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Example and definition

Sites: P := {p1, . . . , pn} ⊂ R2
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Georgy F. Voronoy
(1868 - 1908)
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Faces (edges) of Voronoi diagram
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Voronoi diagram
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Formalization

• sites: points P = {p1, . . . , pn} ⊂ R2.

• Voronoi cell/region V (pi ) of site pi :

q ∈ V (pi ) ⇔ dist(q, pi ) ≤ dist(q, pj), ∀pj ∈ P, j 6= i .

• Voronoi edge is the common boundary of two adjacent cells.
• Voronoi vertex is the common boundary of 3 adjacent cells, or the
intersection of ≥ 2 (hence ≥ 3) Voronoi edges.
Generically, of exactly 3 Voronoi edges.

Voronoi diagram of P = dual of Delaunay triangulation of P.
• Voronoi cell ↔ vertex of Delaunay triangles: site
• neighboring cells (Voronoi edge) ↔ Delaunay edge, defined by
corresponding sites (line of Voronoi edge ⊥ line of Delaunay edge)
• Voronoi vertex ↔ Delaunay triangle.
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Triangulation

A triangulation of a pointset (sites) P ⊂ R2 is a collection of triplets from
P, namely triangles, s.t.

I The union of the triangles covers the convex hull of P.

I Every pair of triangles intersect at a (possibly empty) common face
(∅, vertex, edge).

I Usually (CGAL): Set of triangle vertices = P.

Example: P, incomplete, invalid, subdivision, triangulation.
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Delaunay Triangulation: dual of Voronoi diagram
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Delaunay Triangulation: dual of Voronoi diagram

Boris N. Delaunay
(1890 - 1980)
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Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:

I Lift sites p = (x) ∈ R to p̂ = (x , x2) ∈ R2

I Compute the convex hull of the lifted points

I Project the lower hull to R

y = x2

p1 p2 p3 p4
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Delaunay triangulation: going a bit higher. . .

Definition/Construction of Delaunay triangulation:

I Lift sites p = (x , y) ∈ R2 to p̂ = (x , y , x2+y2) ∈ R3

I Compute the convex hull of the lifted points

I Project the lower hull to R2: arbitrarily triangulate lower facets that
are polygons (not triangles)
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Nearest Neighbors
Reconstruction
Meshing

Applications

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation 13 / 41



Voronoi by Lift & Project

Lifting:
– Consider the paraboloid x3 = x21 + x22 .
– For every site p, consider its lifted image p̂ on the parabola.
– Given p̂, ∃ unique (hyper)plane tangent to the parabola at p̂.

Project:
– For every (hyper)plane, consider the halfspace above.
– The intersection of halfspaces is a (unbounded) convex polytope
– Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:
– Let E : x21 + x22 − x3 = 0 be the paraboloid equation.

– ∇E (a) =
(
∂E
∂x1
, ∂E∂x2 ,

∂E
∂x3

)
a
= (2a1, 2a2,−1).

– Point x ∈ plane h(x) ⇔ (x − a) · ∇E (a) = 0 ⇔
2a1(x1 − a1) + 2a2(x2 − a2) − (x3 − a3) = 0, which is h’s equation.
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Lift & Project in 1D

pp’ q

h

h’

y=0

y=x^2
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Main Delaunay property: empty circle/sphere
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Main Delaunay property: 1 picture proof

Thm (in R): S(p1, p2) is a Delaunay segment ⇔ its interior contains no pi .

Proof. Delaunay segment ⇔ (p̂1, p̂2) edge of the Lower Hull⇔ no p̂i “below” (p̂1, p̂2) on the parabola⇔ no pi inside the segment (p1, p2).

y = x2

p1 p2 p3 p4
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Main Delaunay property: 1 picture proof

Thm (in R2): T (p1, p2, p3) is a Delaunay triangle ⇔ the interior of the
circle through p1, p2, p3 (enclosing circle) contains no pi .

Proof. Circle(p1, p2, p3) contains no pi in interior⇔ plane of lifted p̂1, p̂2, p̂3 leaves all lifted p̂i on same halfspace⇔ CCW(p̂1, p̂2, p̂3, p̂i ) of same sign for all i .
Suffices to prove: pi lies on Circle(p1, p2, p3)⇔ p̂i lies on plane of p̂1, p̂2, p̂3 ⇔ CCW(p̂1, p̂2, p̂3, p̂i ) = 0.
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Predicate InCircle

Given points p, q, r , s ∈ R2, point s = (sx , sy ) lies inside the circle
through p, q, r ⇔

det


px py p2x + p2y 1
qx qy q2x + q2y 1
rx ry r2x + r2y 1
sx sy s2x + s2y 1

 > 0,

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle(p, q, r , s) = 0 ⇔ ∃ circle through p, q, r , s.
Proof. InCircle(p, q, r , s) = 0 ⇔ CCW (p̂, q̂, r̂ , ŝ) = 0

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation 19 / 41



Delaunay faces

Theorem. Let P be a set of sites ∈ R2:

(i) Sites pi , pj , pk ∈ P are vertices of a Delaunay triangle ⇔ the circle
through pi , pj , pk contains no site of P in its interior.

(ii) Sites pi , pj ∈ P form an edge of the Delaunay triangulation ⇔ there
is a closed disc C that contains pi , pj on its boundary and does not
contain any other site of P.
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Triangulations of planar pointsets

Thm. Let P be set of n points in R2, not all colinear, k = #points on
boundary of CH(P). Any triangulation of P has 2n − 2 − k triangles and
3n − 3 − k edges.

Proof.

I f: #facets (except ∞)

I e: #edges

I n: #vertices

1. Euler: n − e + (f + 1) − 1 = 1; for d-polytope:
∑d

i=0(−1)i fi = 1

2. Any planar triangulation: total degree = 3f + k = 2e.
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Properties of Voronoi diagram

Lemma. |V | ≤ 2n − 5, |E | ≤ 3n − 6, n = |P |,
by Euler’s theorem for planar graphs: |V |− |E |+ n − 1 = 1.

Max Empty Circle CP(q) centered at q: no interior site pi ∈ P.
Lem: q ∈ R2 is Voronoi vertex ⇔ C (q) has ≥ 3 sites on perimeter

Any perpendicular bisector of segment (pi , pj) defines a Voronoi edge ⇔
∃ q on bisector s.t. C (q) has only pi , pj on perimeter
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Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal ⇔ min16i66 ai < min16i66 a

′
i .

pl

pk

pj

pi

pl

pk

pj

pi

a a′

T ′ obtained from T by flipping illegal e, then T ′
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).
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Insertion by flips

∆1

∆2

∆3

pr

∆2

∆3

pi

pj

∆5

∆4

∆3

pi pk

∆7

∆4

∆6
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Lower bound

Ω(n log n) by reduction from sorting

(xi, x
2
i )

xi
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Delaunay triangulation
Theorem.

Let P be a set of points ∈ R2. A triangulation T of P has no illegal edge⇔ T is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal) way of
maximizing the min angle.

Algorithms in R2:
– Lift, CH3, project the lower hull: O(n log n)
– Incremental algorithm: O(n log n) exp., O(n2) worst
– Voronoi diagram (Fortune’s sweep): O(n log n)
– Divide + Conquer: O(n log n)

See Voronoi algo’s below.
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Incremental Delaunay
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Incremental Delaunay
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Incremental Delaunay

Find triangles in conflict
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Incremental Delaunay

Delete triangles in conflict
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Incremental Delaunay

Triangulate hole
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Divide & Conquer
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Fortune’s sweep
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Vertex, and Site events

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation 35 / 41



Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Properties
Empty circle
Complexity
Min max angle

4 Algorithms and complexity
Incremental Delaunay
Further algorithms

5 (Generalizations and Representation)

I.Emiris (University of Athens) Voronoi diagram and Delaunay triangulation 36 / 41



General dimension polytopes

Faces of a polytope are polytopes forming its extreme elements.
A facet of a d-dimensional polytope is (d − 1)-dimensional face:
• The facets of a segment are vertices (0-faces).
• The facets of a polygon are edges (1-faces)
• The facets of a 3-polyhedron are polygons.
• The facets of a 4d polytope are 3d polytopes.
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General dimension triangulation

A triangulation of a pointset (sites) P ⊂ Rd is a collection of
(d + 1)-tuples from P, namely simplices, s.t.

I The union of the simplices covers the convex hull of P.

I Every pair of simplices intersect at a (possibly empty) common face.

I Usually: Set of simplex vertices = P.

I Delaunay: no site lies in the circum-hypersphere inscribing any
simplex of the triangulation.

In 3d, two simplices may intersect at: ∅, vertex, edge, facet.

The triangulation is unique for generic inputs, i.e. no d + 2 sites lie on
same hypersphere, i.e. every d + 1 sites define unique simplex.
A Delaunay facet belongs to: exactly one simplex iff it belongs to CH(P),
otherwise belongs to exactly two (neighboring) simplices.
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Complexity in general dimension

I Delaunay triangulation in Rd ' convex hull in Rd+1.

I Convex Hull of n points in Rd is Θ(n log n + nbd/2c)
Hence d-Del = Θ(n log n + ndd/2e)

I Lower bound [McMullen] on space Complexity

I optimal deterministic [Chazelle], randomized [Seidel] algorithms

Optimal algorithms by lift/project: R2: Θ(n log n), R3: Θ(n2).
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Generalized constructions

In R2: Various geometric graphs defined on P are subgraphs of DT (P),
e.g. Euclidean minimum spanning tree (EMST) of P.

Delaunay triangulation DT (P) of pointset P ⊂ Rd : triangulation s.t. no
site in P lies in the hypersphere inscribing any simplex of DT (P).

I DT (P) contains d-dimensional simplices.

I hypersphere = circum-hypersphere of simplex.

I DT (P) is unique for generic inputs, i.e. no d + 2 sites lie on the same
hypersphere, i.e. every d + 1 sites define unique Delaunay “triangle”.

I Rd : Delaunay facet belongs to exactly one simplex ⇔ belongs to
CH(P)
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Plane Decomposition Representation

• Doubly Connected Edge List (DCEL)
– stores: vertices, edges and cells (faces);
– (undirected) edge: 2 twin (directed) half-edges

• Space complexity: O(|V |+ |E |+ n),
|V | = #vertices, |E | = #edges, n = #input sites.
– v : O(1): coordinates, pointer to half-edge where v is starting.
– half-e O(1): start v , right cell, pointer next/previous/twin half-e

• Operations:
– Given cell c , edge e ⊂ c , find (neighboring) cell c ′: e ⊂ c ′: O(1)
– Given cell, print every edge of cell: O(|E |).
– Given vertex v find all incident edges: O(#neighbors).
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