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Volume computation problem

Given P a convex polytope in Rd compute the volume of P .

1. What is convex?

2. What is a polytope? How can we represent it?

3. How large is d? e.g. d = 2, 3, 50
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Easy cases: volume of elementary shapes
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Some elementary polytopes (simplex, cube) have simple
determinantal formulas.
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Easy cases: planar polygons

A planar simple polygon with a positively oriented (counter clock
wise) sequence of points P1, . . . , Pn, Pi = (xi, yi), i = 1, . . . , n.
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(yi + yi+1)(xi − xi+1)

=
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(
(y1 + y2)(x1 − x2) + · · ·+ (yn + y1)(xn − x1)

)
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Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pn} (V-representation)

2. intersection of halfspaces {x ∈ Rd : Ax ≤ b}
(H-representation)

convex hull problem

vertex enumeration problem

Faces of polytopes: vertices, edges, . . . , facets
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Volume computation problem (revisited)

Given P a convex polytope in Rd compute the volume of P .
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Volume computation problem (revisited)

Given P a convex polytope in Rd compute the volume of P .
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Volume via triangulation

Algorithm: compute a triangulation of the input polytope, then
sum up the volumes of simplices.

Question: Which triangulation?

Problem: The size of the triangulation of n points could be
exponential in the dimension d i.e. O(n⌈d/2⌉)

Reference: Büeler, Enge, Fukuda - Exact Volume Computation
for Polytopes: A Practical Study
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Implementations
▶ VINCI [Bueler et al’00], Latte [deLoera et al], Qhull [Barber

et al], LRS [Avis], Normaliz [Bruns et al]

▶ triangulation, sign decomposition methods

▶ cannot compute in high dimensions (e.g. > 15) in general
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Volume via (naive) Monte Carlo

Rejections techniques (sample from bounding box)

Question: how to sample points from a cube?

volume(unit cube) = 1
volume(unit ball) ∼ (c/d)d/2 –drops exponentially with d
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Outline

Volumes, polytopes, applications

Algorithms and complexity

Applications
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Randomized algorithms

Volume algorithms parts

1. Multiphase Monte Carlo (MMC)
e.g. Sequence of balls, Annealing of functions

2. Sampling via geometric random walks
e.g. grid-walk, ball-walk, hit-and-run, billiard walk

Notes:

▶ MMC (1) at each phase solves a sampling problem (2)

▶ geometric random walks are (most of the times) Marcov
chains where each ”event” is a d-dimensional point

▶ Algorithmic complexity is polynomial in d [Dyer, Frieze,
Kannan’91]
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Multiphase Monte Carlo

▶ Sequence of convex bodies C1 ⊇ · · · ⊇ Cm intersecting P ,
then:

vol(P ) = vol(Pm)
vol(Pm−1)

vol(Pm)
. . .

vol(P1)

vol(P2)

vol(P )

vol(P1)

where Pi = Ci ∩ P for i = 1, . . . ,m.
▶ Estimate ratios by sampling.
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Multiphase Monte Carlo

P0 = B(c, r)

B(c, ρ)

P

P1

▶ Sequence of k cocentric balls,
B0 = B(c, r) ⊆ P ⊆ B(c, ρ) = Bk

▶ Set Pi = P ∩Bi

▶ Estimate vol(P1)
vol(P0)

, vol(P2)
vol(P1)

. . . via sampling

▶ vol(P ) = vol(P0)
∏k

i=1
vol(Pi)

vol(Pi−1)

▶ How large is k?
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Multiphase Monte Carlo

P0 = B(c, r)

B(c, ρ)

P

P1

▶ B(c, 2i/d), i = α, α+ 1, . . . , β,
α = ⌊d log r⌋, β = ⌈d log ρ⌉

▶ Pi := P ∩B(c, 2i/d), i = α, α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)

▶ k = d log(ρ/r) where ρ/r is the
”sandwitching ratio”

Using sampling the polytope can be transformed into ”near
isotropic position” such that ρ/r = O(d) [Lovász et al.’97]
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How we sample uniformly?

For arbitrary polytopes we need random walks

▶ Ball walk

▶ Random directions hit and run (rdhr)

▶ Cooridnate directions hit and run (cdhr)

▶ Billiard walk

B

p

q

`

p

q

`

p q

p
q
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Hit and run (random directions)

P

x
B

` 1. line ℓ through x, uniform on
B(x, 1)

2. set x to be a uniform disrtibuted
point on P ∩ ℓ
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hit and run (coordinate directions)

P

x
B
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Billiard walk

p
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Billiard walk

p
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Billiard walk

p
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Billiard walk

p
q

Two important parameters: number of reflections, total length
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Ball walk

P

x
B

One important parameter: radius of the walk
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Ball walk

P

B

x

x

One important parameter: radius of the walk
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Questions on random walks

▶ What is the representation of the polytope needed for each
walk?

▶ How many steps needed to reach the target distribution?
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Explicit Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pm} (V-representation)

2. intersection of halfspaces {h1, . . . , hn} (H-representation)

convex hull problem

vertex enumeration problem

Faces of polytopes: vertices, edges, . . . , facets



Polytopes and applications Algorithms Applications

Implicit Polytope Representation (Oracles)

Membership oracle

Given point y ∈ Rd, return yes if y ∈ P otherwise return no.

Boundary oracle

Given point y ∈ P and line ℓ goes through y return the points
ℓ ∩ ∂P

P P

y

`

y
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Complexity [KannanLS’97]

Assuming B(c, 1) ⊆ P ⊆ B(c, ρ), the volume algorithm returns an
estimation of vol(P ), which lies between (1− ϵ)vol(P ) and
(1 + ϵ)vol(P ) with probability ≥ 3/4, making

O∗(d5)

oracle calls, where ρ is the radius of a bounding ball for P .

Techniques:
Isotropic sandwitching: O∗(

√
d) and ball walk.

Runtime steps

▶ generates d log d balls

▶ generate N = 400ϵ−2d log d random points in each ball ∩P

▶ each point is computed after O∗(d3) random walk steps
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State-of-the-art
Theory:

Authors-Year Complexity Algorithm
(oracle steps)

[Dyer, Frieze, Kannan’91] O∗(d23) Seq. of balls + grid walk
[Kannan, Lovasz, Simonovits’97] O∗(d5) Seq. of balls + ball walk + isotropy
[Lovasz, Vempala’03] O∗(d4) Annealing + hit-and-run
[Cousins, Vempala’15] O∗(d3) Gaussian cooling (* well-rounded)

[Lee, Vempala’18] O∗(Fd
2
3 ) Hamiltonian walk (** H-polytopes)

Software:

1. [Emiris, F’14] Sequence of balls + coordinate hit-and-run

2. [Cousins, Vempala’16] Gaussian cooling + hit-and-run

3. [Chalikis, Emiris, F’20] Convex body annealing + billiard walk

Notes:
▶ (2) is (theory + practice) faster than (1)
▶ (1),(2) efficient only for H-polytopes
▶ (3) efficient also for V-,Z-polytope, non-linear convex bodies
▶ C++ implementation of (2) ×10 faster than original (MATLAB)
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Problem complexity
Input: Polytope P := {x ∈ Rd | Ax ≤ b} A ∈ Rm×d, b ∈ Rm

Output: Volume of P

Complexity

▶ #P-hard for vertex and for halfspace repres. [DyerFrieze’88]

▶ open if both vertex (V-rep) & halfspace (H-rep)
representation is available

▶ no deterministic poly-time algorithm can compute the volume
with less than exponential relative error [Elekes’86]

▶ randomized poly-time approximation of volume of a convex
body with high probability and arbitrarily small relative
error [DyerFriezeKannan’91]
O∗(d23) → O∗(m2dω−1/3) [LeeVempala’18],
O∗(md4.5 +md4) [MangoubiVishnoi’19]
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Birkhoff polytopes

▶ Given the complete bipartite graph Kn,n = (V,E) a perfect
matching is M ⊆ E s.t. every vertex meets exactly one
member of M

▶ S ⊆ E, χS
e = {1 if e ∈ S, 0 otherwise}

▶ Bn = conv{χM | M is a perfect matching of Kn,n}

▶

▶ # faces of B3: 6, 15, 18, 9; vol(B3) = 9/8

▶ there exist formulas for the volume [deLoera et al ’07] but
values only known for n ≤ 10 after 1yr of parallel computing
[Beck et al ’03]
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Volumes and counting

▶ Given n elements & partial order; order polytope PO ⊆ [0, 1]n

coordinates of points satisfies the partial order
c

a

b a, b, c

partial order: a < b

3 linear extensions: abc, acb, cab

▶ # linear extensions = volume of order polytope · n!
[Stanley’86]

▶ Counting linear extensions is #P-hard [Brightwell’91]
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Minkowski sum

The Minkowski sum of two convex sets P and Q is:

P +Q = {p+ q | p ∈ P, q ∈ Q}

Volume of zonotopes (sums of segments) is used to test methods
for order reduction which is important in several areas:
autonomous driving, human-robot collaboration and smart grids
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Mixed volume
Let P1, P2, . . . , Pd be polytopes in Rd then the mixed volume is

M(P1, . . . , Pd) =
∑

I⊆{1,2,...,d}

(−1)(d−|I|) ·Vol(
∑
i∈I

Pi)

where the sum is the Minkowski sum.

Example

For d = 2: M(P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2)

P1 P2 P1 + P2



Polytopes and applications Algorithms Applications

Mixed volume
Let P1, P2, . . . , Pd be polytopes in Rd then the mixed volume is

M(P1, . . . , Pd) =
∑

I⊆{1,2,...,d}

(−1)(d−|I|) ·Vol(
∑
i∈I

Pi)

where the sum is the Minkowski sum.

Example

For d = 2: M(P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2)

P1 P2 P1 + P2
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Applications
Computing integrals for AI

▶ In Weighted Model Integration (WMI), given is a SMT
formula and a weight function, then we want to compute the
weight of the SMT formula.

▶ e.g. SMT formula:

(A & (X > 20) | (X > 30)) & (X < 40)

Boolean formula + comparison operations. Let X has a
weight function of w(X) = X2 and w(A) = 0.3.

▶ WMI answers the question of the weight of this formula i.e.
integration of a weight function over convex sets.

▶ [P.Z.D. Martires et al.2019]

https://arxiv.org/pdf/2001.04566v1.pdf
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Applications in finance
When is the next financial crisis?

Cales, Chalkis, Emiris, Fisikopoulos - Practical volume computation of
structured convex bodies, and an application to modeling portfolio
dependencies and financial crises, SoCG 2018

https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/8732/pdf/LIPIcs-SoCG-2018-19.pdf
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Software

1. Main library is volesti (C++):
https://github.com/GeomScale/volesti

2. Two interfaces available: Python
(https://github.com/GeomScale/dingo) and R
(https://github.com/GeomScale/Rvolesti)

3. Google summer of code ”internships” are available every year
(applications in Spring, work on Summer)

4. Project topics for Google summer of code 2024:
https://github.com/GeomScale/gsoc24/wiki/

table-of-proposed-coding-projects

5. How to participate:
https://github.com/GeomScale/gsoc24/wiki

https://github.com/GeomScale/volesti
https://github.com/GeomScale/dingo
https://github.com/GeomScale/Rvolesti
https://github.com/GeomScale/gsoc24/wiki/table-of-proposed-coding-projects
https://github.com/GeomScale/gsoc24/wiki/table-of-proposed-coding-projects
https://github.com/GeomScale/gsoc24/wiki

	Volumes, polytopes, applications
	

	Algorithms and complexity
	

	Applications

