Geometric Data analysis Random walks, Sampling, Volume

Ioannis Emiris

Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece

May 20, 2022

Outline

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

- Monte Carlo Integration (which generalizes volume)
- Optimization

- Sparse representation, check conjectures (# linear extensions)
- Contingency tables, underconstrained linear systems
- Systems biology [Chalkis et al.21], ...

Simplex sampling

Sample each coordinate uniformly and normalize is too naive.

Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:

$$x_0 = 0 \le x_1 < \cdots < x_d \le x_{d+1} = M.$$

2. Point $[y_i = (x_i - x_{i-1})/M : i = 1, ..., d]$ is uniform.

Complexity = $O(d \log d)$ [Smith, Tromble'04]. Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

- 1. Pick uniform $x_i \in (0, 1)$; set $y_i = -\ln x_i$, i = 1, ..., d + 1.
- 2. Let $T = \sum_{i=1}^{d+1} y_i$, then $[y_1/T, \dots, y_d/T]$ is uniform.

Complexity = O(d) [Rubinstein, Melamed'98].

Arbitrary with vertices v_i : $x \in$ unit simplex, $\sum_{i=1}^{d+1} x_i v_i$ is uniform.

Sampling

Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

- Rejection shall not work: exponentially many points in bounding cube / simplex but outside *P*. Curse of dimensionality.
- Continuous (geometric) version of random walks on discrete structures (graphs).
- In arbitrary polytopes: Markov (memoryless) chains of points which "mix" to the desired distribution (typically uniform); complexity depends on (warm) start, roundedness of body.
- Each point generated with desired probability distribution after a number of steps: this number is the mixing time.
- Continuous uniform distribution: point in $A \subset P$ with probability vol(A)/vol(P). Then, probability density function is 1/vol(P), and

$$\int_{P} \frac{dv}{\operatorname{vol}(P)} = 1.$$

year	walk	mixing time	step cost
87	Coordinate HnR	?	т
06	Hit-and-Run	d ³	md
09	Dikin	md	md ²
14	Billiard	?	Rmd
16	Geodesic	md ^{3/4}	md ²
17	Ball	d ^{2.5}	md
17	Vaidya	$m^{1/2}d^{3/2}$	md ²
17	Riemmanian HMC	md ^{2/3}	md ²
18	HMC w/reflections	?	md
19	sublinear Ball	d ^{2.5}	т

dimension d, m facets, R bounds billiard reflections

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P1. line ℓ through x, uniform on B(x, 1)2. new x uniform on $P \cap \ell$ Perform W steps, return x.

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P1. line ℓ through x, uniform on B(x, 1)2. new x uniform on $P \cap \ell$ Perform W steps, return x.

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P1. line ℓ through x, uniform on B(x, 1)2. new x uniform on $P \cap \ell$ Perform W steps, return x.

• x is uniformly distributed in P after $W \sim 10^{11} d^3$ steps [LV'06].

Sample distribution

 p_u : distribution on taking one step from u: $A \subset P$ reached w/prob. $p_u(A)$

Theorem

For $u \in P$, the pdf of point $v \in P$ at next step is

$$f_u(v) = \frac{2}{\operatorname{vol}_{d-1}(S_d)} \frac{1}{\ell(u, v) |v - u|^{d-1}}$$

where $\ell(u, v) = \text{length of chord through } u, v$, sphere $S_d \subset \mathbb{R}^d$.

Proof. It suffices to prove $p_u(A) = \frac{2}{\operatorname{vol}_{d-1}(S_d)} \int_A \frac{dv}{\ell(u,v)|v-u|^{d-1}}$ for infinitesimally small A: $\ell(u, v) \approx \ell$, $\forall v \in A$; $|v - u| \approx t$. Given chord Lthrough u, $\operatorname{Prob}[v \in A] = \operatorname{vol}_1(A \cap L)/\ell$. Now $p_u(A)$ = average over all L:

$$\mathbb{E}_{L}\left(\frac{\operatorname{vol}_{1}(A \cap L)}{\ell}\right) = \frac{2}{\operatorname{vol}(S_{d})t^{d-1}} \frac{\operatorname{vol}(A)}{\ell} = \frac{2}{\operatorname{vol}(S_{d})} \int_{A} \frac{1}{\ell t^{d-1}} dv$$

because $\operatorname{vol}(S_d)t^{d-1} = \operatorname{vol}(t \text{-sphere})$ counts directions of L.

Stationary distribution

- Recall p_u is distribution obtained on taking one step from $u \in P$: $A \subset P$ is reached with probability $p_u(A)$, and $p_u(P) = 1$.
- Distribution Q on P is stationary if one step gives same distribution:

$$\int_P p_u(A) dQ(u) = Q(A), \quad \text{for any } A \subset P.$$

• Symmetry/reversibility: $f_u(v) = f_v(u)$.

c

If Q is uniform on P then, Q(A) = vol(A)/vol(P), and:

$$\int_{P} p_u(A) dQ(u) = \int_{P} \int_{A} f_u(v) dQ(v) dQ(u) = \int_{A} \int_{P} f_v(u) dQ(u) dQ(v) =$$
$$= \int_{A} p_v(P) dQ(v) = \int_{A} \frac{dv}{\operatorname{vol}(P)} = \frac{\operatorname{vol}(A)}{\operatorname{vol}(P)} = Q(A).$$

• Hence the uniform distribution is stationary. Is it unique?

I.Emiris (Athens, Greece)

Theorem (Smith'86)

Any symmetric (has the reversibility property) random walk with positive transition pdf converges to the uniform distribution, and it is the unique such distribution. Examples: RDHR, Billiard walk.

Similarly for non-negative transition pdf, e.g. CDHR.

- Q_T : distribution after T steps.
- Mixing time: T steps s.t. $\|Q_T Q\| \le \epsilon$, for $\epsilon \to 0^+$.

Theorem

 $T \approx 10^{11} d^3$ for RDHR and uniform distribution Q.

Proof

 $\mathcal{T}=\mathcal{O}(1/\varphi^2),$ where φ is the conductance of a (geometric) random walk, defined as:

$$\phi = \min_{0 \le Q(A) \le 1/2} \frac{\int_A p_u(P \setminus A) \, dQ(u)}{Q(A)}, \quad \text{out of some } A \subset P.$$

Coordinate Directions Hit-and-Run (CDHR)

Input: point $x \in P$.

Output: a new point in P.

- 1. line ℓ through x, uniform on $\{e_1, \ldots, e_d\}, e_i = (\ldots, 0, 1, 0, \ldots)$
- 2. *x* uniformly $\in P \cap \ell$.

Coordinate Directions Hit-and-Run (CDHR)

Input: point $x \in P$.

Output: a new point in P.

- 1. line ℓ through *x*, uniform on $\{e_1, \ldots, e_d\}, e_i = (\ldots, 0, 1, 0, \ldots)$
- 2. *x* uniformly $\in P \cap \ell$.

Input: point $x \in P$. Output: a new point in P. 1. line ℓ through x, uniform on $\{e_1, \ldots, e_d\}, e_i = (\ldots, 0, 1, 0, \ldots)$ 2. x uniformly $\in P \cap \ell$. Perform W steps, return x.

"Continuous" grid walk: Converges to uniform, mixing = $O(d^{11}R^2)$ [2020].

Compute intersection of line ℓ with boundary ∂P , given *m* hyperplanes:

- RDHR step in O(md).
- CDHR = O(m) per step: solve 1d (linear) problem per facet.
- Duality reduces oracle to farthest point search (max inner product) among *m* points: same asymptotics, practical if large *m* (16-dim cross-polytope: $m = 2^{16}$, 40x speedup).

Billiard walk

BW-step (polytope *P*, point p_i , real τ , integer *R*) [Polyak'14]

- 1. Set length of trajectory $L = -\tau \ln \eta$, for random $\eta \sim U(0, 1)$.
- 2. Pick uniform direction v to start the trajectory at p_i .
- 3. When trajectory meets ∂P with inner normal s, ||s|| = 1, the direction changes to $v 2\langle v, s \rangle s$.
- 4. **return** the end of trajectory as p_{i+1} . If number of reflections exceeds *R* then **return** $p_{i+1} = p_i$.

Experimental comparison

Sampling the 100d cube with Ball Walk, RDHR, CDHR, Billiard walk. Walk length = 1,20,40,60,80,100.

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

Famous polytopes

Easy cases

Some elementary polytopes have determinantal formulas.

$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ 6 & 1 & 1 \end{vmatrix} / 2! = 11$$
$$\begin{vmatrix} 2 & 5 \\ 4 & 0 \end{vmatrix} = 20$$

Convex polytope

- Convex polytopes are defined by
 - the set of all convex combinations of a finite set of points (V-rep): easy point generation, membership requires LP;
 - the intersection of a finite number of halfspaces (H-rep): easy membership, ray-shooting reduces to F linear systems.
- Further representations include Minkowski (vector) sums:

of a finite number of polytopes,
of segments v_i: zonotope (Z-rep)
"generated" as follows:

$$\sum_{i=1}^t \lambda_i v_i, \quad 0 \leq \lambda_i \leq 1.$$

	\oplus	\mathbb{R}
\square	\oplus	Ц
	\oplus	В
-	\oplus	27
I	\oplus	И
A		l
	Ð	\square
N	⊕ ⊕	Ц
	⊕ ⊕	

IN: H-polytope $P := \{x \in \mathbb{R}^d \mid Ax \le b, A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m\}$, which has *m* linear inequalities (maybe some redundant). V-polytope defined by points (vertices) $v_i \in \mathbb{R}^d$:

 $P := \{\lambda_1 v_1 + \dots + \lambda_n v_n \in \mathbb{R}^d \mid \sum_i \lambda_i = 1, \lambda_i \ge 0\}$

- OUT: Euclidean volume of *P*.
 - #-P hard for vertex, halfspace representations [Dyer, Frieze'88]
 - Open if both vertex & halfspace representations are available.
 - APX-hard in oracle model: deterministic poly-time approximations have exponential error [Elekes'86]

- Curse of dimensionality:
 - Triangulation is exponential in d.
 - V(unit ball) = $\pi^{d/2}/\Gamma(1+d/2) = \Theta((2\pi e/d)^{d/2}/\sqrt{d}) = O((1/d)^d)$ Hence rejection sampling does not scale.
- det. poly-time approximation with error $\leq d!$ [Betke,Henk'93]
- Fully Poly-time Randomized Approx. Scheme: arbitrarily small error with high probability; grid random walk, telescoping sphere sequence [D,F,Kannan'91] in $O^*(d^{23})$.
- Ball walk [K,Lovász,Simonovits'97] O*(d⁵). O*(d⁴m) [LVempala'04] by simulated annealing, Hit-and-Run. If rounded O*(d³F) [CousinsV'14] by Gaussian cooling. Hamiltonian walk O*(d^{2/3}F) [LeeV'18].

Exact: VINCI [Bueler et al'00], Latte [deLoera et al], Qhull [Barber et al]

• too slow in high dimensions (e.g. > 20)

Randomized for H-polytopes:

- [Lovász, Deák'12] only in ≤ 10 dimensions.
- Zonotopes via LP oracles, shake-and-bake [Fukuda et al.]
- Ours: based on Sampling [DFK'91], [Kannan,Lovász,Simonovits'97]; few hrs for few hundred dimensions.
- Matlab code by Cousins & Vempala based on [LV04], needs #facets.
- Hit-and-run in non-convex regions [Abbasi-Yadkori et al.'17]

Sampling

2 Random walks

3 Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

- ✓ Sampling by Hit-and-Run
- Telescoping (multiphase) sequence of balls;

- Sandwiching input P between balls;
- Rounding input *P*.

Ball sequence

Cocentric ball B(c, 2^{i/d}) sequence: centered at point c ∈ P, sequence of radii r, 2r,..., ρ, for i = [d log r],..., [d log ρ] s.t. B(c, r) ⊂ P ⊂ B(c, ρ).

• Define convex
$$P_i := P \cap B(c, 2^{i/d})$$
.

$$vol(P) = vol(P_{d\log r}) \prod_{i=\lfloor d\log r \rfloor+1}^{\lceil d\log \rho \rceil} \frac{vol(P_i)}{vol(P_{i-1})}$$
[DFK91]

Multiphase Monte Carlo

The P_i 's are sampled uniformly.

Partial inverse point generation:

- 1. Let N uniform points in P_i .
- 2. Count (+ keep) ν in P_{i-1} .
- 3. Sample $N \nu$ in P_{i-1} .

$$vol(P) = vol(P_{d\log r}) \prod_{i=\lfloor d\log r \rfloor+1}^{\lceil d\log \rho \rceil} \frac{vol(P_i)}{vol(P_{i-1})}.$$

where each ratio is approximated by rejection sampling (step 2).

Sandwiching (Schedule)

- compute max inscribed ball B(c, r) of P, by LP: max $r : A_i c + r ||A_i||_2 \le b_i, i = 1, \dots, m$.
- get uniformly distributed $p \in B(c, r)$; sample N uniform points $\in P$
- $\rho = \max$ distance between *c* and *N* points: $P \subseteq B(c, \rho)$

Well-Rounding

- 1. given set S of s uniformly distributed points $\in P$
- 2. compute (approximate) min-volume ellipsoid *E* covering *S*: $S \subset E = \{x : (x - c)^T L^T L (x - c) \le 1\}$
- 3. compute L mapping E to unit ball B: apply L to P

Iterate till ratio of max over min ellipsoid axes reaches threshold. Note: Isotropic position (identity covarince) implies well-rounded.

I.Emiris (Athens, Greece)

Geometric Data analysis

Theorem (Kannan, Lovász, Simonovits'97; Lovász'99)

Let a polytope P be well-rounded: $B(c, r = 1) \subseteq P \subseteq B(c, \rho)$, for $c \in P$. The algorithm computes, with probability $\geq 3/4$, an estimate of vol(P) in $[(1 - \epsilon)vol(P), (1 + \epsilon)vol(P)]$, by

$$O^*(d^4\rho^2) = O^*(d^5)$$

oracle calls, with probability $\geq 9/10$, where $\rho = O^*(\sqrt{d})$ by isotropic sandwiching, and $\varepsilon > 0$ is fixed.

Runtime

- $N = 400 d \log d / \epsilon^2 = O^*(d)$ random points per P_i ,
- each point computed after $W \sim 10^{11} d^3$ walk steps.

- CDHR: boundary oracle = O(m).
- Set $W = \lfloor 10 + d/10 \rfloor$ walk steps, also [LovDeák]: achieves < 1% error in $d \le 100$. Hence our algorithm takes $O^*(md^3)$ ops.
- sample partial generations of ≤ N points per ball ∩ P, starting from largest; saves constant fraction per ball.
- rounding = $O^*(sd^2) = O^*(d^3)$ [Khachiyan'96]; k iterations in $O^*(k(md + d^3))$, typically k = 1.
- 2.5K lines C++, github.com/GeomScale
- CGAL for LP, min-ellipsoid; Eigen for linear algebra
- Google summer of code 2018: R interface [Chalkis]

- approximate the volume of polytopes (cubes, random, cross, Birkhoff) up to dimension 100 in < 2hrs with mean error <1%
- estimate always in $[(1 \epsilon)vol(P), (1 + \epsilon)vol(P)]$, with $W = \Theta(d)$
- CDHR faster (and more accurate) than RDHR
- volume of Birkhoff polytopes B₁₁,..., B₁₅ in few hrs; exact specialized software computed B₁₀ in ~1 year [BeckPixton03]

Runtime vs. dimension

Birkhoff polytopes

 $B_n = \{x \in \mathbb{R}^{n \times n} \mid x_{ij} \ge 0, \sum_i x_{ij} = 1, \sum_j x_{ij} = 1, 1 \le i, j \le n\}$: perfect matchings of $K_{n,n}$, or Newton polytope of determinant.

n	d	estimate	asymptotic	<u>estimate</u>	exact	exact
	u	cotimate	[CanfieldMcKay09]	asympt.	exact	asympt.
4	9	6.79E-002	7.61E-002	0.89194	6.21E-002	0.81593
5	16	1.41E-004	1.69E-004	0.83444	1.41E-004	0.83419
6	25	7.41E-009	8.62E-009	0.85987	7.35E-009	0.85279
7	36	5.67E-015	6.51E-015	0.87139	5.64E-015	0.86651
8	49	4.39E-023	5.03E-023	0.87295	4.42E-023	0.87786
9	64	2.62E-033	2.93E-033	0.89608	2.60E-033	0.88741
10	81	8.14E-046	9.81E-046	0.83052	8.78E-046	0.89555
11	100	1.40E-060	1.49E-060	0.93426	?	?
12	121	7.85E-078	8.38E-078	0.93705	?	?
13	144	1.33E-097	1.43E-097	0.93315	?	?
14	169	5.96E-120	6.24E-120	0.95501	?	?
15	196	5.70E-145	5.94E-145	0.95938	?	?

All volumes in few hrs; exact $V(B_{10})$ in ~1 year [BeckPixton03].

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

Open: V-polytopes

Given by optimization oracle

Open: V-polytopes

Given by optimization oracle

github/GeomScale

H-polytopes [E-Fisikopoulos14]

- CDHR amortized O(1), $\lfloor 10 + d/10 \rfloor$ vs. $\simeq 10^{11} d^3$ random walks.
- $d \le 100: < 2hrs, < 1\%$ error.

H/V-polytopes, zonotopes [Chalkis-E-Fisikopoulos'19]

- Sequence of convex bodies: good fit, easy sampling (rejection)
- Simulated annealing to construct sequence
- Statistical criterion of convergence

I.Emiris (Athens, Greece)

New Multiphase Monte Carlo

Convex $C_1 \supseteq \cdots \supseteq C_m$ intersect $P = P_0$, $P_i = C_i \cap P$, $i = 1, \ldots, m$:

$$\operatorname{vol}(P) = \frac{\operatorname{vol}(P_0)}{\operatorname{vol}(P_1)} \cdots \frac{\operatorname{vol}(P_{m-1})}{\operatorname{vol}(P_m)} \cdot \frac{\operatorname{vol}(P_m)}{\operatorname{vol}(C_m)} \cdot \operatorname{vol}(C_m),$$

is good sequence provided ratios computed fast, m small; inner ratio may be approximated by rejection sampling.

I.Emiris (Athens, Greece)

Geometric Data analysis

Employ (ideas of) simulated annealing to reduce length of sequence by adapting to the problem: non-deterministic, varying steps.

Input: Polytope *P*, error ϵ , cooling parameters $r, \delta > 0$ s.t. $0 < r + \delta \ll 1$.

Output: A sequence of convex bodies $C_1 \supseteq \cdots \supseteq C_m$ s.t.

 $vol(P_{i+1})/vol(P_i) \in [r, r+\delta]$ with high probability

where $P_i = C_i \cap P$, $i = 1, \ldots, m$ and $P_0 = P$.

Annealing schedule: reduce number of phases

Six balls C_i (left), one by annealing r=0.25, $\delta=0.05$ (right)

- Classic MMC [LKS97]: $\frac{\text{vol}(C_2 \cap P)}{\text{vol}(C_1 \cap P)} \cdots \frac{\text{vol}(C_6 \cap P)}{\text{vol}(C_5 \cap P)} \text{vol}(C_1).$
- Annealing schedule: $\frac{\text{vol}(C_1 \cap P)}{\text{vol}(C_1)} \cdot \frac{\text{vol}(P)}{\text{vol}(C_1 \cap P)} \cdot \text{vol}(C_1).$

Given $P_i \supseteq P_{i+1}$, $r, \delta > 0$, $0 < r + \delta \ll 1$, define null hypotheses H_0 :

testLeft: $H_0: \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \le r + \delta$ testRight: $H_0: \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \le r$

- 1. Sample set of N points from P_i , repeat v times.
- 2. \forall set, binomial r.v. X counts points in P_{i+1} , success probability is unknown ratio $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i)$.
- 3. Use $\hat{\mu}=$ mean of ν ratios.

$$\begin{split} & \mathsf{testL}(P_i, P_{i+1}, r, \delta): \\ & H_0: \ \mathsf{vol}(P_{i+1})/\mathsf{vol}(P_i) \geq r + \delta \\ & \mathsf{Successful} \text{ if we reject } H_0 \end{split}$$

testR $(P_i, P_{i+1}, r, \delta)$: H_0 : vol (P_{i+1}) /vol $(P_i) \le r$ Successful if we reject H_0

• If both successful then $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \in [r, r+\delta]$ whp.

$$\begin{split} & \textbf{testL}(P_i, P_{i+1}, r, \delta): \\ & H_0: \ \textbf{vol}(P_{i+1})/\textbf{vol}(P_i) \geq r + \delta \\ & \textbf{Successful if we reject } H_0 \end{split}$$

testR $(P_i, P_{i+1}, r, \delta)$: H_0 : vol (P_{i+1}) /vol $(P_i) \le r$ Successful if we reject H_0

• If both successful then $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \in [r, r+\delta]$ whp.

Figure: testL: succeeds, testR: fails

• Binary search a radius in $[r_{max}, r_{min}]$ until both tests are successful.

Statistical tests

$$\begin{split} & \textbf{testL}(P_i, P_{i+1}, r, \delta): \\ & H_0: \ \textbf{vol}(P_{i+1})/\textbf{vol}(P_i) \geq r + \delta \\ & \textbf{Successful if we reject } H_0 \end{split}$$

testR $(P_i, P_{i+1}, r, \delta)$: H_0 : vol (P_{i+1}) /vol $(P_i) \le r$ Successful if we reject H_0

• If both successful then $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \in [r, r+\delta]$ whp.

Figure: testL: fails, testR: succeeds

• Binary search a radius in $[r_{\max}, r_{\min}]$ until both tests are successful.

$$\begin{split} & \textbf{testL}(P_i, P_{i+1}, r, \delta): \\ & H_0: \ \textbf{vol}(P_{i+1})/\textbf{vol}(P_i) \geq r + \delta \\ & \textbf{Successful if we reject } H_0 \end{split}$$

testR $(P_i, P_{i+1}, r, \delta)$: H_0 : vol (P_{i+1}) /vol $(P_i) \le r$ Successful if we reject H_0

• If both successful then $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \in [r, r+\delta]$ whp.

Figure: testL: succeeds, testR: succeeds

• Binary search a radius in $[r_{\max}, r_{\min}]$ until both tests are successful.

Statistical tests

Given convex bodies $P_i \supseteq P_{i+1}$, we define two statistical tests:

testL $(P_i, P_{i+1}, r, \delta)$:	testR $(P_i, P_{i+1}, r, \delta)$:
$H_0: \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \ge r + \delta$	$H_0: \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \leq r$
Successful if we reject H_0	Successful if we reject H_0

• If both successful then $r_i = \operatorname{vol}(P_{i+1})/\operatorname{vol}(P_i) \in [r, r+\delta]$ whp.

Figure: testL: succeeds, testR: succeeds

• Binary search a radius in $[r_{\max}, r_{\min}]$ until both tests are successful.

• The annealing schedule terminates with constant probability.

• #phases
$$m = O\left(log(vol(P)/vol(C' \cap P))\right)$$
.

• If the body we use in MMC is a "good fit" to P, then $vol(C' \cap P)$ increases and m decreases.

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

For ellipsoids we generalized:

- Boundary oracle: univariate quadratic equation.
- Compute internal point, inscribed ball, enclosing ball.
- Sequence of concentric balls: Stop when all rays first hit inscribed ball

- Transform ellipsoid to sphere H_0 , transform simplex similarly.
- Find B(p, r) of max radius r, satisfying constraints:

$$\operatorname{dist}(p,H_i) \geq r \Leftrightarrow a_i^T p + b_i \geq r ||a_i||,$$

$$\mathsf{dist}(p,H_0) \geq r \Leftrightarrow \|p-c_0\| \leq r_0-r.$$

This is a Second Order Cone Program. In general, polytope intersection with O(1) balls.

- Solved by SDP / interior-point method in poly-time.
- Inverse transform yields inscribed ellipsoid, maybe not max. Center is good internal point.
- Get max inscribed ball by taking distance of p to H_i 's.

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

Polytope Oracles

Membership oracle

Given point $y \in \mathbb{R}^d$, return yes if $y \in P$ otherwise return no.

Boundary oracle

Given $y \in P$, ray ℓ through y, return points $\ell \cap \partial P$.

Given is polytope $P \subset \mathbb{R}^d$ and approximation parameter $\varepsilon \in (0, 1)$:

Definition (Approximate Polytope Membership)

Preprocess *P* into data-structure so that, given query point *q*, decide whether $q \in P$ or not. If $d(q, \partial P) \leq \epsilon \cdot diam(P)$ the data structure can answer either way.

Definition (Approximate Polytope Boundary)

Preprocess *P* into data-structure so that given query ray *r* emanating from $y \in P$, compute point r^* , s.t.

 $r^* \in r$ and $d(r^*, \partial P) \leq \epsilon \cdot diam(P)$.

Previous approaches have complexity exponential in d.

Exact setting [Aurenhammer'87]

Let $P \subset \mathbb{R}^d$ have *n* facets. $\forall p^* \in P \setminus \partial P$, compute set *S* of *n* points: membership of *q* reduces to finding its Nearest Neighbor in $S \cup \{p^*\}$

Let $P^{-\epsilon} = \{x \in P \mid d(x, \partial P) > \epsilon \cdot diam(P)\} \neq \emptyset$.

Approximate Membership reduces to ϵ ANN on $S \cup \{p^*\}$, $p^* \in P^{-\epsilon}$.

Theorem (Complexity)

We answer Approximate Membership queries in $O^*(dn^{\rho+o(1)})$, using $O^*(n^{1+\rho+o(1)} + dn)$ space, whp, where $\rho \leq 1/(1 + 4\epsilon^2) < 1$.

[Anagnostopoulos-E-Fisikopoulos'17]

Membership experiments

Approximate Boundary Oracle

- 1. Compute $t_1 \notin P$, $t_1 \in r$, where r is ray shooting query.
- 2. For $t_i \notin P$, compute t_{i+1} closer to apex: $p_i := NN(t_i)$.
 - hyperplane H_i supports facet F_i defining p_i ; $t_{i+1} := H_i \cap r$.
- 3. Terminate by checking (approximate) membership oracle.

May get in local "optimum": If t_i does not decrease distance to apex, set $t_i := (t_{i-1} - r.apex) - r.unitdir \cdot \epsilon$.

Sampling

2 Random walks

Convex Volumes

- Poly-time approximation
- V-polytopes
- Nonlinear bodies
- Oracles by ANN

Financial modeling

Financial markets

Stock markets exhibit 3 types of behavior:

- Normal: slightly positive returns, moderate volatility.
- Up-market (bubbles): high returns, low volatility.
- Crises: strongly negative returns, high volatility.

The copula is a volatility-return probability distribution. Figure: up-market and crisis: bubble burst in Sep. 2000.

I.Emiris (Athens, Greece)

Geometric Data analysis

- Portfolios of d+1 assets represented by simplex $\Delta^d \subset \mathbb{R}^{d+1}$.
- For portfolio $\omega \in \Delta^d$, returns $R \in \mathbb{R}^{d+1}$, total return $f(\omega, R) = R^T \omega$ is linear combination of returns.
- Cross-sectional score of portfolio ω^* is $vol(\Delta^*)/vol(\Delta^d)$ s.t.

$$\Delta^* = \{ \omega \in \Delta^d : f(\omega, R) \le f(\omega^*, R) \}.$$

Score corresponds to cumulative distribution of $f(\omega, C)$.

• Volatility is quadratic form of returns.

 Let R_{ij} be the return at day i of asset j. Consider compound returns over k days starting at day i: define (d + 1)-vector v whose j-th coordinate, j = 1,..., d + 1, equals

$$v_j = (1 + R_{i,j})(1 + R_{i+1,j}) \cdots (1 + R_{i+k-1,j}) - 1.$$

Normal vector v defines family of hyperplanes.

- Volatility requires estimation of the returns' variance covariance matrix, yielding concentric ellipsoids.
- Copula populated by intersecting Δ^d along asset characteristics: Hyperplane families normal to two compound vectors, or to one vector and concentric ellipsoids.

Let
$$H : a^T x \le a_0$$
, $a = (a_1, ..., a_d)$, let S be the unit simplex.
1. Let $y_i = a_i - a_0$ if ≥ 0 , $i = 1, ..., K$,
 $x_i = a_i - a_0$ if < 0 , $i = 1, ..., J$, s.t. $J + K = d$.
2. Initialize $A_0 = 1, A_1 = \dots = A_K = 0$.
3. For $j = 1, ..., J$ do:

$$A_k \leftarrow \frac{y_k A_k - x_j A_{k-1}}{y_k - x_j}, \quad k = 1, \dots, K.$$

For j = J,

$$A_{\mathcal{K}} = \operatorname{vol}(S \cap H) / \operatorname{vol}(S).$$

Complexity = $O(d^2)$ [Varsi'73,Ali'73,Gerber'81].

Thank you!