Università della Svizzera italiana

Generalized Voronoi Diagrams and Applications in VLSI Design for Manufacturing

Università della Svizzera italiana (USI Lugano)

Evanthia Papadopoulou

Voronoi diagram of points

= set of *n*•pAnveitsatile geometric partitioning structure.

S: set of **n** simple geometric objects, called sites.

The **Voronoi region** of a site p is the locus of points closer to p than to any other site in S.

The Voronoi diagram of S is the resulting space subdivision

Voronoi diagram of points in Euclidean plane

= set of $n^{\bullet}pAnplane graph of linear (O(n)) size.$

Voronoi edges ⊆ line bisectors between two points

Voronoi vertices are points equidistant from 3 sites

Voronoi vertex: the center of a circle defined by 3 sites, which is empty of other sites.

Università della Svizzera italiana

Universit della Svizzera italiana

Duar. Detaunfay Graph / Triangulation

The graph nodes are sites

Two nodes are joined by an edge if their Voronoi regions are neighboring.

Equiv.: if there exists a circle passing through the two sites, which is empty of other sites

Voronoi diagram of points

= set of *n*•pAnveireatile geometric partitioning structure.

Voronoi diagrams of different **sites**,

generalized metrics,

higher dimensions

Voronoi diagram of segments

• Weil know odifferientiags am of segments

Bisectors (Voronoi edges) are not lines

Voronoi regions are not convex

Multiple adjacencies between the regions of two sites

Vor ronoi diagram of circles

Voronoi diagrams of higher order

- The order-k Voronoi diagram
- k-nearest neighbor information, $1 \le k \le n-1$

Order-2 Voronoi diagram of segments

• The (order-2) Voronoi region of two segments may be disconnected

Order-k Voronoi region: locus of points that have the same k closest sites

Disconnected regions become a theme for nonpoint VDs

For points, order-k regions are connected

Farthest-site Voronoi diagram

from any other site.

• Farthest Voromo feelogitot/arsite indiageas of points further away from p than

Point-sites:

only points on the **convex** hull have a non-empty farthest Voronoi region.

FVD: a tree structure

can be computed in linear time, after the convex hull is known

Farthest-segment Voronoi diagram

- Properties surprisingly different from points.
 - Not related to convex hull.
 - Disconnected Voronoi regions.
 - A single segment may have $\Omega(n)$ disconnected faces!

- Tree structure (disconnected regions), size: O(n), n=ISI
- Can be constructed in O(nlog n) time

[Aurenhammer, Drysdale, Krasser, IPL 06]

Order-k segment Voronoi diagram

- A single order-k Voronoi region may disconnect into $\Omega(n)$ faces
 - $\Omega(n-k)$ bounded faces; for 1 < k < n/2, $\Omega(n-k) = \Omega(n)$
 - $\Omega(k)$ unbounded faces; for k > n/2, $\Omega(k) = \Omega(n)$

Order-2 Voronoi diagram of 6 segments

Region of red segments disconnects into 5 faces

For points, order-k regions are connected

[Pap., Zavershynskyi, '14]

Classic Voronoi diagrams in the plane

- Differences between VDs of points, vs segments/polygons/etc, sometimes forgotten
- Classic variants of VDs for line segments/ polygons/ circles had been surprisingly ignored in CG, until relatively recently
 - farthest segment VD: [Aurenhammer, Drysdale, Kraser, '06]
 - order-k segment VD: [Pap., Zavershynskyi, '14]
 - order-k AVD, defined: [Bohler, Cheilaris, Klein, Liu, Pap., Zavershynskyi, '15]
 - Higher-order Voronoi diagrams of polygons are still ignored (current research) only the farthest-polygon Voronoi Diagram has been considered [Cheong, Everett, Glisse, Gudmundsson, Hornus, Lazard, Lee, and Na., 2011]

Higher dimensions

- exponential dependency on the dimension, in the worst case
- - It is expected Θ(n), if d is a constant [Dwyer DCG'99]
- - lower bound $\Omega(n^2)$ [Aronov 02]
 - upper bound $O(n^{3+\epsilon})$; [Sharir DCG'94]
 - upper bound believed to be near quadratic (open problem)

Voronoi diagrams / Delaunay triangulations in higher dimensions have an

• For n points in Euclidean d-space the complexity can be $\Theta(\mathbf{n}^{|\frac{\alpha}{2}|})$

• For n lines (or segments) the complexity is a **major open problem**, even in 3D:

Voronoi diagram of line segments / polyhedra in 3D – a major open problem

Powerful unifying framework

- General framework connecting Voronoi diagrams and arrangements of hypersurfaces, in a space one dimension higher [Edelsbrunner, Seidel, DCG 1986]
 - The set of sites S is a set of indices in a domain X;
 - For each site p, there is a real valued function $f_p: X \to R$.
 - The graph of f_p is a hypersurface in $X \times R$: the **Voronoi surface** of site p
 - The Voronoi diagram $\mathcal{V}(S)$ is the **lower envelope** of the arrangement of Voronoi surfaces The order-k Voronoi diagram $\mathcal{V}_k(S)$ is the **level-k** in this arrangement
- Results on envelopes of hypersurfaces directly apply to Voronoi diagrams, e.g., [Sharir, DCG 94], [Sharir and Agarwal 95]
- Still, important differences between arrangements of general surfaces vs arrangements of planes

Abstract Voronoi Diagrams (AVDs)

- Defined on bisecting aurves satisfying axioms, rather than sites and distances
 - Offer a unifying framework to many concrete diagrams.
- Offer a difference of the second of the se

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.

[R. Klein, Concrete and Abstract Voronoi Diagrams, 1989]

Abstract $\mathcal{J}_{\mathcal{J}} = bisector system for a set of$ *n*stract sites*S*, which is admissible:

 $\mathcal{V}(S) = \mathbb{R}^2 \setminus []_{-\alpha} \operatorname{VR}(n, S)$

Università della Svizzera italiana

No sites / No distances. Instead:

- For every $S' \subseteq S$: For every $S' \subseteq S$:
- · Bisectorscare unbounded simple curves.
- Bisectors intersect finansversally continite #:times).
- For every subset of sites $S' \subseteq \mathfrak{S}_{R(p,S)} = \bigcap_{q \in S \setminus \{p\}} D(p,q) = bisector$
 - Voronoi regions are non-empty and connected
 - V Romon Segion Scover the Dapeq)Voronoi diagram:

Voronoi diagram: $\mathcal{V}(S) = \mathbb{R}^2 \setminus \bigcup_{p \in S} \mathsf{VR}(p, S)$

[Rolf Klein. Concrete and Abstract Vollage Diagrams. angeographic live for Diagrams, 1989] $\mathcal{V}(S) = \mathbb{R}^2 \setminus []_{\mathcal{S}} \vee \mathsf{VR}(n, S)$

Austract volumer undgrams

Points vs segments and AVDs

- Point-sites are not representative of the AVD model while segments are. Why?
- Segment (or circle) bisectors are noticeven pseudo-lineesd:
 - Simple curves of constant complexity, not pseudo-lines.
- Related segment (circle) bisectors (intersect at most five.
- Related abstract bisectors intersect at most twice.

• Point bisectors are lines. Intersect once (unless parallel) Abstract Voronoi diagrams

- (A1) Voronoi regions are non-empty and connected.
- (A2) Voronoi regions cover the plane.

• 9

- Related segment (circle) bisectors intersect at most twice.
- Related abstract bisectors intersect at most twice.

- A bound may turn out the same but reasons why can be different
- Reasons of AVDs/segments apply to points but not vice versa
- > 2 intersections result in disconnected Voronoi regions different model

No sites / No distances. Instead: Points vs segments for and AVDS which is admissible: Voronoi regions are non-empty and connected

- (A2) Voronoi regions cover the plane.
- (A3) Bisectors are unbounded Jordan curves.

• 2 vs 1 intersections make a significant difference: properties, proof techniques

[Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.]

Research Goal

- Generalize algorithmic techniques, combinatorial results, which are available for points, to Voronoi diagrams of generalized sites and metrics
 - These diagrams are often driven by applications, but good tools are still missing, to date

Generalized Voronoi diagrams

- Generalized (non-point) Voronoi diagrams often driven by applications
- Example from Microelectronics: VLSI Yield Prediction/ Critical Area Analysis
 - resulted in identifying some surprising holes in Computational Geometry literature, (filled out later)
 - resulted in a VLSI CAD tool (Voronoi CAA) used widely in semiconductor industry through Cadence

VLSI Critical Area Analysis

- VLSI Yield: Percentage of working chips over the chips manufactured • Factors of Yield loss: Random defects and Systematic defects
- Random defects: dust/contaminants on materials and equipment
- Prediction of yield loss due to random defects: Critical Area Analysis
- Critical Area: Measure reflecting the sensitivity of a VLSI design to random defects during manufacturing
 - Now a solved problem but still essential to IC manufacturing
- **VLSI Layout**: layers of different materials; each layer a collection of shapes; manufacturing: optical processing layer by layer

Examples of faults due to random defects

Shorted Metal

Foreign Material Short

Open Metal

Open Metal

Critical Area

Critical Area:

$$A_{c} = \int_{0}^{\infty} A(r)D(r)dr$$

$${}_{2^{5}}$$

$$A(r) : \text{ area where if }$$
centered causes a (

D(r): density function of the defect size

$$D(r) = \frac{r_0^2}{r^3}$$

a defect of radius r is circuit failure

Defect of size r = disk of radius r

A(r) -- shorts for one defect size r

Critical Area
$$A_c = \int_0^\infty A$$

A(r)D(r)dr where $D(r) = r_0^2/r^3$

A(r) – open faults for one defect size r

Methods to compute Critical Area

- Monte Carlo simulation [Initial work at IBM [e.g. Stapper & Rosner Trans. Semic. Manuf. 95)] • Randomly draw large number of defects following D(r); check for faults

 - Oldest, widely implemented technique. Computationally, very intensive
- Shape shifting methods [AFFCA '95, Allan& Walton TCAD99, Zachariah & Chacravarty TVLSI 00]
 - Based on shape expansion / shrinking many variants
 - Very expensive to compute A(r) for medium/large r, needed in integration.

The Voronoi method

- [P. & Lee TCAD99, P. TCAD01, P. TCAD11, various patents] **Idea:** partition layout into regions where critical area integral can be computed analytically
- Combined with layout sampling techniques for fast critical area estimate at chip level
- Critical area computation is easy (trivial) once appropriate Voronoi diagram derived \bullet

Algorithmic degree

- L_{∞} Voronoi diagram construction: significantly lower algorithmic degree
 - Robust, faster, easier to derive implementation \bullet

$-\infty$ metric

• Degree d: tests - evaluation of multivariate polynomials of arithmetic degree $\leq d$.

In-circle test (segments): degree ≤ 40 [Burnikel 96]

 L_{∞} in-circle test (segments): degree ≤ 5 [Papadopoulou & Lee IJCGA 01]

VLSI shapes: typically, ortho-45: degree 1

- A defect on layer A forms a **shor**t if it overlaps two different shapes in different nets
- Critical radius of any point t: size of smallest defect centered at t causing a fault.

Shorts

Model defects as squares $\Rightarrow L_{\infty}$ metric

Simplicity in computation

Much lower algorithmic degree

- Critical radius: distance from 2nd nearest polygon (in different net) • Need: 2nd nearest neighbor information

Shorts

Voronoi diagram for shorts

- 2nd order Voronoi diagram of polygons
 - Every region has a unique owner responsible for shorts within region
 - Critical radius at any point t: distance to owner of region

Critical Area Integration within a Voronoi region

- Subdivide Voronoi region into simple rectangles/ triangles Compute critical area within each analytically Add up formulas to derive critical area for entire region

Critical Area Integration within a Voronoi region

l =length of vertical side, $r_k =$ max critical radius, $r_j =$ min critical radius

Add up formulas \Rightarrow internal terms $\frac{l_i}{r_i}$, $\ln \frac{r_k}{r_j}$ cancel out

$$A_c(\mathcal{R}) = \frac{r_0^2}{2} \left(\frac{l}{r_j} - \frac{l}{r_k} \right)$$

e
$$A_c(T_{red}) = \frac{r_0^2}{2} \left(\ln \left(\frac{r_k}{r_j} \right) - \frac{l}{r_k} \right)$$

$$A_c(T_{blue}) = \frac{r_0^2}{2} \left(\frac{l}{r_j} - \ln \left(\frac{r_k}{r_j} \right) \right)$$

Critical Area = Summation of Voronoi edges

Critical area within V:

$$A_c(V) = \frac{r_0^2}{2} \left(\sum_{red \ e_i} \frac{l_i}{r_i} - \sum_{blue \ e_m} \frac{l_i}{r_i} \right)$$

35

Critical area computation: trivial once the Voronoi diagram computed

Critical Area via Voronoi diagrams

- Shorts: $A_c \le 2nd$ order Voronoi diagram of polygons
- Simple Open Faults: $A_c \leq V$ oronoi diagram of (additively weighted) segments
- Via Blocks: $A_c \leq$ Hausdorff Voronoi diagram (a Voronoi diagram of point clusters)
- General Open Faults: $A_c \leq$ Higher order Voronoi diagram of (weighted) segments
 - Analytical Critical Area integration no error
 - O(n log n) type of algorithms in most cases
- All are variants of generalized Voronoi diagrams of polygons
- IBM Voronoi CAA CAD tool (licensed to Cadence, used extensively in industry)

• Higher order Voronoi diagrams of segments/shapes had not been available in CG literature

Research Goal

- Generalize algorithmic techniques or combinatorial results, which are available for points, to generalized Voronoi diagrams
- Example: linear-time algorithms to compute tree Voronoi diagrams

E.g., **Delaunay triangulation of a convex polygon** – very simple randomized incremental algorithm by [Chew 1990]

Linear-time Voronoi algorithms

 Voronoi diagram of points in convex position – a tree diagram [Aggarwal, Guibas, Saxe and Shor, DCG'89] [Chew 1990] randomized Università della Svizzera italiana VD of a convex polygon

Related problems:

- Delaunay triangulation of a convex polygon \bullet
- Site deletion in a point VD
- Farthest-point VD, given the convex hull lacksquare
- Iterative order-k Voronoi construction

Non-point-sites ? Segments? AVDs?

Linear-time Voronoi algorithms

The randomized incremental algorithm of Chew is extremely simple:

- Consider a random permutation of the input points
- **Phase 1**: delete points 1-by-1, recording their neighbors at the time of deletion
- Phase 2 of near the interval so the sector of the interval of the

- insertion point given by the stored neighbors no point-location
- Each insertion performed in expected O(1) time

Site deletion

- Given the Voronoi diagram VD(S) of a set of sites S, delete the region of a site s and update the diagram
- Compute the red diagram in VR(s,S), which is $VD(S \in S) \cap VR(s,S)$ (a **tree** for point sites) Università della Svizzera italiana Deletion of a site

• Delete site $s \in S$. 40

Deletion of a site

• Delete site $s \in S$. • Update $\mathcal{V}(S)$ to $\mathcal{V}(S \setminus s)$ by computing the tree $\mathcal{V}(S \setminus s) \cap \mathsf{VR}(s, S)$. Update $\mathcal{V}(S)$ to $\mathcal{V}(S \setminus s)$ by computing the tree $\mathcal{V}(S \setminus s) \cap \mathsf{VR}(s, S)$.

Site deletion – non-points

problem

- open problem since the late 80's
- randomized linear time algorithm for AVDs [Junginger, Pap., SoCG 2018]
- Why difficult?
- Disconnected Voronoi regions

For non-point sites (e.g., line segments, circles, AVDs), considerably more difficult

Università della Svizzera italiana What is difficult?

• deterministic linear-time algorithm still an open problement Voronoi diagrams and non-point sites (line segments, circles):

One Voronoi region can have **multiple faces** within VR(s). – The sites along $\partial VR(s)$ can **repeat**. (AVDs: $\partial VR(s)$ is a Davenport-Schinzel sequence of order 2.)

Incremental construction

- (a tree)
- When we consider a new segment, many faces may need to be inserted
- we do not know in advance

Compute the Voronoi diagram of segments in the shaded domain incrementally

• Step i may trigger the insertion of $\Theta(i)$ new faces in the diagram, whose location

Incremental construction

- In a different insertion order, we may need to split a region in two.
 - not a major problem in general.

A Voronoi-like structure

- We need to compute the structure on right, which is a Voronoi-like diagram
- A Voronoi diagram of bits and pieces of these segments

Voronoi-like graph

bstract Vor Mode daily Morsonoi-like any graph on the arrangement of a bisector system whose vertices (other than its leaves) are locally Voronoi.

ces. Instead:

for a set of *n* abstract sites *S*, which is admissible: • A vertex is called locally Voronoi if it is a legal Voronoi vertex of 3 sites

-empty and connected.

ne plane.

d Jordan curves.

• Any graph on an abstarct bisector arrangment whose non-leaf vertices are d Abstract Voronoi Diagrams. 1989.

Delaunay's Theorem for AVDs

• **Delaunay's theorem** (points, Euclidean metric) : A triangulation is **globally Delaunay** iff it is **locally Delaunay**.

graph is the Voronoi diagram of the involved sites.

• Recent extension [P. SoCG23]: Under a bisector system of classic AVDs, any Voronoi-like graph in the plane is the Voronoi diagram of the involved sites

• If you have a graph whose vertices are legal Voronoi vertices of 3 sites, then this

Voronoi like graphs

- Voronoi–like graphs are useful to hold partial (flexible) Voronoi information
- They are as close as possible to being Voronoi diagrams subject to possibly missing some faces.
- Extend **Delaunay's Theorem** from Euclidean points to abstract Voronoi diagrams and their duals
- Applications: simple (expected) linear-time algorithms for Voronoi tees and forests • Site-deletion in abstract Voronoi diagrams (and related concrete VDs)
- - **Farthest** abstract Voronoi diagram (given the order of Voronoi regions at infinity)
 - Order-k abstract Voronoi diagram iterative construction
 - Updating a **Constraint Delaunay Triangulation** after a segment constraint insertion • Computing a tree VD in a domain D, given the order of Voronoi faces on ∂D , $|\partial D|=O(1)$

Open problem:

- **Deterministic linear-time** technique for the same problems. \bullet
- Recent progress to the affirmative \bullet

Thank you for your attention!

Open Problem

Combine Voronoi-like structures and the technique of [Aggarwal, Guibas Saxe, Shor, 89]

