

Παρουσιάσεις για το Μάθημα Ασύρματων και Κινητών Τηλεπικοινωνιών του ΔΜΠΣ στο ΕΚΠΑ

Δρ. Χάρης Μ. Στελλάκης hstellakis@gmail.com

Αθήνα, 2023

Radio Signal Propagation

- Unlike wired communication channels that are stationary and predictable, wireless channels are extremely random and do not offer easy analysis.
- Radio Signal Propagation analysis has been focusing on predicting
 - the average signal strength at a given distance from the Tx , as well as (large scale propagation modeling)
 - The variability of the signal strength in close spatial proximity to a particular location (small scale propagation or fading modeling)

Free Space Propagation Modeling

The Received Signal Level (RSL) varies

- Proportionally to Tx power, antenna gains and wavelength
- Inversely proportionally to the distance between the {Tx, Rx}, and other miscellaneous losses in the communication system hardware

$$FSL_{dB} = 32.45 + 20 \log D_{Km} + 20 \log F_{MHz}$$
$$= 36.58 + 20 \log D_{mi} + 20 \log F_{MHz}$$

FSL: Free Space Loss

 $P_r \sim \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$

$$G = \frac{4\pi A}{\lambda^2}, \qquad \lambda = c / f$$

- A: Effective aperture related to antenna physical size
- L: Miscellaneous losses in communication system

Path Loss (PL) represents signal attenuation as a positive quantity, usually measured in dB (i.e. 10log(x))

$$PL(dB) = P_t(dB) - P_r(dB) = 10\log(\frac{P_t}{P_r})$$

Due to the large dynamic range of received power levels, often dBm or dBW units are used to express received power levels in milliwatts or watts respectively

 $1W \Leftrightarrow 10\log(1W) = 0dBW = 10\log(1000mW) = 30dBm$

Path Loss Analysis - Example

✤ Example:

- In a wireless system, the Tx produces 50 watts of power, the antenna at 900 MHz carrier frequency, and both antennas have a unity gain.
- What is the transmit power in (a) dBm or (b) dBW?
- What is received power in dBm at a free space distance of 100m from the antenna?

Answers:

- Pt = 50W = 47.0 dBm = 17.0 dBW
- Pr(dBm@100m) = -24.5 dBm

<u>Reflection</u>: Occurs when the e-m wave impinges upon an object with very large dimensions (wrt λ)

Diffraction: Occurs when the radio line-of-sight (LOS) path (between the Tx and Rx) is obstructed by a surface with sharp edges, leading to «wave bending»

Scattering: Due to many and small obstacles (Foliage, Street signs, lamp posts, etc)

avg
$$PL(d) \propto \left(\frac{d}{d_0}\right)^n$$

Measured signal levels (in dB) have a Gaussian distribution (log-normal shadowing)

$$avg PL(dB) = avg PL(d_0) + 10n \log(\frac{d}{d_0})$$

A reference distance close to Tx

Environment	Path Loss Exponent, n	
Free space	2	
Urban area cellular radio	2.7 to 3.5	
Shadowed urban cellular radio	3 to 5	
In building line-of-sight	1.6 to 1.8	
Obstructed in building	4 to 6	
Obstructed in factories	2 to 3	

- Fresnel zones represent successive regions where secondary waves have a path length from Tx to Rx greater from LOS path by n*λ/2, n=1,2,3,...
- Successive Fresnel zones alternatively provide constructive and destructive interference to the received signal
- ***** Fresnel zone radii get max when the obstruction is in the middle of Tx-Rx path
- **Rule of thumb:** 1st Fresnel zone should be at least 55% clear

Fresnel Diffraction parameter (v) may be used to determine the loss due to edge diffraction

The objective is to predict/ estimate the path loss statistics over an irregular terrain

Outdoor models

- Okumura
- Hata
- COST-231 (Hata @ PCS frequencies)
- Walfisch & Bertoni, Longley-Rice, Durkin

Indoor models

- Same floor soft/ hard partitions
- Intra-floor partitions
- Log-distance path loss
- Ericsson multiple breakpoint

Median path Loss:

{Tx, Rx} Antenna Height Gain Factors

$$L_{med}(dB) = L_{FreeSpace} + A(f,d) - G(h_{te}) - G(h_{re}) - G_{Area}$$

Median Attenuation

Environment specific Correction Factor

$$G(h_{te}) = 20 \log\left(\frac{h_{te}}{200}\right)$$
$$G(h_{re}) \sim \log\left(\frac{h_{re}}{3}\right)$$

Okumura Model

$$L(dB) = L_{FreeSpace} + L_{RooftopStreet} + L_{multiscreen}$$
^{{1,2}}
^{{3,4}}

Indicative Average Loss Measurements

Material Type	Loss (dB)	Frequency	Reference
All metal	26	815 MHz	[Cox83b]
Aluminium siding	20.4	815 MHz	[Cox83b]
Foil insulation	3.9	815 MHz	[Cox83b]
Concrete block wall	13	1300 MHz	[Rap91c]
Loss from one floor	20-30	1300 MHz	[Rap91c]
Loss from one floor and one wall	40-50	1300 MHz	[Rap91c]
Fade observed when transmitter turned a right angle corner in a corridor	10-15	1300 MHz	[Rap91c]
Light textile inventory	3-5	1300 MHz	[Rap91c]
Chain-like fenced in area 20 ft high containing tools, inventory, and people	5-12	1300 MHz	[Rap91c]
Metal blanket — 12 sq ft	4-7	1300 MHz	[Rap91c]
Metallic hoppers which hold scrap metal for recycling - 10 sq ft	3-6	1300 MHz	[Rap91c]
Small metal pole — 6" diameter	3	1300 MHz	[Rap91c]
Metal pulley system used to hoist metal inventory — 4 sq ft	6	1300 MHz	[Rap91c]
Light machinery < 10 sq ft	1-4	1300 MHz	[Rap91c]
General machinery - 10 - 20 sq ft	5-10	1300 MHz	[Rap91c]
Heavy machinery > 20 sq ft	10-12	1300 MHz	[Rap91c]
Metal catwalk/stairs	5	1300 MHz	[Rap91c]
Light textile	3-5	1300 MHz	[Rap91c]
Heavy textile inventory	8-11	1300 MHz	[Rap91c]
Area where workers inspect metal finished products for defects	3-12	1300 MHz	[Rap91c]
Metallic inventory	4-7	1300 MHz	[Rap91c]
Large 1-beam — 16 - 20"	8-10	1300 MHz	[Rap91c]
Metallic inventory racks — 8 sq ft	4-9	1300 MHz	[Rap91c]
Empty cardboard inventory boxes	3-6	1300 MHz	[Rap91c]
Concrete block wall	13-20	1300 MHz	[Rap91c]
Ceiling duct	1-8	1300 MHz	[Rap91c]
2.5 m storage rack with small metal parts (loosely packed)	4-6	1300 MHz	[Rap91c]
4 m metal box storage	10-12	1300 MHz	[Rap91c]
5 m storage rack with paper products (loosely packed)	2-4	1300 MHz	[Rap91c]

Badio Paths Unstructed by Common Building Material.

naulo Fallis Obstructed by continion building Material.					
Material Type	Loss (dB)	Frequency	Reference		
5 m storage rack with large paper products (tightly packed)	6	1300 MHz	[Rap91c]		
5 m storage rack with large metal parts (tightly packed)	20	1300 MHz	[Rap91c]		
Typical N/C machine	8-10	1300 MHz	[Rap91c]		
Semi-automated assembly line	5-7	1300 MHz	[Rap91c]		
0.6 m square reinforced concrete pillar	12-14	1300 MHz	[Rap91c]		
Stainless steel piping for cook-cool process	15	1300 MHz	[Rap91c]		
Concrete wall	8-15	1300 MHz	[Rap91c]		
Concrete floor	10	1300 MHz	[Rap91c]		
Commercial absorber	38	9.6 GHz	[Vio88]		
Commercial absorber	51	28.8 GHz	[Vio88]		
Commercial absorber	59	57.6 GHz	[Vio88]		
Sheetrock (3/8 in) — 2 sheets	2	9.6 GHz	[Vio88]		
Sheetrock (3/8 in) — 2 sheets	2	28.8 GHz	[Vio88]		
Sheetrock (3/8 in) — 2 sheets	5	57.6 GHz	[Vio88]		
Dry plywood (3/4 in) — 1 sheet	1	9.6 GHz	[Vio88]		
Dry plywood (3/4 in) — 1 sheet	4	28.8 GHz	[Vio88]		
Dry plywood (3/4 in) — 1 sheet	8	57.6 GHz	[Vio88]		
Dry plywood (3/4 in) — 2 sheets	4	9.6 GHz	[Vio88]		
Dry plywood (3/4 in) — 2 sheets	6	28.8 GHz	[Vio88]		
Dry plywood (3/4 in) — 2 sheets	14	57.6 GHz	[Vio88]		
Wet plywood (3/4 in) — 1 sheet	19	9.6 GHz	[Vio88]		
Wet plywood (3/4 in) — 1 sheet	32	28.8 GHz	[Vio88]		
Wet plywood (3/4 in) — 1 sheet	59	57.6 GHz	[Vio88]		
Wet plywood (3/4 in) — 2 sheets	39	9.6 GHz	[Vio88]		
Wet plywood (3/4 in) — 2 sheets	46	28.8 GHz	[Vio88]		
Wet plywood (3/4 in) — 2 sheets	57	57.6 GHz	[Vio88]		
Aluminium (1/8 in) — 1 sheet	47	9.6 GHz	[Vio88]		
Aluminium (1/8 in) — 1 sheet	46	28.8 GHz	[Vio88]		
Aluminium (1/8 in) — 1 sheet	53	57.6 GHz	[Vio88]		

Building	915 MHz FAF (dB)	σ (dB)	Number of locations	1900 MHz FAF (dB)	σ (dB)	Number of locations
Walnut Creek					Privedis 12*	
One Floor	33.6	3.2	25	31.3	4.6	110
Two Floors	44.0	4.8	39	38.5	4.0	29
SF PacBell	100.00					
One Floor	13.2	9.2	16	26.2	10.5	21
Two Floors	18.1	8.0	10	33.4	9.9	21
Three Floors	24.0	5.6	10	35.2	5.9	20
Four Floors	27.0	6.8	10	38.4	3.4	20
Five Floors	27.1	6.3	10	46.4	3.9	17
San Ramon						
One Floor	29.1	5.8	93	35.4	6.4	74
Two Floors	36.6	6.0	81	35.6	5.9	41
Three Floors	39.6	6.0	70	35.2	3.9	27

PUIL TEPTESETIES LIE AVELAGE PALTI 1033 VVEL A EVA TIEASUTETIETT TIANA [OCIVEA].

Building	FAF (dB)	σ (dB)	Number of locations
Office Building 1:			
Through One Floor	12.9	7.0	52
Through Two Floors	18.7	2.8	9
Through Three Floors	24.4	1.7	9
Through Four Floors	27.0	1.5	9
Office Building 2:	Real Werelds	attral Paula	The include a in an
Through One Floor	16.2	2.9	21
Through Two Floors	27.5	5.4	21
Through Three Floors	31.6	7.2	21

Onice Buildings [Selazo].

Propagation Loss inside Buildings

 $PL(dB) = PL(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$

 $X_{\sigma}(dB) \sim N(0,\sigma)$

Building	Frequency (MHz)	n	σ (dB)
Retail Stores	914	2.2	8.7
Grocery Store	914	1.8	5.2
Office, hard partition	1500	3.0	7.0
Office, soft partition	900	2.4	9.6
Office, soft partition	1900	2.6	14.1
Factory LOS			
Textile/Chemical	1300	2.0	3.0
Textile/Chemical	4000	2.1	7.0
Paper/Cereals	1300	1.8	6.0
Metalworking	1300	1.6	5.8
Suburban Home			
Indoor Street	900	3.0	7.0
Factory OBS			
Textile/Chemical	4000	2.1	9.7
Metalworking	1300	3.3	6.8

rain 1055 exponent and standard deviation measured in unierent buildings [Ar

As MS moves further from the BS, the path loss change increases

Small Scale Fading and Multipath

- Small scale fading (or simply fading) is used to describe the rapid fluctuation of the signal amplitude over a short period of time so that largescale path loss effects may be ignored
- Fading is caused by interference between two or more version of the transmitted signal which arrive at the Rx at slightly different times. These waves are called multipath
- Multipath is combined at the Rx to produce the resultant signal that may vary widely in amplitude and phase, depending on the individual characteristics of every multipath components

Factors influencing fading:

- Multipath propagation
- Speed of mobile (Doppler effect)
- Speed of surrounding objects
- The transmission bandwidth of the signal

 Movement of MS relative to BS, leads to change in frequency

Example:

- **A** Tx radiates a signal at 1850 MHz
- For a vehicle moving at 60mph:
 - Directly towards Tx, then new frequency received by MS is 1850.00016 MHz
 - Directly away from Tx, then new frequency received by MS is 1849.999834 MHz
 - Perpendicular to Tx, then there in no change in received Frequency

Multiple components/ rays of the Tx signal arrive at the Rx end, with different amplitudes and phases

- Time availability = The % of time, RSL is above the required level
- Outage = The % of time, RSL is below the required level = 1-Time availability

- In mobile environments
 - Rayleigh Fading distribution

- When there is a strong / non fading signal component (ex. LOS). This a typical case for Wireless Fixed Access Environments
 - Rician fading distribution

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{(r^2 + A^2)}{2\sigma^2}\right) I_0\left(\frac{Ar}{\sigma^2}\right), \quad A, r \ge 0$$

Level Crossing and Fading Statistics

- Level Crossing Rate (LCR) is the expected rate at which the Rayleigh fading signal, normalized to its mean value, falls below a pre-specified threshold "p"
- The number of level crossings per second is Nr
- Average Fade Duration, (τ) is the average period of time for which the received signal remains below a pre-specified level, relative to its mean value
- Both parameters depend on MS speed (i.e. a function of maximum Doppler Frequency "fm")
- *** "t**" helps estimating the average number of bits that may be lost during a fade

$$N_r = \sqrt{2\pi} f_m \rho e^{-\rho^2}$$

Link Budget Analysis

It provides the Radio network designer with the necessary equipment parameters to

- Prepare a block diagram of the terminal or repeater configuration
- Determine equipment technical specifications

The Effective Isotropic Radiated Power

$$EIRP_{dBW} = P_0 + L_t + G_1$$

The Received Signal level (at the Rx input)

Example:

- Tx output power = 750mW
- Line losses = (-) 3.4dB
- Tx Rx distance = 17 mi
- Operating Frequency = 7.1 GHz
- Antenna Gains = 30.5dB each
- Air Loss = 0.3 dB

$$IRL_{dBW} = EIRP + FSL_{dB} + L_{air}$$

$$RSL_{dbW} = IRL + G_2 + L_r$$

$$RSL = -85.56 \, dBW$$

 $1mW \Rightarrow 10 \log(0,001W) = -30 \, dBW$

- In digital links, the received Eb/No (instead of RSL) is a key parameter
 - Eb: Received information energy per bit
 - No: Noise spectral density
 - No ~ f(Temperature)

$$E_{b(dBW)} = RSL_{dBW} - 10\log(R_b)$$

$$N_0 = -204 dBW + NF_{dB}$$

Thermal noise level of perfect Rx over 1Hz

Link Budget Analysis In Fading

- Link Availability denotes the time period during which a specified QoS (ex. BER) is met or exceeded
- Fade margin denotes the extra signal level required so that a specified link availability is attained

Ex	ample:	TABLE 2.6 Fade Marg	ins for Rayleigh Fading
•	Assume, minimum (unfaded) C/N	Time Availability (9	%) Fade Margin (dB)
	= 20 dB	90	8
	2000	99	18
•	Then, min C/N = 53dB for 99.95%	99.9	28
	availability, ie	99.99	38
		99.999	48
*	Outage is 0.05%		
*	C/N < 20 dB for 262.8 min/yr		

Example of WCDMA Radio Link Budget

Add to find the second of the second second	Uplink	Sign barrenter the	Downlink	and the state
Fransmitter power	125.00	a	1372.97	mW
r	20.97	$b = 10 \cdot \log_{10}(a)$	31.38	dBm
Tx antenna gain	0.00	c	18.00	dBi
Cable/body loss	2.00	d	2.00	dB
Fransmitter EIRP (incl. Losses)	18.97	e = b + c - d	47.38	dBm
Thermal noise density	-174.00	f	-174.00	dBm/Hz
Receiver noise figure	5.00	g	8.00	dB
Receiver noise density	-169.00	$\tilde{h} = f + g$	-166.00	dBm/Hz
Receiver noise power	-103.13	$i = 10 \cdot \log_{10}(W) + h$	-100.13	dBm
interference margin	-3.01	i	-10.09	dB
Required E_c/I_0	-17.12	$k = 10 \cdot \log_{10}[E_b/N_0/(W/R)] - j$	-7.71	dB
Required Signal power [S]	-120.26	l = i + k	-107.85	dBm
Rx antenna gain	18.00	m	0.00	dBi
Cable/body loss	2.00	n	2.00	dB
Coverage probability outdoor (requirement)	95.00		95.00	%
Coverage probability indoor (requirement)	0.00		0.00	%
Outdoor location probability (calculated)	85.62		85.62	%
Indoor location probability (calculated)	32.33		32.33	%
Limiting environment	Outdoor		outdoor	
Slow fading constant, outdoor	7.00		7.00	dB
Slow fading constant, indoor	12.00		12.00	dB
Propagation model exponent	3.50		3.50	
Slow fading margin	-7.27	0	-7.27	dB
HO gain (incl. any	0.00	р	2.00	dB
macrodiversity combining gain at cell edge)				
Slow fading margin + HO gain	-7.27	q = o + p	-5.27	dB
Indoor loss	0.00	r	0.00	dB
TPC headroom (fast fade margin)	0.00	S	0.00	dB
Allowed propagation loss	147.96	t=e-l+m-n+q+r-s	147.96	dB

Η ανάλυση «Link Budget» αποτελεί θεμελιώδες βήμα στη σχεδίαση και ανάπτυξη ασύρματων δικτύων!

- T. Rappaport, Wireless Communications Principles & Practice, Prentice Hall PTR
- R. Freeman, *Radio System Design for Telecommunications*, Wiley Series in Telecommunications
- M. Clark, Wireless Access Networks, Wiley
- J. Laiho & A. Wacker & T. Novosad, *Radio Network Planning and Optimization for UMTS*, Wiley
- A. Viterbi, CDMA Principles of Spread Spectrum Communication, Addison-Wesley Wireless Communications Series
- Sam Lee & L.E. Miller, CDMA Systems Engineering Handbook, Artech House
- V. Garg & K. Smolik & J. Wilkes, Applications of CDMA in Wireless / Personal Communications, Prentice Hall PTR
- S. Glisic & B. Vucetic, Spread Spectrum CDMA Systems for Wireless Communications, Artech House
- T. Ojanpera & R. Prasad, Wideband CDMA for 3rd Generation Mobile Communications, Artech House
- * W. Webb, *Introduction to Wireless Local Loop*, Artech House
- D. Roddy, *Satellite Communications*, Mc Graw Hill
- S. Ohmori & H. Wakana & S. Kawase, *Mobile Satellite Communications*, Artech House