Geometric Data analysis Randomized projections and Dimensionality reduction

Ioannis Emiris

Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece INRIA Sophia-Antipolis France

Fall 2022

4 0 F

 299

Outline

1 [Dimensionality reduction](#page-1-0)

Proof of IL Lemma

[Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 **D F**

• Trees (and AVDs): $S = O(dn)$, $Q = o(n)$ exp(d).

• LSH:
$$
S = O(dn^{1+\rho}), Q = O(dn^{\rho}), \rho = 1/(1+\epsilon)^2.
$$

Dimensionality reduction \dots and k -ANNs beat the curse in optimal space [Anagnostopoulos,E,Psarros:15-17] $\mathsf{S}=\mathit{O}(\mathit{d}n)$, $\mathsf{Q}=\mathit{O}^{*}(\mathit{d}n^{\rho})$, $\rho=1-\epsilon^{2}/(\log\log n-\log\epsilon)$. $\mathsf{S}=\mathit{O}^{*}(\mathit{d}n)$, $\mathsf{Q}=\mathit{O}^{*}(\mathit{d}n^{\rho})$, $\rho=1+\epsilon^{2}/\log\epsilon< 1$ for LSH-able metrics [Avarikioti,E,Psarros,Samaras'17]: $S = O^*(dn)$, $Q = O^*(dn^{\rho})$, $\rho = 1 - \Theta(\epsilon^2)$.

つへへ

Lemma (Johnson,Lindenstrauss'82)

Given pointset $P \subset \mathbb{R}^d$, $|P| = n$, $0 < \epsilon < 1$, there exists a distribution over linear maps

$$
f:\mathbb{R}^d\to\mathbb{R}^{d'}
$$

with $d' = O\left(\log n/\epsilon^2\right)$ s.t., for any $p, q \in \mathbb{R}^d$, w/probability $\geq 2/3$:

$$
(1-\epsilon)\|p-q\|_2\leq \|f(p)-f(q)\|_2\leq (1+\epsilon)\|p-q\|_2.
$$

Proofs (Constructive): Random orthogonal projection [JL'84], Gaussian matrix [Indyk, Motwani'98], i.i.d. entries $\in \{-1,1\}$ [Achlioptas'03], etc.

f oblivious to P i.e. defined over entire space. Fast JL Transform using structured matrices [Chazelle et al.]

Outline

1 [Dimensionality reduction](#page-1-0) [Proof of JL Lemma](#page-4-0)

[Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 **D F**

Lemma

Let $g \sim N(0, 1)^d$, i.e. with iid normal coordinates, $x \in \mathbb{S}^{d-1}$. Then, their innner product is normally distributed: $\langle x, g \rangle \sim N(0, 1)$.

Proof.

A linear combination of gaussian variables follows the gaussian distribution. Hence, it suffices to compute the expectation and variance:

$$
\mathbb{E}\langle x,g\rangle=\sum_{j=1}^d\mathbb{E}[g_j]\cdot x_j=0,
$$

$$
\mathbb{E}\langle x, g \rangle^2 = \sum_{k \neq j}^d \mathbb{E}[g_j] \cdot \mathbb{E}[g_k] \cdot x_j \cdot x_k + \sum_{j=1}^d \mathbb{E}[g_j^2] \cdot x_j^2 = 1,
$$

because the $\displaystyle{g_j, j=1,\ldots,d}$ are independent and $\displaystyle{x \in \mathbb{S}^{d-1}.}$

Let each
$$
G_i \sim N(0,1)^d
$$
, $x \in \mathbb{S}^{d-1}$, and $X = G \cdot x$.

Sum of squares

For X_1, \ldots, X_k i.i.d. r.v.: $X_i = \langle x, G_i \rangle \sim N(0, 1)$, and $Y_k = \sum_{i=1}^k X_i^2$, we know Y_k follows the χ^2 distribution with k dof. Clearly $\mathbb{E}[Y_k] = k$.

For r.v. s, and $t \in \mathbb{R}$, $\mathbb{E}[e^{ts}]$ is the moment generating function of s.

Fact

Let $X \sim N(0, 1)$ and Y_k as above. Then, if $t \in (0, 1/2)$,

$$
\mathbb{E}[e^{tX^2}] = \frac{1}{\sqrt{1-2t}} \Rightarrow \mathbb{E}[e^{tY_k}] = \frac{1}{\sqrt{1-2t}^k}.
$$

つひひ

Proof of JL Lemma (I)

Lemma

Let
$$
Y = ||X||_2^2
$$
: $Y_k = \sum_{i=1}^k X_i^2$, $X_i \sim N(0, 1)$, so $\mathbb{E}[Y_k] = k$. Then,
\n• $P[Y_k \ge (1 + \epsilon)k] < e^{-(\epsilon^2 - \epsilon^3)k/4}$,
\n• $P[Y_k \le (1 - \epsilon)k] < e^{-(\epsilon^2 - \epsilon^3)k/4}$.

Proof of first bound.

Markov's bound: $P[x \ge a] \le \mathbb{E}[x]/a$, $x \ge 0$. Then, for $t \in (0, 1/2)$:

$$
\mathrm{P}[Y_k \geq (1+\epsilon)k] = \mathrm{P}[e^{tY_k} \geq e^{(1+\epsilon)tk}] \leq \frac{\mathbb{E}[e^{tY_k}]}{e^{(1+\epsilon)tk}} =
$$

$$
= \frac{1}{(1-2t)^{k/2} \cdot e^{(1+\epsilon)tk}} \stackrel{t = \epsilon/2 (1+\epsilon)}{=} ((1+\epsilon) e^{-\epsilon})^{k/2} < e^{-(\epsilon^2-\epsilon^3)k/4}
$$

using $1 + x \leq exp(x - x^2/2 + x^3/3)$, for $x \in (-1, 1)$.

 Ω

,

∢ □ ▶ ∢ *⊖* ▶

Proof of JL Lemma (II)

Theorem

Let $G \in N(0,1)^{k \times d}$ i.e. the elements are i.i.d. r.v.'s that follow $N(0,1)$. Let $A=\frac{1}{\sqrt{2}}$ $\frac{1}{k} \mathsf{G}.$ Then, for a fixed vector $\mathsf{x} \in \mathbb{R}^{d}$,

$$
\mathrm{P}\left[\|Ax\|^2 \notin [(1-\epsilon)\|x\|^2, (1+\epsilon)\|x\|^2] \right] < 2 \cdot e^{-(\epsilon^2-\epsilon^3)k/4}.
$$

Proof.

We apply the union bound. Notice that the stated probability equals

$$
\mathrm{P}\left[\frac{\|A\mathrm{x}\|^2}{\|\mathrm{x}\|^2} \notin [1-\epsilon, 1+\epsilon]\right].
$$

In other words, $k \cdot \frac{||Ax||^2}{||x||^2}$ $\frac{\|Ax\|^2}{\|x\|^2} = \|G(x/\|x\|)\|^2$ follows the χ^2 distribution with k dof, where $||x||$ is fixed.

 Ω

メロトメ 倒 トメ ミトメ ミト

Dimension vs set size

Can always assume $d = o(n)$ or $d = O(\log n)$, otherwise apply JL Lemma to get $d' = O(\log n/\epsilon^2)$.

Does not remedy the curse for ANN

- BBD-trees still require query time linear in n.
- AVDs require $n^{O(-\log \epsilon/\epsilon^2)}$ space, prohibitive if $\epsilon \ll 1$ [HarPeled et al.12]

Definition (Indyk,Naor'07)

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

 $f: X \rightarrow Y$

is a NN-preserving embedding with distortion $D > 1$ if, for any $\epsilon > 0$ and query $q \in X$, s.t. $f(p)$ is an ϵ -ANN of $f(q)$, $p \in P$ then, with constant probability,

p is a D ϵ -ANN of q.

Does it remedy the curse for ANN?

Yes, for low doubling dim (ddim). Not in general.

ddim $= \delta$ iff 2^{δ} balls cover double-radius ball; ddim $(\ell_{\bm p}^{\bm d}) = \Theta(\bm d), \bm p > 1$

イロト イ母 トイヨ トイヨ

Definition (k-ANNs)

Given query q, find a sequence $S = [p_1, \dots, p_k] \subset P$ of distinct points s.t. p_i is an ϵ -ANN of the i-th exact NN of q.

Property of tree-based search (*)

The solution to k-ANNs using BBD-trees implies, for every point $x \in P$ not visited during the search, $(1 + \epsilon)$ dist $(x, q) >$ dist (p_k, q) .

[Dimensionality reduction](#page-1-0) [Proof of JL Lemma](#page-4-0)

2 [Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 **D F**

[Dimensionality reduction](#page-1-0) **Proof of IL Lemma**

2 [Random projections in Euclidean space](#page-12-0)

- [Projections and k-ANNs](#page-13-0)
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 0 8

Definition

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

 $f: X \rightarrow Y$

is a locality-preserving embedding with parameter k, distortion $D \geq 1$, and success probability δ if, for $\epsilon > 0$ and query $q \in X$, when $[f(p_1), \cdots, f(p_k)]$ is a solution to k-ANNs of $f(q)$ satisfying the property of tree-based search $(*)$ above then, with probability $> \delta$,

 $\exists i \in \{1,\ldots,k\} : p_i$ is a D ϵ -ANN of q.

[Anagnostopoulos,E,Psarros:SoCG'15-TALG17]

つへへ

Locality-preserving embeddings lead to an "aggressive" JL-type projection

Theorem

There exists a randomized mapping $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ satisfying the definition of locality-preserving embedding with parameter k for

$$
d' = O\left(\frac{\log(n/k)}{\epsilon^2}\right),
$$

distortion $D = 1 + \epsilon, \, \epsilon \in (0, 1)$, and failure probability 1/3.

Eventually $d' \sim \log n/(\epsilon^2 + \log \log n)$.

Proof of JL by probabilistic argument [Dasgupta,Gupta'03]

For the Euclidean metric $\|\cdot\|$, \exists distribution over linear maps

$$
f:\mathbb{R}^d\to\mathbb{R}^{d'},
$$

s.t. for $p \in \mathbb{R}^d$, $\|p\| = 1$: If $\beta^2 \neq 1$, then

$$
\mathrm{P}[\ ||f(p)||^2 \leq \beta^2 d'/d \,] \leq \exp(\frac{d'}{2}(1-\beta^2+2\ln\beta)).
$$

Two bad cases

•
$$
\#\{ \text{ "far-away" } p \in P : f(p) \text{ within distance } \simeq \beta^2 d'/d \} \ge k
$$
,

nearest neighbor $p^* \colon f(p^*)$ at distance $\geq (1+\epsilon/2)^2 d'/d.$

Recall: With BBD trees, find k-ANNs in $O^*((1 + \frac{d^{\prime}}{\epsilon}))$ $\frac{d'}{e}$)^{d'} + k) log n).

Lemma

There exists k s.t., for fixed ϵ , $\left[1 + 6d'/\epsilon\right]^{d'} + k = O(n^{\rho})$, where

$$
\rho = 1 - \Theta\left(\frac{\epsilon^2}{\log \log n}\right).
$$

Theorem (Main)

Given n points in \mathbb{R}^d , our method employs a BBD-tree to report an $(2\epsilon+\epsilon^2)$ -ANN in $O(dn^{\rho}\log n)$, using space $O(dn)$. Preprocessing takes $O(dn \log n)$ and, for each query, it succeeds with constant probability.

[Dimensionality reduction](#page-1-0) **Proof of IL Lemma**

2 [Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 **D F**

Definition (k Approximate Near Neighbors)

Given $P \subset \mathbb{R}^d$, $\epsilon > 0$, $R > 0$, build a data structure which, for any query point $\mathbb{q} \in \mathbb{R}^d$:

• if $|\{p \in P \mid \text{dist}(q, p) \leq R\}| \geq k$, report $S \subseteq \{p \in P \mid dist(q, p) \leq (1 + \epsilon)R\}$: $|S| = k$,

\n- if
$$
|\{p \in P \mid \text{dist}(q, p) \leq R\}| < k
$$
, report
\n- $S \subseteq \{p \in P \mid \text{dist}(q, p) \leq (1 + \epsilon)R\}$ s.t.
\n- $|\{p \in P \mid \text{dist}(q, p) \leq R\}| \leq |S| \leq k$.
\n

Theorem

There exists a linear space and linear preprocessing-time grid-based randomised data structure reporting an Approximate Near Neighbor (or failure) in \mathbb{R}^d with query time in $O(dn^\rho)$, $\rho \simeq 1 + \epsilon^2/\log \epsilon$.

Corollary

The ϵ -ANN optimization problem in \mathbb{R}^d is solved using space = $O^*(dn)$, query time

$$
O^*(dn^{\rho}), \, \rho = 1 + \epsilon^2/\log \epsilon < 1,
$$

4 0 8

by a randomized algorithm with constant success probability.

Open

Exploit the sequence of k -ANNs: It's not a set!

[Dimensionality reduction](#page-1-0) **Proof of IL Lemma**

[Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

3 [LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

4 **D F**

Recall LSH.

Definition (Indyk,Motwani)

Let $r \in \mathbb{R}$, $0 < \epsilon < 1$ and $1 > p_1 > p_2 > 0$. We call a family F of hash functions $(p_1, p_2, r, (1 + \epsilon)r)$ -sensitive for a metric space X if, for any $x, y \in X$, and h_i distributed uniformly in F:

• dist(x, y) $\leq r \implies Pr[h_i(x) = h_i(y)] \geq p_1$,

•
$$
dist(x, y) \geq (1 + \epsilon)r \implies Pr[h_i(x) = h_i(y)] \leq p_2.
$$

This definition is suitable for the (ϵ, r) -Approximate Near Neighbor decision problem.

Hamming (0/1) Hypercube

Projection

- Input: Metric space admitting family of LSH functions h_i .
- For each h_i "hashtable": let f_i map buckets to $\{0,1\}$ uniformly
- Overall projection $f: x \mapsto [\, f_1(h_1(x)), \ldots, f_{d'}(h_{d'}(x))\,] \in \{0,1\}^{d'}.$
- Preprocess: Project points to vertices of cube, dimension $d' = \lfloor \lg n \rfloor$.

Here d' is like k in LSH.

Approximate Near Neighbor

Query: Project query, check points in same and nearby vertices.

Visit all 0/1 vertices v , s.t. $\|v - f(q)\|_1 \leq \frac{1}{2}$ $\frac{1}{2}$ d' $(1 - p_1)$, until: x found, s.t. dist $(x, q) \leq (1 + \epsilon)r$, or threshold #points checked.

Theorem

For ℓ_1 and ℓ_2 metrics, this solves the Approximate Near Neighbor decision problem efficiently, thus yielding a solution for the ϵ -ANN optimization problem with space and preprocessing in $O^*(dn)$, and query time in $O^*(dn^{\rho})$, $\rho = 1 - \Theta(\epsilon^2)$. The data structure succeeds with constant probability.

Sketch for ℓ_2

Recall LSH family, for $w \in \mathbb{R}$:

$$
x\mapsto h_{vt}(x)=\lfloor\frac{x\cdot v+t}{w}\rfloor,
$$

for $v \sim \mathcal{N}(0, 1)^d, t \in_R [0, w)$.

Lemma (General, Technical)

Given a $(p_1, p_2, r, (1 + \epsilon)r)$ -sensitive hash family for metric space X, there exists a randomized data structure for the (ϵ, r) -Near-Neighbor using space $O(dn)$, preprocessing time $O(dn)$, and query time

$$
O(dn^{1-\Theta((p_1-p_2)^2)}+n^{-\log(p_1(1-p_1))}).
$$

Given a query, preprocessing succeeds with constant probability.

Proof sketch

Let $f: X \to \{0,1\}^{d'}$ be the projection defined above. Then for $x, y \in X$:

- \bullet dist(x, y) $\leq r$ \implies $E[\|f_i(h_i(x)) f_i(h_i(y))\|_1] \leq 0.5(1 p_1)$ \implies $E[\|f(x) - f(y)\|_1] \leq 0.5 \cdot d' \cdot (1 - p_1),$
- $dist(x, y) \ge c \cdot r \implies E[\|f(x) f(y)\|_1] \ge 0.5 \cdot d' \cdot (1 p_2).$

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Parameters

- d': larger implies finer mapping so search can stop earlier; increases storage and preprocessing.
- Threshold $\#$ points to be checked in \mathbb{R}^d

Distance computation

 $\|x - g\|^2 = \|x\|^2 + \|g\|^2 - 2g \cdot x$, where the first two can be stored. May offer up to 10% speedup. Slight slowdown on MNIST.

Project idea:
$$
||x - q||^2 - ||y - q||^2
$$
 reduces to $2q \cdot (y - x)$.

<https://github.com/gsamaras/Dolphinn>

[Dimensionality reduction](#page-1-0) **Proof of IL Lemma**

[Random projections in Euclidean space](#page-12-0)

- **[Projections and k-ANNs](#page-13-0)**
- [Decision problem](#page-18-0)

[LSH-able metrics](#page-21-0)

[Experimental results](#page-27-0)

 \rightarrow

4 **D F**

Implements projection to hypercube, for Approximate Near Neighbors. **8-80 times faster than brute force**

Falconn implements hyperplane/crosspoly LSH (4748 lines) [AILRS'15]. Hypercube is worse/same in build, same/better in space, query (716 lines)

Range search, in sec

- https://github.com/ipsarros/DolphinnPy [Psarros]
- Python 2.7, NumPy (pip install numpy)
- Hardcoded parameters (main.py): $K =$ new (projection) dimension, $num_of_probes = max #buckets searched$, $M = \text{max} \# \text{candidate points examined}.$
- python main.py: preprocesses data, runs Dolphinn (hyperplane LSH) and exhaustive search on queries.
- \bullet Print K, preprocessing and average-query time; multiplicative error (approximation), $#$ exact-answers.

 Ω

化重新润滑脂

- \bullet Fix K, vary num of probes, M so as to improve accuracy (#exact-answers), decrease multiplicative error.
- Fix num of probes, M, vary K for same goal.
- After reading files, the script calls isotropize on both sets (data, queries). Compare algorithm after commenting out both lines.
- siftsmall.tar.gz from http://corpus-texmex.irisa.fr/
- contains datafile and queryfile in fvecs format, $d=128, n=10^4.$