
Error Reporting

Many functions in the GNU C library detect and report error conditions, and

sometimes your programs need to check for these error conditions. For

example, when you open an input file, you should verify that the file was

actually opened correctly, and print an error message or take other

appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program

should include the header file `errno.h' to use this facility.

Checking for Errors

Most library functions return a special value to indicate that they have

failed. The special value is typically -1, a null pointer, or a constant such

as EOF that is defined for that purpose. But this return value tells you only

that an error has occurred. To find out what kind of error it was, you need to

look at the error code stored in the variable errno. This variable is declared

in the header file `errno.h'.

Variable: volatile int errno

The variable errno contains the system error number. You can change

the value of errno.

Since errno is declared volatile, it might be changed asynchronously

by a signal handler; see section Defining Signal Handlers. However, a

properly written signal handler saves and restores the value of errno,

so you generally do not need to worry about this possibility except

when writing signal handlers.

The initial value of errno at program startup is zero. Many library

functions are guaranteed to set it to certain nonzero values when they

encounter certain kinds of errors. These error conditions are listed for

each function. These functions do not change errno when they

succeed; thus, the value of errno after a successful call is not

necessarily zero, and you should not use errno to determine whether a

call failed. The proper way to do that is documented for each

function. If the call failed, you can examine errno.

Many library functions can set errno to a nonzero value as a result of

calling other library functions which might fail. You should assume

that any library function might alter errno when the function returns

an error.

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_toc.html#TOC15
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_toc.html#TOC16
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_24.html#SEC486

Portability Note: ISO C specifies errno as a "modifiable lvalue"

rather than as a variable, permitting it to be implemented as a macro.

For example, its expansion might involve a function call, like *_errno

(). In fact, that is what it is on the GNU system itself. The GNU

library, on non-GNU systems, does whatever is right for the

particular system.

There are a few library functions, like sqrt and atan, that return a

perfectly legitimate value in case of an error, but also set errno. For

these functions, if you want to check to see whether an error

occurred, the recommended method is to set errno to zero before

calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined

in `errno.h'. The names start with ‘E’ and an upper-case letter or digit;

you should consider names of this form to be reserved names. See

section Reserved Names.

The error code values are all positive integers and are all distinct, with one

exception: EWOULDBLOCK and EAGAIN are the same. Since the values are

distinct, you can use them as labels in a switch statement; just don't use

both EWOULDBLOCK and EAGAIN. Your program should not make any other

assumptions about the specific values of these symbolic constants.

The value of errno doesn't necessarily have to correspond to any of these

macros, since some library functions might return other error codes of their

own for other situations. The only values that are guaranteed to be

meaningful for a particular library function are the ones that this manual

lists for that function.

On non-GNU systems, almost any system call can return EFAULT if it is given

an invalid pointer as an argument. Since this could only happen as a result of

a bug in your program, and since it will not happen on the GNU system, we

have saved space by not mentioning EFAULT in the descriptions of individual

functions.

In some Unix systems, many system calls can also return EFAULT if given as

an argument a pointer into the stack, and the kernel for some obscure reason

fails in its attempt to extend the stack. If this ever happens, you should

probably try using statically or dynamically allocated memory instead of

stack memory on that system.

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_1.html#SEC12

Error Messages

The library has functions and variables designed to make it easy for your

program to report informative error messages in the customary format about

the failure of a library call. The functions strerror and perror give you the

standard error message for a given error code; the

variable program_invocation_short_name gives you convenient access to the

name of the program that encountered the error.

Function: char * strerror (int errnum)

The strerror function maps the error code (see section Checking for

Errors) specified by the errnum argument to a descriptive error

message string. The return value is a pointer to this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you

make subsequent calls to strerror, the string might be overwritten.

(But it's guaranteed that no library function ever

calls strerror behind your back.)

The function strerror is declared in `string.h'.

Function: char * strerror_r (int errnum, char *buf, size_t n)

The strerror_r function works like strerror but instead of returning

the error message in a statically allocated buffer shared by all threads

in the process, it returns a private copy for the thread. This might be

either some permanent global data or a message string in the user

supplied buffer starting at buf with the length of n bytes.

At most n characters are written (including the NUL byte) so it is up

to the user to select the buffer large enough.

This function should always be used in multi-threaded programs since

there is no way to guarantee the string returned by strerror really

belongs to the last call of the current thread.

This function strerror_r is a GNU extension and it is declared

in `string.h'.

Function: void perror (const char *message)

This function prints an error message to the stream stderr; see

section Standard Streams.

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_toc.html#TOC18
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_2.html#SEC16
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_2.html#SEC16
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_12.html#SEC177

If you call perror with a message that is either a null pointer or an

empty string, perror just prints the error message corresponding

to errno, adding a trailing newline.

If you supply a non-null message argument, then perror prefixes its

output with this string. It adds a colon and a space character to

separate the message from the error string corresponding to errno.

The function perror is declared in `stdio.h'.

strerror and perror produce the exact same message for any given error

code; the precise text varies from system to system. On the GNU system, the

messages are fairly short; there are no multi-line messages or embedded

newlines. Each error message begins with a capital letter and does not

include any terminating punctuation.

Compatibility Note: The strerror function is a new feature of ISO C.

Many older C systems do not support this function yet.

Many programs that don't read input from the terminal are designed to exit if

any system call fails. By convention, the error message from such a program

should start with the program's name, sans directories. You can find that

name in the variable program_invocation_short_name; the full file name is

stored the variableprogram_invocation_name.

Variable: char * program_invocation_name

This variable's value is the name that was used to invoke the program

running in the current process. It is the same as argv[0]. Note that this

is not necessarily a useful file name; often it contains no directory

names. See section Program Arguments.

Variable: char * program_invocation_short_name

This variable's value is the name that was used to invoke the program

running in the current process, with directory names removed. (That

is to say, it is the same as program_invocation_name minus everything

up to the last slash, if any.)

The library initialization code sets up both of these variables before

calling main.

Portability Note: These two variables are GNU extensions. If you want

your program to work with non-GNU libraries, you must save the value

of argv[0] inmain, and then strip off the directory names yourself. We added

these extensions to make it possible to write self-contained error-reporting

subroutines that require no explicit cooperation from main.

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_25.html#SEC520

Here is an example showing how to handle failure to open a file correctly.

The function open_sesame tries to open the named file for reading and

returns a stream if successful. The fopen library function returns a null

pointer if it couldn't open the file for some reason. In that

situation, open_sesame constructs an appropriate error message using

the strerror function, and terminates the program. If we were going to

make some other library calls before passing the error code to strerror,

we'd have to save it in a local variable instead, because those other library

functions might overwrite errno in the meantime.

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

FILE *

open_sesame (char *name)

{

 FILE *stream;

 errno = 0;

 stream = fopen (name, "r");

 if (stream == NULL)

 { fprintf (stderr, "%s: Couldn't open file %s; %s\n",

 program_invocation_short_name, name, strerror (errno));

 exit (EXIT_FAILURE);

 }

 else

 return stream;

}

Error Codes

The error code macros are defined in the header file `errno.h'. All of them

expand into integer constant values. Some of these error codes can't occur

on the GNU system, but they can occur using the GNU library on other

systems.

Macro: int EPERM

Operation not permitted; only the owner of the file (or other resource)

or processes with special privileges can perform the operation.

Macro: int ENOENT

No such file or directory. This is a "file doesn't exist" error for

ordinary files that are referenced in contexts where they are expected

to already exist.

Macro: int ESRCH

No process matches the specified process ID.

Macro: int EINTR

Interrupted function call; an asynchronous signal occurred and

prevented completion of the call. When this happens, you should try

the call again.

You can choose to have functions resume after a signal that is

handled, rather than failing with EINTR; see section Primitives

Interrupted by Signals.

Macro: int EIO

Input/output error; usually used for physical read or write errors.

Macro: int ENXIO

No such device or address. The system tried to use the device

represented by a file you specified, and it couldn't find the device.

This can mean that the device file was installed incorrectly, or that the

physical device is missing or not correctly attached to the computer.

Macro: int E2BIG

Argument list too long; used when the arguments passed to a new

program being executed with one of the exec functions (see

section Executing a File) occupy too much memory space. This

condition never arises in the GNU system.

Macro: int ENOEXEC

Invalid executable file format. This condition is detected by

the exec functions; see section Executing a File.

Macro: int EBADF

Bad file descriptor; for example, I/O on a descriptor that has been

closed or reading from a descriptor open only for writing (or vice

versa).

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_toc.html#TOC17
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_24.html#SEC497
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_24.html#SEC497
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_26.html#SEC567
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_26.html#SEC567

Macro: int ECHILD

There are no child processes. This error happens on operations that

are supposed to manipulate child processes, when there aren't any

processes to manipulate.

Macro: int EDEADLK

Deadlock avoided; allocating a system resource would have resulted

in a deadlock situation. The system does not guarantee that it will

notice all such situations. This error means you got lucky and the

system noticed; it might just hang. See section File Locks, for an

example.

Macro: int ENOMEM

No memory available. The system cannot allocate more virtual

memory because its capacity is full.

Macro: int EACCES

Permission denied; the file permissions do not allow the attempted

operation.

Macro: int EFAULT

Bad address; an invalid pointer was detected. In the GNU system, this

error never happens; you get a signal instead.

Macro: int ENOTBLK

A file that isn't a block special file was given in a situation that

requires one. For example, trying to mount an ordinary file as a file

system in Unix gives this error.

Macro: int EBUSY

Resource busy; a system resource that can't be shared is already in

use. For example, if you try to delete a file that is the root of a

currently mounted filesystem, you get this error.

Macro: int EEXIST

File exists; an existing file was specified in a context where it only

makes sense to specify a new file.

Macro: int EXDEV

An attempt to make an improper link across file systems was

detected. This happens not only when you use link (see section Hard

Links) but also when you rename a file with rename (see

section Renaming Files).

Macro: int ENODEV

The wrong type of device was given to a function that expects a

particular sort of device.

Macro: int ENOTDIR

A file that isn't a directory was specified when a directory is required.

Macro: int EISDIR

File is a directory; you cannot open a directory for writing, or create

or remove hard links to it.

Macro: int EINVAL

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_13.html#SEC263
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_14.html#SEC277
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_14.html#SEC277
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_14.html#SEC280

Invalid argument. This is used to indicate various kinds of problems

with passing the wrong argument to a library function.

Macro: int EMFILE

The current process has too many files open and can't open any more.

Duplicate descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a

resource limit that can usually be increased. If you get this error, you

might want to increase theRLIMIT_NOFILE limit or make it unlimited;

see section Limiting Resource Usage.

Macro: int ENFILE

There are too many distinct file openings in the entire system. Note

that any number of linked channels count as just one file opening; see

section Linked Channels. This error never occurs in the GNU system.

Macro: int ENOTTY

Inappropriate I/O control operation, such as trying to set terminal

modes on an ordinary file.

Macro: int ETXTBSY

An attempt to execute a file that is currently open for writing, or write

to a file that is currently being executed. Often using a debugger to

run a program is considered having it open for writing and will cause

this error. (The name stands for "text file busy".) This is not an error

in the GNU system; the text is copied as necessary.

Macro: int EFBIG

File too big; the size of a file would be larger than allowed by the

system.

Macro: int ENOSPC

No space left on device; write operation on a file failed because the

disk is full.

Macro: int ESPIPE

Invalid seek operation (such as on a pipe).

Macro: int EROFS

An attempt was made to modify something on a read-only file

system.

Macro: int EMLINK

Too many links; the link count of a single file would become too

large. rename can cause this error if the file being renamed already has

as many links as it can take (see section Renaming Files).

Macro: int EPIPE

Broken pipe; there is no process reading from the other end of a pipe.

Every library function that returns this error code also generates

a SIGPIPE signal; this signal terminates the program if not handled or

blocked. Thus, your program will never actually see EPIPE unless it

has handled or blocked SIGPIPE.

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_22.html#SEC447
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_13.html#SEC242
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_14.html#SEC280

Macro: int EDOM

Domain error; used by mathematical functions when an argument

value does not fall into the domain over which the function is defined.

Macro: int ERANGE

Range error; used by mathematical functions when the result value is

not representable because of overflow or underflow.

Macro: int EAGAIN

Resource temporarily unavailable; the call might work if you try

again later. The macro EWOULDBLOCK is another name for EAGAIN; they

are always the same in the GNU C library.

This error can happen in a few different situations:

 An operation that would block was attempted on an object that

has non-blocking mode selected. Trying the same operation

again will block until some external condition makes it

possible to read, write, or connect (whatever the operation).

You can use select to find out when the operation will be

possible; see section Waiting for Input or Output. Portability

Note: In many older Unix systems, this condition was

indicated by EWOULDBLOCK, which was a distinct error code

different from EAGAIN. To make your program portable, you

should check for both codes and treat them the same.

 A temporary resource shortage made an operation

impossible. fork can return this error. It indicates that the

shortage is expected to pass, so your program can try the call

again later and it may succeed. It is probably a good idea to

delay for a few seconds before trying it again, to allow time for

other processes to release scarce resources. Such shortages are

usually fairly serious and affect the whole system, so usually

an interactive program should report the error to the user and

return to its command loop.

Macro: int EWOULDBLOCK

In the GNU C library, this is another name for EAGAIN (above). The

values are always the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a

separate error code.

Macro: int EINPROGRESS

An operation that cannot complete immediately was initiated on an

object that has non-blocking mode selected. Some functions that must

always block (such asconnect; see section Making a Connection)

never return EAGAIN. Instead, they return EINPROGRESS to indicate that

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_13.html#SEC247
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC330

the operation has begun and will take some time. Attempts to

manipulate the object before the call completes return EALREADY. You

can use the select function to find out when the pending operation

has completed; see section Waiting for Input or Output.

Macro: int EALREADY

An operation is already in progress on an object that has non-blocking

mode selected.

Macro: int ENOTSOCK

A file that isn't a socket was specified when a socket is required.

Macro: int EMSGSIZE

The size of a message sent on a socket was larger than the supported

maximum size.

Macro: int EPROTOTYPE

The socket type does not support the requested communications

protocol.

Macro: int ENOPROTOOPT

You specified a socket option that doesn't make sense for the

particular protocol being used by the socket. See section Socket

Options.

Macro: int EPROTONOSUPPORT

The socket domain does not support the requested communications

protocol (perhaps because the requested protocol is completely

invalid). See sectionCreating a Socket.

Macro: int ESOCKTNOSUPPORT

The socket type is not supported.

Macro: int EOPNOTSUPP

The operation you requested is not supported. Some socket functions

don't make sense for all types of sockets, and others may not be

implemented for all communications protocols. In the GNU system,

this error can happen for many calls when the object does not support

the particular operation; it is a generic indication that the server

knows nothing to do for that call.

Macro: int EPFNOSUPPORT

The socket communications protocol family you requested is not

supported.

Macro: int EAFNOSUPPORT

The address family specified for a socket is not supported; it is

inconsistent with the protocol being used on the socket. See

section Sockets.

Macro: int EADDRINUSE

The requested socket address is already in use. See section Socket

Addresses.

Macro: int EADDRNOTAVAIL

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_13.html#SEC247
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC349
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC349
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC326
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC300
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC303
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC303

The requested socket address is not available; for example, you tried

to give a socket a name that doesn't match the local host name. See

section Socket Addresses.

Macro: int ENETDOWN

A socket operation failed because the network was down.

Macro: int ENETUNREACH

A socket operation failed because the subnet containing the remote

host was unreachable.

Macro: int ENETRESET

A network connection was reset because the remote host crashed.

Macro: int ECONNABORTED

A network connection was aborted locally.

Macro: int ECONNRESET

A network connection was closed for reasons outside the control of

the local host, such as by the remote machine rebooting or an

unrecoverable protocol violation.

Macro: int ENOBUFS

The kernel's buffers for I/O operations are all in use. In GNU, this

error is always synonymous with ENOMEM; you may get one or the

other from network operations.

Macro: int EISCONN

You tried to connect a socket that is already connected. See

section Making a Connection.

Macro: int ENOTCONN

The socket is not connected to anything. You get this error when you

try to transmit data over a socket, without first specifying a

destination for the data. For a connectionless socket (for datagram

protocols, such as UDP), you get EDESTADDRREQ instead.

Macro: int EDESTADDRREQ

No default destination address was set for the socket. You get this

error when you try to transmit data over a connectionless socket,

without first specifying a destination for the data with connect.

Macro: int ESHUTDOWN

The socket has already been shut down.

Macro: int ETOOMANYREFS

???

Macro: int ETIMEDOUT

A socket operation with a specified timeout received no response

during the timeout period.

Macro: int ECONNREFUSED

A remote host refused to allow the network connection (typically

because it is not running the requested service).

Macro: int ELOOP

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC303
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_16.html#SEC330

Too many levels of symbolic links were encountered in looking up a

file name. This often indicates a cycle of symbolic links.

Macro: int ENAMETOOLONG

Filename too long (longer than PATH_MAX; see section Limits on File

System Capacity) or host name too long

(in gethostname or sethostname; see sectionHost Identification).

Macro: int EHOSTDOWN

The remote host for a requested network connection is down.

Macro: int EHOSTUNREACH

The remote host for a requested network connection is not reachable.

Macro: int ENOTEMPTY

Directory not empty, where an empty directory was expected.

Typically, this error occurs when you are trying to delete a directory.

Macro: int EPROCLIM

This means that the per-user limit on new process would be exceeded

by an attempted fork. See section Limiting Resource Usage, for

details on theRLIMIT_NPROC limit.

Macro: int EUSERS

The file quota system is confused because there are too many users.

Macro: int EDQUOT

The user's disk quota was exceeded.

Macro: int ESTALE

Stale NFS file handle. This indicates an internal confusion in the NFS

system which is due to file system rearrangements on the server host.

Repairing this condition usually requires unmounting and remounting

the NFS file system on the local host.

Macro: int EREMOTE

An attempt was made to NFS-mount a remote file system with a file

name that already specifies an NFS-mounted file. (This is an error on

some operating systems, but we expect it to work properly on the

GNU system, making this error code impossible.)

Macro: int EBADRPC

???

Macro: int ERPCMISMATCH

???

Macro: int EPROGUNAVAIL

???

Macro: int EPROGMISMATCH

???

Macro: int EPROCUNAVAIL

???

Macro: int ENOLCK

No locks available. This is used by the file locking facilities; see

section File Locks. This error is never generated by the GNU system,

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_31.html#SEC651
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_31.html#SEC651
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_30.html#SEC633
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_22.html#SEC447
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_13.html#SEC263

but it can result from an operation to an NFS server running another

operating system.

Macro: int EFTYPE

Inappropriate file type or format. The file was the wrong type for the

operation, or a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky

bit on a non-directory file; see section Assigning File Permissions.

Macro: int EAUTH

???

Macro: int ENEEDAUTH

???

Macro: int ENOSYS

Function not implemented. This indicates that the function called is

not implemented at all, either in the C library itself or in the operating

system. When you get this error, you can be sure that this particular

function will always fail with ENOSYS unless you install a new version

of the C library or the operating system.

Macro: int ENOTSUP

Not supported. A function returns this error when certain parameter

values are valid, but the functionality they request is not available.

This can mean that the function does not implement a particular

command or option value or flag bit at all. For functions that operate

on some object given in a parameter, such as a file descriptor or a

port, it might instead mean that only that specific object (file

descriptor, port, etc.) is unable to support the other parameters given;

different file descriptors might support different ranges of parameter

values.

If the entire function is not available at all in the implementation, it

returns ENOSYS instead.

Macro: int EILSEQ

While decoding a multibyte character the function came along an

invalid or an incomplete sequence of bytes or the given wide

character is invalid.

Macro: int EBACKGROUND

In the GNU system, servers supporting the term protocol return this

error for certain operations when the caller is not in the foreground

process group of the terminal. Users do not usually see this error

because functions such as read and write translate it into

a SIGTTIN or SIGTTOU signal. See section Job Control, for information

on process groups and these signals.

Macro: int EDIED

http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_14.html#SEC289
http://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_27.html#SEC572

In the GNU system, opening a file returns this error when the file is

translated by a program and the translator program dies while starting

up, before it has connected to the file.

Macro: int ED

The experienced user will know what is wrong.

Macro: int EGREGIOUS

You did what?

Macro: int EIEIO

Go home and have a glass of warm, dairy-fresh milk.

Macro: int EGRATUITOUS

This error code has no purpose.

Macro: int EBADMSG

Macro: int EIDRM

Macro: int EMULTIHOP

Macro: int ENODATA

Macro: int ENOLINK

Macro: int ENOMSG

Macro: int ENOSR

Macro: int ENOSTR

Macro: int EOVERFLOW

Macro: int EPROTO

Macro: int ETIME

The following error codes are defined by the Linux/i386 kernel. They are not

yet documented.

Macro: int ERESTART

Macro: int ECHRNG

Macro: int EL2NSYNC

Macro: int EL3HLT

Macro: int EL3RST

Macro: int ELNRNG

Macro: int EUNATCH

Macro: int ENOCSI

Macro: int EL2HLT

Macro: int EBADE

Macro: int EBADR

Macro: int EXFULL

Macro: int ENOANO

Macro: int EBADRQC

Macro: int EBADSLT

Macro: int EDEADLOCK

Macro: int EBFONT

Macro: int ENONET

Macro: int ENOPKG

Macro: int EADV

Macro: int ESRMNT

Macro: int ECOMM

Macro: int EDOTDOT

Macro: int ENOTUNIQ

Macro: int EBADFD

Macro: int EREMCHG

Macro: int ELIBACC

Macro: int ELIBBAD

Macro: int ELIBSCN

Macro: int ELIBMAX

Macro: int ELIBEXEC

Macro: int ESTRPIPE

Macro: int EUCLEAN

Macro: int ENOTNAM

Macro: int ENAVAIL

Macro: int EISNAM

Macro: int EREMOTEIO

Macro: int ENOMEDIUM

Macro: int EMEDIUMTYPE

