Chapter 1

Why Parallel Computing?
Roadmap

- Why we need ever-increasing performance.
- Why we’re building parallel systems.
- Why we need to write parallel programs.
- How do we write parallel programs?
- What we’ll be doing.
- Concurrent, parallel, distributed!
From 1986 – 2002, microprocessors were speeding like a rocket, increasing in performance an average of 50% per year.

Since then, it’s dropped to about 20% increase per year.
An intelligent solution

- Instead of designing and building faster microprocessors, put multiple processors on a single integrated circuit.
Now it’s up to the programmers

- Adding more processors doesn’t help much if programmers aren’t aware of them…
- … or don’t know how to use them.
- Serial programs don’t benefit from this approach (in most cases).
Why we need ever-increasing performance

- Computational power is increasing, but so are our computation problems and needs.
- Problems we never dreamed of have been solved because of past increases, such as decoding the human genome.
- More complex problems are still waiting to be solved.
Climate modeling
Protein folding
Drug discovery
Why we’re building parallel systems

- Up to now, performance increases have been attributable to increasing density of transistors.
- But there are inherent problems.
A little physics lesson

- Smaller transistors = faster processors.
- Faster processors = increased power consumption.
- Increased power consumption = increased heat.
- Increased heat = unreliable processors.
Solution

- Move away from single-core systems to multicore processors.
- “core” = central processing unit (CPU)
- Introducing parallelism!!!
Why we need to write parallel programs

- Running multiple instances of a serial program often isn’t very useful.
- Think of running multiple instances of your favorite game.
- What you really want is for it to run faster.
Approaches to the serial problem

- Rewrite serial programs so that they’re parallel.

- Write translation programs that automatically convert serial programs into parallel programs.
 - This is very difficult to do.
 - Success has been limited.
More problems

- Some coding constructs can be recognized by an automatic program generator, and converted to a parallel construct.
- However, it’s likely that the result will be a very inefficient program.
- Sometimes the best parallel solution is to step back and devise an entirely new algorithm.
Example

- Compute n values and add them together.
- Serial solution:

```cpp
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(. . .);
    sum += x;
}
```
Example (cont.)

- We have \(p \) cores, \(p \) much smaller than \(n \).
- Each core performs a partial sum of approximately \(\frac{n}{p} \) values.

```c
my_sum = 0;
my_first_i = ...;
my_last_i = ...;
for (my_i = my_first_i; my_i < my_last_i; my_i++) {
    my_x = Compute_next_value(...);
    my_sum += my_x;
}
```

Each core uses its own private variables and executes this block of code independently of the other cores.
Example (cont.)

- After each core completes execution of the code, is a private variable `my_sum` contains the sum of the values computed by its calls to `Compute_next_value`.

- Ex., 8 cores, \(n = 24 \), then the calls to `Compute_next_value` return:

 1, 4, 3, 9, 2, 8, 5, 1, 1, 5, 2, 7, 2, 5, 0, 4, 1, 8, 6, 5, 1, 2, 3, 9
Example (cont.)

- Once all the cores are done computing their private \texttt{my_sum}, they form a global sum by sending results to a designated “master” core which adds the final result.
if (I’m the master core) {
 sum = my_x;
 for each core other than myself {
 receive value from core;
 sum += value;
 }
} else {
 send my_x to the master;
}
Global sum

\[8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95 \]
But wait!
There’s a much better way to compute the global sum.
Better parallel algorithm

- Don’t make the master core do all the work.
- Share it among the other cores.
- Pair the cores so that core 0 adds its result with core 1’s result.
- Core 2 adds its result with core 3’s result, etc.
- Work with odd and even numbered pairs of cores.
Better parallel algorithm (cont.)

- Repeat the process now with only the evenly ranked cores.
- Core 0 adds result from core 2.
- Core 4 adds the result from core 6, etc.

- Now cores divisible by 4 repeat the process, and so forth, until core 0 has the final result.
Multiple cores forming a global sum
Analysis

- In the first example, the master core performs 7 receives and 7 additions.

- In the second example, the master core performs 3 receives and 3 additions.

- The improvement is more than a factor of 2!
Analysis (cont.)

- The difference is more dramatic with a larger number of cores.
- If we have 1000 cores:
 - The first example would require the master to perform 999 receives and 999 additions.
 - The second example would only require 10 receives and 10 additions.
- That’s an improvement of almost a factor of 100!
How do we write parallel programs?

- **Task parallelism**
 - Partition various tasks carried out solving the problem among the cores.

- **Data parallelism**
 - Partition the data used in solving the problem among the cores.
 - Each core carries out similar operations on its part of the data.
15 questions
300 exams
Professor P’s grading assistants

TA#1

TA#2

TA#3
Division of work – data parallelism

TA#1
100 exams

TA#2
100 exams

TA#3
100 exams
Division of work – task parallelism

TA#1
Questions 1 - 5

TA#2
Questions 6 - 10

TA#3
Questions 11 - 15
Division of work – data parallelism

```plaintext
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(. . .);
    sum += x;
}
```
Division of work – task parallelism

if (I’m the master core) {
 sum = my_x;
 for each core other than myself {
 receive value from core;
 sum += value;
 }
} else {
 send my_x to the master;
}

Tasks
1) Receiving
2) Addition
Coordination

- Cores usually need to coordinate their work.
- Communication – one or more cores send their current partial sums to another core.
- Load balancing – share the work evenly among the cores so that one is not heavily loaded.
- Synchronization – because each core works at its own pace, make sure cores do not get too far ahead of the rest.
What we’ll be doing

- Learning to write programs that are explicitly parallel.
- Using the C language.
- Using three different extensions to C.
 - Message-Passing Interface (MPI)
 - Posix Threads (Pthreads)
 - OpenMP
Type of parallel systems

- **Shared-memory**
 - The cores can share access to the computer’s memory.
 - Coordinate the cores by having them examine and update shared memory locations.

- **Distributed-memory**
 - Each core has its own, private memory.
 - The cores must communicate explicitly by sending messages across a network.
Type of parallel systems

Shared-memory Distributed-memory
Terminology

- **Concurrent computing** – a program is one in which multiple tasks can be in progress at any instant.

- **Parallel computing** – a program is one in which multiple tasks cooperate closely to solve a problem.

- **Distributed computing** – a program may need to cooperate with other programs to solve a problem.
Concluding Remarks (1)

- The laws of physics have brought us to the doorstep of multicore technology.
- Serial programs typically don’t benefit from multiple cores.
- Automatic parallel program generation from serial program code isn’t the most efficient approach to get high performance from multicore computers.
Learning to write parallel programs involves learning how to coordinate the cores.

Parallel programs are usually very complex and therefore, require sound program techniques and development.