miR		4	hsa-mi	R		
			CDK			4	CDK2			
		No.	hsa- TP5	miR		1	hsa-mi TP53	к		
			ERB			- 2	ERBB2			
DANTI POGORA			CYP			3	CYP 1B			
CBC			nore	thist		1	noreth			
			Node	Table E	Edge Tal	ble Net	work Ta	ble		

f(x)


D		×	
		0)
	P_(X	
10 m m			
one			
	C		:
			<u>^</u>
		ľ	
			/
· · · · · · · · · · · · · · · · · · ·			
vember	23,	201	6


SUPERNETWORK


EdgeList.txt - Notepad

File	Edit	Format	View	Help		
Sou	rce	Target	Wei	ght		
als	terpa	aullone	CDK	2	1	
aca	cetir	n	CYP	1A1	1	
hes	peret	tin	CYP	1A1	1	
hes	peret	tin	CYP	1B1	1	
per	phena	azine	CYP	2C19	1	
eto	posid	de	TOP	1	1	
nin	tedar	nib	PLK	1	1	
als	terpa	aullone	CDK	5	1	
aza	citid	dine	DNM	IT1	1	
nin	tedar	nib	FLT	1	1	
nin	tedar	nib	EGF	R	1	
nin	tedar	nib	CDK		1	
nin	tedar	nib	CDK	4	1	
als	terpa	aullone	GSK	3B	1	
clo	betas	501	CYP	1A1	1	
aca	cetir	٦	CYP	1B1	1	
nin	tedar	nib	TP5	3	1	
nin	tedar	nib	ERB	B2	1	
nore	ethi	sterone	CYP	2C19	1	
nin	tedar	nib	PDG	FRB	1	
iri	noted	can	ABC	G2	1	
eto	posid	de	ABC	C3	1	
iri	noted	can	TOP	1	1	
nin	tedar	nib	IGF	1R	1	
hes	peret	tin	SOA	T1	1	
per	phena	azine	CAL	M1	1	
eto	posid	de	TOP	2A	1	
nin	tedar	nib	SRC	н Г	1	
hsa	-miR	-155-5p	PLK	1	2	
hsa	-miR	-155-5p	CDK	5	2	
hsa	-miR-	-155-5p	DNM	IT1	2	
hsa	-miR	-155-5p	FLT	1	2	
hsa	-miR	-155-5p	EGF	R	2	
hsa	-miR-	-155-5p	CDK	2	2	
hsa	-miR	-155-5p	CDK	4	2	
hsa	-miR	-155-5p	GSK	3B	2	
hsa	-miR	-155-5p	CYP	1A1	2	
hsa	-miR-	-208a-5p			2	
hsa	-miR-	-25-3p	TP5		2	
hsa	-miR-	-25-3p	ERB	B2	2	
		-25-3p	CYP	2C19	2	
hsa	-miR	-29a-3p	PDG	FRB	2	
hsa	-miR	-192-5p	ABC	G2	2	

8 NETWORK METRICS

NETWORK METRICS

DEFINITIONS

Degree Centrality

"An important node interacts with a large number of other nodes"

Degree of center corresponds to the number of nodes adjacent to a given node.

Closeness Centrality

"An important node is relatively close to the other nodes in the network and can communicate quickly with them"

Proximity is defined in the simplest way as the inverse of the total distance of the node v by all other nodes

Betweenness Centrality

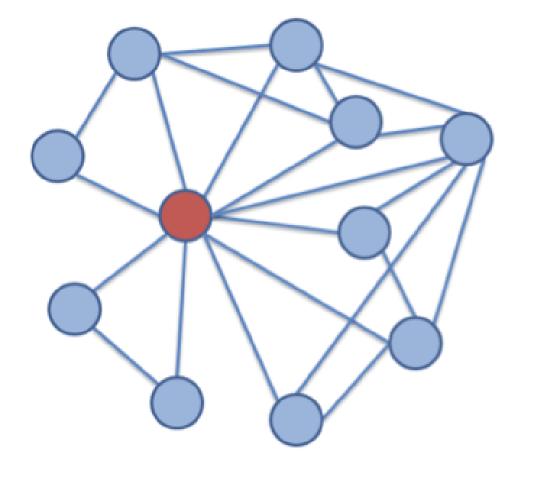
"An important node will be included in a large number of all the shortest paths among other nodes" It is calculated as the ratio of the shortest paths running through the node v to the sum of all the shortest paths

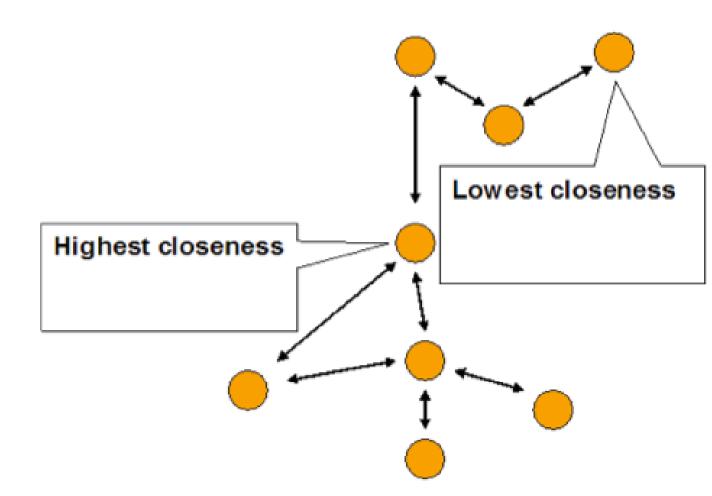
NETWORK METRICS IN BIOLOGY

Degree: "Hubs" have a central regulatory role

Closeness: a "probability" of a protein to be functionally important for several others

Betweenness: ability of a protein to bring distant proteins into communication

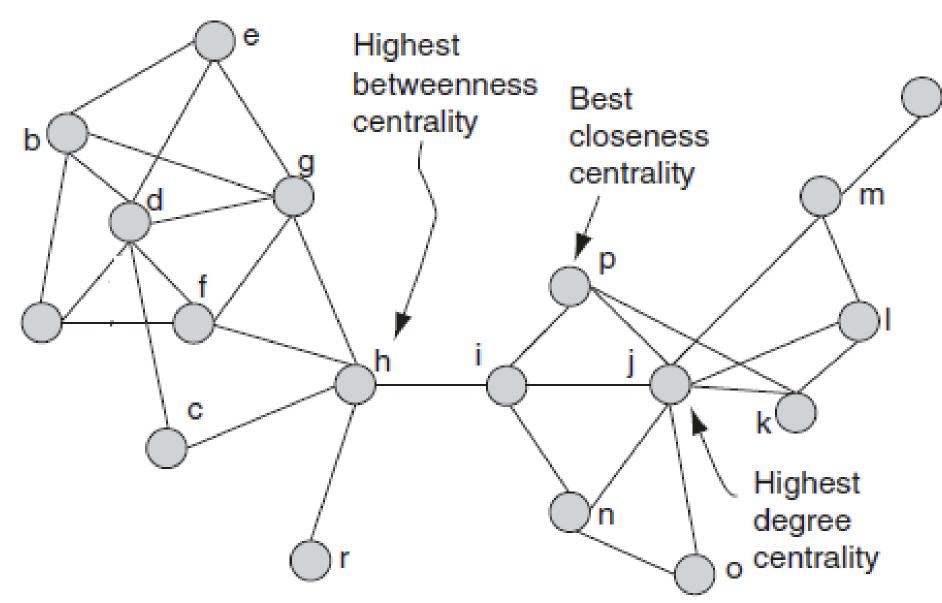




8 NETWORK METRICS

Degree centrality: highest number of edges

Closeness centrality: lowest average shortest distance to all other nodes



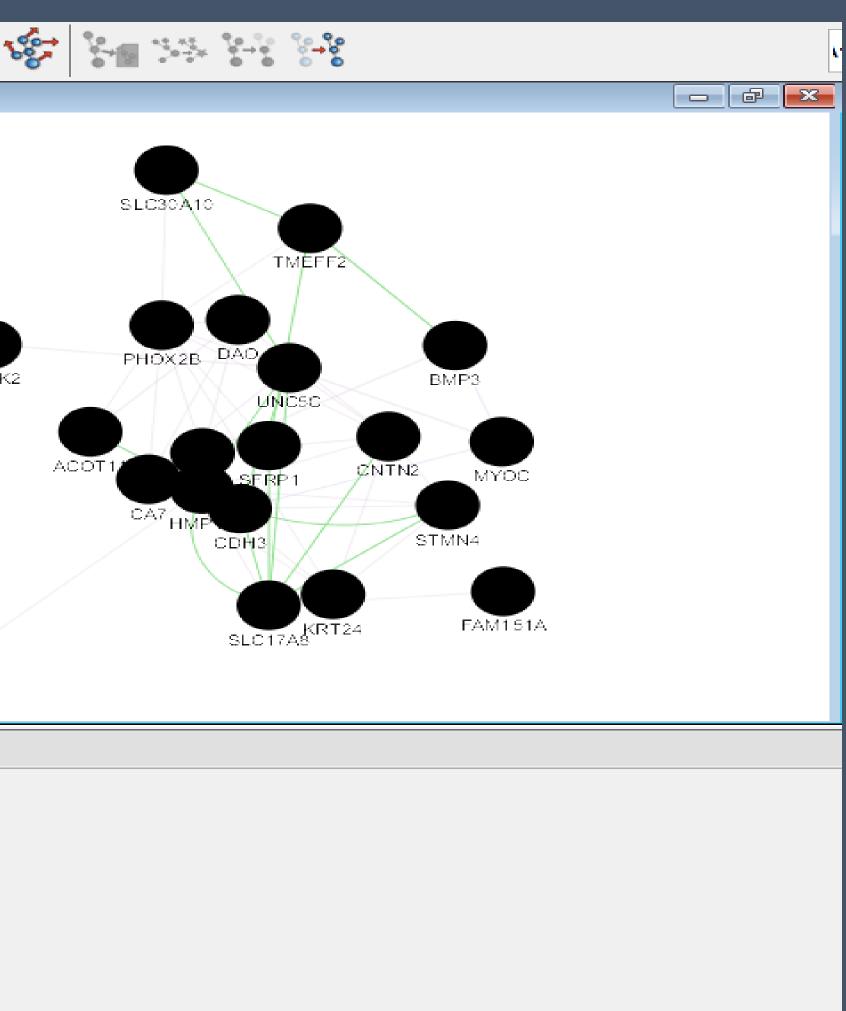
R

Igraph (! First convert to graph) (global - local headquarters)

Cytoscape

Add CytoNCA CentiScaPe plugin **Network Analyzer**

- 8 NETWORK METRICS - CytoNCA

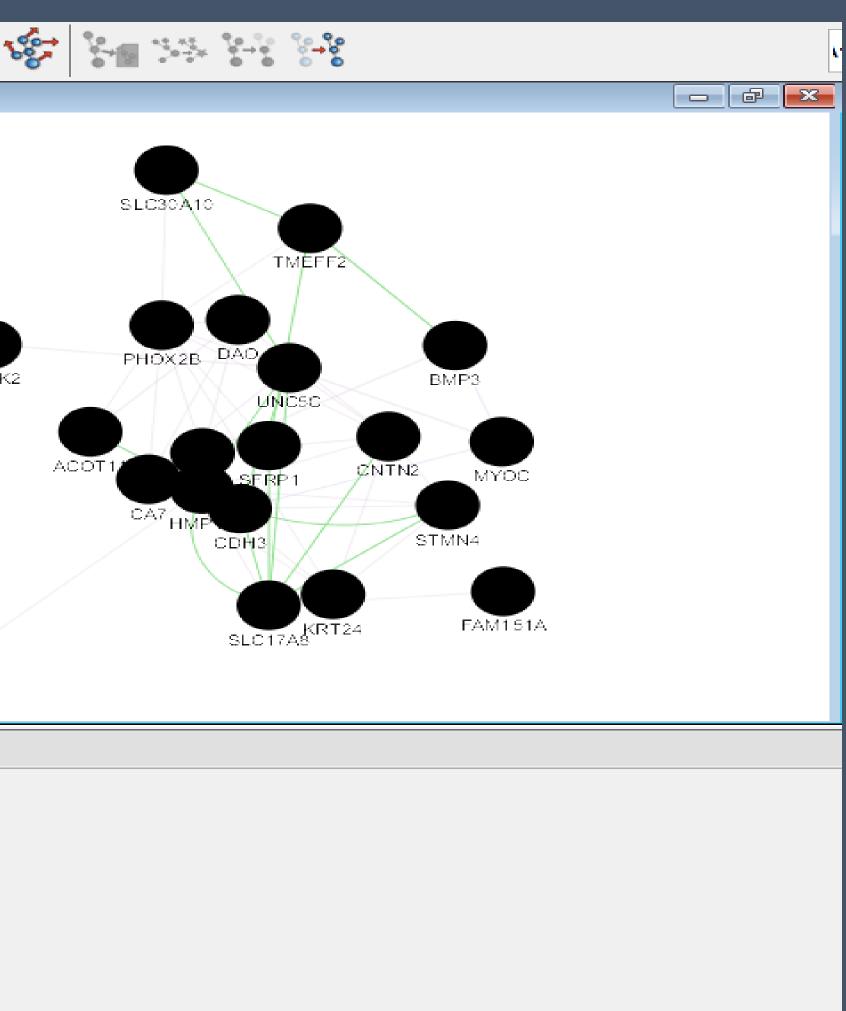

% Session: New Session	
File Edit View Select Layout Apps Tools Help	
📁 🗒 🐼 🐼 🚚 🕼 🧏	
Control Panel 🗆 🗙	🕌 NetworkPatternStage1.txt
Image: SelectAll AllegroLayout Diffany Algorithm Betweeness Centrality (BC) Closeness Centrality (CC) Degree Centrality (DC) Eigenvector Centrality (EC) Local Average Connectivity-based method (LAC) Network Centrality (NC) Subgraph Centrality (SC) Information Centrality (IC) SelectAll	
Analyze current network Evaluation Import essential protein information file Choose file	
Show Essential Protien List	Table Panel
	Node Table Edge Table Network Table Core Evaluation Panel 1

				-	0 X
	HOXC10 N	INX1 CYP39A1			0
	Resu	Its Panel			× □
	JEPET	Enrichment	Topology	Conce Result 1	L
	Result	List(205 in total)		1	
	No.	Name	BC	СС	
_	1	GLRA3	8101.0	0.0	111353711: 🔨
	2	SPINK5	4459.00000000	001 0.0	1112626124
	3	PKD2L1	4337.333333333	333 0.0	1111898403
	4	SLC6A4	3793.66666666	6665 0.0	111111111
	5	BMPR 1B	3426.0		1111777208
	6	MMP9	3381.00000000		1108997010
	7	HSD17B2	3153.0		111189840:
L	8	ADAMDEC1	3108.66666666		1110264504
-	9	HHATL	2996.666666666		110869565
	10	KCNC2	2554.0		110821382(
	11	FOS	2334.0		110306045
	12	TFPI2 CXCL13	2224.0 2024.666666666		110791288: 110383637;
	14	DIO1	1974.0		110383837.
	15	CLCA2	1744.0		1102226064
	16	SCGN	1584.0		110246433
	17	PPEF1	1552.0		109618484 🗸
	<				>
ΤI	Т	op 205 Pr	roteins Select	Create Sub-Ne	twork
II		Export	Centralitiy distribution	Discard R	esult
					× □

- 8 NETWORK METRICS -

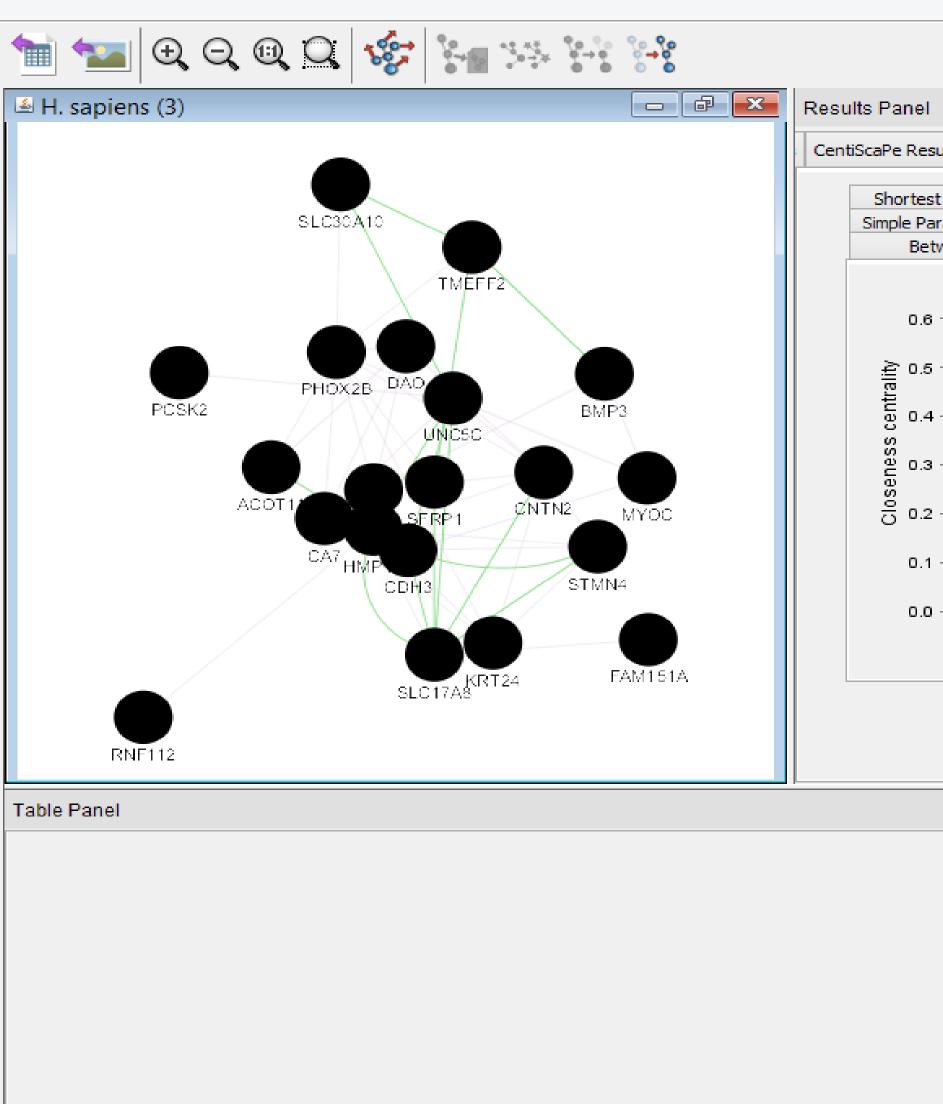
	<u>,</u>	_	X			Ð	Q	11	Q	
ontrol Panel		ъ	×	🖆 H.	sapier	ıs (3)				
jActiveMNodules	CentiScaPe	•	4 ►							
CentiScaPe Menu Implemented centralities			^							
Diameter	?									
Average Distance	?									
✓ Degree	?								PC	:Sł
Radiality	?									
Closeness	?									
Stress	?									
Betweenness	?									
Centroid Value	?									_
Eccentricity	?							R	NF112	2
Select All Unselect All				Table	Panel					
Finished: 20 nodes worked										
Start Stop	Exi	it								
Start with loaded attributes Click here if you have loade	d new									
attributes after loading you										
This will not start a new comp				Node T	Table E	dge Tab	le Ne	etwork	Table	c
F)										

CentiScaPe

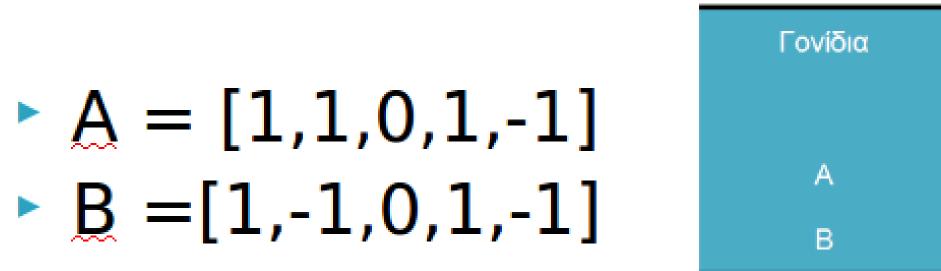


Evaluation Panel 1

- 8 NETWORK METRICS -


	<u>,</u>	_	X			Ð	Q	11	Q	
ontrol Panel		ъ	×	🖆 H.	sapier	ıs (3)				
jActiveMNodules	CentiScaPe	•	4 ►							
CentiScaPe Menu Implemented centralities			^							
Diameter	?									
Average Distance	?									
✓ Degree	?								PC	:Sł
Radiality	?									
Closeness	?									
Stress	?									
Betweenness	?									
Centroid Value	?									_
Eccentricity	?							R	NF112	2
Select All Unselect All				Table	Panel					
Finished: 20 nodes worked										
Start Stop	Exi	it								
Start with loaded attributes Click here if you have loade	d new									
attributes after loading you										
This will not start a new comp				Node T	Table E	dge Tab	le Ne	etwork	Table	c
F)										

CentiScaPe



Evaluation Panel 1

- [8] NETWORK METRICS - Network Analyzer

	·	10 TMEFF2 USF	P2 HMP19				Q
						5	1
ilts Con	Result 1 Ne	etwork Statistics of	of H. sapiens (3)				I
ameters	gth Distribution Node Degree Centrality	e Distribution	ighbors Distribution Ava. Clusterina Coe ness Centrality	fficient Distributi	on 1	nnectivity Distribution Topological Coefficients ality Distribution	
				. •		Chart Settings	
				·····		Enlarge Chart	
			• :	•		Change Range	
		•	•			Fit Power Law	
[Export Chart	
						Export Data	
						Help	
1				· · · · ·	10		
		Number of	neighbors				
	Save St	atistics	Visualize Param	eters Clo	se Tab		
						5	i

Η Shannon εντροπία των γονιδίων για τις 3 πιθανές καταστάσεις υπολογίζεται ως:

Η(γονιδίο

άρα

$$H(A) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5}\right) = 1.371$$
$$H(B) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 1.522$$

$$H(A) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5}\right) = 1.371$$
$$H(B) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 1.522$$

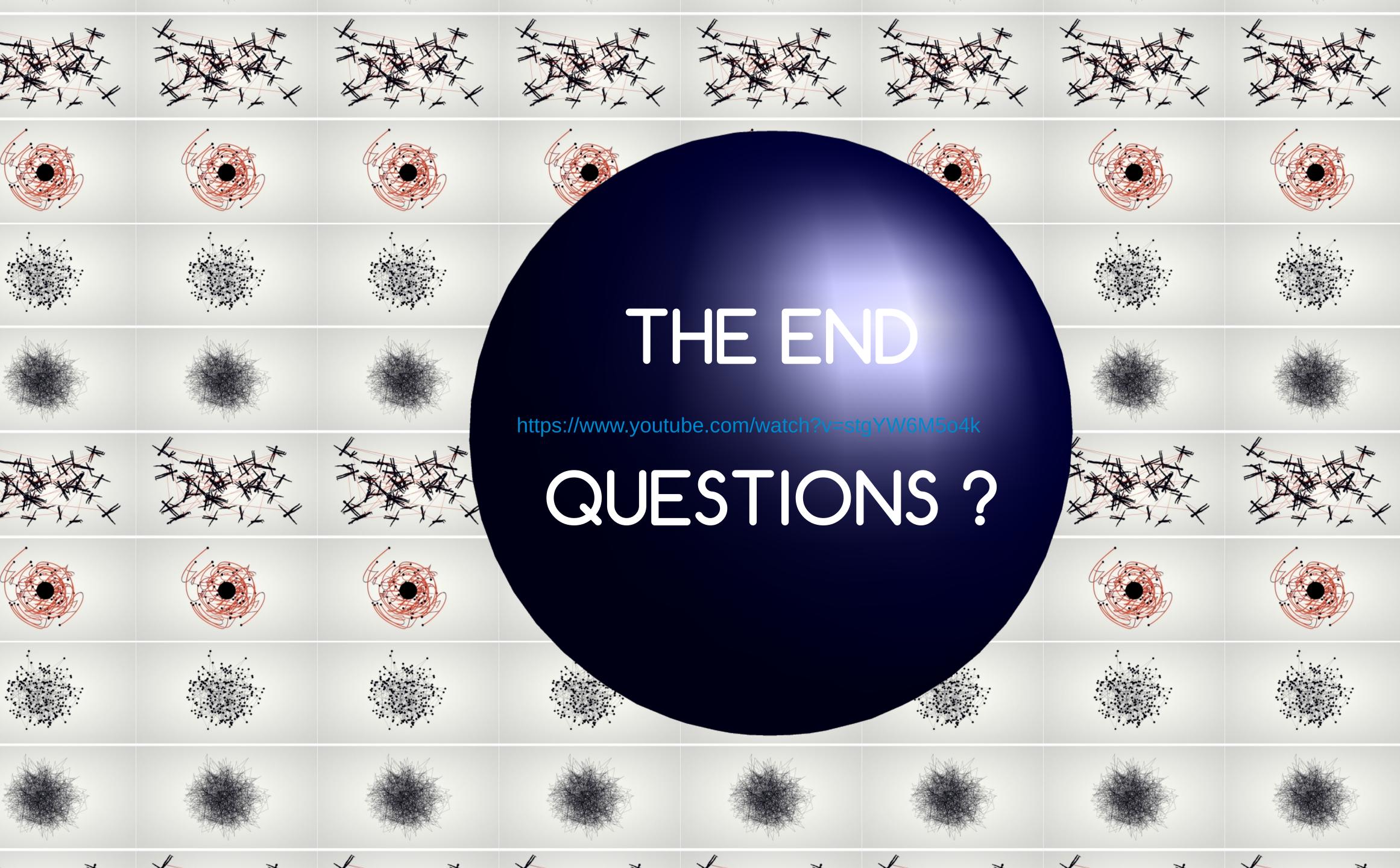
Στο επόμενο βήμα εξετάζεται πόσο συχνά τα δύο γονίδια έχουν την ίδια κατάσταση εξετάζοντας όλα τα πιθανά ζεύγη συνδυασμών:

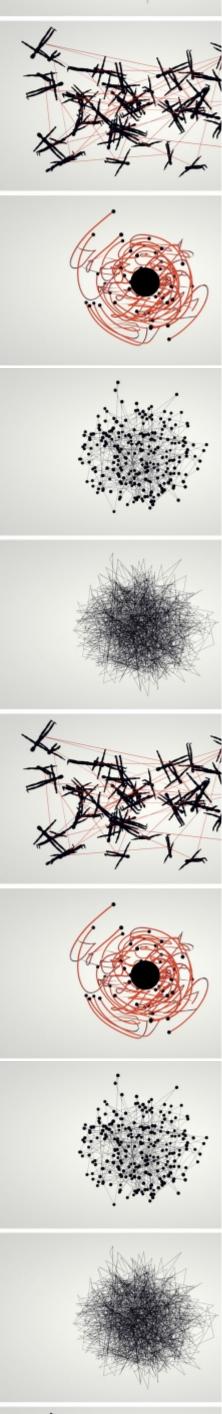
	P(A,B)	Εμφάνιση	P(A,B)	Εμφάνιση	P(A,B)	Εμφάνιση
TTTT-	P(1,1)	2/5	P(0,1)	0/5	P(-1,1)	0/5
	P(1,0)	0/5	P(0,0)	1/5	P(-1,0)	0/5
	P(1,-1)	1/5	P(0,-1)	0/5	P(-1,1)	1/5

Πιθανότητα Εμφάνισης									
P(1)	P(0)	P(-1)	P(1)+P(0)+P(-1)						
3/5	1/5	1/5	5/5=1						
2/5	1/5	2/5	5/5=1						

$$pv) = -\sum_{i=1}^{3} P_i \log_2 P_i$$

Στη συνέχεια υπολογίζεται η από κοινού εντροπία Η(Α,Β):


H(A,B) = -


όπου οι τρεις καταστάσεις (1,0 και -1) είναι ανεξάρτητες άρα:

$$H(A,B) = -1\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5}\right) = 1.923$$

$$-\sum_{\substack{i,j=1}}^{3} P_{ij} \log_2 P_{ij}$$

- Για το παραπάνω παράδειγμα η αμοιβαία πληροφορία μεταξύ των δύο προφίλ έκφρασης, η οποία αναπαριστά την συσχέτιση μεταξύ των γονιδίων υπολογίζεται ως:
 - M(A,B) = H(A) + H(B) H(A,B) = 1.371 + 1.522 1.923 = 0.970

