
August 29, 2004
EdgeSuite 5.0: ESI Developer’s Guide
Using Edge Side Includes

EdgeSuite 5.0: ESI Developer’s Guide

Copyright © 2001–2004 Akamai Technologies, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or trans-
lated into any language in any form by any means without the written permission of Akamai Technologies,
Inc. While every precaution has been taken in the preparation of this document, Akamai Technologies, Inc.
assumes no responsibility for errors, omissions, or for damages resulting from the use of the information
herein. The information in these documents is subject to change without notice. Akamai is a registered trade-
mark and service mark. EdgeSuite is an Akamai service mark. Products or corporate names may be trade-
marks or registered trademarks of other companies and are used only for the explanation and to the owner’s
benefit, without intent to infringe.

Viewing this Document in Adobe Acrobat Reader

If you are reading this document on screen using Acrobat Reader, note that the document is fully hypertext
enabled. That is, the table of contents entries, cross-references, and indices, if these exist, are linked to the
pages they reference. When you see a page number in a table, index, or reference, you can click the number to
jump directly to the referenced page.

CONTENTS
CHAPTER 1. ABOUT EDGE SIDE INCLUDES • 7

About this Guide .7
The ESI Specification .8

New in 5.0 .8
Previous Versions .8
Support for Prior Code .8

Features .9
Content Control and Configuration .9

Overview—Building Documents with Dynamic Content .10
Template and Fragments .10
How ESI Delivers Dynamic Pages. .11

Additional Resources .12

CHAPTER 2. ESI LANGUAGE ELEMENTS • 13
A Quick Reference to the ESI Language .13
ESI Elements .14

About ESI Syntax. .14
Legend to Notation .14

CHAPTER 3. INCLUDING OBJECTS • 15
The include Statement .15

include .15
Short Form .15
Long Form. .15

Attributes .16
src and alt. .17
dca .17
onerror=“continue” .18
maxwait .18
ttl .18
no-store .19
appendheader, removeheader, setheader .19
method. .20
entity .20
stylesheet .20

Integration with XSLT .21
Long Form and XSL Params .21
param name .21

Controlling Downstream Caching .22
Secure and Not Secure. .23
Limitations .23
— EdgeSuite 5.0: ESI Developer’s Guide — 3 —

Evaluating Included Objects . 25
eval . 25

Usage and Restrictions . 26
Special Processing . 26
Performance Considerations . 26
Errors . 27

The Importance of the dca Attribute in esi:eval . 27
Using eval in Dynamic Code Generation . 29

CHAPTER 4. CONDITIONAL INCLUSION AND ITERATION • 31
Conditional Processing . 31

choose | when | otherwise. 31
Usage . 31
Compound Expressions . 32
Statements Inside a Block . 33
Nesting Elements . 33

Iteration . 34
foreach | break . 34

CHAPTER 5. ALTERNATIVE PROCESSING AND EXCEPTION HANDLING • 39
Including Alternative HTML and Hiding the ESI Statements. 39

<!--esi --> and remove . 39
remove . 39
<!--esi -->. 40

Inserting Plain Text. 40
text . 40

Placing Variables and Functions Outside ESI Blocks. 41
vars . 41

Explicit Exception Handling . 42
try | attempt | except . 42
esi:assign in a try Block . 43

Comments . 43
comment . 43

CHAPTER 6. ESI VARIABLES SUPPORT • 45
HTTP and Other Client Headers . 45

Cookie Support . 46
POST Support. 46

Akamai-Specific Variables . 47
The GEO Variable . 47
TRAFFIC_INFO: Bandwidth Usage Variables. 48
Extracted Values . 49

Substructures . 49
Substructure Example . 49

Setting and Using User-Defined Variables—the assign Statement. 51
Regex Match Results as Variables . 51
assign . 51

Lists, Dictionaries, and Subkeys in the assign Statement . 53
Setting Defaults. 56
— 4 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 7. EXPRESSIONS AND OPERATIONS • 59
Escaping the $ and Other Reserved Characters .59
Boolean Expressions .60

has and has_i .60
Regular Expression Evaluations .61

matches and matches_i. .61
Expressions .63

Logical and String Operators .64
Bitwise Operations .64
Range Operations. .65
Treating Strings as Lists .66
Mixing Types in Concatenation: an Implicit Coercion to Strings. .66

CHAPTER 8. ESI FUNCTIONS • 67
String Functions .68

$string_split(). .68
$join() .69
$index() .69
$rindex() .69
$lstrip() .69
$rstrip() .69
$strip() .69
$replace() .69
$substr() .69
$lower() .70
$upper() .70

Other Functions .70
$dollar() .70
$dquote() | $squote() .70
$int() .70
$str() .71
$len() .71
$bin_int() .71
$list_delitem(). .71
$rand() | $last_rand() .73
$is_empty() | $exists() .74
$add_header() .74
$set_response_code() .75
$set_redirect(). .75
$add_cachebusting_header() .76
$url_encode() | $url_decode(). .76
$html_encode() | $html_decode(). .78
$base64_encode() | $base64_decode() .79
$digest_md5() | $digest_md5_hex() .79
$time() .79
$http_time() .79
$strftime() .79
— EdgeSuite 5.0: ESI Developer’s Guide — 5 —

CHAPTER 9. USER-DEFINED FUNCTIONS (BETA) • 83
Creating User-Defined Functions . 83
The esi:function Block and its Usage. 84

esi:function. 84
esi:return . 84
Arguments . 85

CHAPTER 10. INTERNATIONALIZATION • 87
Detection . 87
Restrictions . 87
Handling CGI Variables . 88

$convert_to_unicode() and $convert_from_unicode . 88

CHAPTER 11. CONFIGURATION & CONTENT CONTROL • 89
Configuration and Control Mechanisms . 89

Order of Precedence. 91
The Matching Criteria . 91
Options and Attributes . 91

CHAPTER 12. EXCEPTION AND ERROR HANDLING • 95
Overview. 95

Using the Debugger . 95
Error Messages . 95

Configuration Data and Default Objects. 96
Example: Default Pages Set in Configuration . 98

ESI Language Control . 99
Example: Using onerror . 99
Example: try Block . 100

CHAPTER 13. AN EXTENDED ESI EXAMPLE • 101
How to Build It . 102
The Big Ad . 104
The My.Place News Row. 105
The Content Rows and the Smaller Ads. 105
The Code Listing . 106

INDEX • 109
— 6 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 1. About Edge Side Includes

The EdgeSuite Edge Side Includes (ESI) service provides for dynamically generating
HTML pages at the edge of the Internet, near the end user.

The ESI language is an XML-based markup language that provides the tools to
assemble the content dynamically on Akamai’s network.

About this Guide

This guide is for developers using ESI to develop web content, and it covers the fol-
lowing topics:

• A summary of EdgeSuite ESI features and the relation of EdgeSuite ESI to the
ESI 1.0 Specification

• How it works—an overview to building documents using the ESI language and
how dynamic documents are delivered

• Before you begin: about setting EdgeSuite configuration and using control mech-
anisms such as HTTP headers

• Akamai resources related to ESI

• The ESI language—a quick reference to the elements, followed by a description
of the elements, in the following order:

- A quick reference to the language and its syntax

- The include statement, the basic ESI function, and the eval statement,
which provides for processing a child’s variables in the parent’s namespace.

- Iteration and conditional inclusion

- Alternative processing and exception handling

- Expressions and operations

- Environment and user-defined variables support

- Functions

- User-defined functions

- Internationalization—using multibyte character sets

• Content control and Configuration

• Error and exception handling

• Examples
— EdgeSuite 5.0: ESI Developer’s Guide — 7 —

About Edge Side Includes
The ESI Specification

The EdgeSuite Edge Side Includes (ESI) service was formerly known as Akamai Side
Includes (ASI). This name change reflects the service’s adherence to the ESI 1.0 spec-
ification. The ESI 1.0 specification is an open specification co-authored by Akamai
and 14 other industry leaders, the purpose being to develop a uniform programming
model to provide the ability to build dynamic pages at the edge of the internet, close
to the end user.

New in 5.0 The EdgeSuite 5.0 ESI implementation conforms to the ESI 1.0 specification, and
also contains the following significant extensions:

• A new statement, esi:break, can be used to exit from an esi:foreach iteration.
See page 35.

• On a Beta basis, ESI now provides for user-defined functions. See page 83.

• A new range operator can be used in expressions. See page 65.

• Optionally, you can enable the use of bitwise operators to act on the internal
binary representation of a number. Enabling the operators sets && and || as log-
ical operators and freeing & and | for use as bitwise operators. The bitwise behav-
ior is off by default but can be enabled in your EdgeSuite configuration. See
pages 60 and 64.

• New ESI functions, $base64_encode()and $base64_decode(), and
$digest_md5() and $digest_md5_hex(), provide for Base64 encoding and
decoding, and MD5 digests. See page 79.

Previous Versions The previous versions of EdgeSuite ESI also contained significant extensions to the
ESI 1.0 specification. These are indicated by footnotes in the text of this document.

Support for Prior
Code

EdgeSuite 5.0 ESI supports code written for 4.0 – 4.8.x. Also, code written for ASI
1.2 and 1.3 is supported. EdgeSuite will read and process both <asi:…> and <esi:…>
tags for v1.2 and v1.3 code.
— 8 — Akamai Technologies, Inc. — 8/29/04 —

Features
Features

EdgeSuite shares the same reliability, fault-tolerance, performance, and scalability
found in Akamai’s FreeFlow technology. ESI can improve site performance by cach-
ing the objects that comprise dynamically generated HTML pages at the edge of the
Internet, close to the end user. ESI allows for dynamic content assembly at the edge.

As the content provider, you design and develop the business logic to form and
assemble the pages, using the ESI language within your content development format.

The ESI language, which finds its point of departure in Server Side Includes (SSI)
implemented in Apache and other Web servers, includes the following features:

• Inclusion—the central ESI feature is the ability to fetch and include files to com-
prise a Web page, with each file subject to its own configuration and control—its
own specified time-to-live in cache, revalidation instructions, and so forth.
Included documents can include ESI markup for further ESI processing. Cur-
rently, ESI supports the inclusions nested up to fifteen levels.

• Integration with Edge Transformations—ESI can include fragments processed
by the Edge Transformations Service, and beyond that, has the ability to create
and pass variables and global params, specify an XSL stylesheet, and specify
XSLT processing itself.

• Environmental variables—ESI supports the use of standard CGI environment
variables such as cookie information and POST responses. These variables can be
used inside ESI statements or outside of ESI blocks.

• User-defined Variables—ESI supports a range of user-defined variable types.

• Functions, and the ability to create user-defined functions—ESI supports func-
tions to perform various evaluations, for example, to set HTTP headers, set redi-
rects, and create time stamps.

• Conditional logic—ESI supports conditional logic based on Boolean expressions
and environmental variables comparisons.

• Iteration—ESI provides a logic to iterate through lists or dictionaries.

• Secure Processing—ESI supports a logic for SSL processing, automatically using
secure processing for fragments if the template is secure.

• Exception and error handling—ESI allows you to specify alternative objects and
default behavior such as serving default HTML in the event that an origin site or
document is not available. Further, it provides an explicit exception-handling
statement. If a severe error is encountered while processing a document with ESI
markup, the content returned to the end user can be specified in a “failure action”
configuration option associated with the ESI document.

Content Control and Configuration

EdgeSuite and EdgeSuite ESI provide several different mechanisms for content con-
trol and the tuning of parameters. See “Configuration & Content Control” on
page 89.
— EdgeSuite 5.0: ESI Developer’s Guide — 9 —

About Edge Side Includes
Overview—Building Documents with Dynamic Content

Template and
Fragments

The basic structure you use to create dynamic content in ESI is a template page con-
taining HTML fragments.

The template page consists of common elements such as logo, navigation bars, frame-
work, and other “look and feel” elements of the page. The HTML fragments repre-
sent dynamic subsections of the page.

Figure 1. Template and HTML Fragments

The template is the file associated with the URL the end user requests. It is marked
up with ESI language that tells EdgeSuite to fetch and include the HTML fragments.
The fragments themselves are HTML- or XML-marked up files containing discrete
text or other objects.

Each fragment is treated as its own separate object on the Akamai network—each
with its own cacheability and access profiles set by way of headers or configuration
files. You may want to cache the template for several days, but cache a particular frag-
ment containing a story or ad for a matter of minutes or hours. You may want to set
up particular fragments not to cache at all.

shopping news sports fun XYZ.com

[XYZ news, content,
promotions, etc.

TTL=5d]

[Breaking headlines
TTL=2h]

[TTL=
15m]

[TTL=
8h]

shopping news sports fun XYZ.com

[XYZ news, content,
promotions, etc.

TTL=5d]

[Breaking headlines
TTL=2h]

[TTL=
15m]

[TTL=
8h]

shopping news sports fun XYZ.com

[XYZ news, content,
promotions, etc.

TTL=5d]

[Breaking headlines
TTL=2h]

[TTL=
15m]

[TTL=
8h]

Template

Fragments
— 10 — Akamai Technologies, Inc. — 8/29/04 —

Overview—Building Documents with Dynamic Content
How ESI Delivers Dynamic Pages

Figure 2. Edge Side Includes: How it Works

1. When the user requests the content page, EdgeSuite directs the request to the
optimal (for the user) Akamai server.

2. The template page associated with the request may already be cached, since it
may contain persistent, frequently used material. If the template isn’t cached,
EdgeSuite fetches it from xyz.com.

3. When EdgeSuite sees the ESI language markup in the template, it reads the tags
and instructions, conditions, and variables.

4. EdgeSuite calls xyz.com to request or validate any fragments.

5. The origin, xyz.com, sends new objects back to EdgeSuite. Each object is an
HTML fragment with its own associated configuration and header data, and it
can include other fragments up to fifteen nested levels starting with the template.

6. EdgeSuite assembles and delivers the custom page to the user, and also caches
appropriate objects for further use.

 XYZ.COM

1. User request for my.xyz.com
is directed to optimal Akamai
server.

2. EdgeSuite parses the template,
which may be cached already, look-
ing for tags and instructions to
assemble the page and send individ-

3. If necessary, EdgeSuite calls xyz.com
over a persistent TCP connection to obtain
new or uncached HTML fragments.

4. xyz.com responds by sending objects to Edge-
Suite. Each HTML object has its own tags,
response headers, or configuration data.

5. EdgeSuite assembles
and delivers page.
— EdgeSuite 5.0: ESI Developer’s Guide — 11 —

About Edge Side Includes
Additional Resources

Related Akamai resources include the following documents, available to customers
and reseller on the Akamai customer portal, https://control.akamai.com:

• The EdgeSuite ESI/XSLT Development Tool contains the procedures for running a
debugger on both ESI and XSLT pages.

• The ESI Test Server Users Guide. You can run and test your ESI code on a test
server before taking it live. The test server is in addition to ESID, the ESI Devel-
opment Tool, which is covered in the last chapter of this document.

• EdgeSuite Edge Transformations Service Overview describes EdgeSuite’s implemen-
tation of XSLT, which can be used in combination with ESI.

• The EdgeSuite Configuration Guide details the configuration and control options
and parameters used for sites and objects in EdgeSuite, including ESI.

• For information specifically on cookies and Session IDs, see EdgeSuite Session ID
Support.

• EdgeSuite Handling of Edge-Control & Other HTTP Headers, a discussion of the
use of HTTP request and response headers in the EdgeSuite environment.

• Time-to-Live in Cache: Methods and Considerations. This discusses the various
methods for determining the caching properties of objects on Akamai EdgeSuite
servers.
— 12 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 2. ESI Language Elements

A Quick Reference to the ESI Language

Table 1: ESI Language Elements

TYPE OF TASK TO… SEE… PAGE

Object Inclusion Create an include statement include 15

Object inclusion
with evaluation

Include objects with ESI code
to be parsed in parent

eval 25

Conditional Inclu-
sion

Add conditional processing choose | when | other-
wise

31

Iteration Iteration through lists or dic-
tionaries

foreach | break 34

Alternatives (to
ESI) processing

Set alternative HTML to be
used if ESI is not processed

remove 39

Hide ESI statements if ESI is
not processed

<!--esi --> 40

Place ESI code out-
side of ESI blocks

Put a variable or function
outside an ESI block

vars 41

Exception Han-
dling

Set exception handling state-
ments

try | attempt | except 42

Comments Add comments to code comment 43

Variables Use CGI variables HTTP and Other Client
Headers

45

Use Cookies Cookie Support 46

Use POST responses POST Support 46

Use Akamai-Specific Variables Akamai-Specific Vari-
ables

47

Create variables using expres-
sions

assign 51
— EdgeSuite 5.0: ESI Developer’s Guide — 13 —

ESI Language Elements
ESI Elements

About ESI Syntax ESI elements and attributes are XML-based but can be embedded in other docu-
ments such as HTML or XML documents. EdgeSuite ignores everything except ele-
ments that begin with <esi: or <!--esi and terminate according to the syntax of
the element. When EdgeSuite processes the page, the ESI elements themselves are
stripped from the output.

ESI language syntax adheres to general XML syntax rules. Attributes can be arranged
in any order within an ESI statement. ESI statements are case sensitive; ESI elements
use lower case. ESI-supported CGI environment variables require upper case. The
white space between the ESI sentence elements can be space characters, tab characters
or new line characters.

Legend to Notation

Escaping charac-
ters

Using the backslash (\) Escaping the $ and
Other Reserved Charac-
ters

59

Boolean Operators Evaluate conditions to true or
false

Boolean Expressions 60

Expressions Construct data structures of
various types

Expressions 63

Logical operators Evaluate Boolean and string
expressions

Logical and String Oper-
ators

64

Functions Generate response headers,
cookies, random numbers,
etc.

ESI Functions 67

Internationaliza-
tion

Use dual- or multibyte charac-
ter sets

Internationalization 87

Debug ESI pages To send ESI pages through Debugger, use the < esi:debug/> tag, etc.
See the document, The ESI & XSLT Development Tool.

Table 1: ESI Language Elements

TYPE OF TASK TO… SEE… PAGE

Legend to Syntax Notation

bold = required phrase

plain = optional phrase or variable name

italic = user-supplied data
— 14 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 3. Including Objects

The central ESI function is object inclusion, and the basic inclusion statement is
esi:include. A second inclusion statement, esi:eval, allows you to include ESI
evaluations that cannot be passed with esi:include.

The include Statement

include The include statement provides for several optional attributes for alternative objects,
error handling, caching, and dynamic processing. The include statement has a short
form and a long form.

Short Form The short form include statement is formulated as follows:

Where the optional attributes are listed in Table 2 on page 16. Two examples:

Long Form The long form1 is structured to pass XSL params when using Edge Transformations
to perform an XSLT transformation on an object to use as an included fragment an
ESI template.

In this form, the attr1, attr2, etc., are any of the attributes used in the short form
described in the preceding paragraphs. The long form is further described under
“Long Form and XSL Params” on page 21.

The include statement is the essential statement in the ESI language. If include is
successful, the contents of the src or alt URL replace the construct. The included
object is included exactly at the point of the include statement; for example, if the
include statement is in a table cell, the object is displayed in the table cell.

<esi:include src=“object” attr1="val1" attr2="val2" etc./>

<esi:include src=“http://www.akamai.com/frag1.html”
alt=“http://www.akamai.com/frag2.html” onerror=“continue”
maxwait=“2000” ttl=“4h”/>

<esi:include src=“http://search.akamai.com search?query=
$(QUERY_STRING{’query’})”/>

1. The long form of the include statement and the esi:param name tag are extensions to he ESI
1.0 specification. See page 8.

<esi:include src="a.xml" attr1="val1" attr2="val2" etc.>
<esi:param name="foo1" value="variable_1"/>
<esi:param name="foo2" value="$var"/>

</esi:include>
— EdgeSuite 5.0: ESI Developer’s Guide — 15 —

Including Objects
The fragments should be well formed: correctly assembled, syntactically correct, and
contain the proper headers and Akamai metadata. The included object should be of
the proper content type (e.g., text/*) and should have no tags that conflict with or
duplicate tags in the template document (such as additional <HEAD> tags, etc.).

Attributes Of the attributes, only src, which specifies the main object to include, is mandata-
tory. The attributes of the include statement are as follows:

Table 2: include Statement Attributes

ATTRIBUTE DESCRIPTION SEE PAGE...

src The only mandatory attribute, the src is the primary object to fetch
from the origin server or from cache when appropriate.

17

alt An object to fetch if the src object is not founda. 17

dcab The type of processing for object. The default is “none.” 17

onerror The only argument, “continue,” specifies ignoring failed fetches
and continue serving the page without the results of the tag.

18

maxwait A time-out period, in milliseconds, for EdgeSuite to wait for the
src, alt, or stylesheet to complete the fetch successfully. This should
be set to 1000 ms or higher in most cases.

18

ttlb A time interval for the fetched object to reside in cache before
EdgeSuite revalidates that the object has not changed.

18

no-storeb Turns on or off the instruction to EdgeSuite not to cache the
object.

19

appendheaderb Adds a header to the HTTP request. 19

removeheaderb Removes all instances of a header from the HTTP request. 19

setheaderb Set the named header a specified value. 19

methodb Use GET (default) or POST method when fetching the src or alt
object.

20

entityb Used with a POST request method to set data to send with the
POST.

20

stylesheetb An XSL stylesheet to use with an XML object or alternate object in
an XSLT transformation.

20

esi:param nameb Defines an XSL param to pass to XSLT processor. Used only with the
long form, as discussed on page 21.

21

a. With regard to the alt option and the onerror attribute, “not found” or “failed fetch” means that EdgeSuite
has received a non-200 series HTTP code response. For discussion of the conditions that trigger the use of a
default object, see the discussion on page 95.

b. These attributes are extensions to the ESI 1.0 specifications. See “The ESI Specification” on page 8.
— 16 — Akamai Technologies, Inc. — 8/29/04 —

The include Statement
src and alt The object specified by the src or alt can be a URL, as shown in Example 1; or, the
object can include variables or a query string. The object can also be the result of
EdgeSuite for Java processing or of an XSLT transformation.

The specified URL can be any domain, so long as the EdgeSuite configuration is set
up to recognize the domain. The specified path can be relative to the host specified
with the template— /subdir/file.html is as valid as http://xyz.com/subdir/
file.html as a specification for a fragment when xyz.com is the host on which the
template originated.

A query string—a question mark (?) followed by “key=value” pairs separated by
ampersands (&)—can be added to the src or alt object. The string should be
escaped—no “unsafe” characters such as spaces or brackets—because the string is sent
exactly as it appears in the tag. The query string can contain additional question
marks. You can use the url_encode() function, described on page 76. Here’s an
example of using the url_encode() function on an alt object that includes a query
string that contains a variable ($(url)) that may contain unsafe characters:

 You can also use the esi:try statement, described on page 42, to set an alternate
object to fetch if the primary include fails. Use the esi:try statement if you want
specify different attributes for the alternative and primary objects, since each object is
specified with a separate esi:include statement. For example, you could set the src
with a POST method and the alt with GET.

dca DCA refers to Dynamic Content Assembly, and as an attribute it refers to the type of
processing to be applied to the src or alt object. By default, an included object will
be included as flat text. You can specify in your EdgeSuite configuration file to pro-
cess a fragment in the same method as the template, or you can specify to process a
fragment with a specific method such as ESI, XSLT, or None. The optional
dca="none|esi|xslt|java|akamaizer" can be used in the include statement to
specify a different type of processing: xslt for the EdgeSuite Transformations service,
java to include an object processed through EdgeComputing for Java, akamaizer for
the EdgeAkamaizer, or none for no dca processing.

You can daisy-chain processors by using the following syntax. Note the single quotes
within the double-quotes around the “akamaizer->esi”. This is necessary so that the
right arrow (->) isn’t seen by ESI to be the closing bracket.:

This statement means first parse and process the object with the EdgeAkamaizer,
then process the output as ESI. You can daisy-chain the Akamaizer, XSLT, and ESI
processors; you can daisy chain up to five processors total, in any order.

<esi:include src="notfound.html"alt="hi.html?url=$url_encode($(url))"/>

<esi:include src="obj.html" dca=”’akamaizer->esi’"/>
— EdgeSuite 5.0: ESI Developer’s Guide — 17 —

Including Objects
onerror=“continue” If EdgeSuite can fetch neither the src object nor the alt object, it returns a 404
HTTP error with a simple error message—unless the onerror attribute is present.
The onerror attribute can be used with an src only or with both an src and alt
attempt. If onerror=“continue” is specified and the src and alt fail to fetch the
object, ESI deletes the include tag and serves the page without any object replacing
the include statement.

When onerror=“continue” is set and the fetch fails, EdgeSuite does not serve a
default object. Without the onerror attribute, EdgeSuite attempts to fetch a default
object if one is specified in the configuration file.

For more information on error handling, see “Exception and Error Handling” on
page 95. For information on using onerror inside ESI’s explicit exception handling
method, the try block, see the discussion beginning on page 43.

maxwait This attribute sets a time-out period, in milliseconds, for EdgeSuite to wait for com-
pletion of the src, alt, or stylesheet fetch. If the time-out period expires, EdgeSu-
ite moves to whatever comes next: delivering an error, processing based on a
onerror=“continue” attribute, attempting to fetch the alt object after an src fail-
ure, etc. If there is no maxwait specified, the default time-out period is 30 seconds. In
some cases, it may not be desirable to use maxwait in an esi:try block (see page 43).

This should be set to 1000 ms or more in most cases, and particularly when the frag-
ment being fetched requires processing. For example, fetching a fragment that itself
will receive XSLT transformation takes time, and more than .5 seconds for the fetch,
compile stylesheet, and transform to take place is not unreasonable.

Using maxwait = 0 to Send an Asynchronous include

A value of 0 on the maxwait attribute has a special meaning: “send the request but do
not wait to receive the object.” This allows you to set up a “delivery receipt” condi-
tion, also known as an “asynch include:” you can notify the origin server that the
object has been requested.

An asynch include should also include the onerror attribute:

<esi:include src=“somefile.html maxwait=”0” onerror=”continue”/>

In most cases, you’ll probably not want to put a positive TTL on somefile.html. If
EdgeSuite simply has to retrieve the object from cache, the origin may not be notified
of the request.

ttl This specifies a Time-To-Live (TTL) for the object to be stored in EdgeSuite’s
cache—the maximum amount of time the content will be served before EdgeSuite
issues an If Modified Since (IMS) request to the origin server to check whether the
object content has changed. EdgeSuite issues an IMS only if the object is requested.

The ttl specifies a time-to-live in cache for the source files, not for ESI or XSLT
results. It is the source object requested from the origin server that is cached according
to the ttl instructions. By default, the ESI resulting objects are not cached, but you
can set up result caching through EdgeSuite configuration.
— 18 — Akamai Technologies, Inc. — 8/29/04 —

The include Statement
The value is an integer, 0 or greater, followed by a unit specifier. A ttl=0s means
that the object is cached but EdgeSuite will revalidate it every time it is requested.

The unit specifier can be one of the following: s (seconds), m (minutes), h (hours), or
d (days). The specifiers cannot be combined—120m is OK, but 1d4h20m is not.

This settings from this attribute override any other ttl settings from other sources
such as the EdgeSuite configuration file, the Edge-control header, or HTTP headers.
The exception is that the ttl does not override a no-store.

If the attribute is not set, the default time-out will be a default time-out for your con-
figuration, if one is set, or if none is set, the time-out period for the Akamai server.
Check with your Akamai representative for details, if necessary.

no-store A no-store=“on” tells EdgeSuite not to cache the object, and it overrides other cach-
ing instructions such as ttl. A no-store=“off” turns off the no-store instruction.

appendheader,
removeheader,

setheader

These three headers add, remove, or set headers that accompany the HTTP request
to fetch the src or alt object:

• appendheader adds a new header. The format and an example:
appendheader="field-name: field-value"
appendheader=”Accept-charset: iso-8859-5”

• removeheader removes all instances of a specified header.
removeheader="field-name”
removeheader=”If-unmodified-since”

• setheader sets the named header to a specified value. Conceptually, this is the
equivalent of a removeheader plus an appendheader. Unlike appendheader,
setheader can modify existing headers.

setheader="field-name: field-value"

setheader=”Content-type: Text/*”

xxxheader Attributes Accept Expressions for Names or Values

These attribute all accept ESI variables or other legitimate ESI expressions (see page
63) as the field-name or field-value. For example, the following construction might
be used where a_name and a_value are legitimate variables or other ESI expressions:

<esi:include src="obj.htm" appendheader="$(a_name) + ':' + $(a_value)"/>

Usage Principles

Other usage principles are as follows:

• A single include statement can contain multiple instances of any of these header
attributes. For example, this is OK:

setheader="a_header: a_value", setheader="b_header: b_value"

• appendheader can be used multiple times with the same header field-name. For
example, this is OK:

appendheader="a_header: value1", appendheader="a_header: value2"
— EdgeSuite 5.0: ESI Developer’s Guide — 19 —

Including Objects
• This latter construction is not OK for setheader or removeheader. For these
two attributes, the same field-name should be used only once in an include
statement.

The following example is not a valid construction; while it won’t generate an error,
it may yield unpredictable results:

setheader="a_header: value1", setheader="a_header: value2"

• The processing order for these attributes in an include statement is as follows:
first, all the removeheaders are performed, then all the setheaders, then all
appendheaders. If, for example, you remove a header with removeheader and set
it but with a different value with appendheader, all in the same include state-
ment, the net result is that the value set with the appendheader prevails.

method This specifies the use of a GET or POST method for the HTTP request sent to fetch
the src or alt object. The default is GET. The format is:

method= “GET | POST”

For example, method=“POST”.

This attribute can accept an expression, for example, method=“$(var_method)”

entity This sets the entity, the message body, to send with a POST request, and is used only
when the method is POST. It is ignored when the method is GET. The format is:

entity="message body"

This attribute accepts ESI variables or other expressions as the value. For example:

<esi:include src="foo" method="POST" entity="$(QUERY_STRING)"/>

Note that the following two constructions will send the same data in the request:

<esi:include src="foo?x=7"/>
<esi:include src="foo" method="post" entity="x=7"/>

The first statement uses the default GET method and a query string. The second
statement uses a POST with a message body. Both are valid ways to perform requests.

stylesheet The optional stylesheet attribute is used only when specifying an XSL stylesheet to
use with an XML object or alternate object in an XSLT transformation. The form is
stylesheet="foo.xsl", where foo.xsl is the stylesheet. The stylesheet must come
from the same host name as the src or alt object, or your EdgeSuite configuration
must be set up to allow for a stylesheet from any host.

If the src or alt object XML file is not processed by Edge Transformations, the
stylesheet attribute is ignored. A stylesheet specified here takes precedence over
stylesheets specified in the XML document, but the stylesheet does not apply to any
nested XSL stylesheets contained within the stylesheet itself.

The maxwait attribute applies to the stylesheet, but the onerror, ttl, and no-
store and other attributes affect only the src or alt objects. With regard to the dca
attribute, stylesheet applies only when dca="xslt".
— 20 — Akamai Technologies, Inc. — 8/29/04 —

The include Statement
Integration with XSLT

Several include features and other ESI language features are geared to facilitate inte-
gration with EdgeSuite Edge Transformations, allowing you not only to include
XSLT transformed objects as fragments in ESI constructions, but also to control
caching, pass parameters from ESI to XSLT, and so forth. In summary, these integra-
tion functions are as follows:

• The dca="xslt" attribute allows you to specify XSLT parsing and transforma-
tion for a fragment.

• The stylesheet attribute allows you to specify an XSL stylesheet to use to trans-
form the XML object.

• The esi:param name attribute allows you to pass XSL params when performing
XSLT processing. This attribute is used with the long form of the include state-
ment, discussed in the next subsection.

• The other include attributes, such as ttl, no-store, maxwait, and onerror, can
be used to control properties of the XML object, but not the XSL stylesheet.

• Care should be taken when setting the maxwait attribute; values greater than
1000 ms should be used, if this attribute is to be used, since fetching XML and
stylesheet, compiling the stylesheet, and transforming the file can all take time.

• You can pass HTTP headers/CGI variables and Akamai-specific variables such as
EdgeScape data to XML files included as ESI fragments. Variables are discussed
in “ESI Variables Support” on page 45.

• The EdgeSuite ESI/XSLT Development Tool (debugger) produces a debug
report that can include both ESI and XSLT processed pages, including XSLT
fragments in ESI documents. This is covered in a separate document, the Edge-
Suite ESI/XSLT Development Tool.

For further information on the XSLT service, see the EdgeSuite Edge Transformations
Service Overview.

Long Form and XSL
Params

Use the long form of the include statement to pass XSL params when including an
XSLT transformed fragment. In combination with the assign statement (to create
user-defined variables, described on page 51), you can first create and then pass
parameters.

param name For example:

The value defined in the param name statement can be any legal ESI expression, as
described in Table 5 on page 63. The data type of the value passed is always a string.
This example shows two params defined. The first is defined as a string variable,
variable_1. The second is defined as the evaluation of the user-defined variable, var1,
so that the string value, variable_2, will be passed to a.xml.

<esi:assign name="var1" value="'variable_2'"/>
<esi:include src="a.xml" dca="xslt" stylesheet="s.xsl">

<esi:param name="foo1" value="variable_1"/>
<esi:param name="foo2" value="$var1/>

</esi:include>
— EdgeSuite 5.0: ESI Developer’s Guide — 21 —

Including Objects
In the long form, the only allowable statements between the opening and closing tags
are the esi:param name statement. When you use include statement attributes, place
them into the opening tag. For example:

Attributes placed inside the block may create errors; other text inside the block will
be ignored. For example:

In the case of param name conflicts, the last definition is used. For example, in this
situation, the second value, bar2, would be passed to the XSLT processor:

Don’t Pass Apostrophes to XSLT

When passing parameters or queries to XSLT, don’t pass apostrophes, since they are
used as delimiters in XSLT parameters. You can replace apostrophes with “_” or
“'”, and change your XSL stylesheet accordingly.

Controlling Downstream Caching

For more information on caching, see the document, Time-to-Live in Cache: Methods
and Considerations.

 Setting a positive value, as opposed to a no-store or no-cache, for downstream caches
should be done only when it’s appropriate to the content. For example, if you’re
using ESI to build user-customized pages, you probably won’t want to set a positive
downstream ttl unless you are certain the pages won’t be cached in proxy server and
then served to the wrong user. To use an opposite example, if you’re using ESI to
build “latest update” pages for game scores and statistics, you might want the down-
stream caches to be able to store the end-of-game-night scores and statistics until the
beginning of games the next day.

Since every template and fragment has its own caching properties in EdgeSuite, the
following logic is used to control the downstream caching for ESI produced pages.

• If a no-store is present, it will be propagated up to the root response header
returned to the client.

• Otherwise, if a ttl is present, the value will apply to the object to which it is asso-
ciated, and in addition, the root response header will be set to no more than the

<esi:include src="a.xml" alt=“b.xml” stylesheet="s.xsl" maxwait=“2000”
dca="xslt">
<esi:param name="foo1" value="variable_1"/>

</esi:include>

<esi:include src="a.xml" dca="xslt">
this text will be ignored
<esi:param name="foo1" value="variable_1"/>
<esi:any tag other than param name will cause an error/>

</esi:include>

<esi:include src="a.xml" dca="xslt">
<esi:param name="foo" value="bar1"/>
<esi:param name="foo" value="bar2"/>

</esi:include>
— 22 — Akamai Technologies, Inc. — 8/29/04 —

The include Statement
least ttl value of all objects associated with the template. In other words, the
resulting ESI page will be cached downstream for a period defined by the shortest
ttl of all the objects that compose the page.

Using Response Headers You can use an Edge-control response header to set a downstream TTL for ESI
results.

Edge-control: downstream-ttl=30m

The value is an integer may be followed by a unit specifier: Current unit specifiers
are: 's' (seconds), 'm' (minutes), 'h' (hours), 'd' (days). The default is ‘s’.

Using the Configuration You can use your EdgeSuite Configuration file to set a downstream TTL for ESI
results. When set on a fragment, this value is used as one of the values used by ESI to
calculate the TTL value as defined in the preceding paragraph.

When you set a downstream TTL value in this manner on the template page, this
value overrides TTL settings assigned with include attributes or in your configuration
file. However, the configuration setting does not override a no-store or bypass-cache,
nor does it take precedence over a value set with the downstream-ttl Edge-control
header.

When you allow ESI to calculate the downstream TTL, the value it sends will
account for time already spent in cache. But when you use the Downstream TTL
attribute, neither Cache-control: max-age setting nor the Expires data can be updated
to account for time already spent in cache.

Also, you can use the $add_cachebusting_header() to prevent downstream cach-
ing, as discussed on page 76.

Secure and Not
Secure

If the template is a secure URL under the SSL protocol, then all fragments must be
secure. If the template is not secure, the fragments can be either secure or not. That
is, you can upgrade the security level by including secure fragments in an unsecured
template, but you cannot downgrade by included unsecured fragments in a secure
template.

Limitations EdgeSuite ESI supports up to fifteen levels of nested include statements: that is,
fragments can contain ESI markup that includes other fragments. The first include
is the first of the levels.

Also, ESI provides for up to sixty-five attempted includes per transaction. The
transaction begins with the first include statement on the template and encompasses
all subsequent includes associated with that template, including the attempts gener-
ated in nested pages.

If the src object is fetched and there is no need to attempt the alt, that is one
attempt; if the src include fails and the alt is fetched, that is two attempts. When it
processes a page, EdgeSuite processes all src objects before it processes any alt
objects.
— EdgeSuite 5.0: ESI Developer’s Guide — 23 —

Including Objects
The total size of all included objects, including nested objects, for a page, cannot
exceed 1 megabyte.
— 24 — Akamai Technologies, Inc. — 8/29/04 —

Evaluating Included Objects
Evaluating Included Objects

eval On the surface, the esi:eval statement is similar to the esi:include statement.
They both fetch fragments, employ an almost identical syntax, and accept almost the
same attribute set (page Table 2 on page 16).

The main difference is that while esi:include fetches the fragment and inserts it

verbatim into the template, esi:eval interprets the fragment as ESI code running

within the execution context of the template—as if the fetched object’s code is in the

template itself. You can think of eval as fetching the fragment and pasting it into the

template before the ESI code is interpreted.

For example, you can store a cookie on the end-user's machine that contains a

customer number. When you receive a request from the end-user’s browser, you

could retrieve data from your database and use the data in an ESI page to display it to

the end-user.

This is significant because with include, variables pass from templates to fragments

(from parent to child), not the other direction. It is impossible for a child to affect a

parent’s namespace—the attributes, variables, and other elements associated with the

template as identified by its URL. However, the esi:eval statement runs in the

parent’s namespace, so that the namespace can be changed by eval processing.

To illustrate, take the contents of a file used as an ESI fragment, cust_1234.html:

The template, welcome.html, contains the following ESI code. In this example, the
variable, C_URL, evaluates to cust_1234.html.

When requested by the person with the CustomerCode cookie set to 1234, the client
receives the following output:

Welcome Gene, how is the weather in CA?

The eval statement allows the use of the variables assigned in the fragment, not sim-
ply the inclusion of the page as a object.

<esi:assigna name="first" value="Gene"/>
<esi:assign name="last" value="Kranz"/>
<esi:assign name="age" value="67"/>
<esi:assign name="state" value="CA"/>

a. esi:assign, which creates a user-defined variable, is described on page 51.

<esi:assign C_URL="'cust_' + $(HTTP_COOKIE{CustomerCode}) + '.html'"/>
<esi:eval src="$(C_URL)" dca=”none”/>
<esi:vars>

Welcome $(first), how is the weather in $(state)?
</esi:vars>
— EdgeSuite 5.0: ESI Developer’s Guide — 25 —

Including Objects
Furthermore, since variables are still automatically passed from parents to children,
you can pass variables from the template to the fragment and then modify the vari-
ables when they are included by eval into the template from the fragment.

Usage and Restrictions

As noted above, the esi:eval statement accepts most of the same attributes as
esi:include. The following differences or unique considerations should be noted:

• The eval does not use the alt attribute. You can use the try block to specify
objects to fetch if the src object cannot be fetched. Note that the try block
provides you more control than the the alt syntax, since you can specify
different attributes for the secondary objects.

• A maximum of 10 eval statements can be used on a template and its fragments.

Special Processing The eval statement provides exceptions to ESI processing rules in two ways:

• As discussed on the previous page, since the eval fragment is processed in the
parent’s namespace, it can modify and create variables in that namespace.

• Generally, variables set inside an esi:try block (page 42), a conditional block
used to set exception processing, cannot be used outside the try block. However,
when the eval statement is used in the successful completion of the try block,
evaluations can be used in the rest of the body of the parent.

For example, take the fragment, frag.html, containing this ESI code:

<esi:assign name="NAME" value="Joe"/>

Now note the template, template.html, containing the try block:

<esi:try>
 <esi:attempt>
 <esi:eval src="frag.html" dca="none"/>
 </esi:attempt>

</esi:try>

<esi:vars name=”$(NAME)”/>

Once run, $(NAME) outputs Joe. The variable created in the fragment is used in
the template, and it can be used outside the try block in which it was fetched. If
you had used esi:include instead of esi:eval, the output would have yielded
an error—the variable NAME would not have been found.

Note, however, that the evaluation cannot be used inside the try block. In the
above example, $(NAME)would not be a valid variable inside the try block.

Performance
Considerations

Every time the ESI processor finds an eval statement in your code, it must stop and
wait for the fragment to be retrieved so that the code can be included in the
namespace. The evals in your code must be processed serially—for two or more evals
in a page, the order can be important. This differs from includes, which are all
fetched at the same time and then inserted whenever they come back.

Furthermore, every esi:eval has the cost of an esi:include plus the overhead of
processing the ESI code.
— 26 — Akamai Technologies, Inc. — 8/29/04 —

Evaluating Included Objects
Overall, the performance cost on the eval can be mitigated by caching, but still it
can be significant, depending on the situation. Certainly, pages with a large number
of eval statements will see a significant slowdown in processing speed. On the other
hand, there are times when a problem can only be solved through the use of eval.

Errors With the eval statement, errors can occur in three places:

• Fetching the fragment. Errors are indicated by the response code from the fetch,
exactly like an include.

• Parsing the fragment. This results in an HTTP 500 series error and is listed as a
syntax error in the Debugger report.

• Executing the fragment. This results in an HTTP 500 series error and is listed as
an error in the Debugger report.

For more information on error processing in ESI, see page 95.

The Importance of the dca Attribute in esi:eval

When a fragment’s ESI code is processed in the parent’s context, the results can vary
dramatically depending on the type of dynamic content assembly (DCA) processor
applied to the operation. The dca attribute, described on page 17, controls how the
fragment is processed before it reaches the parent’s context. For example, esi indicates
that it should be processed by an ESI processor before inclusion in the parent, and
none indicates that no processing should occur before inclusion.

By default, the processor is “none”—that is, the fragment will not be parsed for ESI,
transformed by XSLT, etc. However, your EdgeSuite configuration can be set to
automatically use the same processor for the fragment that was used for the template.

Comparing Processor Types When Using eval

To illustrate the significance of the processing type, we can compare examples:

Example 1: dca=“none”

Assume you have a fragment, frag1.html:

<esi:assign name=”fvar” value=”9”/>
<esi:assign name=”pvar2 value=”0”/>

The template, parent.html, follows. Note that one variable, pvar2, is defined in
both the parent and the child. The parent’s eval statement uses dca=”none”.

<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>
<esi:eval src=”frag1.html dca=”none”/>
<esi:vars>
pvar1 = $(pvar1)
pvar2 = $(pvar2)
fvar = $(fvar)
</esi:vars>

Here is a representation of the evaluation processing. The fragment’s code, which is
underlined and in blue, replaces the eval statement at the eval’s insertion point:
— EdgeSuite 5.0: ESI Developer’s Guide — 27 —

Including Objects
<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>
<esi:assign name=”fvar” value=”9”/>
<esi:assign name=”pvar2 value=”0”/>
<esi:vars>
pvar1 = $(pvar1)
pvar2 = $(pvar2)
fvar = $(fvar)
</esi:vars>

And when parent.html is executed, the following output is produced.

pvar1 = 7
pvar2 = 0
fvar = 9

Example 2: dca=“esi”

In this example, the fragment is the same and the only difference in the parent is that
in the eval statement, dca is now set to “esi”. When dca=“esi”, the fragment is
first processed in a different context, and the result is then executed by the parent.
The ESI output of frag1.html is nothing (except for a few newline characters), so
that “pasting” the eval processing into the parent, the parent looks like this:

<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>

<esi:vars>
pvar1 = $(pvar1)
pvar2 = $(pvar2)
fvar = $(fvar)
</esi:vars>

Now when the parent is executed, the resulting output is very different from Example
1. There is no value for fvar, the variable set only in the fragment, and pvar2 holds
the value set in the parent.

pvar1 = 7
pvar2 = 8
fvar =

Example 3: Adding <esi:text> to Examples 1 and 2

We change frag1.html in one minor way—we put the assign statements inside an
esi:text block. The esi:text block, described on page 40, provides the ability to
insert flat text without ESI processing.

The frag1.html file now looks like this:

<esi:text>
<esi:assign name=”fvar” value=”9”/>
<esi:assign name=”pvar2 value=”0”/>
</esi:text>

Now, if you execute the parent with dca= “none”, the fragment is “pasted” into the
parent exactly as it appears above. Once again, the fragment code is highlighted.

<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>

<esi:text>
— 28 — Akamai Technologies, Inc. — 8/29/04 —

Evaluating Included Objects
<esi:assign name=”fvar” value=”9”/>
<esi:assign name=”pvar2 value=”0”/>
</esi:text>

<esi:vars>
pvar1 = $(pvar1)
pvar2 = $(pvar2)
fvar = $(fvar)
</esi:vars>

And the output is:

<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>

pvar1 = 7
pvar2 = 8
fvar =

That is, the fragment’s lines are treated as flat text, not ESI statements, so the
variables are not assigned, and the assign lines show up in raw form in the output.

However, if you set dca=“esi”, the esi:text block is processed, and while the
strings inside the block are left intact, the esi:text opening and closing statements
are removed, so that the parent including the eval looks like this:

<esi:assign name=”pvar1” value=”7”/>
<esi:assign name=”pvar2” value=”8”/>

<esi:assign name=”fvar” value=”9”/>
<esi:assign name=”pvar2 value=”0”/>

<esi:vars>
pvar1 = $(pvar1)
pvar2 = $(pvar2)
fvar = $(fvar)
</esi:vars>

And the output is:

pvar1 = 7
pvar2 = 0
fvar = 9

The difference is that the output under dca= “esi” is due to insertion of the ESI
code after it was processed. Similarly, all other valid dca types can be used. For exam-
ple, you might want to create ESI code from XSLT.

Using eval in Dynamic Code Generation

The eval statement provides a limited function-like ability. Consider a situation in
which you want to make a copy of a dictionary. Simply assigning it to another
variable creates a reference, not a copy, and a reference may not be what you need in
a particular situation (see the discussion on page 55).

Without eval, you could create a copy by performing an iteration through the
dictionary, illustrated by the following code for a dictionary, dict, and a copy, copy:

<esi:foreach collection="$(dict)">
— EdgeSuite 5.0: ESI Developer’s Guide — 29 —

Including Objects
 <esi:assign name="copy{$(item{0})}" value="$(item{1})"/>
</esi:foreach>

Rather than putting this on all of your ESI pages, you can use an eval statement with
dca=”none” to include it as a fragment. You could do the following, placing the code
above into a fragment named eval-copy-dict.html:

<esi:assign name=”dict” value=”my_dict”/>
<esi:eval src=”eval-copy-dict.html” dca=”none”/>
<esi:assign name=”my_copy” value=”copy”/>

However, this solution requires you to know the names of the variables the fragment
uses and that you limit yourself to a dictionary called dict and a copy called copy.

A more flexible solution would involve setting up a fragment that looks like this:

<esi:assign name="from" value="$(QUERY_STRING{from})"/>
<esi:assign name="to" value="$(QUERY_STRING{to})"/>

<esi:vars>
\<esi:foreach collection="\$($(from))">
\<esi:assign name="$(to){\$(item{0})}" value="\$(item{1})"/>
\</esi:foreach>
</esi:vars>

Now you can call the fragment like this:

<esi:eval src=”eval-copy-dict.html?from=my_dict&to=my_copy/>
— 30 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 4. Conditional Inclusion and Iteration

This chapter covers the ESI iteration capability and the method ESI provides for
qualifying the inclusion of objects.

Conditional Processing

choose | when |
otherwise

The choose block provides a when | otherwise statement set, comparable to the if-
then / else mechanism in some languages, allowing you to test for a logical true (value
1) or false (value 0). Boolean expressions are fully defined under “Boolean Expres-
sions” on page 60. You can perform evaluations using a variety of environment vari-
ables, Akamai-specific and user-defined variables, and functions, described in
subsequent chapters.

The choose block is formed as follows:

Example:

Usage • Each choose block and contained sub-blocks must be closed via a separate close
tag. Thus, the syntax <esi:choose…/> is invalid.

• Each choose block must have at least one when element.
• The otherwise element is optional.

<esi:choose>
<esi:when test=“BOOL-expr”>

Do something
</esi:when>
<esi:when test=“BOOL-expr”>

Do something different
</esi:when>
<esi:otherwise>

Do something else…
</esi:otherwise>

</esi:choose>

<esi:choose>
<esi:when test=“$(HTTP_COOKIE{‘group’})==‘Advanced’”>

<esi:include src=“http://www.akamai.com/advanced.html”/>
</esi:when>
<esi:when test=“$(HTTP_COOKIE{‘group’})==‘Basic User’”>

<esi:include src=“http://www.akamai.com/basic.html”/>
</esi:when>
<esi:otherwise>

<esi:include src=“http://www.akamai.com/new_user.html”/>
</esi:otherwise>

</esi:choose>
— EdgeSuite 5.0: ESI Developer’s Guide — 31 —

Conditional Inclusion and Iteration
• The when tag is synonymous with if and else-if in other languages. It evalu-
ates the Boolean expression using the test attribute.

• Only the first when clause evaluated as true is executed.
• The otherwise tag is synonymous with else in other languages. The otherwise

clause is evaluated only if all when clauses evaluate to false.
• To test for an empty or non-existent variable, use the following construction:

<esi:when test="$(foo)">, where “foo” is the variable being tested. If the vari-
able is empty or non-existent, the test returns “false.” Note that there are also
functions, $is_empty() and $exists(), discussed on page 74, to test precisely
for empty or non-existent variables, that can be used in the choose block.

• Regular HTML and ESI statements can be included inside when or otherwise
statements. However, do not place these statements outside a when or otherwise
sub-block. This is further explained in the next subsection.

Compound
Expressions

You can use any legal ESI expression or compound expression in the when evaluation,
using variables, functions, and Booleans described in other chapters of this guide.

For example, you could construct a choose statement as follows:

<esi:choose>
<esi:when test="!$exists($(HTTP_COOKIE{'UserInfo'})) |

!($(HTTP_COOKIE{'UserInfo'}) matches '''UserId=[0-9]''')">
[include some file]

 </esi:when>
 <esi:otherwise>

[include some other file]
 </esi:otherwise>
</esi:choose>

The <esi:when> statement shows the use of a compound expression using functions
and variables combining several different operators. It uses the Booleans ! (not) and
Or (|), and a regular expression (regex) match (matches). It uses the variable and
variable substructure $(HTTP_COOKIE{UserInfo}). And it uses the function $exists
to check to see if the cookie exists.

The statement reads as follows: IF the cookie does NOT EXIST, OR if the cookie
EXISTS but does NOT contain a regex match on the specified UserID data, THEN
include “some file.” OTHERWISE, include “some other file.”
— 32 — Akamai Technologies, Inc. — 8/29/04 —

Conditional Processing
Statements Inside a
Block

In a choose construct, valid statements must be placed inside a when or otherwise
sub-block. Statements outside the sub-blocks are not evaluated as conditions. In the
following example, the lines marked with daggers (†) are invalid and will be discarded
by the EdgeSuite processor.

Valid statements can be more than one line, and do not need to be include state-
ments shown in the previous example. The following example tests to see if an Aka-
mai variable (the GEO region code) is empty, and if it is, set a cookie and redirect the
request. (The functions are discussed in “ESI Functions” on page 67.)

Nesting Elements Most ESI elements may contain child elements, including nested ESI elements and
other markup. This allows block structuring of compound conditionals. The follow-
ing construct shows a nested choose block, bolded here for clarity:

<esi:choose>
† Invalid HTML here
<esi:when>

<esi:include...>
This line is valid and will be processed.

</esi:when>
† Invalid HTML here
<esi:otherwise>

<esi:include...>
This line is valid and will be processed.

</esi:otherwise>
† Invalid HTML here

</esi:choose>

<esi:choose>
<esi:when test=”$isempty($GEO{‘region_code’})”>

$set_redirect(‘no_region.myplace.com’)
$add_header(’Set-Cookie’, ’MyCookie1=SomeValue;’)

</esi:when>
<esi:otherwise>

...more valid code....
</esi:otherwise>

</esi:choose>

<esi:choose>
<esi:when test=“BOOL-expr”>

<esi:include src=“URL-expr”/>
</esi:when>
<esi:when test=“BOOL-expr”>

<esi:choose>
 <esi:when test=“BOOL-expr”>

 <esi:include src=“URL-expr”/>
</esi:when>
<esi:otherwise>

 <esi:include src=“URL-expr”/>
</esi:otherwise>

</esi:choose>
</esi:when>
<esi:otherwise>

 <esi:include src=“URL-expr”/>
</esi:otherwise>

</esi:choose>
— EdgeSuite 5.0: ESI Developer’s Guide — 33 —

Conditional Inclusion and Iteration
Iteration

foreach | break The foreach1 statements provides the ability to iterate through a sequence. The
block is formed as follows:

If you do not specify a name for <item>, it will default to the name “item.”

In each iteration, a single item from the collection is available under the name
$(<item>), where <item> can be a user-specified string or a dictionary. Strings, dic-
tionaries, and lists are expressions defined on Table 5 on page 63.

When the item is a dictionary, each $(<item>) is a list. The term $(item{0}) is the
name of the dictionary entry, and $(item{1}) is its value. However, there is no way to
determine the order in which pairs will be processed.

Modifying <sequence>—for example, deleting the item processed—has no effect on
the number of iterations, as a copy of the sequence is used to iterate over, to prevent
runaway loops.

By default, the ability to use the foreach statement is enabled in ESI, but you can
disable it using a setting in the EdgeSuite configuration file.

The foreach statements can be nested inside one another. There is a limit of 1,000
iterations for a statement, and the resulting ESI objects cannot be greater than
500,000 bytes in size.

Lists and Dictionaries Example of a simple list iteration

This would yield the text:

This is iteration number 1
This is iteration number 2
........iteration number 5

Example of a simple dictionary, a list of fruits:

In this example, note that since there is no item attribute specified, the value defaults
to “item.”

1. foreach is in addition to the ESI 1.0 specifications. See “The ESI Specification” on page 8.

<esi:foreach item="<item>" collection="<sequence>">

<ESI code goes here>
</esi:foreach>

<esi:foreach item="My_Item" collection="[1,2,3,4,5]">
This is iteration number $(My_Item)

</esi:foreach>

A list of Fruits:
<esi:foreach

collection="{1:'apples',2:'oranges',3:'bananas',4:'grapefruits'}"
$(item) -- $(item{0}) = $(item{1})

</esi:foreach>
— 34 — Akamai Technologies, Inc. — 8/29/04 —

Iteration
The example would yield:

A List of Fruits:
(4, 'grapefruits') -- 4 = grapefruits

(3, 'bananas') -- 3 = bananas

(2, 'oranges') -- 2 = oranges

(1, 'apples') -- 1 = apples

Note that the display order is not determined by the order of items in the dictionary.

A query string is a form of dictionary. For example, using the query string
“?a=1&b=2&c=3&d=4&aa=5&aab=6”:

Once again, the processing order is not predetermined. This could yield:

The QUERY_STRING is:
aab: 6

d: 4

b: 2

c: 3

aa: 5

a: 1

Iterating Over a Range You can use the range operator to iterate a specific number of loops or to create a list
of a known number of items. The following are valid constructions:

<esi:foreach collection="[1..10]">
<esi:foreach collection="[5..1]">
<esi:foreach collection="[10 .. $(max)]">

See page 65 for more information on the range operator.

Breaking the Loop The optional break statement can be used to exit early from the closest enclosing
iterative loop. Its presence in anywhere other than inside a foreach block will create
a syntax error.

For example:

This statement prints out: "1 2 ". The loop exits when the third element is reached.

The QUERY_STRING is:
<esi:foreach item="query_pair" collection="$(QUERY_STRING)">

$(query_pair{0}): $(query_pair{1})

</esi:foreach>

<esi:foreach collection="[1,2,3,4,5]">
 <esi:choose>
 <esi:when test="$(item) == 3">
 <esi:break/>
 </esi:when>
 </esi:choose>
 <esi:vars>$(item) </esi:vars>
</esi:foreach>
— EdgeSuite 5.0: ESI Developer’s Guide — 35 —

Conditional Inclusion and Iteration
Another example:

Iteration Index Keys You can also use the following index keys:

• <item>_index—a zero offset integer specifying the index of the current item.
The first item has index value of 0, second is 1, and so forth.

• <item>_number—a 1 offset integer that behaves just like _index. This may pro-
cess more quickly than _index, because it takes advantage of a faster math pro-
cessing algorithm.

• <item>_start—is true only when in the first iteration

• <item>_end—is true only when in the last iteration

• <item>_odd—is true whenever the iteration number is odd. The first iteration is
odd, second even, and so forth.

• <item>_even—is true whenever the number is even.

• <item>_sequence_size—always contains the total length of the sequence,
which does not change with each iteration.

Example Using the Index Keys and a POST Response

A simple example of using the keys to iterate over POST response data, using embed-
ding esi:choose blocks to qualify its processing and formatting, might be as follows:
The user selects items to order. You want to respond confirm the item numbers.

The data is contained in a POST response, a dictionary in ESI (see page 46). In this
case, the POST response contains the following dictionary: 123:'Rocking

<esi:foreach item="bar" collection="[1,2,3,4,5]">
 <esi:foreach item="foo" collection="['a', 'b', 'c', 'd', 'e']>
 <esi:comment value="This break exits the 'foo' loop, not the 'bar'

loop/>
 <esi:break/>
 $(foo)
 </esi:foreach>
 $(bar)
</esi:foreach>
— 36 — Akamai Technologies, Inc. — 8/29/04 —

Iteration
Chair',124:'Sofa',678:'Microwave Oven',910:'Big Screen Television',

408:'Power Drill',650:'Bench Saw'.

This is the result. Once again, note the item order in the dictionary doesn’t predict
the order of the displayed results:

<esi:foreach item="My_Item" collection="$(POST)">
<esi:choose>
 <esi:when test="$(My_Item_start)">
 Here is the contents of your shopping cart

($(My_Item_sequence_size) Items):

 <table>
 <tr><td>Entry #</td><td>Product #</td><td>Description</td></tr>
 </esi:when>
</esi:choose>
<esi:choose>
 <esi:when test="$(My_Item_odd)"><tr bgcolor="white"></esi:when>
 <esi:otherwise><tr bgcolor="silver"></esi:otherwise>
</esi:choose><td>$(My_Item_number)</td><td>$(My_Item{0})</

td><td>$(My_Item{1})</td></tr>
<esi:choose>
 <esi:when test="$(My_Item_end)">
 </table>
 End of Shopping cart contents
 </esi:when>
</esi:choose>
</esi:foreach>
— EdgeSuite 5.0: ESI Developer’s Guide — 37 —

Conditional Inclusion and Iteration
— 38 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 5. Alternative Processing and Exception
Handling

This chapter covers alternative processing, placing variables and functions outside of
ESI blocks, inserting pure text, and handling exceptions. Also covered here is the
comment statement.

Including Alternative HTML and Hiding the ESI Statements

<!--esi --> and remove
You can use the remove statement to include alternative HTML markup that brows-
ers can display in the event ESI processing cannot be performed. In addition, you can
use the <!--esi and --> tags to hide ESI statements in the event the content of the
page is passed unprocessed to the browser.

remove The remove statement provides for including valid HTML as output if the ESI
markup is unprocessed, but removes the content if the markup is processed normally.

Example:

Description Normally, when EdgeSuite processes this example block, it fetches the ad.html file
and places it into the template page while discarding the remove block. If for some
reason this block is not processed by EdgeSuite and all four lines are sent directly to
the browser, all ESI elements are ignored by the browser and, most significantly, the
href HTML statement is rendered by the browser.

This works simply because the browser throws away the HTML invalid <esi:...>
and </esi:...> tags, leaving the HTML-valid href statement.

The remove statement cannot include nested ESI markup, and it cannot be included
inside other ESI markup—for example, it cannot be used inside a choose block.

<esi:remove>
Some HTML goes here…

</esi:remove>

<esi:include src=“http://www.akamai.com/ad.html”/>
<esi:remove>

www.akamai.com
</esi:remove>
— EdgeSuite 5.0: ESI Developer’s Guide — 39 —

Alternative Processing and Exception Handling
<!--esi --> The <!--esi --> block allows for all ESI language to be hidden if the contents of the
page are passed unprocessed to the browser. Any valid ESI elements can be included
inside the block. It is not possible to nest <!--esi --> tags inside of each other.

Example:

With the <!--esi --> tags, if the page is not processed, the whole block is simply
hidden from the user.

Inserting Plain Text

The text statement allows you to insert flat text—any characters whatsoever—with-
out interpretation or encoding by ESI. This provides a easy way to avoid errors
caused by inadvertently including an unescaped dollar sign ($) or other reserved char-
acters.

text The text statement has a long form only.

This statement can be nested inside other ESI statements. If other ESI statements are
nested inside of esi:text, however, they are considered to be flat text and not pro-
cessed by ESI.

For other methods of avoiding encoding, see “Escaping the $ and Other Reserved
Characters” on page 59.

<!--esi
ESI elements
-->

<!--esi
<esi:include src=“http://www.akamai.com/ad.html”/>
-->

<esi:text>

This text can include dollar signs $, quotes ”’’” or any other flat
text, and it will not be interpreted or encoded by ESI.

</esi:text>
— 40 — Akamai Technologies, Inc. — 8/29/04 —

Placing Variables and Functions Outside ESI Blocks
Placing Variables and Functions Outside ESI Blocks

The vars tag allows you to use environment variables or functions outside of ESI
blocks—inside an HTML code line, for example, instead of inside an include state-
ment or choose block. Variables and functions are described in subsequent chapters
in this document.

If you place the variable or function inside an ESI block, for example as part of an
include statement, you do not use this construction.

vars The vars tag has a short form and a long form.

Long form:

Example of a variable:

Example of a function:

Functions are described beginning on page 67. This construction would return the
current time in the standard HTTP format.

Other <esi:vars> examples are found throughout this document.

Short form1:

This form can be used with standalone variables. For example, to report a variable in
a table cell:

Do Not Nest vars Inside
an HTML Tag

The esi:vars tag cannot be nested inside an HTML code line. The following is an
example of incorrect syntax:

<img src="http://abc.com/<esi:vars>$(HTTP_COOKIE{'type'})</esi:vars>/
hello.gif"/>

<esi:vars>Put some HTML and variable here</esi:vars>

<esi:vars>

</esi:vars>

<esi:vars>
The current time is $http_time($time())
</esi:vars>

<esi:vars name=“VARIABLE_NAME”/>

1. The short form of vars is in addition to ESI 1.0 specifications. See “The ESI Specification” on
page 8.

<tr>
<td>
<esi:vars name=”$(GEO{’city’})”/>
</td>
— EdgeSuite 5.0: ESI Developer’s Guide — 41 —

Alternative Processing and Exception Handling
Explicit Exception Handling

The ESI language provides an explicit exception handling construct, the try block.

try | attempt | except The try block is formulated as follows:

Example:

The except statement is optional. EdgeSuite first processes the attempt sub-block. A
failed ESI include statement triggers an error; the processor then attempts to execute
the contents of the except sub-block, if one is present. Statements other than
include do not trigger this error. The except sub-block is not triggered if the src
object, alt object, or a default object is used, if an HTTP 200, 301, 302, and 401
response is received, or if an onerror=“continue” attribute is applied (see the discus-
sion below). In versions prior to 4.8, response codes other than 200 would trigger a
response, and you can choose to configure for that behavior.

In the example above, if the ad page cannot be fetched, include a simple link instead.
As is the case with the choose construct, valid statements in the try block must be
placed inside an attempt or except sub-block. In the following example, the lines
marked with daggers (†) are invalid and are discarded by the EdgeSuite processor.

<esi:try>
<esi:attempt>

Try this...
</esi:attempt>
<esi:except>

If that fails, do this...
</esi:except>

</esi:try>

<esi:try>
<esi:attempt>

<esi:comment text=“Include an ad page”/>
<esi:include src=“http://www.akamai.com/ad1.html”/>

</esi:attempt>
<esi:except>

<esi:comment text=“Just write some HTML instead”/>
www.akamai.com

</esi:except>
</esi:try>

<esi:try>
† Invalid HTML here
<esi:attempt>

<esi:include...>
This line is valid and will be processed.

</esi:attempt>
† Invalid HTML here
<esi:except>

This HTML line is valid and will be processed.
</esi:except>
† Invalid HTML here

</esi:try>
— 42 — Akamai Technologies, Inc. — 8/29/04 —

Comments
The very nature of the try block means that the processing behaviors of certain
esi:include attributes are different from the behavior in other ESI formations. Two
noteworthy cases are the onerror=“continue” and the maxwait attribute.

Maxwait in a try Block Take the case in which a maxwait is specified in the try block statement and the ori-
gin returns an HTTP 500 error before the maxwait expires. If EdgeSuite has a stale
(TTL-expired) object available and the configuration is to serve the stale fragment if a
new one can’t be fetched, then EdgeSuite serves the stale fragment within the
esi:try. This could be expected as EdgeSuite standard behavior.

However, in the same situation, if the maxwait were to expire, then EdgeSuite would
not serve the stale content. Instead the processing would go on to the next try block
action (another esi:attempt or an esi:except, for example), or to another config-
ured failure action set to occur when ESI returns an error instead of the object.

Onerror in a try block If you use the onerror=“continue” attribute in the include statement inside the
try block, you run the risk of defeating the block’s purpose. If the attempt fails and
the onerror attribute tells EdgeSuite to skip the include, the except block will not
be processed and used for that include. One situation in which you may want to use
the onerror attribute is when you use multiple includes inside the try block, and you
do not want a failure in specific includes to trigger the except block.

esi:assign in a try
Block

Also, before using assign in a try block, note the discussion on page 52.

Comments You can add comments to a document using the comment tag.

comment The comment tag is formulated as follows:

Example:

These comments are for your own use, are not processed, and are simply deleted by
EdgeSuite when the file is processed. They are not included in the final output.

<esi:comment text=“text commentary”/>

<esi:comment text=“the following animation will have a 24 hr TTL.”/>
— EdgeSuite 5.0: ESI Developer’s Guide — 43 —

Alternative Processing and Exception Handling
— 44 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 6. ESI Variables Support

This chapter discusses the three types of environmental variables supported in ESI:

• HTTP response and request headers

• Akamai-specific environment variables

• User-defined variables

In general, environment variables are automatically passed from templates to frag-
ments—from parent to child—but cannot go the other direction. An exception to
this general rule is the eval statement, described on page 25.

You can use variables as a part of ESI statements, or in a standalone manner—the
vars statement (page 41) shows how you might use a standalone variable in a table
cell. You can use variables in an include statement, but you cannot use a compound
expression (Table 5 on page 63) as part of an src or alt object. That is, if you want
to use a compound expression as part of an object, first define it as a variable, then
include the variable in the statement.

HTTP and Other Client Headers

There are some limitations and requirements on honoring HTTP and other client
headers in EdgeSuite. Some headers are not honored and some require enabling in
the EdgeSuite configuration file in order to be used. For more details, see the docu-
ment, EdgeSuite Handling of Edge-Control and Other HTTP Headers.

In EdgeSuite generally, within the limitations and requirements, HTTP headers are
honored in requests from clients and in responses from the origin. Most relevant here,
the HTTP headers can be used as variables, with the following conversion structure:

• The term “HTTP_” is prefixed to the name.

• The variable must be in upper case.

• Dashes (-) are replaced with underscores (_).

For example, Accept-encoding becomes HTTP_ACCEPT_ENCODING, Cookie becomes
HTTP_COOKIE, and Host becomes HTTP_HOST.

The format of the variable reference is $(VARIABLE_NAME).

For example, to return the value of the HTTP_HOST variable:

$(HTTP_HOST)
— EdgeSuite 5.0: ESI Developer’s Guide — 45 —

ESI Variables Support
Or, an example used in an ESI statement, in this case a Boolean expression:

This same conversion structure can be used on other client headers of the type, Head-
erName: Value. For example, the value in the Remote_User header may be accessed
as $(HTTP_REMOTE_USER).

Cookie Support

There are a variety of considerations with regard to cookie handling in ESI, because
of caching considerations (not caching objects associated with unique cookies),
cookie-only session IDs, and because on any one browser page there may be several
objects, templates and fragments, that might be associated with cookies. Note that:

• Besides supporting the cookie header as an HTTP header, ESI provides a variable
substructure to return cookie data. See Table 4 on page 50.

• ESI also provides a function to create and add a Set-cookie header. See the
$add_header() function on page 74.

• Cookies can be used in expressions to define variables in the esi:assign state-
ment, described on page 51.

• Cookies set on fragments as well as templates will be collected and sent to the
end user’s browser.

• Cookies set on the template can be propagated to fragments, if this is enabled in
your EdgeSuite configuration. In propagation, cookies are validated for expira-
tion time, security, and domain, including international domains (uk, ch, etc.).

- Expired cookies of the same name are invalidated, and more current data
from the root response header replaces the old data.

- Secure cookies are propagated when the root template uses HTTPS.

• With the above enhancements, you can use Cookie-based session IDs in ESI. If
you do so, talk with your Akamai technical representative, because specific setup
in your EdgeSuite configuration file is required. Also, the configuration on your
ESI templates and fragments should be set to “no-store;” a non-caching connec-
tion with the origin is needed to utilize cookie-based session IDs.

For more information on EdgeSuite Cookie Handling, see the EdgeSuite Configura-
tion Guide. For information specifically on cookies and Session IDs, see the docu-
ment, EdgeSuite Session ID Support.

POST Support Origin servers can respond to client POST1 requests through ESI, providing that
ability is enabled in your EdgeSuite configuration file. POST processing is enabled by
default but can be disabled should you choose to do so.

The values contained in the POST are available in the ESI document as a dictionary
under the name POST, thus making the POST data available under the variable call,

<esi:when test=“$(HTTP_COOKIE{’group’})==‘Advanced’”>

1. This POST handling is in addition to ESI 1.0 specifications. See “The ESI Specification” on
page 8.
— 46 — Akamai Technologies, Inc. — 8/29/04 —

Akamai-Specific Variables
$(POST{‘sub1’}), where sub1 is the name key in a name:value pair. The ESI dictio-
nary expression is defined in Table 5 on page 63. See also an example of POST usage
on page 36.

Currently, ESI only accepts the content-type “application/x-www-form-encoded,”
the standard POST mechanism in all browsers. ESI does not accept mime encoded
POST content, which is traditionally used only for file upload. ESI accepts a maxi-
mum of 16384 bytes in POST responses; larger responses will generate an HTTP
500 error.

Akamai-Specific Variables

Variable names must be in UPPER CASE. The format of the variable reference is
$(VARIABLE_NAME). For example:

The GEO Variable GEO1 data is provided by Akamai’s EdgeScape and EdgeScape Pro services. Access-
ing GEO key values requires enabling an option in your EdgeSuite Configuration.
For a complete explanation of GEO, its keys and potential results, see the EdgeScape
and EdgeScape Pro Users Guide, in particular the chapter, “Implementing the EdgeS-
cape Pro Service APIs,” and the appendices.

Table 3: Akamai-Specific Variables Supported in ESI

VARIABLE NAME TYPE EXAMPLES

GEO
(see “The GEO Variable,” below, and see
Table 4)

strings returned from several keys Country code: US
Region code: CA
Network type: dsl

QUERY_STRING a collection of name=value pairs,
pairs separated by a “&”

‘first’=’Robin’&’last’=’Rob-
erts’

REMOTE_ADDR end user’s IP address 123.234.243.132

REQUEST_METHOD the HTTP request method GET, POST

REQUEST_PATH the path specified with the HTTP
request method

/esi/example.html

Custom defined for values extracted
from cookies or other elements. (see dis-
cussion next page)

strings SessionID{‘value’}

TRAFFIC_INFO (Bandwidth usage vari-
able—see discussion below)

A dictionary (see page 63) of band-
width usage values.

$(TRAFFIC_INFO{BW})

$(REMOTE_ADDR)

Example of usage in an include statement:

<esi:include src=“http://search.akamai.com/
search?query=$(QUERY_STRING{’query’})”/>

1. The GEO variable is in addition to ESI 1.0 specifications. See “The ESI Specification” on page 8.
— EdgeSuite 5.0: ESI Developer’s Guide — 47 —

ESI Variables Support
Note that you cannot use an EdgeScape default key or value in ESI, but you can set a
default value on a GEO, as you can on any other variables, in ESI. Setting default val-
ues is described on page 56.

Also, the Domain and Company data available from EdgeScape Pro are not available
in ESI.

TRAFFIC_INFO:
Bandwidth Usage

Variables

With the Usage Control EdgeSuite feature, you can define a variable in EdgeSuite
configuration representing the bandwidth used in serving content to end users. The
variables are define by:

• a CP Code or range of CP Codes (the CP Code is a unique number or set of
numbers associated with your Akamai account contract.)

• a name.

• for the CP Code or CP Code range,

• For each variable, one of the following:

- the current bit usage per second for streaming and other traffic.

- the total megabyte usage since the beginning of the current calendar month
for streaming traffic.

- a fixed number (for example, to represent a threshold level).

The current bits-per-second may have a lag time of up to ten minutes from the time
the data is sampled and propagated to the time it is available at the edge servers. The
megabyte usage since the beginning of the month is updated every six hours.

You can have more than one variable defined and accessed. You can then access the
variable in ESI as a name key of the dictionary, TRAFFIC_INFO.

Note, however, that this variable is created as a floating point number, but, like other
variables passed to ESI, is accessed as a string in ESI. If you want to do numeric com-
parisons, you can do a rough conversion of the variable to an integer by truncating
the period (.) and everything after it, then converting the remaining integer-like
string to an integer, using ESI functions as follows. In this example, the key passed to
ESI is BW1.

$int($substr($(TRAFFIC_INFO{BW1}), 0, $index($(TRAFFIC_INFO{BW1}), ‘.’)))

You could then use this integer in evaluations. For example:

<esi:assign name="NEW_BW" value="$int($substr($(TRAFFIC_INFO{BW1}), 0,
$index($(TRAFFIC_INFO{BW1}), ‘.’)))"/>

<esi:choose>
<esi:when test=“$int($(NEW_BW))>2000”>

$set_redirect('lightestweightfile.html')
</esi:when>
<esi:when test=“($int($(NEW_BW))>1000)&&($int($(NEW_BW))<2000)”>

 <esi:include src=“secondary-file.html”/>
</esi:when>
<esi:otherwise>

<esi:include src=“primary_fragment.html”/>
</esi:otherwise>

</esi:choose>
— 48 — Akamai Technologies, Inc. — 8/29/04 —

Substructures
This construction says to redirect the entire request to the lightest weight alternative
if NEW_BW is over 2000; if NEW_BW is over 1000 but less than 2000, include a
fragment that is lighter than the original but not the primary. Otherwise, use the pri-
mary fragment.

One thing you would want to add to this example is an $exist() test to check that
$(TRAFFIC_INFO{BW1}) is not null—that is, that the key has successfully been passed
and accessed in ESI before attempting to use it.

Extracted Values You can extract values from cookies, path components or parameters, or query
strings, and pass them to ESI as variables. This extraction is discussed in the EdgeSuite
Configuration Guide and in the EdgeSuite Session ID Support guide.

Substructures

Variable substructures can be accessed by key with a $(VARIABLE{key}) structure. In
the following example, the variable value could be set to override the existing value
for the query. For example:

Substructure access makes sense for certain variables only. Key-based access makes
sense for all variables consisting of logical key-value pairs. Table 4 on page 50 lists
examples of substructure access for those variables that accept them, with specific val-
ues based on the examples in Table 3. Note that ESI supports the virtual keys,
browser, version, and os, are accepted on HTTP_USER_AGENT.

Substructure
Example

This example uses the <esi:vars> tag, described on page 41.

When requested from Internet Explorer, the following ESI markup

…resolves to this in the output HTML:

<esi:include
src=“http://search.akamai.com/

search?query=$(QUERY_STRING{’query’})”/>

<esi:vars><img src=“http://www.xyz.com/oop.cgi?browser=
$(HTTP_USER_AGENT{’browser’})”></esi:vars>

— EdgeSuite 5.0: ESI Developer’s Guide — 49 —

ESI Variables Support
Table 4: Variable Substructure Access

EXAMPLE ACCESS DESCRIPTION / EXAMPLE VALUES

$(GEO{key})
where the key can be one of the elements
listed in the right column. For example,
$(GEO{’country_code’}). The values are all
reported as strings.

Note that the Domain and Company keys
are not available in ESI.

continent = NA
country_code = US
region_code = CA
city = SANFRANCISCO
dma = 807
msa = 127
pmsa = 7360
areacode = 415+650
lat = 37.7753
long = 122.4186,
county = SANFRANCISCO+SANMATEO
fips = 06075+06081,
timezone = PST
network = ibm
network_type = dsl
asnum = 5413
zip = 60170 + 60240 - 60245 (The dash (-) indicates a range.)
throughput=high
(Other keys may be added as EdgeScape expands its capability.)

$(GEO) The result returns values for all above keys.

$(HTTP_ACCEPT{’text/html’}) Returns ’text/html’ if client browser reported ’text/html’ as sup-
ported medium.

$(HTTP_ACCEPT_CHARSET{’iso-8859-5’}) Returns ’iso-8859-5’ if client browser reported ’iso-8859-5’ as sup-
ported charset.

$(HTTP_ACCEPT_ENCODING{’gzip’}) Returns ’gzip’ if client browser reported ’gzip’ as supported lan-
guage.

$(HTTP_ACCEPT_LANGUAGE{’fr’}) Returns ’fr’ if client browser reported ’fr’ as supported language.

$(HTTP_CONTENT_LENGTH) This does not return a string, but returns the length of the con-
tent entity, in bytes, e.g, 7512

$(HTTP_COOKIE{’visits’}) 42

$(HTTP_COOKIE) Returns a semi-colon-separated list of key=value pairs, e.g.,
id=571; visits=42

$(HTTP_USER_AGENT{’os’}) Win (Returns “WIN”, “MAC”, “UNIX” or “OTHER”). “UNIX” is
also returned for Linux, SunOS and Solaris.

$(HTTP_USER_AGENT{’version’}) 5.0.1 (Returns browser version on MSIE or Mozilla)

$(HTTP_USER_AGENT) The User-Agent string returned from the browser, as a semi-
colon-separated list of key=value pairs, e.g., Mozilla 4.0; MSIE
5.0.1; WIN

$(QUERY_STRING{’last’}) Roberts
— 50 — Akamai Technologies, Inc. — 8/29/04 —

Setting and Using User-Defined Variables—the assign Statement
Setting and Using User-Defined Variables—the assign Statement

The esi:assign statement provides for setting variables multiple types, including
strings and compound expressions involving multiple types and operators described
in “Expressions and Operations” on page 59. The esi:set statement is now depre-
cated, since it has been replaced by the more functional esi:assign. Code using
esi:set will be supported for now but may be dropped in the future.

Regex Match Results
as Variables

One type of variable assignation does not require either a set or assign statement,
and that is when you create a variable from the results of a regex match. This is
described on page 61.

assign The assign1 statement uses a short or long form to define a custom name and value.

Syntax Short Form:

For example, using an integer:

The name is composed of up to 256 alphanumeric characters (A-z, 0-9), and can
include underscores (_) but cannot include a $ (dollar sign), which is reserved. The
first character must be an alpha character of either case.

The value is an expression or compound expression—multiple expressions con-
nected by mathematical, string, or Boolean operators, which are discussed in “Expres-
sions and Operations” on page 59. The compound expressions can mix types, but
The value cannot be empty or null—that is, value="" is not legal.

The {key} is optional—it is the index value for a list or the name key for a dictionary.
Dictionary and list subkeys in assign are discussed on page 53.

In the short form, the value is surrounded by double quotes. In the long form, the
value is whatever is inside the opening and closing phrases, and the type of the expres-
sion is identified by conventions described on page 63. You can use the backslash (\)
(page 59) in the assign statement to include characters you could not otherwise
include.

Long Form:

$(TRAFFIC_INFO{BW}) 8737.9933 (a string that looks like a floating point, representing
bandwidth usage over some period).

Table 4: Variable Substructure Access

1. The assign tag is in addition to ESI 1.0 specifications. See “The ESI Specification” on page 8.

<esi:assign name="var_name{key}" value=”value”/>

<esi:assign name="A_Number" value="123"/>

<esi:assign name=“name”>

’This is the value, an expression consisting of 1 or more types
and operators.’

</esi:assign>
— EdgeSuite 5.0: ESI Developer’s Guide — 51 —

ESI Variables Support
Example:

Usage You can use assign as an ESI statement by itself or within an ESI block such as the
choose block. The value is passed from template pages to fragments, but not from
fragments to templates. The value is recalled with $(name). For example:

This example creates the foo variable with an initial numeric value of 12345. The
when test evaluates whether foo is equal to 12345. Since it is, the next line reassigns
foo to 54321. The choose block is closed, and the next line recalls the value of foo,
which is now 54321.The purpose of the <esi:vars> tag is further described on page
41; in brief, it allows the ESI-assign variable foo to be used outside any ESI statement
or block—in this case, in the “This should print…” line.

Other examples of esi:assign can be found throughout this document, and particu-
larly in the discussions of functions, beginning on page 67.

Usage in a try Block Because of the way the pages and blocks are processed, the values of user-defined vari-
ables assigned or reassigned inside a try block cannot be passed to statements outside
the block or to other statements inside the block; they can be used only in the specific
statement and its children. To illustrate this point, look at this code logic:

In this case, none of the variables are used outside the try block, except that Variable
1 would be used with Object 1 and its children if that attempt completes, Variable 2
would be used with Object 2 and its children if that attempt completes, etc.

<esi:assign name=“Favorites”>
{’Sports’: ’football, basketball, soccer’, ’Music’: ’classical
jazz, fusion, Latin jazz’, ’Books’: ’popular fiction, Sci-fi’}

</esi:assign>

<esi:assign name=“foo” value="12345"/>
<esi:choose>
<esi:when test=“$(foo)==12345”>
 <esi:assign name=“foo” value=“54321”/>
 </esi:when>
</esi:choose>
<esi:vars>
This should print out “54321”: $(foo)
</esi:vars>

<esi:try>
<esi:attempt>

assign Variable 1
include Object 1 using Variable 1

</esi:attempt>
<esi:attempt>

assign Variable 2
include Object 2 using Variable 2

</esi:attempt>
<esi:attempt>

assign Variable 3
include Object 3 using Variable 3

</esi:attempt>
</esi:try>
— 52 — Akamai Technologies, Inc. — 8/29/04 —

Setting and Using User-Defined Variables—the assign Statement
An Exception to the try Block Rule—the eval Statement

An exception to the above logic occurs when variables are included using the eval
statement, described on page 25.

Lists, Dictionaries, and Subkeys in the assign Statement

Dictionaries and lists are defined in Table 5 on page 63. You can assign subkeys in
lists and dictionaries using the following construction:

• Lists keys are index numbers; the index key is a integer indicating the item’s posi-
tion, beginning with 0 for the first position.

• For dictionaries, the key is the name in a name:value pair.

A List Example

In the following example, the first line creates the list, colors, and assigns to it three
members, red, blue, and green, representing positions 0, 1, and 2. The second line
replaces red with purple at position 0.

Printing out colors, the output is ['purple', 'blue', 'green'].

A Dictionary Example

In this next example, the first line creates the dictionary, ages, and assigns entries.
The second line changes the value to 28 for dictionary name key, joan.

Here’s an alternate construction for the second line, taking advantage of the fact that
the dictionary value is an integer:

Either way, the dictionary output is {'bob':34, 'joan':28, 'ed':23}

List and Dictionary Subkey Guidelines

Using the assign statement subkey syntax, the following guidelines apply:

• You can create dictionaries, assign name keys and values on the fly, but lists must
already exist with all their members when you use the subkey construction. That
is, you cannot assign to an entry to a list index if the index position doesn’t exist.
On the other hand, if you assign an entry to a dictionary name key that doesn’t
exist, you’ll append a new name : value pair to the dictionary.

• You can refer to at most one subkey on “name” side of the assign statement.

• Lists and dictionaries are assigned by reference, not by copy.

The subsequent discussion is of examples and consequences of these guidelines.

<esi:assign name="list_or_dict{key}" value="somevalue"/>

<esi:assign name="colors" value="['red', 'blue', 'green']"/>
<esi:assign name="colors{0}" value="purple"/>

<esi:assign name="ages" value="{ 'bob' : 34, 'joan' : 27, 'ed' : 23 }"/>
<esi:assign name="ages{joan}" value="28"/>

<esi:assign name="ages{joan}" value="$(ages{joan}) + 1"/>
— EdgeSuite 5.0: ESI Developer’s Guide — 53 —

ESI Variables Support
Dictionaries Keys Can Be Created on the Fly, but Lists Must Exist

For dictionaries, you can create new keys on the fly. Lists, however, are limited to the
creation size. The different behaviors can result in significantly different results. Take,
for example:

The variable ages is dictionary, while colors is a list, and assigning keys (for dictio-
naries) or indexes (for lists) have different results.

We can append a new name : value pair to the dictionary as follows:

But if we attempt to add a fourth list member to the three-member list, colors, we
get a 500 error.

<esi:assign name="colors{3}" value="yellow"/> Error!

As an aside, note that list indexes are always integers. The following statement results
in an error because it attempts to assign a string name key where only an integer
would be accepted:

<esi:assign name="colors{joe}" value="black"/>

Not only can you create new dictionary keys on the fly, you can also create new dic-
tionaries. A dictionary does not need to exist before its subkey is assigned to, but a list
must. If a variable does not exist and a numbered index key is assigned, ESI creates a
dictionary instead, using the string representation of the index numbers as the name
key. To illustrate: even though you might intend creation of a list, this code creates a
dictionary with one pair, 0 : yellow; note that “0” is a string.

<esi:assign name="newlist{0}" value="yellow"/>

Remember that when you iterate over a dictionary, no order is guaranteed (see the
discussion on page 34). There may be times you need to create a indexed list. To do
this you can first create an empty list of the size you need; you can then modify the
list member by referring to its position. For example:

Refer to Only One Subkey on the Name Side of the assign Statement

You can refer to at most one subkey on the name side of the assignment:. The second
line below results in an error because it attempts to refer to more than one subkey.

<esi:assign name="ages" value="{ 'bob' : 34, 'joan' : 27, 'ed' : 23 }"/>
<esi:assign name="colors" value="['red', 'blue', 'green']"/>

<esi:assign name="ages{ronald}" value="56"/>
<esi:vars name="ages"/>

Output:

{ 'bob' : 34, 'joan' : 28, 'ed' : 23, 'ronald' : 56 }

<esi:comment value="Create a list of size 4"/>
<esi:assign name="newlist" value="[0, 0, 0, 0]"/>
<esi:assign name="newlist{0}" value="yellow"/>

<esi:assign name="complex" value="['one',['a', 'b' 'c'],'three']"/>
<esi:assign name="complex{1}{1}" value="x"/> ERROR!
— 54 — Akamai Technologies, Inc. — 8/29/04 —

Setting and Using User-Defined Variables—the assign Statement
To accomplish the result without generating an error:

The statement <esi:vars name="complex"/> now outputs:

['one', ['a', 'x' 'c'], 'three']

Note the successful replacement of “x” with “b” in the second position (position 1).

Lists and Dictionaries are Referenced, Not Copied

The previous examples works in the way illustrated because lists and dictionaries are
assigned by reference rather than by copy—a fact that can give you unexpected
behavior if you expect the variable to be copied. For example:

The output would be as follows:

The three output lines are the same because they all refer to the same list. Changing
one list changes them all, since they are assigned by reference, not by copy. This refer-
encing process applies to dictionaries as well as lists.

To achieve results that you would get by copying, you need to iterate over the original
structure and make assignments key by key. This iteration example uses foreach, dis-
cussed on page 34):

The iteration has created a copy of the dictionary. If you now output both, you can
note the change in the copied version; it has been modified as needed:

<esi:assign name="list_in_complex" value="$(complex{1})"/>
<esi:assign name="list_in_complex{1} value="x"/>

<esi:assign name="list" value="[1, 2, 3]"/>
<esi:assign name="copy1" value="list"/> Does not copy!
<esi:assign name="copy2" value="list"/> Does not copy!
<esi:assign name="copy1{2} value="9"/>

<esi:vars>
$(list)
$(copy1)
$(copy2)
</esi:vars>

Output:

[1, 2, 9]
[1, 2, 9]
[1, 2, 9]

<esi:assign name="dict" value="{1 : 'one', 2 : 'two', 3 : 'three'}"/>
<esi:foreach collection="dict"/>
<esi:assign name="copy{$(item{0})}" value="$(item{1})"/>
</esi:foreach>
<esi:assign name="copy{2}" value="Second"/>

<esi:vars name="dict"/>
<esi:vars name="copy"/>

Output:

{ 1 : 'one', 2 : 'two', 3 : 'three' }
{ 1 : 'one', 2 : 'Second', 3 : 'three' }
— EdgeSuite 5.0: ESI Developer’s Guide — 55 —

ESI Variables Support
This iterative operation can be more difficult to accomplish for lists, since you must
first create the copy list with the correct size before you perform the copy. When you
do not know the size of the list beforehand, this proves to be difficult but possible
with the use of the eval statement (page 25).

Setting Defaults

Attempted access to undefined variables, empty variables, or non-existent sub-struc-
ture (unknown key name) evaluates to null (empty). In cases where evaluation can
yield a null value, you can specify the substitution of a default value instead, using the
following syntax where default is an expression. See Table 5 on page 63 for details on
expressions in ESI.

For example:

will result in EdgeSuite fetching the following URL if it cannot evaluate “cobrand”
from the cookie.

Another example: this construction sets “en-us” as the default language for the
HTTP_ACCEPT_LANGUAGE variable.

Using Expressions Other Than Strings

Expressions other than strings can be used as defaults. Here’s an example of a user-
defined variable used as a default value. This sets a user-defined variable named
“Default_Browser,” and then uses its value as the default user agent. (See page 51 for
more information about the esi:assign statement.)

If $(HTTP_USER_AGENT) cannot be evaluated, the value defaults to
$(Default_Browser), which in this case evaluates to “OTHER.”

Testing for an Empty or Non-Existent Variable

You can use the ESI functions, $is_empty() and $exists(), to check for empty or
nonexistent variables, as described on page 74.

$(VARIABLE|default)

<esi:include
src=“http://www.xyz.com/$(HTTP_COOKIE{‘cobrand’}|’akamai’).htm”/>

http://www.xyz.com/akamai.html

<esi:vars><IFRAME src=“$(HTTP_ACCEPT_LANGUAGE{‘en-gb’}|’en-us’)/
flag.htm”></esi:vars>

 -- alternative HTML markup for IFRAME --
</IFRAME>

<esi:assign name=“Default_Browser”> ’OTHER’</esi:assign>
<esi:vars>
<img src=“http://www.xyz.com/oop.cgi?browser=

$(HTTP_USER_AGENT{’browser’} | $(Default_Browser))”>
</esi:vars>
— 56 — Akamai Technologies, Inc. — 8/29/04 —

Setting Defaults
You can also use the following methods inside a choose block:

If the variable is empty or non-existent, the test evaluates to “false.” To return “true” if
the variable is empty or non-existent, use the following construction:

The following would test for the existence of a query string:

<esi:when test="$(foo)">

<esi:when test="!$(foo)">

<esi:when test="$(QUERY_STRING)">
— EdgeSuite 5.0: ESI Developer’s Guide — 57 —

ESI Variables Support
— 58 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 7. Expressions and Operations

This chapter covers the boolean operations, logical and string operations, expressions,
and escape operations used in EdgeSuite ESI.

Escaping the $ and Other Reserved Characters

Certain characters are reserved in ESI. For example, the $ indicates a function or vari-
able evaluation will follow, and the single quote delineates the beginning or ending of
a string. You can use the <esi:text> statement to insert pure text, as described on
page 40, or you can place any character as a literal in any ESI code by preceding it

with a backslash (\)1. To use a user-defined variable as an example:

This would yield the value, “You’ll get amazing products.” You can use a double-
backslash to yield a literal backslash. The following would yield “\Program
Files\Game\Fun.exe.”

Triple Single Quotes The backslash works inside any ESI code or block of code, including esi:include
statements and attributes. You can also use triple quotes—pairs of three single
quotes—to surround the strings, instead of single quotes, to indicate literals, includ-
ing the backslash and the dollar sign ($). This is described in Table 5 on page 63. For
example, in previous versions of ESI, you could have used the following statement to
yield the value, “\Program Files\Games\Fun.exe”:

Beware of Quadruple
Single Quotes

Using the triple quotes, this statement yields the same value:

A Caveat and a Solution Note: When using triple-single quotes, do not place them next to another single
quote—that is, do not use four single quotes. The following would yield an error:

A solution is to add a space after the first of the four single quotes. In the above exam-
ple, the final phrase would become ’Cat’s Meow.’ ’’’”/>

<esi:assign name="pitch" value=”’You\’ll get amazing products.’”/>

1. The \ operator and the triple quote string function are extensions to the ESI 1.0 specifications.
See “The ESI Specification” on page 8.

<esi:assign name="game" value=”’\\Program Files\\Game\\Fun.exe.’”/>

<esi:assign name="game" value=”’\Program Files\Game\Fun.exe.’”/>

<esi:assign name="game" value=”’’’\Program Files\Games\Fun.exe.’’’”/>

<esi:assign name="quote" value=”’’’It’s the ’Cat’s Meow.’’’’”/>
— EdgeSuite 5.0: ESI Developer’s Guide — 59 —

Expressions and Operations
Boolean Expressions

A Boolean expression, shown in this document as BOOL-expr, evaluates to logical true
(value=1) or false (value=0). These operators are most frequently used with the when
statement in the choose block, discussed on page 31. The following set of unary and
binary logical operators are supported, listed in order of decreasing precedence:

If you choose to bitwise operators as described on page 64, you must use && and ||
in place of & and |, respectively. The bitwise behavior is off by default but may be
enabled in your EdgeSuite configuration file. It is highly recommended to convert
documents using & and | as logical operators to the new format.

Note that the use of & is query strings is not affected by this, since in query strings
the & is not a logical AND, but is a separator by convention.

The follows rules apply to the Boolean operations:

• Operands associate from left to right. Sub-expressions can be grouped with
parentheses to explicitly specify association.

• If both operands are numeric, the expression is evaluated numerically. If either
binary operand is non-numeric, both operands are evaluated lexicographically as
strings. Values returned for environmental variables may be evaluated as num-
bers, but care should be taken. For example, a version reported as 3.01.23 or
1.05a will not test as a number.

• Single or triple (three single) quotes must be used to delimit string literals.

• If any operand is empty or undefined, the expression is evaluated to be false.

• The logical operators (&&, !, ||) are used to qualify comparisons.

has and has_i The has and has_i1 operators check to see if an expression contains a particular
string; has_i performs a case insensitive evaluation. These operators are useful in

OPERATOR TYPE

==, !=, <, >, <=, >=,
has, has_i, matches, matches_i

comparison

! unary negation

&& (or & when bitwise is not used) logical and

|| (or | when bitwise is not used) logical or

$(HTTP_COOKIE{'first_name'}|'new user')

Examples of correct syntax:

!(1==1)
!(‘a’<=‘c’)
(1==1)|(‘abc’==‘def’)
(4!=5)&&(4==5)

1. The has_i operator is an extension to the ESI 1.0 specifications. See “The ESI Specification”
on page 8.
— 60 — Akamai Technologies, Inc. — 8/29/04 —

Boolean Expressions
checking for strings in the environment variables discussed in the next chapter. The
comparison can be used on a variable or on a part of a variable—for example, a key, a
value, or part of a key or value. For example, the following constructions are all valid:

<esi:when test=“$(HTTP_COOKIE) has ‘Sam’”>
<esi:when test=“$(HTTP_COOKIE{’first_name’}) has ‘Sam’”>
<esi:when test=“$(HTTP_COOKIE{’first_name’}) has_i ‘sam’”>

In the first two examples, case matters: “Sam” is not the same as “sam.”

• The first test, $(HTTP_COOKIE) has ‘Sam’, evaluates to true if “Sam” is found
anywhere in the result (e.g., first_name=Sam, last_name=Samuelson, or loca-
tion=Samoa).

• The second test, $(HTTP_COOKIE{’first_name’}) has ‘Sam’ evaluates to true
only if “Sam” is a result of the evaluation of the first_name key.

• The third test, the has_i evaluation, is similar to the second but evaluates to true
if it finds a case variant of “Sam,” such as “sam,” “SAM,” or “saM.”

Regular Expression Evaluations

matches and
matches_i

The matches1 operator checks to see if an expression contains an extended regular
expression (ERE) such as is used in the UNIX grep family; matches_i performs a case
insensitive evaluation. Examples:

<esi:when test=“$(HTTP_CONTENT_LENGTH) matches ’’’^[0-9]{5,}$’’’”>
<esi:when test=“$(HTTP_USER_AGENT{’version’}) matches ’’’4\.[0-9]+’’’”>
<esi:when test=“$(HTTP_USER_AGENT{’os’}) matches_i ’’’^u’’’”>

The first test would match any CONTENT_LENGTH evaluated to 5 or more dig-
its—10000 or more bytes. The second test would match versions returned if they
contained the term, 4.0, 4.56, 4.9a, etc. The third test would match “UNIX,” “unix,”
or “Unix,” for example.

You can use the case insensitive pattern matches modifier, “i” within a regular expres-
sion to match patterns in which some part of the expression needs to be case-sensitive
and another part doesn’t. For example:

<esi:when test="helloWORld matches '''hello((?i)world)'''">

evaluates to true, but...

<esi:when test="HelloWORld matches '''hello((?i)world)'''">

does not. The upper case “H” in the second example does not match.

Accessing Regex Results as Variables or Variable Subkeys

The matched expressions resulting from a matches or matches_i evaluation are
automatically assigned to ESI variables. Putting parentheses in your regular expres-
sion further allows you to extract particular matched subexpressions into ESI vari-
ables.

1. The matches and matches_i operators are extensions to the ESI 1.0 specifications. See “The
ESI Specification” on page 8.
— EdgeSuite 5.0: ESI Developer’s Guide — 61 —

Expressions and Operations
By default, the matched expression and subexpressions are assigned to a variable
called MATCHES, but you can assign them to another variable name by using the
“matchname” attribute within your esi tag.

Within the ESI variable the indexes refer to each particular matched subexpression,
with index 1referring to the subexpression matched in the first parentheses, index 2
to the second parentheses, etc. Index 0 is special and refers to the entire matched
expression.

The matched subexpressions can then be accessed through the normal ESI method of
accessing variables—that is, $(VARIABLE) or $(VARIABLE{key}). Variables and their
subkeys are discussed on page 49.

Example of Matched Regular Expression Assignment to a Variable

This would print out:

You can access the results of a regex by assigning the results to a variable, as follows:

<esi:when test=”$(string) matches ‘‘‘a([0-9]*)([a-Z]*)’’’
matchname=’MYVAR’/>

The results are assigned to the variable “matchname.” If you do not specify the
matchname, a default, MATCHES, is used. The variable is accessed through the normal
ESI method of accessing variables, for example, $(MYVAR) (or $(MATCHES) when the
default is used). Subkeys are accessed as $(MYVAR{0}), $(MYVAR{1}), and so forth,
where “0,” “1,” and other numbers are position keys: the first, second, and subse-
quent matches found.

Triple Single Quotes Recommended

Note that the examples above use the triple-quote (three single quotes) method,
described in Table 5 on page 63, to surround the regular expression string. The triple
quotes are recommended to allow for the use of the literal backslash (\) character in
the expression. In ESI, the backslash would otherwise escape the character that fol-
lows it (as described on page 59). For more information on evaluations using regular
expressions, see an extended regular expression reference, for example:

http://www.opengroup.org/onlinepubs/7908799/xbd/re.html

<esi:assign name="myString" value="'xxx123foo456xxx'"/>
<esi:choose>

<esi:when test="$(myString) matches '''([0-9]+)([a-z]+)([0-9]+)'''"
matchname="myValue">

entire match is $(myValue{0})

first subexpression is $(myValue{1})

second subexpression is $(myValue{2})

third subexpression is $(myValue{3})

</esi:when>
</esi:choose>

entire match is 123foo456
first subexpression is 123
second subexpression is foo
third subexpression is 456
— 62 — Akamai Technologies, Inc. — 8/29/04 —

http://www.opengroup.org/onlinepubs/7908799/xbd/re.html

Expressions
Expressions

This table lists the expressions you can use in ESI. The examples shown in this table
use the assign statement (defines variables, described on page 51.)

Table 5: Expressionsa

TYPE DESCRIPTION & SYNTAX EXAMPLES

String 1 Characters, other than the single
quote surrounded by single quotes.

<esi:assign name="var" value="’Hello there, ’"/>
<esi:assign name="var">’Hello there, ’ </esi:assign>

String 2 Any characters surrounded by tri-
ple single quotes. This allows use of
literal single quotes, the dollar sign
($), or backslashes (\) in values.

Do not use four single quotes. This
example would yield an error
because of the four single quotes
after “meow.”

<esi:assign name="var" value="‘’’He’s using a literal \
and a $ in this form.’’’ "/>
<esi:assign name="var">’’’He’s using a literal \ and a $ in
this form.’’’ </esi:assign>

an illegal construction: <esi:assign name="quote"
value=”’’’It’s the ’Cat’s Meow.’’’’”/>
This can be made legal by adding a space after the first
of the four single quotes: ”’’’It’s the ’Cat’s Meow.’ ’’’”/>

Variable Any legal ESI-supported variable. <esi:assign name="var" value=
"$(HTTP_USER_AGENT{’os’})"/>
<esi:assign name="var">$(HTTP_USER_AGENT{’os’})</
esi:assign>

Function An ESI function (see page 67). <esi:assign name="var" value=
"$url_decode($(QUERY_STRING{’name’}))"/>

List Enclosed with square braces, a list
of items separated by commas. Lists
can mix sub-types.
Items are accessed using the posi-
tion (starting at 0) as the index key.

<esi:assign name="var"
value="[abc,def,efg,hij,klm,nop]"/>

$(var{3}) would return "hij".

Dictionary Enclosed with curly braces, a list of
name: value pairs, separated by
commas. Dictionaries can mix sub-
types. Dictionary items are accessed
using the pair value as the key.

<esi:assign name="var" value="{'sub1':'val1',
'sub2':123,'sub3':$(foo),'sub4':$(HTTP_USER_AGENT)}"/>

$(var{‘sub1’}) would return "val1"

Number An integer between 232–1 and

-232–1. (less than 2147483648 and
greater than –2147483647). Out-
side these limits, an evaluation may
fail or yield incorrect results.

<esi:assign name="var" value="123"/> or
<esi:assign name="var" value="-123"/>

An example of statement that will fail:
<esi:assign name="num" value="2147483647+1"/>

Boolean
expression

Uses a boolean operator (see p. 60) <esi:assign name="var" value="1 == 2"/>

Compound
expression

Uses a math or string operator,
described below. These may not be
used in an esi:include statement.

<esi:assign name="var" value="$(foo) + $(bar)"/>

a. Expressions other than the single quotes string are extensions to the ESI 1.0 specifications. See page 8.
— EdgeSuite 5.0: ESI Developer’s Guide — 63 —

Expressions and Operations
Logical and String
Operators

Bitwise Operations Bitwise operators act on the internal binary representation of a number.

Note that to use these bitmap operators you need to have your EdgeSuite configura-
tion set up to enable them. The default behavior is for ESI to see & and | as logical
operators.

Here are some examples:

Assume you have two decimal 8 bit numbers, 11 and 6. Their binary representa-
tions are as follows:

6 = 00000110

11 = 00001011

The bitwise operators would operate on these as follows:

6 << 2 = 00011000 = 24

11 << 1 = 00010110 = 22

6 >> 1 = 00000011 = 3

11 >> 1 = 00000101 = 5

Table 6: Operators Used with Compound Expressions

OPERATORS USED WITH

+ (add), - (subtract), * (multiply), / (divide), % (modulo—
return the remainder)

Numbers

+ (concatenate) Strings, Lists

* (repeat n times, e.g, 3*"string" returns "stringstring-
string")

Strings, Lists

.. (returns a range, e.g. [1..5] returns 1,2,3,4,5) Lists

Boolean operators (see page 60) All

Table 7: Bitwise Operators

OPERATOR ACTION

<< Shift left (shifts the bits of a number left)

>> Shift right (shiftf the bits of a number right)

~ Bitwise not (negation) (flips the bits of a number)

& And ('ands' the bits of two numbers)

| Or ('or' the bits of two numbers)

^ Xor ('exclusive ors' the bits of two numbers)
— 64 — Akamai Technologies, Inc. — 8/29/04 —

Expressions
Note that shifting a number one place left or right essentially multiples or divides the
number by 2.

More examples:

~6 = 11111001 = 249

~11 = 11110100 = 244

6 & 11 calculates as follows:

0110 = 6

& 1011 = 11

0010 = 2

6 | 11 calculates as follows:

0110 = 6

| 1011 = 11

1111 = 15

6 ^ 11 calculates as follows:

0110 = 6

^ 1011 = 11

1101 = 13

Range Operations
The range operator, two dots (..) returns a list of sequential values from the left value
to the right value. If the left value is more than the right value, the range is ascend-
ing, otherwise it is descending. The operator can only be used in the context of list
creation, inside list delineators []. Some examples:

<esi:assign name="list" value="[0..7]"/>
<esi:foreach collection="[1..10]"> or
<esi:foreach collection="[5..1]"> or
<esi:assign name="list" value="[0..3, 5, 7..9]"/>

The above four lines could be expressed as:

<esi:assign name="list" value="[0, 1, 2, 3, 4, 5, 6, 7]"/>
<esi:foreach collection="[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]">
<esi:foreach collection="[5, 4, 3, 2, 1]">
<esi:assign name="list" value="[0, 1, 2, 3, 5, 7, 8, 9]"/>

The left or right range member can be a variable. The following is valid when $(max)
evaluates to an integer:

<esi:foreach collection="[10 .. $(max)]">

The range operator can be interleaved in a list assignment:

<esi:assign name="list" value="[0..5, 8, 9, 12..78]"/>
— EdgeSuite 5.0: ESI Developer’s Guide — 65 —

Expressions and Operations
Treating Strings as Lists

Strings can be treated as lists. Note the following variable construction and the access
of subkeys, for example:

In this situation, the a_string variable is created as a string, but can be manipulated
as a list: a_character returns “a,” the first item (position 0) in the list, and
another_character returns “d,” the fourth item (position 3) in the list.

Mixing Types in Concatenation: an Implicit Coercion to Strings

When one side of the concatenation addition operator “+” is a string, ESI attempts to
coerce the other side into a string as well, and then perform the concatenation. For
example, the following concatenation, used in creating the variable, would return the
value, “You have 12 dollars:”

This can useful when constructing larger strings for objects such as unique cookies.
For example, this creates a variable, mycookie, by concatenating various string and
number values:

A Caveat Remembering that ESI evaluates expressions left to right, the coercion will not occur
in some situations. For example, the following formulation results in $(feb) evaluat-
ing to the string, “10 days in February:”

This is because the arithmetic addition, “2 + 8,” is evaluated before the implicit coer-
cion occurs in the concatenation. If you wanted “28 days” in February, you would
need to explicitly cast the 2 or the 8 to a string. You can do this in a couple of differ-
ent ways:

• Surround the two, or eight, or both, with single quotes, indicating a string:
value=”’2’ + ’8’” +

• Use the $str() function to cast one or both integers to strings, described on
page 71: value="$str(2) + $str(8) + '

It is not necessary to cast both numbers to a string because of the implicit conversion
rules, but it is good to be explicit.

<esi:assign name="a_string">'abcde'</esi:assign>
<esi:assign name="a_character">$(a_string{0})</esi:assign>
<esi:assign name="another_character">$(a_string{3})</esi:assign>

<esi:assign name="somemoney" value="'You have ' + 12 + ' dollars'">

<esi:assign name="mycookie" value="'ID0='+ $time() + '.' + $rand()
+';expires=Mon Apr 2314:37:13 2012; path=/;'"/>

<esi:vars>
$add_header('Set-Cookie', $(mycookie))
</esi:vars>

<esi:assign name="feb" value="2 + 8 + ' days in February'">
— 66 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 8. ESI Functions

In EdgeSuite ESI the dollar sign, “$,” has a special meaning: it indicates the begin-
ning of a function call or a variable that can be used either inside or outside an ESI
statement or block. The chapter, “ESI Variables Support,” discussed a specific use of
the $ to evaluate variables, but EdgeSuite ESI supports many other functions, includ-

ing the following, which are discussed in this chapter:1

As is the case with variables, you can use these functions in any appropriate ESI state-
ment, including include statements or choose blocks, and in assigning user-defined
variables, as described on page 51.

The expressions and operations used in the examples in this chapter are defined in
“Expressions and Operations” on page 59.

String Functions ESI contains a set of functions, detailed in the body of this chapter, to specify string
separators, change case, return substrings or index positions, strip white space, con-
catenate, or replace substrings.

Internationalization $convert_to_unicode() and $convert_from_unicode() are used only with multi-
byte encoding, to convert multibyte text to and from ESI’s internal encoding. These
are discussed in the chapter on internationalization on page 88.

Literals Note: you can also use the backslash(\) to embed literals in ESI code (see page 59), or
the esi:text statement to include pure text (see page 40).

• $dollar() – returns a literal “$”

• $dquote() | $squote() – return literal double quote marks (") and single quote
marks(’), respectively.

String/Integer Conversion • $str() casts integers to strings, and $int() casts strings to integers.

Inclusion of Binary Data • $bin_int() allows for the insertion of binary data. For example, the following:
<esi:vars>X$bin_int(127)X</esi:vars>

Would output (in hex dump), 58 7F 00 00 00 58

The “58” is ASCII code (in hex) for “X” and “7F 00 00 00” is the little endian
representation (in hex) of 127.

1. The function call capacity is in addition to ESI 1.0 specifications. See “The ESI Specification”
on page 8.
— EdgeSuite 5.0: ESI Developer’s Guide — 67 —

ESI Functions
Counting, Numbers, and
Booleans

• $len() – returns the length of a string or sequence

• $list_delitem() – deletes a list item and returns the value of the deleted item.

• $rand() returns a random numbers, and $last_rand() returns the last number
generated by $rand().

• $is_empty() | $exists() – return a true (1) or false (0) if a variable or func-
tion is empty or if it exists, respectively.

HTTP Functions • $add_header() – adds an HTTP response header.

• $set_response_code() sets an HTTP response code.

• $set_redirect() sets a redirect.

• $add_cachebusting_header() prevents caching in downstream (toward the cli-
ent browser) servers or proxies.

Encode/Decode Functions • $url_encode() | $url_decode() – encodes and decodes URLs with illegal (to
HTTP) characters.

• $html_encode() | $html_decode() – encodes and decodes HTML code with
illegal characters that need to be replaced

Time Functions • $time() and $http_time()– returns time in Unix epoch and in standard HTTP
format, respectively. $strftime()returns a specific formatted string.

String Functions

$string_split() $string_split(string [,sep] [,max_sep]) allows you to split a string into a list
using a specific character as a delimiter. It allows you to specify both a separator a
maximum number of splits that will be executed, with the remainder left in the final
segment. The string is the string to act on; sep is the optional character to use as a
separator—the default is white space ' '; and max_sep is the optional maximum num-
ber of splits.

This can be used, for example, to assign the plus sign (+) or other character as the
string separator to delimit stock quotes. Here’s an example of an iteration over a
query string using the plus sign (+) as the separator. No max_sep specified. The query
string is ‘stock1+stock2+stock3+stock4’:

And the result would be:

stock1
stock2
stock3
stock4

This function always returns a list. If the separator is not found in the string to be
split, the list contains the entire string as the only item in the list.

<esi:foreach item="stock_query"
collection="$string_split($(QUERY_STRING),'+')">

$(stock_query)

</esi:foreach>
— 68 — Akamai Technologies, Inc. — 8/29/04 —

String Functions
$join() $join(words[, sep]) takes a list of words and an optional separator and returns a
string formed by the concatenation of the members of that list, separated by the sepa-
rator. If no separator is specified, a single space is used by default. This function per-
forms the exact opposite function of $string_split().

In this example, the list shown first joined and separated by the default space, then by
a comma, then a comma and space.

$index() $index(s,c) returns the lowest index position, in 0-based indexing, in string s
where the character c is found. Returns -1 if c is not found.

For example, $index(‘teststring’,‘r’) returns 6, since “r” is the 7th character.

$rindex() $rindex(s,c) is similar to $index() except that it returns the highest index position.
For example, $rindex(‘teststring’,‘t’)returns 5, the highest position of “t”.

$lstrip() $lstrip(s) returns a copy of string s but without leading white-space characters.

For example, $lstrip(“ text”) returns “text”.

$rstrip() $rstrip(s) returns a copy of string s but without trailing white-space characters.

For example, $rstrip(‘text ’) returns “text”.

$strip() $strip(s) returns a copy of string s without leading or trailing white space.

For example, $strip(‘ text ’) returns “text”.

$replace() $replace(s, old, new[, maxsplit]) returns a copy of string s with all occur-
rences of substring old replaced by substring new. If the optional integer argument
maxsplit is given, only the first maxsplit occurrences are replaced.

For example, $replace(‘abcdefabcde’, ‘abc’, ‘xyz’, 1) returns “xyzdefabcde”.

$substr() $substr(s, i [, j]) retrieves the substring in string s from position i to j. If i is
negative then the substring begins that number of characters from the end of the
string. If j is negative then the substring is from i up to j characters from the end of

<esi:assign name="list" value="{ ’this’, ’is’, ’a’, ’phrase’ }"/>
<esi:assign name="str1" value="$join($(list))"/>
<esi:assign name="str2" value="$join($(list), ’,’)"/>
<esi:assign name="str2" value="$join($(list), ’, ’)"/>

$(str1) == "this is a phrase"
$(str2) == "this,is,a,phrase"
$(str3) == "this, is, a, phrase"
— EdgeSuite 5.0: ESI Developer’s Guide — 69 —

ESI Functions
the string. If the optional j is omitted, the substring ends at the end of the string.
Some examples:

$lower() $lower(s) Returns an all lowercase version of the string s.

For example, $lower(‘MakeLower’) returns “makelower”.

$upper() $upper(s) Returns an all uppercase version of the string s.

For example, $upper(‘MakeUpper’) returns “MAKEUPPER”.

Other Functions

$dollar() This takes no parameters and returns a literal “$.”

Example using esi:assign to set a user-defined variable (page 51):

When the variable is evaluated, $(a_hundred_dollars), it returns “$100.00.”

$dquote() | $squote() The function, $dquote(), returns a literal " (double quote), and $squote() returns a
literal ' (single quote).

$int() $int() explictly casts a string to an integer representation of the string, or to zero (0)
in the case of an error. For example, the following value evaluates to the integer, 14.:

You can use this to convert values passed as strings, such as query strings, to integers,
where appropriate. For example, in the following example, the query string value “d”
is “9,” and using $int(), the nextday variable evaluates to 10.

Without $int(), the variable would evaluate to “91.” The “1” would be implicitly
coerced to a string, as described on page 66, and then concatenated to the “9.”

<esi:assign name="a_str" value="‘whether tis nobler in the mind’"/>

$substr($(a_str), 0, 7) == "whether"
$substr($(a_str), 12, 6) == "nobler"
$substr($(a_str), 22) == "the mind"
$substr($(a_str), 0, -5) == "whether tis nobler in the"
$substr($(a_str), -8, 3) == "the"
$substr($(a_str), -8, -4) == "the"

<esi:assign name="dollar_sign" value="$dollar()"/>
<esi:assign name="a_hundred_dollars">$dollar()+‘100.00’</esi:assign>

<esi:assign name="total" value="7 + $int('7')"/>
<esi:vars>$(total)</esi:vars>

<esi:assign name="day" value="$(QUERY_STRING{d})" />
<esi:assign name="nextday" value="$int($(day)) + 1" />
<esi:vars>$(nextday)</esi:vars>
— 70 — Akamai Technologies, Inc. — 8/29/04 —

Other Functions
$str() $str() takes any input and will attempt to return the string representation of that
input. This is most often used to cast integers to strings in cases where expressions
would evaluate through addition when concatenation is wanted. For example, in this
example, UserID is an integer:

Without $str(), the number, UserID, would be added to the random number
$rand. With $str(), the result can be a cookie with the string form of $rand()
appended to the string form of $(UserID).

It is not necessary to cast both numbers to a string because of the implicit conversion
rules, but it is good to be explicit.

$len() This accepts the name of a list, string, or dictionary (see page 51) and returns the
length of the sequence: number of list items, length of a string, or number of name-
value pairs in a dictionary. When used on an integer, the return value is undefined.

For example, $len(“longword”) would return 8, and if “listname” is the name of a
list containing 12 items, then $len($(listname)) would return 12. Another exam-
ple of $len() is found in the example for the next function, $list_delitem().

$bin_int() $bin_int() takes a signed 4 byte integer and converts it into a 4 byte binary form. It
does this by reading 8 bit segments of the int from least significant byte to most sig-
nificant byte and outputting the binary representation of each byte. $bin_int(x) is
equivalent to Perl's pack(“Na4”, x);.

$list_delitem() $list_delitem(sequence,index_#) accepts a list and an index number (an integer
representing the position of the list item. The first position in the sequence is 0. This
function deletes the value stored at the integer position, and it returns the value
stored that was deleted. The list is now modified—the item has been deleted. For
example:

The first assign statement creates a variable, “my_car_list,” that has four members.
The second assign statement creates another variable, “not_belong,” based on the
$list_delitem() operating on “my_car_list” to return “Toyota,” the item in posi-
tion 2 which was deleted from the list.

Used iteratively, this function provides for looping.

<esi:assign name="cookie" value="$str($(UserID)) + $str($rand())'"/>
<esi:vars>
$add_header('Set-Cookie', $(cookie))
</esi:vars>

<esi:assign name="my_car_list">
['Ferarri', 'Aston Martin', 'Toyota', 'Porsche']
</esi:assign>
<esi:assign name="not_belong" value="$list_delitem($(my_car_list),2)"/>
— EdgeSuite 5.0: ESI Developer’s Guide — 71 —

ESI Functions
A Loop Example Using a
Query

Here’s an example of the iterative use of $list_delitem(). Note that this example
makes use of a variable, a member of a query string, as a list value. If a query string
has the same variable defined more than once, ESI automatically creates a list.

Note that this function is not intended to be a full iterative function. The ESI iterative
statement, esi:foreach, is described on page 34.

This example shows a member of the query string $(QUERY_STRING{’x’}) that rep-
resents four items with the same name but different values, for example,
?x=1&x=2&x=3&x=4. The four items could be four check boxes with the same name.
The query value ?x=1&x=2&x=3&x=4 is the equivalent of a list created with
esi:assign with the value “['1','2','3','4']”. Since query strings are always
interpreted as strings, the results are strings.

In this example, then, the esi:assign statement (page 51) is used to create a vari-
able, check_list, that accepts as its value the results of the query string.

Another variable, iter, is assigned as the value of $list_delitem operating on
check_list to delete the first item and return the remainder of the list.

Finally, the choose block is used to test that the length of the list is greater than 0.
When the test is met, the include statement fetches itself, in the sense that it calls the
file it’s in. This loop continues until the last item is deleted from the check_list and
the length of iter becomes 0.

Note that in the choose block, the $len() function is used to determine the remain-
ing number of items in the list.

Finally, note that to iterate as shown here, you could create a list using the assign
statement without the query string, but that might not be as useful in this context.
— 72 — Akamai Technologies, Inc. — 8/29/04 —

Other Functions
Example:

$rand() | $last_rand() $rand([n]) generates and embeds a random number between 0 and (n-1). For
example, given $rand(1000), the random number generated is between 0 and 999.
The integer n is optional, and if it is omitted the number generated is between 0 and
99999999. For example:

http://myplace.net/ad/news.com/sz=392x72;ord=$last_rand() returns the last
number generated by $rand(). For example:

The generated number is passed from template pages to fragments, but not from
fragments to templates. That is, if you use $rand() to generate a number in a parent
page, you can use $last_rand() to recall the number in the child.

loop.html

<html>
<body>
This is a loop test
<esi:assign name="check_list" value="$(QUERY_STRING{’x’})"/>
<esi:include src="loop_body.html"/>
</body>
</html>

loop_body.html

<esi:assign name="iter" value="$list_delitem($(check_list), 0)"/>
<esi:vars>
This is iteration number #$(iter)

</esi:vars>
<esi:choose>

<esi:when test="$len($(check_list)) > 0">

<esi:include src="loop_body.html"/>

</esi:when>
</esi:choose>

Note the QUERY_STRING in the request
127.0.0.1:3128/esi/loop.html?x=1&x=2&x=3&x=4
and the result...

<html>
<body>
This is a loop test
This is iteration number #1

This is iteration number #2

This is iteration number #3

This is iteration number #4

</body>
</html>

<esi:vars>

</esi:vars>

<esi:comment text=“use the same ad as before“/>
<esi:vars>

</esi:vars>
— EdgeSuite 5.0: ESI Developer’s Guide — 73 —

ESI Functions
An Alternative to
$last_rand()

Note that you can easily assign a $rand() value to a variable. For example:

You could then use $(LRand) to return the number generated by $rand(), with an
obvious advantage being that you can create multiple variables storing different ran-
dom numbers.

$is_empty() | $exists() These functions provide the ability to determine whether a variable or user-defined
variable contains no data or if it exists at all. $exists() returns a true (1) if the
object exists; $is_empty() returns a true if the object exists but consists of no data.

$add_header() $add_header(header_name,header_value) adds an HTTP response header; it does
not replace existing headers. This can be virtually any header, but note that EdgeSuite
does not pay attention to these headers as it passes them to the client. A header set on
a fragment is included with response headers on the template. You can use this func-
tion to affect the downstream environment but not the EdgeSuite environment. An
example:

Note the recommended usage of the $url_encode() function on both the cookie
name and value, but not the equal sign between them.

Results:

This example demonstrates the use of the add_header() function to set a Set-Cookie
header. It also demonstrates what happens if you set multiple headers with the same

<esi:assign name="LRand" value="$rand(10000)"/>

<esi:choose>
<esi:when test=“$exists($(HTTP_COOKIE{‘group’}))”>

<esi:include src=“http://www.akamai.com/a.html”/>
</esi:when>
<esi:when test=“$is_empty($(HTTP_COOKIE{‘group’}))”>

<esi:include src=“http://www.akamai.com/b.html”/>
</esi:when>
<esi:otherwise>

<esi:include src=“http://www.akamai.com/c.html”/>
</esi:otherwise>

</esi:choose>

<esi:vars>
$add_header(’Set-Cookie’, ’MyCookie1=SomeValue;’)
$add_header(’Set-Cookie’,

$url_encode(’MyCookie2’)+’=’$url_encode(‘SomeValue2’)+’;’)
<esi:comment text=“the next statement should not contain line breaks,

even though it may appear to have breaks in this example.”/>
$add_header(’Set-Cookie’,

$url_encode(’MyCookie3’)+’=’$url_encode(‘SomeValue3’)+’;’+
expires+’=’+$http_time($time()+36000)+’;’ path=/;
domain=’+$(HTTP_HOST)+’;’)

</esi:vars>

Set-Cookie: MyCookie=SomeValue;
Set-Cookie: MyCookie=SomeValue3; expires=Fri, 20 Jul 2001 02:29:22 GMT;

path=/; domain=127.0.0.1;
Set-Cookie: MyCookie=SomeValue2;
— 74 — Akamai Technologies, Inc. — 8/29/04 —

Other Functions
name—they do not replace headers of the same name, but instead they get added to
the header list and are all sent. The order they are sent to the client is undefined and
is not determined by the order they were set. HTTP places no precedence on headers
arriving in a particular order.

$set_response_code() This function allows you to send to set arbitrary response codes in the template or
fragment. The form is $set_response_code(int [,html]), where int is a legiti-
mate HTTP response code, and html is HTML code that may optionally be included
with the response. An example: $set_response_code(404).

If you use $set_response_code() to send an error code, note that EdgeSuite doesn’t
preserve the body of the message. You can use the optional html parameter to send
back a custom error page. If you don’t use the html parameter, a standard error page is
generated, not the resulting ESI page. An example of code using the html parameter.

In this example, if the test for $(error) evaluates to true, the 404 response code is
returned along with the $(errorpage) text which replaces the original output.

$set_redirect() This function allows you to set a redirect (a 302, Moved Temporarily). The form is
$set_redirect (Location), where the string, Location, is the URL to redirect to.
Because some browsers do not handle relative URLs correctly, the location should be
absolute. Also, you may want to use $url_encode() function to remove the possibil-
ity of malformed URLs.

Note that if you use $set_redirect() to issue a redirect, you should not use the pre-
vious function, $set_response_code(), to set a redirect response code. The
$set_redirect(‘http://xyz.example.com/’) function is equivalent to
set_response_code(302) plus the additional function,
add_header('Location', 'http://xyz.example.com/').

• With $set_redirec(), ESI removes the body of the response, creates a Location:
header and passes this Location header to the template (from the fragment if it's
created there). The implication is that if there is a redirect set on any fragment or
the template in an ESI construction, the client browser will follow the redirect
and the end user won’t see the original ESI-produced page. In other words, you
can’t use $set_redirect() to replace a fragment in the original page.

<esi:assign name="errorpage">

<HTML>

<BODY>

This is the body of my 404 error page.

</BODY>

</HTML>
</esi:assign>

<esi:choose>

<esi:when test="$(error)==1">

$set_response_code(404, $(errorpage))

</esi:when>
<esi:choose>
— EdgeSuite 5.0: ESI Developer’s Guide — 75 —

ESI Functions
The following example checks for the existence of a specific cookie. If the cookie
exists, include the regular html fragment. If the cookie doesn’t exist, redirect the client
browser to another address in the same domain.

$add_cachebusting_header() You can use this function without arguments to send a response header toward the
client browser to prevent caching on downstream servers or proxies. See the discus-
sion on page 22, or in the guide, Time-to-Live in Cache: Methods and Considerations.

$url_encode() |
$url_decode()

In the standard URL, specified in RFC 1738, certain characters are not legal.
$url_encode() accepts and encodes a string that may contain illegal characters. RFC
1738 can be found at:
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1738.txt

$url_decode() decodes special characters that were encoded from transmitting a
URL. Mainly, this is used to decode the value of members of a query string. Note
that EdgeSuite automatically stores the decoded version of query string values in the
QUERY_STRING variable, when referenced by name ($(QUERY_STRING{’foo’})).

EdgeSuite 4.6 and Higher

The following character hex conversions are used for ESI code in EdgeSuite 4.6
and higher. (See below for legacy support).

<esi:choose>
<esi:when test=“$exists($(HTTP_COOKIE{’group’}))”>

<esi:include src=“http://www.akamai.com/regular.html”/>
</esi:when>
<esi:otherwise>

$set_redirect(‘welcome.html’)
</esi:otherwise>

</esi:choose>

CHAR HEX CHAR HEX CHAR HEX

< 0x3C | 0x7C : 0x3A

> 0x3E ~ 0x7E ; 0x3B

" 0x22 [0x5B ? 0x3F

+ 0x2B] 0x5D / 0x2F

% 0x25 ‘ 0x60 @ 0x40

{ 0x7B ’ 0x27 = 0x3D

} 0x7D space 0x20 ? 0x3F
— 76 — Akamai Technologies, Inc. — 8/29/04 —

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1738.txt

Other Functions
Example:

This example creates a variable named “unencoded” with a value containing many
illegal characters. The first line below the esi:vars statement will show the original
string, since the statement decodes the encoded version. The second line shows the
encoded result, as does the third line, which encodes $(unencoded) by default after
not finding a variable named NONEXISTANT. The fourth line encodes “This is a
default string.” The results are seen below.

Results of the above sample $url_ lines:

Legacy Support for Prior Versions

The following character hex conversions are used by default for ESI code prior to
EdgeSuite 4.6. This method encodes the #, $, &, \, ^ (), characters not included in
the 4.6+ version, and it does not include the plus sign (+), which is. If you are using
this legacy encoding and want to upgrade to the 4.6+ URL encoding, you can do so
by changing your EdgeSuite configuration:

<esi:assign name="unencoded" value=This is a test ! !"#$%&'()*+,-./
:;<=>?@[\]^_`{|}~+!

<esi:vars>
$url_decode($url_encode($(unencoded)))
$url_encode($(unencoded))
$url_encode($(NONEXISTANT|$(unencoded)))
$url_encode($(NONEXISTANT|’This is a default string.’))
</esi:vars>

This is a test ! !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~+!
!%20!%22%23%24%25%26%27%28%29*+,-

.%2f%3a%3b%3c%3d%3e%3f%40%5b%5c%5d%5e_%60%7b%7c%7d%7e+!
%!%20!%22%23%24%25%26%27%28%29*+,-

.%2f%3a%3b%3c%3d%3e%3f%40%5b%5c%5d%5e_%60%7b%7c%7d%7e+!
This%20is%20a%20default%20string.

CHAR HEX CHAR HEX CHAR HEX

< 0x3C | 0x7C : 0x3A

> 0x3E \ 0x5C ; 0x3B

" 0x22 ^ 0x5E ? 0x3F

0x23 ~ 0x7E / 0x2F

$ 0x24 [0x5B @ 0x40

% 0x25] 0x5D = 0x3D

& 0x26 ‘ 0x60 ? 0x3F

{ 0x7B ’ 0x27 (0x28

} 0x7D space 0x20) 0x29
— EdgeSuite 5.0: ESI Developer’s Guide — 77 —

ESI Functions
Example:

This example creates a variable named “unencoded” with a value containing many
illegal characters. The first line below the esi:vars statement will show the original
string, since the statement decodes the encoded version. The second line shows the
encoded result. The results are seen below.

Results of the above sample $url_ lines:

$html_encode() |
$html_decode()

The $html_encode() encodes strings to HTML code and $html_decode() decodes
HTML strings or digit codes to flat text. These functions are similar to the URL
encoding discussed above, but unlike the URL encoding, these work asymmetrically.

Encoding The $html_encode() function encodes only four special characters used in HTML
for control purposes, and it leave others characters intact. Common characters don’t
need to be encoded unless they conflict with HTML control characters. The four
characters encoded by $html_encode() are as follows:

Decoding The $html_decode() function can accept any HTML code and translate it into its
original characters. The decoding is done following the ISO 8859-1 (Latin 1) charac-
ter set. The codes 127–159 are not used; if encoded representations of these charac-
ters are found, they are left as is and not decoded.

Usage An example use of this function would be to place HTML code, include the HTML
tags, into a variable, and then recall the variable without having the browser read and
act on the tags. For example:

When “foo” is later reported outside an ESI block (<esi:vars name="foo"/>), the
<h1> tags are encoded so that the browser doesn’t create a major heading. The decode
could be used still later to decode the string when formatted text is desired.

<esi:assign name="unencoded" value="’#%$^&This is a test
><,.?[]}{;:"|+=-_)(’"/>

<esi:vars>
$url_decode($url_encode($(unencoded)))
</esi:vars>

#%$^&This is a test ><,.?[]}{;:"| =-_)(
%23%25%24%5e%26This%20is%20a%20test%20%3e%3c,.%3f%5b%5d%7d%7b%3b%3a%22%

7c+%3d-_%29%28

Character Encoding

> (greater than) >

< (less than <

& (ampersand) &

“ (double quote) "

<esi:assign name="foo">
$html_encode("<h1>This is a heading</h1>")
</esi:assign>
— 78 — Akamai Technologies, Inc. — 8/29/04 —

Other Functions
$base64_encode() |
$base64_decode()

These functions encode/decode text using Base64 encoding. Both take a string to
encode / decode and return the respective result.

$base64_encode(text_to_encode) takes any string and return its base64 represen-
tation.

$base64_decode(text_to_decode) works only with a properly encoded string. If
there is an error decoding the string, $base64_decode returns an empty string.

Base64 encoding is symetrical, so the following is true

<esi:assign name="str" value="foo"/>
<esi:choose>

<esi:when test="$(str) == $base64_decode($base64_encode($(str)))"/>
true

</esi:when>
</esi:when>

$digest_md5() |
$digest_md5_hex()

These functions take a string and return a representation of the MD5 digest for that
string. MD5 digests are asymetrical, meaning you cannot “decode” the MD5 as you
can with Base64. An MD5 is a 128 bit integer, which can be accessed in ESI as either
a list of 4 (32 bit) signed integers, or as a 32 character string representation.
$digest_md5(text_to_digest) returns the a list of 4 (32 bit) signed integers, and
$digest_md5_hex(text_to_digest) returns a 32 character string representation.

Time functions There are three time functions: $time(), $http_time(), and $strftime().

$time() This takes no parameters and returns the current Greenwich Mean Time measured in
the number of seconds since the Unix Epoch. For example, if the current time is
Mon, 16 Jul 2001 14:36:56 GMT $time() returns “995319416.”

$http_time() $http_time() takes a single parameter, a integer representing Unix epoch time—that
is, a number of seconds since Jan 1, 1970. This function returns a string formatted
according to RFC 1123, the official method for representing time in HTTP. For
example, $http_time(995319416) returns Mon, 16 Jul 2001 14:36:56 GMT.

OR, $http_time($time()) would return the current time in the same format. A
typical use of this construction is contained in the preceding example on the
add_header() function.

RFC 1123 can be found at: ftp://ftp.isi.edu/in-notes/rfc1123.txt.

$strftime() $strftime(time,format) This function accepts an integer representing Unix Epoch
time and a format string, and returns a formatted string for the given timestamp or
the current system time if no timestamp is given.

Ordinary characters placed in the format string are copied to the result without con-
version. Conversion specifiers are introduced by a “%” character, and are replaced in
the result as follows:

%a The abbreviated weekday name according to the current locale.
— EdgeSuite 5.0: ESI Developer’s Guide — 79 —

ftp://ftp.isi.edu/in-notes/rfc1123.txt

ESI Functions
%A The full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%c The preferred date and time representation for the current locale.

%C The century number (year/100) as a 2-digit integer.

%d The day of the month as a decimal number (range 01 to 31).

%D Equivalent to %m/%d/%y. This format is broadly used in the U.S., but is not
recommended in an international context, since it can be confused with the
more common form, %d/%m/%y.

%e Like %d, the day of the month as a decimal number, but a leading zero is
replaced by a space.

%E Modifier: use alternative format. This is described below.

%G The ISO 8601 year with century as a decimal number. The 4-digit year corre-
sponding to the ISO week number (see %V). This has the same format and
value as %y, except that if the ISO week number belongs to the previous or
next year, that year is used instead.

%g Like %G, but without century, i.e., with a 2-digit year (00-99).

%h Equivalent to %b.

%H The hour as a decimal number using a 24-hour clock (range 00 to 23).

%I The hour as a decimal number using a 12-hour clock (range 01 to 12).

%j The day of the year as a decimal number (range 001 to 366).

%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits
are preceded by a blank. (See also %H.)

%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits
are preceded by a blank. (See also %I.)

%m The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

%n A newline character.

%O Modifier: use alternative format.This is described below.

%p Either “AM” or “PM” according to the given time value, or the corresponding
strings for the current locale. Noon is treated as “PM” and midnight as “AM.”

%P Like %p but in lower case: “am” or “pm” or a corresponding string for the cur-

rent locale. (GNU1)

%r The time in a.m. or p.m. notation. In the POSIX2 locale this is equivalent to
`%I:%M:%S %p'.

%R The time in 24-hour notation (%H:%M). For a version including the sec-
onds, see %T below.

%s The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00
UTC.

1. GNU is a UNIX-like operating system with user-modifiable source code.
2. POSIX (Portable Operating System Interface) is a set of standard operating system interfaces

based on UNIX.
— 80 — Akamai Technologies, Inc. — 8/29/04 —

Other Functions
%S The second as a decimal number (range 00 to 61).

%t A tab character.

%T The time in 24-hour notation (%H:%M:%S).

%u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.

%U The week number of the current year as a decimal, range 00 to 53, starting
with the first Sunday as the first day of the week 01. See also %V and %W.

%V The ISO 8601:1988 week number of the current year as a decimal, range 01
to 53, where week 1 is the first week that has at least 4 days in the current year,
and with Monday as the first day of the week. See also %U and %W.

%w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

%W The week number of the current year as a decimal number, range 00 to 53,
starting with the first Monday as the first day of week 01.

%x The preferred date representation for the current locale without the time.

%X The preferred time representation for the current locale without the date.

%y The year as a decimal number without a century (range 00 to 99).

%Y The year as a decimal number including the century.

%Z The time zone or name or abbreviation.

%+ The date and time in date(1) format.

%% A literal “%” character.

Some conversion specifiers can be modified by preceding them by the E or O modi-
fier to indicate that an alternative format should be used. The effect of the O modi-
fier is to use alternative numeric symbols (e.g., roman numerals), and that of the E
modifier is to use a locale-dependent alternative representation. If the alternative for-
mat or specification does not exist for the current locale, the behavior will be as if the
unmodified conversion specification were used.

Example:

This result of a $(date_string) evaluation at a particular moment, could be, e.g.,
“Mon, 16 July 2001 14:58:56 GMT”.

<esi:assign name="date_string" value="$strftime($time(), '%a, %d %B %Y
%H:%M:%S %Z')"/>
— EdgeSuite 5.0: ESI Developer’s Guide — 81 —

ESI Functions
— 82 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 9. User-Defined Functions (Beta)

In addition to the functions described in the previous chapter, ESI provides, cur-

rently as a Beta feature, the ability to define custom functions1.

Creating User-Defined Functions

A user-defined function is a named block of ESI code. It can be called to execute and
to return a value for continued processing.

Properties User-defined functions have the following properties:

• The function block can include any ESI code with the exception of
esi:include, esi:eval and esi:function. You cannot nest a function defini-
tion inside another function definition, and you cannot include a fragment.

• Normal ESI child-parent relationships are maintained with regard to
namespaces. The parent's (caller’s) namespace is visible to the functions in the
child, but not vice versa.

• Recursion is allowed. The maximum call stack depth defaults to five; the number
is configurable in your EdgeSuite configuration file.

• As is the case with the ESI provided functions, a user-defined function can be a
part of another ESI expression.

• Parameters can be passed to the function as arguments to the function. The
parameters are accessed with a single list variable inside the function.

• Functions are added to the namespace when the page is parsed, which means that
functions can be defined anywhere on a single ESI page and can be referenced
from anywhere on that page. This also means, however, that esi:eval state-
ments that include functions must occur before the function is referenced since
parsing of the eval statement does not occur until the tag is encountered during
processing.

• Errors in function definitions cause a syntax error, resulting in the return of an
HTTP 500 code.

• Functions have no effect on the output of the ESI page. Any content the function
produces must be in its return value.

1. User-defined functions are extensions to he ESI 1.0 specification. See page 8.
— EdgeSuite 5.0: ESI Developer’s Guide — 83 —

User-Defined Functions (Beta)
The esi:function Block and its Usage

esi:function The function statement block defines a custom function:

The name is composed of up to 64 alphanumeric characters (A-z, 0-9), and can
include underscores (_) but cannot include a $ (dollar sign), which is reserved. The
first character must be an alpha character of either case.

The block can include any ESI code with the exception of esi:include, esi:eval or
esi:function.

The return statement is used to return a value from the function that may be used in
an ESI expression.

The function can then be used anywhere ESI expressions such as variables and func-
tions can be used. For example, after defining fname as shown above, the following
will return its value:

or:

esi:return A local function terminates when the end of the function body is reached or when an
esi:return statement is processed. In the absence of an explicit return, a function
return value is an empty string ("").

Here, exp is the expression that is evaluated and returned to the caller. Two simple
examples:

A return statement can only appear inside a function body. If it appears anywhere
else, it will cause an HTTP 500 code to be returned.

<esi:function name="fname">

the value—the ESI code that comprises the function

<esi:return value="exp"/>
</esi:function>

<esi:vars>

$fname()
</esi:vars>

<esi:vars>

<esi:assign name="xyz" value="$fname() + 7"/>
</esi:vars>

<esi:return value="exp"/>

<esi:function name="return_one">
<esi:return value="1"/>

</esi:function>

<esi:function name="return_one_in_a_silly_way">
<esi:assign name="x" value="5"/>
<esi:return value="$(x) - 4"/>

</esi:function>
— 84 — Akamai Technologies, Inc. — 8/29/04 —

The esi:function Block and its Usage
Arguments Arguments to the function are available as a list variable, $(ARGS). This variable con-
tains all parameters referenced in the function calls argument list in a zero based order
accessible by normal ESI list syntax. For example:

Or, in the following example, an is_odd() function is defined by evaluating the
modulo for a number when divided by 2.

Iteration Since the $(ARGS) variable is a list, you can perform iterative operations. The follow-
ing code returns a sum total for a list of numbers:

<esi:vars>$add(5, 7)</esi:vars>
<esi:function name="add">

 <esi:return value="$(ARGS{0}) + $(ARGS{1})"/>
</esi:function>

<esi:assign name="is_odd" value="$is_odd($(x))"/>
<esi:function name="is_odd">

<esi:choose>
<esi:when test="$ARGS{0} % 2 == 1">

<esi:return value="1"/>
</esi:when>

</esi:choose>
<esi:return value="0"/>

</esi:function>

<esi:vars>$add(5, 7, 29, 1, 5)</esi:vars>
<esi:function name="add">

<esi:assign name="sum" value="0"/>
<esi:foreach collection=$(ARGS)>

<esi:assign name="sum" value="$(sum) + $(item)"/>
</esi:foreach>
<esi:return value="$(sum)/>

</esi:function>
— EdgeSuite 5.0: ESI Developer’s Guide — 85 —

User-Defined Functions (Beta)
Recursion The following example illustrates recursion calculation of an average for a list of
numbers. This example defines two new functions, addv and average, in addition to
the add function described in the prior example on iteration.

The addv function is needed to expand the list—that is, it takes all the items of the
ARGS list and treats them as the first element—$ARGS{0}:

Recursion Inside an esi:when to Perform a “while” Operation.

This example function, factor, can factor an integer of indeterminate length. The
function refers to itself to multiply an integer n by (n-1) until n reduces to 1:

The last line yields the result of factoring 5, that is,120.

Note that a recursion such as this is subject to the recursion limits discussed in under
“Properties” on page 83.

<esi:vars>$add(5, 7, 29, 1, 5)</esi:vars>
<esi:function name="addv">

<esi:assign name="sum" value="0"/>
<esi:foreach collection=$(ARGS{0})>

<esi:assign name="sum" value="$(sum) + $(item)"/>
</esi:foreach>
<esi:return value="$(sum)/>

</esi:function>

<esi:function name="average">
<esi:assign name="avg" value="0"/>
<esi:assign name="len" value="$len($(ARGS))"/>
<esi:choose>

<esi:when test="$(len) > 0">
<esi:assign name="sum" value="$addv($(ARGS))"/>
<esi:assign name="avg" value="$(sum) / $(len)"/>

</esi:when>
</esi:choose>
<esi:return value="$(avg)/>

</esi:function>

<esi:function name="factor">
<esi:choose>

<esi:when test="$(ARGS{0}) == 1">
<esi:return value="1"/>

</esi:when>
<esi:otherwise>

<esi:return value="$(ARGS{0} * $factor($ARGS{0} - 1)"/>
</esi:otherwise>

</esi:choose>
</esi:function>

<vars>$factor(5)</vars>
— 86 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 10. Internationalization

With some restrictions and caveats, any multibyte character set can be used in ESI1.
The following sets are explicitly supported:

• Shift_JIS

• EUC-JP

• ISO-2022-JP

Detection To use multibyte encoding, this feature must be enabled in your EdgeSuite configura-
tion. You can specify the type of encoding (a) in your EdgeSuite configuration file or
(b) with an HTTP Content-type header, that is,

Content-type: text/html; charset=charset_name

If the charset is unknown or there is no charset indicated, it is assumed to be a single-
byte charset. If there is a conflict between the EdgeSuite configuration setting and the
HTTP header setting, the HTTP header setting is used.

Restrictions The following restrictions apply when using multibyte sets in ESI:

1. Internationalization extends the ESI 1.0 specification. See “The ESI Specification” on page 8.

FUNCTION OR ELEMENT LIMITATION

CGI Variables (HTTP Headers) See discussion below, “Handling CGI
Variables.”

User-defined variable names
(esi:assign and esi:set)

Variable names can only contain the
ASCII characters [A-Z a-z 0-9]

The $list_delitem() function Does not work on multibyte characters

Printing a dictionary or list. E.g.,
<esi:vars>$(listname)</esi:vars>

Does not give desired results when used
with multibyte or high ASCII characters.

Booleans:
$has_i()
$matches()
$matches_i()

Using a multibyte character set, these
operate correctly only on US-ASCII char-
acters. Using a single-byte character set,
these work on all single-byte characters.
— EdgeSuite 5.0: ESI Developer’s Guide — 87 —

Internationalization
Handling CGI
Variables

When using multibyte encodings, you need to take care when you access data in the
HTTP header or POST data. When you pass characters encoded in a character set
other than US-ASCII to and from your web application, you must explicitly tell ESI
which data needs to be transcoded from the source encoding to ESI's internal encod-
ing and vice versa.

Common situations meriting attention are accessing cookie data or accessing data
passed in the query string or from a POST body. For example:

<esi:vars>
Hello, $(QUERY_STRING{‘name’})

</esi:vars>

The query variable, $(QUERY_STRING{‘name’}), could be Shift_JIS or it could be
ASCII; ESI has no way of knowing, and it will always use its own internal encoding.

Additionally, data in an HTTP header has probably been URL-encoded, a fact that
needs to be taken into account when you code to access data.

ESI provides URL-encoding and decoding functions, described on page 76. For the
basic transcoding needed between ESI’s internal encoding and multi-byte encodings,
ESI provides two language functions, $convert_to_unicode() and
$convert_from_unicode().

$convert_to_unicode()
and

$convert_from_unicode

These two functions are used only with multibyte encoding. When used in a single-
byte environment, they will cause HTTP 500 errors.

$convert_to_unicode(text_to_convert) converts any multibyte text to ESI’s
internal encoding. For example:

This tells ESI to convert the variable from the source encoding to its internal Unicode
representation.

$convert_from_unicode(text_to_convert) converts ESI’s internal encoding to the
multibyte text listed in the EdgeSuite configuration or the Content-type header.

For example, in the following formulation, the coder may not intend to have the vari-
able $(name) be a single-byte encoding.

You can resolve this using the conversion function:

However, since byte values above 0x7F cannot appear in HTTP headers, you need to
use the ESI function, $url_encode() (see page 78) to URL-encode the object:

<esi:vars>
Hello, $convert_to_unicode($(QUERY_STRING{‘name’}))

</esi:vars>

<esi:assign name=”name” value=”ENCODED_TEXT”/>
<esi:include src=”http://www.foo.com/tmp.pl?name=$(name)”/>

<esi:assign name=”name” value=”ENCODED_TEXT”/>
<esi:include src=”http://www.foo.com/

tmp.pl?name=$convert_from_unicode($(name))”/>

<esi:assign name=”name” value=”ENCODED_TEXT”/>
<esi:assign name=”urlname”

value==$url_encode($convert_from_unicode($(name)))”
<esi:include src=”http://www.foo.com/tmp.pl?name=$(urlname)”/>
— 88 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 11. Configuration & Content Control

This chapter is an overview to ESI configuration and content control considerations.
This is not intended to cover the whole of the topic, but is meant to familiarize you
with some of the methods and capabilities that apply specifically to ESI. For the
broader and more detailed discussions, please see the following documents:

• The EdgeSuite Configuration Guide details the configuration and control options
and parameters used for sites and objects in EdgeSuite, including ESI.

• EdgeSuite Handling of Edge-Control & Other HTTP Headers discusses the use of
HTTP request and response headers in the EdgeSuite environment.

• Time-to-Live in Cache: Methods and Considerations discusses the various methods
for determining the caching properties of objects on Akamai EdgeSuite servers.

• For information specifically on cookies and Session IDs and the use of these in
ESI, see EdgeSuite Session ID Support.

Configuration and Control Mechanisms

There are four primary content control mechanisms for objects requested and served
through EdgeSuite, three of which are discussed here: requests, configuration files,

and response headers—specifically, the Edge-control header. 1

• Requests can include a number of content control instructions. In ESI, instruc-
tions can be specified with attributes of the include statement such as no-store,
dca, ttl, and others, discussed in Chapter 3 starting on page 15.

• EdgeSuite configuration files provide the broadest and deepest control. These
are the primary method for setting options across groups of objects—on a per-
directory basis, on file extensions such as .html, .gif, .jpeg, etc., or based on
matching other criteria. For example, you can set up a match so that if a query
contains a particular string, the request should be handled in one way; otherwise,
do something else.

EdgeSuite configuration files provide for setting broad default values as well as
fine-tuning for particular cases. For example, you can nominate files for ESI pro-
cessing, or you can specify TTLs (time-to-live in cache) for fragments that are dif-
ferent from the time specified for templates or other objects.

1. The fourth mechanism for specifying metadata for EdgeSuite objects, the v1 ARL (Akamai
Resource Locator), is not discussed here.
— EdgeSuite 5.0: ESI Developer’s Guide — 89 —

Configuration & Content Control
EdgeSuite configuration files are distributed to every relevant Akamai server and
are not meant to be updated frequently. These files are created and managed by
Akamai based on your requirements and specifications.

• The Edge-control header (formerly known as the Ak-control header) is a form of
HTTP response header, included in addition to the normal HTTP response
header. An Edge-control header applies only to the associated object.

For complete information on the Edge-control header and on HTTP header
handling in EdgeSuite, see EdgeSuite Handling of Edge-Control & Other HTTP
Headers.

The following Edge-control header elements are of particular relevance to ESI.

- dca nominates the request for Dynamic Content Assembly and it sets the
processing type. This it is a required setting for every file to be ESI-processed
by EdgeSuite; the configuration can be with the header or in the configura-
tion. The setting for ESI is esi. The form in the header is:
Edge-control:dca=esi). Setting this specific header tells EdgeSuite to parse
the page for ESI language elements and process the relevant code. The other
types allowed are xslt, java, akamaizer, or noop. The Edge-con-
trol:dca=noop form tells EdgeSuite not to process the content for ESI or for
XSLT. A setting of noop tells EdgeSuite not to parse the content for ESI, for
example, even if the file is used as a fragment and contains ESI code.
You can daisy-chain processors by using the construction,
Edge-control:dca=xslt->esi.

This means first perform an XSL Transformation on the object, then process
the output as ESI. You can daisy-chain the Akamaizer, XSLT and ESI proces-
sors; you can daisy chain up to five processors total, in any order.

- dca-enable-debugging-tag enables the use of the <esi:debug/> statement
to turn on debugging for the current page, its parents and any fragments. If
this is not enabled (Off), the <esi:debug/> statement is ignored.

- cache-maxage specifies a TTL (Time To Live) for the object in Akamai
server cache. An cache-maxage=0s means that the object will be cached, but
every time it is requested EdgeSuite will attempt to revalidate it.

- no-store says the object cannot be cached, and existing cached instances are
purged. Akamai retrieves the object from the origin upon every request.

- bypass-cache is similar to no-store, but it passes the request without remov-
ing the underlying object from the cache if it's already in cache

- must-revalidate instructs EdgeSuite not to serve a stale cached object if it
cannot revalidate that object. By default, Akamai servers will serve a poten-
tially stale cached object if they are unable to revalidate that object because
of, for example, loss of connectivity to the origin server. The must-revali-
date header overrides that default.

You can also set TTL settings using the HTTP Cache-Control or Expires head-
ers, if the use of these headers is enabled in your EdgeSuite configuration file.
— 90 — Akamai Technologies, Inc. — 8/29/04 —

The Matching Criteria
Order of Precedence
If EdgeSuite receives contradictory instructions from different content control mech-
anisms, it uses the following order of precedence: (1) requests, (2) responses, and (3)
configuration files. That is, settings in requests override those in the response header,
which in turn override settings in the configuration files.

For example, if an individual file’s Edge-control cache-maxage, is set to 30 minutes,
while the configuration file sets a 15-minute maximum on the same request, the
Edge-control header 30-minute setting prevails. But an include request for the
object containing a 1-hour ttl attribute prevails over the Edge-control header setting.

The Matching Criteria

In EdgeSuite, you can use a variety of criteria to determine which requests shall be
affected by the content control attributes you want to apply—that is criteria that are
used to determine the scope of the application of attributes.

As described in the EdgeSuite Configuration Guide, the criteria can be as simple as the
file name or directory, or can as complex as matching a portion of a string extracted
from a cookie, header, or query string. The scope can be the entire web site or a single
object when certain conditions apply. Every configuration uses one or more of these
matching criteria, and certain criteria, such as a default maxage setting, are required.

The ESI Fragment Match

Configuring ESI can involve the use of any number of different matching criteria.
There is one that is geared exclusively to ESI, and that is: you can set other attributes
based on whether the requested object is an ESI fragment. For example, you can set a
specific maxage on requests for fragments only.

Options and Attributes

The following are options or attributes you set based on the object matching some
criteria—for example, whether the object is an ESI Fragment or not, or whether the a
response header contains specific data.

Enable ESI / XSLT Through Response Headers.

This enables the use of the Edge control response header,
Edge-Control:dca=”esi”|”xslt”|“akamaizer”|“java”|“noop” to nominate
objects for ESI or XSLT processing (see page 90). This and the next option (dca) are
the two acceptable ways of enabling DCA processing. Enabling response headers pro-
vides per object control.

Dynamic Content Assembly

This nominates an object for (a) ESI, for the (b) Edge Transformations Service, or (c)
specifies no DCA processing. This and the previous option are the two acceptable
ways of enabling DCA processing. While the previous option enables use of response
— EdgeSuite 5.0: ESI Developer’s Guide — 91 —

Configuration & Content Control
headers to nominate objects, this option nominates the objects that match some cri-
teria for whatever processing is specified. When using ESI or XSLT, this should not
be set to match an entire site, but should only apply to the specific text/html files that
are to be processed. You can daisy-chain up to five ESI and/or XSLT processors.

Enable Internationalization Features

You can enable the use of multi-byte character sets, which also impacts certain other
ESI features, as discussed in “Internationalization” on page 87.

Set Content Type

When you use the internationalization features in ESI, you need to specify the char-
acter set to use, either in EdgeSuite configuration or with a Content-Type header.
See “Internationalization” on page 87.

Disable iteration.

You can disable the use of the iteration (<esi:foreach>) within your ESI code.

Enable the Debugging Statement.

When turned on, this enables the use of the <esi:debug/> statement to turn on
debugging for the current page, its parents and any fragments. If this is not enabled
(Off), the <esi:debug/> statement is ignored. This option has an Edge-control
response header analog: Edge-control: dca-enable-debugging-tag.

Disable the backslash escape function

This disables the backslash (\) function as an escape character, described on page 59.

Disable function errors

If “Off,” which is the default, errors on functions—functions that don’t exist or
which use improper parameters—will generate a 500 error, and no processing will
take place. If “On,” function errors are ignored.

Disable ESI processing of POST responses
By default, you can use POST responses from the origin as discussed on page 46. This
function can be disabled.

Enabling and Disabling the Passing of EdgeScape and EdgeScape Pro data.

See the discussion about the GEO data on page 47. These options can be used only if
you subscribe to EdgeScape or EdgeScape Pro. You can enable passing the data for-
ward to your origin server and to ESI, or you can enable to passing the data forward
to your origin server but not to ESI.

Disable Strict Processor Domain Checking when Processor is “None.”

By default, EdgeSuite verifies that, if a processor type (dca=) of “none” is specified in
an ESI include, the domain of the template page matches the domain of the
included src object. This option disables this domain check.

Disable Strict Stylesheet Domain Checking

By default, EdgeSuite prohibits specifying an XSLT stylesheet in an ESI include
from a different domain from the XML page. This option disables this check.
— 92 — Akamai Technologies, Inc. — 8/29/04 —

Options and Attributes
Inherit the Processor Type of the Parent

This instructs EdgeSuite to process DCA fragments using the same process as the
template page. For example, if EdgeSuite is processing an ESI template, treat the
included object as an ESI fragment. This does not apply to XSLT; when the template
is XSLT, the child is always processed using XSLT.

The default behavior is for fragments with no processor type specified to receive no
processing at all. With this option set to “On,” fragments that have no processor type
specified for them (either through the configuration file or response headers) inherit
the processor type of the template page. If the processor type for the fragment is spec-
ified in the response headers or in the configuration file, this option has no affect.

Disable the Computing of Downstream TTL

This option disables the computation of downstream TTL.

By default, ESI computes the appropriate TTL (time-to-live in cache) for the
response to the client by comparing the caching metadata associated with all the frag-
ments. If a ttl attribute is present (and there are no instructions to prohibit caching),
the value will apply to the object to which it is associated, and in addition, the root
response header will be set to no more than the least ttl value of all objects associated
with the template. In other words, the resulting ESI page will be cached downstream
for a period defined by the shortest ttl of all the objects that compose the page.

Set the Downstream TTL

You can set the value of the HTTP Cache-control header on ESI-assembled objects
to client. You can set a no-store, no-cache, or a positive integer specified with s (sec-
onds), m (minutes), h (hours), or d (days) (e.g., 10h).

When you use this option, you should make sure that the honoring of HTTP Cache-
control headers is also enabled in your EdgeSuite configuration file. This will avoid
potential errors.

If you use no-store, the header is set to Cache-control: no-store, no-cache and
Expires: now, in order to purge downstream caches.

When set on a fragment, this value is used as one of the values used by ESI to calcu-
late the root TTL value determined by the computation of downstream TTL. When
you set a downstream TTL value in this manner on the template page, this value
overrides other TTL settings (but not a no-store or bypass-cache) calculated as
described in the preceding subsection.

When you allow ESI to calculate the downstream TTL, the value it sends will
account for time already spent in cache. But when you use the Downstream TTL
attribute, neither Cache-control: max-age setting nor the Expires data can be updated
to account for time already spent in cache. See the discussion on page 22.

Cache ESI Results

By default, the ESI resulting objects are not cached, but you can set up result caching
through EdgeSuite configuration.
— EdgeSuite 5.0: ESI Developer’s Guide — 93 —

Configuration & Content Control
Enable ESI to Pass Cookies

This option causes ESI to pass any Set-Cookie headers (received from the origin
server) to the fragment request generated by the ESI code. This is important for sites
that perform use session ID's in cookies, as it prevents the fragment requests from
going forward without the session cookie and thus generating a new user session on
the origin server. ESI passes the value of Set-Cookie headers coming from the origin
server into fragment requests as Cookie headers. For information specifically on
cookies and Session IDs and the use of these in ESI, see EdgeSuite Session ID Support.

Pass a Bandwidth Usage Variable for Use in ESI

You can have defined a variable representing the bandwidth used in serving content
to end users. The variable, which can be used in ESI (page 48), is defined as follows:

• a name
• a CP Code or range of CP Codes (the CP Code is a unique number or set of

numbers associated with your Akamai account contract.)
• for the CP Code or CP Code range, (a) the current Megabit usage per second, or

(b) the sum of MB usage since the beginning of the current calendar month.

Extracted Values

You can extract values from cookies, path components or parameters, or query
strings, and pass them to ESI as variables. A key use of this is to use cookies in main-
taining session IDs. This extraction is discussed in the EdgeSuite Configuration Guide
and in the EdgeSuite Session ID Support guide.

Use this XSLT StyleSheet

This option can be used to specify the file to be used as the stylesheet in an XSLT
transformation. This can be any path or URI, but the string cannot begin with a dot
(.) or two dots (..). By default, EdgeSuite uses the path specified in your configuration
file as the base path for the relative path it uses in identifying the stylesheet. You can
change this and use the URL of the current directory of the XML file as the base
directory.

A stylesheet set with an ESI include statement takes precedence over a stylesheet
specified in the EdgeSuite configuration file, but this configuration setting takes pre-
cedence over a stylesheet set in the XML object’s code.

Enable Bitwise Operators

You can opt to use bitwise operators, as described on pages 60 and 64.

Use the Pre-4.6 URL-Encoding

You can opt to use the pre-EdgeSuite 4.6 URL-encoding function. See
“$url_encode() | $url_decode()” on page 76.

Use the Pre-4.8 esi:try Block Behavior

You can opt to use the pre-EdgeSuite 4.8 behavior on exception handling in an esi:try
block. Prior to 4.8, only HTTP 200 responses were considered successful responses,
and other responses triggered the except statement. As of 4.8, no exception is trig-
gered if an HTTP 200, 301, 302, or 401 response is received. See “try | attempt |
except” on page 42.
— 94 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 12. Exception and Error Handling

Overview When ESI fails to process and serve a page, there are a number of potential causes.
These are the conditions you may want to investigate:

• ESI code errors: ESI syntax errors or typos, or incorrect path or file specifications
for objects.

• Problems with the fragments you’re trying to fetch: tags that duplicate or conflict
with template tags or other fragments; HTML that isn’t well-formed.

• Errors or conflicts in metadata settings: for example, your configuration file
doesn’t specify the objects for ESI processing. Or there is no
Edge-control: dca=esi header associated with an object when one is required.

• Limits exceeded: Too many includes on a page, or the file size total is too large.

Using the Debugger You can run and test your ESI pages using ESID, the ESI debugger. This is covered
starting in the EdgeSuite ESI/XSLT Development Tool.

Error Messages When in regular (not debug) mode, if EdgeSuite fails to serve the results of ESI pro-
cessing, it serves one of two error messages to the end user:

• In the case of parsing or syntax errors, a HTTP 500 server error message.

• In the case of file errors—files not found—an HTTP 404 Not Found message.

Mechanisms for Handling There are two control mechanisms for exception and error handling in EdgeSuite:
EdgeSuite configuration and certain ESI language elements. You can make use of
both mechanisms simultaneously, one at a time, or neither, depending on your needs.
This section briefly describes these mechanisms and offers some examples.
— EdgeSuite 5.0: ESI Developer’s Guide — 95 —

Exception and Error Handling
Configuration Data and Default Objects

The first mechanism is to use default objects to replace not-found objects by setting
failure-action attributes in the EdgeSuite configuration as described briefly in
“Configuration & Content Control” on page 89. The default object can be whatever
serves your needs: for example, a message to the user including alternative links, or a
simple 1x1 pixel GIF. You can set defaults selectively to apply to particular sets of
files: to a template, to a template and fragments, not to the template but to some
fragments, etc.

EdgeSuite can process ESI markup in the default object.

The general EdgeSuite behavior is that if a default is specified, retrieved, and cached,
and EdgeSuite cannot fetch the requested file because of an HTTP 500, 503, or 504
code, it serves the default object instead of an error. For other errors, it returns the
error received from the origin server (unless there is some other action specified in the
configuration or code).

However, with respect to ESI, if EdgeSuite has already fetched a template and the fail-
ure is on the fragment, the behavior depends on how you have structured the Edge-
Suite configuration and the ESI code.

There are three general cases:

• When there is a default object specified for the template.

• When there is no default object specified for the template.

• Where there is no default for either the template or the fragment.
— 96 — Akamai Technologies, Inc. — 8/29/04 —

Configuration Data and Default Objects
Figure 3. Using Default Objects with ESI

1. Defaults “C-def.htm” Specified for Template, “F-def.htm” for Fragment.

Failure parsing
template ESI

Failure on requesting
template from origin

Failure on requesting
fragment(s)

Serve template with
F-def.htm embedded to
replace fragment.

Serve default C-def.htm
in place of template.

Serve whatever error received
from origin, unless config data
specifies other action.

500, 503, 504 Other error 500, 503, 504 Other error

2. No Default for Template, “F-def.htm” Specified for Fragment.

Failure parsing
template ESI

Serve 500
error page

Failure on requesting
template from origin

Failure on request-
ing fragment(s)

Serve template with
F-def.htm embedded to
replace fragment.

Serve whatever error received
from origin, unless config data
specifies other action.

Other error

Serve default C-def.htm
in place of template

For clarity, this graphic uses “C-def.htm” as the default for the
template and “F-def.htm” as the default for fragments; how-
ever, C-def and F-def could be the same file. The default
behavior shown assumes other actions are not specified in ESI
code or in configuration data. For example, there is no alt or

3. No Default for Template, No Default for Fragment.

Failure parsing
template ESI

Serve 500
error page

Failure on requesting
template from origin

Failure on request-
ing fragment(s)

Serve whatever error
received from origin, unless
config data specifies other
action.

500, 503, 504
— EdgeSuite 5.0: ESI Developer’s Guide — 97 —

Exception and Error Handling
Example: Default
Pages Set in

Configuration

An Akamai server has a problem connecting to your site, the origin site, to refresh the
contents of a simple template HTML page for which the TTL (time-to-live) has
expired. You have instructed EdgeSuite not to serve stale content (see “must-revali-
date” on page 90).

If there is no default object specified for the template, EdgeSuite in most cases serves

the error reported from the origin to the end user1, unless configuration data specifies
some other action.

However, in this example EdgeSuite has received a 500, 503, or 504 error, a default
object is specified as a failure-action attribute in the EdgeSuite configuration files
and the default has been saved in the EdgeSuite server's cache. EdgeSuite retrieves the
default and serves it to the end user despite the inability to connect to the origin site.

Default for Template To modify the example: let’s say the template page is current—though there is a
default cached, EdgeSuite doesn’t need to use it.

However, the template includes a fragment that does need fetching. The template
page is parsed by EdgeSuite and upon attempting to fetch the include URL, an error
results. What happens next depends on the type of error:

• On a 500, 503, or 504 error, EdgeSuite replaces the fragment with the default.

• On an error other than the above (a non-200 code response), EdgeSuite serves
the default for the template in place of the template.

No Default for Template To modify the example in a different manner: the template doesn’t need fetching, but
there is no default specified for the template.

In this situation, if there is an error attempting to fetch the fragment:

• On a 500, 503, or 504 error, EdgeSuite replaces the fragment with the default.

• On an error other than the above (a non-200 error response), EdgeSuite serves a
404 error message to the user.

If there is no default for the fragment, and if the ESI language controls do not specify
an exception action, EdgeSuite generates a 404 error message.

1. One exception: you can instruct EdgeSuite to serve the stale content rather than no content at all.
— 98 — Akamai Technologies, Inc. — 8/29/04 —

ESI Language Control
ESI Language Control

The second mechanism is found in the ESI language, which furnishes two specific
elements that provide fine grain control over page assembly in error scenarios:

• the onerror attribute of the include statement.

• the try | attempt | except block

These elements are described on pages 18 and 42, respectively.

Example: Using
onerror

You have HTML content with several ESI include tags. In serving a particular
request, EdgeSuite has trouble fetching one of the includes. If the include tag does
not include the onerror attribute, the situation is the same as that in the first exam-
ple. That is, EdgeSuite triggers an error leading to one of two results: either a 404
error is returned to the end user or, if a default object for the URL is cached, the
default is served to replace the fragment.

In this example, though, you have a group of advertisements along the right margin
of the page, and it’s more important to serve the page without one ad than to serve an
error page with no ads. You don’t want a default or an error; you want simply to skip
the missing ad and display the rest of the page. You use the onerror attribute to tell
EdgeSuite to just ignore this include if it fails.

The page assembly is completed and the final page (missing the one include) is
served to the user.

The syntax for the above scenarios might look like this:

<table>
<tr>
<td>
The text in the left column... news and reviews....
</td>
<td>
<table>
<tr><td><esi:include src=“http://www.foo.com/get_ad_1.html”

onerror=“continue”/></td></tr>
<tr><td><esi:include src=“http://www.foo.com/get_ad_2.html”

onerror=“continue”/></td></tr>
<tr><td><esi:include src=“http://www.foo.com/get_ad_3.html”

onerror=“continue”/></td>/tr>
<tr><td><esi:include src=“http://www.foo.com/get_ad_4.html”

onerror=“continue”/></td></tr>
</table>
</td>
</tr>
</table>
— EdgeSuite 5.0: ESI Developer’s Guide — 99 —

Exception and Error Handling
Example: try Block You want to fetch and display a non-cacheable fragment, such as an ad fragment, for
which there is no default object. If the fetch fails, you can still include a link and text
using the try block. The code might look something like this:

If the ad call fails, the user still sees, “Win a Free Car!!!” and is offered the link to the
ad site.

<esi:try>
<esi:attempt>

<esi:include src=“http://www.foo.com/get_an_ad.html”/>
</esi:attempt>
<esi:except>

Win a Free Car!!!
</esi:except>
</esi:try>
— 100 — Akamai Technologies, Inc. — 8/29/04 —

CHAPTER 13. An Extended ESI Example

This simple example attempts to bring together some of the main ESI elements to
illustrate their use. At the end of this section is a fuller listing of the code discussed in
the example.

You can also view many examples on-line at http://esi-examples.akamai.com.

Let’s say you are developing My.Place.com, a Web service that provides local news,
sports, and entertainment information. You target users in localized geographic areas
who have defined themselves as having specific interests.

Readers define their own local areas by town, city, urban community, or other geo-
graphic criteria. Readers customize their pages by choosing what content they want
to see and the order in which they want to see it.

When the user customizes the page, they choose from a limited set of options that
results in one of about two dozen formats, or form pages, which are pre-constructed.
The two essential pieces of information written to the cookie are the form and the
location they want to use.

The other content they’ll see at the top of the content section of the page is an occa-
sional news or offer from My.Place.com itself.

An end user from Exeter, USA, who is interested in Exeter news, sports, music, and
movies, might see something like the page in Figure 4. The callouts 1, 2, and 3 relate
the portions of the page here to the page form as it appears on a subsequent page, and
to the narrative discussion and code fragments.
— EdgeSuite 5.0: ESI Developer’s Guide — 101 —

http://esi-examples.akamai.com

An Extended ESI Example
Figure 4. My.Place.com for a User from Exeter, USA

How to Build It In building this page, the first thing you want to do is tell EdgeSuite which form and
location to use, based on the cookie information.

You can do this with a choose block in a template page that isn’t displayed to the
user but, taking advantage of the ability of ESI to nest include statements, tells Edge-
Suite to load the appropriate form template for the appropriate location.

3 3

1

2

— 102 — Akamai Technologies, Inc. — 8/29/04 —

Choosing Which
Template to Fetch

The code might look like this:

Note that the otherwise in this construct says that if there is no form template cho-
sen, this must be a new user or a user who is not logged in on their home machine, so
offer up the subscription / login page.

This user takes a NewsSportsMusicForm1 (nsmf1) form as the main template page.
Without the markup, it looks like Figure 5, with only the persistent objects showing.
The “Ad Goes Here” and “Ad column” in the graphic do not appear in the form, but
are added for information purposes only for the example.

<HTML>
<HEAD>

<TITLE>MyPlace.com</TITLE>
</HEAD>
<BODY>
<esi:comment text=“hide the ESI tags and select the template”/>
<!--esi
<esi:choose>

<esi:when test=“$(HTTP_COOKIE{’formtype’})==’type1’”>
<esi:include src=“http://www.myplace.com/r4c5/templates/

t1.html”/>
</esi:when>
<esi:when test=“$(HTTP_COOKIE{’formtype’})==’type2’”>

<esi:include src=“http://www.myplace.com/r4c5/templates/
t2.html”/>

</esi:when>
<esi:when test=“$(HTTP_COOKIE{’formtype’})==’type3’”>

<esi:include src=“http://www.myplace.com/r4c5/templates/
t3.html”/>

</esi:when>
.
.

<esi:otherwise>
<esi:include src=“http://www.myplace.com/templates/new.html”/

>
</esi:otherwise>

</esi:choose>
-->
</BODY>
</HTML>
— EdgeSuite 5.0: ESI Developer’s Guide — 103 —

An Extended ESI Example
Figure 5. The nsmf1 form, the template page.

The news, sports, and so forth are in a two column table, with the right column hold-
ing niche ads and general ads—sports for sports, music for music, anything for news
or weather, and so forth.

The Big Ad The big ad at the top center rotates through different advertisers and is dif-
ferent each time the page is opened. But if for some reason the ad cannot be
fetched, you have an ongoing backup ad for a free trip to Hawaii. For this

you use the try block, and it may look something like this:

1

3 3

2

<P ALIGN=“CENTER”>
<esi:try>

<esi:attempt>
<esi:comment text=“Include the big ad”/>
<esi:include src=“http://www.myplace.com/r4c5/ads/

bigad.html”/>
</esi:attempt>
<esi:except>

<esi:comment text=“use alternate link if you don’t find it”/>
To Win a Free Trip to Hawaii,<a href=“http://www.contest

limited.com/hawaii.html”> Click Here!!!
</esi:except>

</esi:try>
</P>

1

— 104 — Akamai Technologies, Inc. — 8/29/04 —

The My.Place
News Row

The first piece of content is the “News from My Place.” This is an occasional
announcement or offer that spans both columns and has no ad in the right
column. It is not always included, so you want to be able to skip it if it isn’t

there. In the row, you use a simple include with a onerror.

The Content
Rows and the

Smaller Ads

Unlike the “News from My Place,” the News, Sports and other rows provide
content you don’t want to skip. If for some reason the current content is not
available, you want to fetch the most recent previous content. If for some

reason neither of these are available, you have used the EdgeSuite configuration files
to set up a default message to the user that lets them know there is a problem and you
appreciate their patience. You don’t include a onerror in this statement because you
don’t want to simply skip the content.

In the right-hand column for each row is an ad. If the ad can’t be fetched, you want
to display an invitation to potential advertisers. So you use a try block for that.

Thus, the News row would look like this:

<TR>
<TD COLSPAN=“2”>
<esi:include src=“http://www.myplace.com/r4c5/mpnews/top.html”

onerror=“continue”/>
</TD>

2

<TR>
<TD>
<!--esi
<esi:include src=“http://www.myplace.com/r4c5/exeternews/

20010128news1.html” alt=“http://www.bak.myplace.com/r4c5/news/
lastexeternews.html”/>

-->
</TD>
<TD>
<esi:try>

<esi:attempt>
<esi:include src=“http://www.myplace.com/r4c5/ads/news1.html”/>
</esi:attempt>
<esi:except>
This spot is reserved for your company’s advertising. For more
information, <a href=“http://www.biz.myplace.com/adpolicies/
columnads.html”> click here!
</esi:except>

</esi:try>
</TD>
</TR>

3

— EdgeSuite 5.0: ESI Developer’s Guide — 105 —

An Extended ESI Example
The other rows have a similar construction—for example, the Sports row:

The Code Listing It may be helpful to review a sample of the ESI-marked up HTML code. The follow-
ing code is for the template shown in Figure 4 on page 102. This shows only the first
content row, the “News,” since the “Sports,” “Music,” and other content is redun-
dant in terms of ESI construction.

<TR><TD>
<!--esi
<esi:include src=“http://www.myplace.com/r4c5/exetersports/

20010128sports1.html” alt=“http://www.bak.myplace.com/r4c5/
sports/lastexetersports.html”/>

-->
</TD><TD>
<esi:try>

<esi:attempt>
<esi:include src=“http://www.myplace.com/r4c5/ads/sports1.html”/>
</esi:attempt>
<esi:except>
This spot is reserved for your company’s advertising. For more
information, <a href=“http://www.biz.myplace.com/adpolicies/
columnads.html”> click here!
</esi:except>

</esi:try>
</TD></TR>

<HTML>
<HEAD>

<TITLE>My Place</TITLE>
</HEAD>
<BODY>

<esi:comment text=“get the My Place image as a persistent object”/>
<P><IMG SRC=“http://www.myplace.com/r4c5/templates/nsmf1/myplace.gif”

WIDTH=“362” HEIGHT=“36” ALIGN=“BOTTOM” BORDER=“0”></P>

<esi:comment text=“get the big ad or display the backup”/>
<P ALIGN=“CENTER”>
<esi:try>

<esi:attempt>
<esi:comment text=“Include the big ad”/>
<esi:include src=“http://www.myplace.com/r4c5/ads/

bigad.html”/>
</esi:attempt>
<esi:except>

<esi:comment text=“use alternate link if you don’t find it”/>
To Win a Free Trip to Hawaii,<a href=“http://www.contest

limited.com/hawaii.html”> Click Here!!!
</esi:except>

</esi:try>
</P>
— 106 — Akamai Technologies, Inc. — 8/29/04 —

<esi:comment text=“start the content table. First row gets the my place
bulletin or skips it if not there”/>

<TABLE BORDER=“0” CELLPADDING=“2” CELLSPACING=“1” WIDTH=“94%”>
<TR>

<TD COLSPAN=“2”>
<esi:include src=“http://www.myplace.com/r4c5/mpnews/top.html”

onerror=“continue”/>
</TD>

</TR><TR>

<esi:comment text=“NOTE -- this begins block for content row”>
<esi:comment text=“Get the NEWS image, a persistent object”/>

<TD WIDTH=“77%”><IMG SRC=“http://www.myplace.com/r4c5/templates/
nsmf1/news.gif” WIDTH=“46” HEIGHT=“19” ALIGN=“BOTTOM”
BORDER=“0”>

<esi:comment text=“Get the latest news content if present, or alt the
last previous news. If both are missing, it’s an error.”/>

<!--esi
<esi:include src=“http://www.myplace.com/r4c5/exeternews/

20010128news1.html” alt=“http://www.bak.myplace.com/r4c5/news/
lastexeternews.html”/>

-->
<HR ALIGN=“CENTER” WIDTH=“95%”>
</TD></TR>
<esi:comment text=“Get the ad for the news row.”/>
<TR><TD>
<esi:try>

<esi:attempt>
<esi:include src=“http://www.myplace.com/r4c5/ads/news1.html”/>
</esi:attempt>
<esi:except>
This spot is reserved for your company’s advertising. For more
information, <a href=“http://www.biz.myplace.com/adpolicies/
columnads.html”> click here!
</esi:except>

</esi:try>
</TD></TR>
<esi:comment text=“NOTE -- this ENDS content row. Other rows repeat this

construction but with News becoming Sports, Music, etc.”>

</TABLE>
</BODY>
</HTML>
— EdgeSuite 5.0: ESI Developer’s Guide — 107 —

An Extended ESI Example
— 108 — Akamai Technologies, Inc. — 8/29/04 —

Index

Symbols
 64
! 60
!= 60
$

(VARIABLE) 45
add_cachebusting_header 76
add_header() 74
base64_encode() 79
bin_int() 71
convert_to|from_unicode() 88
dollar() 70
dquote() 70
exists() 74
http_time() 79
index() 69
int() 70
is_empty() 74
join() 69
len() 71
list_delitem() 71
lower() 70
lstrip() 69
md5_digest() 79
rand(), $last_rand 73
replace() 69
rindex() 69
rstrip() 69
set_redirect() 75
set_response_code() 75
squote() 70
str() 71
strftime() 79
string_split 68
strip() 69
substr() 69
time() 79
upper() 70
url_encode(), _decode() 76

$, function call 67–81, 88
& 17, 64

&& 60
.. 65
<!--esi 40
<=> 60
<> 60
<esi> tags

$ function calls 67–81
<!--esi 40
assign 51
attempt 42
break 34, 35
choose 31
comment 43
debug 14
eval 25
except 42
foreach 34
function 84
include 15
otherwise 31
param name 21
remove 39
return 84
text 40
try 42
when 31

= 60
== 60
> 60
>> 64
? (in query) 17
\ 59
^ 64
$convert_to 88
_unicode 88
| 64
|| 60
~ 64
’ 63
’’ 63
’’’ 63

’’’’ 63

A
add_cachebusting_header 76
add_header() 74
alt 17
alternative HTML 39
Apostrophes 22
appendheader 19
assign user-defined variable 51
asynchronous include 18
attempt 42

B
backslash (\) 59
bandwidth usage variable 47, 48
base64_encode() 79
bin_int() 71
bitwise operations 64
Booleans (Bool-expr) 60
break 34

C
cache-maxage 23, 90
case, lower & upper 70
character sets 87
choose 31–33
coercion to strings 66
comments 43
comparisons 60
compound expression 63
concatenate 69
concatenation 66
conditional processing 31–33
configuring to use ESI 11
convert code sets 87
cookie handling 46
cookies 90
CP Code 48, 94
custom functions 83–86
— EdgeSuite 5.0: ESI Developer’s Guide — 109 —

D
dca attribute 17
dca= 17
dca=esi 90, 95
debugger 14
default objects 96–98
default values 56
define variable 51
dictionaries, lists 63
dictionaries, working with 53
dollar() 70
dquote() 70
dual-byte 87
dynamic content assembly 17
dynamic pages 10, 11

E
Edge-control

cache-maxage 23
Edge-control response headers 90
EdgeScape 47
EdgeSuite 9, 11
EdgeSuite metadata 11
EdgeSuite XSLT 17, 21
encoding 87
entity attribute 20
error & exception handling 95–100
error messages 95
errors, language control 99
escaping characters 59
escaping text 40
ESI

error handling 95–100
example 101–107
features 9
language elements 14
overview 10

esi set 51
ESI Syntax 14
esi: tags

$ function calls 67–81
<!--esi 40
assign 51
attempt 42
break 34, 35
choose 31
comment 43
debug 14
eval 25
except 42

foreach 34
function 84
include 15
otherwise 31
param name 21
remove 39
return 84
text 40
try 42
when 31

EUC-JP 87
eval statement 25
example 101–107
except 42
exception handling 42
exists() 74
expressions 63
extended regular expression 61
extract values 49

F
failure-action 96
features 9
fetching fragments 17
fetching objects 15
format time string 79
fragments 17
convert_to 88
functions 67–81

user-defined 83–86
functions, string 68–70

G
GEO 47
GEO, about 47
GEO{key} 50
GET 20
global params 21

H
handling exceptions 42
has, has_i operators 60
headers 45
hiding ESI 39
host header 90
HTML 14
HTTP

404 code 95
500 code 95
500, 503, or 504 codes 96
Headers 45

headers, in i18n 87
headers, setting 74
request method 47
response headers 45, 90

HTTP_ 45
HTTP_COOKIE{keys} 50
http_time() 79

I
include 15

attempt limits 23
attributes 16
limits 23
src 16
syntax 15

including evaluations 25
index() 69
int() 70
integers, to and from strings 71
international domains 46
Internationalization 87
internationalization

content type 92
enable 92

IP address 47
is_empty() 74
ISO-2022-JIS 87
iteration 34–37

breaking 35
iterative looping 71

J
join() 69

K
keys 49, 53

L
language control of errors 99
language, ESI 14
len() 71
limits, include statement 23
list_delitem() 71
lists and strings 66
lists, dictionaries 63
lists, working with 53
literals 59, 67
literals, inserting 40
log- 90
looping 71
loops, breaking 35
— 110 — Akamai Technologies, Inc. — 8/29/04 —

lower and upper case 70
lower() 70
lstrip() 69

M
matches 61
max-age 90
maxage 23
maxwait 18
MD5 79
md5_digest() 79
metadata 11
method attribute 20
mixing types 66
multibyte sets 87
must-revalidate 90

N
name keys 53
namespace 25
nesting 33
nesting includes 23
No-store 19
no-store 90

O
object inclusion 15
onerror=“continue” 18, 43, 99
operands 60
operations

range 65
operations, strings 68–70
operators

bitwise 64
otherwise 31–33

P
POST 20, 36
POST requests and responses 46

Q
quadruple quotes 63
query string 17
QUERY_STRING 47
QUERY_STRING, creating list 72
QUERY_STRING{key} 50
quotes, and strings 63

R
rand(), last_rand 73
range operations 65
range operator 65

range, and iteration 35
referer 90
regular expression 61
REMOTE_ADDR 47
remove 39
removeheader 19
replace() 69
request and response headers 45
REQUEST_METHOD 47
REQUEST_PATH 47
response headers, set 74
retrieve substring 69
rindex() 69
rstrip() 69

S
secure URL 23
session IDs 46, 49
set statement 51
set string delimiter 68
set_redirect 75
set_response_code() 75
Set-Cookie 33, 45, 74
setheader 19
Shift_JIS 87
single-byte 87
size limits 23
squote() 70
src 16, 17
SSL 23
str() 71
strftime() 79
string

replace 69
string concatenation 66
string functions 68–70
string_split 68
strings 63, 66, 68–70
strings, as lists 66
strings, delimiters 68
strings, to and from integers 70
strip white space 69
strip() 69
stylesheet 20
stylesheet attribute 21
subkeys, in assign 53
substr() 69
substring, retrieve 69
substructures 49
syntax 14

T
text, inserting pure 40
time functions 79
time() 79
TRAFFIC_INFO 48
transcoding 87
triple quotes 63
try 42, 99, 100
try block 52
ttl (attribute) 18
TTL (time-to-live) 90

U
unicode 87, 88
upper & lower case 70
upper() 70
url_encode(), _decode() 76
URL-encoding, and i18n 88
Usage Control 48
US-ASCII 87
user-agent 90
user-defined functions 83–86
user-defined variables 51

V
variable substructures 50
variables

setting defaults 56
user-defined 51

vars 52

W
when 31–33
white space, strip 69

X
XML 14
XSL global params 21
XSL stylesheet 21
XSLT 17, 21
XSLT and apos 22
— EdgeSuite 5.0: ESI Developer’s Guide — 111 —

— 112 — Akamai Technologies, Inc. — 8/29/04 —

	EdgeSuite 5.0: ESI Developer’s Guide
	Contents
	Chapter 1. About Edge Side Includes
	About this Guide
	The ESI Specification
	New in 5.0
	Previous Versions
	Support for Prior Code

	Features
	Content Control and Configuration

	Overview-Building Documents with Dynamic Content
	Template and Fragments
	How ESI Delivers Dynamic Pages

	Additional Resources

	Chapter 2. ESI Language Elements
	A Quick Reference to the ESI Language
	ESI Elements
	About ESI Syntax
	Legend to Notation

	Chapter 3. Including Objects
	The include Statement
	include
	Short Form
	Long Form
	Attributes
	src and alt
	dca
	onerror=“continue”
	maxwait
	ttl
	no-store
	appendheader, removeheader, setheader
	method
	entity
	stylesheet

	Integration with XSLT
	Long Form and XSL Params
	param name

	Controlling Downstream Caching
	Using Response Headers
	Using the Configuration

	Secure and Not Secure
	Limitations

	Evaluating Included Objects
	eval
	Usage and Restrictions
	Special Processing
	Performance Considerations
	Errors

	The Importance of the dca Attribute in esi:eval
	Using eval in Dynamic Code Generation

	Chapter 4. Conditional Inclusion and Iteration
	Conditional Processing
	choose | when | otherwise
	Usage
	Compound Expressions
	Statements Inside a Block
	Nesting Elements

	Iteration
	foreach | break
	Lists and Dictionaries
	Iterating Over a Range
	Breaking the Loop
	Iteration Index Keys

	Chapter 5. Alternative Processing and Exception Handling
	Including Alternative HTML and Hiding the ESI Statements
	<!--esi --> and remove
	remove
	Description

	<!--esi -->

	Inserting Plain Text
	text

	Placing Variables and Functions Outside ESI Blocks
	vars
	Do Not Nest vars Inside an HTML Tag

	Explicit Exception Handling
	try | attempt | except
	Maxwait in a try Block
	Onerror in a try block

	esi:assign in a try Block

	Comments
	comment

	Chapter 6. ESI Variables Support
	HTTP and Other Client Headers
	Cookie Support
	POST Support

	Akamai-Specific Variables
	The GEO Variable
	TRAFFIC_INFO: Bandwidth Usage Variables
	Extracted Values

	Substructures
	Substructure Example

	Setting and Using User-Defined Variables-the assign Statement
	Regex Match Results as Variables
	assign
	Syntax
	Usage
	Usage in a try Block

	Lists, Dictionaries, and Subkeys in the assign Statement

	Setting Defaults

	Chapter 7. Expressions and Operations
	Escaping the $ and Other Reserved Characters
	Triple Single Quotes
	Beware of Quadruple Single Quotes
	A Caveat and a Solution

	Boolean Expressions
	has and has_i
	Regular Expression Evaluations
	matches and matches_i

	Expressions
	Logical and String Operators
	Bitwise Operations
	Range Operations
	Treating Strings as Lists
	Mixing Types in Concatenation: an Implicit Coercion to Strings
	A Caveat

	Chapter 8. ESI Functions
	String Functions
	Internationalization
	Literals
	String/Integer Conversion
	Inclusion of Binary Data
	Counting, Numbers, and Booleans
	HTTP Functions
	Encode/Decode Functions
	Time Functions
	String Functions
	$string_split()
	$join()
	$index()
	$rindex()
	$lstrip()
	$rstrip()
	$strip()
	$replace()
	$substr()
	$lower()
	$upper()

	Other Functions
	$dollar()
	$dquote() | $squote()
	$int()
	$str()
	$len()
	$bin_int()
	$list_delitem()
	A Loop Example Using a Query

	$rand() | $last_rand()
	An Alternative to $last_rand()

	$is_empty() | $exists()
	$add_header()
	$set_response_code()
	$set_redirect()
	$add_cachebusting_header()
	$url_encode() | $url_decode()
	$html_encode() | $html_decode()
	Encoding
	Decoding
	Usage

	$base64_encode() | $base64_decode()
	$digest_md5() | $digest_md5_hex()
	$time()
	$http_time()
	$strftime()

	Chapter 9. User-Defined Functions (Beta)
	Creating User-Defined Functions
	Properties

	The esi:function Block and its Usage
	esi:function
	esi:return
	Arguments
	Iteration
	Recursion

	Chapter 10. Internationalization
	Detection
	Restrictions
	Handling CGI Variables
	$convert_to_unicode() and $convert_from_unicode

	Chapter 11. Configuration & Content Control
	Configuration and Control Mechanisms
	Order of Precedence

	The Matching Criteria
	Options and Attributes

	Chapter 12. Exception and Error Handling
	Overview
	Using the Debugger
	Error Messages
	Mechanisms for Handling

	Configuration Data and Default Objects
	Example: Default Pages Set in Configuration
	Default for Template
	No Default for Template

	ESI Language Control
	Example: Using onerror
	Example: try Block

	Chapter 13. An Extended ESI Example
	How to Build It
	Choosing Which Template to Fetch

	The Big Ad
	The My.Place News Row
	The Content Rows and the Smaller Ads
	The Code Listing

	Index

