
How to use assertions in C

John Reekie

This document describes a method for using assertions in C. It is based on

Bertrand Meyer's paper ``Applying `Design by Contract','' in IEEE

Computer, October 1992, pages 40-51. The document is essentially a cut

from some notes I once wrote for a C programming course.

Assertions

An assertion specifies that a program satisfies certain conditions at

particular points in its execution. There are three types of assertion:

Preconditions

Specify conditions at the start of a function.

Postconditions

Specify conditions at the end of a function.

Invariants

Specify conditions over a defined region of a program.

An assertion violation indicates a bug in the program. Thus, assertions are

an effective means of improving the reliability of programs-in other words,

they are a systematic debugging tool. In this document, I mainly consider

preconditions, and invariants not at all. (This will need to be fixed - hjr.)

Assertions in C

In C, assertions are implemented with the standard assert macro. The

argument to assert must be true when the macro is executed, otherwise the

program aborts and prints an error message. For example, the assertion

 assert(size <= LIMIT);

will abort the program and print an error message like this:

 Assertion violation: file tripe.c, line 34: size <= LIMIT

if size is greater than LIMIT.

Preconditions

Preconditions specify the input conditions to a function. Here is an example

of a function with preconditions:

int

magic(int size, char *format)

{

 int maximum;

 assert(size <= LIMIT);

 assert(format != NULL);

 ...

These pre-conditions have two consequences:

1. magic is only required to perform its task if the pre- conditions are

satisfied. Thus, as the writer of magic, you are not required to

make magic do anything sensible if size or format are not as stated in

the assertions.

2. The caller is certain of the conditions under which magic will perform

its task correctly. Thus, if your code is calling magic, you must ensure

that the size orformat arguments to the call are as specified by the

assertions.

Consider the following analogy. Suppose you (the function) are employed as

an apple-packer. One of the conditions of your contract is that the

temperature in the warehouse will be no greater than 30C. If the temperature

exceeds 30C, you are not obliged to do anything: you can keep packing

apples if you want to, or you can choose to go to the beach. Your employer

(the caller), however, knows that you are not required to pack apples if the

temperature exceeds 30C, so he or she makes sure that the air-conditioning

in the warehouse is operating correctly.

Postconditions

Postconditions specify the output conditions of a function. They are used

much less frequently than preconditions, partly because implementing them

in C can be a little awkward. Here is an example of a postcondition

in magic:

 ...

 assert(result <= LIMIT);

 return result;

}

The postcondition also has two consequences:

1. magic guarantees that the stated condition will hold when it

completes execution. As the writer of magic, you must make certain

that your code never produces a value of result that is greater

than LIMIT.

2. The caller is certain of the task that magic will perform (provided its

preconditions are satisfied). If your program is calling magic, then

you know that the result returned by magic can be no greater

than LIMIT.

Compare this with the apple-picker analogy. Another part of your contract

states that you will not bruise the apples. It is therefore your responsibility to

ensure that you do not (and if you do, you have failed.) Your employer is

thus relieved of the need to check that the apples are not bruised before

shipping them.

Recommended practice

Writing preconditions

The simplest and most effective use of assertions is as preconditions-that is,

to specify and check input conditions to functions. Two very common uses

are to assert that:

1. Pointers are not NULL.

2. Indexes and size values are non-negative and less than a known limit.

Each assertion must be listed in the Asserts section of the function

description comment in the corresponding header file. For example, the

comment describing magicwill include:

 * Asserts:

 * 'size' is no greater then LIMIT.

 * 'format' is not NULL.

 * The function result is no greater than LIMIT.

 */

If there are no assertions, write ``Nothing'':

 * Asserts:

 * Nothing

 */

Satisfying preconditions

When your code calls a function with preconditions, you must ensure that

the function's preconditions are satisfied. This does not mean that you have

to include code to check the argument to very function that you call! For

example, in the following code, resize does not need to check that the

argument to measure is NULL, since its own assertion ensures this:

void

resize(int *value)

{

 assert(value != NULL);

 ...

 measure(value, 0);

 ...

In other words, you need to decide for yourself when and where values must

explicitly be checked to avoid violating preconditions.

Assertion violations

If a precondition is violated during program testing and debugging, then

there is a bug in the code that called the function containing the

precondition. The bug must be found and fixed.

If a postcondition is violated during program testing and debugging, then

there is a bug in the function containing the precondition. The bug must be

found and fixed.

Assertions and error-checking

It is important to distinguish between program errors and run- time errors:

1. A program error is a bug, and should never occur.

2. A run-time error can validly occur at any time during program

execution.

Assertions are not a mechanism for handling run-time errors. For example,

an assertion violation caused by the user inadvertently entering a negative

number when a positive number is expected is poor program design. Cases

like this must be handled by appropriate error-checking and recovery code

(such as requesting another input), not by assertions.

Realistically, of course, programs of any reasonable size do have bugs,

which appear at run-time. Exactly what conditions are to be checked by

assertions and what by run-time error- checking code is a design issue.

Assertions are very effective in reusable libraries, for example, since i) the

library is small enough for it to be possible to guarantee bug-free operation,

and ii) the library routines cannot perform error- handling because they do

not know in what environment they will be used. At higher levels of a

program, where operation is more complex, run-time error-checking must be

designed into the code.

Turning assertions off

By default, ANSI C compilers generate code to check assertions at run-time.

Assertion-checking can be turned off by defining the NDEBUG flag to your

compiler, either by inserting

 #define NDEBUG

in a header file such as stdhdr.h, or by calling your compiler with the -

dNDEBUG option:

 cc -dNDEBUG ...

This should be done only you are confident that your program is operating

correctly, and only if program run-time is a pressing concern.

