Voronoi diagram and Delaunay triangulation

Ioannis Emiris

Dept. Informatics & Telecoms, U. Athens

Computational Geometry, Spring 2024

Outline

O [Voronoi diagram](#page-2-0)

² [Delaunay triangulation](#page-13-0)

⁸ [Properties](#page-24-0)

[Empty circle](#page-24-0) **[Complexity](#page-32-0)** [Min max angle](#page-35-0)

[Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Example and definition

Sites: $P := \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$

Example and definition

Sites: $P := \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$ Voronoi cell: $q \in V(p_i) \Leftrightarrow \text{dist}(q, p_i) \leq \text{dist}(q, p_i), \ \forall p_i \in P, j \neq i$

Example and definition

Sites: $P := \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$ Voronoi cell: $q \in V(p_i) \Leftrightarrow \text{dist}(q, p_i) \leq \text{dist}(q, p_j), \ \forall p_j \in P, j \neq i$

Voronoi diagram

Formalization

- sites: points $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$.
- Voronoi cell/region $V(p_i)$ of site p_i :

 $q \in V(p_i) \Leftrightarrow \text{dist}(q, p_i) \leq \text{dist}(q, p_i), \ \forall p_i \in P, j \neq i.$

- Voronoi edge is the common boundary of two adjacent cells.
- Voronoi vertex is the common boundary of 3 adjacent cells, or the intersection of > 2 (hence > 3) Voronoi edges. Generically, of exactly 3 Voronoi edges.

Voronoi diagram of $P =$ dual of Delaunay triangulation of P.

- Voronoi cell \leftrightarrow vertex of Delaunay triangles: site
- neighboring cells (Voronoi edge) \leftrightarrow Delaunay edge, defined by corresponding sites (line of Voronoi edge \perp line of Delaunay edge)
- Voronoi vertex \leftrightarrow Delaunay triangle.

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Triangulation

A triangulation of a pointset (sites) $P \subset \mathbb{R}^2$ is a collection of triplets from P, namely triangles, s.t.

- \blacktriangleright The union of the triangles covers the convex hull of P.
- \triangleright Every pair of triangles intersect at a (possibly empty) common face $(\emptyset,$ vertex, edge).
- \triangleright Usually (CGAL): Set of triangle vertices = P.

Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:

- ► Lift sites $p = (x) \in \mathbb{R}$ to $\widehat{p} = (x, x^2) \in \mathbb{R}^2$
- \triangleright Compute the convex hull of the lifted points
- Project the lower hull to $\mathbb R$

Delaunay triangulation: going a bit higher. . .

Definition/Construction of Delaunay triangulation:

- ► Lift sites $p = (x, y) \in \mathbb{R}^2$ to $\widehat{p} = (x, y, x^2+y^2) \in \mathbb{R}^3$
- Compute the convex hull of the lifted points
- \blacktriangleright Project the lower hull to \mathbb{R}^2 : arbitrarily triangulate lower facets that are polygons (not triangles)

Applications

Nearest Neighbors Reconstruction Meshing

Lifting:

- Consider the paraboloid $x_3 = x_1^2 + x_2^2$.
- For every site p, consider its lifted image \hat{p} on the parabola.
- Given \widehat{p} , ∃ unique (hyper)plane tangent to the parabola at \widehat{p} .

Project:

- For every (hyper)plane, consider the halfspace above.
- The intersection of halfspaces is a (unbounded) convex polytope
- Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:

 $-$ Let $E: x_1^2 + x_2^2 - x_3 = 0$ be the paraboloid equation. $-\nabla E(a) = \left(\frac{\partial E}{\partial x_1}\right)$ $\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}$ $\frac{\partial E}{\partial x_2}, \frac{\partial E}{\partial x_3}$ ∂x³ \setminus $a = (2a_1, 2a_2, -1).$ – Point $x \in$ plane $h(x) \Leftrightarrow (x - a) \cdot \nabla E(a) = 0 \Leftrightarrow$ $2a_1(x_1 - a_1) + 2a_2(x_2 - a_2) - (x_3 - a_3) = 0$, which is h's equation.

Lift & Project in 1D

Outline

1 [Voronoi diagram](#page-2-0)

² [Delaunay triangulation](#page-13-0)

⁸ [Properties](#page-24-0)

[Empty circle](#page-24-0) **[Complexity](#page-32-0)** [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Main Delaunay property: empty circle/sphere

Main Delaunay property: empty circle/sphere

Main Delaunay property: empty circle/sphere

Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}): $S(p_1, p_2)$ is a Delaunay segment \Leftrightarrow its interior contains no p_i . Proof. Delaunay segment $\Leftrightarrow (\widehat{p}_1, \widehat{p}_2)$ edge of the Lower Hull \Leftrightarrow no \widehat{p}_i "below" $(\widehat{p}_1, \widehat{p}_2)$ on the parabola \Leftrightarrow no p_i inside the segment (p_1, p_2) .

Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}^2): $T(p_1, p_2, p_3)$ is a Delaunay triangle \Leftrightarrow the interior of the circle through ρ_1, ρ_2, ρ_3 (enclosing circle) contains no $\rho_i.$

Proof. Circle (p_1, p_2, p_3) contains no p_i in interior \Leftrightarrow plane of lifted $\hat{p}_1, \hat{p}_2, \hat{p}_3$ leaves all lifted \hat{p}_i on same halfspace \Leftrightarrow CCW $(\widehat{p}_1, \widehat{p}_2, \widehat{p}_3, \widehat{p}_i)$ of same sign for all *i*. Suffices to prove: p_i lies on Circle (p_1, p_2, p_3) \Leftrightarrow \widehat{p}_i lies on plane of $\widehat{p}_1, \widehat{p}_2, \widehat{p}_3 \Leftrightarrow$ CCW $(\widehat{p}_1, \widehat{p}_2, \widehat{p}_3, \widehat{p}_i) = 0$.

Given points p, q, r, $s \in \mathbb{R}^2$, point $s = (s_x, s_y)$ lies inside the circle through p, q, $r \Leftrightarrow$

$$
\det\left(\begin{array}{ccc} p_x & p_y & p_x^2 + p_y^2 & 1 \\ q_x & q_y & q_x^2 + q_y^2 & 1 \\ r_x & r_y & r_x^2 + r_y^2 & 1 \\ s_x & s_y & s_x^2 + s_y^2 & 1 \end{array}\right) > 0,
$$

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle $(p, q, r, s) = 0 \Leftrightarrow \exists$ circle through p, q, r, s. Proof. InCircle $(p, q, r, s) = 0 \Leftrightarrow$ CCW $(\hat{p}, \hat{q}, \hat{r}, \hat{s}) = 0$

Theorem. Let P be a set of sites $\in \mathbb{R}^2$:

- (i) Sites $p_i, p_j, p_k \in P$ are vertices of a Delaunay triangle \Leftrightarrow the circle through p_i,p_j,p_k contains no site of P in its interior.
- (ii) Sites $p_i, p_j \in P$ form an edge of the Delaunay triangulation \Leftrightarrow there is a closed disc C that contains ρ_i , ρ_j on its boundary and does not contain any other site of P.

Outline

1 [Voronoi diagram](#page-2-0)

² [Delaunay triangulation](#page-13-0)

⁸ [Properties](#page-24-0)

[Empty circle](#page-24-0) **[Complexity](#page-32-0)** [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Thm. Let P be set of n points in \mathbb{R}^2 , not all colinear, $k = \text{\#points on}$ boundary of CH(P). Any triangulation of P has $2n-2-k$ triangles and $3n-3-k$ edges.

Proof.

- \triangleright f: #facets (except ∞)
- \blacktriangleright e: #edges
- \blacktriangleright n: #vertices
- 1. Euler: $n-e+(f+1)-1=1$; for d-polytope: $\sum_{i=0}^d (-1)^i f_i=1$
- 2. Any planar triangulation: total degree $= 3f + k = 2e$.

Properties of Voronoi diagram

Lemma. $|V|$ < 2n – 5, $|E|$ < 3n – 6, n = |P|, by Euler's theorem for planar graphs: $|V| - |E| + n - 1 = 1$.

Max Empty Circle $C_P(q)$ centered at q: no interior site $p_i \in P$. Lem: $q \in \mathbb{R}^2$ is Voronoi vertex $\Leftrightarrow C(q)$ has ≥ 3 sites on perimeter

Any perpendicular bisector of segment (p_i, p_j) defines a Voronoi edge \Leftrightarrow \exists q on bisector s.t. $C(q)$ has only p_i,p_j on perimeter

Outline

1 [Voronoi diagram](#page-2-0)

² [Delaunay triangulation](#page-13-0)

⁸ [Properties](#page-24-0)

[Empty circle](#page-24-0) **[Complexity](#page-32-0)** [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles. Sort the 3*m* angles: $a_1 \le a_2 \le \cdots \le a_{3m}$. $T_a := \{a_1, a_2, \ldots, a_{3m}\}.$ Edge $e = (p_i, p_j)$ is illegal $\Leftrightarrow \min_{1 \leq i \leq 6} a_i < \min_{1 \leq i \leq 6} a'_i$.

 T' obtained from T by flipping illegal e, then $T'_a >_{lex} T_a$.

Flips yield triangulation without illegal edges. The algorithm terminates (angles decrease), but is $O(n^2)$.

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Lower bound

Let P be a set of points $\in \mathbb{R}^2$. A triangulation $\mathcal T$ of P has no illegal edge \Leftrightarrow $\mathcal T$ is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal) way of maximizing the min angle.

Algorithms in \mathbb{R}^2 :

Theorem.

- Lift, CH3, project the lower hull: $O(n \log n)$
- $-$ Incremental algorithm:
- Voronoi diagram (Fortune's sweep): $O(n \log n)$
-

See Voronoi algo's below.

2) worst – Divide + Conquer: $O(n \log n)$

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Find triangles in conflict

Delete triangles in conflict

Triangulate hole

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

6 [\(Generalizations and Representation\)](#page-52-0)

Divide & Conquer

Vertex, and Site events

Outline

1 [Voronoi diagram](#page-2-0)

2 [Delaunay triangulation](#page-13-0)

8 [Properties](#page-24-0)

[Empty circle](#page-24-0) [Complexity](#page-32-0) [Min max angle](#page-35-0)

4 [Algorithms and complexity](#page-38-0) [Incremental Delaunay](#page-41-0) [Further algorithms](#page-48-0)

5 [\(Generalizations and Representation\)](#page-52-0)

Faces of a polytope are polytopes forming its extreme elements. A facet of a d-dimensional polytope is $(d-1)$ -dimensional face:

- The facets of a segment are vertices (0-faces).
- The facets of a polygon are edges (1-faces)
- The facets of a 3-polyhedron are polygons.
- The facets of a 4d polytope are 3d polytopes.

A triangulation of a pointset (sites) $P \subset \mathbb{R}^d$ is a collection of $(d+1)$ -tuples from P, namely simplices, s.t.

- \triangleright The union of the simplices covers the convex hull of P.
- \triangleright Every pair of simplices intersect at a (possibly empty) common face.
- \triangleright Usually: Set of simplex vertices $= P$.
- \triangleright Delaunay: no site lies in the circum-hypersphere inscribing any simplex of the triangulation.

In 3d, two simplices may intersect at: ∅, vertex, edge, facet.

The triangulation is unique for generic inputs, i.e. no $d + 2$ sites lie on same hypersphere, i.e. every $d+1$ sites define unique simplex. A Delaunay facet belongs to: exactly one simplex iff it belongs to $CH(P)$, otherwise belongs to exactly two (neighboring) simplices.

- \blacktriangleright Delaunay triangulation in $\mathbb{R}^d\simeq$ convex hull in $\mathbb{R}^{d+1}.$
- **Convex Hull of n points in** \mathbb{R}^d **is** $\Theta(n \log n + n^{\lfloor d/2 \rfloor})$ Hence d -Del = $\Theta(n \log n + n^{\lceil d/2 \rceil})$
- ► Lower bound [McMullen] on space Complexity
- \triangleright optimal deterministic [Chazelle], randomized [Seidel] algorithms

Optimal algorithms by lift/project: \mathbb{R}^2 : $\Theta(n \log n)$, \mathbb{R}^3 : $\Theta(n^2)$.

In \mathbb{R}^2 : Various geometric graphs defined on P are subgraphs of $DT(P)$, e.g. Euclidean minimum spanning tree (EMST) of P.

Delaunay triangulation $\mathcal{DT}(P)$ of pointset $P \subset \mathbb{R}^d$: triangulation s.t. no site in P lies in the hypersphere inscribing any simplex of $DT(P)$.

- \triangleright $DT(P)$ contains d-dimensional simplices.
- \blacktriangleright hypersphere $=$ circum-hypersphere of simplex.
- \triangleright $\mathcal{DT}(P)$ is unique for generic inputs, i.e. no $d+2$ sites lie on the same hypersphere, i.e. every $d+1$ sites define unique Delaunay "triangle".
- ► \mathbb{R}^d : Delaunay facet belongs to exactly one simplex \Leftrightarrow belongs to $CH(P)$
- • Doubly Connected Edge List (DCEL)
- stores: vertices, edges and cells (faces);
- (undirected) edge: 2 twin (directed) half-edges
- Space complexity: $O(|V| + |E| + n)$,
- $|V| = \text{\#vertices}, |E| = \text{\#edges}, n = \text{\#inputs sites}.$
- v: $O(1)$: coordinates, pointer to half-edge where v is starting.
- half-e $O(1)$: start v, right cell, pointer next/previous/twin half-e
- Operations:
- Given cell *c*, edge *e* ⊂ *c*, find (neighboring) cell *c'*: *e* ⊂ *c'*: *O*(1)
- Given cell, print every edge of cell: $O(|E|)$.
- Given vertex v find all incident edges: $O(\text{\#neighbors})$.

