Modularity
Goals of this Lecture
Help you learn how to: Create high quality modules in C
Why?
Abstraction is a powerful technique available for understanding large, complex systems
A power programmer knows how to find the abstractions in a large program
A power programmer knows how to convey a large program’s abstractions via its modularity

Characteristics of a well-designed module:
(1) Separates interface and implementation
(2) Encapsulates data 
(3) Manages resources consistently
(4) Is consistent
(5) Has a minimal interface
(6) Reports errors to clients
(7) Establishes contracts
(8) Has strong cohesion
(9) Has weak coupling

(1) A well-designed module separates interface and implementation
Why?
Hides implementation details from clients, thus facilitating abstraction
Also allows separate compilation of each implementation, thus facilitating partial builds
Interface Example Stack: A stack whose items are strings
Data structure
Linked list
Algorithms
new: Create a new Stack object and return it
free: Free the given Stack object
push: Push the given string onto the given Stack object
top: Return the top item of the given Stack object
pop: Pop a string from the given Stack object and discard it
isEmpty: Return 1 (TRUE) iff the given Stack object is empty

Stack (version 0)
Stack module consists of one file (stack.c); no interface
Problem: Change stack.c => must rebuild stack.c and client
Problem: Client “sees” Stack function definitions; poor abstraction

Stack (version 1)
Stack module consists of two files:
	(a) stack.h (the interface) declares functions and defines data structures
	(b) stack.c (the implementation) defines functions
#includes stack.h so
Compiler can check consistency of function declarations and definitions
Functions have access to data structures
Client #includes only the interface
Change stack.c => must rebuild stack.c, but not the client
Client does not “see” Stack function definitions; better abstraction Interface 
(2) A well-designed module encapsulates data
An interface should hide implementation details
A module should use its functions to encapsulate its data
A module should not allow clients to manipulate the data directly
Why?
Clarity: Encourages abstraction
Security: Clients cannot corrupt object by changing its data in unintended ways
Flexibility: Allows implementation to change – even the data structure – without affecting clients

Example Stack
Stack (version 1)
That’s bad (μερική απόκρυψη)
Interface reveals how Stack object is implemented (e.g., as a linked list)
Client can access/change data directly; could corrupt object

Stack (version 2)
That’s better
Move definition of struct Node to implementation; clients need not know about it
Place declaration of struct Stack in interface; move definition to implementation

Interface does not reveal how Stack object is implemented
Client cannot access data directly

Stack (version 3)
That’s better still
	Interface provides “Stack_T” abbreviation for client (Opaque pointer)
Interface encourages client to view a Stack as an object, not as a (pointer to a) structure
Client still cannot access data directly; data is “opaque” to the client
Example stdio
Violates the characteristic, programmers can access data directly
Can corrupt the FILE object
Can write non-portable code
But the functions are well documented, so
Few programmers examine stdio.h
Few programmers are tempted to access the data directly

(3) A well-designed module manages resources consistently
A module should free a resource if and only if the module has allocated that resource
Examples
Object allocates memory <=> object frees memory
Object opens file <=> object closes file

Why?
Allocating and freeing resources at different levels is error-prone
Forget to free memory => memory leak
Forget to allocate memory => dangling pointer, seg fault
Forget to close file => inefficient use of a limited resource
Forget to open file => dangling pointer, seg fault
Example Stack: Who allocates and frees the strings?
Reasonable options:
(1) Client allocates and frees strings
Stack_push() does not create copy of given string
Stack_pop() does not free the popped string
Stack_free() does not free remaining strings
(2) Stack object allocates and frees strings
Stack_push() creates copy of given string
Stack_pop() frees the popped string
Stack_free() frees all remaining strings
Our choice: (1), but debatable
Unreasonable options:
Client allocates strings, Stack object frees strings
Stack object allocates strings, client frees strings

Example stdio
fopen() allocates memory, uses file descriptor
fclose() frees memory, releases file descriptor

Passing Resource Ownership
	Violations of the characteristic should be noted explicitly in function comments

(4) A well-designed module is consistent
A function’s name should indicate its module
Facilitates maintenance programming; programmer can find functions more quickly
Reduces likelihood of name collisions (from different programmers, different software vendors, etc.)
A module’s functions should use a consistent parameter order
Facilitates writing client code

Consistency Examples
Stack
(+)	Each function name begins with “Stack_”
(+)	First parameter identifies Stack object
string
(+)	Each function name begins with “str”
(+)	Destination string parameter comes before source string parameter; mimics assignment
stdio
(-)	Some functions begin with “f”; others do not
(-)	Some functions use first parameter to identify FILE object; others (e.g. putc()) use a different parameter

(5) A well-designed module has a minimal interface
Function declaration should be in a module’s interface if and only if:
The function is necessary to make objects complete, or
The function is very convenient for many clients
Why? More functions => higher learning costs, higher maintenance costs


Example Stack
All functions are necessary
Propose another Stack function?
void Stack_clear(Stack_T s);
Pops all items from the Stack object
Unnecessary; client can call pop() repeatedly
But could be convenient
Our decision: No, but debatable

(6) A well-designed module reports errors to clients
A module should detect errors, but allow clients to handle them 
(But it should do so with some moderation)
Why?
Handling errors in the client provides the most flexibility
Module should not assume what error-handling action clients prefer
Reporting Errors in C
C options for detecting errors
if statement
assert macro
C options for reporting errors to client
Set global variable?
Easy for client to forget to check
Bad for multi-threaded programming
Use function return value?
Awkward if return value has some other natural purpose
Use extra parameter?
Awkward for client; must pass additional parameter
Call assert macro?
Kills the client!
No option is ideal. Our recommendation: Distinguish between:
User errors 
Errors made by human user
Example: Bad data in stdin
Example: Bad command-line argument
Errors that “easily could happen”
To detect: Use if statement
To report: Use return value or parameter
Programmer errors
Errors made by a programmer
Errors that “never should happen”
Example: Call Stack_pop() with NULL stack, empty stack
To detect and report: Use assert
The distinction sometimes is unclear. Example: Write to file fails because disk is full
Reporting Errors Example 
Stack
Stack functions:
Consider invalid parameter to be programmer error
Consider malloc() failure to be programmer error
Detect/report no user errors
string
No error detection or reporting 
	Example: NULL parameter to strlen() => probable seg fault
stdlib
Uses return values to indicate failure
Note awkwardness of scanf()
Sets global variable “errno” to indicate cause of failure

(7) A well-designed module establishes contracts
A module should establish contracts with its clients
Contracts should describe what each function does, esp:
Meanings of parameters
Valid/invalid parameter values
Meaning of return value
Side effects
Why?
Establishing contracts facilitates cooperation between multiple programmers on a team
Establishing contracts assigns blame to violators
Catch errors at the door!
Better that the boss yells at the programmer who is your client rather than at you!!!

Establishing Contracts in C
Our recommendation: In C, establish contracts via comments in module interface
A module’s implementation then should enforce the contracts

Establishing Contracts Example
Stack
Comment defines contract:
Meanings of function’s parameters
s is the pertinent stack
Valid/invalid parameter values
s cannot be NULL or empty
Meaning of return value
The return value is the top item
Side effects
(None, by default)

(8) A well-designed module has strong cohesion (συνάφεια)
A module’s functions should be strongly related to each other
Why?
Strong cohesion facilitates abstraction
Strong Cohesion Examples
Stack
(+)	All functions are related to the encapsulated data
string
(+)	Most functions are related to string handling
(-) 	Some functions are not related to string handling
memcpy(), memmove(), memcmp(), memchr(), memset()
(+)	But those functions are similar to string-handling functions
stdio
(+)	Most functions are related to I/O
(-)	Some functions don’t do I/O sprintf(), sscanf()
(+)	But those functions are similar to I/O functions

(9) A well-designed module has weak coupling
Module should be weakly connected to other modules in program
Interaction within modules should be more intense than interaction among modules
Why? Theoretical observations
Maintenance: Weak coupling makes program easier to modify
Reuse: Weak coupling facilitates reuse of modules
Why? Empirical evidence
Empirically, modules that are weakly coupled have fewer bugs

Weak Coupling Examples
Design-time coupling



Weak Coupling Examples Run-time coupling

Weak Coupling Examples Maintenance-time coupling

Achieving Weak Coupling
Achieving weak coupling could involve:
Moving code from clients to my module (shown)
Moving code from my module to clients (not shown)
Moving code from clients and my module to a new module (not shown)
image1.png

image2.png

image3.png

