
http://www.cambridge.org/9780521876346

This page intentionally left blank

Distributed Computing
Principles, Algorithms, and Systems

Distributed computing deals with all forms of computing, information access,
and information exchange across multiple processing platforms connected
by computer networks. Design of distributed computing systems is a com-
plex task. It requires a solid understanding of the design issues and an
in-depth understanding of the theoretical and practical aspects of their solu-
tions. This comprehensive textbook covers the fundamental principles and
models underlying the theory, algorithms, and systems aspects of distributed
computing.

Broad and detailed coverage of the theory is balanced with practical
systems-related problems such as mutual exclusion, deadlock detection,
authentication, and failure recovery. Algorithms are carefully selected, lucidly
presented, and described without complex proofs. Simple explanations and
illustrations are used to elucidate the algorithms. Emerging topics of signif-
icant impact, such as peer-to-peer networks and network security, are also
covered.

With state-of-the-art algorithms, numerous illustrations, examples, and
homework problems, this textbook is invaluable for advanced undergraduate
and graduate students of electrical and computer engineering and computer
science. Practitioners in data networking and sensor networks will also find
this a valuable resource.

Ajay D. Kshemkalyani is an Associate Professor in the Department of Com-
puter Science, at the University of Illinois at Chicago. He was awarded his
Ph.D. in Computer and Information Science in 1991 from The Ohio State
University. Before moving to academia, he spent several years working on
computer networks at IBM Research Triangle Park. In 1999, he received the
National Science Foundation’s CAREER Award. He is a Senior Member of
the IEEE, and his principal areas of research include distributed computing,
algorithms, computer networks, and concurrent systems. He currently serves
on the editorial board of Computer Networks.

Mukesh Singhal is Full Professor and Gartner Group Endowed Chair in Net-
work Engineering in the Department of Computer Science at the University
of Kentucky. He was awarded his Ph.D. in Computer Science in 1986 from
the University of Maryland, College Park. In 2003, he received the IEEE

Technical Achievement Award, and currently serves on the editorial boards
for the IEEE Transactions on Parallel and Distributed Systems and the IEEE
Transactions on Computers. He is a Fellow of the IEEE, and his principal
areas of research include distributed systems, computer networks, wireless and
mobile computing systems, performance evaluation, and computer security.

Distributed Computing
Principles, Algorithms, and
Systems

Ajay D. Kshemkalyani
University of Illinois at Chicago, Chicago

and

Mukesh Singhal
University of Kentucky, Lexington

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87634-6

ISBN-13 978-0-511-39341-9

© Cambridge University Press 2008

2008

Information on this title: www.cambridge.org/9780521876346

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org/9780521876346
http://www.cambridge.org

To my father Shri Digambar and

my mother Shrimati Vimala.
Ajay D. Kshemkalyani

To my mother Chandra Prabha Singhal,

my father Brij Mohan Singhal, and my

daughters Meenakshi, Malvika,

and Priyanka.
Mukesh Singhal

Contents

Preface page xv

1 Introduction 1
1.1 Definition 1
1.2 Relation to computer system components 2
1.3 Motivation 3
1.4 Relation to parallel multiprocessor/multicomputer systems 5
1.5 Message-passing systems versus shared memory systems 13
1.6 Primitives for distributed communication 14
1.7 Synchronous versus asynchronous executions 19
1.8 Design issues and challenges 22
1.9 Selection and coverage of topics 33
1.10 Chapter summary 34
1.11 Exercises 35
1.12 Notes on references 36

References 37

2 A model of distributed computations 39
2.1 A distributed program 39
2.2 A model of distributed executions 40
2.3 Models of communication networks 42
2.4 Global state of a distributed system 43
2.5 Cuts of a distributed computation 45
2.6 Past and future cones of an event 46
2.7 Models of process communications 47
2.8 Chapter summary 48
2.9 Exercises 48
2.10 Notes on references 48

References 49

viii Contents

3 Logical time 50
3.1 Introduction 50
3.2 A framework for a system of logical clocks 52
3.3 Scalar time 53
3.4 Vector time 55
3.5 Efficient implementations of vector clocks 59
3.6 Jard–Jourdan’s adaptive technique 65
3.7 Matrix time 68
3.8 Virtual time 69
3.9 Physical clock synchronization: NTP 78
3.10 Chapter summary 81
3.11 Exercises 84
3.12 Notes on references 84

References 84

4 Global state and snapshot recording algorithms 87
4.1 Introduction 87
4.2 System model and definitions 90
4.3 Snapshot algorithms for FIFO channels 93
4.4 Variations of the Chandy–Lamport algorithm 97
4.5 Snapshot algorithms for non-FIFO channels 101
4.6 Snapshots in a causal delivery system 106
4.7 Monitoring global state 109
4.8 Necessary and sufficient conditions for consistent global

snapshots 110
4.9 Finding consistent global snapshots in a distributed

computation 114
4.10 Chapter summary 121
4.11 Exercises 122
4.12 Notes on references 122

References 123

5 Terminology and basic algorithms 126
5.1 Topology abstraction and overlays 126
5.2 Classifications and basic concepts 128
5.3 Complexity measures and metrics 135
5.4 Program structure 137
5.5 Elementary graph algorithms 138
5.6 Synchronizers 163
5.7 Maximal independent set (MIS) 169
5.8 Connected dominating set 171
5.9 Compact routing tables 172
5.10 Leader election 174

ix Contents

5.11 Challenges in designing distributed graph algorithms 175
5.12 Object replication problems 176
5.13 Chapter summary 182
5.14 Exercises 183
5.15 Notes on references 185

References 186

6 Message ordering and group communication 189
6.1 Message ordering paradigms 190
6.2 Asynchronous execution with synchronous communication 195
6.3 Synchronous program order on an asynchronous system 200
6.4 Group communication 205
6.5 Causal order (CO) 206
6.6 Total order 215
6.7 A nomenclature for multicast 220
6.8 Propagation trees for multicast 221
6.9 Classification of application-level multicast algorithms 225
6.10 Semantics of fault-tolerant group communication 228
6.11 Distributed multicast algorithms at the network layer 230
6.12 Chapter summary 236
6.13 Exercises 236
6.14 Notes on references 238

References 239

7 Termination detection 241
7.1 Introduction 241
7.2 System model of a distributed computation 242
7.3 Termination detection using distributed snapshots 243
7.4 Termination detection by weight throwing 245
7.5 A spanning-tree-based termination detection algorithm 247
7.6 Message-optimal termination detection 253
7.7 Termination detection in a very general distributed computing

model 257
7.8 Termination detection in the atomic computation model 263
7.9 Termination detection in a faulty distributed system 272
7.10 Chapter summary 279
7.11 Exercises 279
7.12 Notes on references 280

References 280

8 Reasoning with knowledge 282
8.1 The muddy children puzzle 282
8.2 Logic of knowledge 283

x Contents

8.3 Knowledge in synchronous systems 289
8.4 Knowledge in asynchronous systems 290
8.5 Knowledge transfer 298
8.6 Knowledge and clocks 300
8.7 Chapter summary 301
8.8 Exercises 302
8.9 Notes on references 303

References 303

9 Distributed mutual exclusion algorithms 305
9.1 Introduction 305
9.2 Preliminaries 306
9.3 Lamport’s algorithm 309
9.4 Ricart–Agrawala algorithm 312
9.5 Singhal’s dynamic information-structure algorithm 315
9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm 321
9.7 Quorum-based mutual exclusion algorithms 327
9.8 Maekawa’s algorithm 328
9.9 Agarwal–El Abbadi quorum-based algorithm 331
9.10 Token-based algorithms 336
9.11 Suzuki–Kasami’s broadcast algorithm 336
9.12 Raymond’s tree-based algorithm 339
9.13 Chapter summary 348
9.14 Exercises 348
9.15 Notes on references 349

References 350

10 Deadlock detection in distributed systems 352
10.1 Introduction 352
10.2 System model 352
10.3 Preliminaries 353
10.4 Models of deadlocks 355
10.5 Knapp’s classification of distributed deadlock detection

algorithms 358
10.6 Mitchell and Merritt’s algorithm for the single-

resource model 360
10.7 Chandy–Misra–Haas algorithm for the AND model 362
10.8 Chandy–Misra–Haas algorithm for the OR model 364
10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model 365
10.10 Chapter summary 374
10.11 Exercises 375
10.12 Notes on references 375

References 376

xi Contents

11 Global predicate detection 379
11.1 Stable and unstable predicates 379
11.2 Modalities on predicates 382
11.3 Centralized algorithm for relational predicates 384
11.4 Conjunctive predicates 388
11.5 Distributed algorithms for conjunctive predicates 395
11.6 Further classification of predicates 404
11.7 Chapter summary 405
11.8 Exercises 406
11.9 Notes on references 407

References 408

12 Distributed shared memory 410
12.1 Abstraction and advantages 410
12.2 Memory consistency models 413
12.3 Shared memory mutual exclusion 427
12.4 Wait-freedom 434
12.5 Register hierarchy and wait-free simulations 434
12.6 Wait-free atomic snapshots of shared objects 447
12.7 Chapter summary 451
12.8 Exercises 452
12.9 Notes on references 453

References 454

13 Checkpointing and rollback recovery 456
13.1 Introduction 456
13.2 Background and definitions 457
13.3 Issues in failure recovery 462
13.4 Checkpoint-based recovery 464
13.5 Log-based rollback recovery 470
13.6 Koo–Toueg coordinated checkpointing algorithm 476
13.7 Juang–Venkatesan algorithm for asynchronous checkpointing

and recovery 478
13.8 Manivannan–Singhal quasi-synchronous checkpointing

algorithm 483
13.9 Peterson–Kearns algorithm based on vector time 492
13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced

protocol 499
13.11 Chapter summary 505
13.12 Exercises 506
13.13 Notes on references 506

References 507

xii Contents

14 Consensus and agreement algorithms 510
14.1 Problem definition 510
14.2 Overview of results 514
14.3 Agreement in a failure-free system (synchronous or

asynchronous) 515
14.4 Agreement in (message-passing) synchronous systems with

failures 516
14.5 Agreement in asynchronous message-passing systems with

failures 529
14.6 Wait-free shared memory consensus in asynchronous systems 544
14.7 Chapter summary 562
14.8 Exercises 563
14.9 Notes on references 564

References 565

15 Failure detectors 567
15.1 Introduction 567
15.2 Unreliable failure detectors 568
15.3 The consensus problem 577
15.4 Atomic broadcast 583
15.5 A solution to atomic broadcast 584
15.6 The weakest failure detectors to solve fundamental agreement

problems 585
15.7 An implementation of a failure detector 589
15.8 An adaptive failure detection protocol 591
15.9 Exercises 596
15.10 Notes on references 596

References 596

16 Authentication in distributed systems 598
16.1 Introduction 598
16.2 Background and definitions 599
16.3 Protocols based on symmetric cryptosystems 602
16.4 Protocols based on asymmetric cryptosystems 615
16.5 Password-based authentication 622
16.6 Authentication protocol failures 625
16.7 Chapter summary 626
16.8 Exercises 627
16.9 Notes on references 627

References 628

17 Self-stabilization 631
17.1 Introduction 631
17.2 System model 632

xiii Contents

17.3 Definition of self-stabilization 634
17.4 Issues in the design of self-stabilization algorithms 636
17.5 Methodologies for designing self-stabilizing systems 647
17.6 Communication protocols 649
17.7 Self-stabilizing distributed spanning trees 650
17.8 Self-stabilizing algorithms for spanning-tree construction 652
17.9 An anonymous self-stabilizing algorithm for 1-maximal

independent set in trees 657
17.10 A probabilistic self-stabilizing leader election algorithm 660
17.11 The role of compilers in self-stabilization 662
17.12 Self-stabilization as a solution to fault tolerance 665
17.13 Factors preventing self-stabilization 667
17.14 Limitations of self-stabilization 668
17.15 Chapter summary 670
17.16 Exercises 670
17.17 Notes on references 671

References 671

18 Peer-to-peer computing and overlay graphs 677
18.1 Introduction 677
18.2 Data indexing and overlays 679
18.3 Unstructured overlays 681
18.4 Chord distributed hash table 688
18.5 Content addressible networks (CAN) 695
18.6 Tapestry 701
18.7 Some other challenges in P2P system design 708
18.8 Tradeoffs between table storage and route lengths 710
18.9 Graph structures of complex networks 712
18.10 Internet graphs 714
18.11 Generalized random graph networks 720
18.12 Small-world networks 720
18.13 Scale-free networks 721
18.14 Evolving networks 723
18.15 Chapter summary 727
18.16 Exercises 727
18.17 Notes on references 728

References 729

Index 731

Preface

Background

The field of distributed computing covers all aspects of computing and infor-
mation access across multiple processing elements connected by any form of
communication network, whether local or wide-area in the coverage. Since
the advent of the Internet in the 1970s, there has been a steady growth of
new applications requiring distributed processing. This has been enabled by
advances in networking and hardware technology, the falling cost of hard-
ware, and greater end-user awareness. These factors have contributed to
making distributed computing a cost-effective, high-performance, and fault-
tolerant reality. Around the turn of the millenium, there was an explosive
growth in the expansion and efficiency of the Internet, which was matched
by increased access to networked resources through the World Wide Web,
all across the world. Coupled with an equally dramatic growth in the wireless
and mobile networking areas, and the plummeting prices of bandwidth and
storage devices, we are witnessing a rapid spurt in distributed applications and
an accompanying interest in the field of distributed computing in universities,
governments organizations, and private institutions.

Advances in hardware technology have suddenly made sensor networking
a reality, and embedded and sensor networks are rapidly becoming an integral
part of everyone’s life – from the home network with the interconnected
gadgets to the automobile communicating by GPS (global positioning system),
to the fully networked office with RFID monitoring. In the emerging global
village, distributed computing will be the centerpiece of all computing and
information access sub-disciplines within computer science. Clearly, this is
a very important field. Moreover, this evolving field is characterized by a
diverse range of challenges for which the solutions need to have foundations
on solid principles.

The field of distributed computing is very important, and there is a huge
demand for a good comprehensive book. This book comprehensively covers
all important topics in great depth, combining this with a clarity of explanation

xvi Preface

and ease of understanding. The book will be particularly valuable to the
academic community and the computer industry at large. Writing such a
comprehensive book has been a Herculean task and there is a deep sense of
satisfaction in knowing that we were able complete it and perform this service
to the community.

Description, approach, and features

The book will focus on the fundamental principles and models underlying all
aspects of distributed computing. It will address the principles underlying the
theory, algorithms, and systems aspects of distributed computing. The manner
of presentation of the algorithms is very clear, explaining the main ideas and
the intuition with figures and simple explanations rather than getting entangled
in intimidating notations and lengthy and hard-to-follow rigorous proofs of
the algorithms. The selection of chapter themes is broad and comprehensive,
and the book covers all important topics in depth. The selection of algorithms
within each chapter has been done carefully to elucidate new and important
techniques of algorithm design. Although the book focuses on foundational
aspects and algorithms for distributed computing, it thoroughly addresses all
practical systems-like problems (e.g., mutual exclusion, deadlock detection,
termination detection, failure recovery, authentication, global state and time,
etc.) by presenting the theory behind and algorithms for such problems. The
book is written keeping in mind the impact of emerging topics such as
peer-to-peer computing and network security on the foundational aspects of
distributed computing.

Each chapter contains figures, examples, exercises, a summary, and
references.

Readership

This book is aimed as a textbook for the following:

• Graduate students and Senior level undergraduate students in computer
science and computer engineering.

• Graduate students in electrical engineering and mathematics. As wireless
networks, peer-to-peer networks, and mobile computing continue to grow
in importance, an increasing number of students from electrical engineering
departments will also find this book necessary.

• Practitioners, systems designers/programmers, and consultants in industry
and research laboratories will find the book a very useful reference because
it contains state-of-the-art algorithms and principles to address various
design issues in distributed systems, as well as the latest references.

xvii Preface

Hard and soft prerequisites for the use of this book include the following:

• An undergraduate course in algorithms is required.
• Undergraduate courses in operating systems and computer networks would

be useful.
• A reasonable familiarity with programming.

We have aimed for a very comprehensive book that will act as a single
source for distributed computing models and algorithms. The book has both
depth and breadth of coverage of topics, and is characterized by clear and
easy explanations. None of the existing textbooks on distributed computing
provides all of these features.

Acknowledgements

This book grew from the notes used in the graduate courses on distributed
computing at the Ohio State University, the University of Illinois at Chicago,
and at the University of Kentucky. We would like to thank the graduate
students at these schools for their contributions to the book in many ways.

The book is based on the published research results of numerous researchers
in the field. We have made all efforts to present the material in our own
words and have given credit to the original sources of information. We would
like to thank all the researchers whose work has been reported in this book.
Finally, we would like to thank the staff of Cambridge University Press for
providing us with excellent support in the publication of this book.

Access to resources

The following websites will be maintained for the book. Any errors and
comments should be sent to ajayk@cs.uic.edu or singhal@cs.uky.edu. Further
information about the book can be obtained from the authors’ web pages:

• www.cs.uic.edu/∼ajayk/DCS-Book
• www.cs.uky.edu/∼singhal/DCS-Book.

C H A P T E R

1 Introduction

1.1 Definition

A distributed system is a collection of independent entities that cooperate to
solve a problem that cannot be individually solved. Distributed systems have
been in existence since the start of the universe. From a school of fish to a flock
of birds and entire ecosystems of microorganisms, there is communication
among mobile intelligent agents in nature. With the widespread proliferation
of the Internet and the emerging global village, the notion of distributed
computing systems as a useful and widely deployed tool is becoming a reality.
For computing systems, a distributed system has been characterized in one of
several ways:

• You know you are using one when the crash of a computer you have never
heard of prevents you from doing work [23].

• A collection of computers that do not share common memory or a common
physical clock, that communicate by a messages passing over a communi-
cation network, and where each computer has its own memory and runs its
own operating system. Typically the computers are semi-autonomous and are
loosely coupled while they cooperate to address a problem collectively [29].

• A collection of independent computers that appears to the users of the
system as a single coherent computer [33].

• A term that describes a wide range of computers, from weakly coupled
systems such as wide-area networks, to strongly coupled systems such as
local area networks, to very strongly coupled systems such as multipro-
cessor systems [19].

A distributed system can be characterized as a collection of mostly
autonomous processors communicating over a communication network and
having the following features:

• No common physical clock This is an important assumption because
it introduces the element of “distribution” in the system and gives rise to
the inherent asynchrony amongst the processors.

1

2 Introduction

• No shared memory This is a key feature that requires message-passing
for communication. This feature implies the absence of the common phys-
ical clock.

It may be noted that a distributed system may still provide the abstraction
of a common address space via the distributed shared memory abstraction.
Several aspects of shared memory multiprocessor systems have also been
studied in the distributed computing literature.

• Geographical separation The geographically wider apart that the pro-
cessors are, the more representative is the system of a distributed system.
However, it is not necessary for the processors to be on a wide-area net-
work (WAN). Recently, the network/cluster of workstations (NOW/COW)
configuration connecting processors on a LAN is also being increasingly
regarded as a small distributed system. This NOW configuration is becom-
ing popular because of the low-cost high-speed off-the-shelf processors
now available. The Google search engine is based on the NOW architec-
ture.

• Autonomy and heterogeneity The processors are “loosely coupled”
in that they have different speeds and each can be running a different
operating system. They are usually not part of a dedicated system, but
cooperate with one another by offering services or solving a problem
jointly.

1.2 Relation to computer system components

A typical distributed system is shown in Figure 1.1. Each computer has a
memory-processing unit and the computers are connected by a communication
network. Figure 1.2 shows the relationships of the software components that
run on each of the computers and use the local operating system and network
protocol stack for functioning. The distributed software is also termed as
middleware. A distributed execution is the execution of processes across the
distributed system to collaboratively achieve a common goal. An execution
is also sometimes termed a computation or a run.

The distributed system uses a layered architecture to break down the com-
plexity of system design. The middleware is the distributed software that

Figure 1.1 A distributed
system connects processors by
a communication network.

P M

Communication network
(WAN/ LAN)

P processor(s)
M memory bank(s)

P M P M

P M

P M P M

P M

3 1.3 Motivation

Figure 1.2 Interaction of the
software components at each
processor.

Extent of
distributed
protocols

Distributed application

Network layer

Application layer

Data link layer

Transport layer

N
et

w
or

k
pr

ot
oc

ol
 s

ta
ck

Distributed software
(middleware libraries)

Operating
system

drives the distributed system, while providing transparency of heterogeneity at
the platform level [24]. Figure 1.2 schematically shows the interaction of this
software with these system components at each processor. Here we assume
that the middleware layer does not contain the traditional application layer
functions of the network protocol stack, such as http, mail, ftp, and telnet.
Various primitives and calls to functions defined in various libraries of the
middleware layer are embedded in the user program code. There exist several
libraries to choose from to invoke primitives for the more common func-
tions – such as reliable and ordered multicasting – of the middleware layer.
There are several standards such as Object Management Group’s (OMG)
common object request broker architecture (CORBA) [36], and the remote
procedure call (RPC) mechanism [1, 11]. The RPC mechanism conceptually
works like a local procedure call, with the difference that the procedure code
may reside on a remote machine, and the RPC software sends a message
across the network to invoke the remote procedure. It then awaits a reply,
after which the procedure call completes from the perspective of the program
that invoked it. Currently deployed commercial versions of middleware often
use CORBA, DCOM (distributed component object model), Java, and RMI
(remote method invocation) [7] technologies. The message-passing interface
(MPI) [20, 30] developed in the research community is an example of an
interface for various communication functions.

1.3 Motivation

The motivation for using a distributed system is some or all of the following
requirements:

1. Inherently distributed computations In many applications such as
money transfer in banking, or reaching consensus among parties that are
geographically distant, the computation is inherently distributed.

2. Resource sharing Resources such as peripherals, complete data sets
in databases, special libraries, as well as data (variable/files) cannot be

4 Introduction

fully replicated at all the sites because it is often neither practical nor
cost-effective. Further, they cannot be placed at a single site because access
to that site might prove to be a bottleneck. Therefore, such resources are
typically distributed across the system. For example, distributed databases
such as DB2 partition the data sets across several servers, in addition to
replicating them at a few sites for rapid access as well as reliability.

3. Access to geographically remote data and resources In many sce-
narios, the data cannot be replicated at every site participating in the
distributed execution because it may be too large or too sensitive to be
replicated. For example, payroll data within a multinational corporation is
both too large and too sensitive to be replicated at every branch office/site.
It is therefore stored at a central server which can be queried by branch
offices. Similarly, special resources such as supercomputers exist only in
certain locations, and to access such supercomputers, users need to log in
remotely.

Advances in the design of resource-constrained mobile devices as well
as in the wireless technology with which these devices communicate
have given further impetus to the importance of distributed protocols and
middleware.

4. Enhanced reliability A distributed system has the inherent potential
to provide increased reliability because of the possibility of replicating
resources and executions, as well as the reality that geographically dis-
tributed resources are not likely to crash/malfunction at the same time
under normal circumstances. Reliability entails several aspects:
• availability, i.e., the resource should be accessible at all times;
• integrity, i.e., the value/state of the resource should be correct, in the

face of concurrent access from multiple processors, as per the semantics
expected by the application;

• fault-tolerance, i.e., the ability to recover from system failures, where
such failures may be defined to occur in one of many failure models,
which we will study in Chapters 5 and 14.

5. Increased performance/cost ratio By resource sharing and accessing
geographically remote data and resources, the performance/cost ratio is
increased. Although higher throughput has not necessarily been the main
objective behind using a distributed system, nevertheless, any task can be
partitioned across the various computers in the distributed system. Such a
configuration provides a better performance/cost ratio than using special
parallel machines. This is particularly true of the NOW configuration.

In addition to meeting the above requirements, a distributed system also offers
the following advantages:

6. Scalability As the processors are usually connected by a wide-area net-
work, adding more processors does not pose a direct bottleneck for the
communication network.

5 1.4 Relation to parallel multiprocessor/multicomputer systems

7. Modularity and incremental expandability Heterogeneous processors
may be easily added into the system without affecting the performance,
as long as those processors are running the same middleware algo-
rithms. Similarly, existing processors may be easily replaced by other
processors.

1.4 Relation to parallel multiprocessor/multicomputer systems

The characteristics of a distributed system were identified above. A typical
distributed system would look as shown in Figure 1.1. However, how does
one classify a system that meets some but not all of the characteristics? Is the
system still a distributed system, or does it become a parallel multiprocessor
system? To better answer these questions, we first examine the architec-
ture of parallel systems, and then examine some well-known taxonomies for
multiprocessor/multicomputer systems.

1.4.1 Characteristics of parallel systems

A parallel system may be broadly classified as belonging to one of three
types:

1. A multiprocessor system is a parallel system in which the multiple proces-
sors have direct access to shared memory which forms a common address
space. The architecture is shown in Figure 1.3(a). Such processors usually
do not have a common clock.

A multiprocessor system usually corresponds to a uniform memory
access (UMA) architecture in which the access latency, i.e., waiting time, to
complete an access to any memory location from any processor is the same.
The processors are in very close physical proximity and are connected by
an interconnection network. Interprocess communication across processors
is traditionally through read and write operations on the shared memory,
although the use of message-passing primitives such as those provided by

Figure 1.3 Two standard
architectures for parallel
systems. (a) Uniform memory
access (UMA) multiprocessor
system. (b) Non-uniform
memory access (NUMA)
multiprocessor. In both
architectures, the processors
may locally cache data from
memory. M memory P processor

(b)(a)

Interconnection networkInterconnection network

PPP P

MMMM P M

P M P M P M

P M P M

6 Introduction

Figure 1.4 Interconnection
networks for shared memory
multiprocessor systems. (a)
Omega network [4] for n = 8
processors P0–P7 and
memory banks M0–M7. (b)
Butterfly network [10] for
n = 8 processors P0–P7 and
memory banks M0–M7.

P0

P1

P2

P3

P4

P6

P7

101P5

000

001

M0

M1

010

011

100

101

110

111

001

101

110

111

100

111

110

100

011

010

000

M2010

000
001

100
101

P0
P1

P2
P3

P4
P5

P6
P7

(a) 3-stage Omega network (n = 8, M = 4) (b) 3-stage Butterfly network (n = 8, M = 4)

011 M3

M4

M5

M6

M7

000

001

010

011

M0

M1

M2

M3

M4

M5

M6

M 7

110
111

the MPI, is also possible (using emulation on the shared memory). All the
processors usually run the same operating system, and both the hardware
and software are very tightly coupled.

The processors are usually of the same type, and are housed within the
same box/container with a shared memory. The interconnection network
to access the memory may be a bus, although for greater efficiency, it is
usually a multistage switch with a symmetric and regular design.

Figure 1.4 shows two popular interconnection networks – the Omega
network [4] and the Butterfly network [10], each of which is a multi-stage
network formed of 2×2 switching elements. Each 2×2 switch allows data
on either of the two input wires to be switched to the upper or the lower
output wire. In a single step, however, only one data unit can be sent on an
output wire. So if the data from both the input wires is to be routed to the
same output wire in a single step, there is a collision. Various techniques
such as buffering or more elaborate interconnection designs can address
collisions.

Each 2× 2 switch is represented as a rectangle in the figure. Further-
more, a n-input and n-output network uses log n stages and log n bits
for addressing. Routing in the 2× 2 switch at stage k uses only the kth
bit, and hence can be done at clock speed in hardware. The multi-stage
networks can be constructed recursively, and the interconnection pattern
between any two stages can be expressed using an iterative or a recursive
generating function. Besides the Omega and Butterfly (banyan) networks,
other examples of multistage interconnection networks are the Clos [9]
and the shuffle-exchange networks [37]. Each of these has very interesting
mathematical properties that allow rich connectivity between the processor
bank and memory bank.

Omega interconnection function The Omega network which connects
n processors to n memory units has n/2log2 n switching elements of size
2× 2 arranged in log2 n stages. Between each pair of adjacent stages of
the Omega network, a link exists between output i of a stage and the input
j to the next stage according to the following perfect shuffle pattern which

7 1.4 Relation to parallel multiprocessor/multicomputer systems

is a left-rotation operation on the binary representation of i to get j. The
iterative generation function is as follows:

j =
{

2i� for 0 ≤ i ≤ n/2−1�
2i+1−n� for n/2 ≤ i ≤ n−1�

(1.1)

Consider any stage of switches. Informally, the upper (lower) input lines
for each switch come in sequential order from the upper (lower) half of
the switches in the earlier stage.

With respect to the Omega network in Figure 1.4(a), n= 8. Hence, for
any stage, for the outputs i, where 0 ≤ i ≤ 3, the output i is connected
to input 2i of the next stage. For 4 ≤ i ≤ 7, the output i of any stage is
connected to input 2i+1−n of the next stage.

Omega routing function The routing function from input line i to output
line j considers only j and the stage number s, where s ∈ �0� log2n− 1�.
In a stage s switch, if the s+1th MSB (most significant bit) of j is 0, the
data is routed to the upper output wire, otherwise it is routed to the lower
output wire.

Butterfly interconnection function Unlike the Omega network, the gen-
eration of the interconnection pattern between a pair of adjacent stages
depends not only on n but also on the stage number s. The recursive expres-
sion is as follows. Let there beM = n/2 switches per stage, and let a switch be
denoted by the tuple �x� s�, wherex ∈ �0�M−1� and stage s ∈ �0� log2n−1�.

The two outgoing edges from any switch �x� s� are as follows. There is
an edge from switch �x� s� to switch �y� s+1� if (i) x = y or (ii) x XOR
y has exactly one 1 bit, which is in the �s+1�th MSB. For stage s, apply
the rule above for M/2s switches.

Whether the two incoming connections go to the upper or the lower
input port is not important because of the routing function, given below.

Example Consider the Butterfly network in Figure 1.4(b), n = 8 and
M = 4. There are three stages, s = 0�1�2, and the interconnection pattern
is defined between s = 0 and s = 1 and between s = 1 and s = 2. The
switch number x varies from 0 to 3 in each stage, i.e., x is a 2-bit string.
(Note that unlike the Omega network formulation using input and output
lines given above, this formulation uses switch numbers. Exercise 1.5 asks
you to prove a formulation of the Omega interconnection pattern using
switch numbers instead of input and output port numbers.)

Consider the first stage interconnection (s = 0) of a butterfly of size M ,
and hence having log2 2M stages. For stage s = 0, as per rule (i), the first
output line from switch 00 goes to the input line of switch 00 of stage
s= 1. As per rule (ii), the second output line of switch 00 goes to input line
of switch 10 of stage s = 1. Similarly, x = 01 has one output line go to an
input line of switch 11 in stage s = 1. The other connections in this stage

8 Introduction

can be determined similarly. For stage s= 1 connecting to stage s= 2, we
apply the rules considering only M/21 =M/2 switches, i.e., we build two
butterflies of size M/2 – the “upper half” and the “lower half” switches.
The recursion terminates for M/2s = 1, when there is a single switch.

Butterfly routing function In a stage s switch, if the s+1th MSB of j
is 0, the data is routed to the upper output wire, otherwise it is routed to
the lower output wire.

Observe that for the Butterfly and the Omega networks, the paths from
the different inputs to any one output form a spanning tree. This implies
that collisions will occur when data is destined to the same output line.
However, the advantage is that data can be combined at the switches if
the application semantics (e.g., summation of numbers) are known.

2. A multicomputer parallel system is a parallel system in which the multiple
processors do not have direct access to shared memory. The memory of
the multiple processors may or may not form a common address space.
Such computers usually do not have a common clock. The architecture is
shown in Figure 1.3(b).

The processors are in close physical proximity and are usually very
tightly coupled (homogenous hardware and software), and connected by
an interconnection network. The processors communicate either via a com-
mon address space or via message-passing. A multicomputer system that
has a common address space usually corresponds to a non-uniform mem-
ory access (NUMA) architecture in which the latency to access various
shared memory locations from the different processors varies.

Examples of parallel multicomputers are: the NYU Ultracomputer and
the Sequent shared memory machines, the CM* Connection machine
and processors configured in regular and symmetrical topologies such
as an array or mesh, ring, torus, cube, and hypercube (message-passing
machines). The regular and symmetrical topologies have interesting math-
ematical properties that enable very easy routing and provide many rich
features such as alternate routing.

Figure 1.5(a) shows a wrap-around 4×4 mesh. For a k×k mesh which
will contain k2 processors, the maximum path length between any two
processors is 2�k/2−1�. Routing can be done along the Manhattan grid.
Figure 1.5(b) shows a four-dimensional hypercube. A k-dimensional hyper-
cube has 2k processor-and-memory units [13,21]. Each such unit is a node
in the hypercube, and has a unique k-bit label. Each of the k dimensions is
associated with a bit position in the label. The labels of any two adjacent
nodes are identical except for the bit position corresponding to the dimen-
sion in which the two nodes differ. Thus, the processors are labelled such
that the shortest path between any two processors is the Hamming distance
(defined as the number of bit positions in which the two equal sized bit
strings differ) between the processor labels. This is clearly bounded by k.

9 1.4 Relation to parallel multiprocessor/multicomputer systems

Figure 1.5 Some popular
topologies for multicomputer
shared-memory machines. (a)
Wrap-around 2D-mesh, also
known as torus. (b) Hypercube
of dimension 4.

0010

0011

0101

(b)(a)
processor + memory

1100

1000

1110

1010

1111

10111001
0001

01100100

0000

1101
0111

Example Nodes 0101 and 1100 have a Hamming distance of 2. The
shortest path between them has length 2.

Routing in the hypercube is done hop-by-hop. At any hop, the message
can be sent along any dimension corresponding to the bit position in which
the current node’s address and the destination address differ. The 4D
hypercube shown in the figure is formed by connecting the corresponding
edges of two 3D hypercubes (corresponding to the left and right “cubes”
in the figure) along the fourth dimension; the labels of the 4D hypercube
are formed by prepending a “0” to the labels of the left 3D hypercube
and prepending a “1” to the labels of the right 3D hypercube. This can
be extended to construct hypercubes of higher dimensions. Observe that
there are multiple routes between any pair of nodes, which provides fault-
tolerance as well as a congestion control mechanism. The hypercube and
its variant topologies have very interesting mathematical properties with
implications for routing and fault-tolerance.

3. Array processors belong to a class of parallel computers that are physically
co-located, are very tightly coupled, and have a common system clock (but
may not share memory and communicate by passing data using messages).
Array processors and systolic arrays that perform tightly synchronized
processing and data exchange in lock-step for applications such as DSP
and image processing belong to this category. These applications usually
involve a large number of iterations on the data. This class of parallel
systems has a very niche market.

The distinction between UMA multiprocessors on the one hand, and NUMA
and message-passing multicomputers on the other, is important because
the algorithm design and data and task partitioning among the processors
must account for the variable and unpredictable latencies in accessing mem-
ory/communication [22]. As compared to UMA systems and array processors,
NUMA and message-passing multicomputer systems are less suitable when
the degree of granularity of accessing shared data and communication is
very fine.

The primary and most efficacious use of parallel systems is for obtain-
ing a higher throughput by dividing the computational workload among the

10 Introduction

processors. The tasks that are most amenable to higher speedups on par-
allel systems are those that can be partitioned into subtasks very nicely,
involving much number-crunching and relatively little communication for
synchronization. Once the task has been decomposed, the processors perform
large vector, array, and matrix computations that are common in scientific
applications. Searching through large state spaces can be performed with sig-
nificant speedup on parallel machines. While such parallel machines were
an object of much theoretical and systems research in the 1980s and early
1990s, they have not proved to be economically viable for two related reasons.
First, the overall market for the applications that can potentially attain high
speedups is relatively small. Second, due to economy of scale and the high
processing power offered by relatively inexpensive off-the-shelf networked
PCs, specialized parallel machines are not cost-effective to manufacture. They
additionally require special compiler and other system support for maximum
throughput.

1.4.2 Flynn’s taxonomy

Flynn [14] identified four processing modes, based on whether the processors
execute the same or different instruction streams at the same time, and whether
or not the processors processed the same (identical) data at the same time. It
is instructive to examine this classification to understand the range of options
used for configuring systems:

• Single instruction stream, single data stream (SISD)
This mode corresponds to the conventional processing in the von Neumann
paradigm with a single CPU, and a single memory unit connected by a
system bus.

• Single instruction stream, multiple data stream (SIMD)
This mode corresponds to the processing by multiple homogenous proces-
sors which execute in lock-step on different data items. Applications that
involve operations on large arrays and matrices, such as scientific applica-
tions, can best exploit systems that provide the SIMD mode of operation
because the data sets can be partitioned easily.

Several of the earliest parallel computers, such as Illiac-IV, MPP, CM2,
and MasPar MP-1 were SIMD machines. Vector processors, array pro-
cessors’ and systolic arrays also belong to the SIMD class of processing.
Recent SIMD architectures include co-processing units such as the MMX
units in Intel processors (e.g., Pentium with the streaming SIMD extensions
(SSE) options) and DSP chips such as the Sharc [22].

• Multiple instruction stream, single data stream (MISD)
This mode corresponds to the execution of different operations in parallel
on the same data. This is a specialized mode of operation with limited but
niche applications, e.g., visualization.

11 1.4 Relation to parallel multiprocessor/multicomputer systems

Figure 1.6 Flynn’s taxonomy
of SIMD, MIMD, and
MISD architectures for
multiprocessor/multicomputer
systems.

PP

CCCC

I

I

I I I

I III

D

P

(c) MISD(b) MIMD(a) SIMD

processing unit

control unit

P

D data stream

I instruction stream

CC

P

D

PP

DD D

• Multiple instruction stream, multiple data stream (MIMD)
In this mode, the various processors execute different code on different
data. This is the mode of operation in distributed systems as well as in
the vast majority of parallel systems. There is no common clock among
the system processors. Sun Ultra servers, multicomputer PCs, and IBM SP
machines are examples of machines that execute in MIMD mode.

SIMD, MISD, and MIMD architectures are illustrated in Figure 1.6. MIMD
architectures are most general and allow much flexibility in partitioning
code and data to be processed among the processors. MIMD architectures
also include the classically understood mode of execution in distributed
systems.

1.4.3 Coupling, parallelism, concurrency, and granularity

Coupling
The degree of coupling among a set of modules, whether hardware or software,
is measured in terms of the interdependency and binding and/or homogeneity
among the modules. When the degree of coupling is high (low), the mod-
ules are said to be tightly (loosely) coupled. SIMD and MISD architectures
generally tend to be tightly coupled because of the common clocking of the
shared instruction stream or the shared data stream. Here we briefly examine
various MIMD architectures in terms of coupling:

• Tightly coupled multiprocessors (with UMA shared memory). These may
be either switch-based (e.g., NYU Ultracomputer, RP3) or bus-based (e.g.,
Sequent, Encore).

• Tightly coupled multiprocessors (with NUMA shared memory or that
communicate by message passing). Examples are the SGI Origin 2000
and the Sun Ultra HPC servers (that communicate via NUMA shared
memory), and the hypercube and the torus (that communicate by message
passing).

• Loosely coupled multicomputers (without shared memory) physically co-
located. These may be bus-based (e.g., NOW connected by a LAN or
Myrinet card) or using a more general communication network, and the
processors may be heterogenous. In such systems, processors neither share

12 Introduction

memory nor have a common clock, and hence may be classified as dis-
tributed systems – however, the processors are very close to one another,
which is characteristic of a parallel system. As the communication latency
may be significantly lower than in wide-area distributed systems, the solu-
tion approaches to various problems may be different for such systems
than for wide-area distributed systems.

• Loosely coupled multicomputers (without shared memory and without
common clock) that are physically remote. These correspond to the con-
ventional notion of distributed systems.

Parallelism or speedup of a program on a specific system
This is a measure of the relative speedup of a specific program, on a given
machine. The speedup depends on the number of processors and the mapping
of the code to the processors. It is expressed as the ratio of the time T�1� with
a single processor, to the time T�n� with n processors.

Parallelism within a parallel/distributed program
This is an aggregate measure of the percentage of time that all the proces-
sors are executing CPU instructions productively, as opposed to waiting for
communication (either via shared memory or message-passing) operations to
complete. The term is traditionally used to characterize parallel programs. If
the aggregate measure is a function of only the code, then the parallelism is
independent of the architecture. Otherwise, this definition degenerates to the
definition of parallelism in the previous section.

Concurrency of a program
This is a broader term that means roughly the same as parallelism of a
program, but is used in the context of distributed programs. The paral-
lelism/concurrency in a parallel/distributed program can be measured by the
ratio of the number of local (non-communication and non-shared memory
access) operations to the total number of operations, including the communi-
cation or shared memory access operations.

Granularity of a program
The ratio of the amount of computation to the amount of communication
within the parallel/distributed program is termed as granularity. If the degree
of parallelism is coarse-grained (fine-grained), there are relatively many more
(fewer) productive CPU instruction executions, compared to the number of
times the processors communicate either via shared memory or message-
passing and wait to get synchronized with the other processors. Programs with
fine-grained parallelism are best suited for tightly coupled systems. These
typically include SIMD and MISD architectures, tightly coupled MIMD
multiprocessors (that have shared memory), and loosely coupled multicom-
puters (without shared memory) that are physically colocated. If programs
with fine-grained parallelism were run over loosely coupled multiprocessors

13 1.5 Message-passing systems versus shared memory systems

that are physically remote, the latency delays for the frequent communication
over the WAN would significantly degrade the overall throughput. As a
corollary, it follows that on such loosely coupled multicomputers, programs
with a coarse-grained communication/message-passing granularity will incur
substantially less overhead.

Figure 1.2 showed the relationships between the local operating system,
the middleware implementing the distributed software, and the network pro-
tocol stack. Before moving on, we identify various classes of multiproces-
sor/multicomputer operating systems:

• The operating system running on loosely coupled processors (i.e., het-
erogenous and/or geographically distant processors), which are themselves
running loosely coupled software (i.e., software that is heterogenous), is
classified as a network operating system. In this case, the application can-
not run any significant distributed function that is not provided by the
application layer of the network protocol stacks on the various processors.

• The operating system running on loosely coupled processors, which are
running tightly coupled software (i.e., the middleware software on the
processors is homogenous), is classified as a distributed operating system.

• The operating system running on tightly coupled processors, which are
themselves running tightly coupled software, is classified as a multipro-
cessor operating system. Such a parallel system can run sophisticated
algorithms contained in the tightly coupled software.

1.5 Message-passing systems versus shared memory systems

Shared memory systems are those in which there is a (common) shared address
space throughout the system. Communication among processors takes place
via shared data variables, and control variables for synchronization among
the processors. Semaphores and monitors that were originally designed for
shared memory uniprocessors and multiprocessors are examples of how syn-
chronization can be achieved in shared memory systems. All multicomputer
(NUMA as well as message-passing) systems that do not have a shared address
space provided by the underlying architecture and hardware necessarily com-
municate by message passing. Conceptually, programmers find it easier to
program using shared memory than by message passing. For this and several
other reasons that we examine later, the abstraction called shared memory
is sometimes provided to simulate a shared address space. For a distributed
system, this abstraction is called distributed shared memory. Implementing
this abstraction has a certain cost but it simplifies the task of the application
programmer. There also exists a well-known folklore result that communi-
cation via message-passing can be simulated by communication via shared
memory and vice-versa. Therefore, the two paradigms are equivalent.

14 Introduction

1.5.1 Emulating message-passing on a shared memory system (MP → SM)

The shared address space can be partitioned into disjoint parts, one part
being assigned to each processor. “Send” and “receive” operations can be
implemented by writing to and reading from the destination/sender processor’s
address space, respectively. Specifically, a separate location can be reserved
as the mailbox for each ordered pair of processes. A Pi–Pj message-passing
can be emulated by a write by Pi to the mailbox and then a read by Pj from
the mailbox. In the simplest case, these mailboxes can be assumed to have
unbounded size. The write and read operations need to be controlled using
synchronization primitives to inform the receiver/sender after the data has
been sent/received.

1.5.2 Emulating shared memory on a message-passing system (SM → MP)

This involves the use of “send” and “receive” operations for “write” and
“read” operations. Each shared location can be modeled as a separate process;
“write” to a shared location is emulated by sending an update message to
the corresponding owner process; a “read” to a shared location is emulated
by sending a query message to the owner process. As accessing another
processor’s memory requires send and receive operations, this emulation
is expensive. Although emulating shared memory might seem to be more
attractive from a programmer’s perspective, it must be remembered that in
a distributed system, it is only an abstraction. Thus, the latencies involved
in read and write operations may be high even when using shared memory
emulation because the read and write operations are implemented by using
network-wide communication under the covers.

An application can of course use a combination of shared memory and
message-passing. In a MIMD message-passing multicomputer system, each
“processor” may be a tightly coupled multiprocessor system with shared
memory. Within the multiprocessor system, the processors communicate via
shared memory. Between two computers, the communication is by message
passing. As message-passing systems are more common and more suited
for wide-area distributed systems, we will consider message-passing systems
more extensively than we consider shared memory systems.

1.6 Primitives for distributed communication

1.6.1 Blocking/non-blocking, synchronous/asynchronous primitives

Message send and message receive communication primitives are denoted
Send() and Receive(), respectively. A Send primitive has at least two param-
eters – the destination, and the buffer in the user space, containing the data
to be sent. Similarly, a Receive primitive has at least two parameters – the

15 1.6 Primitives for distributed communication

source from which the data is to be received (this could be a wildcard), and
the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is invoked –
the buffered option and the unbuffered option. The buffered option which is
the standard option copies the data from the user buffer to the kernel buffer.
The data later gets copied from the kernel buffer onto the network. In the
unbuffered option, the data gets copied directly from the user buffer onto the
network. For the Receive primitive, the buffered option is usually required
because the data may already have arrived when the primitive is invoked, and
needs a storage place in the kernel.

The following are some definitions of blocking/non-blocking and syn-
chronous/asynchronous primitives [12]:

• Synchronous primitives A Send or a Receive primitive is synchronous
if both the Send() and Receive() handshake with each other. The processing
for the Send primitive completes only after the invoking processor learns
that the other corresponding Receive primitive has also been invoked and
that the receive operation has been completed. The processing for the
Receive primitive completes when the data to be received is copied into
the receiver’s user buffer.

• Asynchronous primitives A Send primitive is said to be asynchronous
if control returns back to the invoking process after the data item to be
sent has been copied out of the user-specified buffer.
It does not make sense to define asynchronous Receive primitives.

• Blocking primitives A primitive is blocking if control returns to the
invoking process after the processing for the primitive (whether in syn-
chronous or asynchronous mode) completes.

• Non-blocking primitives A primitive is non-blocking if control returns
back to the invoking process immediately after invocation, even though
the operation has not completed. For a non-blocking Send, control returns
to the process even before the data is copied out of the user buffer. For a
non-blocking Receive, control returns to the process even before the data
may have arrived from the sender.

For non-blocking primitives, a return parameter on the primitive call
returns a system-generated handle which can be later used to check the
status of completion of the call. The process can check for the completion
of the call in two ways. First, it can keep checking (in a loop or periodically)
if the handle has been flagged or posted. Second, it can issue a Wait with
a list of handles as parameters. The Wait call usually blocks until one of
the parameter handles is posted. Presumably after issuing the primitive
in non-blocking mode, the process has done whatever actions it could
and now needs to know the status of completion of the call, therefore
using a blocking Wait() call is usual programming practice. The code for
a non-blocking Send would look as shown in Figure 1.7.

16 Introduction

Figure 1.7 A non-blocking
send primitive. When the Wait
call returns, at least one of its
parameters is posted.

Send(X, destination, handlek) // handlek is a return parameter

� � �

� � �

Wait(handle1, handle2, …, handlek, …, handlem) // Wait always blocks

If at the time that Wait() is issued, the processing for the primi-
tive (whether synchronous or asynchronous) has completed, the Wait
returns immediately. The completion of the processing of the primitive
is detectable by checking the value of handlek. If the processing of the
primitive has not completed, the Wait blocks and waits for a signal to wake
it up. When the processing for the primitive completes, the communication
subsystem software sets the value of handlek and wakes up (signals) any
process with a Wait call blocked on this handlek. This is called posting
the completion of the operation.

There are therefore four versions of the Send primitive – synchronous block-
ing, synchronous non-blocking, asynchronous blocking, and asynchronous
non-blocking. For the Receive primitive, there are the blocking synchronous
and non-blocking synchronous versions. These versions of the primitives are
illustrated in Figure 1.8 using a timing diagram. Here, three time lines are

Figure 1.8 Blocking/
non-blocking and
synchronous/asynchronous
primitives [12]. Process Pi is
sending and process Pj is
receiving. (a) Blocking
synchronous Send and
blocking (synchronous)
Receive. (b) Non-blocking
synchronous Send and
nonblocking (synchronous)
Receive. (c) Blocking
asynchronous Send . (d)
Non-blocking asynchronous
Send .

S_CP,

(a) Blocking sync. Send, blocking Receive (b) Nonblocking sync. Send, nonblocking Receive

P, R_C

S_CP,

R_CR R

P The completion of the previously initiated nonblocking operation

(c) Blocking async. Send (d) Non-blocking async. Send

R_CR Receive primitive issued processing for Receive completes

kernel_i

buffer_i

process i

WW

WW

W Process may issue Wait to check completion of nonblocking operation

S_CSend primitive issuedS processing for Send completes

S S_C
process i

buffer_i

kernel_i

process j

buffer_ j

kernel_ j

S

WWS S_C S

Duration to copy data from or to user buffer
Duration in which the process issuing send or receive primitive is blocked

17 1.6 Primitives for distributed communication

shown for each process: (1) for the process execution, (2) for the user buffer
from/to which data is sent/received, and (3) for the kernel/communication
subsystem.

• Blocking synchronous Send (See Figure 1.8(a)) The data gets copied
from the user buffer to the kernel buffer and is then sent over the network.
After the data is copied to the receiver’s system buffer and a Receive call
has been issued, an acknowledgement back to the sender causes control
to return to the process that invoked the Send operation and completes the
Send.

• non-blocking synchronous Send (See Figure 1.8(b)) Control returns
back to the invoking process as soon as the copy of data from the user
buffer to the kernel buffer is initiated. A parameter in the non-blocking call
also gets set with the handle of a location that the user process can later
check for the completion of the synchronous send operation. The location
gets posted after an acknowledgement returns from the receiver, as per the
semantics described for (a). The user process can keep checking for the
completion of the non-blocking synchronous Send by testing the returned
handle, or it can invoke the blocking Wait operation on the returned handle
(Figure 1.8(b)).

• Blocking asynchronous Send (See Figure 1.8(c)) The user process that
invokes the Send is blocked until the data is copied from the user’s buffer
to the kernel buffer. (For the unbuffered option, the user process that
invokes the Send is blocked until the data is copied from the user’s buffer
to the network.)

• non-blocking asynchronous Send (See Figure 1.8(d)) The user process
that invokes the Send is blocked until the transfer of the data from the user’s
buffer to the kernel buffer is initiated. (For the unbuffered option, the user
process that invokes the Send is blocked until the transfer of the data from the
user’s buffer to the network is initiated.) Control returns to the user process
as soon as this transfer is initiated, and a parameter in the non-blocking call
also gets set with the handle of a location that the user process can check
later using the Wait operation for the completion of the asynchronous Send
operation. The asynchronous Send completes when the data has been copied
out of the user’s buffer. The checking for the completion may be necessary if
the user wants to reuse the buffer from which the data was sent.

• Blocking Receive (See Figure 1.8(a)) The Receive call blocks until the
data expected arrives and is written in the specified user buffer. Then
control is returned to the user process.

• non-blocking Receive (See Figure 1.8(b)) The Receive call will cause
the kernel to register the call and return the handle of a location that the
user process can later check for the completion of the non-blocking Receive
operation. This location gets posted by the kernel after the expected data
arrives and is copied to the user-specified buffer. The user process can

18 Introduction

check for the completion of the non-blocking Receive by invoking the Wait
operation on the returned handle. (If the data has already arrived when the
call is made, it would be pending in some kernel buffer, and still needs to
be copied to the user buffer.)

A synchronous Send is easier to use from a programmer’s perspective
because the handshake between the Send and the Receive makes the com-
munication appear instantaneous, thereby simplifying the program logic. The
“instantaneity” is, of course, only an illusion, as can be seen from Figure 1.8(a)
and (b). In fact, the Receive may not get issued until much after the data
arrives at Pj , in which case the data arrived would have to be buffered in the
system buffer at Pj and not in the user buffer. At the same time, the sender
would remain blocked. Thus, a synchronous Send lowers the efficiency within
process Pi.

The non-blocking asynchronous Send (see Figure 1.8(d)) is useful when a
large data item is being sent because it allows the process to perform other
instructions in parallel with the completion of the Send. The non-blocking
synchronous Send (see Figure 1.8(b)) also avoids the potentially large delays
for handshaking, particularly when the receiver has not yet issued the Receive
call. The non-blocking Receive (see Figure 1.8(b)) is useful when a large data
item is being received and/or when the sender has not yet issued the Send
call, because it allows the process to perform other instructions in parallel
with the completion of the Receive. Note that if the data has already arrived,
it is stored in the kernel buffer, and it may take a while to copy it to the
user buffer specified in the Receive call. For non-blocking calls, however, the
burden on the programmer increases because he or she has to keep track of
the completion of such operations in order to meaningfully reuse (write to
or read from) the user buffers. Thus, conceptually, blocking primitives are
easier to use.

1.6.2 Processor synchrony

As opposed to the classification of synchronous and asynchronous commu-
nication primitives, there is also the classification of synchronous versus
asynchronous processors. Processor synchrony indicates that all the proces-
sors execute in lock-step with their clocks synchronized. As this synchrony
is not attainable in a distributed system, what is more generally indicated is
that for a large granularity of code, usually termed as a step, the processors
are synchronized. This abstraction is implemented using some form of barrier
synchronization to ensure that no processor begins executing the next step of
code until all the processors have completed executing the previous steps of
code assigned to each of the processors.

19 1.7 Synchronous versus asynchronous executions

1.6.3 Libraries and standards

The previous subsections identified the main principles underlying all com-
munication primitives. In this subsection, we briefly mention some publicly
available interfaces that embody some of the above concepts.

There exists a wide range of primitives for message-passing. Many com-
mercial software products (banking, payroll, etc., applications) use proprietary
primitive libraries supplied with the software marketed by the vendors (e.g., the
IBM CICS software which has a very widely installed customer base worldwide
uses its own primitives). The message-passing interface (MPI) library [20, 30]
and the PVM (parallel virtual machine) library [31] are used largely by the sci-
entific community, but other alternative libraries exist. Commercial software
is often written using the remote procedure calls (RPC) mechanism [1, 6] in
which procedures that potentially reside across the network are invoked trans-
parently to the user, in the same manner that a local procedure is invoked [1, 6].
Under the covers, socket primitives or socket-like transport layer primitives are
invoked to call the procedure remotely. There exist many implementations of
RPC [1, 7, 11] – for example, Sun RPC, and distributed computing environ-
ment (DCE) RPC. “Messaging” and “streaming” are two other mechanisms for
communication. With the growth of object based software, libraries for remote
method invocation (RMI) and remote object invocation (ROI) with their own
set of primitives are being proposed and standardized by different agencies [7].
CORBA (common object request broker architecture) [36] and DCOM (dis-
tributed component object model) [7] are two other standardized architectures
with their own set of primitives. Additionally, several projects in the research
stage are designing their own flavour of communication primitives.

1.7 Synchronous versus asynchronous executions

In addition to the two classifications of processor synchrony/asynchrony and
of synchronous/asynchronous communication primitives, there is another clas-
sification, namely that of synchronous/asynchronous executions.

• An asynchronous execution is an execution in which (i) there is no pro-
cessor synchrony and there is no bound on the drift rate of processor
clocks, (ii) message delays (transmission + propagation times) are finite but
unbounded, and (iii) there is no upper bound on the time taken by a process
to execute a step. An example asynchronous execution with four processes
P0 to P3 is shown in Figure 1.9. The arrows denote the messages; the tail
and head of an arrow mark the send and receive event for that message,
denoted by a circle and vertical line, respectively. Non-communication
events, also termed as internal events, are shown by shaded circles.

• A synchronous execution is an execution in which (i) processors are syn-
chronized and the clock drift rate between any two processors is bounded,

20 Introduction

Figure 1.9 An example of an
asynchronous execution in a
message-passing system. A
timing diagram is used to
illustrate the execution.

internal event send event receive event

P0

P1

P2

P3

m1 m7

m4
m2 m6

m5m3

(ii) message delivery (transmission + delivery) times are such that they
occur in one logical step or round, and (iii) there is a known upper bound
on the time taken by a process to execute a step. An example of a syn-
chronous execution with four processes P0 to P3 is shown in Figure 1.10.
The arrows denote the messages.

It is easier to design and verify algorithms assuming synchronous execu-
tions because of the coordinated nature of the executions at all the processes.
However, there is a hurdle to having a truly synchronous execution. It is
practically difficult to build a completely synchronous system, and have the
messages delivered within a bounded time. Therefore, this synchrony has to
be simulated under the covers, and will inevitably involve delaying or block-
ing some processes for some time durations. Thus, synchronous execution is
an abstraction that needs to be provided to the programs. When implementing
this abstraction, observe that the fewer the steps or “synchronizations” of the
processors, the lower the delays and costs. If processors are allowed to have
an asynchronous execution for a period of time and then they synchronize,
then the granularity of the synchrony is coarse. This is really a virtually
synchronous execution, and the abstraction is sometimes termed as virtual
synchrony. Ideally, many programs want the processes to execute a series of
instructions in rounds (also termed as steps or phases) asynchronously, with
the requirement that after each round/step/phase, all the processes should be
synchronized and all messages sent should be delivered. This is the commonly
understood notion of a synchronous execution. Within each round/phase/step,
there may be a finite and bounded number of sequential sub-rounds (or sub-
phases or sub-steps) that processes execute. Each sub-round is assumed to

Figure 1.10 An example of a
synchronous execution in a
message-passing system. All
the messages sent in a round
are received within that same
round.

phase 1 phase 2 phase 3

P0

P1

P2

P3

21 1.7 Synchronous versus asynchronous executions

send at most one message per process; hence the message(s) sent will reach
in a single message hop.

The timing diagram of an example synchronous execution is shown in
Figure 1.10. In this system, there are four nodes P0 to P3. In each round,
process Pi sends a message to P�i+1�mod 4 and P�i−1� mod 4 and calculates some
application-specific function on the received values.

1.7.1 Emulating an asynchronous system by a synchronous system (A → S)

An asynchronous program (written for an asynchronous system) can be emu-
lated on a synchronous system fairly trivially as the synchronous system is a
special case of an asynchronous system – all communication finishes within
the same round in which it is initiated.

1.7.2 Emulating a synchronous system by an asynchronous system (S → A)

A synchronous program (written for a synchronous system) can be emulated
on an asynchronous system using a tool called synchronizer, to be studied in
Chapter 5.

1.7.3 Emulations

Section 1.5 showed how a shared memory system could be emulated by a
message-passing system, and vice-versa. We now have four broad classes of
programs, as shown in Figure 1.11. Using the emulations shown, any class
can be emulated by any other. If system A can be emulated by system B,
denoted A/B, and if a problem is not solvable in B, then it is also not solvable
in A. Likewise, if a problem is solvable in A, it is also solvable in B. Hence,
in a sense, all four classes are equivalent in terms of “computability” – what
can and cannot be computed – in failure-free systems.

Figure 1.11 Emulations
among the principal system
classes in a failure-free system.

Synchronous
message−passing (SMP)

Asynchronous
shared memory (ASM)

Synchronous
shared memory (SSM)

SM−>MPMP−>SMSM−>MPMP−>SM

A−>S

S−>A

A−>S

S−>A

Asynchronous
message−passing (AMP)

22 Introduction

However, in fault-prone systems, as we will see in Chapter 14, this is not the
case; a synchronous system offers more computability than an asynchronous
system.

1.8 Design issues and challenges

Distributed computing systems have been in widespread existence since the
1970s when the Internet and ARPANET came into being. At the time, the
primary issues in the design of the distributed systems included providing
access to remote data in the face of failures, file system design, and directory
structure design. While these continue to be important issues, many newer
issues have surfaced as the widespread proliferation of the high-speed high-
bandwidth internet and distributed applications continues rapidly.

Below we describe the important design issues and challenges after catego-
rizing them as (i) having a greater component related to systems design and
operating systems design, or (ii) having a greater component related to algo-
rithm design, or (iii) emerging from recent technology advances and/or driven
by new applications. There is some overlap between these categories. How-
ever, it is useful to identify these categories because of the chasm among the
(i) the systems community, (ii) the theoretical algorithms community within
distributed computing, and (iii) the forces driving the emerging applications
and technology. For example, the current practice of distributed comput-
ing follows the client–server architecture to a large degree, whereas that
receives scant attention in the theoretical distributed algorithms community.
Two reasons for this chasm are as follows. First, an overwhelming num-
ber of applications outside the scientific computing community of users of
distributed systems are business applications for which simple models are
adequate. For example, the client–server model has been firmly entrenched
with the legacy applications first developed by the Blue Chip companies (e.g.,
HP, IBM, Wang, DEC [now Compaq], Microsoft) since the 1970s and 1980s.
This model is largely adequate for traditional business applications. Second,
the state of the practice is largely controlled by industry standards, which do
not necessarily choose the “technically best” solution.

1.8.1 Distributed systems challenges from a system perspective

The following functions must be addressed when designing and building a
distributed system:

• Communication This task involves designing appropriate mechanisms
for communication among the processes in the network. Some exam-
ple mechanisms are: remote procedure call (RPC), remote object invo-

23 1.8 Design issues and challenges

cation (ROI), message-oriented communication versus stream-oriented
communication.

• Processes Some of the issues involved are: management of processes
and threads at clients/servers; code migration; and the design of software
and mobile agents.

• Naming Devising easy to use and robust schemes for names, identifiers,
and addresses is essential for locating resources and processes in a trans-
parent and scalable manner. Naming in mobile systems provides additional
challenges because naming cannot easily be tied to any static geographical
topology.

• Synchronization Mechanisms for synchronization or coordination
among the processes are essential. Mutual exclusion is the classical exam-
ple of synchronization, but many other forms of synchronization, such as
leader election are also needed. In addition, synchronizing physical clocks,
and devising logical clocks that capture the essence of the passage of time,
as well as global state recording algorithms, all require different forms of
synchronization.

• Data storage and access Schemes for data storage, and implicitly for
accessing the data in a fast and scalable manner across the network are
important for efficiency. Traditional issues such as file system design have
to be reconsidered in the setting of a distributed system.

• Consistency and replication To avoid bottlenecks, to provide fast access
to data, and to provide scalability, replication of data objects is highly
desirable. This leads to issues of managing the replicas, and dealing with
consistency among the replicas/caches in a distributed setting. A simple
example issue is deciding the level of granularity (i.e., size) of data access.

• Fault tolerance Fault tolerance requires maintaining correct and efficient
operation in spite of any failures of links, nodes, and processes. Process
resilience, reliable communication, distributed commit, checkpointing and
recovery, agreement and consensus, failure detection, and self-stabilization
are some of the mechanisms to provide fault-tolerance.

• Security Distributed systems security involves various aspects of cryp-
tography, secure channels, access control, key management – generation
and distribution, authorization, and secure group management.

• Applications Programming Interface (API) and transparency The
API for communication and other specialized services is important for
the ease of use and wider adoption of the distributed systems services by
non-technical users. Transparency deals with hiding the implementation
policies from the user, and can be classified as follows [33]. Access trans-
parency hides differences in data representation on different systems and
provides uniform operations to access system resources. Location trans-
parency makes the locations of resources transparent to the users. Migra-
tion transparency allows relocating resources without changing names. The
ability to relocate the resources as they are being accessed is relocation

24 Introduction

transparency. Replication transparency does not let the user become aware
of any replication. Concurrency transparency deals with masking the con-
current use of shared resources for the user. Failure transparency refers
to the system being reliable and fault-tolerant.

• Scalability and modularity The algorithms, data (objects), and services
must be as distributed as possible. Various techniques such as replication,
caching and cache management, and asynchronous processing help to
achieve scalability.

Some of the recent experiments in designing large-scale distributed systems
include the Globe project at Vrije University [35], and the Globus project
[15]. The Grid infrastructure for large-scale distributed computing is a very

ambitious project that has gained significant attention to date [16, 17]. All
these projects attempt to provide the above listed functions as efficiently as
possible.

1.8.2 Algorithmic challenges in distributed computing

The previous section addresses the challenges in designing distributed systems
from a system building perspective. In this section, we briefly summarize the
key algorithmic challenges in distributed computing.

Designing useful execution models and frameworks
The interleaving model and partial order model are two widely adopted
models of distributed system executions. They have proved to be particularly
useful for operational reasoning and the design of distributed algorithms. The
input/output automata model [25] and the TLA (temporal logic of actions) are
two other examples of models that provide different degrees of infrastructure
for reasoning more formally with and proving the correctness of distributed
programs.

Dynamic distributed graph algorithms and distributed routing
algorithms
The distributed system is modeled as a distributed graph, and the graph
algorithms form the building blocks for a large number of higher level com-
munication, data dissemination, object location, and object search functions.
The algorithms need to deal with dynamically changing graph characteristics,
such as to model varying link loads in a routing algorithm. The efficiency
of these algorithms impacts not only the user-perceived latency but also the
traffic and hence the load or congestion in the network. Hence, the design of
efficient distributed graph algorithms is of paramount importance.

Time and global state in a distributed system
The processes in the system are spread across three-dimensional physical
space. Another dimension, time, has to be superimposed uniformly across

25 1.8 Design issues and challenges

space. The challenges pertain to providing accurate physical time, and to
providing a variant of time, called logical time. Logical time is relative time,
and eliminates the overheads of providing physical time for applications where
physical time is not required. More importantly, logical time can (i) capture
the logic and inter-process dependencies within the distributed program, and
also (ii) track the relative progress at each process.

Observing the global state of the system (across space) also involves
the time dimension for consistent observation. Due to the inherent dis-
tributed nature of the system, it is not possible for any one process to
directly observe a meaningful global state across all the processes, without
using extra state-gathering effort which needs to be done in a coordinated
manner.

Deriving appropriate measures of concurrency also involves the time
dimension, as judging the independence of different threads of execu-
tion depends not only on the program logic but also on execution
speeds within the logical threads, and communication speeds among
threads.

Synchronization/coordination mechanisms
The processes must be allowed to execute concurrently, except when they
need to synchronize to exchange information, i.e., communicate about shared
data. Synchronization is essential for the distributed processes to overcome
the limited observation of the system state from the viewpoint of any one
process. Overcoming this limited observation is necessary for taking any
actions that would impact other processes. The synchronization mechanisms
can also be viewed as resource management and concurrency management
mechanisms to streamline the behavior of the processes that would oth-
erwise act independently. Here are some examples of problems requiring
synchronization:

• Physical clock synchronization Physical clocks ususally diverge in their
values due to hardware limitations. Keeping them synchronized is a fun-
damental challenge to maintain common time.

• Leader election All the processes need to agree on which process will
play the role of a distinguished process – called a leader process. A leader
is necessary even for many distributed algorithms because there is often
some asymmetry – as in initiating some action like a broadcast or collecting
the state of the system, or in “regenerating” a token that gets “lost” in the
system.

• Mutual exclusion This is clearly a synchronization problem because
access to the critical resource(s) has to be coordinated.

• Deadlock detection and resolution Deadlock detection should be
coordinated to avoid duplicate work, and deadlock resolution should
be coordinated to avoid unnecessary aborts of processes.

26 Introduction

• Termination detection This requires cooperation among the processes
to detect the specific global state of quiescence.

• Garbage collection Garbage refers to objects that are no longer in use
and that are not pointed to by any other process. Detecting garbage requires
coordination among the processes.

Group communication, multicast, and ordered message delivery
A group is a collection of processes that share a common context and collab-
orate on a common task within an application domain. Specific algorithms
need to be designed to enable efficient group communication and group man-
agement wherein processes can join and leave groups dynamically, or even
fail. When multiple processes send messages concurrently, different recipients
may receive the messages in different orders, possibly violating the semantics
of the distributed program. Hence, formal specifications of the semantics of
ordered delivery need to be formulated, and then implemented.

Monitoring distributed events and predicates
Predicates defined on program variables that are local to different processes
are used for specifying conditions on the global system state, and are useful
for applications such as debugging, sensing the environment, and in industrial
process control. On-line algorithms for monitoring such predicates are hence
important. An important paradigm for monitoring distributed events is that
of event streaming, wherein streams of relevant events reported from differ-
ent processes are examined collectively to detect predicates. Typically, the
specification of such predicates uses physical or logical time relationships.

Distributed program design and verification tools
Methodically designed and verifiably correct programs can greatly reduce the
overhead of software design, debugging, and engineering. Designing mecha-
nisms to achieve these design and verification goals is a challenge.

Debugging distributed programs
Debugging sequential programs is hard; debugging distributed programs is
that much harder because of the concurrency in actions and the ensuing
uncertainty due to the large number of possible executions defined by the
interleaved concurrent actions. Adequate debugging mechanisms and tools
need to be designed to meet this challenge.

Data replication, consistency models, and caching
Fast access to data and other resources requires them to be replicated in the
distributed system. Managing such replicas in the face of updates introduces
the problems of ensuring consistency among the replicas and cached copies.
Additionally, placement of the replicas in the systems is also a challenge
because resources usually cannot be freely replicated.

27 1.8 Design issues and challenges

World Wide Web design – caching, searching, scheduling
The Web is an example of a widespread distributed system with a direct inter-
face to the end user, wherein the operations are predominantly read-intensive
on most objects. The issues of object replication and caching discussed above
have to be tailored to the web. Further, prefetching of objects when access pat-
terns and other characteristics of the objects are known, can also be performed.
An example of where prefetching can be used is the case of subscribing to
Content Distribution Servers. Minimizing response time to minimize user-
perceived latencies is an important challenge. Object search and navigation
on the web are important functions in the operation of the web, and are very
resource-intensive. Designing mechanisms to do this efficiently and accurately
is a great challenge.

Distributed shared memory abstraction
A shared memory abstraction simplifies the task of the programmer because
he or she has to deal only with read and write operations, and no message
communication primitives. However, under the covers in the middleware
layer, the abstraction of a shared address space has to be implemented by
using message-passing. Hence, in terms of overheads, the shared memory
abstraction is not less expensive.

• Wait-free algorithms Wait-freedom, which can be informally defined
as the ability of a process to complete its execution irrespective of the
actions of other processes, gained prominence in the design of algorithms
to control acccess to shared resources in the shared memory abstraction. It
corresponds to n−1-fault resilience in a n process system and is an impor-
tant principle in fault-tolerant system design. While wait-free algorithms
are highly desirable, they are also expensive, and designing low overhead
wait-free algorithms is a challenge.

• Mutual exclusion A first course in operating systems covers the basic
algorithms (such as the Bakery algorithm and using semaphores) for mutual
exclusion in a multiprocessing (uniprocessor or multiprocessor) shared
memory setting. More sophisticated algorithms – such as those based on
hardware primitives, fast mutual exclusion, and wait-free algorithms – will
be covered in this book.

• Register constructions In light of promising and emerging technologies
of tomorrow – such as biocomputing and quantum computing – that can
alter the present foundations of computer “hardware” design, we need
to revisit the assumptions of memory access of current systems that are
exclusively based on semiconductor technology and the von Neumann
architecture. Specifically, the assumption of single/multiport memory with
serial access via the bus in tight synchronization with the system hardware
clock may not be a valid assumption in the possibility of “unrestricted”
and “overlapping” concurrent access to the same memory location. The

28 Introduction

study of register constructions deals with the design of registers from
scratch, with very weak assumptions on the accesses allowed to a register.
This field forms a foundation for future architectures that allow concurrent
access even to primitive units of memory (independent of technology)
without any restrictions on the concurrency permitted.

• Consistency models For multiple copies of a variable/object, varying
degrees of consistency among the replicas can be allowed. These repre-
sent a trade-off of coherence versus cost of implementation. Clearly, a
strict definition of consistency (such as in a uniprocessor system) would
be expensive to implement in terms of high latency, high message over-
head, and low concurrency. Hence, relaxed but still meaningful models of
consistency are desirable.

Reliable and fault-tolerant distributed systems
A reliable and fault-tolerant environment has multiple requirements and
aspects, and these can be addressed using various strategies:

• Consensus algorithms All algorithms ultimately rely on message-
passing, and the recipients take actions based on the contents of the
received messages. Consensus algorithms allow correctly functioning pro-
cesses to reach agreement among themselves in spite of the existence of
some malicious (adversarial) processes whose identities are not known to
the correctly functioning processes. The goal of the malicious processes
is to prevent the correctly functioning processes from reaching agreement.
The malicious processes operate by sending messages with misleading
information, to confuse the correctly functioning processes.

• Replication and replica management Replication (as in having backup
servers) is a classical method of providing fault-tolerance. The triple mod-
ular redundancy (TMR) technique has long been used in software as well
as hardware installations. More sophisticated and efficient mechanisms for
replication are the subject of study here.

• Voting and quorum systems Providing redundancy in the active (e.g.,
processes) or passive (e.g., hardware resources) components in the system
and then performing voting based on some quorum criterion is a classical
way of dealing with fault-tolerance. Designing efficient algorithms for this
purpose is the challenge.

• Distributed databases and distributed commit For distributed
databases, the traditional properties of the transaction (A.C.I.D. – atomic-
ity, consistency, isolation, durability) need to be preserved in the distributed
setting. The field of traditional “transaction commit” protocols is a fairly
mature area. Transactional properties can also be viewed as having a coun-
terpart for guarantees on message delivery in group communication in the
presence of failures. Results developed in one field can be adapted to the
other.

29 1.8 Design issues and challenges

• Self-stabilizing systems All system executions have associated good
(or legal) states and bad (or illegal) states; during correct functioning,
the system makes transitions among the good states. Faults, internal or
external to the program and system, may cause a bad state to arise in the
execution. A self-stabilizing algorithm is any algorithm that is guaranteed
to eventually take the system to a good state even if a bad state were to
arise due to some error. Self-stabilizing algorithms require some in-built
redundancy to track additional variables of the state and do extra work.
Designing efficient self-stabilizing algorithms is a challenge.

• Checkpointing and recovery algorithms Checkpointing involves peri-
odically recording the current state on secondary storage so that, in case of
a failure, the entire computation is not lost but can be recovered from one
of the recently taken checkpoints. Checkpointing in a distributed environ-
ment is difficult because if the checkpoints at the different processes are
not coordinated, the local checkpoints may become useless because they
are inconsistent with the checkpoints at other processes.

• Failure detectors A fundamental limitation of asynchronous distributed
systems is that there is no theoretical bound on the message transmis-
sion times. Hence, it is impossible to distinguish a sent-but-not-yet-arrived
message from a message that was never sent. This implies that it is impos-
sible using message transmission to determine whether some other process
across the network is alive or has failed. Failure detectors represent a
class of algorithms that probabilistically suspect another process as having
failed (such as after timing out after non-receipt of a message for some
time), and then converge on a determination of the up/down status of the
suspected process.

Load balancing
The goal of load balancing is to gain higher throughput, and reduce the user-
perceived latency. Load balancing may be necessary because of a variety of
factors such as high network traffic or high request rate causing the network
connection to be a bottleneck, or high computational load. A common situation
where load balancing is used is in server farms, where the objective is to
service incoming client requests with the least turnaround time. Several results
from traditional operating systems can be used here, although they need to
be adapted to the specifics of the distributed environment. The following are
some forms of load balancing:

• Data migration The ability to move data (which may be replicated)
around in the system, based on the access pattern of the users.

• Computation migration The ability to relocate processes in order to
perform a redistribution of the workload.

• Distributed scheduling This achieves a better turnaround time for the
users by using idle processing power in the system more efficiently.

30 Introduction

Real-time scheduling
Real-time scheduling is important for mission-critical applications, to accom-
plish the task execution on schedule. The problem becomes more challenging
in a distributed system where a global view of the system state is absent.
On-line or dynamic changes to the schedule are also harder to make without
a global view of the state.

Furthermore, message propagation delays which are network-dependent
are hard to control or predict, which makes meeting real-time guarantees
that are inherently dependent on communication among the processes harder.
Although networks offering quality-of-service guarantees can be used, they
alleviate the uncertainty in propagation delays only to a limited extent. Further,
such networks may not always be available.

Performance
Although high throughput is not the primary goal of using a distributed
system, achieving good performance is important. In large distributed systems,
network latency (propagation and transmission times) and access to shared
resources can lead to large delays which must be minimized. The user-
perceived turn-around time is very important.

The following are some example issues arise in determining the
performance:

• Metrics Appropriate metrics must be defined or identified for measur-
ing the performance of theoretical distributed algorithms, as well as for
implementations of such algorithms. The former would involve various
complexity measures on the metrics, whereas the latter would involve
various system and statistical metrics.

• Measurement methods/tools As a real distributed system is a complex
entity and has to deal with all the difficulties that arise in measuring
performance over a WAN/the Internet, appropriate methodologies and
tools must be developed for measuring the performance metrics.

1.8.3 Applications of distributed computing and newer challenges

Mobile systems
Mobile systems typically use wireless communication which is based on
electromagnetic waves and utilizes a shared broadcast medium. Hence, the
characteristics of communication are different; many issues such as range
of transmission and power of transmission come into play, besides various
engineering issues such as battery power conservation, interfacing with the
wired Internet, signal processing and interference. From a computer science
perspective, there is a rich set of problems such as routing, location manage-
ment, channel allocation, localization and position estimation, and the overall
management of mobility.

31 1.8 Design issues and challenges

There are two popular architectures for a mobile network. The first is the
base-station approach, also known as the cellular approach, wherein a cell
which is the geographical region within range of a static but powerful base
transmission station is associated with that base station. All mobile processes
in that cell communicate with the rest of the system via the base station. The
second approach is the ad-hoc network approach where there is no base station
(which essentially acted as a centralized node for its cell). All responsibility
for communication is distributed among the mobile nodes, wherein mobile
nodes have to participate in routing by forwarding packets of other pairs
of communicating nodes. Clearly, this is a complex model. It poses many
graph-theoretical challenges from a computer science perspective, in addition
to various engineering challenges.

Sensor networks
A sensor is a processor with an electro-mechanical interface that is capable of
sensing physical parameters, such as temperature, velocity, pressure, humidity,
and chemicals. Recent developments in cost-effective hardware technology
have made it possible to deploy very large (of the order of 106 or higher)
low-cost sensors. An important paradigm for monitoring distributed events
is that of event streaming, which was defined earlier. The streaming data
reported from a sensor network differs from the streaming data reported by
“computer processes” in that the events reported by a sensor network are in
the environment, external to the computer network and processes. This limits
the nature of information about the reported event in a sensor network.

Sensor networks have a wide range of applications. Sensors may be mobile
or static; sensors may communicate wirelessly, although they may also com-
municate across a wire when they are statically installed. Sensors may have
to self-configure to form an ad-hoc network, which introduces a whole new
set of challenges, such as position estimation and time estimation.

Ubiquitous or pervasive computing
Ubiquitous systems represent a class of computing where the processors
embedded in and seamlessly pervading through the environment perform
application functions in the background, much like in sci-fi movies. The
intelligent home, and the smart workplace are some example of ubiquitous
environments currently under intense research and development. Ubiquitous
systems are essentially distributed systems; recent advances in technology
allow them to leverage wireless communication and sensor and actuator mech-
anisms. They can be self-organizing and network-centric, while also being
resource constrained. Such systems are typically characterized as having many
small processors operating collectively in a dynamic ambient network. The
processors may be connected to more powerful networks and processing
resources in the background for processing and collating data.

32 Introduction

Peer-to-peer computing
Peer-to-peer (P2P) computing represents computing over an application layer
network wherein all interactions among the processors are at a “peer” level,
without any hierarchy among the processors. Thus, all processors are equal and
play a symmetric role in the computation. P2P computing arose as a paradigm
shift from client–server computing where the roles among the processors are
essentially asymmetrical. P2P networks are typically self-organizing, and may
or may not have a regular structure to the network. No central directories
(such as those used in domain name servers) for name resolution and object
lookup are allowed. Some of the key challenges include: object storage mech-
anisms, efficient object lookup, and retrieval in a scalable manner; dynamic
reconfiguration with nodes as well as objects joining and leaving the network
randomly; replication strategies to expedite object search; tradeoffs between
object size latency and table sizes; anonymity, privacy, and security.

Publish-subscribe, content distribution, and multimedia
With the explosion in the amount of information, there is a greater need
to receive and access only information of interest. Such information can
be specified using filters. In a dynamic environment where the information
constantly fluctuates (varying stock prices is a typical example), there needs
to be: (i) an efficient mechanism for distributing this information (publish),
(ii) an efficient mechanism to allow end users to indicate interest in receiving
specific kinds of information (subscribe), and (iii) an efficient mechanism for
aggregating large volumes of published information and filtering it as per the
user’s subscription filter.

Content distribution refers to a class of mechanisms, primarily in the web
and P2P computing context, whereby specific information which can be
broadly characterized by a set of parameters is to be distributed to interested
processes. Clearly, there is overlap between content distribution mechanisms
and publish–subscribe mechanisms. When the content involves multimedia
data, special requirement such as the following arise: multimedia data is
usually very large and information-intensive, requires compression, and often
requires special synchronization during storage and playback.

Distributed agents
Agents are software processes or robots that can move around the system
to do specific tasks for which they are specially programmed. The name
“agent” derives from the fact that the agents do work on behalf of some
broader objective. Agents collect and process information, and can exchange
such information with other agents. Often, the agents cooperate as in an
ant colony, but they can also have friendly competition, as in a free mar-
ket economy. Challenges in distributed agent systems include coordination
mechanisms among the agents, controlling the mobility of the agents, and
their software design and interfaces. Research in agents is inter-disciplinary:

33 1.9 Selection and coverage of topics

spanning artificial intelligence, mobile computing, economic market models,
software engineering, and distributed computing.

Distributed data mining
Data mining algorithms examine large amounts of data to detect patterns
and trends in the data, to mine or extract useful information. A traditional
example is: examining the purchasing patterns of customers in order to profile
the customers and enhance the efficacy of directed marketing schemes. The
mining can be done by applying database and artificial intelligence techniques
to a data repository. In many situations, the data is necessarily distributed and
cannot be collected in a single repository, as in banking applications where
the data is private and sensitive, or in atmospheric weather prediction where
the data sets are far too massive to collect and process at a single repository
in real-time. In such cases, efficient distributed data mining algorithms are
required.

Grid computing
Analogous to the electrical power distribution grid, it is envisaged that the
information and computing grid will become a reality some day. Very simply
stated, idle CPU cycles of machines connected to the network will be avail-
able to others. Many challenges in making grid computing a reality include:
scheduling jobs in such a distributed environment, a framework for imple-
menting quality of service and real-time guarantees, and, of course, security
of individual machines as well as of jobs being executed in this setting.

Security in distributed systems
The traditional challenges of security in a distributed setting include: confi-
dentiality (ensuring that only authorized processes can access certain informa-
tion), authentication (ensuring the source of received information and the iden-
tity of the sending process), and availability (maintaining allowed access to
services despite malicious actions). The goal is to meet these challenges with
efficient and scalable solutions. These basic challenges have been addressed
in traditional distributed settings. For the newer distributed architectures, such
as wireless, peer-to-peer, grid, and pervasive computing discussed in this sub-
section), these challenges become more interesting due to factors such as a
resource-constrained environment, a broadcast medium, the lack of structure,
and the lack of trust in the network.

1.9 Selection and coverage of topics

This is a long list of topics and difficult to cover in a single textbook. This
book covers a broad selection of topics from the above list, in order to present
the fundamental principles underlying the various topics. The goal has been

34 Introduction

to select topics that will give a good understanding of the field, and of the
techniques used to design solutions.

Some topics that have been omitted are interdisciplinary, across fields
within computer science. An example is load balancing, which is traditionally
covered in detail in a course on parallel processing. As the focus of distributed
systems has shifted away from gaining higher efficiency to providing better
services and fault-tolerance, the importance of load balancing in distributed
computing has diminished. Another example is mobile systems. A mobile
system is a distributed system having certain unique characteristics, and there
are courses devoted specifically to mobile systems.

1.10 Chapter summary

This chapter first characterized distributed systems by looking at various
informal definitions based on functional aspects. It then looked at various
architectures of multiple processor systems, and the requirements that have
traditionally driven distributed systems. The relationship of a distributed sys-
tem to “middleware”, the operating system, and the network protocol stack
provided a different perspective on a distributed system.

The relationship between parallel systems and distributed systems, covering
aspects such as degrees of software and hardware coupling, and the relative
placement of the processors, memory units, and interconnection networks,
was examined in detail. There is some overlap between the fields of parallel
computing and distributed computing, and hence it is important to understand
their relationhip clearly. For example, various interconnection networks such
as the Omega network, the Butterfly network, and the hypercube network,
were designed for parallel computing but they are recently finding surprising
applications in the design of application-level overlay networks for distributed
computing. The traditional taxonomy of multiple processor systems by Flynn
[14] was also studied. Important concepts such as the degree of parallelism and
of concurrency, and the degree of coupling were also introduced informally.

The chapter then introduced three fundamental concepts in distributed
computing. The first concept is the paradigm of shared memory communi-
cation versus message-passing communication. The second concept is the
paradigm of synchronous executions and asynchronous executions. For both
these concepts, emulation of one paradigm by another was studied for error-
free systems. The third concept was that of synchronous and asynchronous
send communication primitives, of synchronous receive communicaiton prim-
itives, and of blocking and non-blocking send and receive communication
primitives.

The chapter then presented design issues and challenges in the field of
distributed computing. The challenges were classified as (i) being important
from a systems design perspective, or (ii) being important from an algorithmic

35 1.11 Exercises

perspective, or (iii) those that are driven by new applications and emerging
technologies. This classification is not orthogonal and is somewhat subjective.
The various topics that will be covered in the rest of the book are portrayed
on a miniature canvas in the section on the design issues and challenges.

1.11 Exercises

Exercise 1.1 What are the main differences between a parallel system and a dis-
tributed system?

Exercise 1.2 Identify some distributed applications in the scientific and commercial
application areas. For each application, determine which of the motivating factors
listed in Section 1.3 are important for building the application over a distributed
system.

Exercise 1.3 Draw the Omega and Butterfly networks for n= 16 inputs and outputs.

Exercise 1.4 For the Omega and Butterfly networks shown in Figure 1.4, trace the
paths from P5 to M2, and from P6 to M1.

Exercise 1.5 Formulate the interconnection function for the Omega network having
n inputs and outputs, only in terms of the M = n/2 switch numbers in each stage.
(Hint: Follow an approach similar to the Butterfly network formulation.)

Exercise 1.6 In Figure 1.4, observe that the paths from input 000 to output 111
and from input 101 to output 110 have a common edge. Therefore, simultaneous
transmission over these paths is not possible; one path blocks another. Hence, the
Omega and Butterfly networks are classified as blocking interconnection networks.

Let ��n� be any permutation on 	0

 n−1�, mapping the input domain to the out-
put range. A non-blocking interconnection network allows simultaneous transmission
from the inputs to the outputs for any permutation.

Consider the network built as follows. Take the image of a butterfly in a vertical
mirror, and append this mirror image to the output of a butterfly. Hence, for n inputs
and outputs, there will be 2log2n stages. Prove that this network is non-blocking.

Exercise 1.7 The Baseline Clos network has a interconnection generation function as
follows. Let there be M = n/2 switches per stage, and let a switch be denoted by the
tuple �x� s�, where x ∈ �0�M−1� and stage s ∈ �0� log2n−1�.

There is an edge from switch �x� s� to switch �y� s+1� if (i) y is the cyclic right-
shift of the �log2n− s� least significant bits of x, (ii) y is the cyclic right-shift of the
�log2n−s� least significant bits of x′, where x′ is obtained by complementing the LSB
of x.

Draw the interconnection diagram for the Clos network having n= 16 inputs and
outputs, i.e., having 8 switches in each of the 4 stages.

Exercise 1.8 Two interconnection networks are isomorphic if there is a 1:1 mapping
f between the switches such that for any switches x and y that are connected to each
other in adjacent stages in one network, f�x� and f�y� are also connected in the other
network.

36 Introduction

Show that the Omega, Butterfly, and Clos (Baseline) networks are isomorphic to
each other.

Exercise 1.9 Explain why a Receive call cannot be asynchronous.

Exercise 1.10 What are the three aspects of reliability? Is it possible to order them in
different ways in terms of importance, based on different applications’ requirements?
Justify your answer by giving examples of different applications.

Exercise 1.11 Figure 1.11 shows the emulations among the principal system classes
in a failure-free system.

1. Which of these emulations are possible in a failure-prone system? Explain.
2. Which of these emulations are not possible in a failure-prone system? Explain.

Exercise 1.12 Examine the impact of unreliable links and node failures on each of
the challenges listed in Section 1.8.2.

1.12 Notes on references

The selection of topics and material for this book has been shaped by the authors’
perception of the importance of various subjects, as well as the coverage by the
existing textbooks.

There are many books on distributed computing and distributed systems. Attiya
and Welch [2] and Lynch [25] provide a formal theoretical treatment of the field.
The books by Barbosa [3] and Tel [34] focus on algorithms. The books by Chow
and Johnson [8], Coulouris et al. [11], Garg [18], Goscinski [19], Mullender [26],
Raynal [27], Singhal and Shivaratri [29], and Tanenbaum and van Steen [33] provide
a blend of theoretical and systems issues.

Much of the material in this introductory chapter is based on well understood
concepts and paradigms in the distributed systems community, and is difficult to
attribute to any particular source.

A recent overview of the challenges in middleware design from systems’ perspective
is given in the special issue by Lea et al. [24]. An overview of the common object
request broker model (CORBA) of the Object Management Group (OMG) is given
by Vinoski [36]. The distributed component object model (DCOM) from Microsoft,
Sun’s Java remote method invocation (RMI), and CORBA are analyzed in perspective
by Campbell et al. [7]. A detailed treatment of CORBA, RMI, and RPC is given
by Coulouris et al. [11]. The Open Foundations’s distributed computing environment
(DCE) is described in [28, 33]; DCE is not likely to be enjoy a continuing support
base. Descriptions of the Message Passing Interface can be found in Snir et al. [30]
and Gropp et al. [20]. The Parallel Virtual Machine (PVM) framework for parallel
distributed programming is described by Sunderam [31].

The discussion of parallel processing, and of the UMA and NUMA parallel archi-
tectures, is based on Kumar et al. [22]. The properties of the hypercube architecture
are surveyed by Feng [13] and Harary et al. [21]. The multi-stage interconnection
architectures – the Omega (Benes) [4], the Butterfly [10], and Clos [9] were proposed
in the papers indicated. A good overview of multistage interconnection networks is
given by Wu and Feng [37]. Flynn’s taxomomy of multiprocessors is based on [14].
The discussion on blocking/non-blocking primitives as well as synchronous and asyn-
chropnous primitives is extended from Cypher and Leu [12]. The section on design
issues and challenges is based on the vast research literature in the area.

37 References

The Globe architecture is described by van Steen et al. [35]. The Globus architecture
is described by Foster and Kesselman [15]. The grid infrastructure and the distributed
computng vision for the twenty-first century is described by Foster and Kesselman
[16] and by Foster [17]. The World Wide Web is an excellent example of a distributed
system that has largely evolved of its own; Tim Berners-Lee is credited with seeding
the WWW project; its early description is given by Berners-Lee et al. [5].

References

[1] A. Ananda, B. Tay, and E. Koh, A survey of asynchronous remore procedure
calls, ACM SIGOPS Operating Systems Review, 26(2), 1992, 92–109.

[2] H. Attiya and J. Welch, Distributed Computing Fundamentals, Simulations,
and Advanced Topics, 2nd edn, Hoboken, NJ, Wiley Inter-Science, 2004.

[3] V. Barbosa, An Introduction to Distributed Algorithms, Cambridge, MA, MIT
Press, 1996.

[4] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone
Traffic, New York, Academic Press, 1965.

[5] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Nielsen, and A. Secret, The
World-Wide Web, Communications of the ACM, 37(8), 1994, 76–82.

[6] A. Birrell and B. Nelson, Implementing remote procedure calls, ACM Trans-
actions on Computer Systems, 2(1), 1984, 39–59.

[7] A. Campbell, G. Coulson, and M. Counavis, Managing complexity: middleware
explained, IT Professional Magazine, October 1999, 22–28.

[8] R. Chow and D. Johnson, Distributed Operating Systems and Algorithms,
Reading, MA, Harlow, UK, Addison-Wesley, 1997.

[9] C. Clos, A study of non-blocking switching networks, Bell Systems Technical
Journal, 32, 1953, 406–424.

[10] J. M. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complete Fourier series, Mathematical Computations, 19, 1965, 297–301.

[11] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts
and Design, Harlow, UK, 3rd edn, Addison-Wesley, 2001.

[12] R. Cypher and E. Leu, The semantics of blocking and non-blocking send and
receive primitives, Proceedings of the 8th International Symposium on Parallel
Processing, 1994, 729–735.

[13] T. Y. Feng, A survey of interconnection networks, IEEE Computer, 14, 1981,
12–27.

[14] M. Flynn, Some computer organizations and their effectiveness, IEEE Trans-
actions on Computers, C-21, 1972, 94.

[15] I. Foster and C. Kesselman, Globus: a metacomputing infrastructure toolkit,
International Journal of Supercomputer Applications, 11(2), 1997, 115–128.

[16] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infras-
tructure, San Francisco, CA, Morgan Kaufmann, 1998.

[17] I. Foster, The Grid: a new infrastructure for 21st century science, Physics
Today, 55(2), 2002, 42–47.

[18] V. Garg, Elements of Distributed Computing, New York, John Wiley, 2002.
[19] A. Goscinski, Distributed Operating Systems: The Logical Design, Reading,

MA, Addison-Wesley, 1991.
[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-

gramming with the Message-passing Interface, Cambridge, MA, MIT
Press, 1994.

38 Introduction

[21] F. Harary, J.P. Hayes, and H. Wu, A survey of the theory of hypercube graphs,
Computational Mathematical Applications, 15(4), 1988, 277–289.

[22] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel
Computing, 2nd edn, Harlow, UK, Pearson Education 2003.

[23] L. Lamport, Distribution email, May 28, 1987, available at: http://research.
microsoft.com/users/lamport/pubs/distributed_systems.txt.

[24] D. Lea, S. Vinoski, and W. Vogels, Guest editors’ introduction: asynchronous
middleware and services, IEEE Internet Computing, 10(1), 2006, 14–17.

[25] N. Lynch, Distributed Algorithms, San Francisco, CA, Morgan Kaufmann,
1996.

[26] S. Mullender, Distributed Systems, 2nd edn, New York, ACM Press, 1993.
[27] M. Raynal, Distributed Algorithms and Protocols, New York, John Wiley,

1988.
[28] J. Shirley, W. Hu, and D. Magid, Guide to Writing DCE Applications, O’Reilly

and Associates, Inc., 1992.
[29] M. Singhal and N. Shivaratri, Advanced Concepts in Operating Systems, New

York, McGraw Hill, 1994.
[30] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The

Complete Reference, Cambridge, MA, MIT Press, 1996.
[31] V. Sunderam, PVM: A framework for parallel distributed computing, Concur-

rency – Practice and Experience, 2(4): 315–339, 1990.
[32] A. Tanenbaum, Computer Networks, 3rd edn, New Jersey, Prentice-Hall PTR,

1996.
[33] A. Tanenbaum and M. Van Steen, Distributed Systems: Principles and

Paradigms, Upper Saddle River, NJ, Prentice-Hall, 2003.
[34] G. Tel, Introduction to Distributed Algorithms, Cambridge, Cambridge

University Press, 1994.
[35] M. van Steen, P. Homburg, and A. Tanenbaum, Globe: a wide-area distributed

system, IEEE Concurrency, 1999, 70–78.
[36] S. Vinoski, CORBA: integrating diverse applications within heterogeneous dis-

tributed environments, IEEE Communications Magazine, 35(2), 1997, 46–55.
[37] C. L. Wu and T.-Y. Feng, On a class of multistage interconnection networks,

IEEE Transactions on Computers, C-29 1980, 694–702.

C H A P T E R

2 A model of distributed
computations

A distributed system consists of a set of processors that are connected by a
communication network. The communication network provides the facility of
information exchange among processors. The communication delay is finite
but unpredictable. The processors do not share a common global memory and
communicate solely by passing messages over the communication network.
There is no physical global clock in the system to which processes have
instantaneous access. The communication medium may deliver messages out
of order, messages may be lost, garbled, or duplicated due to timeout and
retransmission, processors may fail, and communication links may go down.
The system can be modeled as a directed graph in which vertices represent
the processes and edges represent unidirectional communication channels.

A distributed application runs as a collection of processes on a distributed
system. This chapter presents a model of a distributed computation and intro-
duces several terms, concepts, and notations that will be used in the subsequent
chapters.

2.1 A distributed program

A distributed program is composed of a set of n asynchronous processes
p1, p2,

 , pi,

 , pn that communicate by message passing over the
communication network. Without loss of generality, we assume that each
process is running on a different processor. The processes do not share a
global memory and communicate solely by passing messages. Let Cij denote
the channel from process pi to process pj and let mij denote a message sent
by pi to pj . The communication delay is finite and unpredictable. Also, these
processes do not share a global clock that is instantaneously accessible to
these processes. Process execution and message transfer are asynchronous – a
process may execute an action spontaneously and a process sending a message
does not wait for the delivery of the message to be complete.

39

40 A model of distributed computations

The global state of a distributed computation is composed of the states of
the processes and the communication channels [2]. The state of a process is
characterized by the state of its local memory and depends upon the context.
The state of a channel is characterized by the set of messages in transit in the
channel.

2.2 A model of distributed executions

The execution of a process consists of a sequential execution of its actions.
The actions are atomic and the actions of a process are modeled as three
types of events, namely, internal events, message send events, and message
receive events. Let exi denote the xth event at process pi. Subscripts and/or
superscripts will be dropped when they are irrelevant or are clear from the
context. For a message m, let send�m� and rec�m� denote its send and receive
events, respectively.

The occurrence of events changes the states of respective processes and
channels, thus causing transitions in the global system state. An internal event
changes the state of the process at which it occurs. A send event (or a receive
event) changes the state of the process that sends (or receives) the message
and the state of the channel on which the message is sent (or received). An
internal event only affects the process at which it occurs.

The events at a process are linearly ordered by their order of occurrence.
The execution of process pi produces a sequence of events e1

i , e
2
i ,

 , exi ,

ex+1
i ,

 and is denoted by �i:

�i = �hi�→i��

where hi is the set of events produced by pi and binary relation →i defines
a linear order on these events. Relation →i expresses causal dependencies
among the events of pi.

The send and the receive events signify the flow of information between
processes and establish causal dependency from the sender process to the
receiver process. A relation →msg that captures the causal dependency due
to message exchange, is defined as follows. For every message m that is
exchanged between two processes, we have

send�m�→msg rec�m��

Relation→msg defines causal dependencies between the pairs of correspond-
ing send and receive events.

The evolution of a distributed execution is depicted by a space–time dia-
gram. Figure 2.1 shows the space–time diagram of a distributed execution
involving three processes. A horizontal line represents the progress of the

41 2.2 A model of distributed executions

Figure 2.1 The space–time
diagram of a distributed
execution.

p1

p2

p3

e1
1

e2
1

e3
1 e3

3

e3
2 e3

4

e2
2 e2

3 e2
4 e2

6

e2
5

e1
2 e1

3 e1
4 e1

5

Time

process; a dot indicates an event; a slant arrow indicates a message transfer.
Generally, the execution of an event takes a finite amount of time; however,
since we assume that an event execution is atomic (hence, indivisible and
instantaneous), it is justified to denote it as a dot on a process line. In this
figure, for process p1, the second event is a message send event, the third
event is an internal event, and the fourth event is a message receive event.

Causal precedence relation
The execution of a distributed application results in a set of distributed events
produced by the processes. Let H =∪ihi denote the set of events executed
in a distributed computation. Next, we define a binary relation on the set
H , denoted as →, that expresses causal dependencies between events in the
distributed execution.

∀exi � ∀eyj ∈H� exi → e
y
j ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exi →i e
y
j i�e�� �i= j�∧ �x < y�

or
exi →msg e

y
j

or
∃ezk ∈H � exi → ezk ∧ ezk→ e

y
j

The causal precedence relation induces an irreflexive partial order on the
events of a distributed computation [6] that is denoted as �=(H ,→).

Note that the relation→ is Lamport’s “happens before” relation [4].1 For
any two events ei and ej , if ei→ ej , then event ej is directly or transitively
dependent on event ei; graphically, it means that there exists a path consisting
of message arrows and process-line segments (along increasing time) in the
space–time diagram that starts at ei and ends at ej . For example, in Figure 2.1,
e1

1→ e3
3 and e3

3→ e6
2. Note that relation→ denotes flow of information in a

distributed computation and ei→ ej dictates that all the information available

1 In Lamport’s “happens before” relation, an event e1 happens before an event e2, denoted
by ei → ej , if (a) e1 occurs before e2 on the same process, or (b) e1 is the send event of a
message and e2 is the receive event of that message, or (c) ∃e′ � e1 happens before e′ and e′

happens before e2.

42 A model of distributed computations

at ei is potentially accessible at ej . For example, in Figure 2.1, event e6
2 has

the knowledge of all other events shown in the figure.
For any two events ei and ej , ei �→ ej denotes the fact that event ej does

not directly or transitively dependent on event ei. That is, event ei does not
causally affect event ej . Event ej is not aware of the execution of ei or any
event executed after ei on the same process. For example, in Figure 2.1,
e3

1 �→ e3
3 and e4

2 �→ e1
3. Note the following two rules:

• for any two events ei and ej , ei �→ ej �⇒ ej �→ ei
• for any two events ei and ej , ei→ ej ⇒ ej �→ ei.

For any two events ei and ej , if ei �→ ej and ej �→ ei, then events ei and ej are
said to be concurrent and the relation is denoted as ei � ej . In the execution
of Figure 2.1, e3

1 � e3
3 and e4

2 � e1
3. Note that relation � is not transitive; that is,

(ei � ej) ∧ (ej � ek) �⇒ ei � ek. For example, in Figure 2.1, e3
3 � e4

2 and e4
2 � e5

1,
however, e3

3 �� e5
1.

Note that for any two events ei and ej in a distributed execution, ei→ ej
or ej→ ei, or ei � ej .

Logical vs. physical concurrency
In a distributed computation, two events are logically concurrent if and only if
they do not causally affect each other. Physical concurrency, on the other hand,
has a connotation that the events occur at the same instant in physical time.
Note that two or more events may be logically concurrent even though they
do not occur at the same instant in physical time. For example, in Figure 2.1,
events in the set {e3

1� e
4
2� e

3
3} are logically concurrent, but they occurred at

different instants in physical time. However, note that if processor speed and
message delays had been different, the execution of these events could have
very well coincided in physical time. Whether a set of logically concurrent
events coincide in the physical time or in what order in the physical time they
occur does not change the outcome of the computation.

Therefore, even though a set of logically concurrent events may not have
occurred at the same instant in physical time, for all practical and theoretical
purposes, we can assume that these events occured at the same instant in
physical time.

2.3 Models of communication networks

There are several models of the service provided by communication networks,
namely, FIFO (first-in, first-out), non-FIFO, and causal ordering. In the FIFO
model, each channel acts as a first-in first-out message queue and thus,
message ordering is preserved by a channel. In the non-FIFO model, a channel
acts like a set in which the sender process adds messages and the receiver
process removes messages from it in a random order. The “causal ordering”

43 2.4 Global state of a distributed system

model [1] is based on Lamport’s “happens before” relation. A system that
supports the causal ordering model satisfies the following property:

CO � For any two messages mij and mkj� if send�mij� −→ send�mkj��

then rec�mij� −→ rec�mkj��

That is, this property ensures that causally related messages destined to the
same destination are delivered in an order that is consistent with their causal-
ity relation. Causally ordered delivery of messages implies FIFO message
delivery. Furthermore, note that CO ⊂ FIFO ⊂ Non-FIFO.

Causal ordering model is useful in developing distributed algorithms. Gen-
erally, it considerably simplifies the design of distributed algorithms because
it provides a built-in synchronization. For example, in replicated database
systems, it is important that every process responsible for updating a replica
receives the updates in the same order to maintain database consistency.
Without causal ordering, each update must be checked to ensure that database
consistency is not being violated. Causal ordering eliminates the need for
such checks.

2.4 Global state of a distributed system

The global state of a distributed system is a collection of the local states of its
components, namely, the processes and the communication channels [2, 3].
The state of a process at any time is defined by the contents of processor
registers, stacks, local memory, etc. and depends on the local context of the
distributed application. The state of a channel is given by the set of messages
in transit in the channel.

The occurrence of events changes the states of respective processes and
channels, thus causing transitions in global system state. For example, an
internal event changes the state of the process at which it occurs. A send event
(or a receive event) changes the state of the process that sends (or receives)
the message and the state of the channel on which the message is sent (or
received).

Let LSxi denote the state of process pi after the occurrence of event exi and
before the event ex+1

i . LS0
i denotes the initial state of process pi. LS

x
i is a

result of the execution of all the events executed by process pi till exi . Let
send(m)≤LSxi denote the fact that ∃y:1≤y≤x :: eyi = send(m). Likewise, let
rec(m)�≤LSxi denote the fact that ∀y:1≤y≤x :: eyi �=rec(m).

The state of a channel is difficult to state formally because a channel is
a distributed entity and its state depends upon the states of the processes it
connects. Let SCx�y

ij denote the state of a channel Cij defined as follows:

SC
x�y
ij ={mij� send(mij) ≤ LSxi

∧
rec(mij) �≤ LSyj }.

44 A model of distributed computations

Thus, channel state SCx�y
ij denotes all messages that pi sent up to event exi and

which process pj had not received until event eyj .

2.4.1 Global state

The global state of a distributed system is a collection of the local states of
the processes and the channels. Notationally, the global state GS is defined as

GS = {
⋃

iLS
xi
i ,
⋃

j�kSC
yj�zk
jk }.

For a global snapshot to be meaningful, the states of all the components
of the distributed system must be recorded at the same instant. This will be
possible if the local clocks at processes were perfectly synchronized or there
was a global system clock that could be instantaneously read by the processes.
However, both are impossible.

However, it turns out that even if the state of all the components in a
distributed system has not been recorded at the same instant, such a state will
be meaningful provided every message that is recorded as received is also
recorded as sent. Basic idea is that an effect should not be present without its
cause. A message cannot be received if it was not sent; that is, the state should
not violate causality. Such states are called consistent global states and are
meaningful global states. Inconsistent global states are not meaningful in the
sense that a distributed system can never be in an inconsistent state.

A global state GS = {
⋃

iLS
xi
i ,
⋃

j�kSC
yj�zk
jk } is a consistent global state iff it

satisfies the following condition:

∀mij � send�mij�� LS
xi
i ⇒mij �∈ SCxi�yj

ij ∧ rec�mij�� LS
yj
j �

That is, channel state SC
yi�zk
ik and process state LS

zk
k must not include

any message that process pi sent after executing event exii . A more rigorous
definition of the consistency of a global state is given in Chapter 4.

In the distributed execution of Figure 2.2, a global state GS1 consisting
of local states {LS1

1 , LS3
2 , LS3

3 , LS2
4} is inconsistent because the state of p2

has recorded the receipt of message m12, however, the state of p1 has not
recorded its send. On the contrary, a global state GS2 consisting of local

Figure 2.2 The space–time
diagram of a distributed
execution.

Time

m12 m21

p1

p2

p3

p4

e1
1

e2
1

e3
1

e4
1 e4

2

e3
2 e3

4 e3
5e3

3

e2
2 e2

3 e2
4

e1
2 e1

3 e1
4

45 2.5 Cuts of a distributed computation

states {LS2
1 , LS4

2 , LS4
3 , LS2

4} is consistent; all the channels are empty except
C21 that contains message m21.

A global state GS = {
⋃

iLS
xi
i ,
⋃

j�kSC
yj�zk
jk } is transitless iff

∀i�∀j � 1≤ i� j ≤ n �� SC
yi�zj
ij = �

Thus, all channels are recorded as empty in a transitless global state.
A global state is strongly consistent iff it is transitless as well as consistent.
Note that in Figure 2.2, the global state consisting of local states {LS2

1 , LS3
2 ,

LS4
3 , LS2

4} is strongly consistent.
Recording the global state of a distributed system is an important paradigm

when one is interested in analyzing, monitoring, testing, or verifying proper-
ties of distributed applications, systems, and algorithms. Design of efficient
methods for recording the global state of a distributed system is an important
problem.

2.5 Cuts of a distributed computation

In the space–time diagram of a distributed computation, a zigzag line joining
one arbitrary point on each process line is termed a cut in the computation.
Such a line slices the space–time diagram, and thus the set of events in the
distributed computation, into a PAST and a FUTURE. The PAST contains all
the events to the left of the cut and the FUTURE contains all the events to the
right of the cut. For a cut C, let PAST(C) and FUTURE(C) denote the set of
events in the PAST and FUTURE of C, respectively. Every cut corresponds
to a global state and every global state can be graphically represented as a
cut in the computation’s space–time diagram [6].

definition 2.1 If eMax_PASTi�C�
i denotes the latest event at process pi that is

in the PAST of a cut C, then the global state represented by the cut is
{
⋃

iLS
Max_PASTi�C�
i ,

⋃
j�kSC

yj�zk
jk } where SC

yj�zk
jk = {m � send(m)∈PAST(C) ∧

rec(m)∈FUTURE(C)}.

A consistent global state corresponds to a cut in which every message
received in the PAST of the cut was sent in the PAST of that cut. Such a cut
is known as a consistent cut. All messages that cross the cut from the PAST
to the FUTURE are in transit in the corresponding consistent global state.
A cut is inconsistent if a message crosses the cut from the FUTURE to the
PAST. For example, the space–time diagram of Figure 2.3 shows two cuts,
C1 and C2. C1 is an inconsistent cut, whereas C2 is a consistent cut. Note that
these two cuts respectively correspond to the two global states GS1 and GS2,
identified in the previous subsection.

46 A model of distributed computations

Figure 2.3 Illustration of cuts
in a distributed execution.

Time

C1 C2

p1

p2

p3

p4

e1
1

e2
1

e3
1

e4
1 e4

2

e3
2 e3

4 e3
5e3

3

e2
2 e2

3 e2
4

e1
2 e1

3 e1
4

Cuts in a space–time diagram provide a powerful graphical aid in repre-
senting and reasoning about global states of a computation.

2.6 Past and future cones of an event

In a distributed computation, an event ej could have been affected only by
all events ei such that ei→ ej and all the information available at ei could
be made accessible at ej . All such events ei belong to the past of ej [6].
Let Past�ej� denote all events in the past of ej in a computation (H , →).
Then,

Past�ej�= 	ei�∀ei ∈H� ei→ ej�.

Figure 2.4 shows the past of an event ej . Let Pasti�ej� be the set of all
those events of Past�ej� that are on process pi. Clearly, Pasti(ej) is a totally
ordered set, ordered by the relation →i, whose maximal element is denoted
by max(Pasti(ej)). Obviously, max(Pasti(ej)) is the latest event at process
pi that affected event ej (see Figure 2.4). Note that max(Pasti(ej)) is always
a message send event.

Let Max_Past�ej� =
⋃

�∀i�	max�Pasti�ej���. Max_Past�ej� consists of the
latest event at every process that affected event ej and is referred to as the

Figure 2.4 Illustration of past
and future cones in a
distributed computation.

PAST(ej) FUTURE(ej)

pi

max(Pasti(ej)) min(Futurei(ej))

ej

47 2.7 Models of process communications

surface of the past cone of ej [6]. Note that Max_Past�ej� is a consistent
cut [7]. Past�ej� represents all events on the past light cone that affect ej .

Similar to the past is defined the future of an event. The future of an event
ej , denoted by Future�ej�, contains all events ei that are causally affected by
ej (see Figure 2.4). In a computation (H ,→), Future�ej� is defined as:

Future�ej�= 	ei�∀ei ∈H� ej → ei�.

Likewise, we can define Futurei�ej� as the set of those events of Future�ej�
that are on process pi and min(Futurei(ej)) as the first event on process pi
that is affected by ej . Note that min(Futurei(ej)) is always a message receive
event. Likewise, Min_Past�ej�, defined as

⋃
�∀i�	min�Futurei�ej���, consists

of the first event at every process that is causally affected by event ej and is
referred to as the surface of the future cone of ej [6]. It denotes a consistent
cut in the computation [7]. Future�ej� represents all events on the future
light cone that are affected by ej .

It is obvious that all events at a process pi that occurred after
max�Pasti�ej�� but before min�Futurei�ej�� are concurrent with ej . There-
fore, all and only those events of computation H that belong to the set
“H−Past�ej�−Future�ej�” are concurrent with event ej .

2.7 Models of process communications

There are two basic models of process communications [8] – synchronous
and asynchronous. The synchronous communication model is a blocking type
where on a message send, the sender process blocks until the message has
been received by the receiver process. The sender process resumes execution
only after it learns that the receiver process has accepted the message. Thus,
the sender and the receiver processes must synchronize to exchange a message.
On the other hand, asynchronous communication model is a non-blocking
type where the sender and the receiver do not synchronize to exchange a
message. After having sent a message, the sender process does not wait for
the message to be delivered to the receiver process. The message is bufferred
by the system and is delivered to the receiver process when it is ready to
accept the message. A buffer overflow may occur if a process sends a large
number of messages in a burst to another process.

Neither of the communication models is superior to the other. Asynchronous
communication provides higher parallelism because the sender process can
execute while the message is in transit to the receiver. However, an implemen-
tation of asynchronous communication requires more complex buffer manage-
ment. In addition, due to higher degree of parallelism and non-determinism, it
is much more difficult to design, verify, and implement distributed algorithms
for asynchronous communications. The state space of such algorithms are
likely to be much larger. Synchronous communication is simpler to handle

48 A model of distributed computations

and implement. However, due to frequent blocking, it is likely to have poor
performance and is likely to be more prone to deadlocks.

2.8 Chapter summary

In a distributed system, a set of processes communicate by exchanging mes-
sages over a communication network. A distributed computation is spread
over geographically distributed processes. The processes do not share a com-
mon global memory or a physical global clock, to which processes have
instantaneous access.

The execution of a process consists of a sequential execution of its actions
(e.g., internal events, message send events, and message receive events.) The
events at a process are linearly ordered by their order of occurrence. Mes-
sage exchanges between processes signify the flow of information between
processes and establish causal dependencies between processes. The causal
precedence relation between processes is captured by Lamport’s “happens
before” relation.

The global state of a distributed system is a collection of the states of its
processes and the state of communication channels connecting the processes.
A cut in a distributed computation is a zigzag line joining one arbitrary
point on each process line. A cut represents a global state in the distributed
computation. The past of an event consists of all events that causally
affect it and the future of an event consists of all events that are causally
affected by it.

2.9 Exercises

Exercise 2.1 Prove that in a distributed computation, for an event, the surface of the
past cone (i.e., all the events on the surface) form a consistent cut. Does it mean that
all events on the surface of the past cone are always concurrent? Give an example to
make your case.

Exercise 2.2 Show that all events on the surface of the past cone of an event are
message send events. Likewise, show that all events on the surface of the future cone
of an event are message receive events.

2.10 Notes on references

Lamport in his landmark paper [4] defined the “happens before” relation between
events in a distributed systems to capture causality. Other papers on the topic include
those by Mattern [6] and by Panengaden and Taylor [7].

49 References

References

[1] K. Birman and T. Joseph, Reliable communication in presence of failures, ACM
Transactions on Computer Systems, 3, 1987, 47–76.

[2] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states of
distributed systems, ACM Transactions on Computer Systems, 3(1), 1985, 63–75.

[3] A. Kshemkalyani, M. Raynal and M. Singhal, Global snapshots of a distributed
system, Distributed Systems Engineering Journal, 2(4), 1995, 224–233.

[4] L. Lamport, Time, clocks and the ordering of events in a distributed system,
Communications of the ACM, 21, 1978, 558–564.

[5] A. Lynch, Distributed processing solves main-frame problems, Data Communi-
cations, 1976, 17–22.

[6] F. Mattern, Virtual time and global states of distributed systems, Proceedings of
the Parallel and Distributed Algorithms Conference, 1988, 215–226.

[7] P. Panengaden and K. Taylor, Concurrent common knowledge: a new definition
of agreement for asynchronous events, Proceedings of the 5th Symposium on
Principles of Distributed Computing, 1988, 197–209.

[8] S. M. Shatz, Communication mechanisms for programming distributed systems,
IEEE Computer, 1984, 21–28.

C H A P T E R

3 Logical time

3.1 Introduction

The concept of causality between events is fundamental to the design and
analysis of parallel and distributed computing and operating systems. Usu-
ally causality is tracked using physical time. However, in distributed sys-
tems, it is not possible to have global physical time; it is possible to realize
only an approximation of it. As asynchronous distributed computations make
progress in spurts, it turns out that the logical time, which advances in
jumps, is sufficient to capture the fundamental monotonicity property associ-
ated with causality in distributed systems. This chapter discusses three ways
to implement logical time (e.g., scalar time, vector time, and matrix time)
that have been proposed to capture causality between events of a distributed
computation.

Causality (or the causal precedence relation) among events in a distributed
system is a powerful concept in reasoning, analyzing, and drawing infer-
ences about a computation. The knowledge of the causal precedence
relation among the events of processes helps solve a variety of prob-
lems in distributed systems. Examples of some of these problems is as
follows:

• Distributed algorithms design The knowledge of the causal precedence
relation among events helps ensure liveness and fairness in mutual exclu-
sion algorithms, helps maintain consistency in replicated databases, and
helps design correct deadlock detection algorithms to avoid phantom and
undetected deadlocks.

• Tracking of dependent events In distributed debugging, the knowledge
of the causal dependency among events helps construct a consistent state
for resuming reexecution; in failure recovery, it helps build a checkpoint;
in replicated databases, it aids in the detection of file inconsistencies in
case of a network partitioning.

50

51 3.1 Introduction

• Knowledge about the progress The knowledge of the causal depen-
dency among events helps measure the progress of processes in the
distributed computation. This is useful in discarding obsolete information,
garbage collection, and termination detection.

• Concurrency measure The knowledge of how many events are causally
dependent is useful in measuring the amount of concurrency in a computa-
tion. All events that are not causally related can be executed concurrently.
Thus, an analysis of the causality in a computation gives an idea of the
concurrency in the program.

The concept of causality is widely used by human beings, often uncon-
sciously, in the planning, scheduling, and execution of a chore or an enterprise,
or in determining the infeasibility of a plan or the innocence of an accused.
In day-to-day life, the global time to deduce causality relation is obtained
from loosely synchronized clocks (i.e., wrist watches, wall clocks). However,
in distributed computing systems, the rate of occurrence of events is sev-
eral magnitudes higher and the event execution time is several magnitudes
smaller. Consequently, if the physical clocks are not precisely synchronized,
the causality relation between events may not be accurately captured. Net-
work Time Protocols [15], which can maintain time accurate to a few tens
of milliseconds on the Internet, are not adequate to capture the causality
relation in distributed systems. However, in a distributed computation, gen-
erally the progress is made in spurts and the interaction between processes
occurs in spurts. Consequently, it turns out that in a distributed computation,
the causality relation between events produced by a program execution and
its fundamental monotonicity property can be accurately captured by logical
clocks.

In a system of logical clocks, every process has a logical clock that is
advanced using a set of rules. Every event is assigned a timestamp and the
causality relation between events can be generally inferred from their times-
tamps. The timestamps assigned to events obey the fundamental monotonicity
property; that is, if an event a causally affects an event b, then the timestamp
of a is smaller than the timestamp of b.

This chapter first presents a general framework of a system of logical
clocks in distributed systems and then discusses three ways to implement
logical time in a distributed system. In the first method, Lamport’s scalar
clocks, the time is represented by non-negative integers; in the second method,
the time is represented by a vector of non-negative integers; in the third
method, the time is represented as a matrix of non-negative integers. We
also discuss methods for efficient implementation of the systems of vector
clocks.

The chapter ends with a discussion of virtual time, its implementation
using the time-warp mechanism and a brief discussion of physical clock
synchronization and the Network Time Protocol.

52 Logical time

3.2 A framework for a system of logical clocks

3.2.1 Definition

A system of logical clocks consists of a time domain T and a logical clock C
[19]. Elements of T form a partially ordered set over a relation<. This relation
is usually called the happened before or causal precedence. Intuitively, this
relation is analogous to the earlier than relation provided by the physical
time. The logical clock C is a function that maps an event e in a distributed
system to an element in the time domain T , denoted as C(e) and called the
timestamp of e, and is defined as follows:

C : H �→ T ,

such that the following property is satisfied:

for two events ei and ej , ei→ ej =⇒ C(ei) < C(ej).

This monotonicity property is called the clock consistency condition. When
T and C satisfy the following condition,

for two events ei and ej , ei→ ej ⇔ C(ei) < C(ej),

the system of clocks is said to be strongly consistent.

3.2.2 Implementing logical clocks

Implementation of logical clocks requires addressing two issues [19]: data
structures local to every process to represent logical time and a protocol (set
of rules) to update the data structures to ensure the consistency condition.

Each process pi maintains data structures that allow it the following two
capabilities:

• A local logical clock, denoted by lci, that helps process pi measure its
own progress.

• A logical global clock, denoted by gci, that is a representation of process
pi’s local view of the logical global time. It allows this process to assign
consistent timestamps to its local events. Typically, lci is a part of gci.

The protocol ensures that a process’s logical clock, and thus its view of the
global time, is managed consistently. The protocol consists of the following
two rules:

• R1 This rule governs how the local logical clock is updated by a process
when it executes an event (send, receive, or internal).

• R2 This rule governs how a process updates its global logical clock to
update its view of the global time and global progress. It dictates what
information about the logical time is piggybacked in a message and how
this information is used by the receiving process to update its view of the
global time.

53 3.3 Scalar time

Systems of logical clocks differ in their representation of logical time and
also in the protocol to update the logical clocks. However, all logical clock
systems implement rules R1 and R2 and consequently ensure the fundamental
monotonicity property associated with causality. Moreover, each particular
logical clock system provides its users with some additional properties.

3.3 Scalar time

3.3.1 Definition

The scalar time representation was proposed by Lamport in 1978 [9] as an
attempt to totally order events in a distributed system. Time domain in this
representation is the set of non-negative integers. The logical local clock of a
process pi and its local view of the global time are squashed into one integer
variable Ci.

Rules R1 and R2 to update the clocks are as follows:

• R1 Before executing an event (send, receive, or internal), process pi
executes the following:

Ci �= Ci+d �d > 0��

In general, every time R1 is executed, d can have a different value, and
this value may be application-dependent. However, typically d is kept at
1 because this is able to identify the time of each event uniquely at a
process, while keeping the rate of increase of d to its lowest level.

• R2 Each message piggybacks the clock value of its sender at sending
time. When a process pi receives a message with timestamp Cmsg, it
executes the following actions:

1. Ci �=max�Ci�Cmsg�;
2. execute R1;
3. deliver the message.

Figure 3.1 shows the evolution of scalar time with d=1.

Figure 3.1 Evolution of scalar
time [19].

1 2 3

3 10

11

5 6 7

2
7

9

4
b

1

8 9

4 5

1

p1

p2

p3

54 Logical time

3.3.2 Basic properties

Consistency property
Clearly, scalar clocks satisfy the monotonicity and hence the consistency
property:

for two events ei and ej , ei→ ej =⇒ C(ei) < C(ej).

Total Ordering
Scalar clocks can be used to totally order events in a distributed system [9].
The main problem in totally ordering events is that two or more events at
different processes may have an identical timestamp. (Note that for two events
e1 and e2, C(e1) = C(e2) =⇒ e1 � e2.) For example, in Figure 3.1, the third
event of process P1 and the second event of process P2 have identical scalar
timestamp. Thus, a tie-breaking mechanism is needed to order such events.
Typically, a tie is broken as follows: process identifiers are linearly ordered
and a tie among events with identical scalar timestamp is broken on the basis
of their process identifiers. The lower the process identifier in the ranking,
the higher the priority. The timestamp of an event is denoted by a tuple (t, i)
where t is its time of occurrence and i is the identity of the process where it
occurred. The total order relation ≺ on two events x and y with timestamps
(h,i) and (k,j), respectively, is defined as follows:

x ≺ y⇔ �h < k or �h= k and i < j���

Since events that occur at the same logical scalar time are independent
(i.e., they are not causally related), they can be ordered using any arbitrary
criterion without violating the causality relation→. Therefore, a total order is
consistent with the causality relation “→”. Note that x≺ y=⇒ x→ y∨x � y.
A total order is generally used to ensure liveness properties in distributed
algorithms. Requests are timestamped and served according to the total order
based on these timestamps [9].

Event counting
If the increment value d is always 1, the scalar time has the following interest-
ing property: if event e has a timestamp h, then h−1 represents the minimum
logical duration, counted in units of events, required before producing the
event e [4]; we call it the height of the event e. In other words, h-1 events
have been produced sequentially before the event e regardless of the processes
that produced these events. For example, in Figure 3.1, five events precede
event b on the longest causal path ending at b.

No strong consistency
The system of scalar clocks is not strongly consistent; that is, for two events ei
and ej , C(ei) < C(ej) �=⇒ ei→ ej . For example, in Figure 3.1, the third event

55 3.4 Vector time

of process P1 has smaller scalar timestamp than the third event of process P2.
However, the former did not happen before the latter. The reason that scalar
clocks are not strongly consistent is that the logical local clock and logical
global clock of a process are squashed into one, resulting in the loss causal
dependency information among events at different processes. For example,
in Figure 3.1, when process P2 receives the first message from process P1, it
updates its clock to 3, forgetting that the timestamp of the latest event at P1

on which it depends is 2.

3.4 Vector time

3.4.1 definition

The system of vector clocks was developed independently by Fidge [4],
Mattern [12], and Schmuck [23]. In the system of vector clocks, the time
domain is represented by a set of n-dimensional non-negative integer vectors.
Each process pi maintains a vector vti�1��n�, where vti�i� is the local logical
clock of pi and describes the logical time progress at process pi. vti�j� rep-
resents process pi’s latest knowledge of process pj local time. If vti�j� = x,
then process pi knows that local time at process pj has progressed till x. The
entire vector vti constitutes pi’s view of the global logical time and is used
to timestamp events.

Process pi uses the following two rules R1 and R2 to update its clock:

• R1 Before executing an event, process pi updates its local logical time
as follows:

vti�i� �= vti�i�+d �d > 0��

• R2 Each message m is piggybacked with the vector clock vt of the sender
process at sending time. On the receipt of such a message (m,vt), process
pi executes the following sequence of actions:
1. update its global logical time as follows:

1≤ k≤ n � vti�k� �=max�vti�k�� vt�k���

2. execute R1;
3. deliver the message m.

The timestamp associated with an event is the value of the vector clock of its
process when the event is executed. Figure 3.2 shows an example of vector
clocks progress with the increment value d = 1. Initially, a vector clock is
�0�0�0�

 � �0�.

56 Logical time

Figure 3.2 Evolution of vector
time [19].

2
0
0

2
3
4

5
3
4

2
3
0

2
0
0

3
0
0

4
3
4

0
1
0

2
2
0

2
3
0

2
4
0

5
6
4

0
0
1

2
3
3

2
3
4

2
3
2

1
0
0

5
3
4

5
5
4

p1

p2

p3

The following relations are defined to compare two vector timestamps, vh
and vk:

vh= vk ⇔ ∀x � vh�x�= vk�x�
vh≤ vk ⇔ ∀x � vh�x�≤ vk�x�
vh < vk ⇔ vh≤ vk and ∃x � vh�x� < vk�x�

vh � vk ⇔ ¬�vh < vk�∧¬�vk < vh��

3.4.2 Basic properties

Isomorphism
Recall that relation “→” induces a partial order on the set of events that
are produced by a distributed execution. If events in a distributed system are
timestamped using a system of vector clocks, we have the following property.

If two events x and y have timestamps vh and vk, respectively, then

x→ y ⇔ vh < vk

x � y ⇔ vh � vk�
Thus, there is an isomorphism between the set of partially ordered events
produced by a distributed computation and their vector timestamps. This is a
very powerful, useful, and interesting property of vector clocks.

If the process at which an event occurred is known, the test to compare
two timestamps can be simplified as follows: if events x and y respectively
occurred at processes pi and pj and are assigned timestamps vh and vk,
respectively, then

x→ y ⇔ vh�i�≤ vk�i�
x � y ⇔ vh�i� > vk�i�∧vh�j� < vk�j��

57 3.4 Vector time

Strong consistency
The system of vector clocks is strongly consistent; thus, by examining the
vector timestamp of two events, we can determine if the events are causally
related. However, Charron–Bost showed that the dimension of vector clocks
cannot be less than n, the total number of processes in the distributed com-
putation, for this property to hold [2].

Event counting
If d is always 1 in rule R1, then the ith component of vector clock at process
pi, vti�i�, denotes the number of events that have occurred at pi until that
instant. So, if an event e has timestamp vh, vh�j� denotes the number of
events executed by process pj that causally precede e. Clearly,

∑
vh�j�− 1

represents the total number of events that causally precede e in the distributed
computation.

Applications
Since vector time tracks causal dependencies exactly, it finds a wide variety
of applications. For example, they are used in distributed debugging, imple-
mentations of causal ordering communication and causal distributed shared
memory, establishment of global breakpoints, and in determining the consis-
tency of checkpoints in optimistic recovery.

A brief historical perspective of vector clocks
Although the theory associated with vector clocks was first developed in
1988 independently by Fidge and Mattern, vector clocks were informally
introduced and used by several researchers before this. Parker et al. [17] used
a rudimentary vector clocks system to detect inconsistencies of replicated
files due to network partitioning. Liskov and Ladin [11] proposed a vector
clock system to define highly available distributed services. Similar system
of clocks was used by Strom and Yemini [26] to keep track of the causal
dependencies between events in their optimistic recovery algorithm and by
Raynal to prevent drift between logical clocks [18]. Singhal [24] used vector
clocks coupled with a boolean vector to determine the currency of a critical
section execution request by detecting the cusality relation between a critical
section request and its execution.

3.4.3 On the size of vector clocks

An important question to ask is whether vector clocks of size n are necessary
in a computation consisting of n processes. To answer this, we examine the
usage of vector clocks.

• A vector clock provides the latest known local time at each other process.
If this information in the clock is to be used to explicitly track the progress
at every other process, then a vector clock of size n is necessary.

58 Logical time

• A popular use of vector clocks is to determine the causality between a
pair of events. Given any events e and f , the test for e ≺ f if and only if
T�e� < T�f�, which requires a comparison of the vector clocks of e and f .
Although it appears that the clock of size n is necessary, that is not quite
accurate. It can be shown that a size equal to the dimension of the partial
order �E�≺� is necessary, where the upper bound on this dimension is n.
This is explained below.

To understand this result on the size of clocks for determining causal-
ity between a pair of events, we first introduce some definitions. A linear
extension of a partial order �E�≺� is a linear ordering of E that is consistent
with the partial order, i.e., if two events are ordered in the partial order, they
are also ordered in the linear order. A linear extension can be viewed as
projecting all the events from the different processes on a single time axis.
However, the linear order will necessarily introduce ordering between each
pair of events, and some of these orderings are not in the partial order. Also
observe that different linear extensions are possible in general. Let � denote
the set of tuples in the partial order defined by the causality relation; so there
is a tuple �e� f� in � for each pair of events e and f such that e≺ f . Let �1,
�2

 denote the sets of tuples in different linear extensions of this partial
order. The set � is contained in the set obtained by taking the intersection
of any such collection of linear extensions �1, �2

 . This is because each
�i must contain all the tuples, i.e., causality dependencies, that are in � .
The dimension of a partial order is the minimum number of linear extensions
whose intersection gives exactly the partial order.

Consider a client–server interaction between a pair of processes. Queries
to the server and responses to the client occur in strict alternating sequences.
Although n= 2, all the events are strictly ordered, and there is only one linear
order of all the events that is consistent with the “partial” order. Hence the
dimension of this “partial order” is 1. A scalar clock such as one implemented
by Lamport’s scalar clock rules is adequate to determine e≺ f for any events
e and f in this execution.

Now consider an execution on processes P1 and P2 such that each sends
a message to the other before receiving the other’s message. The two send
events are concurrent, as are the two receive events. To determine the causality
between the send events or between the receive events, it is not sufficient
to use a single integer; a vector clock of size n = 2 is necessary. This
execution exhibits the graphical property called a crown, wherein there are
some messages m0�

 mn−1 such that Send�mi� ≺ Receive�mi+1mod �n−1�� for
all i from 0 to n−1. A crown of n messages has dimension n. We introduced
the notion of crown and studied its properties in Chapter 6.

For a complex execution, it is not straightforward to determine the
dimension of the partial order. Figure 3.3 shows an execution involving four
processes. However, the dimension of this partial order is two. To see this

59 3.5 Efficient implementations of vector clocks

Figure 3.3 Example illustrating
dimension of a execution
�E�≺�. For n = 4 processes,
the dimension is 2.

f

a b d g h i

j

j

e

f

c

a h i
(i)

e

d

(ii) two linear extensions
< c, e, f, a, b, d, g, h, i, j >
< a, b, c, d, g, h, i, e, j, f >

Range of events "c," "e," "f "

b

c

g

informally, consider the longest chain �a�b�d� g�h� i� j�. There are events
outside this chain that can yield multiple linear extensions. Hence, the dimen-
sion is more than 1. The right side of Figure 3.3 shows the earliest possible
and the latest possible occurrences of the events not in this chain, with respect
to the events in this chain. Let �1 be �c� e� f�a� b�d� g�h� i� j�, which contains
the following tuples that are not in �:

�c�a�� �c� b�� �c�d�� �c� g�� �c�h�� �c� i�� �c� j��

�e�a�� �e� b�� �e�d�� �e� g�� �e�h�� �e� i�� �e� j��

�f�a�� �f� b�� �f�d�� �f� g�� �f�h�� �f� i�� �f� j��

Let �2 be �a�b� c�d� g�h� i� e� j� f�, which contains the following tuples not
in �:

�a� c�� �b� c�� �c�d�� �c� g�� �c�h�� �c� i�� �c� j��

�a� e�� �b� e�� �d� e�� �g� e�� �h� e�� �i� e�� �e� j��

�a� f�� �b� f�� �d� f�� �g� f�� �h� f�� �i� f�� �j� f��

Further, observe that ��1 \ P�
⋂
�2 = ∅ and ��2 \ P�

⋂
�1 = ∅. Hence,

�1

⋂
�2 = � and the dimension of the execution is 2 as these two linear

extensions are enough to generate � .
Unfortunately, it is not computationally easy to determine the dimension

of a partial order. To exacerbate the problem, the above form of analysis has
to be completed a posteriori (i.e., off-line), once the entire partial order has
been determined after the completion of the execution.

3.5 Efficient implementations of vector clocks

If the number of processes in a distributed computation is large, then vector
clocks will require piggybacking of huge amount of information in messages
for the purpose of disseminating time progress and updating clocks. The

60 Logical time

message overhead grows linearly with the number of processors in the sys-
tem and when there are thousands of processors in the system, the mes-
sage size becomes huge even if there are only a few events occurring in
few processors. In this section, we discuss efficient ways to maintain vec-
tor clocks; similar techniques can be used to efficiently implement matrix
clocks.

Charron-Bost showed [2] that if vector clocks have to satisfy the strong
consistency property, then in general vector timestamps must be at least of
size n, the total number of processes. Therefore, in general the size of a vector
timestamp is the number of processes involved in a distributed computation;
however, several optimizations are possible and next, we discuss techniques
to implement vector clocks efficiently [19].

3.5.1 Singhal–Kshemkalyani’s differential technique

Singhal–Kshemkalyani’s differential technique [25] is based on the observa-
tion that between successive message sends to the same process, only a few
entries of the vector clock at the sender process are likely to change. This
is more likely when the number of processes is large because only a few of
them will interact frequently by passing messages. In this technique, when a
process pi sends a message to a process pj , it piggybacks only those entries
of its vector clock that differ since the last message sent to pj .

The technique works as follows: if entries i1� i2�

 � in1
of the vector clock

at pi have changed to v1� v2�

 � vn1
, respectively, since the last message sent

to pj , then process pi piggybacks a compressed timestamp of the form

	�i1� v1�� �i2� v2��

 � �in1
� vn1

��

to the next message to pj . When pj receives this message, it updates its vector
clock as follows:

vti�ik�=max�vti�ik�� vk� for k= 1�2�

 � n1.

Thus this technique cuts down the message size, communication bandwidth
and buffer (to store messages) requirements. In the worst of case, every
element of the vector clock has been updated at pi since the last message
to process pj , and the next message from pi to pj will need to carry the
entire vector timestamp of size n. However, on the average the size of the
timestamp on a message will be less than n. Note that implementation of
this technique requires each process to remember the vector timestamp in
the message last sent to every other process. Direct implementation of this
will result in O�n2� storage overhead at each process. This technique also
requires that the communication channels follow FIFO discipline for message
delivery.

Singhal and Kshemkalyani developed a clever technique that cuts down
this storage overhead at each process to O�n�. The technique works in

61 3.5 Efficient implementations of vector clocks

the following manner: process pi maintains the following two additional
vectors:

• LSi�1

 n� (‘Last Sent’):
LSi�j� indicates the value of vti�i� when process pi last sent a message to
process pj .

• LUi�1

 n� (‘Last Update’):
LUi�j� indicates the value of vti�i� when process pi last updated the entry
vti�j�.

Clearly, LUi�i� = vti�i� at all times and LUi�j� needs to be updated only
when the receipt of a message causes pi to update entry vti�j�. Also, LSi�j�
needs to be updated only when pi sends a message to pj . Since the last
communication from pi to pj , only those elements k of vector clock vti�k�

have changed for which LSi�j� < LUi�k� holds. Hence, only these elements
need to be sent in a message from pi to pj . When pi sends a message to pj ,
it sends only a set of tuples,

	�x� vti�x���LSi�j� < LUi�x��,

as the vector timestamp to pj , instead of sending a vector of n entries in a
message.

Thus the entire vector of size n is not sent along with a message. Instead,
only the elements in the vector clock that have changed since the last
message send to that process are sent in the format 	�p1� latest_value��
�p2� latest_value��

 �, where pi indicates that the pith component of the
vector clock has changed.

This method is illustrated in Figure 3.4. For instance, the second message
from p3 to p2 (which contains a timestamp 	�3�2��) informs p2 that the
third component of the vector clock has been modified and the new value
is 2. This is because the process p3 (indicated by the third component of

Figure 3.4 Vector
clocks progress in
Singhal–Kshemkalyani
technique [19].

1
0
0
0

1
1
0
0

1
3
2
0

1
2
1
0

0
0
2
0

0
0
3
1

0
0
4
1

0
0
0
1

1
4
4
1

0
0
1
0

{(1,1)}

{(3,1)} {(3,2)} {(3,4),(4,1)}

{(4,1)}

p1

p2

p3

p4

62 Logical time

the vector) has advanced its clock value from 1 to 2 since the last message
sent to p2.

The cost of maintaining vector clocks in large systems can be substan-
tially reduced by this technique, especially if the process interactions exhibit
temporal or spatial localities. This technique would turn advantageous in
a variety of applications including causal distributed shared memories, dis-
tributed deadlock detection, enforcement of mutual exclusion and localized
communications typically observed in distributed systems.

3.5.2 Fowler–Zwaenepoel’s direct-dependency technique

Fowler–Zwaenepoel direct dependency technique [6] reduces the size of mes-
sages by transmitting only a scalar value in the messages. No vector clocks are
maintained on-the-fly. Instead, a process only maintains information regard-
ing direct dependencies on other processes. A vector time for an event,
which represents transitive dependencies on other processes, is constructed
off-line from a recursive search of the direct dependency information at
processes.

Each process pi maintains a dependency vector Di. Initially,

Di�j�= 0 for j = 1�

 � n.

Di is updated as follows:

1. Whenever an event occurs at pi, Di�i� �= Di�i�+ 1. That is, the vector
component corresponding to its own local time is incremented by one.

2. When a process pi sends a message to process pj , it piggybacks the updated
value of Di�i� in the message.

3. When pi receives a message from pj with piggybacked value d, pi updates
its dependency vector as follows: Di[j]:= max{Di[j], d}.

Thus the dependency vector Di reflects only direct dependencies. At any
instant, Di[j] denotes the sequence number of the latest event on process pj
that directly affects the current state. Note that this event may precede the
latest event at pj that causally affects the current state.

Figure 3.5 illustrates the Fowler–Zwaenepoel technique. For instance, when
process p4 sends a message to process p3, it piggybacks a scalar that indicates
the direct dependency of p3 on p4 because of this message. Subsequently,
process p3 sends a message to process p2 piggybacking a scalar to indicate
the direct dependency of p2 on p3 because of this message. Now, process p2

is in fact indirectly dependent on process p4 since process p3 is dependent
on process p4. However, process p2 is never informed about its indirect
dependency on p4.

Thus although the direct dependencies are duly informed to the receiv-
ing processes, the transitive (indirect) dependencies are not maintained by

63 3.5 Efficient implementations of vector clocks

Figure 3.5 Vector
clock progress in
Fowler–Zwaenepoel
technique [19].

1
0
0
0

1
1
0
0

1
3
2
0

1
2
1
0

0
0
2
0

0
0
3
1

0
0
4
1

0
0
0
1

1
4
4
0

0
0
1
0

{1}

{1} {2} {4}

{1}

p1

p2

p3

p4

this method. They can be obtained only by recursively tracing the direct-
dependency vectors of the events off-line. This involves computational
overhead and latencies. Thus this method is ideal only for those applica-
tions that do not require computation of transitive dependencies on the fly.
The computational overheads characteristic of this method makes it best
suitable for applications like causal breakpoints and asynchronous check-
point recovery where computation of causal dependencies is performed
offline.

This technique results in considerable saving in the cost; only one scalar
is piggybacked on every message. However, the dependency vector does not
represent transitive dependencies (i.e., a vector timestamp). The transitive
dependency (or the vector timestamp) of an event is obtained by recur-
sively tracing the direct-dependency vectors of processes. Clearly, this will
have overhead and will involve latencies. Therefore, this technique is not
suitable for applications that require on-the-fly computation of vector times-
tamps. Nonetheless, this technique is ideal for applications where computation
of causal dependencies is performed off-line (e.g., causal breakpoint, asyn-
chronous checkpointing recovery).

The transitive dependencies could be determined by combining an event’s
direct dependency with that of its directly dependent event. In Figure 3.5, the
fourth event of process p3 is dependent on the first event of process p4 and
the fourth event of process p2 is dependent on the fourth event of process
p3. By combining these two direct dependencies, it is possible to deduce that
the fourth event of process p2 depends on the first event of process p4. It
is important to note that if event ej at process pj occurs before event ei at
process pi, then all the events from e0 to ej−1 in process pj also happen before
ei. Hence, it is sufficient to record for ei the latest event of process pj that
happened before ei. This way, each event would record its dependencies on

64 Logical time

the latest event on every other process it depends on and those events maintain
their own dependencies. Combining all these dependencies, the entire set of
events that a particular event depends on could be determined off-line.

The off-line computation of transitive dependencies can be performed using
a recursive algorithm proposed in [6] and is illustrated in a modified form in
Algorithm 3.1. DTV is the dependency-tracking vector of size n (where n is
the number of process) which is supposed to track all the causal dependencies
of a particular event ei in process pi. The algorithm then needs to be invoked
as DependencyTrack(i�De

i �i�). The algorithm initializes DTV to the least
possible timestamp value which is 0 for all entries except i for which the
value is set to De

i �i�:

for all k= 1�

 � n and k �= i, DTV [k]=0 and DTV [i]=De
i [i].

The algorithm then calls the VisitEvent algorithm on process pi and event ei.
VisitEvent checks all the entries (1�

 � n) of DTV and De

i and if the value
in De

i is greater than the value in DTV for that entry, then DTV assumes the
value of De

i for that entry. This ensures that the latest event in process j that ei
depends on is recorded in DTV. VisitEvent is recursively called on all entries
that are newly included in DTV so that the latest dependency information can
be accurately tracked.

Let us illustrate the recursive dependency trace algorithm by by tracking
the dependencies of fourth event at process p2. The algorithm is invoked as

DependencyTrack (i � process, � : event index)
\∗ Casual distributed breakpoint for �i ∗\
\∗ DTV holds the result ∗\
for all k �= i do

DTV [k]=0
end for
DTV [i]=�
end DependencyTrack

VisitEvent (j � process, e � event index)
\∗ Place dependencies of � into DTV ∗\
for all k �= j do

�=De
j �k�

if � >DTV [k] then
DTV [k]=�
VisitEvent (k, �)

end if
end for
end VisitEvent

Algorithm 3.1 Recursive dependency trace algorithm

65 3.6 Jard–Jourdan’s adaptive technique

DependencyTrack (2�4). DTV is initially set to < 0 4 0 0 > by Dependen-
cyTrack. It then calls VisitEvent (2�4). The values held by D4

2 are < 1 4 4
0 >. So, DTV is now updated to < 1 4 0 0 > and VisitEvent (1�1) is called.
The values held by D1

1 are < 1 0 0 0 >. Since none of the entries are greater
than those in DTV, the algorithm returns. Again the values held by D4

2 are
checked and this time entry 3 is found to be greater in D4

2 than DTV. So,
DTV is updated as < 1 4 4 0> and VisiEvent (3�4) is called. The values held
by D4

3 are < 0 0 4 1 >. Since entry 4 of D4
3 is greater than that of DTV, it

is updated as < 1 4 4 1 > and VisitEvent (4�1) is called. Since none of the
entries in D1

4: < 1 0 0 0> are greater than those of DTV, the algorithm returns
to VisitEvent (2�4). Since all the entries have been checked, VisitEvent (2�4)
is exited and so is DependencyTrack. At this point, DTV holds < 1 4 4 1>,
meaning event 4 of process p2 is dependent upon event 1 of process p1, event
4 of process p3 and event 1 in process p4. Also, it is dependent on events
that precede event 4 of process p3 and these dependencies could be obtained
by invoking the DependencyTrack algorithm on fourth event of process p3.
Thus, all the causal dependencies could be tracked off-line.

This technique can result in a considerable saving of cost since only one
scalar is piggybacked on every message. One of the important requirements
is that a process updates and records its dependency vectors after receiving a
message and before sending out any message. Also, if events occur frequently,
this technique will require recording the history of a large number of events.

3.6 Jard–Jourdan’s adaptive technique

The Fowler–Zwaenepoel direct-dependency technique does not allow the
transitive dependencies to be captured in real time during the execution of
processes. In addition, a process must observe an event (i.e., update and record
its dependency vector) after receiving a message but before sending out any
message. Otherwise, during the reconstruction of a vector timestamp from the
direct-dependency vectors, all the causal dependencies will not be captured. If
events occur very frequently, this technique will require recording the history
of a large number of events.

In the Jard–Jourdan’s technique [8], events can be adaptively observed
while maintaining the capability of retrieving all the causal dependencies of
an observed event. (Observing an event means recording of the information
about its dependencies.) This method uses the idea that when an observed
event e records its dependencies, then events that follow can determine their
transitive dependencies, that is, the set of events that they indirectly depend
on, by making use of the information recorded about e. The reason is that
when an event e is observed, the information about the send and receive of
messages maintained by a process is recorded in that event and the information
maintained by the process is then reset and updated. So, when the process

66 Logical time

propagates information after e, it propagates only history of activities that
took place after e. The next observed event either in the same process or in
a different one, would then have to look at the information recorded for e
to know about the activities that happened before e. This method still does
not allow determining all the causal dependencies in real time, but avoids the
problem of recording a large amount of history which is realized when using
the direct dependency technique.

To implement the technique of recording the information in an observed
event and resetting the information managed by a process, Jard–Jourdan
defined a pseudo-direct relation� on the events of a distributed computation
as follows:

If events ei and ej happen at process pi and pj , respectively, then ej�ei iff
there exists a path of message transfers that starts after ej on the process pj
and ends before ei on the process ei such that there is no observed event on
the path. The relation is termed pseudo-direct because event ei may depend
upon many unobserved events on the path, say ue1, ue2,

, uen, etc., which
are in turn dependent on each other. If ei happens after uen, then ei is still
considered to be directly dependent upon ue1, ue2,

, uen, since these events
are unobserved, which is a falsely assumed to have direct dependency. If
another event ek happens after ei, then the transitive dependencies of ek on
ue1, ue2,

, uen can be determined by using the information recorded at ei
and ei can do the same with ej .

The technique is implemented using the following mechanism: the partial
vector clock p_vti at process pi is a list of tuples of the form (j, v) indicating
that the current state of pi is pseudo-dependent on the event on process pj
whose sequence number is v. Initially, at a process pi: p_vti={(i, 0)}.

Let p_vti = 	�i1� v1��

 � �i� v��

 �in� vn� denote the current partial vec-
tor clock at process pi. Let e_vti be a variable that holds the timestamp of the
observed event.

(i) Whenever an event is observed at process pi, the contents of the partial
vector clock p_vti are transferred to e_vti and p_vti is reset and updated
as follows:

e_vti = 	�i1� v1��

 � �i� v��

 � �in� vn��

p_vti = 	�i� v+1���

(ii) When process pj sends a message to pi, it piggybacks the current value
of p_vtj in the message.

(iii) When pi receives a message piggybacked with timestamp p_vt,
pi updates p_vti such that it is the union of the following (let
p_vt={(im1� vm1),

 ,(imk� vmk)} and p_vti = 	�i1� v1�� �

 � �il� vl��):

• all (imx� vmx) such that (imx� �) does not appear in v_pti;
• all (ix� vx) such that (ix� �) does not appear in v_pt;
• all (ix, max(vx� vmx)) for all (vx� �) that appear in v_pt and v_pti.

67 3.6 Jard–Jourdan’s adaptive technique

Figure 3.6 Vector clocks
progress in the Jard–Jourdan
technique [19].

{(1,0)}

{(1,0),(2,0)}

{(5,1)}
{(4,1)}

v_ pt5 = {(5,1)}
e1_ pt5 = {(5,0)}

v_ pt5 = {(5,2)}v_ pt5 = {(5,0)}

v_ pt4 = {(4,0)}

v_ pt3 = {(3,0)}

e1_ pt3 = {(3,0)}

v_ pt3 =

{(3,1)}
v_ pt3 =

{(3,2)}
v_ pt3 =

{(3,3)}

v_ pt2 = {(2,0)}
v_ pt2 =

{(1,0),(2,0)}

v_ pt3 = {(1,0),
(2,0),(3,1)}

e2_ pt3 = {(1,0)
(2,0),(3,1)}

e3_ pt3 =

{(3,2),(4,1)}

v_ pt4 =

{(4,0),(5,1)}
v_ pt4 =

{(4,1)}

v_ pt3 =

{(3,2),(4,1)}

e1_ pt4 =

{(4,0),(5,1)}

v_ pt1 = {(1,0)} v_ pt1 = {(1,1)}

v_ pt5 =

{(4,1),(5,1)}
e2_ pt5 =

{(4,1), (5,1)}

p4

p5

p3

p2

p1

{(4,1)}

In Figure 3.6, eX_ptn denotes the timestamp of the Xth observed event at
process pn. For instance, the event 1 observed at p4 is timestamped e1_pt4 =
	�4�0�� �5�1��; this timestamp means that the pseudo-direct predecessors of
this event are located at process p4 and p5, and are respectively the event 0
observed at p4 and event 1 observed at p5. v_ptn denotes a list of timestamps
collected by a process pn for the unobserved events and is reset and updated
after an event is observed at pn. For instance, let us consider v_pt3. Process
p3 first collects the timestamp of event zero �3�0� into v_pt3 and when the
observed event 1 occurs, it transfers its content to e1_pt3, resets its list and
updates its value to �3�1� which is the timestamp of the observed event.
When it receives a message from process p2, it includes those elements that
are not already present in its list, namely, �1�0� and �2�0� to v_pt3. Again,
when event 2 is observed, it resets its list to 	�3�2�� and transfers its content
to e2_pt3 which holds 	�1�0�� �2�0�� �3�1��. It can be seen that event 2 at
process p3 is directly dependent upon event 0 on process p2 and event 1 on
process p3. But, it is pseudo-directly dependent upon event 0 at process p1.
It also depends on event 0 at process p3 but this dependency information is
obtained by examining e1_pt3 recorded by the observed event. Thus, transitive
dependencies of event 2 at process p3 can be computed by examining the
observed events in e2_pt3. If this is done recursively, then all the causal

68 Logical time

dependencies of an observed event can be retrieved. It is also pertinent to
observe here that these transitive dependencies cannot be determined online
but from a log of the events.

This method can help ensure that the list piggybacked on a message is of
optimal size. It is also possible to limit the size of the list by introducing a
dummy observed event. If the size of the list is to be limited to k, then when
timestamps of k events have been collected in the list, a dummy observed
event can be introduced to receive the contents of the list. This allows a lot
of flexibility in managing the size of messages.

3.7 Matrix time

3.7.1 Definition

In a system of matrix clocks, the time is represented by a set of n×nmatrices of
non-negative integers. A process pi maintains a matrixmti�1��n�1��n�where,

• mti�i� i� denotes the local logical clock of pi and tracks the progress of the
computation at process pi;

• mti�i� j� denotes the latest knowledge that process pi has about the local
logical clock, mtj�j� j�, of process pj (note that row, mti�i� �� is nothing
but the vector clock vti��� and exhibits all the properties of vector clocks);

• mti�j� k� represents the knowledge that process pi has about the latest
knowledge that pj has about the local logical clock, mtk�k� k�, of pk.

The entire matrix mti denotes pi’s local view of the global logical time. The
matrix timestamp of an event is the value of the matrix clock of the process
when the event is executed.

Process pi uses the following rules R1 and R2 to update its clock:

• R1: Before executing an event, process pi updates its local logical time as
follows:

mti�i� i� �=mti�i� i�+d �d > 0��

• R2: Each message m is piggybacked with matrix time mt. When pi receives
such a message (m,mt) from a process pj , pi executes the following
sequence of actions:

(i) update its global logical time as follows:

�a� 1≤ k≤ n �mti�i� k� �=max�mti�i� k��mt�j� k��� (that is, update its
row mti�i�∗� with pj’s row in the received timestamp, mt);

�b� 1≤ k� l≤ n � mti�k� l� �=max�mti�k� l��mt�k� l���
(ii) execute R1;

(iii) deliver message m.

69 3.8 Virtual time

Figure 3.7 Evolution of matrix
time [19].

e1
j

mte [k,j]

e1
k

mte [i,k]

e2
k

mte [i,k]

e2
j

mte [j,j]

pk

pj

pi

e

m3

m4

m2
m1

mte

Figure 3.7 gives an example to illustrate how matrix clocks progress in
a distributed computation. We assume d = 1. Let us consider the following
events: e which is the xith event at process pi, e

1
k and e2

k which are the x1
kth

and x2
kth events at process pk, and e1

j and e2
j which are the x1

j th and x2
j th events

at pj . Let mte denote the matrix timestamp associated with event e. Due to
message m4, e2

k is the last event of pk that causally precedes e, therefore, we
have mte�i� k�=mte�k� k�= x2

k. Likewise, mte�i� j�=mte�j� j�= x2
j . The last

event of pk known by pj , to the knowledge of pi when it executed event e,
is e1

k; therefore, mte�j� k�= x1
k. Likewise, we have mte�k� j�= x1

j .
A system of matrix clocks was first informally proposed by Michael and

Fischer [5] and has been used by Wuu and Bernstein [28] and by Sarin and
Lynch [22] to discard obsolete information in replicated databases.

3.7.2 Basic properties

Clearly, vectormti�i� �� contains all the properties of vector clocks. In addition,
matrix clocks have the following property:

min
k
�mti�k� l��≥ t⇒ process pi knows that every other process pk knows

that pl’s local time has progressed till t�

If this is true, it is clear that process pi knows that all other processes know
that pl will never send information with a local time≤ t. In many applications,
this implies that processes will no longer require from pl certain information
and can use this fact to discard obsolete information.

If d is always 1 in the rule R1, then mti�k� l� denotes the number of events
occurred at pl and known by pk as far as pi’s knowledge is concerned.

3.8 Virtual time

The virtual time system is a paradigm for organizing and synchronizing dis-
tributed systems using virtual time [7]. This section provides a description

70 Logical time

of virtual time and its implementation using the time warp mechanism (a
lookahead-rollback synchronization mechanism using rollback via antimes-
sages).

The implementation of virtual time using the time warp mechanism works
on the basis of an optimistic assumption. Time warp relies on the general
lookahead-rollback mechanism where each process executes without regard
to other processes having synchronization conflicts. If a conflict is discovered,
the offending processes are rolled back to the time just before the conflict and
executed forward along the revised path. Detection of conflicts and rollbacks
are transparent to users. The implementation of virtual time using the time
warp mechanism makes the following optimistic assumption: synchronization
conflicts and thus rollback generally occurs rarely.

In the following sections, we discuss in detail virtual time and how the
time warp mechanism is used to implement it.

3.8.1 Virtual time definition

Virtual time is a global, one-dimensional, temporal coordinate system on a
distributed computation to measure the computational progress and to define
synchronization. A virtual time system is a distributed system executing in
coordination with an imaginary virtual clock that uses virtual time [7]. Virtual
times are real values that are totally ordered by the less than relation, “<”.
Virtual time is implemented as a collection of several loosely synchronized
local virtual clocks. As a rule, these local virtual clocks move forward to
higher virtual times; however, occasionally they move backwards.

In a distributed system, processes run concurrently and communicate with
each other by exchanging messages. Every message is characterized by four
values:

(i) name of the sender;
(ii) virtual send time;

(iii) name of the receiver;
(iv) virtual receive time.

Virtual send time is the virtual time at the sender when the message is sent,
whereas virtual receive time specifies the virtual time when the message must be
received (and processed) by the receiver. Clearly, a big problem arises when a
message arrives at process late, that is, the virtual receive time of the message is
less than the local virtual time at the receiver process when the message arrives.

Virtual time systems are subject to two semantic rules similar to Lamport’s
clock conditions:

Rule 1 Virtual send time of each message < virtual receive time of that
message.

Rule 2 Virtual time of each event in a process < virtual time of next event
in that process.

71 3.8 Virtual time

The above two rules imply that a process sends all messages in increasing
order of virtual send time and a process receives (and processes) all messages
in the increasing order of virtual receive time. Causality of events is an
important concept in distributed systems and is also a major constraint in the
implementation of virtual time. It is important to know which event caused
another one and the one that causes another should be completely executed
before the caused event can be processed.

The constraint in the implementation of virtual time can be stated as follows:

If an event A causes event B, then the execution of A and B must be scheduled in
real time so that A is completed before B starts.

If event A has an earlier virtual time than event B, we need execute A
before B provided there is no causal chain from A to B. Better performance
can be achieved by scheduling A concurrently with B or scheduling A after
B. If A and B have exactly the same virtual time coordinate, then there is no
restriction on the order of their scheduling. If A and B are distinct events,
they will have different virtual space coordinates (since they occur at different
processes) and neither will be a cause for the other. Hence to sum it up,
events with virtual time < “t” complete before the starting of events at time
“t” and events with virtual time > “t” will start only after events at time “t”
are complete.

Characteristics of virtual time
1. Virtual time systems are not all isomorphic; they may be either discrete or

continuous.
2. Virtual time may be only partially ordered (in this implementation, total

order is assumed.)
3. Virtual time may be related to real time or may be independent of it.
4. Virtual time systems may be visible to programmers and manipulated

explicitly as values, or hidden and manipulated implicitly according to
some system-defined discipline

5. Virtual times associated with events may be explicitly calculated by user
programs or they may be assigned by fixed rules.

3.8.2 Comparison with Lamport’s logical clocks

Lamport showed that in real-time temporal relationships “happens before”
and “happens after,” operationally definable within a distributed system, form
only a partial order, not a total order, and concurrent events are incomparable
under that partial order. He also showed that it is always possible to extend
partial order to total order by defining artificial clocks. An artificial clock is
created for each process with unique labels from a totally ordered set in a
manner consistent with partial order. He also provided an algorithm on how

72 Logical time

to accomplish this task of yielding an assignment of totally ordered clock
values. In virtual time, the reverse of the above is done by assuming that
every event is labeled with a clock value from a totally ordered virtual time
scale satisfying Lamport’s clock conditions. Thus the time warp mechanism
is an inverse of Lamport’s scheme.

In Lamport’s scheme, all clocks are conservatively maintained so that
they never violate causality. A process advances its clock as soon as it
learns of new causal dependency. In virtual time, clocks are optimisti-
caly advanced and corrective actions are taken whenever a violation is
detected.

Lamport’s initial idea brought about the concept of virtual time but the
model failed to preserve causal independence. It was possible to make an
analysis in the real world using timestamps but the same principle could not
be implemented completely in the case of asynchronous distributed systems
for the lack of a common time base.

The implementation of the virtual time concept using the time warp mech-
anism is easier to understand and reason about than real time.

3.8.3 Time warp mechanism

In the implementation of virtual time using the time warp mechanism, the
virtual receive time of a message is considered as its timestamp. The necessary
and sufficient conditions for the correct implementation of virtual time are
that each process must handle incoming messages in timestamp order. This is
highly undesirable and restrictive because process speeds and message delays
are likely to be highly variable. So it is natural for some processes to get
ahead in virtual time of other processes.

Since we assume that virtual times are real numbers, it is impossible for
a process on the basis of local information alone to block and wait for the
message with the next timestamp. It is always possible that a message with
an earlier timestamp arrives later. So, when a process executes a message, it
is very difficult for it determine whether a message with an earlier timestamp
will arrive later. This is the central problem in virtual time that is solved by
the time warp mechanism.

The advantage of the time warp mechanism is that it doesn’t depend on
the underlying computer architecture and so portability to different systems is
easily achieved. However, message communication is assumed to be reliable,
but messages may not be delivered in FIFO order.

The time warp mechanism consists of two major parts: local control mech-
anism and global control mechanism. The local control mechanism ensures
that events are executed and messages are processed in the correct order. The
global control mechanism takes care of global issues such as global progress,
termination detection, I/O error handling, flow control, etc.

73 3.8 Virtual time

3.8.4 The local control mechanism

There is no global virtual clock variable in this implementation; each process
has a local virtual clock variable. The local virtual clock of a process doesn’t
change during an event at that process but it changes only between events. On
the processing of next message from the input queue, the process increases
its local clock to the timestamp of the message. At any instant, the value of
virtual time may differ for each process but the value is transparent to other
processes in the system.

When a message is sent, the virtual send time is copied from the sender’s
virtual clock while the name of the receiver and virtual receive time are
assigned based on the application-specific context.

All arriving messages at a process are stored in an input queue in increasing
order of timestamp (receive times). Ideally, no messages from the past (called
late messages) should arrive at a process. However, processes will receive
late messages due to factors such as different computation rates of processes
and network delays. The semantics of virtual time demands that incoming
messages be received by each process strictly in timestamp order. The only
way to accomplish this is as follows: on the reception of a late message,
the receiver rolls back to an earlier virtual time, cancelling all intermediate
side effects and then executes forward again by executing the late message
in the proper sequence. If all the messages in the input queue of a process
are processed, the state of the process is said to terminate and its clock is set
to +inf. However, the process is not destroyed as a late message may arrive
resulting it to rollback and execute again. The situation can be described by
saying that each process is doing a constant “lookahead,” processing future
messages from its input queue.

Over a length computation, each process may roll back several times while
generally progressing forward with rollback completely transparent to other
processes in the system. Programmers can thus write correct software without
paying much attention to late-arriving messages.

Rollback in a distributed system is complicated by the fact that the process
that wants to rollback might have sent many messages to other processes,
which in turn might have sent many messages to other processes, and so
on, leading to deep side effects. For rollback, messages must be effectively
“unsent” and their side effects should be undone. This is achieved efficiently
by using antimessages.

Antimessages and the rollback mechanism
Runtime representation of a process is composed of the following:

1. Process name Virtual spaces coordinate which is unique in the system.
2. Local virtual clock Virtual time coordinate
3. State Data space of the process including execution stack, program

counter, and its own variables

74 Logical time

4. State queue Contains saved copies of process’s recent states as rollback
with the time warp mechanism requires the state of the process being
saved. It is not necessary to retain states all the way from the beginning
of the virtual time, however, the reason for which will be explained later
in the global control mechanism.

5. Input queue Contains all recently arrived messages in order of virtual
receive time. Processed messages from the input queue are not deleted as
they are saved in the output queue with a negative sign (antimessage) to
facilitate future rollbacks.

6. Output queue Contains negative copies of messages that the process
has recently sent in virtual send time order. They are needed in case of a
rollback.

For every message, there exists an antimessage that is the same in content but
opposite in sign. Whenever a process sends a message, a copy of the message
is transmitted to the receiver’s input queue and a negative copy (antimessage)
is retained in the sender’s output queue for use in sender rollback.

Whenever a message and its antimessage appear in the same queue, regard-
less of the order in which they arrived, they immediately annihilate each other
resulting in shortening of the queue by one message.

Generally when a message arrives at the input queue of a process with
timestamp greater than the virtual clock time of its destination process, it is
simply enqueued by the interrupt routine and the running process continues.
But when the destination process’ virtual time is greater than the virtual time
of the message received, the process must do a rollback.

The first step in the rollback mechanism is to search the “state queue”
for the last saved state with a timestamp that is less than the timestamp of
the message received and restore it. We make the timestamp of the received
message as the value of the local virtual clock and discard from the state queue
all states saved after this time. Then the execution resumes forward from this
point. Now all the messages that are sent between the current state and earlier
state must be “unsent.” This is taken care of by executing a simple rule:

To unsend a message, simply transmit its antimessage.

This results in antimessages following the positive ones to the destination. A
negative message causes a rollback at its destination if its virtual receive time
is less than the receiver’s virtual time (just as a positive message does).

Depending on the timing, there are several possibilities at the receiver’s
end:

1. If the original (positive) message has arrived but not yet been processed,
its virtual receive time must be greater than the value in the receiver’s
virtual clock. The negative message, having the same virtual receive time,
will be enqueued and will not cause a rollback. It will, however, cause
annihilation with the positive message leaving the receiver with no record
of that message.

75 3.8 Virtual time

2. The second possibility is that the original positive message has a virtual
receive time that is now in the present or past with respect to the receiver’s
virtual clock and it may have already been partially or completely pro-
cessed, causing side effects on the receiver’s state. In this case, the negative
message will also arrive in the receiver’s past and cause the receiver to
rollback to a virtual time when the positive message was received. It will
also annihilate the positive message, leaving the receiver with no record
that the message existed. When the receiver executes again, the execution
will assume that these message never existed. Note that, as a result of the
rollback, the process may send antimessages to other processes.

3. A negative message can also arrive at the destination before the positive
one. In this case, it is enqueued and will be annihilated when the positive
message arrives. If it is the negative message’s turn to be executed at a
processs’ input queue, the receiver may take any action like a no-op. Any
action taken will eventually be rolled back when the corresponding positive
message arrives. An optimization would be to skip the antimessage from
the input queue and treat it as a no-op, and when the corresponding positive
message arrives, it will annihilate the negative message, and inhibit any
rollback.

The antimessage protocol has several advantages: it is extremely robust
and works under all possible circumstances; it is free from deadlocks as there
is no blocking; it is also free from domino effects. In the worst case, all
processes in the system rollback to the same virtual time as the original and
then proceed forward again.

3.8.5 Global control mechanism

The global control mechanism resolves the following issues:

• System global progress amidst rollback activity?
• Detection of global termination?
• Errors, I/O handling on rollbacks?
• Running out of memory while saving copies of messages?

How these issues are resolved by the global control mechanism will be
discussed later; first we discuss the important concept of global virtual time.

Global virtual time
The concept of global virtual time (GVT) is central to the global control
mechanism. Global virtual time [14] is a property of an instantaneous global
snapshot of system at real time “r” and is defined as follows:

Global virtual time (GVT) at real time r is the minimum of:

1. all virtual times in all virtual clocks at time r; and
2. the virtual send times of all messages that have been sent but have not yet

been processed at time “r”.

76 Logical time

GVT is defined in terms of the virtual send time of unprocessed messages,
instead of the virtual receive time, because of the flow control (discussed
below). If every event completes normally, if messages are delivered reli-
ably, if the scheduler does not indefinitely postpone execution of the farthest
behind process, and if there is sufficient memory, then GVT will eventually
increase.

It is easily shown by induction that the message (sends, arrivals, and
receipts) never decreases GVT even though local virtual time clocks roll
back frequently. These properties make it appropriate to consider GVT as
a virtual clock for the system as a whole and to use it as the measure of
system progress. GVT can thus be viewed as a moving commitment horizon:
any event with virtual time less than GVT cannot be rolled back and may be
committed safely.

It is generally impossible for one time warp mechanism to know at any
real time “r,” exactly what GVT is. But GVT can be characterized more
operationally by its two properties discussed above. This characterization
leads to a fast distributed GVT estimation algorithm that takes O�d� time,
where “d” is the delay required for one broadcast to all processors in the
system. The algorithm runs concurrently with the main computation and
returns a value that is between the true GVT at the moment the algorithm
starts and the true GVT at the moment of completion. Thus it gives a slightly
out-of-date value for GVT which is the best one can get.

During execution of a virtual time system, time warp must periodically
estimate GVT. A higher frequency of GVT estimation produces a faster
response time and better space utilization at the expense of processor time
and network bandwidth.

Applications of GVT
GVT finds several applications in a virtual time system using the time warp
mechanism.

Memory management and flow control
An attractive feature of the time warp mechanism is that it is possible to give
simple algorithms for managing memory. The time warp mechanism uses the
concept of fossil detection where information older than GVT is destroyed to
avoid memory overheads due to old states in state queues, messages stored
in output queues, “past” messages in input queues that have already been
processed, and “future” messages in input queues that have not yet been
received.

There is another kind of memory overhead due to future messages in the
input queues that have not yet been received. So, if a receiver’s memory is
full of input messages, the time warp mechanism may be able to recover
space by returning an unreceived message to the process that sent it and then
rolling back to cancel out the sending event.

77 3.8 Virtual time

Normal termination detection
The time warp mechanism handles the termination detection problem through
GVT. A process terminates whenever it runs out of messages and its local
virtual clock is set to +inf. Whenever GVT reaches +inf, all local virtual
clock variables must read +inf and no message can be in transit. No process
can ever again unterminate by rolling back to a finite virtual time. The time
warp mechanism signals termination whenever the GVT calculation returns
“+inf” value in the system.

Error handling
Not all errors cause termination. Most of the errors can be avoided by
rolling back the local virtual clock to some finite value. The error is only
“committed” if it is impossible for the process to roll back to a virtual
time on or before the error. The committed error is reported to some policy
software or to the user.

Input and output
When a process sends a command to an output device, it is important that the
physical output activity not be committed immediately because the sending
process may rollback and cancel the output request. An output activity
can only be performed when GVT exceeds the virtual receive time of the
message containing the command.

Snapshots and crash recovery
An entire snapshot of the system at virtual time “t” can be constructed by a
procedure in which each process “snapshots” itself as it passes virtual time t
in the forward direction and “unsnapshots” itself whenever it rolls back over
virtual time “t”. Whenever GVT exceeds “t,” the snapshot is complete and
valid.

Example: distributed discrete event simulations Distributed discrete event
simulation [1, 16, 21] is the most studied example of virtual time systems;
every process represents an object in the simulation and virtual time is
identified with simulation time. The fundamental operation in discrete event
simulation is for one process to schedule an event for execution by another
process at a later simulation time. This is emulated by having the first
process send a message to the second process with the virtual receive time
of the message equal to the event’s scheduled time in the simulation. When
an event message is received by a process, there are three possibilities: its
timestamp is either before, after, or equal to the local value of simulation
time.

If its timestamp is after the local time, an input event combination is formed
and the appropriate action is taken. However, if the timestamp of the received
event message is less than or equal to the local clock value, the process has

78 Logical time

already processed an event combination with time greater than or equal to the
incoming event. The process must then rollback to the time of the incoming
message which is done by an elaborate checkpointing mechanism that allows
earlier states to be restored. Essentially an earlier state is restored, input event
combinations are rescheduled, and output events are cancelled by sending
antimessages. The process has buffers that save past inputs, past states, and
antimessages.

Distributed discrete event simulation is one of the most general applications
of the virtual time paradigm because the virtual times of events are completely
under the control of the user, and because it makes use of almost all the
degrees of freedom allowed in the definition of a virtual time system.

3.9 Physical clock synchronization: NTP

3.9.1 Motivation

In centralized systems, there is no need for clock synchronization because,
generally, there is only a single clock. A process gets the time by simply
issuing a system call to the kernel. When another process after that tries to
get the time, it will get a higher time value. Thus, in such systems, there is a
clear ordering of events and there is no ambiguity about the times at which
these events occur.

In distributed systems, there is no global clock or common memory. Each
processor has its own internal clock and its own notion of time. In practice,
these clocks can easily drift apart by several seconds per day, accumulating
significant errors over time. Also, because different clocks tick at different
rates, they may not remain always synchronized although they might be syn-
chronized when they start. This clearly poses serious problems to applications
that depend on a synchronized notion of time. For most applications and
algorithms that run in a distributed system, we need to know time in one or
more of the following contexts:

• The time of the day at which an event happened on a specific machine in
the network.

• The time interval between two events that happened on different machines
in the network.

• The relative ordering of events that happened on different machines in the
network.

Unless the clocks in each machine have a common notion of time, time-
based queries cannot be answered. Some practical examples that stress the
need for synchronization are listed below:

• In database systems, the order in which processes perform updates on a
database is important to ensure a consistent, correct view of the database.

79 3.9 Physical clock synchronization: NTP

To ensure the right ordering of events, a common notion of time between
co-operating processes becomes imperative.

• Liskov [10] states that clock synchronization improves the performance of
distributed algorithms by replacing communication with local computation.
When a node p needs to query node q regarding a property, it can deduce
the property with some previous information it has about node p and its
knowledge of the local time in node q.

• It is quite common that distributed applications and network protocols use
timeouts, and their performance depends on how well physically dispersed
processors are time-synchronized. Design of such applications is simplified
when clocks are synchronized.

Clock synchronization is the process of ensuring that physically distributed
processors have a common notion of time. It has a significant effect on
many problems like secure systems, fault diagnosis and recovery, scheduled
operations, database systems, and real-world clock values. It is quite common
that distributed applications and network protocols use timeouts, and their
performance depends on how well physically dispersed processors are time-
synchronized. Design of such applications is simplified when clocks are
synchronized.

Due to different clocks rates, the clocks at various sites may diverge with
time, and periodically a clock synchrinization must be performed to correct
this clock skew in distributed systems. Clocks are synchronized to an accurate
real-time standard like UTC (Universal Coordinated Time). Clocks that must
not only be synchronized with each other but also have to adhere to physical
time are termed physical clocks.

3.9.2 Definitions and terminology

We provide the following definitions [13,14]. Ca and Cb are any two clocks.

1. Time The time of a clock in a machine p is given by the function Cp�t�,
where Cp�t�= t for a perfect clock.

2. Frequency Frequency is the rate at which a clock progresses. The fre-
quency at time t of clock Ca is C ′a�t�.

3. Offset Clock offset is the difference between the time reported by a clock
and the real time. The offset of the clock Ca is given by Ca�t�− t. The
offset of clock Ca relative to Cb at time t ≥ 0 is given by Ca�t�−Cb�t�.

4. Skew The skew of a clock is the difference in the frequencies of the clock
and the perfect clock. The skew of a clock Ca relative to clock Cb at time
t is C ′a�t�−C ′b�t�.
If the skew is bounded by �, then as per Eq.(3.1), clock values are allowed
to diverge at a rate in the range of 1−� to 1+�.

80 Logical time

5. Drift (rate) The drift of clock Ca is the second derivative of the clock
value with respect to time, namely, C ′′a �t�. The drift of clock Ca relative
to clock Cb at time t is C ′′a �t�−C ′′b �t�.

3.9.3 Clock inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time).

However, due to the clock inaccuracy discussed above, a timer (clock) is
said to be working within its specification if

1−�≤ dC
dt
≤ 1+�� (3.1)

where constant � is the maximum skew rate specified by the manufacturer.
Figure 3.8 illustrates the behavior of fast, slow, and perfect clocks with respect
to UTC.

Offset delay estimation method
The Network Time Protocol (NTP) [15], which is widely used for clock syn-
chronization on the Internet, uses the the offset delay estimation method. The
design of NTP involves a hierarchical tree of time servers. The primary server
at the root synchronizes with the UTC. The next level contains secondary
servers, which act as a backup to the primary server. At the lowest level is
the synchronization subnet which has the clients.

Clock offset and delay estimation
In practice, a source node cannot accurately estimate the local time on the
target node due to varying message or network delays between the nodes.
This protocol employs a very common practice of performing several trials
and chooses the trial with the minimum delay. Recall that Cristian’s remote

Figure 3.8 The behavior of
fast, slow, and perfect clocks
with respect to UTC.

C
lo

ck
 ti

m
e,

 C

UTC, t

Fast clock
dC/dt > 1

Perfect clock
dC/dt = 1

Slow clock
dC/dt < 1

81 3.10 Chapter summary

Figure 3.9 Offset and delay
estimation [15].

T1 T2

T3 T4
A

B

Figure 3.10 Timing diagram
for the two servers [15].

Ti – 2 Ti – 1Server A

Ti – 3 TiServer B

clock reading method [3] also relied on the same strategy to estimate message
delay.

Figure 3.9 shows how NTP timestamps are numbered and exchanged
between peers A and B. Let T1� T2� T3� T4 be the values of the four most
recent timestamps as shown. Assume that clocks A and B are stable and
running at the same speed. Let a = T1−T3 and b = T2−T4. If the network
delay difference from A to B and from B to A, called differential delay, is
small, the clock offset � and roundtrip delay � of B relative to A at time T4

are approximately given by the following:

� = a+b
2

� �= a−b� (3.2)

Each NTP message includes the latest three timestamps T1, T2, and
T3, while T4 is determined upon arrival. Thus, both peers A and B can
independently calculate delay and offset using a single bidirectional mes-
sage stream as shown in Figure 3.10. The NTP protocol is shown in
Figure 3.11.

3.10 Chapter summary

The concept of causality between events is fundamental to the design and
analysis of distributed programs. The notion of time is basic to capture causal-
ity between events; however, there is no built-in physical time in distributed

82 Logical time

Figure 3.11 The network time
protocol (NTP) synchronization
protocol [15].

• A pair of servers in symmetric mode exchange pairs of timing messages.
• A store of data is then built up about the relationship between the two

servers (pairs of offset and delay).
Specifically, assume that each peer maintains pairs (Oi,Di), where:

Oi – measure of offset (�)
Di – transmission delay of two messages (�).

• The offset corresponding to the minimum delay is chosen. Specifically,
the delay and offset are calculated as follows. Assume that message m
takes time t to transfer and m′ takes t′ to transfer.

• The offset between A’s clock and B’s clock is O. If A’s local clock
time is A�t� and B’s local clock time is B�t�, we have

A�t�= B�t�+O� (3.3)

Then,

Ti−2 = Ti−3+ t+O� (3.4)

Ti = Ti−1−O+ t′� (3.5)

Assuming t = t′, the offset Oi can be estimated as

Oi = �Ti−2−Ti−3+Ti−1−Ti�/2� (3.6)

The round-trip delay is estimated as

Di = �Ti−Ti−3�− �Ti−1−Ti−2�� (3.7)

• The eight most recent pairs of (Oi, Di) are retained.
• The value of Oi that corresponds to minimum Di is chosen to esti-

mate O.

systems and it is possible only to realize an approximation of it. Typically,
a distributed computation makes progress in spurts and consequently logi-
cal time, which advances in jumps, is sufficient to capture the monotonicity
property induced by causality in distributed systems. Causality among events
in a distributed system is a powerful concept in reasoning, analyzing, and
drawing inferences about a computation.

We presented a general framework of logical clocks in distributed systems
and discussed three systems of logical clocks, namely, scalar, vector, and
matrix clocks, that have been proposed to capture causality between events of

83 3.10 Chapter summary

a distributed computation. These systems of clocks have been used to solve
a variety of problems in distributed systems such as distributed algorithms
design, debugging distributed programs, checkpointing and failure recovery,
data consistency in replicated databases, discarding obsolete information,
garbage collection, and termination detection.

In scalar clocks, the clock at a process is represented by an integer. The
message and the compuatation overheads are small, but the power of scalar
clocks is limited – they are not strongly consistent. In vector clocks, the
clock at a process is represented by a vector of integers. Thus, the mes-
sage and the compuatation overheads are likely to be high; however, vector
clocks possess a powerful property – there is an isomorphism between the
set of partially ordered events in a distributed computation and their vector
timestamps. This is a very useful and interesting property of vector clocks
that finds applications in several problem domains. In matrix clocks, the
clock at a process is represented by a matrix of integers. Thus, the message
and the compuatation overheads are high; however, matrix clocks are very
powerful – besides containing information about the direct dependencies, a
matrix clock contains information about the latest direct dependencies of
those dependencies. This information can be very useful in aplications such as
distributed garbage collection. Thus, the power of systems of clocks increases
in the order of scalar, vector, and matrix, but so do the complexity and the
overheads.

We discussed three efficient implementations of vector clocks; similar
techniques can be used to efficiently implement matrix clocks. Singhal–
Kshemkalyani’s differential technique exploits the fact that, between succes-
sive events at a process, only few entries of its vector clock are likely to
change. Thus, when a process pi sends a message to a process pj , it piggy-
backs only those entries of its vector clock that have changed since the last
message send to pj , reducing the communication and buffer (to store mes-
sages) overheads. Fowler–Zwaenepoel’s direct-dependency technique does
not maintain vector clocks on-the-fly. Instead, a process only maintains infor-
mation regarding direct dependencies on other processes. A vector timestamp
for an event, that represents transitive dependencies on other processes, is
constructed off-line from a recursive search of the direct dependency infor-
mation at processes. Thus, the technique has low run-time overhead. In the
Fowler–Zwaenepoel technique, however, a process must update and record
its dependency vector after receiving a message but before sending out any
message. If events occur very frequently, this technique will require recording
the history of a large number of events. In the Jard–Jourdan technique, events
can be adaptively observed while maintaining the capability of retrieving all
the causal dependencies of an observed event.

Virtual time system is a paradigm for organizing and synchronizing dis-
tributed systems using virtual time. We discussed virtual time and its imple-
mentation using the time warp mechanism.

84 Logical time

3.11 Exercises

Exercise 3.1 Why is it difficult to keep a synchronized system of physical clocks in
distributed systems?

Exercise 3.2 If events corresponding to vector timestamps Vt1, Vt2,

 ., Vtn are
mutually concurrent, then prove that

�Vt1�1��Vt2�2��

 �Vtn�n��=max�Vt1�Vt2�

 �� Vtn� �

Exercise 3.3 If events ei and ej respectively occurred at processes pi and pj and are
assigned vector timestamps VTei and VTej , respectively, then show that

ei→ ej ⇔ VTei �i� < VTej �i��

Exercise 3.4 The size of matrix clocks is quadratic with respect to the system size.
Hence the message overhead is likely to be substantial. Propose a technique for matrix
clocks similar to that of Singhal–Kshemkalyani to decrease the volume of information
transmitted in messages and stored at processes.

3.12 Notes on references

The idea of logical time was proposed by Lamport in 1978 [9] in an attempt to order
events in distributed systems. He also suggested an implementation of logical time
as a scalar time. Vector clocks were developed independently by Fidge [4], Mattern
[12], and Schmuck [23]. Charron-Bost formally showed [2] that if vector clocks

have to satisfy the strong consistency property, then the length of vector timestamps
must be at least n. Efficient implementations of vector clocks can be found in [8,25].
Matrix clocks was informally proposed by Michael and Fischer [7] and used by Wuu
and Bernstein [28] and by Lynch and Sarin [22] to discard obsolete information.
Raynal and Singhal present a survey of scalar, vector, and matrix clocks in [19]. More
details on virtual time can be found in a classical paper by Jefferson [7]. A survey of
physical clock synchronization in wireless sensor networks can be found in [27].

References

[1] B. R. Preiss, The Yaddes distributed discrete event simulation specification
language and execution environments, Proceedings of the SCS Multiconference
on Distributed Simulation, 1989, 139–144.

[2] B. Charron-Bost, Concerning the size of logical clocks in distributed systems,
Information Processing Letters, 39, 1991, 11–16.

[3] F. Cristian, Probabilistic clock synchronization, Distributed Computing, 3,
1989, 146–158.

[4] C. Fidge, Logical time in distributed computing systems, IEEE Computer,
August, 1991, 28–33.

85 References

[5] M. J. Fischer and A. Michael, Sacrifying serializability to attain hight availabil-
ity of data in an unreliable network, Proceedings of the ACM Symposium on
Principles of Database Systems, 1982, 70–75.

[6] J. Fowler and W. Zwaenepoel, Causal distributed breakpoints, Proceedings of
the 10th International Conference on Distributed Computing Systems, 1990,
134–141.

[7] D. Jefferson, Virtual time, ACM Toplas, 7(3), 1985, 404–425.
[8] C. Jard and G.-C. Jourdan, Dependency tracking and filtering in distributed

computations, Brief Announcements of the ACM Symposium on PODC, 1994.
(A full presentation appeared as IRISA Technical Report No. 851, 1994.)

[9] L. Lamport, Time, clocks and the ordering of events in a distributed system,
Communications of the ACM, 21, 1978, 558–564.

[10] B. Liskov, Practical uses of synchronized clocks in distributed systems, Pro-
ceedings of Tenth Annual ACM Symposium on Principles of Distributed Com-
puting, August 1991, pp. 1–9.

[11] B. Liskov and R. Ladin, Highly available distributed services and fault-tolerant
distributed garbage collection, Proceedings of the 5th ACM Symposium on
PODC, 1986, 29–39.

[12] F. Mattern, Virtual time and global states of distributed systems, in Cosnard, Q
and Raynal, R. (eds) Proceedings of the Parallel and Distributed Algorithms
Conference, North-Holland, 1988, 215–226.

[13] D. L. Mills, Network Time Protocol (version 3): Specification, Implementation,
and Analysis, Technical Report, Network Information Center, SRI International,
Menlo Park, CA, March, 1992.

[14] D. L. Mills, Modelling and Analysis of Computer Network Clocks, Technical
Report, 92-5-2, Electrical Engineering Department, University of Delaware,
May, 1992.

[15] D. L. Mills, Internet time synchronization: the network time protocol, IEEE
Transactions on Communications, 39(10), 1991, 1482–1493.

[16] J. Misra, Distributed discrete event simulation, ACM Computing Surveys, 18(1),
1986, 39–65.

[17] D. S. Parker et al., Detection of mutual inconsistency in distributed systems,
IEEE Transactions on Software Engineeing, 9(3), 1983, 240–246.

[18] M. Raynal, A distributed algorithm to prevent mutual drift between n logical
clocks, Information Processing Letters, 24, 1987, 199–202.

[19] M. Raynal and M. Singhal, Logical time: capturing causality in distributed
systems, IEEE Computer, 30(2), 1996, 49–56.

[20] G. Ricart, and A. K. Agrawala, An optimal algorithm for mutual exclusion in
computer networks, Communications of the ACM, 24(1), 1981, 9–17

[21] R. Righter and J. C. Walrand, Distributed simulation of discrete event systems,
Proceedings of the IEEE, 1988, and 99–113.

[22] S. K. Sarin and L. Lynch, Discarding obsolete information in a replicated data
base system, IEEE Transactions on Software Engineering, 13(1), 1987, 39–46.

[23] F. Schmuck, The Use of Efficient Broadcast in Asynchronous Distributed Sys-
tems, Ph. D. Thesis, Cornell University, TR88-928, 1988.

[24] M. Singhal, A heuristically-aided mutual exclusion algorithm for distributed
systems, IEEE Transactions on Computers, 38(5), 1989, 651–662.

[25] M. Singhal and A. Kshemkalyani, An efficient implementation of vector clocks,
Information Processing Letters, 43, August, 1992, 47–52.

[26] R. E. Strom and S. Yemini, Optimistic recovery in distributed systems, ACM
Transactions on Computer Systems, 3(3), 1985, 204–226.

86 Logical time

[27] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, Clock synchronization in
wireless sensor networks: a survey, Ad-Hoc Networks, 3(3), 2005, 281–323.

[28] G. T. J. Wuu and A. J. Bernstein, Efficient solutions to the replicated log and
dictionary problems, Proceedings of 3rd ACM Symposium on PODC, 1984,
233–242.

C H A P T E R

4 Global state and snapshot recording
algorithms

Recording the global state of a distributed system on-the-fly is an important
paradigm when one is interested in analyzing, testing, or verifying properties
associated with distributed executions. Unfortunately, the lack of both a glob-
ally shared memory and a global clock in a distributed system, added to the
fact that message transfer delays in these systems are finite but unpredictable,
makes this problem non-trivial.

This chapter first defines consistent global states (also called consistent
snapshots) and discusses issues which have to be addressed to compute con-
sistent distributed snapshots. Then several algorithms to determine on-the-fly
such snapshots are presented for several types of networks (according to the
properties of their communication channels, namely, FIFO, non-FIFO, and
causal delivery).

4.1 Introduction

A distributed computing system consists of spatially separated processes that
do not share a common memory and communicate asynchronously with each
other by message passing over communication channels. Each component of
a distributed system has a local state. The state of a process is characterized
by the state of its local memory and a history of its activity. The state of a
channel is characterized by the set of messages sent along the channel less
the messages received along the channel. The global state of a distributed
system is a collection of the local states of its components.

Recording the global state of a distributed system is an important paradigm
and it finds applications in several aspects of distributed system design. For
examples, in detection of stable properties such as deadlocks [17] and ter-
mination [22], global state of the system is examined for certain properties;

87

88 Global state and snapshot recording algorithms

for failure recovery, a global state of the distributed system (called a check-
point) is periodically saved and recovery from a processor failure is done
by restoring the system to the last saved global state [15]; for debugging
distributed software, the system is restored to a consistent global state [8, 9]
and the execution resumes from there in a controlled manner. A snapshot
recording method has been used in the distributed debugging facility of Estelle
[11,13], a distributed programming environment. Other applications include

monitoring distributed events [30], such as in industrial process control,
setting distributed breakpoints [24], protocol specification and verification
[4, 10, 14], and discarding obsolete information [11].

Therefore, it is important that we have efficient ways of recording the
global state of a distributed system [6,16]. Unfortunately, there is no shared
memory and no global clock in a distributed system and the distributed nature
of the local clocks and local memory makes it difficult to record the global
state of the system efficiently.

If shared memory were available, an up-to-date state of the entire system
would be available to the processes sharing the memory. The absence of
shared memory necessitates ways of getting a coherent and complete view of
the system based on the local states of individual processes. A meaningful
global snapshot can be obtained if the components of the distributed system
record their local states at the same time. This would be possible if the
local clocks at processes were perfectly synchronized or if there were a
global system clock that could be instantaneously read by the processes.
However, it is technologically infeasible to have perfectly synchronized clocks
at various sites – clocks are bound to drift. If processes read time from
a single common clock (maintained at one process), various indeterminate
transmission delays during the read operation will cause the processes to
identify various physical instants as the same time. In both cases, the collection
of local state observations will be made at different times and may not be
meaningful, as illustrated by the following example.

Example Let S1 and S2 be two distinct sites of a distributed system which
maintain bank accounts A and B, respectively. A site refers to a process in
this example. Let the communication channels from site S1 to site S2 and
from site S2 to site S1 be denoted by C12 and C21, respectively. Consider
the following sequence of actions, which are also illustrated in the timing
diagram of Figure 4.1:

Time t0: Initially, Account A= $600, Account B= $200, C12= $0,
C21= $0.

Time t1: Site S1 initiates a transfer of $50 from Account A to Account B.
Account A is decremented by $50 to $550 and a request for $50 credit
to Account B is sent on Channel C12 to site S2. Account A= $550,
Account B= $200, C12= $50, C21= $0.

89 4.1 Introduction

Figure 4.1 A banking example
to illustrate recording of
consistent states.

$0C12

C21 $0 $0

$50 $50

$0

$50 $0

$0

$600 $550 $550

$120 $120

$80

$80

$50

$630 $630

S2:B

S1:A

$200 $200

t0 t1 t2 t3 t4

$170

Time t2: Site S2 initiates a transfer of $80 from Account B to Account A.
Account B is decremented by $80 to $120 and a request for $80 credit
to Account A is sent on Channel C21 to site S1. Account A= $550,
Account B= $120, C12= $50, C21= $80.

Time t3: Site S1 receives the message for a $80 credit to Account A and
updates Account A. Account A= $630, Account B= $120, C12= $50,
C21= $0.

Time t4: Site S2 receives the message for a $50 credit to Account B and
updates Account B. Account A= $630, Account B= $170, C12= $0,
C21= $0.

Suppose the local state of Account A is recorded at time t0 to show $600 and
the local state of Account B and channels C12 and C21 are recorded at time
t2 to show $120, $50, and $80, respectively. Then the recorded global state
shows $850 in the system. An extra $50 appears in the system. The reason
for the inconsistency is that Account A’s state was recorded before the $50
transfer to Account B using channel C12 was initiated, whereas channel C12’s
state was recorded after the $50 transfer was initiated.

This simple example shows that recording a consistent global state of a
distributed system is not a trivial task. Recording activities of individual
components must be coordinated appropriately. This chapter addresses the
fundamental issue of recording a consistent global state in distributed com-
puting systems.

Next section presents the system model and a formal definition of the
notion of consistent global state. The subsequent sections present algo-
rithms to record such global states under various communication models such
as FIFO communication channels, non-FIFO communication channels, and
causal delivery of messages. These algorithms are called snapshot recording
algorithms.

90 Global state and snapshot recording algorithms

4.2 System model and definitions

4.2.1 System model

The system consists of a collection of n processes, p1, p2,

 , pn, that are
connected by channels. There is no globally shared memory and processes
communicate solely by passing messages. There is no physical global clock
in the system. Message send and receive is asynchronous. Messages are
delivered reliably with finite but arbitrary time delay. The system can be
described as a directed graph in which vertices represent the processes and
edges represent unidirectional communication channels. Let Cij denote the
channel from process pi to process pj .

Processes and channels have states associated with them. The state of a
process at any time is defined by the contents of processor registers, stacks,
local memory, etc., and may be highly dependent on the local context of the
distributed application. The state of channel Cij , denoted by SCij , is given by
the set of messages in transit in the channel.

The actions performed by a process are modeled as three types of events,
namely, internal events, message send events, and message receive events.
For a message mij that is sent by process pi to process pj , let send�mij�

and rec�mij� denote its send and receive events, respectively. Occurrence of
events changes the states of respective processes and channels, thus causing
transitions in the global system state. For example, an internal event changes
the state of the process at which it occurs. A send event (or a receive event)
changes the state of the process that sends (or receives) the message and the
state of the channel on which the message is sent (or received). The events
at a process are linearly ordered by their order of occurrence.

At any instant, the state of process pi, denoted by LSi, is a result of the
sequence of all the events executed by pi up to that instant. For an event e
and a process state LSi, e∈LSi iff e belongs to the sequence of events that
have taken process pi to state LSi. For an event e and a process state LSi,
e �∈LSi iff e does not belong to the sequence of events that have taken process
pi to state LSi.

A channel is a distributed entity and its state depends on the local states of the
processes on which it is incident. For a channelCij , the following set of messages
can be defined based on the local states of the processes pi and pj [12]:

Transit � transit�LSi�LSj�= 	mij �send�mij� ∈ LSi
∧
rec�mij� �∈ LSj��

Thus, if a snapshot recording algorithm records the state of processes pi and
pj as LSi and LSj , respectively, then it must record the state of channel Cij
as transit�LSi�LSj�.

There are several models of communication among processes and different
snapshot algorithms have assumed different models of communication. In

91 4.2 System model and definitions

the FIFO model, each channel acts as a first-in first-out message queue and,
thus, message ordering is preserved by a channel. In the non-FIFO model, a
channel acts like a set in which the sender process adds messages and the
receiver process removes messages from it in a random order. A system that
supports causal delivery of messages satisfies the following property: “for
any two messages mij and mkj , if send�mij� −→ send�mkj�, then rec�mij�

−→ rec�mkj�.”
Causally ordered delivery of messages implies FIFO message delivery. The

causal ordering model is useful in developing distributed algorithms and may
simplify the design of algorithms.

4.2.2 A consistent global state

The global state of a distributed system is a collection of the local states of
the processes and the channels. Notationally, global state GS is defined as

GS= {
⋃

iLSi,
⋃

i�jSCij}.

A global state GS is a consistent global state iff it satisfies the following
two conditions [16]:

C1: send(mij)∈LSi ⇒ mij∈SCij ⊕ rec(mij)∈LSj (⊕ is the Ex-OR operator).
C2: send(mij)�∈LSi ⇒ mij �∈SCij ∧ rec(mij)�∈LSj .

Condition C1 states the law of conservation of messages. Every message mij

that is recorded as sent in the local state of a process pi must be captured
in the state of the channel Cij or in the collected local state of the receiver
process pj . Condition C2 states that in the collected global state, for every
effect, its cause must be present. If a message mij is not recorded as sent in
the local state of process pi, then it must neither be present in the state of the
channel Cij nor in the collected local state of the receiver process pj .

In a consistent global state, every message that is recorded as received is
also recorded as sent. Such a global state captures the notion of causality
that a message cannot be received if it was not sent. Consistent global states
are meaningful global states and inconsistent global states are not meaning-
ful in the sense that a distributed system can never be in an inconsistent
state.

4.2.3 Interpretation in terms of cuts

Cuts in a space–time diagram provide a powerful graphical aid in representing
and reasoning about the global states of a computation. A cut is a line joining
an arbitrary point on each process line that slices the space–time diagram
into a PAST and a FUTURE. Recall that every cut corresponds to a global

92 Global state and snapshot recording algorithms

Figure 4.2 An interpretation in
terms of a cut.

m3

m4
m5

m1

m2

Time

e1
1 e1

2

e3
1 e3

2

e4
1 e4

2

e3
3 e3

4 e3
5

e1
3 e1

4

e2
1 e2

2 e2
3

e2
4

C1 C2

p1

p2

p3

p4

state and every global state can be graphically represented by a cut in the
computation’s space–time diagram [3].

A consistent global state corresponds to a cut in which every message
received in the PAST of the cut has been sent in the PAST of that cut. Such
a cut is known as a consistent cut. All the messages that cross the cut from
the PAST to the FUTURE are captured in the corresponding channel state.
For example, consider the space–time diagram for the computation illustrated
in Figure 4.2. Cut C1 is inconsistent because message m1 is flowing from
the FUTURE to the PAST. Cut C2 is consistent and message m4 must be
captured in the state of channel C21.

Note that in a consistent snapshot, all the recorded local states of pro-
cesses are concurrent; that is, the recorded local state of no process casually
affects the recorded local state of any other process. (Note that the notion of
causality can be extended from the set of events to the set of recorded local
states.)

4.2.4 Issues in recording a global state

If a global physical clock were available, the following simple procedure
could be used to record a consistent global snapshot of a distributed system.
In this, the initiator of the snapshot collection decides a future time at which
the snapshot is to be taken and broadcasts this time to every process. All
processes take their local snapshots at that instant in the global time. The
snapshot of channel Cij includes all the messages that process pj receives
after taking the snapshot and whose timestamp is smaller than the time of the
snapshot. (All messages are timestamped with the sender’s clock.) Clearly,
if channels are not FIFO, a termination detection scheme will be needed to
determine when to stop waiting for messages on channels.

However, a global physical clock is not available in a distributed system
and the following two issues need to be addressed in recording of a consistent
global snapshot of a distributed system [16]:

93 4.3 Snapshot algorithms for FIFO channels

I1: How to distinguish between the messages to be recorded in the snapshot
(either in a channel state or a process state) from those not to be recorded.
The answer to this comes from conditions C1 and C2 as follows:

Any message that is sent by a process before recording its snapshot,
must be recorded in the global snapshot (from C1).

Any message that is sent by a process after recording its snapshot, must
not be recorded in the global snapshot (from C2).

I2: How to determine the instant when a process takes its snapshot. The answer
to this comes from condition C2 as follows:

A process pj must record its snapshot before processing a message mij

that was sent by process pi after recording its snapshot.

We next discuss a set of representative snapshot algorithms for distributed
systems. These algorithms assume different interprocess communication capa-
bilities about the underlying system and illustrate how interprocess commu-
nication affects the design complexity of these algorithms. There are two
types of messages: computation messages and control messages. The former
are exchanged by the underlying application and the latter are exchanged by
the snapshot algorithm. Execution of a snapshot algorithm is transparent to
the underlying application, except for occasional delaying some of the actions
of the application.

4.3 Snapshot algorithms for FIFO channels

This section presents the Chandy and Lamport algorithm [6], which was the
first algorithm to record the global snapshot. We also present three variations
of the Chandy and Lamport algorithm.

4.3.1 Chandy–Lamport algorithm

The Chandy-Lamport algorithm uses a control message, called a marker. After
a site has recorded its snapshot, it sends a marker along all of its outgoing
channels before sending out any more messages. Since channels are FIFO, a
marker separates the messages in the channel into those to be included in the
snapshot (i.e., channel state or process state) from those not to be recorded in
the snapshot. This addresses issue I1. The role of markers in a FIFO system
is to act as delimiters for the messages in the channels so that the channel
state recorded by the process at the receiving end of the channel satisfies the
condition C2.

Since all messages that follow a marker on channel Cij have been sent by
process pi after pi has taken its snapshot, process pj must record its snapshot
no later than when it receives a marker on channel Cij . In general, a process

94 Global state and snapshot recording algorithms

must record its snapshot no later than when it receives a marker on any of its
incoming channels. This addresses issue I2.

The algorithm
The Chandy–Lamport snapshot recording algorithm is given in Algorithm 4.1.
A process initiates snapshot collection by executing the marker sending rule
by which it records its local state and sends a marker on each outgoing
channel. A process executes the marker receiving rule on receiving a marker.
If the process has not yet recorded its local state, it records the state of the
channel on which the marker is received as empty and executes the marker
sending rule to record its local state. Otherwise, the state of the incoming
channel on which the marker is received is recorded as the set of computation
messages received on that channel after recording the local state but before
receiving the marker on that channel. The algorithm can be initiated by any
process by executing the marker sending rule. The algorithm terminates after
each process has received a marker on all of its incoming channels.

The recorded local snapshots can be put together to create the global
snapshot in several ways. One policy is to have each process send its local
snapshot to the initiator of the algorithm. Another policy is to have each
process send the information it records along all outgoing channels, and to
have each process receiving such information for the first time propagate it
along its outgoing channels. All the local snapshots get disseminated to all
other processes and all the processes can determine the global state.

Multiple processes can initiate the algorithm concurrently. If multiple
processes initiate the algorithm concurrently, each initiation needs to be

Marker sending rule for process pi

(1) Process pi records its state.
(2) For each outgoing channel C on which a marker

has not been sent, pi sends a marker along C
before pi sends further messages along C.

Marker receiving rule for process pj
On receiving a marker along channel C:

if pj has not recorded its state then
Record the state of C as the empty set
Execute the “marker sending rule”

else
Record the state of C as the set of messages
received along C after pj,s state was recorded
and before pj received the marker along C

Algorithm 4.1 The Chandy–Lamport algorithm.

95 4.3 Snapshot algorithms for FIFO channels

distinguished by using unique markers. Different initiations by a process are
identified by a sequence number.

Correctness
To prove the correctness of the algorithm, we show that a recorded snapshot
satisfies conditions C1 and C2. Since a process records its snapshot when it
receives the first marker on any incoming channel, no messages that follow
markers on the channels incoming to it are recorded in the process’s snapshot.
Moreover, a process stops recording the state of an incoming channel when
a marker is received on that channel. Due to FIFO property of channels, it
follows that no message sent after the marker on that channel is recorded in
the channel state. Thus, condition C2 is satisfied. When a process pj receives
message mij that precedes the marker on channel Cij , it acts as follows: if
process pj has not taken its snapshot yet, then it includes mij in its recorded
snapshot. Otherwise, it records mij in the state of the channel Cij . Thus,
condition C1 is satisfied.

Complexity
The recording part of a single instance of the algorithm requiresO�e�messages
and O�d� time, where e is the number of edges in the network and d is the
diameter of the network.

4.3.2 Properties of the recorded global state

The recorded global state may not correspond to any of the global states that
occurred during the computation. Consider two possible executions of the
snapshot algorithm (shown in Figure 4.3) for the money transfer example of
Figure 4.2:

Figure 4.3 Timing diagram of
two possible executions of the
banking example.

$50

$0$0C21

C12 $0 $50

$630$630

$50

$80

$80

$170$120$120

$550$550$600

$0

$0$50

$0

t0 t1 t2 t3 t4

Markers

(2nd example)

Markers

(1st example)

Execution

Message

$200$200

S1:A

S2:B

96 Global state and snapshot recording algorithms

1. (Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the
algorithm just after t1. Site S1 records its local state (account A= $550)
and sends a marker to site S2. The marker is received by site S2 after
t4. When site S2 receives the marker, it records its local state (account
B= $170), the state of channel C12 as $0, and sends a marker along channel
C21. When site S1 receives this marker, it records the state of channel
C21 as $80. The $800 amount in the system is conserved in the recorded
global state,

A= $550�B = $170�C12 = $0�C21 = $80�

2. (Markers shown using dotted arrows.) Let site S1 initiate the algorithm
just after t0 and before sending the $50 for S2. Site S1 records its local
state (account A = $600) and sends a marker to site S2. The marker is
received by site S2 between t2 and t3. When site S2 receives the marker, it
records its local state (account B = $120), the state of channel C12 as $0,
and sends a marker along channel C21. When site S1 receives this marker,
it records the state of channel C21 as $80. The $800 amount in the system
is conserved in the recorded global state,

A= $600�B = $120�C12 = $0�C21 = $80�

In both these possible runs of the algorithm, the recorded global states never
occurred in the execution. This happens because a process can change its state
asynchronously before the markers it sent are received by other sites and the
other sites record their states.

Nevertheless, as we discuss next, the system could have passed through the
recorded global states in some equivalent executions. Suppose the algorithm
is initiated in global state Si and it terminates in global state St. Let seq be the
sequence of events that takes the system from Si to St. Let S∗ be the global
state recorded by the algorithm. Chandy and Lamport [6] showed that there
exists a sequence seq′ which is a permutation of seq such that S∗ is reachable
from Si by executing a prefix of seq′ and St is reachable from S∗ by executing
the rest of the events of seq′.

A brief sketch of the proof is as follows: an event e is defined as a pre-
recording/post-recording event if e occurs on a process p and p records its
state after/before e in seq. A post-recording event may occur after a pre-
recording event only if the two events occur on different processes. It is shown
that a post-recording event can be swapped with an immediately following
pre-recording event in a sequence without affecting the local states of either
of the two processes on which the two events occur. By iteratively applying
this operation to seq, the above-described permutation seq′ is obtained. It
is then shown that S∗, the global state recorded by the algorithm for the
processes and channels, is the state after all the pre-recording events have
been executed, but before any post-recording event.

97 4.4 Variations of the Chandy–Lamport algorithm

Thus, the recorded global state is a valid state in an equivalent execution
and if a stable property (i.e., a property that persists such as termination or
deadlock) holds in the system before the snapshot algorithm begins, it holds
in the recorded global snapshot. Therefore, a recorded global state is useful
in detecting stable properties.

A physical interpretation of the collected global state is as follows: consider
the two instants of recording of the local states in the banking example.
If the cut formed by these instants is viewed as being an elastic band and if
the elastic band is stretched so that it is vertical, then recorded states of all
processes occur simultaneously at one physical instant, and the recorded
global state occurs in the execution that is depicted in this modified space–
time diagram. This is called the rubber-band criterion. For example, consider
the two different executions of the snapshot algorithm, depicted in Figure 4.3.
For the execution for which the markers are shown using dashed-and-dotted
arrows, the instants of the local state recordings are marked by squares.
Applying the rubber-band criterion, these can be stretched to be vertical or
instantaneous. Similarly, for the other execution for which the markers are
shown using dotted arrows, the instants of local state recordings are marked
by circles. Note that the system execution would have been like this, had the
processors’ speeds and message delays been different. Yet another physical
interpretation of the collected global state is as follows: all the recorded
process states are mutually concurrent – no recorded process state causally
depends upon another. Therefore, logically we can view that all these process
states occurred simultaneously even though they might have occurred at
different instants in physical time.

4.4 Variations of the Chandy–Lamport algorithm

Several variants of the Chandy–Lamport snapshot algorithm followed.
These variants refined and optimized the basic algorithm. For example, the
Spezialetti and Kearns algorithm [29] optimizes concurrent initiation of snap-
shot collection and efficiently distributes the recorded snapshot. Venkatesan’s
algorithm [32] optimizes the basic snapshot algorithm to efficiently record
repeated snapshots of a distributed system that are required in recovery algo-
rithms with synchronous checkpointing.

4.4.1 Spezialetti–Kearns algorithm

There are two phases in obtaining a global snapshot: locally recording the
snapshot at every process and distributing the resultant global snapshot to
all the initiators. Spezialetti and Kearns [29] provided two optimizations
to the Chandy–Lamport algorithm. The first optimization combines snap-
shots concurrently initiated by multiple processes into a single snapshot. This

98 Global state and snapshot recording algorithms

optimization is linked with the second optimization, which deals with the
efficient distribution of the global snapshot. A process needs to take only
one snapshot, irrespective of the number of concurrent initiators and all pro-
cesses are not sent the global snapshot. This algorithm assumes bi-directional
channels in the system.

Efficient snapshot recording
In the Spezialetti–Kearns algorithm, a marker carries the identifier of the
initiator of the algorithm. Each process has a variable master to keep track of
the initiator of the algorithm. When a process executes the “marker sending
rule” on the receipt of its first marker, it records the initiator’s identifier
carried in the received marker in the master variable. A process that initiates
the algorithm records its own identifier in the master variable.

A key notion used by the optimizations is that of a region in the system. A
region encompasses all the processes whose master field contains the iden-
tifier of the same initiator. A region is identified by the initiator’s identifier.
When there are multiple concurrent initiators, the system gets partitioned into
multiple regions.

When the initiator’s identifier in a marker received along a channel is
different from the value in the master variable, a concurrent initiation of the
algorithm is detected and the sender of the marker lies in a different region.
The identifier of the concurrent initiator is recorded in a local variable id-
border-set. The process receiving the marker does not take a snapshot for this
marker and does not propagate this marker. Thus, the algorithm efficiently
handles concurrent snapshot initiations by suppressing redundant snapshot
collections – a process does not take a snapshot or propagate a snapshot
request initiated by a process if it has already taken a snapshot in response to
some other snapshot initiation.

The state of the channel is recorded just as in the Chandy–Lamport algo-
rithm (including those that cross a border between regions). This enables the
snapshot recorded in one region to be merged with the snapshot recorded in
the adjacent region. Thus, even though markers arriving at a node contain
identifiers of different initiators, they are considered part of the same instance
of the algorithm for the purpose of channel state recording.

Snapshot recording at a process is complete after it has received a marker
along each of its channels. After every process has recorded its snapshot,
the system is partitioned into as many regions as the number of concurrent
initiations of the algorithm. The variable id-border-set at a process contains
the identifiers of the neighboring regions.

Efficient dissemination of the recorded snapshot
The Spezialetti–Kearns algorithm efficiently assembles the snapshot as fol-
lows: in the snapshot recording phase, a forest of spanning trees is implicitly
created in the system. The initiator of the algorithm is the root of a spanning

99 4.4 Variations of the Chandy–Lamport algorithm

tree and all processes in its region belong to its spanning tree. If process
pi executed the “marker sending rule” because it received its first marker
from process pj , then process pj is the parent of process pi in the spanning
tree. When a leaf process in the spanning tree has recorded the states of all
incoming channels, the process sends the locally recorded state (local snap-
shot, id-border-set) to its parent in the spanning tree. After an intermediate
process in a spanning tree has received the recorded states from all its child
processes and has recorded the states of all incoming channels, it forwards
its locally recorded state and the locally recorded states of all its descendent
processes to its parent.

When the initiator receives the locally recorded states of all its descendents
from its children processes, it assembles the snapshot for all the processes in
its region and the channels incident on these processes. The initiator knows the
identifiers of initiators in adjacent regions using id-border-set information it
receives from processes in its region. The initiator exchanges the snapshot of
its region with the initiators in adjacent regions in rounds. In each round, an
initiator sends to initiators in adjacent regions, any new information obtained
from the initiator in the adjacent region during the previous round of message
exchange. A round is complete when an initiator receives information, or the
blank message (signifying no new information will be forthcoming) from all
initiators of adjacent regions from which it has not already received a blank
message.

The message complexity of snapshot recording is O�e� irrespective of the
number of concurrent initiations of the algorithm. The message complexity of
assembling and disseminating the snapshot is O(rn2) where r is the number
of concurrent initiations.

4.4.2 Venkatesan’s incremental snapshot algorithm

Many applications require repeated collection of global snapshots of the sys-
tem. For example, recovery algorithms with synchronous checkpointing need
to advance their checkpoints periodically. This can be achieved by repeated
invocations of the Chandy–Lamport algorithm. Venkatesan [32] proposed the
following efficient approach: execute an algorithm to record an incremental
snapshot since the most recent snapshot was taken and combine it with the
most recent snapshot to obtain the latest snapshot of the system. The incre-
mental snapshot algorithm of Venkatesan [32] modifies the global snapshot
algorithm of Chandy–Lamport to save on messages when computation mes-
sages are sent only on a few of the network channels, between the recording
of two successive snapshots.

The incremental snapshot algorithm assumes bidirectional FIFO channels,
the presence of a single initiator, a fixed spanning tree in the network, and
four types of control messages: init_snap, regular, and ack. init_snap, and
snap_completed messages traverse the spanning tree edges. regular and ack

100 Global state and snapshot recording algorithms

messages, which serve to record the state of non-spanning edges, are not sent
on those edges on which no computation message has been sent since the
previous snapshot.

Venkatesan [32] showed that the lower bound on the message complexity of
an incremental snapshot algorithm is��u+n�, where u is the number of edges
on which a computation message has been sent since the previous snapshot.
Venkatesan’s algorithm achieves this lower bound in message complexity.

The algorithm works as follows: snapshots are assigned version num-
bers and all algorithm messages carry this version number. The initiator
notifies all the processes the version number of the new snapshot by send-
ing init_snap messages along the spanning tree edges. A process follows
the “marker sending rule” when it receives this notification or when it
receives a regular message with a new version number. The “marker send-
ing rule” is modified so that the process sends regular messages along
only those channels on which it has sent computation messages since the
previous snapshot, and the process waits for ack messages in response to
these regular messages. When a leaf process in the spanning tree receives
all the ack messages it expects, it sends a snap_completed message to its
parent process. When a non-leaf process in the spanning tree receives all
the ack messages it expects, as well as a snap_completed message from
each of its child processes, it sends a snap_completed message to its parent
process.

The algorithm terminates when the initiator has received all the ack mes-
sages it expects, as well as a snap_completed message from each of its child
processes. The selective manner in which regular messages are sent has the
effect that a process does not know whether to expect a regular message on
an incoming channel. A process can be sure that no such message will be
received and that the snapshot is complete only when it executes the “marker
sending rule” for the next initiation of the algorithm.

4.4.3 Helary’s wave synchronization method

Helary’s snapshot algorithm [12] incorporates the concept of message waves
in the Chandy–Lamport algorithm. A wave is a flow of control messages such
that every process in the system is visited exactly once by a wave control
message, and at least one process in the system can determine when this
flow of control messages terminates. A wave is initiated after the previous
wave terminates. Wave sequences may be implemented by various traversal
structures such as a ring. A process begins recording the local snapshot when
it is visited by the wave control message.

In Helary’s algorithm, the “marker sending rule” is executed when a control
message belonging to the wave flow visits the process. The process then for-
wards a control message to other processes, depending on the wave traversal
structure, to continue the wave’s progression. The “marker receiving rule”

101 4.5 Snapshot algorithms for non-FIFO channels

is modified so that if the process has not recorded its state when a marker
is received on some channel, the “marker receiving rule” is not executed and
no messages received after the marker on this channel are processed until the
control message belonging to the wave flow visits the process. Thus, each
process follows the “marker receiving rule” only after it is visited by a control
message belonging to the wave.

Note that in this algorithm, the primary function of wave synchronization
is to evaluate functions over the recorded global snapshot. This algorithm
has a message complexity of O�e� to record a snapshot (because all channels
need to be traversed to implement the wave).

An example of this function is the number of messages in transit to each
process in a global snapshot, and whether the global snapshot is strongly
consistent. For this function, each process maintains two vectors, SENT and
RECD. The ith elements of these vectors indicate the number of messages
sent to/received from process i, respectively, since the previous visit of a
wave control message. The wave control messages carry a global abstract
counter vector whose ith entry indicates the number of messages in transit
to process i. These entries in the vector are updated using the SENT and
RECD vectors at each node visited. When the control wave terminates, the
number of messages in transit to each process as recorded in the snapshot
is known.

4.5 Snapshot algorithms for non-FIFO channels

A FIFO system ensures that all messages sent after a marker on a chan-
nel will be delivered after the marker. This ensures that condition C2 is
satisfied in the recorded snapshot if LSi, LSj , and SCij are recorded as
described in the Chandy–Lamport algorithm. In a non-FIFO system, the prob-
lem of global snapshot recording is complicated because a marker cannot
be used to delineate messages into those to be recorded in the global state
from those not to be recorded in the global state. In such systems, different
techniques have to be used to ensure that a recorded global state satisfies
condition C2.

In a non-FIFO system, either some degree of inhibition (i.e., temporarily
delaying the execution of an application process or delaying the send of a
computation message) or piggybacking of control information on computa-
tion messages to capture out-of-sequence messages is necessary to record a
consistent global snapshot [31]. The non-FIFO algorithm by Helary uses
message inhibition [12]. The non-FIFO algorithms by Lai and Yang [18],
Li et al. [20], and Mattern [23] use message piggybacking to distinguish
computation messages sent after the marker from those sent before the marker.

The non-FIFO algorithm of Helary [12] uses message inhibition to avoid
an inconsistency in a global snapshot in the following way: when a process

102 Global state and snapshot recording algorithms

receives a marker, it immediately returns an acknowledgement. After a process
pi has sent a marker on the outgoing channel to process pj , it does not send
any messages on this channel until it is sure that pj has recorded its local
state. Process pi can conclude this if it has received an acknowledgement for
the marker sent to pj , or it has received a marker for this snapshot from pj .

We next discuss snapshot recording algorithms for systems with non-FIFO
channels that use piggybacking of computation messages.

4.5.1 Lai–Yang algorithm

Lai and Yang’s global snapshot algorithm for non-FIFO systems [18] is
based on two observations on the role of a marker in a FIFO system. The
first observation is that a marker ensures that condition C2 is satisfied for LSi
and LSj when the snapshots are recorded at processes pi and pj , respectively.
The Lai–Yang algorithm fulfills this role of a marker in a non-FIFO system
by using a coloring scheme on computation messages that works as follows:

1. Every process is initially white and turns red while taking a snapshot.
The equivalent of the “marker sending rule” is executed when a process
turns red.

2. Every message sent by a white (red) process is colored white (red). Thus,
a white (red) message is a message that was sent before (after) the sender
of that message recorded its local snapshot.

3. Every white process takes its snapshot at its convenience, but no later than
the instant it receives a red message.

Thus, when a white process receives a red message, it records its local snap-
shot before processing the message. This ensures that no message sent by a
process after recording its local snapshot is processed by the destination pro-
cess before the destination records its local snapshot. Thus, an explicit marker
message is not required in this algorithm and the “marker” is piggybacked on
computation messages using a coloring scheme.

The second observation is that the marker informs process pj of the value
of 	send�mij�� send�mij� ∈ LSi � so that the state of the channel Cij can be
computed as transit�LSi�LSj�. The Lai–Yang algorithm fulfills this role of
the marker in the following way:

4. Every white process records a history of all white messages sent or received
by it along each channel.

5. When a process turns red, it sends these histories along with its snapshot
to the initiator process that collects the global snapshot.

6. The initiator process evaluates transit�LSi�LSj� to compute the state of a
channel Cij as given below:

103 4.5 Snapshot algorithms for non-FIFO channels

SCij =white messages sent by pi on Cij − white messages received by
pj on Cij

= 	mij �send�mij� ∈ LSi �− 	mij �rec�mij� ∈ LSj��

Condition C2 holds because a red message is not included in the snapshot
of the recipient process and a channel state is the difference of two sets of
white messages. Condition C1 holds because a white message mij is included
in the snapshot of process pj if pj receives mij before taking its snapshot.
Otherwise, mij is included in the state of channel Cij .

Though marker messages are not required in the algorithm, each process
has to record the entire message history on each channel as part of the
local snapshot. Thus, the space requirements of the algorithm may be large.
However, in applications (such as termination detection) where the number
of messages in transit in a channel is sufficient, message histories can be
replaced by integer counters reducing the space requirement. Lai and Yang
describe how the size of the local storage and snapshot recording can be
reduced by storing only the messages sent and received since the previous
snapshot recording, assuming that the previous snapshot is still available. This
approach can be very useful in applications that require repeated snapshots
of a distributed system.

4.5.2 Li et al.’s algorithm

Li et al.’s algorithm [20] for recording a global snapshot in a non-FIFO
system is similar to the Lai–Yang algorithm. Markers are tagged so as to
generalize the red/white colors of the Lai–Yang algorithm to accommodate
repeated invocations of the algorithm and multiple initiators. In addition, the
algorithm is not concerned with the contents of computation messages and
the state of a channel is computed as the number of messages in transit in
the channel. A process maintains two counters for each incident channel to
record the number of messages sent and received on the channel and reports
these counter values with its snapshot to the initiator. This simplification is
combined with the incremental technique to compute channel states, which
reduces the size of message histories to be stored and transmitted. The initiator
computes the state of Cij as: (the number of messages in Cij in the previous
snapshot) + (the number of messages sent on Cij since the last snapshot at
process pi) − (the number of messages received on Cij since the last snapshot
at process pj).

Snapshots initiated by an initiator are assigned a sequence number. All
messages sent after a local snapshot recording are tagged by a tuple <

init_id�MKNO >, where init_id is the initiator’s identifier and MKNO is
the sequence number of the algorithm’s most recent invocation by initiator
init_id; to insure liveness, markers with tags similar to the above tags are

104 Global state and snapshot recording algorithms

explicitly sent only on all outgoing channels on which no messages might be
sent. The tuple < init_id�MKNO> is a generalization of the red/white colors
used in Lai–Yang to accommodate repeated invocations of the algorithm and
multiple initiators.

For simplicity, we explain this algorithm using the framework of the Lai–
Yang algorithm. The local state recording is done as described by rules 1–3
of the Lai–Yang algorithm.

A process maintains input/output counters for the number of messages
sent and received on each incident channel after the last snapshot (by that
initiator). The algorithm is not concerned with the contents of computation
messages and so the computation of the state of a channel is simplified to
computing the number of messages in transit in the channel. This simplifi-
cation is combined with an incremental technique for computing in-transit
messages, also suggested independently by Lai and Yang [18], for reducing
the size of the entire message history to be locally stored and to be recorded
in a local snapshot to compute channel states. The initiator of the algorithm
maintains a variable TRANSITij for the number of messages in transit in the
channel from process pi to process pj , as recorded in the previous snapshot.
The channel states are recorded as described in rules 4–6 of the Lai–Yang
algorithm:

4. Every white process records a history, as input and output counters, of all
white messages sent or received by it along each channel after the previous
snapshot (by the same initiator).

5. When a process turns red, it sends these histories (i.e., input and output
counters) along with its snapshot to the initiator process that collects the
global snapshot.

6. The initiator process computes the state of channel Cij as follows:

SCij = transit�LSi�LSj�= TRANSITij
+ �#messages sent on that channel since the last snapshot�
− �#messages received on that channel since the last snapshot��

If the initiator initiates a snapshot before the completion of the previous
snapshot, it is possible that some process may get a message with a lower
sequence number after participating in a snapshot initiated later. In this case,
the algorithm uses the snapshot with the higher sequence number to also
create the snapshot for the lower sequence number.

The algorithm works for multiple initiators if separate input/output counters
are associated with each initiator, and marker messages and the tag fields
carry a vector of tuples, with one tuple for each initiator.

Though this algorithm does not require any additional message to record a
global snapshot provided computation messages are eventually sent on each
channel, the local storage and size of tags on computation messages are of

105 4.5 Snapshot algorithms for non-FIFO channels

size O�n�, where n is the number of initiators. The Spezialetti and Kearns
technique [29] of combining concurrently initiated snapshots can be used
with this algorithm.

4.5.3 Mattern’s algorithm

Mattern’s algorithm [23] is based on vector clocks. Recall that, in vector
clocks, the clock at a process in an integer vector of length n, with one
component for each process.

Mattern’s algorithm assumes a single initiator process and works as follows:

1. The initiator “ticks” its local clock and selects a future vector time s at
which it would like a global snapshot to be recorded. It then broadcasts
this time s and freezes all activity until it receives all acknowledgements
of the receipt of this broadcast.

2. When a process receives the broadcast, it remembers the value s and
returns an acknowledgement to the initiator.

3. After having received an acknowledgement from every process, the ini-
tiator increases its vector clock to s and broadcasts a dummy message to
all processes. (Observe that before broadcasting this dummy message, the
local clocks of other processes have a value �≥ s.)

4. The receipt of this dummy message forces each recipient to increase its
clock to a value ≥ s if not already ≥ s.

5. Each process takes a local snapshot and sends it to the initiator when (just
before) its clock increases from a value less than s to a value ≥ s. Observe
that this may happen before the dummy message arrives at the process.

6. The state of Cij is all messages sent along Cij , whose timestamp is smaller
than s and which are received by pj after recording LSj .

Processes record their local snapshot as per rule 5. Any message mij sent
by process pi after it records its local snapshot LSi has a timestamp > s.
Assume that this mij is received by process pj before it records LSj . After
receiving this mij and before pj records LSj , pj’s local clock reads a value
> s, as per rules for updating vector clocks. This implies pj must have already
recorded LSj as per rule 5, which contradicts the assumption. Therefore, mij

cannot be received by pj before it records LSj . By rule 6, mij is not recorded
in SCij and therefore, condition C2 is satisfied. Condition C1 holds because
each message mij with a timestamp less than s is included in the snapshot
of process pj if pj receives mij before taking its snapshot. Otherwise, mij is
included in the state of channel Cij .

The following observations about the above algorithm lead to various
optimizations: (i) The initiator can be made a “virtual” process–so no process
has to freeze. (ii) As long as a new higher value of s is selected, the phase
of broadcasting s and returning the acks can be eliminated. (iii) Only the
initiator’s component of s is used to determine when to record a snapshot.

106 Global state and snapshot recording algorithms

Also, one needs to know only if the initiator’s component of the vector
timestamp in a message has increased beyond the value of the corresponding
component in s. Therefore, it suffices to have just two values of s, say, white
and red, which can be represented using one bit.

With these optimizations, the algorithm becomes similar to the Lai–Yang
algorithm except for the manner in which transit�LSi�LSj� is evaluated for
channel Cij . In Mattern’s algorithm, a process is not required to store message
histories to evaluate the channel states. The state of any channel is the set
of all the white messages that are received by a red process on which that
channel is incident. A termination detection scheme for non-FIFO channels
is required to detect that no white messages are in transit to ensure that the
recording of all the channel states is complete. One of the following schemes
can be used for termination detection:

1. Each process i keeps a counter cntri that indicates the difference between
the number of white messages it has sent and received before recording
its snapshot. It reports this value to the initiator process along with its
snapshot and forwards all white messages, it receives henceforth, to the
initiator. Snapshot collection terminates when the initiator has received∑

i cntri number of forwarded white messages.
2. Each red message sent by a process carries a piggybacked value of the

number of white messages sent on that channel before the local state
recording. Each process keeps a counter for the number of white messages
received on each channel. A process can detect termination of recording
the states of incoming channels when it receives as many white messages
on each channel as the value piggybacked on red messages received on
that channel.

The savings of not storing and transmitting entire message histories, over
the Lai–Yang algorithm, comes at the expense of delay in the termination of
the snapshot recording algorithm and need for a termination detection scheme
(e.g., a message counter per channel).

4.6 Snapshots in a causal delivery system

Two global snapshot recording algorithms, namely, Acharya–Badrinath [1]
and Alagar–Venkatesan [2] assume that the underlying system supports causal
message delivery. The causal message delivery property CO provides a built-
in message synchronization to control and computation messages. Conse-
quently, snapshot algorithms for such systems are considerably simplified.
For example, these algorithms do not send control messages (i.e., markers) on
every channel and are simpler than the snapshot algorithms for a FIFO system.

Several protocols exist for implementing causal ordering [5, 6, 26, 28].

107 4.6 Snapshots in a causal delivery system

4.6.1 Process state recording

Both these algorithms use an identical principle to record the state of pro-
cesses. An initiator process broadcasts a token, denoted as token, to every
process including itself. Let the copy of the token received by process pi be
denoted tokeni. A process pi records its local snapshot LSi when it receives
tokeni and sends the recorded snapshot to the initiator. The algorithm termi-
nates when the initiator receives the snapshot recorded by each process.

These algorithms do not require each process to send markers on each
channel, and the processes do not coordinate their local snapshot recordings
with other processes. Nonetheless, for any two processes pi and pj , the
following property (called property P1) is satisfied:

send�mij� �∈ LSi ⇒ rec�mij� �∈ LSj�

This is due to the causal ordering property of the underlying system as
explained next. Let a message mij be such that rec�tokeni� −→ send�mij�.
Then send�tokenj� −→ send�mij� and the underlying causal ordering prop-
erty ensures that rec�tokenj�, at which instant process pj records LSj , happens
before rec�mij�. Thus, mij , whose send is not recorded in LSi, is not recorded
as received in LSj .

Methods of channel state recording are different in these two algorithms
and are discussed next.

4.6.2 Channel state recording in Acharya–Badrinath algorithm

Each process pi maintains arrays SENTi�1�

 N� and RECDi�1�

 �N�.
SENTi�j� is the number of messages sent by process pi to process pj and
RECDi�j� is the number of messages received by process pi from process
pj . The arrays may not contribute to the storage complexity of the algorithm
because the underlying causal ordering protocol may require these arrays to
enforce causal ordering.

Channel states are recorded as follows: when a process pi records its local
snapshot LSi on the receipt of tokeni, it includes arrays RECDi and SENTi in
its local state before sending the snapshot to the initiator. When the algorithm
terminates, the initiator determines the state of channels in the global snapshot
being assembled as follows:

1. The state of each channel from the initiator to each process is empty.
2. The state of channel from process pi to process pj is the set of messages

whose sequence numbers are given by 	RECDj�i�+1�

 � SENTi�j��.

We will now show that the algorithm satisfies conditions C1 and C2.
Let a message mij be such that rec�tokeni� −→ send�mij�. Clearly,

send�tokenj� −→ send�mij� and the sequence number of mij is
greater than SENTi[j]. Therefore, mij is not recorded in SCij . Thus,

108 Global state and snapshot recording algorithms

send(mij)�∈LSi⇒mij �∈SCij . This in conjunction with property P1 implies that
the algorithm satisfies condition C2.

Consider a message mij which is the kth message from process pi to
process pj before pi takes its snapshot. The two possibilities below imply that
condition C1 is satisfied:

• Process pj receives mij before taking its snapshot. In this case, mij is
recorded in pj’s snapshot.

• Otherwise,RECDj[i]≤ k≤ SENTi[j] and the messagemij will be included
in the state of channel Cij .

This algorithm requires 2n messages and 2 time units for recording and
assembling the snapshot, where one time unit is required for the delivery of
a message. If the contents of messages in channels state are required, the
algorithm requires 2n messages and 2 time units additionally.

4.6.3 Channel state recording in Alagar–Venkatesan algorithm

A message is referred to as old if the send of the message causally precedes
the send of the token. Otherwise, the message is referred to as new. Whether a
message is new or old can be determined by examining the vector timestamp
in the message, which is needed to enforce causal ordering among messages.

In the Alagar–Venkatesan algorithm [2], channel states are recorded as
follows:

1. When a process receives the token, it takes its snapshot, initializes the
state of all channels to empty, and returns Done message to the initiator.
Now onwards, a process includes a message received on a channel in the
channel state only if it is an old message.

2. After the initiator has received Done message from all processes, it broad-
casts a Terminate message.

3. A process stops the snapshot algorithm after receiving a Terminate

message.

An interesting observation is that a process receives all the old messages
in its incoming channels before it receives the Terminate message. This is
ensured by the underlying causal message delivery property.

The causal ordering property ensures that no new message is delivered
to a process prior to the token and only old messages are recorded in the
channel states. Thus, send(mij)�∈LSi ⇒ mij �∈SCij . This together with property
P1 implies that condition C2 is satisfied. Condition C1 is satisfied because
each old message mij is delivered either before the token is delivered or
before the Terminate is delivered to a process and thus gets recorded in LSi
or SCij , respectively.

A comparison of the salient features of the various snapshot recording
algorithms discused is given in Table 4.1.

109 4.7 Monitoring global state

Table 4.1 A comparison of snapshot algorithms.

Algorithms Features

Chandy–Lamport [7] Baseline algorithm. Requires FIFO channels. O�e�
messages to record snapshot and O�d� time.

Spezialetti–Kearns [29] Improvements over [7]: supports concurrent initiators,
efficient assembly and distribution of a snapshot. Assumes
bidirectional channels. O�e� messages to record, O�rn2�
messages to assemble and distribute snapshot.

Venkatesan [32] Based on [7]. Selective sending of markers. Provides
message-optimal incremental snapshots. ��n+u�
messages to record snapshot.

Helary [12] Based on [7]. Uses wave synchronization. Evaluates
function over recorded global state. Adaptable to
non-FIFO systems but requires inhibition.

Lai–Yang [18] Works for non-FIFO channels. Markers piggybacked on
computation messages. Message history required to
compute channel states.

Li et al. [20] Similar to [18]. Small message history needed as channel
states are computed incrementally.

Mattern [23] Similar to [18]. No message history required. Termination
detection (e.g., a message counter per channel) required to
compute channel states.

Acharya–Badrinath [1] Requires causal delivery support. Centralized computation
of channel states. Channel message contents need not be
known. Requires 2n messages, 2 time units.

Alagar-Venkatesan [2] Requires causal delivery support. Distributed computation
of channel states. Requires 3n messages, 3 time units,
small messages.

n = # processes, u = # edges on which messages were sent after previous snapshot, e = # channels, d =
diameter of the network, r = # concurrent initiators.

4.7 Monitoring global state

Several applications such as debugging a distributed program need to detect
a system state which is determined by the values of variables on a subset of
processes. This state can be expressed as a predicate on variables distributed
across the involved processes. Rather than recording and evaluating snapshots
at regular intervals, it is more efficient to monitor changes to the variables that
affect the predicate and evaluate the predicate only when some component
variable changes.

Spezialetti and Kearns [30] proposed a technique, called simultaneous
regions, for the consistent monitoring of distributed systems to detect global
predicates. A process whose local variable is a component of the global
predicate informs a monitor whenever the value of the variable changes. This

110 Global state and snapshot recording algorithms

process also coerces other processes to inform the monitor of the values
of their variables that are components of the global predicate. The monitor
evaluates the global predicate when it receives the next message from each of
the involved processes, informing it of the value(s) of their local variable(s).
The periods of local computation on each process between the ith and the i+
1st events at which the values of the local component(s) of the global predicate
are reported to the monitor are defined to be the i+1st simultaneous regions.
The above scheme is extended to arrange multiple monitors hierarchically to
evaluate complex global predicates.

4.8 Necessary and sufficient conditions for consistent global snapshots

Many applications (such as transparent failure recovery, distributed debug-
ging, monitoring distributed events, setting distributed breakpoints, protocol
specification and verification, etc.) require that local process states are peri-
odically recorded and analyzed during execution or post martem. A saved
intermediate state of a process during its execution is called a local check-
point of the process. A global snapshot of a distributed system is a set of
local checkpoints one from each process and it represents a snapshot of the
distributed computation execution at some instant. A global snapshot is con-
sistent if there is no causal path between any two distinct checkpoints in the
global snapshot. Therefore, a consistent snapshot consists of a set of local
states that occurred concurrently or had a potential to occur simultaneously.
This condition for the consistency of a global snapshot (that no causal path
between any two checkpoints) is only the necessary condition but it is not the
sufficient condition. In this section, we present the necessary and sufficient
conditions under which a local checkpoint or a set of arbitrary collection of
local checkpoints can be grouped with checkpoints at other processes to form
a consistent global snapshot.

Processes take checkpoints asynchronously. Each checkpoint taken by a
process is assigned a unique sequence number. The ith �i ≥ 0� checkpoint
of process pp is assigned the sequence number i and is denoted by Cp�i.
We assume that each process takes an initial checkpoint before execution
begins and takes a virtual checkpoint after execution ends. The ith checkpoint
interval of process pp consists of all the computation performed between
its �i− 1�th and ith checkpoints (and includes the �i− 1�th checkpoint but
not ith).

We first show with the help of an example that even if two local checkpoints
do not have a causal path between them (i.e., neither happened before the
other using Lamport’s happen before relation), they may not belong to the
same consistent global snapshot. Consider the execution shown in Figure 4.4.
Although neither of the checkpoints C1�1 and C3�2 happened before the other,
they cannot be grouped together with a checkpoint on process p2 to form a

111 4.8 Necessary and sufficient conditions for consistent global snapshots

Figure 4.4 An illustration of
zigzag paths.

C1,0 C1,1
C1,2

C2,1
C2,2 C2,3

C3,1 C3,2
C3,3

p1

m1 m5

m6

m3

p2

p3

C2,0

C3,0

Checkpoints are indicated by

m4m2

consistent global snapshot. No checkpoint on p2 can be grouped with both
C1�1 and C3�2 while maintaining the consistency. Because of message m4, C3�2

cannot be consistent with C2�1 or any earlier checkpoint in p2, and because of
message m3, C1�1 cannot be consistent with C2�2 or any later checkpoint in p2.
Thus, no checkpoint on p2 is available to form a consistent global snapshot
with C1�1 and C3�2�.

To describe the necessary and sufficient conditions for a consistent snap-
shot, Netzer and Xu [25] defined a generalization of the Lamport’s happens
before relation, called a zigzag path. A checkpoint Ci�j happens before a check-
point Cx�y (or a causal path exists between two checkpoints) if a sequence
of messages exists from Ci�j to Cx�y such that each message is sent after the
previous one in the sequence is received. A zigzag path between two check-
points is a causal path, however, and allows a message to be sent before the
previous one in the path is received. For example, in Figure 4.4, although a
causal path does not exist from C1�1 to C3�2, a zigzag path does exist from
C1�1 to C3�2. This zigzag path is formed by messages m3 and m4. This zigzag
path means that no consistent snapshot exists in this execution that contains
both C1�1 and C3�2.

Several applications require saving or analyzing consistent snapshots and
zigzag paths have implications on such applications. For example, the state
from which a distributed computation must restart after a crash must be
consistent. Consistency ensures that no process is restarted from a state that
has recorded the receipt of a message (called an orphan message) that no
other process claims to have sent in the rolled back state. Processes take
local checkpoints independently and a consistent global snapshot/checkpoint
is found from the local checkpoints for a crash recovery. Clearly, due to zigzag
paths, not all checkpoints taken by the processes will belong to a consistent
snapshot. By reducing the number of zigzag paths in the local checkpoints
taken by processes, one can increase the number of local checkpoints that
belong to a consistent snapshot, thus minimizing the roll back necessary to
find a consistent snapshot.1 This can be achieved by tracking zigzag paths
online and allowing each process to adaptively take checkpoints at certain

1 In the worst case, the system would have to restart its execution right from the beginning
after repeated rollbacks.

112 Global state and snapshot recording algorithms

points in the execution so that the number of checkpoints that cannot belong
to a consistent snapshot is minimized.

4.8.1 Zigzag paths and consistent global snapshots

In this section, we provide a formal definition of zigzag paths and use zigzag
paths to characterize condition under which a set of local checkpoints together
can belong to the same consistent snapshot. We then present two special cases:
first, the conditions for an arbitrary checkpoint to be useful (i.e., a consistent
snapshot exists that contains this checkpoint), and second, the conditions for
two arbitrary checkpoints to belong to the same consistent snapshot.

A zigzag path
Recall that if a global snapshot is consistent, then none of its checkpoints
happened before the other (i.e., there is no causal path between any two
checkpoints in the snapshot). However, as explained earlier using Figure 4.4,
if we have two checkpoints such that none of them happened before the
other, it is still not sufficient to ensure that they can belong together to the
same consistent snapshot. This happens when a zigzag path exists between
such checkpoints. A zigzag path is defined as a generalization of Lamport’s
happens before relation.

definition 4.1 A zigzag path exists from a checkpoint Cx�i to a checkpoint
Cy�j iff there exists messages m1, m2,

 mn (n≥1) such that

1. m1 is sent by process px after Cx�i;
2. if mk (1≤k≤n) is received by process pz, then mk+1 is sent by pz in the

same or a later checkpoint interval (although mk+1 may be sent before or
after mk is received);

3. mn is received by process py before Cy�j .

For example, in Figure 4.4, a zigzag path exists from C1�1 to C3�2 due to
messages m3 and m4. Even though process p2 sends m4 before receiving m3,
it does these in the same checkpoint interval. However, a zigzag path does
not exist from C1�2 to C3�3 (due to messages m5 and m6) because process p2

sends m6 and receives m5 in different checkpoint intervals.

definition 4.2 A checkpoint C is involved in a zigzag cycle iff there is a
zigzag path from C to itself.

For example, in Figure 4.5, C2�1 is on a zigzag cycle formed by messages
m1 and m2. Note that messages m1 and m2 are respectively sent and received
in the same checkpoint interval at p1.

Difference between a zigzag path and a causal path
It is important to understand the difference between a causal path and a zigzag
path. A causal path exists from a checkpoint A to another checkpoint B iff

113 4.8 Necessary and sufficient conditions for consistent global snapshots

there is chain of messages starting after A and ending before B such that each
message is sent after the previous one in the chain is received. A zigzag path
consists of such a message chain, however, a message in the chain can be
sent before the previous one in the chain is received, as long as the send and
receive are in the same checkpoint interval. Thus a causal path is always a
zigzag path, but a zigzag path need not be a causal path.

Figure 4.4 illustrates the difference between causal and zigzag paths. A
causal path exists from C1�0 to C3�1 formed by chain of messages m1 and m2;
this causal path is also a zigzag path. Similarly, a zigzag path exists from C1�1

to C3�2 formed by the chain of messages m3 and m4. Since the receive of m3

happened after the send of m4, this zigzag path is not a causal path and C1�1

does not happen before C3�2.
Another difference between a zigzag path and a causal path is that a zigzag

path can form a cycle but a causal path never forms a cycle. That is, it is
possible for a zigzag path to exist from a checkpoint back to itself, called a
zigzag cycle. In contrast, causal paths can never form cycles. A zigzag path
may form a cycle because a zigzag path need not represent causality – in a
zigzag path, we allow a message to be sent before the previous message in
the path is received as long as the send and receive are in the same interval.
Figure 4.5 shows a zigzag cycle involving C2�1, formed by messages m1

and m2.

Consistent global snapshots
Netzer and Xu [25] proved that if no zigzag path (or cycle) exists between
any two checkpoints from a set S of checkpoints, then a consistent snapshot
can be formed that includes the set S of checkpoints, and vice versa.

For a formal proof, the readers should consult the original paper. Here we
give an intuitive explanation. Intuitively, if a zigzag path exists between two
checkpoints, and that zigzag path is also a causal path, then the checkpoints
are ordered and hence cannot belong to the same consistent snapshot. If
the zigzag path between two checkpoints is not a causal path, a consistent
snapshot cannot be formed that contains both the checkpoints. The zigzag
nature of the path causes any snapshot that includes the two checkpoints to
be inconsistent. To visualize the effect of a zigzag path, consider a snapshot

Figure 4.5 A zigzag cycle,
inconsistent snapshot, and
consistent snapshot.

m2

m3

m4

p1

p2

m1

p3

C1,0 C1,1 C1, 2

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2

114 Global state and snapshot recording algorithms

line2 through the two checkpoints. Because of the existance of a zigzag path
between the two checkpoints, the snapshot line will always cross a message
that causes one of the checkpoints to happen before the other, making the
snapshot inconsistent. Figure 4.5 illustrates this. Two snapshot lines are drawn
from C1�1 to C3�2. The zigzag path from C1�1 to C3�2 renders both the snapshot
lines to be inconsistent. This is because messages m3 and m4 cross either
snapshot line in way that orders the two of its checkpoints.

Conversely, if no zigzag path exists between two checkpoints (including
zigzag cycles), then it is always possible to construct a consistent snapshot
that includes these two checkpoints. We can form a consistent snapshot by
including the first checkpoint at every process that has no zigzag path to
either checkpoint. Note that messages can cross a consistent snapshot line as
long as they do not cause any of the line’s checkpoints to happen before each
other. For example, in Figure 4.5, C1�2 and C2�3 can be grouped with C3�1

to form a consistent snapshot even though message m4 crosses the snapshot
line.

To summarize:

• the absence of a causal path between checkpoints in a snapshot corresponds
to the necessary condition for a consistent snapshot, and the absence of a
zigzag path between checkpoints in a snapshot corresponds to the necessary
and sufficient conditions for a consistent snapshot;

• a set of checkpoints S can be extended to a consistent snapshot if and only
if no checkpoint in S has a zigzag path to any other checkpoint in S;

• a checkpoint can be a part of a consistent snapshot if and only if it is not
invloved in a Z-cycle.

4.9 Finding consistent global snapshots in a distributed computation

We now address the problem to determine how individual local checkpoints
can be combined with those from other processes to form global snapshots
that are consistent. A solution to this problem forms the basis for many
algorithms and protocols that must record consistent snapshots on-the-fly or
determine post-mortem which global snapshots are consistent.

Netzer and Xu [25] proved the necessary and sufficient conditions to
construct a consistent snapshot from a set of checkpoints S. However, they
did not define the set of possible consistent snapshots and did not present
an algorithm to construct them. Manivannan–Netzer–Singhal [21] analyzed
the set of all consistent snapshots that can be built from a set of checkpoints
S. They proved exactly which sets of local checkpoints from other processes

2 A snapshot line is a line drawn through a set of checkpoints.

115 4.9 Finding consistent global snapshots in a distributed computation

can be combined with those in S to form a consistent snapshot. They also
developed an algorithm that enumerates all such consistent snapshots.

We define the following notations due to Wang [33, 34].

definition 4.3 Let A, B be individual checkpoints and R, S be sets of check-
points. Let �be a relation defined over checkpoints and sets of checkpoints
such that

1. A�B iff a Z-path exists from A to B;
2. A�S iff a Z-path exists from A to some member of S;
3. S�A iff a Z-path exists from some member of S to A;
4. R�S iff a Z-path exists from some member of R to some member of S.

S ��S defines that no Z-path (including a Z-cycle) exists from any member
of S to any other member of S and implies that checkpoints in S are all from
different processes.

Using the above notations, the results of Netzer and Xu can be expressed
as follows:

Theorem 4.1 A set of checkpoints S can be extended to a consistent global
snapshot if and only if S ��S.

Corollary 4.1 A checkpoint C can be part of a consistent global snapshot
if and only if it is not involved in a Z-cycle.

Corollary 4.2 A set of checkpoints S is a consistent global snapshot if and
only if S ��S and �S� = N , where N is the number of processes.

4.9.1 Finding consistent global snapshots

We now discuss exactly which consistent snapshots can be built from a set
of checkpoints S. We also present an algorithm to enumerate these consistent
snapshots.

Extending S to a consistent snapshot
Given a set S of checkpoints such that S ��S, we first discuss what checkpoints
from other processes can be combined with S to build a consistent global
snapshot. The result is based on the following three observations.

First observation
None of the checkpoints that have a Z-path to or from any of the checkpoints
in S can be used. This is because from Theorem 4.1, no checkpoints between
which a Z-path exists can ever be part of a consistent snapshot. Thus, only
those checkpoints that have no Z-paths to or from any of the checkpoints
in S are candidates for inclusion in the consistent snapshot. We call the
set of all such candidates the Z-cone of S. Similarly, we call the set of all

116 Global state and snapshot recording algorithms

Figure 4.6 The Z-cone and the
C-cone associated with a set of
checkpoints S [21].

Z-paths to S Z-unordered with S
(Z-cone)

Z-paths from S

Casually unordered with S
(C-cone)

Casual paths from S

Edge of C-cone Edges of Z-cone Edge of C-cone

S

Casual paths to S

checkpoints that have no causal path to or from any checkpoint in S the
C-cone of S.3

The Z-cone and C-cone help us reason about orderings and consistency.
Since a causal path is always Z-path, the Z-cone of S is a subset of the C-cone
of S for an arbitrary S, as shown in Figure 4.6. Note that if a Z-path exists
from checkpoint Cp�i in process pp to a checkpoint in S, then a Z-path also
exists from every checkpoint in pp preceding Cp�i to the same checkpoint in S
(because Z-paths are transitive). Likewise, if a Z-path exists from a checkpoint
in S to a checkpoint Cq�j in process pq, then a Z-path also exists from the
same checkpoint in S to every checkpoint in pq following Cq�j . Causal paths
are also transitive and similar results hold for them.

Second observation
Although candidates for building a consistent snapshot from S must lie in the
Z-cone of S, not all checkpoints in the Z-cone can form a consistent snapshot
with S. From Corollary 4.1, if a checkpoint in the Z-cone is involved in a
Z-cycle, then it cannot be part of a consistent snapshot. Lemma 4.1 below
states that if we remove from consideration all checkpoints in the Z-cone
that are involved in Z-cycles, then each of the remaining checkpoints can be
combined with S to build a consistent snapshot.

First we define the set of useful checkpoints with respect to set S.

3 These terms are inspired by the so-called light cone of an event e, which is the set of all events
with causal paths from e (i.e., events in e’s future). Although the light cone of e contains
events ordered after e, we define the Z-cone and C-cone of S to be those events with no
zigzag or causal ordering, respectively, to or from any member of S.

117 4.9 Finding consistent global snapshots in a distributed computation

definition 4.4 Let S be a set of checkpoints such that S ��S. Then, for each
process pq, the set Squseful is defined as

S
q
useful = 	Cq�i � �S ��Cq�i�∧ �Cq�i ��S�∧ �Cq�i ��Cq�i���

In addition, we define

Suseful =
⋃
q

S
q
useful�

Thus, with respect to set S, a checkpoint C is useful if C does not have a
zigzag path to any checkpoint in S, no checkpoint in S has a zigzag path to
C, and C is not on a Z-cycle.

Lemma 4.1 Let S be a set of checkpoints such that S ��S. Let Cq�i be any
checkpoint of process pq such that Cq�i �∈ S. Then S∪ 	Cq�i� can be extended
to a consistent snapshot if and only if Cq�i ∈ Suseful.

We omit the proof of the lemma and interested readers can refer to the
original paper [21] for a proof.

Lemma 4.1 states that if we are given a set S such that S ��S, we are
guaranteed that any single checkpoint from Suseful can belong to a consistent
global snapshot that also contains S.

Third observation
However, if we attempt to build a consistent snapshot from S by choosing a
subset T of checkpoints from Suseful to combine with S, there is no guarantee
that the checkpoints in T have no Z-paths between them. In other words,
although none of the checkpoints in Suseful has a Z-path to or from any
checkpoint in S, Z-paths may exist between members of Suseful. Therefore,
we place one final constraint on the set T we choose from Suseful to build a
consistent snapshot from S: checkpoints in T must have no Z-paths between
them. Furthermore, since S ��S, from Theorem 4.1, at least one such T must
exist.

Theorem 4.2 Let S be a set of checkpoints such that S ��S and let T be
any set of checkpoints such that S∩T = ∅. Then, S∪T is a consistent global
snapshot if and only if

1. T ⊆ Suseful;
2. T ��T ;
3. �S∪T � = N .

We omit the proof of the theorem and interested readers can refer to the
original paper [21] for a proof.

118 Global state and snapshot recording algorithms

4.9.2 Manivannan–Netzer–Singhal algorithm for enumerating consistent snapshots

In the previous section, we showed which checkpoints can be used to extend a
set of checkpoints S to a consistent snapshot. We now present an algorithm due
to Manivannan–Netzer–Singhal [21] that explicitly computes all consistent
snapshots that include a given set a set of checkpoints S. The algorithm
restricts its selection of checkpoints to those within the Z-cone of S and it
checks for the presence of Z-cycles within the Z-cone. In the next section, we
discuss how to detect Z-cones and Z-paths using a graph by Wang [33, 34],

(1) ComputeAllCgs�S� {
(2) let G= ∅
(3) if S ��S then
(4) let AllProcs be the set of all processes not represented in S
(5) ComputeAllCgsFrom�S�AllProcs�

(6) return G
(7) }
(8) ComputeAllCgsFrom�T�ProcSet� {
(9) if �ProcSet = ∅� then
(10) G=G∪ 	T�
(11) else
(12) let pq be any process in ProcSet
(13) for each checkpoint C ∈ Tq

useful do
(14) ComputeAllCgsFrom�T ∪ 	C��ProcSet \ 	pq��
(15) }

Algorithm 4.2 Algorithm for computing all consistent snapshots containing S [21].

The algorithm is shown in Algorithm 4.2 and it computes all consistent
snapshots that include a given set S. The function ComputeAllCgs�S� returns
the set of all consistent checkpoints that contain S. The heart of the algorithm
is the function ComputeAllCgsFrom�T�ProcSet� which extends a set of
checkpoints T in all possible consistent ways, but uses checkpoints only from
processes in the set ProcSet. After verifying that S ��S, ComputeAllCgs
calls ComputeAllCgsFrom, passing a ProcSet consisting of the processes not
represented in S (lines 2–5). The resulting consistent snapshots are collected
in the global variable G that is returned (line 6). It is worth noting that
if S = ∅, the algorithm computes all consistent snapshots that exist in the
execution.

The recursive function ComputeAllCgsFrom�T�ProcSet� works by choos-
ing any process from ProcSet, say pq, and iterating through all checkpoints
C in T

q
useful. From Lemma 4.1, each such checkpoint extends T toward a

consistent snapshot. This means T ∪C can itself be further extended, even-
tually arriving at a consistent snapshot. Since this further extension is simply

119 4.9 Finding consistent global snapshots in a distributed computation

another instance of constructing all consistent snapshots that contain check-
points from a given set, we make a recursive call (line 14), passing T ∪C
and a ProcSet from which process pq is removed. The recursion eventually
terminates when the passed set contains checkpoints from all processes (i.e.,
ProcSet is empty). In this case T is a global snapshot, as it contains one
checkpoint from every process, and is added to G (line 10). When the algo-
rithm terminates, all candidates in Suseful have been used in extending S, so
G contains all consistent snapshots that contain S.

The following theorem argues the correctness of the algorithm.

Theorem 4.3 Let S be a set of checkpoints and G be the set returned by
ComputeAllCgs�S�. If S ��S, then T ∈ G if and only if T is a consistent
snapshot containing S. That is, G contains exactly the consistent snapshots
that contain S.

We omit the proof of the theorem and interested readers can refer to the
original paper [21] for a proof.

4.9.3 Finding Z-paths in a distributed computation

Tracking Z-paths on-the-fly is difficult and remains an open problem. We
describe a method for determining the existence of Z-paths between check-
points in a distributed computation that has terminated or has stopped
execution, using the rollback-dependency graph (R-graph) introduced by
Wang [33, 34]. First, we present the definition of an R-graph.

definition 4.5 The rollback-dependency graph of a distributed computation
is a directed graph G= �V�E�, where the vertices V are the checkpoints of
the distributed computation, and an edge �Cp�i�Cq�j� from checkpoint Cp�i to
checkpoint Cq�j belongs to E if

1. p= q and j = i+1, or
2. p �= q and a message m sent from the ith checkpoint interval of pp is

received by pq in its jth checkpoint interval (i� j > 0).

Construction of an R-graph
When a process pp sends a message m in its ith checkpoint interval, it
piggybacks the pair �p� i� with the message. When the receiver pq receives
m in its jth checkpoint interval, it records the existence of an edge from Cp�i
to Cq�j . When a process wants to construct the R-graph for finding Z-paths
between checkpoints, it broadcasts a request message to collect the existing
direct dependencies from all other processes and constructs the complete R-
graph. We assume that each process stops execution after it sends a reply
to the request so that additional dependencies between checkpoints are not
formed while the R-graph is being constructed. For each process, a volatile

120 Global state and snapshot recording algorithms

Figure 4.7 A distributed
computation.

p2

p3

p1

m6
m

2

C1,0 C1,1

C2,0

C3,0 C3,1

C2,1

C1,2

C2,2

C3,2

m3
m1 m4

m5

Figure 4.8 The R-graph of the
computation in Figure 4.7.

C3,1 C3,3C3,2

C3,0

C2,3

C2,2

C2,1C2,0

C1,0 C1,1 C1,2 C1,3

Volatile
checkpoints

checkpoint is added; the volatile checkpoint represents the volatile state of
the process [33, 34].

Example 4.1 An R-graph Figure 4.8 shows the R-graph of the computa-
tion shown in Figure 4.7. In Figure 4.8, C1�3�C2�3� and C3�3 represent the
volatile checkpoints, the checkpoints representing the last state the process
attained before terminating.

We denote the fact that there is a path from C to D in the R-graph by
C

rd
� D. It only denotes the existence of a path; it does not specify any

particular path. For example, in Figure 4.8, C1�0
rd
� C3�2. When we need to

specify a particular path, we give the sequence of checkpoints that constitute
the path. For example, �C1�0�C1�1�C1�2�C2�1�C3�1�C3�2� is a path from C1�0 to
C3�2 and �C1�0�C1�1�C1�2�C2�1�C2�2�C2�3�C3�2� is also a path from C1�0 to C3�2.

The following theorem establishes the correspondence between the paths
in the R-graph and the Z-paths between checkpoints. This correspondence is
very useful in determining whether or not a Z-path exists between two given
checkpoints.

Theorem 4.4 Let G= �V�E� be the R-graph of a distributed computation.
Then, for any two checkpoints Cp�i and Cq�j , Cp�i�Cq�j if and only if

1. p= q and i < j, or
2. Cp�i+1

rd
� Cq�j in G (note that in this case p could still be equal to q).

For example, in the distributed computation shown in Figure 4.7, a zigzag
path exists from C1�1 to C3�1 because in the corresponding R-graph, shown

in Figure 4.8, C1�2
rd
� C3�1. Likewise, C2�1 is on a Z-cycle because in the

corresponding R-graph, shown in Figure 4.8, C2�2
rd
� C2�1.

121 4.10 Chapter summary

4.10 Chapter summary

Recording global state of a distributed system is an important paradigm in
the design of the distributed systems and the design of efficient methods of
recording the global state is an important issue. Recording of global state of
a distributed system is complicated due to the lack of both a globally shared
memory and a global clock in a distributed system. This chapter first presented
a formal definition of the global state of a distributed system and exposed
issues related to its capture; it then described several algorithms to record a
snapshot of a distributed system under various communication models.

Table 4.1 gives a comparison of the salient features of the various snapshot
recording algorithms. Clearly, the higher the level of abstraction provided by
a communication model, the simpler the snapshot algorithm. However, there
is no best performing snapshot algorithm and an appropriate algorithm can be
chosen based on the application’s requirement. For examples, for termination
detection, a snapshot algorithm that computes a channel state as the number
of messages is adequate; for checkpointing for recovery from failures, an
incremental snapshot algorithm is likely to be the most efficient; for global
state monitoring, rather than recording and evaluating complete snapshots at
regular intervals, it is more efficient to monitor changes to the variables that
affect the predicate and evaluate the predicate only when some component
variable changes.

As indicated in the introduction, the paradigm of global snapshots finds a
large number of applications (such as detection of stable properties, check-
pointing, monitoring, debugging, analyses of distributed computation, dis-
carding of obsolete information). Moreover, in addition to the problems they
solve, the algorithms presented in this chapter are of great importance to
people interested in distributed computing as these algorithms illustrate the
incidence of properties of communication channels (FIFO, non-FIFO, causal
ordering) on the design of a class of distributed algorithms.

We also discussed the necessary and sufficient conditions for consistent
snapshots. The non-causal path between checkpoints in a snapshot corre-
sponds to the necessary condition for consistent snapshot, and the non-zigzag
path corresponds to the necessary and sufficient conditions for consistent
snapshot. Tracking of zigzag path is helpful in forming a global consistent
snapshot. The avoidance of zigzag path between any pair of checkpoints from
a collection of checkpoints (snapshot) is the necessary and sufficient condi-
tions for a consistent global snapshot. Avoidance of causal paths alone will
not be sufficient for consistency.

We also presented an algorithm for finding all consistent snapshots con-
taining a given set S of local checkpoints; if we take S=∅, then the algorithm
gives the set of all consistent snapshots of a distributed computation run.
We established the correspondence between the Z-paths and the paths in the
R-graph which helps in finding the existence of Z-paths between checkpoints.

122 Global state and snapshot recording algorithms

4.11 Exercises

Exercise 4.1 Consider the following simple method to collect a global snapshot (it
may not always collect a consistent global snapshot): an initiator process takes its
snapshot and broadcasts a request to take snapshot. When some other process receives
this request, it takes a snapshot. Channels are not FIFO.

Prove that such a collected distributed snapshot will be consistent iff the following
holds (assume there are n processes in the system and Vti denotes the vector timestamp
of the snapshot taken process pi):

�Vt1�1��Vt2�2�� � � � � � Vtn�n��=max�Vt1�Vt2� � � � � � Vtn��

Don’t worry about channel states.

Exercise 4.2 What good is a distributed snapshot when the system was never in
the state represented by the distributed snapshot? Give an application of distributed
snapshots.

Exercise 4.3 Consider a distributed system where every node has its physical clock
and all physical clocks are perfectly synchronized. Give an algorithm to record global
state assuming the communication network is reliable. (Note that your algorithm
should be simpler than the Chandy–Lamport algorithm.)

Exercise 4.4 What modifications should be done to the Chandy–Lamport snapshot
algorithm so that it records a strongly consistent snapshot (i.e., all channel states are
recorded empty).

Exercise 4.5 Consider two consistent cuts whose events are denoted by C1 =
C1�1��C1�2��

 �C1�n� and C2 = C2�1��C2�2��

 �C2�n�, respectively.

Define a third cut, C3 = C3�1��C3�2��

 �C3�n�, which is the maximum of C1

and C2; that is, for every k, C3�k�= later of C1(k) and C2�k�.
Define a fourth cut, C4 = C4�1��C4�2��

 �C4�n�, which is the minimum of C1

and C2; that is, for every k, C4�k�= earlierof C1(k) and C2�k�.
Prove that C3 and C4 are also consistent cuts.

4.12 Notes on references

The notion of a global state in a distributed system was formalized by Chandy and
Lamport [7] who also proposed the first algorithm (CL) for recording the global state,
and first studied the various properties of the recorded global state. The space–time
diagram, which is a very useful graphical tool to visualize distributed executions, was
introduced by Lamport [19]. A detailed survey of snapshot recording algorithms is
given by Kshemkalyani et al. [16].

Spezialetti and Kearns proposed a variant of the CL algorithm to optimize con-
current initiations by different processes, and to efficiently distribute the recorded
snapshot [29]. Venkatesan proposed a variant that handles repeated snapshots effi-
ciently [32]. Helary proposed a variant of the CL algorithm to incorporate message
waves in the algorithm [12]. Helary’s algorithm is adaptable to a system with non-
FIFO channels but requires inhibition [31]. Besides Helary’s algorithm [12], the

123 References

algorithms proposed by Lai and Yang [18], Li et al. [20], and by Mattern [23] can
all record snapshots in systems with non-FIFO channels. If the underlying network
can provide causal order of message delivery [5], then the algorithms by Acharya
and Badrinath [1] and by Alagar and Venkatesan [2] can record the global state using
O�n� number of messages.

The notion of simultaneous regions for monitoring global state was proposed by
Spezialetti and Kearns [30]. The necessary and sufficient conditions for consistent
global snapshots were formulated by Netzer and Xu [25] based on the zigzag paths.
These have particular application in checkpointing and recovery. Manivannan et al.
analyzed the set of all consistent snaspshots that can be built from a given set of
checkpoints [21]. They also proposed an algorithm to enumerate all such consistent
snapshots. The definition of the R-graph and other notations and framework used
by [21] were proposed by Wang [33, 34].

Recording the global state of a distributed system finds applications at several
places in distributed systems. For applications in detection of stable properties such as
deadlocks, see [17] and for termination, see [22]. For failure recovery, a global state
of the distributed system is periodically saved and recovery from a processor failure
is done by restoring the system to the last saved global state [15]. For debugging
distributed software, the system is restored to a consistent global state [8, 9] and the
execution resumes from there in a controlled manner. A snapshot recording method
has been used in the distributed debugging facility of Estelle [11, 13], a distributed
programming environment. Other applications include monitoring distributed events
[30], setting distributed breakpoints [24], protocol specification and verification
[4, 10, 14], and discarding obsolete information [11].

We will study snapshot algorithms for shared memory in Chapter 12.

References

[1] A. Acharya and B. R. Badrinath, Recording distributed snapshots based on
causal order of message delivery, Information Processing Letters, 44, 1992,
317–321.

[2] S. Alagar, and S. Venkatesan, An optimal algorithm for distributed snap-
shots with causal message ordering, Information Processing Letters, 50, 1994,
311–316.

[3] O. Babaoglu and K. Marzullo, Consistent global states of distributed systems:
fundamental concepts and mechanisms, in Mullender, S.J. (ed.) Distributed
Systems, ACM Press 1993.

[4] O. Babaoglu and M. Raynal, Specification and verification of dynamic proper-
ties in distributed computations, Journal of Parallel and Distributed Systems,
28(2), 1995, 173–185.

[5] K. Birman and T. Joseph, Reliable communication in presence of failures,
ACM Transactions on Computer Systems, 3, 1987, 47–76.

[6] K. Birman, A. Schiper, and P. Stephenson, Lightweight causal and atomic group
multicast, ACM Transactions on Computer Systems, 9(3), 1991, 272–314.

[7] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states
of distributed systems, ACM Transactions on Computer Systems, 3(1), 1985,
63–75.

[8] R. Cooper and K. Marzullo, Consistent detection of global predicates, Pro-
ceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
May 1991, 163–173.

124 Global state and snapshot recording algorithms

[9] E. Fromentin, N. Plouzeau, and M. Raynal, An introduction to the analysis and
debug of distributed computations, Proceedings of the 1st IEEE International
Conference on Algorithms and Architectures for Parallel Processing, Brisbane,
Australia, April 1995, 545–554.

[10] K. Geihs and M. Seifert, Automated validation of a cooperation protocol for
distributed systems, Proceedings of the 6th International Conference on Dis-
tributed Computing Systems, 1986, 436–443.

[11] O. Gerstel, M. Hurfin, N. Plouzeau, M. Raynal, and S. Zaks, On-the-fly replay:
a practical paradigm and its implementation for distributed debugging, Pro-
ceedings of the 6th IEEE International Symposium on Parallel and Distributed
Debugging, Dallas, TX, October 1995, 266–272.

[12] J.-M. Helary, Observing global states of asynchronous distributed applications,
Proceedings of the 3rd International Workshop on Distributed Algorithms,
LNCS 392 1989, 124–134.

[13] M. Hurfin, N. Plouzeau and M. Raynal, A debugging tool for distribted Estelle
programs, Journal of Computer Communications, 16(5), 1993, 328–333.

[14] J. Kamal and M. Singhal, Specification and Verification of Distributed Mutual
Exclusion Algorithms, Technical Report, Department of Computer and Infor-
mation Science, The Ohio State University, Columbus, OH, 1992.

[15] R. Koo and S. Toueg, Checkpointing and rollback-recovery in distributed
systems, IEEE Transactions on Software Engineering, January, 1987, 23–31.

[16] A. Kshemkalyani, M. Raynal, and M. Singhal, ‘Global snapshots of a
distributed system’, Distributed Systems Engineering Journal, 2(4), 1995,
224–233.

[17] A. Kshemkalyani and M. Singhal, Efficient detection and resolution of gen-
eralized distributed deadlocks, IEEE Transactions on Software Engineering,
20(1), 1994, 43–54.

[18] T. H. Lai and T. H. Yang, On distributed snapshots, Information Processing
Letters, 25, 1987, 153–158.

[19] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7), 1978, 558–565.

[20] H. F. Li, T. Radhakrishnan, and K. Venkatesh, Global state detection in non-
FIFO networks, Proceedings of the 7th International Conference on Distributed
Computing Systems, 1987, 364–370.

[21] D. Manivannan, R. H. B. Netzer, and M. Singhal, Finding consistent global
checkpoints in a distributed computation, IEEE Transactions of Parallel and
Distributed Systems, June, 1997, 623–627.

[22] F. Mattern, Algorithms for distributed termination detection, Distributed Com-
puting, 2(3), 1987, 161–175.

[23] F. Mattern, Efficient algorithms for distributed snapshots and global virtual
time approximation, Journal of Parallel and Distributed Computing, 18, 1993,
423–434.

[24] B. Miller and J. Choi, Breakpoints and halting in distributed programs, Proceed-
ings of the 8th International Conference on Distributed Computing Systems,
1988, 316–323.

[25] H. B. Robert and J. Xu. Netzer, Necessary and sufficient conditions for consis-
tent global snapshots, IEEE Transactions on Parallel and Distributed Systems,
6(2), 1995, 165–169.

[26] M. Raynal, A. Schiper, and S. Toueg, Causal ordering abstraction and a simple
way to implement it, Information Processing Letters, 39(6), 1991, 343–350.

[27] S. Sarin and N. Lynch, Discarding obsolete information in a replicated database
system, IEEE Transactions on Software Engineering, 13(1), 1987, 39–47.

125 References

[28] A. Schiper, J. Eggli, and A. Sandoz, A new algorithm to implement causal
ordering, Proceedings of the 3rd International Workshop on Distributed Algo-
rithms, LNCS 392, Springer Verlag, 1989, pp. 219–232.

[29] M. Spezialetti and P. Kearns, Efficient distributed snapshots, Proceedings of
the 6th International Conference on Distributed Computing Systems, 1986,
382–388.

[30] M. Spezialetti and P. Kearns, Simultaneous regions: a framework for the con-
sistent monitoring of distributed systems, Proceedings of the 9th International
Conference on Distributed Computing Systems, 1989, 61–68.

[31] K. Taylor, The role of inhibition in consistent cut protocols, Proceedings of
the 3rd International Workshop on Distributed Algorithms, LNCS 392, 1989,
124–134.

[32] S. Venkatesan, Message-optimal incremental snapshots, Journal of Computer
and Software Engineering, 1(3), 1993, 211–231.

[33] Yi-Min Wang, Maximum and minimum consistent global checkpoints and their
applications, Proceedings of the 14th IEEE Symposium on Reliable Distributed
Systems, Bad Neuenahr, Germany, September 1995, 86–95.

[34] Yi-Min Wang, Consistent global checkpoints that contain a given set of local
checkpoints, IEEE Transactions on Computers, 46(4), 1997, 456–468.

C H A P T E R

5 Terminology and basic algorithms

In this chapter, we first study a methodical framework in which distributed
algorithms can be classified and analyzed. We then consider some basic
distributed graph algorithms. We then study synchronizers, which provide the
abstraction of a synchronous system over an asynchronous system. Finally,
we look at some practical graph problems, to appreciate the necessity of
designing efficient distributed algorithms.

5.1 Topology abstraction and overlays

The topology of a distributed system can be typically viewed as an undirected
graph in which the nodes represent the processors and the edges represent
the links connecting the processors. Weights on the edges can represent some
cost function we need to model in the application. There are usually three
(not necessarily distinct) levels of topology abstraction that are useful in
analyzing the distributed system or a distributed application. These are now
described using Figure 5.1. To keep the figure simple, only the relevant end
hosts participating in the application are shown. The WANs are indicated by
ovals drawn using dashed lines. The switching elements inside the WANs,
and other end hosts that are not participating in the application, are not shown
even though they belong to the physical topological view. Similarly, all the
edges connecting all end hosts and all edges connecting to all the switching
elements inside the WANs also belong to the physical topology view even
though only some edges are shown.

• Physical topology The nodes of this topology represent all the network
nodes, including switching elements (also called routers), in the WAN and
all the end hosts – irrespective of whether the hosts are participating in the
application. The edges in this topology represent all the communication
links in the WAN in addition to all the direct links between the end hosts.

126

127 5.1 Topology abstraction and overlays

Figure 5.1 Two examples of
topological views at different
levels of abstraction. WAN

WAN

WANWAN

WAN or other network

(a) (b)

participating process(or)

In Figure 5.1(a), the physical topology is not shown explicitly to keep the
figure simple.

• Logical topology This is usually defined in the context of a particular
application. The nodes represent all the end hosts where the application
executes. The edges in this topology are logical channels (also termed
as logical links) among these nodes. This view is at a higher level of
abstraction than that of the physical topology, and the nodes and edges of
the physical topology need not be included in this view.

Often, logical links are modeled between particular pairs of end hosts
participating in an application to give a logical topology with useful
properties. Figure 5.1(b) shows each pair of nodes in the logical topol-
ogy is connected to give a fully connected network. Each pair of nodes
can communicate directly with each other participant in the application
using an incident logical link at this level of abstraction of the topology.
However, the logical links may also define some arbitrary connectivity
(neighborhood-relation) on the nodes in this abstract view. In Figure 5.1(a),
the logical view provides each node with a partial view of the topology,
and the connectivity provided is some neighborhood connectivity. To com-
municate with another application node that is not a logical neighbor, a
node may have to use a multi-hop path composed of logical links at this
level of abstraction of the topology.

While the fully connected logical topology in Figure 5.1(b) provides
a complete view of the system, updating such a view in a dynamic
system incurs an overhead. Neighborhood-based logical topologies as in
Figure 5.1(a) are easier to manage.

We will consider distributed algorithms on logical topologies in this
book. Peer-to-peer (P2P) networks (see Chapter 18) are also defined by a
logical topology at the application layer. However, the emphasis of P2P
networks is on self-organizing networks with built-in functions, e.g., the
implementation of application layer functions such as object lookup and
location in a distributed manner.

128 Terminology and basic algorithms

• Superimposed topology This is a higher-level topology that is super-
imposed on the logical topology. It is usually a regular structure such as
a tree, ring, mesh, or hypercube. The main reason behind defining such
a topology is that it provides a specialized path for efficient information
dissemination and/or gathering as part of a distributed algorithm.

Consider the problem of collecting the sum of variables, one from each
node. This can be efficiently solved using n messages by circulating a
cumulative counter on a logical ring, or using n−1 messages on a logical
tree. The ring and tree are examples of superimposed topologies on the
underlying logical topology – which may be arbitrary as in Figure 5.1(a)
or fully connected as in Figure 5.1(b).

We will encounter various examples of these topologies, A superimposed
topology is also termed as a topology overlay. This latter term is becoming
increasingly popular with the spread of the peer-to-peer computing paradigm.

Notation
Whatever the level of topological view we are dealing with, we assume that
an undirected graph �N�L� is used to represent the topology. The notation
n= �N � and l= �L� will also be used.

5.2 Classifications and basic concepts

5.2.1 Application executions and control algorithm executions

The distributed application execution is comprised of the execution of
instructions, including the communication instructions, within the distributed
application program. The application execution represents the logic of the
application. In many cases, a control algorithm also needs to be executed
in order to monitor the application execution or to perform various auxiliary
functions. The control algorithm performs functions such as: creating a span-
ning tree, creating a connected dominating set, achieving consensus among the
nodes, distributed transaction commit, distributed deadlock detection, global
predicate detection, termination detection, global state recording, checkpoint-
ing, and also memory consistency enforcement in distributed shared memory
systems.

The code of the control algorithm is allocated its own memory space. The
control algorithm execution is superimposed on the underlying application
execution, but does not interfere with the application execution. In other
words, the control algorithm execution including all its send, receive, and
internal events are transparent to (or not visible to) the application execution.

The distributed control algorithm is also sometimes termed as a protocol;
although the term protocol is also loosely used for any distributed algorithm.

129 5.2 Classifications and basic concepts

In the literature on formal modeling of network algorithms, the term protocol
is more commonly used.

5.2.2 Centralized and distributed algorithms

In a distributed system, a centralized algorithm is one in which a predom-
inant amount of work is performed by one (or possibly a few) processors,
whereas other processors play a relatively smaller role in accomplishing
the joint task. The roles of the other processors are usually confined to
requesting information or supplying information, either periodically or when
queried.

A typical system configuration suited for centralized algorithms is the
client–server configuration. Presently, much commercial software is written
using this configuration, and is adequate. From a theoretical perspective, the
single server is a potential bottleneck for both processing and bandwidth
access on the links. The single server is also a single point of failure. Of
course, these problems are alleviated in practice by using replicated servers
distributed across the system, and then the overall configuration is not as
centralized any more.

A distributed algorithm is one in which each processor plays an equal role
in sharing the message overhead, time overhead, and space overhead. It is
difficult to design a purely distributed algorithm (that is also efficient) for
some applications. Consider the problem of recording a global state of all
the nodes. The well-known Chandy–Lamport algorithm which we studied in
Chapter 4 is distributed – yet one node, which is typically the initiator, is
responsible for assembling the local states of the other nodes, and hence plays
a slightly different role. Algorithms that are designed to run on a logical-ring
superimposed topology tend to be fully distributed to exploit the symmetry
in the connectivity. Algorithms that are designed to run on the logical tree
and other asymmetric topologies with a predesignated root node tend to
have some asymmetry that mirrors the asymmetric topology. Although fully
distributed algorithms are ideal, partly distributed algorithms are sometimes
more practical to implement in real systems. At any rate, the advances in
peer-to-peer networks, ubiquitous and ad-hoc networks, and mobile systems
will require distributed solutions.

5.2.3 Symmetric and asymmetric algorithms

A symmetric algorithm is an algorithm in which all the processors execute the
same logical functions. An asymmetric algorithm is an algorithm in which dif-
ferent processors execute logically different (but perhaps partly overlapping)
functions.

A centralized algorithm is always asymmetric. An algorithm that is not
fully distributed is also asymmetric. In the client–server configuration, the

130 Terminology and basic algorithms

clients and the server execute asymmetric algorithms. Similarly, in a tree
configuration, the root and the leaves usually perform some functions that
are different from each other, and that are different from the functions of the
internal nodes of the tree. Applications where there is inherent asymmetry
in the roles of the cooperating processors will necessarily have asymmetric
algorithms. A typical example is where one processor initiates the computation
of some global function (e.g., min, sum).

5.2.4 Anonymous algorithms

An anonymous system is a system in which neither processes nor processors
use their process identifiers and processor identifiers to make any execution
decisions in the distributed algorithm. An anonymous algorithm is an algo-
rithm which runs on an anonymous system and therefore does not use process
identifiers or processor identifiers in the code.

An anonymous algorithm possesses structural elegance. However, it is
equally hard, and sometimes provably impossible, to design – as in the case
of designing an anonymous leader election algorithm on a ring [1]. If we
examine familiar examples of multiprocess algorithms, such as the famous
Bakery algorithm for mutual exclusion in a shared memory system, or the
“wait-wound” or “wound-die” algorithms used for transaction serializabil-
ity in databases, we observe that the process identifier is used in resolving
ties or contentions that are otherwise unresolved despite the symmetric and
noncentralized nature of the algorithms.

5.2.5 Uniform algorithms

A uniform algorithm is an algorithm that does not use n, the number of
processes in the system, as a parameter in its code. A uniform algorithm is
desirable because it allows scalability transparency, and processes can join
or leave the distributed execution without intruding on the other processes,
except its immediate neighbors that need to be aware of any changes in their
immediate topology. Algorithms that run on a logical ring and have nodes
communicate only with their neighbors are uniform. In Section 5.10, we will
study a uniform algorithm for leader election.

5.2.6 Adaptive algorithms

Consider the context of a problem X. In a system with n nodes, let k� k≤ n be
the number of nodes “participating” in the context of X when the algorithm
to solve X is executed. If the complexity of the algorithm can be expressed in
terms of k rather than in terms of n, the algorithm is adaptive. For example,
if the complexity of a mutual exclusion algorithm can be expressed in terms
of the actual number of nodes contending for the critical section when the
algorithm is executed, then the algorithm would be adaptive.

131 5.2 Classifications and basic concepts

5.2.7 Deterministic versus non-deterministic executions

A deterministic receive primitive specifies the source from which it wants
to receive a message. A non-deterministic receive primitive can receive a
message from any source – the message delivered to the process is the first
message that is queued in the local incoming buffer, or the first message
that comes in subsequently if no message is queued in the local incoming
buffer. A distributed program that contains no non-deterministic receives has a
deterministic execution; otherwise, if it contains at least one non-deterministic
receive primitive, it is said to have a non-deterministic execution.

Each execution defines a partial order on the events in the execution.
Even in an asynchronous system (defined formally in Section 5.2.9), for any
deterministic (asynchronous) execution, repeated re-execution will reproduce
the same partial order on the events. This is a very useful property for
applications such as debugging, detection of unstable predicates, and for
reasoning about global states.

Given any non-deterministic execution, any re-execution of that program
may result in a very different outcome, and any assertion about a non-
deterministic execution can be made only for that particular execution. Dif-
ferent re-executions may result in different partial orders because of variable
factors such as (i) lack of an upper bound on message delivery times and
unpredictable congestion; and (ii) local scheduling delays on the CPUs due to
timesharing. As such, non-deterministic executions are difficult to reason with.

5.2.8 Execution inhibition

Blocking communication primitives freeze the local execution 1 until some
actions connected with the completion of that communication primitive have
occurred. But from a logical perspective, is the process really prevented from
executing further? The non-blocking flavors of those primitives can be used
to eliminate the freezing of the execution, and the process invoking that
primitive may be able to execute further (from the perspective of the program
logic) until it reaches a stage in the program logic where it cannot execute
further until the communication operation has completed. Only now is the
process really frozen.

Distributed applications can be analyzed for freezing. Often, it is more
interesting to examine the control algorithm for its freezing/inhibitory effect
on the application execution. Here, inhibition refers to protocols delaying
actions of the underlying system execution for an interval of time. In the
literature on inhibition, the term “protocol” is used synonymously with the
term “control algorithm.” Protocols that require processors to suspend their

1 The OS dispatchable entity – the process or the thread – is frozen.

132 Terminology and basic algorithms

normal execution until some series of actions stipulated by the protocol have
been performed are termed as inhibitory or freezing protocols [10].

Different executions of a distributed algorithm can result in different inter-
leavings of the events. Thus, there are multiple executions associated with
each algorithm (or protocol). Protocols can be classified as follows, in terms
of inhibition:

• A protocol is non-inhibitory if no system event is disabled in any execution
of the protocol. Otherwise, the protocol is inhibitory.

• A disabled event e in an execution is said to be locally delayed if there is
some extension of the execution (beyond the current state) such that: (i) the
event becomes enabled after the extension; and (ii) there is no intervening
receive event in the extension, Thus, the interval of inhibition is under
local control. A protocol is locally inhibitory if any event disabled in any
execution of the protocol is locally delayed.

• An inhibitory protocol for which there is some execution in which some
delayed event is not locally delayed is said to be globally inhibitory. Thus,
in some (or all) execution of a globally inhibitory protocol, at least one
event is delayed waiting to receive communication from another processor.

An orthogonal classification is that of send inhibition, receive inhibition, and
internal event inhibition:

• A protocol is send inhibitory if some delayed events are send events.
• A protocol is receive inhibitory if some delayed events are receive events.
• A protocol is internal event inhibitory if some delayed events are internal

events.

These classifications help to characterize the degree of inhibition necessary
to design protocols to solve various problems. Problems can be theoretically
analyzed in terms of the possibility or impossibility of designing protocols
to solve them under the various classes of inhibition. These classifications
also serve as a yardstick to evaluate protocols. The more stringent the class
of inhibition, the less desirable is the protocol. In the study of algorithms
for recording global states and algorithms for checkpointing, we have the
opportunity to analyze the protocols in terms of inhibition.

5.2.9 Synchronous and asynchronous systems

A synchronous system is a system that satisfies the following properties:

• There is a known upper bound on the message communication delay.
• There is a known bounded drift rate for the local clock of each processor

with respect to real-time. The drift rate between two clocks is defined as
the rate at which their values diverge.

• There is a known upper bound on the time taken by a process to execute
a logical step in the execution.

133 5.2 Classifications and basic concepts

An asynchronous system is a system in which none of the above three
properties of synchronous systems are satisfied. Clearly, systems can be
designed that satisfy some combination but not all of the criteria that define
a synchronous system. The algorithms to solve any particular problem can
vary drastically, based on the model assumptions; hence it is important to
clearly identify the system model beforehand. Distributed systems are inher-
ently asynchronous; later in this chapter, we will study synchronizers that
provide the abstraction of a synchronous execution.

5.2.10 Online versus offline algorithms

An on-line algorithm is an algorithm that executes as the data is being
generated. An off-line algorithm is an algorithm that requires all the data to be
available before algorithm execution begins. Clearly, on-line algorithms are
more desirable. Debugging and scheduling are two example areas where on-
line algorithms offer clear advantages. On-line scheduling allows for dynamic
changes to the schedule to account for newly arrived requests with closer
deadlines. On-line debugging can detect errors when they occur, as opposed
to collecting the entire trace of the execution and then examining it for errors.

5.2.11 Failure models

A failure model specifies the manner in which the component(s) of the system
may fail. There exists a rich class of well-studied failure models. It is important
to specify the failure model clearly because the algorithm used to solve any
particular problem can vary dramatically, depending on the failure model
assumed. A system is t-fault tolerant if it continues to satisfy its specified
behavior as long as no more than t of its components (whether processes or
links or a combination of them) fail. The mean time between failures (MTBF)
is usually used to specify the expected time until failure, based on statistical
analysis of the component/system.

Process failure models [26]
• Fail-stop [31] In this model, a properly functioning process may fail

by stopping execution from some instant thenceforth. Additionally, other
processes can learn that the process has failed. This model provides an
abstraction – the exact mechanism by which other processes learn of the
failure can vary.

• Crash [21] In this model, a properly functioning process may fail by
stopping to function from any instance thenceforth. Unlike the fail-stop
model, other processes do not learn of this crash.

• Receive omission [27] A properly functioning process may fail by inter-
mittently receiving only some of the messages sent to it, or by crashing.

134 Terminology and basic algorithms

• Send omission [16] A properly functioning process may fail by inter-
mittently sending only some of the messages it is supposed to send, or by
crashing.

• General omission [27] A properly functioning process may fail by
exhibiting either or both of send omission and receive omission failures.

• Byzantine or malicious failure, with authentication [22] In this model,
a process may exhibit any arbitrary behavior. However, if a faulty process
claims to have received a specific message from a correct process, then that
claim can be verified using authentication, based on unforgeable signatures.

• Byzantine or malicious failure [22] In this model, a process may exhibit
any arbitrary behavior and no authentication techniques are applicable to
verify any claims made.

The above process failure models, listed in order of increasing severity (except
for send omissions and receive omissions, which are incomparable with each
other), apply to both synchronous and asynchronous systems.

Timing failures can occur in synchronous systems, and manifest themselves
as some or all of the following at each process: (i) general omission failures;
(ii) process clocks violating their prespecified drift rate; (iii) the process
violating the bounds on the time taken for a step of execution. In term of
severity, timing failures are more severe than general omission failures but
less severe than Byzantine failures with message authentication.

The failure models less severe than Byzantine failures, and timing failures,
are considered “benign” because they do not allow processes to arbitrarily
change state or send messages that are not to be sent as per the algorithm.
Benign failures are easier to handle than Byzantine failures.

Communication failure models
• Crash failure A properly functioning link may stop carrying messages

from some instant thenceforth.
• Omission failures A link carries some messages but not the others sent

on it.
• Byzantine failures A link can exhibit any arbitrary behavior, including

creating spurious messages and modifying the messages sent on it.

The above link failure models apply to both synchronous and asynchronous
systems. Timing failures can occur in synchronous systems, and manifest
themselves as links transporting messages faster or slower than their specified
behavior.

5.2.12 Wait-free algorithms

A wait-free algorithm is an algorithm that can execute (synchronization
operations) in an �n− 1�-process fault tolerant manner, i.e., it is resilient to

135 5.3 Complexity measures and metrics

n−1 process failures [18,20]. Thus, if an algorithm is wait-free, then the (syn-
chronization) operations of any process must complete in a bounded number
of steps irrespective of the failures of all the other processes.

Although the concept of a k-fault-tolerant system is very old, wait-free algo-
rithm design in distributed computing received attention in the context of mutual
exclusion synchronization for the distributed shared memory abstraction. The
objective was to enable a process to access its critical section, even if the pro-
cess in the critical section fails or misbehaves by not exiting from the critical
section. Wait-free algorithms offer a very high degree of robustness. Design-
ing a wait-free algorithm is usually very expensive and may not even be pos-
sible for some synchronization problems, e.g., the simple producer–consumer
problem. Wait-free algorithms will be studied in Chapters 12 and 14. Wait-free
algorithms can be viewed as a special class of fault-tolerant algorithms.

5.2.13 Communication channels

Communication channels are normally first-in first-out queues (FIFO). At the
network layer, this property may not be satisfied, giving non-FIFO channels.
These and other properties such as causal order of messages will be studied
in Chapter 6.

5.3 Complexity measures and metrics

The performance of sequential algorithms is measured using the time and
space complexity in terms of the lower bounds (���) representing the best
case, the upper bounds (O�o) representing the worst case, and the exact bound
(�). For distributed algorithms, the definitions of space and time complexity
need to be refined, and additionally, message complexity also needs to be
considered for message-passing systems. At the appropriate level of abstrac-
tion at which the algorithm is run, the system topology is usually assumed to
be an undirected unweighted graph G= �N�L�. We denote �N � as n, �L� as l,
and the diameter of the graph as d. The diameter of a graph is the minimum
number of edges that need to be traversed to go from any node to any other
node. More formally, the diameter is maxi�j∈N {length of the shortest path
between i and j}. For a tree embedded in the graph, its depth is denoted as h.
Other graph parameters, such as eccentricity and degree of edge incidence,
can be used when they are required. It is also assumed that identical code runs
at each processor; if this assumption is not valid, then different complexities
need to be stated for the different codes. The complexity measures are as
follows:

• Space complexity per node This is the memory requirement at a node.
The best case, average case, and worst case memory requirement at a node
can be specified.

136 Terminology and basic algorithms

• Systemwide space complexity The system space complexity (best case,
average case, or worst case) is not necessarily n times the corresponding
space complexity (best case, average case, or worst case) per node. For
example, the algorithm may not permit all nodes to achieve the best case
at the same time. We will later study a distributed predicate detection
algorithm (Algorithm 11.6 in Chapter 11) for which both the worst case
space complexity per node as well as the worst case systemwide space
complexity are proportional to O�n2�. If during execution, the worst case
occurs at one node, then the worst case will not occur at all the other nodes
in that execution.

• Time complexity per node This measures the processing time per node,
and does not explicitly account for the message propagation/transmission
times, which are measured as a separate metric.

• Systemwide time complexity If the processing in the distributed system
occurs at all the processors concurrently, then the system time complexity
is not n times the time complexity per node. However, if the executions by
the different processes are done serially, as in the case of an algorithm in
which only the unique token-holder is allowed to execute, then the overall
time complexity is additive.

• Message complexity This has two components – a space component
and a time component.
– Number of messages The number of messages contributes directly

to the space complexity of the message overhead.
– Size of messages This size, in conjunction with the number of mes-

sages, measures the space component on messages. Further, for very
large messages, this also contributes to the time component via the
increased transmission time.

– Message time complexity The number of messages contributes to
the time component indirectly, besides affecting the count of the send
events and message space overhead. Depending on the degree of con-
currency in the sending of the messages – i.e., whether all messages are
sequentially sent (with reference to the execution partial order), or all
processes can send concurrently, or something in between – the time
complexity is affected. For asynchronous executions, the time com-
plexity component is measured in terms of sequential message hops,
i.e., the length of the longest chain in the partial order �E�≺� on the
events. For synchronous executions, the time complexity component is
measured in terms of rounds (also termed as steps or phases).

It is usually difficult to determine all of the above complexities for most
algorithms. Nevertheless, it is important to be aware of the different factors
that contribute towards the overhead. When stating the complexities, it should
also be specified whether the algorithm has a synchronous or asynchronous
execution. Depending on the algorithm, further metrics such as the number of
send events, or the number of receive events, may be of interest. If message

137 5.4 Program structure

multicast is allowed, it should be stated whether a multicast send event is
counted as a single event. Also, whether the message multicast is counted as
a single message or as multiple messages needs to be clarified. This would
depend on whether or not hardware multicasting is used by the lower layers
of the network protocol stack.

For shared memory systems, the message complexity is not an issue if
the shared memory is not being provided by the distributed shared mem-
ory abstraction over a message-passing system. The following additional
changes in the emphasis on the usual complexity measures would need to be
considered:

• The size of shared memory, as opposed to the size of local memory,
is important. The justification is that shared memory is expensive, local
memory is not.

• The number of synchronization operations using synchronization variables
is a useful metric because it affects the time complexity.

5.4 Program structure

Hoare, who pioneered programming language support for concurrent
processes, designed concurrent sequential processes (CSP), which allows
communicating processes to synchronize efficiently. The typical program
structure for any process in a distributed application is based on CSP’s repeti-
tive command over the alternative command on multiple guarded commands,
and is as follows:

∗ �G1 −→ CL1 ��G2 −→ CL2 �� · · · ��Gk −→ CLk ��

The repetitive command (denoted by “*”) denotes an infinite loop. Inside the
repetitive command is the alternative command over guarded commands.
The alternative command, denoted by a sequence of “��” separating guarded
commands, specifies execution of exactly one of its constituent guarded com-
mands. The guarded command has the syntax “G−→ CL” where the guard
G is a boolean expression and CL is a list of commands that are only executed
if G is true. The guard expression may contain a term to check if a mes-
sage from a/any other process has arrived. The alternative command over the
guarded commands fails if all the guards fail; if more than one guard is true,
one of those successful guarded commands is nondeterministically chosen for
execution. When a guarded command Gm −→ CLm does get executed, the
execution of CLm is atomic with the execution of Gm.

The structure of distributed programs has similar semantics to that of CSP
although the syntax has evolved to something very different. The format for
the pseudo-code used in this book is as indicated below. Algorithm 5.2 serves
to illustrate this format.

138 Terminology and basic algorithms

1. The process-local variables whose scope is global to the process, and
message types, are declared first.

2. Shared variables, if any, (for distributed shared memory systems) are
explicitly labeled as such.

3. This is followed by any initialization code.
4. The repetitive and the alternative commands are not explicitly shown.
5. The guarded commands are shown as explicit modules or procedures (e.g.,

lines 1–4 in Algorithm 5.2). The guard usually checks for the arrival of
a message of a certain type, perhaps with additional conditions on some
parameter values and other local variables.

6. The body of the procedure gives the list of commands to be executed if
the guard evaluates to true.

7. Process termination may be explicitly stated in the body of any proce-
dure(s).

8. The symbol ⊥ is used to denote an undefined value. When used in a
comparison, its value is −�.

5.5 Elementary graph algorithms

This section examines elementary distributed algorithms on graphs. The reader
is assumed to be familiar with the centralized algorithms to solve these basic
graph problems. The distributed algorithms here introduce the reader to the
difficulty of designing distributed algorithms wherein each node has only a
partial view of the graph (system), which is confined to its immediate neigh-
bors. Further, a node can communicate with only its immediate neighbors
along the incident edges. Unless otherwise specified, we assume unweighted
undirected edges, and asynchronous execution by the processors. Communi-
cation is by message-passing on the edges.

The first algorithm is a synchronous spanning tree algorithm. The next
three are asynchronous algorithms to construct spanning trees. These ele-
mentary algorithms are theoretically important from a practical perspective
because spanning trees are a very efficient form of information distribution
and collection in distributed systems.

5.5.1 Synchronous single-initiator spanning tree algorithm using flooding

The code for all processes is not only symmetrical, but also proceeds
in rounds. This algorithm assumes a designated root node, root, which
initiates the algorithm. The pseudo-code for each process Pi is shown in
Algorithm 5.1. The root initiates a flooding of QUERY messages in the graph
to identify tree edges. The parent of a node is that node from which a QUERY
is first received; if multiple QUERYs are received in the same round, one of
the senders is randomly chosen as the parent. Exercise 5.1 asks you to modify

139 5.5 Elementary graph algorithms

(local variables)
int visited�depth←− 0
int parent←−⊥
set of int Neighbors←− set of neighbors
(message types)
QUERY

(1) if i= root then
(2) visited←− 1;
(3) depth←− 0;
(4) send QUERY to Neighbors;
(5) for round = 1 to diameter do
(6) if visited = 0 then
(7) if any QUERY messages arrive then
(8) parent←− randomly select a node from which

QUERY was received;
(9) visited←− 1;
(10) depth←− round;
(11) send QUERY to Neighbors \ 	senders of

QUERYs received in this round�;
(12) delete any QUERY messages that arrived in this round.

Algorithm 5.1 Spanning tree algorithm: the synchronous breadth-first search (BFS) spanning tree
algorithm. The code shown is for processor Pi , 1 ≤ i ≤ n.

the algorithm so that each node identifies not only its parent node but also all
its children nodes.

Example Figure 5.2 shows an example execution of the algorithm with node
A as initiator. The resulting tree is shown in boldface, and the round numbers
in which the QUERY messages are sent are indicated next to the messages.
The reader should trace through this example for clarity. For example, at the
end of round 2, E receives a QUERY from B and F and randomly chooses
F as the parent. A total of nine QUERY messages are sent in the network
which has eight links.

Figure 5.2 Example execution
of the synchronous BFS
spanning tree algorithm
(Algorithm 5.1).

E DF

(1)

(2)

(2)

A (1) B C(2)

(3)

(3)

(3)

(3) QUERY

140 Terminology and basic algorithms

Termination
The algorithm terminates after all the rounds are executed. It is straightforward
to modify the algorithm so that a process exits after the round in which it sets
its parent variable (see Exercise 5.1).

Complexity
• The local space complexity at a node is of the order of the degree of edge

incidence.
• The local time complexity at a node is of the order of (diameter + degree

of edge incidence).
• The global space complexity is the sum of the local space complexities.
• This algorithm sends at least one message per edge, and at most two

messages per edge. Thus the number of messages is between l and 2l.
• The message time complexity is d rounds or message hops.

The spanning tree obtained is a breadth-first tree (BFS). Although the
code is the same for all processes, the predesignated root executes a dif-
ferent logic to being with. Hence, in the strictest sense, the algorithm is
asymmetric.

5.5.2 Asynchronous single-initiator spanning tree algorithm using flooding

This algorithm assumes a designated root node which initiates the algorithm.
The pseudo-code for each process Pi is shown in Algorithm 5.2. The
root initiates a flooding of QUERY messages in the graph to identify tree
edges. The parent of a node is that node from which a QUERY is first
received; an ACCEPT message is sent in response to such a QUERY. Other
QUERY messages received are replied to by a REJECT message. Each
node terminates its algorithm when it has received from all its non-parent
neighbors a response to the QUERY sent to them. Procedures 1, 2, 3, and 4
are each executed atomically.

In this asynchronous system, there is no bound on the time it takes to prop-
agate a message, and hence no notion of a message round. Unlike in the syn-
chronous algorithm, each node here needs to track its neighbors to determine
which nodes are its children and which nodes are not. This tracking is nec-
essary in order to know when to terminate. After sending QUERY messages
on the outgoing links, the sender needs to know how long to keep waiting.
This is accomplished by requiring each node to return an “acknowledgement”
for each QUERY it receives. The acknowledgement message has to be of a
different type than the QUERY type. The algorithm in the figure uses two
messages types – called as ACCEPT (+ ack) and REJECT (- ack) – besides
the QUERY to distinguish between the child nodes and non-child nodes.

141 5.5 Elementary graph algorithms

(local variables)
int parent←−⊥
set of int Children�Unrelated←−∅
set of int Neighbors←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the predesignated root node wants to initiate the algorithm:
(1a) if (i= root and parent =⊥) then
(1b) send QUERY to all neighbors;
(1c) parent←− i.

(2) When QUERY arrives from j:
(2a) if parent =⊥ then
(2b) parent←− j;
(2c) send ACCEPT to j;
(2d) send QUERY to all neighbors except j;
(2e) if �Children∪Unrelated�= �Neighbors/	parent�� then
(2f) terminate.
(2g) else send REJECT to j.

(3) When ACCEPT arrives from j:
(3a) Children←− Children∪ 	j�;
(3b) if �Children∪Unrelated�= �Neighbors/	parent�� then
(3c) terminate.

(4) When REJECT arrives from j:
(4a) Unrelated←− Unrelated∪ 	j�;
(4b) if �Children∪Unrelated�= �Neighbors/	parent�� then
(4c) terminate.

Algorithm 5.2 Spanning tree algorithm: the asynchronous algorithm assuming a designated root that
initiates a flooding. The code shown is for processor Pi , 1 ≤ i ≤ n.

Termination
The termination condition is given above. Some notes on distributed algo-
rithms are in place. In some algorithms such as this algorithm, it is possible
to locally determine the termination condition; however, for some algorithms,
the termination condition is not locally determinable and an explicit termina-
tion detection algorithm needs to be executed.

Complexity
• The local space complexity at a node is of the order of the degree of edge

incidence.

142 Terminology and basic algorithms

• The local time complexity at a node is also of the order of the degree of
edge incidence.

• The global space complexity is the sum of the local space complexities.
• This algorithm sends at least two messages (QUERY and its response) per

edge, and at most four messages per edge (when two QUERIES are sent
concurrently, each will have a REJECT response). Thus the number of
messages is between 2l and 4l.

• The message time complexity is �d+ 1� message hops, assuming syn-
chronous communication. In an asynchronous system, we cannot make
any claim about the tree obtained, and its depth may be equal to the length
of the longest path from the root to any other node, which is bounded only
by n−1 corresponding to a depth-first tree.

Example Figure 5.3 shows an example execution of the asynchronous algo-
rithm (i.e., in an asynchronous system). The resulting spanning tree rooted at
A is shown in boldface. The numbers next to the QUERY messages indicate
the approximate chronological order in which messages get sent. Recall that
each procedure is executed atomically; hence the sending of a message sent at
a particular time is triggered by the receipt of a corresponding message at the
same time. The same numbering used for messages sent by different nodes
implies that those actions occur concurrently and independently. ACCEPT
and REJECT messages are not shown to keep the figure simple. It does not
matter when the ACCEPT and REJECT messages are delivered.

1. A sends a QUERY to B and F.
2. F receives QUERY from A and determines that AF is a tree edge. F for-

wards the QUERY to E and C.
3. E receives a QUERY from F and determines that FE is a tree edge.

E forwards the QUERY to B and D. C receives a QUERY from F and
determines that FC is a tree edge. C forwards the QUERY to B and D.

4. B receives a QUERY from E and determines that EB is a tree edge.
B forwards the QUERY to A, C, and D.

5. D receives a QUERY from E and determines that ED is a tree edge. D
forwards the QUERY to B and C.

Figure 5.3 Example execution
of the asynchronous
flooding-based single initiator
spanning tree algorithm
(Algorithm 5.2).

QUERY

A

F E D

B C(4)

(3)

(3)
(5)

(1)

(1)

(2)

143 5.5 Elementary graph algorithms

Each node sends an ACCEPT message (not shown in Figure 5.3 for simplicity)
back to the parent node from which it received its first QUERY. This is
to enable the parent, i.e., the sender of the QUERY, to recognize that the
edge is a tree edge, and to identify its child. All other QUERY messages are
negatively acknowledged by a REJECT (also not shown for simplicity). Thus,
a REJECT gets sent on each back edge (such as BA) and each cross edge
(such as BD, BC, and CD) to enable the sender of the QUERY on that edge
to recognize that that edge does not lead to a child node. We can also observe
that on each tree edge, two messages (a QUERY and an ACCEPT) get sent.
On each cross-edge and each back-edge, four messages (two QUERY and
two REJECT) get sent.

Note that this algorithm does not guarantee a breadth-first tree. Exercise 5.3
asks you to modify this algorithm to obtain a BFS tree.

5.5.3 Asynchronous concurrent-initiator spanning tree algorithm using flooding

We modify Algorithm 5.2 by assuming that any node may spontaneously
initiate the spanning tree algorithm provided it has not already been invoked
locally due to the receipt of a QUERY message. The resulting algorithm is
shown in Algorithm 5.3. The crucial problem to handle is that of dealing with
concurrent initiations, where two or more processes that are not yet partici-
pating in the algorithm initiate the algorithm concurrently. As the objective
is to construct a single spanning tree, two options seem available when con-
current initiations are detected. Note that even though there can be multiple
concurrent initiations, along any single edge, only two concurrent initiations
will be detected.

Design 1
When two concurrent initiations are detected by two adjacent nodes that
have sent a QUERY from different initiations to each other, the two
partially computed spanning trees can be merged. However, this merg-
ing cannot be done based only on local knowledge or there might be
cycles.

Example In Figure 5.4, consider that the algorithm is initiated concurrently
by A, G, and J. The dotted lines show the portions of the graphs covered by
the three algorithms. At this time, the initiations by A and G are detected
along edge BD, the initiations by A and J are detected along edge CF, the
initiations by G and J are detected along edge HI. If the three partially
computed spanning trees are merged along BD, CF, and HI, there is no longer
a spanning tree.

144 Terminology and basic algorithms

(local variables)
int parent�myroot←−⊥
set of int Children�Unrelated←−∅
set of int Neighbors←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) send QUERY(i) to all neighbors;
(1c) parent�myroot←− i.

(2) When QUERY(newroot) arrives from j:
(2a) if myroot < newroot then // discard earlier partial execution due

// to its lower priority
(2b) parent←− j; myroot←− newroot; Children�Unrelated←−∅;
(2c) send QUERY(newroot) to all neighbors except j;
(2d) if Neighbors = 	j� then
(2e) send ACCEPT(myroot) to j; terminate. // leaf node
(2f) else send REJECT(newroot) to j.

// if newroot =myroot then parent is already identified.
// if newroot < myroot ignore the QUERY. j will update its root
// when it receives QUERY(myroot).

(3) When ACCEPT(newroot) arrives from j:
(3a) if newroot =myroot then
(3b) Children←− Children∪ 	j�;
(3c) if �Children∪Unrelated�= �Neighbors/	parent�� then
(3d) if i=myroot then
(3e) terminate.
(3f) else send ACCEPT(myroot) to parent.

// if newroot < myroot then ignore the message. newroot > myroot

// will never occur.

(4) When REJECT(newroot) arrives from j:
(4a) if newroot =myroot then
(4b) Unrelated←− Unrelated∪ 	j�;
(4c) if �Children∪Unrelated�= �Neighbors/	parent�� then
(4d) if i=myroot then
(4e) terminate.
(4f) else send ACCEPT(myroot) to parent.

// if newroot < myroot then ignore the message. newroot > myroot

// will never occur.

Algorithm 5.3 Spanning tree algorithm (asynchronous) without assuming a designated root. Initiators
use flooding to start the algorithm. The code shown is for processor Pi , 1 ≤ i ≤ n.

145 5.5 Elementary graph algorithms

Figure 5.4 Example execution
of the asynchronous
flooding-based concurrent
initiator spanning tree
algorithm (Algorithm 5.3).

A

C

D

B

E F

JIHG

Interestingly, even if there are just two initiations, the two partially com-
puted trees may “meet” along multiple edges in the graph, and care must be
taken not to introduce cycles during the merger of the trees.

Design 2
Suppress the instance initiated by one root and continue the instance initiated
by the other root, based on some rule such as tie-breaking using the processor
identifier. Again, it must be ensured that the rule is correct.

Example In Figure 5.4, if A’s initiation is suppressed due to the conflict
detected along BD, G’s initiation is suppressed due to the conflict detected
along HI, and J’s initiation is suppressed due to the conflict detected along
CF, the algorithm hangs.

Algorithm 5.3 uses the second design option, allowing only the algorithm
initiated by the root with the higher processor identifier to continue. To
implement this, the messages need to be enhanced with a parameter that
indicates the root node which initiated that instance of the algorithm. It is
relatively more difficult to use the first option to merge partially computed
spanning trees.

When a QUERY(newroot) from j arrives at i, there are three possibilities:

newroot > myroot: Process i should suppress its current execution due to
its lower priority. It reinitializes the data structures and joins j’s subtree
with newroot as the root.

newroot =myroot: j’s execution is initiated by the same root as i’s initia-
tion, and i has already identified its parent. Hence a REJECT is sent to j.

newroot < myroot: j’s root has a lower priority and hence i does not
join j’s subtree. i sends a REJECT. j will eventually receive a
QUERY(myroot) from i; and abandon its current execution in favour of
i’s myroot (or a larger value).

146 Terminology and basic algorithms

When an ACCEPT(newroot) from j arrives at i, there are three possibilities:

newroot =myroot: The ACCEPT is in response to a QUERY sent by i.
The ACCEPT is processed normally.

newroot < myroot: The ACCEPT is in response to a QUERY i had sent
to j earlier, but i has updated its myroot to a higher value since then.
Ignore the ACCEPT message.

newroot > myroot: The ACCEPT is in response to a QUERY i had sent
earlier. But i never updates its myroot to a lower value. So this case
cannot arise.

The three possibilities when a REJECT(newroot) from j arrives at i are the
same as for the ACCEPT message.

Termination
A serious drawback of the algorithm is that only the root knows when its
algorithm has terminated. To inform the other nodes, the root can send a
special message along the newly constructed spanning tree edges.

Complexity
The time complexity of the algorithm is O�l� messages, and the number of
messages is O�nl�.

5.5.4 Asynchronous concurrent-initiator depth first search spanning tree algorithm

As in Algorithm 5.3, this algorithm assumes that any node may spontaneously
initiate the spanning tree algorithm provided it has not already been invoked
locally due to the receipt of a QUERY message. It differs from Algorithm 5.3
in that it is based on a depth-first search (DFS) of the graph to identify the
spanning tree. The algorithm should handle concurrent initiations (when two
or more processes that are not yet participating in the algorithm initiate the
algorithm concurrently). The pseudo-code for each process Pi is shown in
Algorithm 5.4. The parent of each node is that node from which a QUERY
is first received; an ACCEPT message is sent in response to such a QUERY.
Other QUERY messages received are replied to by a REJECT message.
The actions to execute when a QUERY, ACCEPT, or REJECT arrives are
nontrivial and the analysis for the various cases (newroot <�=�> myroot)
are similar to the analysis of these cases for Algorithm 5.3.

Termination
The analysis is the same as for Algorithm 5.3.

Complexity
The time complexity of the algorithm is O�l� messages, and the number of
messages is O�nl�.

147 5.5 Elementary graph algorithms

(local variables)
int parent�myroot←−⊥
set of int Children←−∅
set of int Neighbors�Unknown←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) send QUERY(i) to i (itself).

(2) When QUERY(newroot) arrives from j:
(2a) if myroot < newroot then
(2b) parent←− j; myroot←− newroot; Unknown←− set of

neighbors;
(2c) Unknown← Unknown/	j�;
(2d) if Unknown �= ∅ then
(2e) delete some x from Unknown;
(2f) send QUERY(myroot) to x;
(2g) else send ACCEPT(myroot) to j;
(2h) else if myroot = newroot then
(2i) send REJECT to j. // if newroot < myroot ignore the query.

// j will update its root to a higher root identifier when it receives its
// QUERY.

(3) When ACCEPT(newroot) or REJECT(newroot) arrives from j:
(3a) if newroot =myroot then
(3b) if ACCEPT message arrived then
(3c) Children←− Children∪ 	j�;
(3d) if Unknown= ∅ then
(3e) if parent �= i then
(3f) send ACCEPT(myroot) to parent;
(3g) else set i as the root; terminate.
(3h) else
(3i) delete some x from Unknown;
(3j) send QUERY(myroot) to x.

// if newroot < myroot ignore the query. Since sending QUERY to j, i
// has updated its myroot.
// j will update its myroot to a higher root identifier when it receives a
// QUERY initiated by it.
// newroot > myroot will never occur.

Algorithm 5.4 Spanning tree algorithm (DFS, asynchronous). The code shown is for processor Pi ,
1 ≤ i ≤ n.

148 Terminology and basic algorithms

Figure 5.5 A generic spanning
tree on a graph. The broadcast
and convergecast operations
are indicated.

B
ro

ad
ca

st

C
on

ve
rg

ec
as

t

in
iti

at
ed

 b
y

le
av

es

Root

in
iti

at
ed

 b
y

ro
ot

Tree edge

Cross-edge Back-edge

5.5.5 Broadcast and convergecast on a tree

A spanning tree is useful for distributing (via a broadcast) and collecting (via
a convergecast) information to/from all the nodes. A generic graph with a
spanning tree, and the convergecast and broadcast operations are illustrated
in Figure 5.5.

A broadcast algorithm on a spanning tree can be specified by two rules:

BC1: The root sends the information to be broadcast to all its children.
Terminate.

BC2: When a (nonroot) node receives information from its parent, it copies
it and forwards it to its children. Terminate.

A convergecast algorithm collects information from all the nodes at the
root node in order to compute some global function. It is initiated by the leaf
nodes of the tree, usually in response to receiving a request sent by the root
using a broadcast. The algorithm is specified as follows:

CVC1: Leaf node sends its report to its parent. Terminate.
CVC2: At a nonleaf node that is not the root: When a report is received

from all the child nodes, the collective report is sent to the parent.
Terminate.

CVC3: At the root: When a report is received from all the child nodes, the
global function is evaluated using the reports. Terminate.

Termination
The termination condition for each node in a broadcast as well as in a
convergecast is self-evident.

Complexity
Each broadcast and each convergecast requires n− 1 messages and time
equal to the maximum height h of the tree, which is O�n�.

An example of the use of convergecast is as follows. Suppose each node
has an integer variable associated with the application, and the objective is

149 5.5 Elementary graph algorithms

to compute the minimum of these variables. Each leaf node can report its
local value to its parent. When a non-leaf node receives a report from all its
children, it computes the minimum of those values, and sends this minimum
value to its parent.

Another example of the use of convergecast is in solving the leader election
problem in Section 5.10. Leader election requires that all the processes agree
on a common distinguished process, also termed as the leader. A leader is
required in many distributed systems and algorithms because algorithms are
typically not completely symmetrical, and some process has to take the lead
in initiating the algorithm; another reason is that we would not want all the
processes to replicate the algorithm initiation, to save on resources.

5.5.6 Single source shortest path algorithm: synchronous Bellman–Ford

Given a weighted graph, with potentially unidirectional links, representing
the network topology, the Bellman–Ford sequential shortest path algorithm
[4,12] finds the shortest path from a given node, say i0, to all other nodes. The
algorithm is correct when there are no cyclic paths having negative weight.

A synchronous distributed algorithm to compute the shortest path is given
in Algorithm 5.5. It is assumed that the topology �N�L� is not known to any
process; rather, each process can communicate only with its neighbors and
is aware of only the incident links and their weights. It is also assumed that
the processes know the number of nodes �N � = n, i.e., the algorithm is not
uniform. This assumption on n is required for termination.

(local variables)
int length←−�
int parent←−⊥
set of int Neighbors←− set of neighbors
set of int 	weighti�j�weightj�i � j ∈ Neighbors�←− the known values of

the weights of incident links
(message types)
UPDATE

(1) if i= i0 then length←− 0;
(2) for round = 1 to n−1 do
(3) send UPDATE(i� length) to all neighbors;
(4) await UPDATE(j� lengthj) from each j ∈ Neighbors;
(5) for each j ∈ Neighbors do
(6) if (length > �lengthj+weightj�i) then
(7) length←− lengthj+weightj�i; parent←− j.
Algorithm 5.5 The single source synchronous distributed Bellman–Ford shortest path algorithm. The
source is i0. The code shown is for processor Pi ,1 ≤ i ≤ n.

150 Terminology and basic algorithms

The following features can be observed from the algorithm:

• After k rounds, each node has its length variable set to the length of the
shortest path consisting of at most k hops. The parent variable points to
the parent node along such a path. This parent field is used in the routing
table to route to i0.

• After the first round, the length variable of all nodes one hop away from
the root in the final minimum spanning tree (MST) would have stablized;
after k rounds, the length variable of all the nodes up to k hops away in
the final MST would have stabilized.

Termination
As the longest path can be of length n−1, the values of all variables stabilize
after n−1 rounds.

Complexity
The time complexity of this synchronous algorithm is: n− 1 rounds. The
message complexity of this synchronous algorithm is: �n−1�l messages.

5.5.7 Distance vector routing

When the network graph is dynamically changing, as in a real communication
network wherein the link weights model the delays or loads on the links, the
shortest paths are required for routing. The classic distance vector routing
algorithm (DVR) [33] used in the ARPANET up to 1980, is based on the above
synchronous algorithm (Algorithm 5.5) and requires the following changes.

• The outer for loop runs indefinitely, and the length and parent variables
never stabilize, because of the dynamic nature of the system.

• The variable length is replaced by array LENGTH�1 � � n�, where
LENGTH�k� denotes the length measured with node k as source/root. The
LENGTH vector is also included on each UPDATE message. Now, the
kth component of the LENGTH received from node m indicates the length
of the shortest path from m to the root k. For each destination k, the
triangle inequality of the Bellman–Ford algorithm is applied over all the
LENGTH vectors received in a round.

• The variable parent is replaced by array PARENT�1 � � n�, where
PARENT�k� denotes the next hop to which to route a packet destined
for k. The array PARENT serves as the routing table.

• The processes exchange their distance vectors periodically over a network
that is essentially asynchronous. If a message does not arrive within the
period, the algorithm assumes a default value, and moves to the next
round. This makes it virtually synchronous. Besides, if the period between
exchanges is assumed to be much larger than the propagation time from a
neighbor and the processing time for the received message, the algorithm
is effectively synchronous.

151 5.5 Elementary graph algorithms

5.5.8 Single source shortest path algorithm: asynchronous Bellman–Ford

The asynchronous version of the Bellman–Ford algorithm [4,5,12] is shown in
Algorithm 5.6. It is assumed that there are no negative weight cycles in �N�L�.

The algorithm does not give the termination condition for the nodes. Exer-
cise 5.14 asks you to modify the algorithm so that each node knows when
the length of the shortest path to itself has been computed.

This algorithm, unfortunately, has been shown to have an exponential
��cn� number of messages and exponential ��cn ·d� time complexity in the
worst case, where c is some constant (see Exercise 5.16).

(local variables)
int length←−�
set of int Neighbors←− set of neighbors
set of int 	weighti�j�weightj�i � j ∈ Neighbors�←− the known values of the
weights of incident links

(message types)
UPDATE

(1) if i= i0 then
(1a) length←− 0;
(1b) send UPDATE(i0�0) to all neighbors; terminate.

(2) When UPDATE(i0� lengthj) arrives from j:
(2a) if (length > �lengthj+weightj�i�) then
(2b) length←− lengthj+weightj�i; parent←− j;
(2c) send UPDATE(i0� length) to all neighbors;

Algorithm 5.6 The asynchronous distributed Bellman–Ford shortest path algorithm for a given source
i0. The code shown is for processor Pi , 1 ≤ i ≤ n.

If all links are assumed to have equal weight, the algorithm that computes
the shortest path effectively computes the minimum-hop path; the minimum-
hop routing tables to all destinations are computed using O�n2 · l� messages
(see Exercise 5.17).

5.5.9 All sources shortest paths: asynchronous distributed Floyd–Warshall

The Floyd–Warshall algorithm [9] computes all-pairs shortest paths in a graph
in which there are no negative weight cycles. It is briefly summarized first,
before a distributed version is studied. The centralized algorithm shown in
Algorithm 5.7 uses n×n matrices LENGTH and VIA:

LENGTH�i� j� is the length of the shortest path from i to j. LENGTH�i� j�
is initialized to the initial known conditions: (i) weighti�j if i and j are
neighbors, (ii) 0 if i= j, and (iii) � otherwise.

152 Terminology and basic algorithms

Figure 5.6 The all-pairs
shortest paths algorithm by
Floyd–Warshall. (a) Triangle
inequality used in iteration
pivot uses paths via
�1� � � � � pivot − 1�. (b) The
VIA relationships along a
branch of the sink tree for a
given �s� t� pair.

s t

pivot

passes through nodes in
{1, 2, ..., pivot−1}

LENGTH [s, pivot]
passes through nodes in

{1, 2, ..., pivot−1}

LENGTH [pivot, t]
passes through nodes in

{1, 2, ..., pivot−1}

LENGTH [s, t]

(a)
(b)

VIA(s, t)

VIA(VIA(s, t), t)

t

s

VIA�i� j� is the first hop on the shortest path from i to j. VIA�i� j� is
initialized to the initial known conditions: (i) j if i and j are neighbors,
(ii) 0 if i= j, and (iii) � otherwise.

After pivot iterations of the outer loop, the following invariant holds:

LENGTH�i� j� is the shortest path going through intermediate nodes from the set
	1�

 � pivot�. VIA�i� j� is the corresponding first hop.

Convince yourself of this invariant using Algorithm 5.7 and Figure 5.6. In
this figure, the LENGTH is for the paths that pass through nodes from
	1

 pivot−1�. The time complexity of the centralized algorithm is O�n3�.

The distributed asynchronous algorithm by Toueg [34] is shown in Algo-
rithm 5.8. Row i of the LENGTH and VIA data structures is stored at node
i which is responsible for updating this row. To avoid ambiguity, we rename
these data structures as LEN and PARENT , respectively. When the algorithm
terminates, the final values of row i of LENGTH is available at node i as LEN .

There are two challenges in making the Floyd–Warshall algorithm dis-
tributed:

1. How to access the remote datum LENGTH�pivot� t� for each execution of
line (4) in the centralized algorithm of Algorithm 5.7, now being executed
by i?

2. How to synchronize the execution at the different nodes? If the differ-
ent nodes are not executing the same iteration of the outermost loop of
Algorithm 5.7, the distributed algorithm becomes incorrect.

(1) for pivot = 1 to n do
(2) for s = 1 to n do
(3) for t = 1 to n do
(4) if LENGTH�s�pivot�+LENGTH�pivot� t�

< LENGTH�s� t� then
(5) LENGTH�s� t�←− LENGTH�s�pivot�

+LENGTH�pivot� t�;
(6) VIA�s� t�←− VIA�s�pivot�.
Algorithm 5.7 The centralized Floyd–Warshall all-pairs shortest paths routing algorithm.

153 5.5 Elementary graph algorithms

(local variables)
int LEN�1 � � n� // LEN�j� is the length of the shortest known

// path from i to node j.
// LEN�j�= weightij for neighbor j, 0 for
// j = i, � otherwise

int PARENT�1 � � n� // PARENT �j� is the parent of node i (myself)
// on the sink tree rooted at j.
// PARENT �j�= j for neighbor j, ⊥ otherwise

set of int Neighbors←− set of neighbors
int pivot�nbh←− 0

(message types)
IN_TREE(pivot), NOT_IN_TREE(pivot),
PIV_LEN(pivot� PIVOT_ROW�1 � � n�)

// PIVOT_ROW�k� is LEN�k� of node pivot, which is LEN�pivot� k� in
// the central algorithm.

// the PIV_LEN message is used to convey PIVOT_ROW .

(1) for pivot = 1 to n do
(2) for each neighbor nbh ∈ Neighbors do
(3) if PARENT �pivot�= nbh then
(4) send IN_TREE(pivot) to nbh;
(5) else send NOT_IN_TREE(pivot) to nbh;
(6) await IN_TREE or NOT_IN_TREE message from each neighbor;
(7) if LEN�pivot� �= � then
(8) if pivot �= i then
(9) receive PIV_LEN(pivot�PIVOT_ROW�1 � � n�) from

PARENT�pivot�;
(10) for each neighbor nbh ∈ Neighbors do
(11) if IN_TREE message was received from nbh then
(12) if pivot = i then
(13) send PIV_LEN(pivot�LEN�1 � � n�) to nbh;
(14) else send PIV_LEN(pivot�PIVOT_ROW �1 � � n�)

to nbh;
(15) for t = 1 to n do
(16) if LEN�pivot�+PIVOT_ROW �t� < LEN �t� then
(17) LEN �t�←− LEN �pivot�+PIVOT_ROW �t�;
(18) PARENT �t�←− PARENT �pivot�.

Algorithm 5.8 Toueg’s asynchronous distributed Floyd–Warshall all-pairs shortest paths routing algo-
rithm. The code shown is for processor Pi , 1 ≤ i ≤ n.

The problem of accessing the remote datum LENGTH�pivot� t� is solved
by using the idea of the distributed sink tree. In the centralized algorithm,
after each iteration pivot of the outermost loop, if LENGTH�s� t� �= �, then

154 Terminology and basic algorithms

VIA�s� t� points to the parent node on the path to t and this is the shortest
path going through nodes 	1

 pivot�. Observe that VIA�VIA�s� t�� t� will
also point to VIA�s� t�’s parent node on the shortest path to t, and so on.
Effectively, tracing through the VIA nodes gives the shortest path to t; this
path is acyclic because of the “shortest path” property (see invariant, p. 152).
Thus, all nodes s for which LENGTH�s� t� �= � are part of a tree to t, and
this tree is termed as a sink tree, with t as the root or the sink node. In the
distributed algorithm, the parent of any node on the sink tree for t is stored
in PARENT�t�.

Applying the sink tree idea to node pivot in iteration pivot of the distributed
algorithm, we have the following observations for any node i in any iteration
pivot.

• If LEN�pivot�=�, then i will not update its LEN and PARENT arrays
in this iteration. Hence there is no need for i to receive the remote data
PIV_ROW�1�

 � n�. In fact, there is no known path from i to pivot at
this stage.

• If LEN�pivot� �= �, then the remote data PIVOT_ROW�1�

 � n� is dis-
tributed to all the nodes lying on the sink tree of pivot. Observe that i
necessarily lies on the sink tree of pivot. The parent of i, and its parent’s
parent, and so on, all lie on that sink tree.

The asynchronous distributed algorithm proceeds as follows. In iteration
pivot, node pivot broadcasts its LEN vector along its sink tree. To implement
this broadcast, the parent-child edges of the sink tree need to be identified.
Note that any node on the sink tree of pivot does not know which of its neigh-
bors are its children. Hence, each node awaits a IN_TREE or NOT_IN_TREE
message from each of its neighbors (lines 2–6) to identify it children. These
flows seen at node i are illustrated in Figure 5.7. The broadcast of the pivot’s
LEN vector is initiated by node pivot in lines 10–13. For example, consider
the first iteration, where pivot = 1:

Node 1 The node executes lines 1, 2–5 by sending NOT_IN_TREE, line
6 in which it gets IN_TREE messages from its neighbors, and lines
10–13, wherein the node sends its LEN vector to its neighbors.

Figure 5.7 Message flows to
determine how to selectively
distribute PIV_ROW in
iteration pivot in Toueg’s
distributed Floyd–Warshall
algorithm.

B

C

A
i

NOT_IN_TREE (pivot)

NOT_IN_TREE (pivot) NOT_IN_TREE (pivot)

IN_TREE (pivot)

IN_TREE (pivot)

NOT_IN_TREE (pivot)

155 5.5 Elementary graph algorithms

Node > 1 In lines 1–4, the neighbors of node 1 send IN_TREE to node 1.
In line 9, the neighbors receive PIVOT_LEN from the pivot, i.e., node 1.
The reader can step through the remainder of the protocol.

When i receives PIV_LEN message containing the pivot’s PIVOT_ROW
�1 � � n� from its parent (line 9), it forwards it to its children (lines 10–11 and
14). The two inner loops of the centralized algorithm are then executed in
lines 15–18 of the distributed algorithm.

The inherent distribution of PIVOT_ROW via the receive from the parent
(line 9) and send to the children (line 14), as well as the synchronization of
the send (lines 4–5) and receive (line 6) of IN_TREE and NOT_IN_TREE
messages among neighbor nodes ensures that the asynchronous execution of
the nodes gets synchronized and all nodes are forced to execute the innermost
nested iteration concurrently with each other. Notice the dependence between
the send of lines 4–5 and receive of line 6, and between the receive of line
9 and the send of lines 13 or 14.

The techniques for synchronization used here will be formalized in
Section 5.6 under the subject of synchronizers.

Complexity
In each of the n iterations of the outermost loop, two IN_TREE or
NOT_IN_TREE messages are sent per edge, and at most n−1 PIV_LEN mes-
sages are sent. The overall number of messages is n · �2l+n�. The PIV_LEN
is of size n while the IN_TREE and NOT_IN_TREE messages are of size
O�1�. The execution time complexity per node is O�n2�, plus the time for n
convergecast–broadcast phases.

5.5.10 Asynchronous and synchronous constrained flooding (w/o a spanning tree)

Asynchronous algorithm (Algorithm 5.9)
This algorithm allows any process to initiate a broadcast via (constrained)
flooding along the edges of the graph [33]. It is assumed that all channels
are FIFO. Duplicates are detected by using sequence numbers. Each process
uses the SEQNO�1 � � n� vector, where SEQNO�k� tracks the latest sequence
number of the update initiated by process k. If the sequence number on a
newly arrived message is not greater than the sequence numbers already seen
for that initiator, the message is simply discarded; otherwise, it is flooded
on all other outgoing links. This mechanism is used by the link state routing
protocol in the Internet to distribute any updates about the link loads and the
network topology.

Complexity
The message complexity is: 2lmessages in the worst case, where each message
M has overheadO(1). The time complexity is: diameter d number of sequential
hops.

156 Terminology and basic algorithms

(local variables)
int SEQNO�1 � � n�←− 0
set of int Neighbors←− set of neighbors
(message types)
UPDATE

(1) To send a message M:
(1a) if i= root then
(1b) SEQNO�i�←− SEQNO�i�+1;
(1c) send UPDATE(M� i�SEQNO�i�� to each j ∈ Neighbors.
(2) When UPDATE(M�j� seqnoj) arrives from k:
(2a) if SEQNO�j� < seqnoj then
(2b) Process the message M;
(2c) SEQNO�j�←− seqnoj;
(2d) send UPDATE(M�j� seqnoj) to Neighbors/	k��
(2e) else discard the message.

Algorithm 5.9 The asynchronous flooding algorithm. The code shown is for processor Pi , 1 ≤ i ≤ n.
Any and all nodes can initiate the algorithm spontaneously.

Synchronous algorithm (Algorithm 5.10)
This algorithm [33] allows all processes to flood a local value throughout
the network. The local array STATEVEC�1 � � n� is such that STATEVEC�k�
is the estimate of the local value of process k. After d number of rounds, it
is guaranteed that the local value of each process has propagated throughout
the network.

Complexity
The time complexity is: diameter d rounds, and the message complexity is:
2l ·d messages, each of size n.

(local variables)
int STATEVEC�1 � � n�←− 0
set of int Neighbors←− set of neighbors
(message types)
UPDATE

(1) STATEVEC�i�←− local value;
(2) for round = 1 to diameter d do
(3) send UPDATE(STATEVEC�1 � � n�) to each j ∈ Neighbors;
(4) for count = 1 to �Neighbors� do
(5) await UPDATE(SV�1 � � n�) from some j ∈ Neighbors;
(6) STATEVEC�1 � � n�←−max�STATEVEC�1 � � n�� SV�1 � � n��.
Algorithm 5.10 The synchronous flooding algorithm for learning all node’s identifiers. The code shown
is for processor Pi , 1 ≤ i ≤ n.

157 5.5 Elementary graph algorithms

5.5.11 Minimum-weight spanning tree (MST) algorithm in a synchronous system

A minimum-weight spanning tree (MST) minimizes the cost of transmission
from any node to any other node in the graph. The classical centralized MST
algorithms such as those by Prim, Dijkstra, and Kruskal [9] assume that the
entire weighted graph is available for examination.

• Kruskal’s algorithm begins with a forest of graph components. In
each iteration, it identifies the minimum-weight edge that connects
two different components, and uses this edge to merge two compo-
nents. This continues until all the components are merged into a single
component.

• In Prim’s algorithm and Dijkstra’s algorithm, a single-node component
is selected. In each iteration, a minimum-weight edge incident on the
component is identified, and the component expands to include that edge
and the node at the other end of that edge. After n− 1 iterations, all the
nodes are included. The MST is defined by the edges that are identified
in each iteration to expand the initial component.

In a distributed algorithm, each process can communicate only with its
neighbors and is aware of only the incident links and their weights. It is
also assumed that the processes know the value of �N � = n. The weight
of each edge is unique in the network, which is necessary to guarantee a
unique MST. (If weights are not unique, the IDs of the nodes on which
they are incident can be used as tie-breakers by defining a well-formed
order.)

A distributed algorithm by Gallagher, Humblet, and Spira [14] that gener-
alizes the strategy of Kruskal’s centralized algorithm is given after reviewing
some definitions. A forest (i.e., a disjoint union of trees) is a graph in which
any pair of nodes is connected by at most one path. A spanning forest of an
undirected graph �N�L� is a maximal forest of �N�L�, i.e., an acyclic and
not necessarily connected graph whose set of vertices is N . When a spanning
forest is connected, it becomes a spanning tree.

A spanning forest of G is a subgraph G′ of G having the same node set as
G; the spanning forest can be viewed as a set of spanning trees, one spanning
tree per “connected component” of G′. All MST algorithms begin with a
spanning forest having n nodes (or connected components) and without any
edges. They then add a “minimum-weight outgoing edge” (MWOE) between
two components.2 The spanning trees of the combining connected components
combine with the MWOE to form a single spanning tree for the combined
connected component. The addition of the MWOE is repeated until a spanning

2 Note that this is an undirected graph. The direction of the “outgoing” edge is logical in
the sense that it identifies the direction of expansion of the connected component under
consideration.

158 Terminology and basic algorithms

Figure 5.8 Merging of MWOE
components. (a) A cycle of
length 2 is possible. (b) A
cycle of length greater than 2
is not possible.

C

A
BB

A

C

(a) (b)

tree is produced for the entire graph �N�L�. Such algorithms are correct
because of the following observation.

Observation 5.1 For any spanning forest 	�Ni�Li� � i = 1

 k� of a
weighted undirected graph G, consider any component �Nj�Lj�. Denote by
�j , the edge having the smallest weight among those that are incident on only
one node in Nj . Then an MST for the graph G that includes all the edges in
each Li in the spanning forest, must also include edge �i.

This observation says that for any “minimum-weight” component created
so far, when it grows by joining another component, the growth must be via
the MWOE for that component under consideration. Intuitively, the logic is as
follows. For any component containing node set Nj , if edge x is used instead
of the MWOE �j to connect with nodes in N \Nj , then the resulting tree
cannot be a MST because edge x can always be replaced with the MWOE
that was not chosen to yield a lower cost tree.

Consider Figure 5.8(a) where three components have been identified and
are encircled. The MWOE for each component is marked by an outgoing
edge (other outgoing edges are not shown). Each of the three components
shown must grow only by merging with the component at the other end of
the MWOE.

In a distributed algorithm, the addition of the edges should be done concur-
rently by having all the components identify their respective minimum-weight
outgoing edge. The synchronous algorithm of Gallagher–Humblet–Spira [14]
uses this above observation, and is given in Algorithm 5.11. Initially, each
node is the leader of its component which contains only that node. The algo-
rithm uses log�n� iterations. In each iteration, each component merges with
at least one other component. Hence, log�n� iterations guarantee termination
with a single component.

159 5.5 Elementary graph algorithms

(message types)
SEARCH_MWOE�leader� // broadcast by current leader on tree edges
EXAMINE�leader� // sent on non-tree edges after receiving

// SEARCH_MWOE
REPLY_MWOE�local_ID� remote_ID� // details of potential MWOEs

// are convergecast to leader
ADD_MWOE�local_ID� remote_ID� // sent by leader to add MWOE

// and identify new leader
NEW_LEADER�leader� // broadcast by new leader after merging

// components

leader = i;
for round = 1 to log�n� do // each merger in each iteration involves at

// least two components

1. if leader = i then
broadcast SEARCH_MWOE(leader) along marked edges of tree
(Section 5.5.5).

2. On receiving a SEARCH_MWOE(leader) message that was broadcast on
marked edges:
(a) Each process i (including leader) sends an EXAMINE message along

unmarked (i.e., non-tree) edges to determine if the other end of the
edge is in the same component (i.e., whether its leader is the same).

(b) From among all incident edges at i, for which the other end
belongs to a different component, process i picks its incident
MWOE(localID,remoteID).

3. The leaf nodes in the MST within the component initiate the convergecast
(Section 5.5.5) using REPLY_MWOEs, informing their parent of their
MWOE(localID,remoteID). All the nodes participate in this convergecast.

4. if leader = i then
await convergecast replies along marked edges.
Select the minimum MWOE(localID,remoteID) from all the replies.
broadcast ADD_MWOE(localID,remoteID) along marked

edges of tree (Section 5.5.5).
// To ask process localID to mark the �localID� remoteID�
// edge, i.e., include it in MST of component.

5. if an MWOE edge gets marked by both the components on which it is
incident then
(a) Define new_leader as the process with the larger ID on which that

MWOE is incident (i.e., process whose ID ismax�localID� remoteID�).
(b) new_leader identifies itself as the leader for the next round.
(c) new_leader broadcasts NEW_LEADER in the newly formed compo-

nent along the marked edges (Section 5.5.5) announcing itself as the
leader for the next round.

Algorithm 5.11 The synchronous MST algorithm by Gallagher–Humblet–Spira (GHS algorithm). The
code shown is for processor Pi , 1 ≤ i ≤ n.

160 Terminology and basic algorithms

Figure 5.9 The phases within
an iteration in a component.

Cross edge

Out-edgeTree edge

Root of component

11
(MWOE)

21

16

112

13 14 34

8744

27

54 88

43

16

Each iteration goes through a broadcast–convergecast–broadcast sequence
to identify the MWOE of the component, and to select the leader for the next
iteration. The MWOE is identified after the broadcast (steps 1 and 2) and
convergecast (step 3) by the current leader, which then does a second broadcast
(step 4). The leader is selected at the end of this second broadcast (step 4);
among all the components that merge in an iteration, a single leader is selected,
and it identifies itself among all the nodes in the newly forming component by
doing a third broadcast (step 5). This sequence of steps can be visualized using
the connected component enclosed within a rectangle in Figure 5.9, using the
following narrative: (a) root broadcasts SEARCH_MWOE; (b) convergecast
REPLY_MWOE occurs; (c) root broadcasts ADD_MWOE; (d) if the MWOE
is also chosen as the MWOE by the component at the other end of the MWOE,
the incident process with the higher ID is the leader for the next iteration and
broadcasts NEW_LEADER.

The correctness of the above algorithm hinges on the fact that in any
iteration, when each component of the spanning forest joins with one or
more other components of the spanning forest, the result is still a spanning
forest! Observe that each component picks exactly one MWOE with which it
connects to another component. However, more than two components can join
together in one iteration. If multiple components join, we need to observe that
the resulting component is still a spanning forest. To do so, model a directed
graph �P�M� where P is the set of components at the start of an iteration and
M is the set of �P� MWOE edges chosen by the components in P. In this
graph, there is exactly one outgoing edge from each node in P. Recall that the
direction of the MWOE is logical; the underlying graph remains undirected.
If component A chooses to include a MWOE leading to component B, then
directed edge �A�B� exists in �P�M�. By tracing any path in this graph,
observe that MWOE weights must be monotonically decreasing. To see that
(i) the merging of components retains the spanning forest property, and (ii)
there is a unique leader in each component after the merger in the previous
round, consider the following two cases:

161 5.5 Elementary graph algorithms

1. If two components join, then each must have picked the other to join with,
and we have a cycle of length two. As each component was a spanning
forest, joining via the common MWOE still retains the spanning forest
property, and there is a unique leader in the merged component.

2. If three or more components join, then two sub-cases are possible:
• There is some cycle of length three or more (see Figure 5.8(b)). But

as any path in �P�M� follows MWOEs of monotonically decreasing
weights, this implies a contradiction because at least one node must
have chosen an incorrect MWOE.

• There is no cycle of length 3 or more, and at least one node in �P�M�
will have two or more incoming edges (component C in Figure 5.8(a)).
Further, there must exist a cycle of length two. Exercise 5.22 asks you
to prove this formally. As the graph has a cycle of length at most two
(case 1), the resulting component after the merger of all the involved
components is still a spanning component, and there is a unique leader
in the merged component. That leader is the node with the larger PID
incident on the MWOE that gets marked by both components on which
it is incident.

Complexity
• In each of the log�n� iterations, each component merges with at least one

other component. So after the first iteration, there are at most n/2 compo-
nents, after the second, at most n/4 components, and so on. Hence, at most
log�n� iterations are needed and the number of nodes in each component
after iteration k is at least 2k. In each iteration, the time complexity is O�n�
because the time complexity for broadcast and convergecast is bounded
by O�n�. Hence the time complexity is O�n · log�n��.

• In each of the log�n� iterations, O�n� messages are sent along the marked
tree edges (steps 1, 3, 4, and 5). There may be up to l = �L� EXAMINE
messages to determine the MWOEs in step 2 of each iteration. Hence, the
total message complexity is O��n+ l� · log�n��.

The correctness of the GHS algorithm hinges on the fact that the execution
occurs in synchronous rounds. This is necessary in step 2, where a process
sends EXAMINE messages to its unmarked neighbors to determine whether
those neighbors belong to the same or a different component than itself. If
the neighbor is not synchronized, problems can occur. For example, consider
edge �j� k�, where j and k become a part of the same component in “iteration”
x. From j’s perspective, the neighbor k may not yet have received its leader’s
ID that was broadcast in step 5 of the previous iteration; hence k replies to the
EXAMINE message sent by j based on an older ID for its leader. The testing
process j may (incorrectly) include k in the same component as itself, thereby
creating cycles in the graph. As the distance from the leader to any node in its
component is not known, this needs to be dealt with even in a synchronous
system. One way to enforce the synchronicity is to wait for O�n� number of

162 Terminology and basic algorithms

communication steps; this way, all communication within the round would
have completed in the synchronous model.

5.5.12 Minimum-weight spanning tree (MST) in an asynchronous system

There are two approaches to designing the asynchronous MST algorithm.
In the first approach, the synchronous GHS algorithm is simulated in an

asynchronous setting. In such a simulation, the same synchronous algorithm
is run, but is augmented by additional protocol steps and control messages
to provide the synchronicity. Observe from the synchronous GHS that the
difficulty in making it asynchronous lies in step 2. If the two nodes at the
ends of an unmarked edge are in different levels, the algorithm can go wrong.
Two possible ways to deal with this problem are as follows:

• After each round, an additional broadcast and convergecast on the marked
edges are serially done. The newly identified leader broadcasts its ID and
round number on the tree edges; the convergecast is then initiated by the
leaves to acknowledge this broadcast. When the convergecast completes at
the leader, it then begins the next round. Now in step 2, if the recipient of
an EXAMINE message is in an earlier round, it simply delays the response
to the EXAMINE, thus forcing synchrony.

This costs n · log�n� extra messages.
• When a node gets involved in a new round, it simply informs each neighbor

(reachable along unmarked or non-tree edges) of its new level. Only when
the neighbors along unmarked edges are all in the same round does the
node send the EXAMINE message in step 2.

This costs �L� · log�n� extra messages.

The second approach to designing the asynchronous MST is to directly
address all the difficulties that arise due to lack of synchrony. The original
asynchronous GHS algorithm uses this approach even though it is patterned
along the synchronous GHS algorithm. By carefully engineering the asyn-
chronous algorithm, it achieves the same message complexity O�n ·log�n�+l�
as the synchronous algorithm and a time complexity O�n · log�n� · �l+d��.
We do not present the algorithm here because it is a well-engineered algo-
rithm with intricate details; rather, we only point out some of the difficulties
in designing this algorithm:

• In step 2, if the two nodes are in different components or in different
levels, there needs to be a mechanism to determine this.

• If the combining of components at different levels is permitted, then some
component may keep combining with only single-node components in
the worst case, thereby increasing the complexity by changing the log�n�
factor to the factor n.

163 5.6 Synchronizers

• The search for MWOEs by adjacent components at different levels needs
to be coordinated carefully. Specifically, the rules for merging such com-
ponents, as well as the rules for the concurrent search for the MWOE by
these two components, need to be specified.

5.6 Synchronizers

General observations on synchronous and asynchronous
algorithms
From the spanning tree algorithms, shortest path routing algorithms, con-
strained flooding algorithms, and the MST algorithms, it can be observed that
it is much more difficult to design the algorithm for an asynchronous system,
than for a synchronous system. This can be generalized to all algorithms,
with few exceptions. The example algorithms also suggest that simulating
synchronous behavior (of an algorithm designed for a synchronous system)
on an asynchronous system is often a direct way to realize the algorithms on
asynchronous systems.

Given that typical distributed systems are asynchronous, the logical ques-
tion to address is whether there is a general technique to convert an algorithm
designed for a synchronous system, to run on an asynchronous system. The
generic class of transformation algorithms to run synchronous algorithms
on asynchronous systems are called synchronizers. We make the following
observations. (i) We consider only failure-free systems, whether synchronous
or asynchronous. We will see later (in Chapter 14) that such transformations
may not be possible in asynchronous systems in which either processes fail
or channels are unreliable. (ii) Using a synchronizer provides a sure way to
obtain an asynchronous algorithm. However, such an algorithm may have
high complexity. Although more difficult, it may be possible to design more
efficient asynchronous algorithms from scratch, rather than transforming the
synchronous algorithms to run on asynchronous systems. (This was seen in
the case of the GHS algorithm.) Thus, the field of systematic algorithm design
for asynchronous systems is an open and challenging field.

Practically speaking, in an asynchronous system, a synchronizer is a mecha-
nism that indicates to each process when it is safe to proceed to the next round
of execution of the “synchronous” algorithm. Conceptually, the synchronizer
signals to each process when it is sure that all messages to be received in the
current round have arrived.

The mesage complexity Ma and time complexity Ta of the asynchronous
algorithm are as follows:

Ma =Ms+ �Minit+ rounds ·Mround�� (5.1)

Ta = Ts+ �Tinit+ rounds ·Tround�� (5.2)

164 Terminology and basic algorithms

Table 5.1 The message and time complexities for the simple, �, 	, and

synchronizers. hc is the greatest height of a tree among all the clusters. Lc is the
number of tree edges and designated edges in the clustering scheme for the

synchronizer. d is the graph diameter.

Simple
synchronizer

�
synchronizer

�
synchronizer

�
synchronizer

Minit 0 0 O�n · log�n� O�kn2�
+�L��

Tinit d 0 O�n� n · log�n�/log�k�
Mround 2�L� O��L�� O�n� O�Lc� �≤ O�kn��
Tround 1 O�1� O�n� O�hc� �≤ O�log�n�/

log�k���

where:

• Ms is the number of messages in the synchronous algorithm;
• rounds is the number of rounds in the synchronous algorithm;
• Ts is the time for the synchronous algorithm. Assuming one unit (message

hop) per round, this equals rounds;
• Mround is the number of messages needed to simulate a round;
• Tround is the number of sequential message hops needed to simulate a

round;
• Minit and Tinit are the number of messages and the number of sequential

message hops, respectively, in the initialization phase in the asynchronous
system.

We now look at four standard synchronizers: the simple, the �, the �,
and the � synchronizers, proposed by Awerbuch [3]. The message and time
complexities of these are summarized in Table 5.1.

The �, �, and � synchronizers use the notion of process safety, defined as
follows. A process i is said to be safe in round r if all messages sent by i in
round r have been received. The � and � synchronizers are extreme cases of
the � synchronizer and form its building blocks.

A simple synchronizer
This synchronizer requires each process to send every neighbor one and only
one message in each round. If no message is to be sent in the synchronous
algorithm, an empty dummy message is sent in the asynchronous algorithm;
if more than one message are sent in the synchronous algorithm, they are
combined into one message in the asynchronous algorithm. In any round,
when a process receives a message from each neighbor, it moves to the next
round.

We make the following observations about this synchronizer.

165 5.6 Synchronizers

• In physical time, any two processes may be only one round apart. Thus,
if process i is in round roundi, any other adjacent process j must be in
rounds roundi−1, roundi, or roundi+1 only.

• When process i is in round roundi, it can receive messages only from
rounds roundi or roundi+1 from its neighbors.

Initialization
Any process may start round i. Within d time units, all processes will partic-
ipate in that round. Hence, Tinit = d. Minit = 0 because no explicit messages
are required solely for initialization.

Complexity
Each round requires a message to be sent on each incident link in each
direction. Hence, Mround = 2�L� and Tround = 1.

The � synchronizer
At any process i, the � synchronizer in round r moves the process to the next
round r+1 if all the neighboring processes are safe for round r.

A process can learn about the safety of its neighbor if any message sent by
this process is required to be acknowledged. Once a neighbor j has received
acknowledgements for all the messages it sent, it sends a message informing
i (and all its other neighbors) that it is safe.

Example The operation is illustrated in Figure 5.10. (step 1) Node A sends
a message to nodes C and E, and receives messages from B and E in the same
round. (step 2) These messages are acknowledged after they are received.
(step 3) Once node A receives the acknowledgements from C and E, it sends a
message to all its neighbors to notify them that node A is safe. This allows the
neighbors to not wait on A before proceeding to the next round. Node A itself
can proceed to the next round only after it receives a safety notification from
each of its neighbors, whether or not there was any exchange of application
execution messages with them in that round.

Figure 5.10 An example
showing steps of the �

synchronizer. (a) Execution
messages (step 1) and their
acknowledgements (step 2).
(b) “I am safe” messages
(step 3).

Execution message

BB

EE

D

CA

D

C

A

Acknowledgement

(b)(a)

3

3

3

332

3

3

312

2
2

1

1

"Safe"

1

166 Terminology and basic algorithms

Complexity
For every message sent (≤ �L�) in a round, an ack is required. If l′�< �L��
messages are sent in a round, l′ acks are needed, giving a message overhead of
2l′ thus far; but it is assumed that an underlying transport layer (or equivalent)
protocol uses acks, and hence these come for free. But additionally, 2�L�
messages are required so that each process can inform all its neighbors that it
is safe. Thus the message complexity Mround = 2�L�+2l′ = O��L��. The time
complexity Tround = O�1�.

Initialization
No explicit initialization is needed. A process that spontaneously wakes up
and initializes the algorithm sends messages to (some of) its neighbors, who
then acknowledge any message received, and also reply that they are safe.

The � synchronizer
This synchronizer assumes a rooted spanning tree. Safe leaf nodes initiate a
convergecast; an intermediate node propagates the convergecast to its parent
when all the nodes in its subtree, including itself, are safe. When the root
becomes safe and receives the convergecast from all its children, it uses a
tree broadcast to inform all the nodes to move to the next phase.

Example Compared to the � synchronizer, steps 1 and 2 as described with
respect to Figure 5.10 are the same to determine when to notify others about
safety. The actual notification about safety uses the convergecast–broadcast
sequence on a pre-established tree, instead of using step 3 of Figure 5.10.

Complexity
Just as for the � synchronizer, an ack is required by the � synchronizer for
each message of the l′ messages sent in a round; hence l′ acks are required,
but these can be assumed to come for free, thanks to the transport layer or
an equivalent lower layer protocol. Now instead of 2l further messages as
in the � synchronizer, only 2�n− 1� further messages are required for the
convergecast and broadcast. Hence, Mround = 2�n−1�. For each round, there
is an average case 2 · log�n� delay for Tround and a worst-case 2n delay for
Tround, incurred by the convergecast and the broadcast.

Initialization
There is an initialization cost, incurred by the set up of the spanning tree
(the Algorithms in Section 5.5). As noted in Section 5.5, this cost is: O�n ·
log�n�+�L�� messages and O�n� time.

The � synchronizer
The network is organized into a set of clusters, as shown in Figure 5.11. Within
a cluster, a spanning tree hierarchy exists with a distinguished root node. The

167 5.6 Synchronizers

Figure 5.11 Cluster
organization for the

synchronizer, showing six
clusters A–F. Only the tree
edges within each cluster, and
the inter-cluster designated
edges are shown.

DEF

B CA

Root
Designated (inter-cluster) edge
Tree edge

height of a clustering scheme, h�c�, is the maximum height of the spanning
trees across all of the clusters. Two clusters are neighbors if there is at least
one edge between one node in each of the two clusters; one of such multiple
edges is the designated edge for that pair of clusters. Within a cluster, the �
synchronizer is executed; once a cluster is “stabilized,” the � synchronizer is
executed among the clusters, over the designated edges. To convey the results
of the stabilization of the inter-cluster � synchronizer, within each cluster, a
convergecast and broadcast phase is then executed. Over the designated inter-
cluster edges, two types of messages are exchanged for the � synchronizer:
My_cluster_safe, and Neighboring_cluster_safe, with semantics that are self
evident. The details of the algorithm are given in Algorithm 5.12.

Complexity
• Let Lc be the total number of tree edges plus designated edges in the

clustering scheme. In each round, there are four messages – Subtree_safe,
This_cluster_safe, Neighboring_cluster_safe, and Next_round – per tree
edge, and two My_cluster_safe messages over each designated edge.
Hence, Mround is O�Lc�.

• Let hc be the maximum height of any tree among the clusters, then
the time complexity component Tround is O�hc�. This is due to the four
phases – convergecast, broadcast, convergecast, and broadcast – con-
tributing 4hc time, the two units of time needed for all processes to
become safe, and one unit of time needed for the inter-cluster messages
My_cluster_safe.

Exercise 5.25 asks you to work out a formal design of how to partition
the nodes into clusters, how to choose a root and a spanning tree of appro-
priate depth for each cluster, and how to designate the preferred edges. The
requirements on the design scheme are to be able to control the complexity
by suitably tuning a parameter k. The ��k� synchronizer reduces to the �
synchronizer when k = n− 1, i.e., each cluster contains a single node. The

168 Terminology and basic algorithms

��k� synchronizer reduces to the � synchronizer when k = 2, i.e., there is a
single cluster. The construction will allow the ��k� synchronizer to be viewed
as a parameterized synchronizer based on clustering.

(message types)
Subtree_safe // � synchronizer phase’s convergecast within cluster
This_cluster_safe // � synchronizer phase’s broadcast within cluster
My_cluster_safe // embedded inter-cluster � synchronizer’s messages

// across cluster boundaries
Neighboring_cluster_safe // Convergecast following inter-cluster �

// synchronizer phase
Next_round // Broadcast following inter-cluster � synchronizer phase

for each round do

1. (� synchronizer phase) This phase aims to detect when all the nodes
within a cluster are safe, and inform all the nodes in that cluster.

(a) Using the spanning tree, leaves initiate the convergecast of the
“Subtree_safe” message towards the root of the cluster.

(b) After the convergecast completes, the root initiates a broadcast of
“This_cluster_safe” on the spanning tree within the cluster.

(c) (Embedded � synchronizer)

(i) During this broadcast in the tree, as the nodes get engaged, the
nodes also send “My_cluster_safe” messages on any incident
designated inter-cluster edges.

(ii) Each node also awaits “My_cluster_safe” messages along any
such incident designated edges.

2. (Convergecast and broadcast phase) This phase aims to detect when
all neighboring clusters are safe, and to inform every node within this
cluster.

(a) (Convergecast)
(i) After the broadcast of the earlier phase (1(b)) completes, the

leaves initiate a convergecast using “Neighboring_cluster_safe”
messages once they receive any expected “My_cluster_safe”
messages (step 1(c)) on all the designated incident edges.

(ii) An intermediate node propagates the convergecast once it
receives the “Neighboring_cluster_safe” message from all its
children, and also any expected “My_cluster_safe” message (as
per step 1(c)) along designated edges incident on it.

(b) (Broadcast) Once the convergecast completes at the root of the
cluster, a “Next_round” message is broadcast in the cluster’s tree to
inform all the tree nodes to move to the next round.

Algorithm 5.12 The
 synchronizer.

169 5.7 Maximal independent set (MIS)

5.7 Maximal independent set (MIS)

For a graph �N�L�, an independent set of nodes N ′, where N ′ ⊂ N , is such
that for each i and j in N ′, �i� j� �∈ L. An independent set N ′ is a maximal
independent set if no strict superset of N ′ is an independent set. A graph
may have multiple maximal independent sets; all of which may not be of the
same size.3

The maximal independent set problem requires that adjacent nodes must
not be chosen. This has application in wireless broadcast where it is required
that transmitters must not broadcast on the same frequency within range
of each other. More generally, for any shared resources (the radio fre-
quency bandwidth in the above example) to allow a maximum concurrent use
while avoiding interference or conflicting use, a maximal independent set is
required.

Computing a maximal independent set in a distributed manner is challeng-
ing. The problem becomes further interesting when a maximal independent
set must be maintained when processes join and leave, and links can go down,
or new links between existing nodes can be established.

A simple and elegant distributed algorithm for the MIS problem in a
static system, proposed by Luby [24], is presented in Algorithm 5.13 for
an asynchronous system. The idea is as follows. In each iteration, each node
Pi selects a random number randomi and exchanges this value with its
neighbors using the RANDOM message. If randomi is less than the random
numbers chosen by all its neighbors, the node includes itself in the MIS and
exits. However, whether or not a node gets included in the MIS, it informs
its neighbors via the indicator parameter on the SELECTED message. On
receiving SELECTED messages from all the neighbors, if a node finds that
at least one of its neighbors has been selected for inclusion in the MIS, the
node eliminates itself from the candidate set for inclusion. However, whether
or not an unselected node eliminates itself from the candidate set, it informs
its neighbors via the indicator parameter on the ELIMINATED message. If a
node learns that a neighbor j is eliminated from candidature, the node deletes
j from Neighbors, and proceeds to the next iteration.

The algorithm constructs an IS because once a node is selected to be in
the IS, all its neighbors are deleted from the set of remaining candidate nodes
for inclusion in the IS. The algorithm constructs an MIS because only the
neighbors of the selected nodes are eliminated from being candidates.

Example Figure 5.12(a) and (b) show the first two rounds in the execution
of the MIS algorithm. The winners have a check mark and the losers have a

3 The problem of finding the largest sized independent set is the maximum independent set
problem. This is NP-hard.

170 Terminology and basic algorithms

cross next to them. In the third round, the node labeled I includes itself as a
winner. The MIS is 	C�E�G� I�K�.

(variables)
set of integer Neighbors // set of neighbors
real randomi // random number from a sufficiently large range
boolean selectedi // becomes true when Pi is included in the MIS
boolean eliminatedi // becomes true when Pi is eliminated from the

// candidate set
(message types)
RANDOM(real random) // a random number is sent
SELECTED(integer pid, boolean indicator) // whether sender was

// selected in MIS
ELIMINATED(integer pid, boolean indicator) // whether sender was

// removed from candidates

(1a) repeat
(1b) if Neighbors = ∅ then
(1c) selectedi←− true; exit();
(1d) randomi←− a random number;
(1e) send RANDOM�randomi� to each neighbor;
(1f) await RANDOM�randomj� from each neighbor j ∈ Neighbors;
(1g) if randomi < randomj �∀j ∈ Neighbors� then
(1h) send SELECTED�i� true� to each j ∈ Neighbors;
(1i) selectedi←− true; exit(); // in MIS
(1j) else
(1k) send SELECTED�i� false� to each j ∈ Neighbors;
(1l) await SELECTED�j� �� from each j ∈ Neighbors;
(1m) if SELECTED�j� true� arrived from some j ∈ Neighbors

then
(1n) for each j ∈ Neighbors from which SELECTED

(�� false) arrived do
(1o) send ELIMINATED�i� true� to j;
(1p) eliminatedi←− true; exit(); // not in MIS
(1q) else
(1r) send ELIMINATED�i� false� to each j ∈ Neighbors;
(1s) await ELIMINATED�j� �� from each j ∈ Neighbors;
(1t) for all j ∈ Neighbors do
(1u) if ELIMINATED�j� true� arrived then
(1v) Neighbors←− Neighbors \ 	j�;
(1w) forever.

Algorithm 5.13 Luby’s algorithm for the maximal independent set in an asynchronous system. Code
shown is for process Pi , 1 ≤ i ≤ n.

171 5.8 Connected dominating set

Figure 5.12 An example
showing the execution of the
MIS algorithm. (a) Winners
and losers in round 1. (b)
Winners up to round 2, and
the losers in round 2.

6

7 2

1

0

2

5

6

8

1

6
K

A E

B

C

D

G H

F

J

I

(a)

24

5

9

1

(b)

A E

B

C

D

F

G H

I

J K

Complexity
It is evident that in each iteration, at least one node will be included in the
MIS, and at least one node will be eliminated from the candidate set. So
at most n/2 iterations of the repeat loop are required. In fact, the expected
number of iterations is O�log n�. The reader is referred to the paper by Luby
[24] for the proof of this bound.

5.8 Connected dominating set

A dominating set of graph �N�L� is a set N ′ ⊆ N such that each node in
N \N ′ has an edge to some node in N ′. Determining whether there exists a
dominating set of size k < �N � is NP-complete. A connected dominating set
(CDS) of �N�L� is a dominating set N ′ such that the subgraph induced by
the nodes in N ′ is connected.

Finding the miminum connected dominating set (MCDS) is NP-complete,
and hence polynomial time heuristics are used to design approximation algo-
rithms. In addition to the time and message complexities, the approximation
factor becomes an important metric. The approximation factor is the worst
case ratio of the size of the CDS obtained by the algorithm to the size of
the MCDS. Another useful metric is the stretch factor. This is the worst-case
ratio of the length of the shortest route between the dominators of two nodes
in the CDS overlay, to the length of the shortest routes between the two nodes
in the underlying graph.

The connected dominating set can form a backbone along which a broadcast
can be performed. All nodes are guaranteed to be within range of the backbone
and can hence receive the broadcast. The set is thus useful for routing,
particularly in the wide-area network and also in wireless networks.

A simple heuristic is to create a spanning tree and delete the edges to the
leaf nodes to get a CDS. Another heuristic is to create an MIS and add edges
to create a CDS. However, designing an algorithm with a low approximation
factor is non-trivial. Section 5.15 points to a couple of sources for efficient
distributed CDS algorithms.

172 Terminology and basic algorithms

5.9 Compact routing tables

Routing tables are traditionally as large as the number of destinations n. This
can have high storage requirements as well as table lookup and processing
overheads when routing each packet. If the table can be reorganized such
that it is indexed by the incident incoming link, and the table entry gives
the outgoing link, then the table size becomes the degree of the node, which
can be much smaller than n. Further efficiency would depend on how the
destinations reachable per channel are represented and accessed. Some of the
approaches to designing compact routing tables include the following:

• Hierarchical routing schemes [33] The network graph is organized into
clusters in a hierarchical manner, with each cluster having one clusterhead
designated node that represents the cluster at the next higher level in the
hierarchy. There is detailed information about routing within a cluster, at
all the routers within that cluster. If the destination does not lie in the
same cluster as the source, the packet is sent to the clusterhead and up the
hierarchy as appropriate. Once the clusterhead of the destination is found
in the routing tables, then the packet is sent across the network at that level
of the hierarchy, and then down the hierarchy in the destination cluster.
This form of routing is widely used in the Internet.

• Tree-labeling schemes [15] This family of schemes uses a logical tree
topology for routing. The routing scheme requires labeling the nodes of
the graph in such a way that all the destinations reachable via any link
can be represented as a range of contiguous addresses �x� y�. A node with
degree deg need only maintain deg entries in its routing table, where each
entry is a range of contiguous addresses. For all the address intervals �x� y�
except at most one, the scheme must satisfy x < y.

Example Figure 5.13 shows tree labeling on a tree with seven nodes.
The tree edge labels are enclosed in rectangles. Non-tree edges are in
dashed lines.

Tree-labeling can provide great savings, compared to a table of size n at
each node. Unfortunately, all traffic is confined to the logical tree edges.

Figure 5.13 Tree labeling on a
graph with seven nodes.

1 3

2

4

6

5 7
2−7

1−1

4−7

1−3 5−7

1−4

6−44−2

3−3 5−5

1−6

7−7

173 5.9 Compact routing tables

Exercise 5.26 asks you to show that it is always possible to generate a
tree-labeling scheme.

• Interval routing schemes [15,35] The tree-labeling schemes suffer from
the fact that data can be sent only over tree edges, wasting the remaining
bandwidth in the system. Interval routing extends the tree labeling so that
the data packets need not be sent only on the edges of a tree.

Formally, given a graph �N�L�, an interval routing scheme is a tuple
�B�I�, where:

1. node labeling: B is a 1:1 mapping on N , which assigns labels to nodes;
2. edge labeling: the mapping I labels each edge in L by some subset of

node labels B�N� such that for any node x, all destinations are covered
(∪y∈NeighborsI�x� y�∪B�x�= N) and there is no duplication of coverage
(I�x�w�∩I�x� y�= ∅ for w�y ∈ Neighbors);

3. for any source s and destination t nodes, there must exist a sequence
of nodes �s= x0� x1

 xk−1� xk = t� where B�t� ∈ I�xi−1� xi� for each i
between 1 and k. Therefore, for each source and destination pair, there
must exist a path under the new mapping.

To show that an interval labeling scheme is possible for every graph,
a tree with the following property is constructed: “there are no cross-
edges in the corresponding graph.” The tree generated by a depth-first
traversal always satisfies this property. Nodes are labeled by a preorder
traversal whereas the edges are labeled by a more detailed scheme,
see [35].

Two drawbacks of interval routing schemes are that: (i) they do not
give any guarantees on the efficiency (lengths) of the routing paths
that get chosen, and (ii) they are not robust to small changes in the
topology.

• Prefix routing schemes [15] Prefix routing schemes overcome the draw-
backs of interval routing. (This prefix routing is not to be confused with
the CIDR routing used in the internet. CIDR also uses the prefixes of
the destination IP address.) In prefix routing, the node labels as well as
the channel labels are drawn from the same domain and are viewed as
strings. The routing decision at a router is as follows: identify the channels
whose label is the longest prefix of the address of the destination. This is
the channel on which to route the packet for that particular destination.

The stretch factor of a routing scheme r is defined asmaxi�j∈N 	
distancer �i�j�

distanceopt�i�j�
�.

This is an important metric in evaluating a compact routing scheme.
All the above approaches for compact routing are rich in distributed

graph algorithmic problems and challenges, including identifying and proving
bounds on the efficiency of computed routes. Different graph topologies yield
interesting results for these routing schemes.

174 Terminology and basic algorithms

5.10 Leader election

We have seen the role of a leader process in several algorithms such as the
minimum spanning tree and broadcast/convergecast to compute a function
over all the participating processes.

Leader election requires that all the processes agree on a common dis-
tinguished process, also termed as the leader. A leader is required in many
distributed systems because algorithms are typically not completely symmet-
rical, and some process has to take the lead in initiating the algorithm; another
reason is that we would not want all the processes to replicate the algorithm
initiation, to save on resources.

Typical algorithms for leader election assume a ring topology is available.
Each process has a left neighbor and a right neighbor. The Lelang, Chang,
and Roberts (LCR) algorithm [6,23] assumes an asynchronous unidirectional
ring. It also assumes that all processes have unique identifiers. Each process
in the ring sends its identifier to its left neighbor. When a process Pi receives
the identifier k from its right neighbor Pj , it acts as follows:

• i < k: forward the identifier k to its left neighbor;
• i > k: ignore the message received from neighbor j;
• i = k: due to the assumption on nonanonymity, Pi’s identifier must have

circluated across the entire ring. Hence Pi can declare itself the leader.

Pi can then send another message around the ring announcing that it has been
chosen as the leader. The algorithm is given in Algorithm 5.14.

Complexity
The LCR algorithm (Algorithm 5.14) is in its simplest form. Several opti-
mizations are possible. For example, if i has forwarded a probe with value z
and a probe with value x, where i < x < z arrives, no forwarding action on
the probe needs to be taken. Despite this, it is straightforward to see that the
message complexity of this algorithm is n ·�n−1�/2 and the time complexity
is O�n�.

The O�n2� message cost can be reduced to O�n log n� by using a binary
search in both directions as proposed by Hirschberg and Sinclair [19]. In
round k, the token is circulated to 2k neighbors on both the left and right sides.
To cover the entire ring, a logarithmic number of steps are needed. Consider
that in each round, a process tries to become a leader, and only the winners
in round k can proceed to round k+ 1. In effect, a process i is a leader in
round k if and only if i is the highest identifier among 2k neighbors in both
directions. Hence, any pair of leaders after round k are at least 2k apart. Hence
the number of leaders diminishes logarithmically as n/2k Observe that in each
round, there are at most n messages sent, using the supression technique of
the LCR algorithm. Thus the overall complexity is O�n · log n�.

175 5.11 Challenges in designing distributed graph algorithms

(variables)
boolean participate← false // becomes true when Pi is participates in

// leader election
(message types)
PROBE integer // contains a node identifier
SELECTED integer // announcing the result

(1) When a process wakes up to participate in leader election:
(1a) send PROBE(i) to right neighbor;
(1b) participate←− true.

(2) When a PROBE(k) message arrives from the left neighbor Pj:
(2a) if participate= false then execute step (1) first.
(2b) if i > k then
(2c) discard the probe;
(2d) else if i < k then
(2e) forward PROBE(k) to right neighbor;
(2f) else if i= k then
(2g) declare i is the leader;
(2h) circulate SELECTED(i) to right neighbor;

(3) When a SELECTED(x) message arrives from left neighbor:
(3a) if x �= i then
(3b) note x as the leader and forward message to right neighbor;
(3c) else do not forward the SELECTED message.

Algorithm 5.14 The LCR leader election algorithm in a synchronous system. Code shown is for process
Pi , 1 ≤ i ≤ n.

It has been shown that there cannot exist a deterministic leader election
algorithm for anonymous rings. Hence, the assumption about node identifiers
is necessary in this model. However, the algorithm can be uniform, i.e., the
total number of processes need not be known.

5.11 Challenges in designing distributed graph algorithms

We have thus far considered some elementary but important graph problems,
and seen how to solve them in distributed algorithms. The algorithms either
fail or require a more complicated redesign if we assume that the graph
topology changes dynamically, which happens in mobile systems.

• The graph �N�L� changes dynamically in the normal course of execution
of a distributed execution. An example is the load on a network link,
which is really determined as the aggregate of many different flows. It is

176 Terminology and basic algorithms

unrealistic to expect that this will ever be static. All of a sudden, the MST
algorithms (and others) need a complete overhaul.

• The graph can change if either there are link or node failures, or worse
still, partitions in the network. The graph can also change when new links
and new nodes are added to the network. Again, the algorithms seen thus
far need to be redesigned to accommodate such changes.

The challenge posed by mobile systems additionally needs to deal with the
new communication model. Here, each node is capable of transmitting data
wirelessly, and all nodes within a certain radius can receive it. This is the
unit-disk radius model.

5.12 Object replication problems

We now describe a real-life graph problem based on web/data replication,
which also requires dynamic distributed solutions.

1. Consider a weighted graph �N�L�, wherein k users are situated at some
Nk ⊆N nodes, and r replicas of a data item can be placed at some Nr ⊆N .
What is the optimal placement of the replicas if k > r and the users access
the data item in read-only mode?
A solution requires evaluating all placements of Nr among the nodes in N
to identify min�

∑
i∈Nk�ri∈Nr disti�ri �, where disti�ri is the cost from node i to

ri, the replica nearest to i.
2. If we assume that the read accesses from each of the users in Nk have a

certain frequency (or weight), the minimization function would change.
3. If each edge has a certain bandwidth or capacity, that too has to be taken

into account in identifying a feasible solution.
4. Now assume that a user access to the shared data is a read operation with

probability x, and an update operation with probability 1−x. An update
operation also requires all replicas to be updated. What is the optimal
placement of the replicas if k > r?

Many such graph problems do not always have polynomial solutions even in
the static case. With dynamically changing input parameters, the case appears
even more hopeless for an optimal solution. Fortunately, heuristics can often
be used to provide good solutions.

5.12.1 Problem definition

In a large distributed system, data replication is useful for rapid access to
data and for fault-tolerance. Here we look at Wolfson et al.’s optimal data
replication strategy that is dynamic in that it adapts to the read and write pat-
terns from the different nodes [37]. Let the network be modeled by the graph
�V�E�, and let us focus on a single object for simplicity. Define a replication

177 5.12 Object replication problems

scheme as a subset R of V such that each node in R has a replica of the
object. Let ri and wi denote the rates of reads and writes issued by node i.
Let cr�i� and cw�i� denote the cost of a read and write issued by node i. Let
� denote the set of all possible replication schemes. The goal is to minimize
the cost of the replication scheme:

min
R∈�

[∑
i∈V
ri · cr�i�+

∑
i∈V
wi · cw�i�

]
� (5.3)

The algorithm assumes one copy serializability, which can be implemented by
the read-one-write-all (ROWA) policy. ROWA can be strictly implemented
in conjunction with a concurrency control mechanism such as two-phase
locking; however, lazy propagation can also be used for weaker semantics.

5.12.2 Algorithm outline

For arbitrary graph topologies, minimizing the cost as in Eq. (5.3) is
NP-complete. So we assume a tree topology T , as shown in Figure 5.14.
The nodes in the replication scheme R are shown in the ellipse. If T is
allowed to be a tree overlay T on the network topology, then all algorithm
communication is confined to the overlay. Conceptually, the set of nodes
R containing the replicas is an amoeba-like connected subgraph that moves
around the overlay tree T towards the “center of gravity” of the read and
write activity. The amoeba-like subgraph expands when the relative cost of
the reads is more than that of writes, and shrinks as the relative cost of writes
is more than that of reads, reaching an equilibrium under steady state activity.
This equilibrium-state subgraph for the replication scheme is optimal. The
algorithm executes in steps that are separated by predetermined time periods
or “epochs.” Irrespective of the initial replication scheme, the algorithm con-
verges to the optimal replication scheme in (diameter+1) number of steps
once the read-and-write pattern stabilizes.

5.12.3 Reads and writes

Read
A read operation is performed from the closest replica on the tree T . If the
node issuing the read query or receiving a forwarded read query is not in

Figure 5.14 The tree topology
and the replication scheme R.
Nodes inside the ellipse belong
to the replication scheme.

A B

C

D
E

R
R-fringe

R-neighbor

R-neighbor and R-fringe

178 Terminology and basic algorithms

R, it forwards the query towards the nodes in R along the tree edges – for
this, it suffices that a parent pointer point in the direction of the subgraph R.
Once the query reaches a node in R, the value read is returned along the same
path.

Write
A write is performed to every replica in the current replication scheme R.
If a write operation is issued by a node not in R, the operation request is
propagated to the closest node in R, like for the read operation request. Once
a write operation reaches a node i in R, the local replica is updated, and the
operation is propagated to all neighbors of i that belong to R. To implement
this, a node needs to track the set of its neighbors that belong to R. This is
done using a variable, R-neighbor.

Implementation
To execute a read or write operation, a node needs to know (i) whether it is
in R (so it can read/write from the local replica), (ii) which of its neighbors
are in R (to propagate write requests), and (iii) if the node is not in R, then
which of its neighbors is the unique node that leads on the tree to R (so it
can propagate read and write requests). After appropriate initialization, this
information is always locally available by tracking the status of the neighbor
nodes.

5.12.4 Converging to an replication scheme

Within the replication scheme R, three types of nodes are defined:

• R-neighbor: Such a node i belongs to R but has at least one neighbor j
that does not belong to R.

• R-fringe: Such a node i belongs to R and has only one neighbor j that
belongs to R. Thus, i is a leaf node in the subgraph of T induced by R

and j is the parent of i.
• singleton: �R� = 1 and i ∈ R.

Example In Figure 5.14, node C is an R-fringe node, nodes A and E are
both R-fringe and R-neighbor nodes, and node D is an R-neighbor node.

The algorithm uses the following three tests to adjust the replication scheme
to converge to the optimal scheme:

• Expansion test An R-neighbor node i examines each such neighbor j
to determine whether j can be included in the replication scheme, using
an expansion test. Node j is included in the replication scheme if the
volume of reads coming from and via j is more than the volume of writes
that would have to be propagated to j from i if j were included in the
replication scheme.

179 5.12 Object replication problems

(variables)
integer Neighbors�1

 bi�; // bi neighbors in tree T topology
integer Read_Received�1

 bi�; // jth element gives # reads

// from Neighbors�j�

integer Write_Received�1

 bi�; // jth element gives # writes
// from Neighbors�j�

integer writei� readi; // # writes and # reads issued locally
boolean success;

(1) Pi determines which tests to execute at the end of each epoch:
(1a) if i is R-neighbor and R-fringe then
(1b) if expansion test fails then
(1c) reduction test
(1d) else if i is R-neighbor and singleton then
(1e) if expansion test fails then
(1f) switch test
(1g) else if i is R-neighbor and not R-fringe and not singleton then
(1h) expansion test

(1i) else if i is R−neighbor and R-fringe then
(1j) contraction test.

(2) Pi executes expansion test:
(2a) for j from 1 to bi do
(2b) if Neighbors�j� not in R then
(2c) if Read_Received�j� > �writei+∑

k=1

 bi�k �=j Write_Received�k�� then
(2d) send a copy of the object to Neighbors�j�;

success←− 1;
(2e) return(success).

(3) Pi executes contraction test:
(3a) let Neighbors�j� be the only neighbor in R;
(3b) if Write_Received�j� > �readi+

∑
k=1

 bi�k �=j Read_Received�k�� then

(3c) seek permission from Neighbors�j� to exit from R;
(3d) if permission received then
(3e) success←− 1; inform all neighbors;
(3f) return(success).

(4) Pi executes switch test:
(4a) for j from 1 to bi do
(4b) if �Read_Received�j�+Write_Received�j�� >

�
∑

k=1

 bi�k �=j�Read_Received�k�+Write_Received�k��+
readi+writei� then

(4c) transfer object copy to Neighbors�j�; success←− 1;
inform all neighbors;

(4d) return(success).

Algorithm 5.15 Adaptive data replication algorithm executed by a node Pi in replication scheme R.

All variables except Neighbors are reset at the end of each epoch. R stabilizes in diameter + 1 epochs

after the read–write rates stabilize.

180 Terminology and basic algorithms

Figure 5.15 Adaptive data
replication tests executed by
node i . (a) Expansion test.
(b) Contraction test. (c) Switch
test. (a) (b) (c)

r

w r

w r + w

r + wij ij
i

j

Example In Figure 5.15(a), node i includes j in the replication scheme
if r > w.

• Contraction test An R-fringe node i examines whether it can exclude
itself from the replication scheme, using a contraction test. Node i excludes
itself from the replication scheme if the volume of writes being propagated
to it from j is more than the volume of reads that i would have to forward
to j if i were to exit the replication scheme. Before exiting, node i must
seek permission from j to prevent a situation where R= 	i� j� and both i
and j simultaneously have a successful contraction test and exit, leaving
no copies of the object.

Example In Figure 5.15(b), node i excludes itself from the replication
scheme if w > r .

• Switch test A singleton node i executes the switch test to determine
if it can transfer its replica to some neighbor to optimize the objective
function. A singleton node transfers its replica to a neighbor j if the
volume of requests being forwarded by that neighbor is greater than the
volume of requests the node would have to forward to that neighbor
if the replica were shifted from itself to that neighbor. If such a node
j exists, observe that it is uniquely identified among the neighbors of
node i.

Example In Figure 5.15(c), node i transfers its replica to j if r+w being
forwarded by j is greater than r+w that node i receives from all other
nodes.

The various tests are executed at the end of each “epoch.” An R-neighbor
node may also be an R-fringe node or a singleton node; in either case, the
expansion test is executed first and if it fails, then the contraction test or the
switch test is executed. Note that a singleton node cannot be an R-fringe node.
The code is given in Algorithm 5.15.

Implementation
Each node needs to be able to determine whether it is in R, whether it is
an R-neighbor node, an R-fringe node, or a singleton node. This can be

181 5.12 Object replication problems

determined if a node knows whether it is in R, the set of neighbor nodes, and
for each such neighbor, whether it is in R. This is a subset of the information
required for implementing read and write operations, and can be tracked easily
using local exchanges. Hence, these operations are not shown in the code
in Algorithm 5.15. The actions to service read and write requests described
earlier are also straightforward and are not shown code.

Correctness
Given an initial connected replication scheme, the replication scheme after
each epoch remains connected, and the replication schemes in two consecu-
tive epochs either intersect or are adjacent singletons. This property follows
from the fact that for each node i ∈ R, in each epoch, at most one of the three
tests – expansion, contraction, and switch – succeeds, and the corresponding
transformation satisfies the above property. Given two disconnected compo-
nents of a replication scheme, it is easy to see that adding nodes to combine
the components can never increase the cost (Eq. (5.3)) of the replication
scheme.

Once the read–write pattern stabilizes, the replication scheme stabilizes
within diameter+1 number of epochs, and the resulting replication scheme
is optimal. The proof is fairly complex; below are the main steps to show
termination, and these can be validated intuitively. For the optimality argu-
ment, note that each change in an epoch reduces the cost. The proof that
the replication scheme on termination is globally optimal and not just locally
optimal is given in the full paper [37].

Termination
• After a switch test succeeds, no other expansion test can succeed.
• If a node exits the replication scheme in a contraction test, it cannot

re-enter the replication scheme via an expansion test.
• If a node exits the replication scheme in a switch test, it cannot re-enter

the replication scheme again.

Thus, if a node exits the replication scheme, it can re-enter only by a switch
test, and that too if the exit was via a contraction test. But then, no further
expansion test can succeed. Hence, a node can exit the replication scheme at
most once more – via a switch test. Each node can exit the replication scheme
at most twice, and after the first switch test, no expansion can occur. Hence
the replication scheme stabilizes.

It can be seen that the replication scheme first expands wherever possible,
and then contracts. If it becomes a singleton, then the only changes possible
are switches.

182 Terminology and basic algorithms

Arbitrary graphs
The algorithm so far assumes the graph was a tree, on which the replication
scheme “amoeba” moves into optimal position. For arbitrary graphs, a tree
overlay can be used. However, the tree structure also has to change dynam-
ically because the shortest path in the spanning tree between two arbitrary
nodes is not always the shortest path between the nodes in the graph. Modified
versions of the three tests can now be used, but the structure of the graph does
not guarantee the global optimum solution, but only that a local optimum is
reached.

5.13 Chapter summary

This chapter first examined various views of the distributed system at different
levels of abstraction of the topology of the system graph. It then introduced
basic terminology for classifying distributed algorithms and distributed exe-
cutions. This covered failure models of nodes and links. It then examined
several performance metrics for distributed algorithms.

The chapter then examined several traditional distributed algorithms on
graphs. The most basic of such algorithms are the spanning tree, minimum-
weight spanning tree, and the shortest path algorithms – both single source and
multi-source. The importance of these algorithms lies in the fact that spanning
trees are used for information distribution and collection via broadcast and
convergecast, respectively, and these functions need to be performed by
a wide range of distributed applications. The convergecast and broadcast
performed on the spanning trees also allow the repeated computation of a
global function such as min, max, and

∑
. Some of the shortest path routing

algorithms studied are seen to be used in the Internet at the network layer. In
all cases, the synchronous version and then the asynchronous version of the
algorithms were examined.

The various examples of algorithm design showed that it is often easier to
construct an algorithm for a synchronous system than it is for an asynchronous
system. The chapter then studied synchronizers, which are transformations
that allow any algorithm designed for a synchronous system to run in an asyn-
chronous system. Specifically, four synchronizers, in the order of increasing
complexity, were studied – the simple synchronizer, the � synchronizer, the
� synchronizer, and the � synchronizer.

A distributed randomized algorithm for the maximal independent set prob-
lem was studied, and then the problem of determining a connected dominat-
ing set was examined. The chapter then examined several compact routing
schemes. These aim to trade-off routing table size for slightly longer routes.
The leader election problem was then considered. The chapter concluded by
taking a look at the problem of dynamic replication of read/write objects to
minimize traffic.

183 5.14 Exercises

5.14 Exercises

Exercise 5.1 Adapt the synchronous BFS spanning tree algorithm (Algorithm 5.1) to
satisfy the following properties:

1. The root node can detect once the entire algorithm has terminated. The root should
then terminate.

2. Each node is able to identify its child nodes without using any additional messages.
3. A process exits after the round in which it sets its parent variable.

What is the resulting space, time, and message complexity in each case?

Exercise 5.2 What is the exact number of messages sent in the spanning tree algorithm
(Algorithm 5.2)? You may want to use additional parameters to characterize the graph.
Is it possible to reduce the number of messages to exactly 2l?

Exercise 5.3 Modify Algorithm 5.2 to obtain a BFS tree with the asynchronous
system, while retaining the framework of the flooding mechanism.

Exercise 5.4 Modify the asynchronous spanning tree algorithm (Algorithm 5.2) to
eliminate the use of REJECT messages. What is the message overhead of the modified
algorithm?

Exercise 5.5 What is the maximum distance between any two nodes in the tree
obtained by running Algorithm 5.3?

Exercise 5.6 For Algorithm 5.3, show each of the performance complexities intro-
duced in Section 5.3.

Exercise 5.7 For Algorithm 5.4, show each of the performance complexities intro-
duced in Section 5.3.

Exercise 5.8 (Based on Cheung [7]) Simplify Algorithm 5.4 to deal with only a single
initiator. What is the message complexity and the time complexity of the resulting
algorithm?

Exercise 5.9 (Based on [2]) Modify the algorithm derived in Exercise 5.8 to obtain
a depth-first search tree but with time complexity O�n�. (Assuming a single intiator
for simplicity does not reduce the time complexity. A different strategy needs to be
used.)

Exercise 5.10 Formally write the convergecast algorithm of Section 5.5.5 using the
style for the other algorithms in this chapter.

Modify your algorithm to satisfy the following property. Each node has a sensed
temperature reading. The maximum temperature reading is to be collected by the root.

Exercise 5.11 Modify the synchronous flooding algorithm (Algorithm 5.10) so as to
reduce the complexity, assuming that all the processes only need to know the highest
process identifier among all the processes in the network. For this adapted algorithm,
what are the lowered complexity measures?

Exercise 5.12 Adapt Algorithms 5.5 and 5.10 to design a synchronous algorithm that
achieves the following property: “in each round, each node may or may not generate
a new update that it wants to distribute throughout the network. If such an update

184 Terminology and basic algorithms

is locally generated within a round, it should be synchronously propagated in the
network.”

Exercise 5.13 In the synchronous distributed Bellman–Ford algorithm (Algo-
rithm 5.5), the termination condition for the algorithm assumed that each process knew
the number of nodes in the graph. If this number is not known, what can be done to
find it?

Exercise 5.14 In the asynchronous Bellman–Ford algorithm (Algorithm 5.6), what
can be said about the termination conditions when (i) n is not known, and when (ii) n
is known?

For each of these two cases, modify the asynchronous Bellman–Ford algorithm to
allow each process to determine when to terminate.

Exercise 5.15 Modify the asynchronous Bellman–Ford algorithm (Algorithm 5.6) to
devise the distance vector routing algorithm outlined in Section 5.5.7.

Exercise 5.16 For the asynchronous Bellman–Ford algorithm (Algorithm 5.6), show
that it has an exponential ��cn� number of messages and exponential ��cn ·d� time
complexity in the worst case, where c is some constant [25].

Exercise 5.17 For the asynchronous Bellman–Ford algorithm (Algorithm 5.6), if all
links are assumed to have equal weight, the algorithm effectively computes the
minimum-hop path. Show that under this assumption, the minimum-hop routing tables
to all destinations are computed using O�n2 · l� messages.

Exercise 5.18 For the asynchronous Bellman–Ford algorithm (Algorithm 5.6):

1. If some of the links may have negative weights, what would be the impact on the
shortest paths? Explain your answer.

2. If the link weights can keep changing (as in the Internet), can cycles be formed
during routing based on the computed next hop?

Exercise 5.19 In the distributed Floyd–Warshall algorithm (Algorithm 5.8), consider
iteration k at node i and iteration k+ 1 at node j. Examine the dependencies in the
code of i and j in these two iterations.

Exercise 5.20 In the distributed Floyd–Warshall algorithm (Algorithm 5.8):

1. Show that the parameter pivot is redundant on all the message types when the
communication channels are FIFO.

2. Show that the parameter pivot is required on all the message types when the
communication channels are non-FIFO.

Exercise 5.21 In the synchronous distributed GHS algorithm (Algorithm 5.11), it was
assumed that all the edge weights were unique. Explain why this assumption was
necessary, and give a way to make the weights unique if they are not so.

Exercise 5.22 In the synchronous GHS MST algorithm, prove that when several
components join to form a single component, there must exist a cycle of length two
in the component graph of MWOE edges.

Exercise 5.23 Identify how the complexity of the synchronous GHS algorithm can be
reduced from O��n+�L��log n� to O��n log n�+�L��. Explain and prove your answer.

185 5.15 Notes on references

Exercise 5.24 Consider the simple, �, and � synchronizers. Identify some algorithms
or application areas where you can identify one synchronizer as being more efficient
than the others.

Exercise 5.25 For the � synchronizer, significant flexibility can be achieved by vary-
ing a parameter k that is used to give a bound on Lc (sum of the number of tree edges
and clustering edges) and hc (maximum height of any tree in any cluster). Visually,
this parameter determines the flatness of the cluster hierarchy.

Show that for every k, 2 ≤ k < n, a clustering scheme can be designed so as to
satisfy the following bounds: (1) Lc < k ·n, and (2) hc ≤ �log n�/�log k�.
Exercise 5.26 1. For the tree-labeling scheme for compact routing, show that a pre-
order traversal of the tree generates a numbering that always permits tree-labeled
routing.
2. Will post-order traversal always generate a valid tree-labeling scheme?
3. Will in-order traversal always generate a valid tree-labeling scheme?

Exercise 5.27 1. For the tree-labeling schemes, show that there is no uniform bound
on the dialation, which is defined as the ratio of the length of the tree path to the
optimal path, between any pair of nodes and an arbitrary tree.
2. Is it possible to bound the dialation by choosing a tree for any given graph? Explain
your answer.

Exercise 5.28 Examine all the algorithms in this chapter, and classify them using the
classifications introduced in Sections (5.2.1–5.2.10).

Exercise 5.29 Examine the impact of both fail-stop process failures and of crash
process failures on all the algorithms described in this chapter. Explain your answers
in each case.

Exercise 5.30 (Adaptive data replication) In the adaptive data replication scheme
(Section 5.12), consider a node that is both an R-neighbor and an R-fringe node.

1. Can the expansion test and the reduction test both be successful? Prove your answer.
2. The algorithm first performs the expansion test, and if it fails, then it performs the

reduction test. Is it possible to restructure the algorithm to perform the reduction
test first, and then the expansion test? Prove your answer.

Exercise 5.31 Modify the rules of the expansion, contraction, and switch tests in the
adaptive dynamic replication algorithm of Section 5.12 to adapt to tree overlays on
arbitrary graphs, rather than to tree graphs. Justify the correctness of the modified tests.

5.15 Notes on references

The discussion on the classification of distributed algorithms is based on the vast
literature, and many of the definitions are difficult to attribute to a particular source.
The discussion on execution inhibition is based on Critchlow and Taylor [10]. The
discussion on failure models is based on Hadzilacos and Toueg [17]. Crash failures
were proposed by Lamport and Fischer [21]. Failstop failures were introduced by
Schlichting and Schneider [30]. Send omission failures were introduced by Hadzilacos
[16]. General omission failures and timing failures were introduced by Perry and

186 Terminology and basic algorithms

Toueg [27] and Christian et al. [8], respectively. The notion of wait-freedom was
introduced by Lamport [20] and later developed by Herlihy [18]. The notions of the
space, message, and time complexities have been around for a long time. The time
and message complexity measures were formalized by Peterson and Fischer [28] and
later by Awerbuch [3].

The various spanning tree algorithms are common knowledge and have been used
informally in many contexts. Broadcast, convergecast, and distributed spanning trees
are listed as part of a suite of elementary algorithms [13]. Segall [32] formally
presented the broadcast and convergecast algorithms, and the breadth-first search span-
ning tree algorithm, on which Algorithm 5.1 is based. Algorithms 5.3 and 5.4, which
compute flooding-based and depth-first search based spanning trees, respectively, in
the face of concurrent initiators, use the technique of supressing lower priority ini-
tiations. This technique has been used in many other contexts in computer science
(e.g., database transaction serialization, deadlock detection). An asynchronous DFS
algorithm with a specified root was given by Cheung [7]. Algorithm 5.4 adapts this to
handle concurrent initiators. The solution to Exercise 5.9, which asks for a linear-time
DFS tree, was given by Awerbuch [2].

The synchronous Bellman–Ford algorithm is derived from the Bellman–Ford short-
est path algorithm [4,12]. The asynchronous Bellman–Ford was formalized by Chandy
and Misra [5]. The distance vector routing algorithm and synchronous flooding algo-
rithm of Algorithm 5.10 are based on the Arpanet protocols [33]. The Floyd–Warshall
algorithm is from [9] and its distributed version was given by Toueg [34]. The
asynchronous flooding algorithm outlined in Algorithm 5.9 is based on the link state
routing protocol used in the Internet [33].

The synchronous distributed minimum spanning tree algorithm was given by Gal-
lagher et al. [14]. Its asynchronous version was also proposed by the same authors.
The notion of synchronizers, and the �, �, and � synchronizers were introduced by
Awerbuch [3]. The randomized algorithm for the maximal independent set (MIS) was
proposed by Luby [24]. Several distributed algorithms to create connected dominating
sets with a low approximation factor are surveyed by Wan et al. [36]. The randomized
algorithm for connected dominating set by Dubhashi et al. [11] has an approximation
factor of O�log��, where � is the maximum degree of the network. This algorithm
also has a stretch factor of O�log n�. Compact routing based on the tree topology
was introduced by Santoro and Khatib [29]. Its generalization to interval routing was
introduced by van Leeuwen and Tan [35]. A survey of interval routing mechanisms
is given by Gavoille [15]. The LCR algorithm for leader election was proposed by
LeLann [23] and Chang and Roberts who provided several optimizations [6]. The
O�n log n� alogrithm for leader election was given by Hirschberg and Sinclair [19].
The result on the impossibility of election on anonymous rings was shown by Angluin
[1]. The adaptive replication algorithm was proposed by Wolfson et al. [37].

References

[1] D. Angluin, Local and global properties in networks of processors, Proceedings
of the 12th ACM Symposium on Theory of Computing, 1980, 82–93.

[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election, and related problems, Proceedings of 19th ACM
Symposium on Principles of Theory of Computing (STOC), 1987, 230–240.

187 References

[3] B. Awerbuch, Complexity of network synchronization, Journal of the ACM,
32(4), 1985, 804–823.

[4] R. Bellman, Dynamic Programming, Princeton, NJ, Princeton University Press,
1957.

[5] K. M. Chandy and J. Misra, Distributed computations on graphs: shortest path
algorithms, Communications of the ACM, 25(11), 1982, 833–838.

[6] E. Chang and R. Roberts, An improved algorithm for decentralized extrema-
finding in circular configurations of processes, Communications of the ACM,
22(5), 1979, 281–283.

[7] T.-Y. Cheung, Graph traversal techniques and the maximum flow problem in
distributed computation, IEEE Transactions on Software Engineering, 9(4),
1983, 504–512.

[8] F. Christian, H. Aghili, H. Strong, and D. Dolev, Atomic broadcast: from
simple message diffusion to Byzantine agreement, Proceedings of the 15th
International Symposium on Fault-Tolerant Computing, 1985, 200–206.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, An Introduction to Algorithms,
2nd edn, Cambridge, MA, MIT Press, 2001.

[10] C. Critchlow and K. Taylor, The inhibition spectrum and the achievement of
causal consistency, Distributed Computing, 10(1), 1996, 11–27.

[11] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan, Fast
distributed algorithms for (weakly) connected dominating sets and linear-size
skeletons, Proceedings of the 14th Annual Symposium on Discrete Algorithms,
2003, 717–724.

[12] L. Ford and D. Fulkerson, Flows in Networks, Princeton, NJ, Princeton Uni-
versity Press, 1962.

[13] E. Gafni, Perspectives on distributed network protocols: a case for building
blocks, Proceedings of the IEEE MILCOM, Monterey, CA, 1986.

[14] R. Gallagher, P. Humblet, and P. Spira, A distributed algorithm for minimum-
weight spanning trees, ACM Transactions on Programming Languages and
Systems, 5(1), 1983, 66–77.

[15] C. Gavoille, A survey on interval routing, Theoretical Computer Science,
245(2), 2000, 217–253.

[16] V. Hadzilacos, Issues of Fault Tolerance in Concurrent Computations, Ph.D.
dissertation, Harvard University, Computer Science Technical Report, 11-84,
1984.

[17] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems, in
Mullender, S. (ed.) Distributed Systems, Addison-Wesley, 1993, 97–146.

[18] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming
Languages and Systems, 15(5), 1991, 745–770.

[19] D. Hirschberg and J. Sinclair, Decentralized extrema-finding in circular
configurations of processors, Communications of the ACM, 23(11), 1980,
627–628.

[20] L. Lamport, Concurrent reading and writing, Communications of the ACM,
20(11), 1977, 806–811.

[21] L. Lamport and M. Fischer, Byzantine Generals and Transaction Commit
Protocols, SRI International, Technical Report 62, 1982.

[22] L. Lamport, R. Shostak, and M. Pease, The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems, 4(3), 1982, 382–401.

[23] G. LeLann, Distributed systems, towards a formal approach, IFIP Congress
Proceedings, 1977, 155–160.

[24] M. Luby, A simple parallel algorithm for the maximal independent set problem,
SIAM Journal of Computing, 15(4), 1986, 1036–1053.

188 Terminology and basic algorithms

[25] N. Lynch, Distributed Algorithms, San Francisco, CA, Morgan Kaufmann,
1996.

[26] S. Mullender, Distributed Systems, 2nd edn, Addison–Wesley, 1993.
[27] K. Perry and S. Toueg, Distributed agreement in the presence of processor

and communication faults, IEEE Transactions on Software Engineering, 12(3),
1986, 477–482.

[28] G. Peterson and M. Fischer, Economical solutions for the critical section prob-
lem in a distributed system, Proceedings of the 9th ACM Symposium on Theory
of Computing, Boulder, CO, May, 1977, 91–97.

[29] N. Santoro and R. Khatib, Labelling and implicit routing in networks, The
Computer Journal, 28, 1985, 5–8.

[30] R. Schlichting and F. Schneider, Fail-stop processors: an approach to designing
fault-tolerant computing systems, ACM Transactions on Computer Systems,
1(3), 1983, 222–238.

[31] F. B. Schneider, Byzantine generals in action: implementing fail-stop proces-
sors, ACM Transactions on Computer Systems, 2(2), 1984, 145–154.

[32] A. Segall, Distributed network protocols, IEEE Transactions on Information
Theory, 29(1), 1983, 23–35.

[33] A. Tanenbaum, Computer Networks, 3rd edn, NJ, Prentice-Hall PTR, 1996.
[34] S. Toueg, An All-pairs Shortest Path Distributed Algorithm, IBM Technical

Report RC 8327, 1980.
[35] J. van Leeuwen and R. Tan, Interval routing, The Computer Journal, 30, 1987,

298–307.
[36] P. Wan, K. Alzoubi, and O. Frieder, Distributed construction of connected

dominating set in wireless ad-hoc networks, Proceedings of the IEEE Infocom,
New York, June 2002, 1597–1604.

[37] O. Wolfson, S. Jajodia, and Y. Huang, An adaptive data replication algorithm,
ACM Transactions on Database Systems, 22(2), 1997, 255–314.

C H A P T E R

6 Message ordering and group
communication

Inter-process communication via message-passing is at the core of any dis-
tributed system. In this chapter, we will study non-FIFO, FIFO, causal order,
and synchronous order communication paradigms for ordering messages. We
will then examine protocols that provide these message orders. We will
also examine several semantics for group communication with multicast –
in particular, causal ordering and total ordering. We will then look at how
exact semantics can be specified for the expected behavior in the face of pro-
cessor or link failures. Multicasts are required at the application layer when
superimposed topologies or overlays are used, as well as at the lower layers
of the protocol stack. We will examine some popular multicast algorithms
at the network layer. An example of such an algorithm is the Steiner tree
algorithm, which is useful for setting up multi-party teleconferencing and
videoconferencing multicast sessions.

Notation
As before, we model the distributed system as a graph �N�L�. The following
notation is used to refer to messages and events:

• When referring to a message without regard for the identity of the sender
and receiver processes, we use mi. For message mi, its send and receive
events are denoted as si and ri, respectively.

• More generally, send and receive events are denoted simply as s and r.
When the relationship between the message and its send and receive events
is to be stressed, we also use M , send�M�, and receive�M�, respectively.

For any two events a and b, where each can be either a send event or a receive
event, the notation a ∼ b denotes that a and b occur at the same process, i.e.,
a ∈ Ei and b ∈ Ei for some process i. The send and receive event pair for a
message is said to be a pair of corresponding events. The send event corre-
sponds to the receive event, and vice-versa. For a given executionE, let the set of
all send–receive event pairs be denoted as T= 	�s� r� ∈ Ei×Ej � s corresponds

189

190 Message ordering and group communication

to r�. When dealing with message ordering definitions, we will consider only
send and receive events, but not internal events, because only communication
events are relevant.

6.1 Message ordering paradigms

The order of delivery of messages in a distributed system is an important
aspect of system executions because it determines the messaging behavior that
can be expected by the distributed program. Distributed program logic greatly
depends on this order of delivery. To simplify the task of the programmer,
programming languages in conjunction with the middleware provide certain
well-defined message delivery behavior. The programmer can then code the
program logic with respect to this behavior.

Several orderings on messages have been defined: (i) non-FIFO, (ii) FIFO,
(iii) causal order, and (iv) synchronous order. There is a natural hierarchy
among these orderings. This hierarchy represents a trade-off between concur-
rency and ease of use and implementation. After studying the definitions of
and the hierarchy among the ordering models, we will study some implemen-
tations of these orderings in the middleware layer. This section is based on
Charron-Bost et al. [7].

6.1.1 Asynchronous executions

Definition 6.1 (A-execution) An asynchronous execution (or A-execution)
is an execution �E�≺� for which the causality relation is a partial order.

There cannot exist any causality cycles in any real asynchronous execution
because cycles lead to the absurdity that an event causes itself. On any logical
link between two nodes in the system, messages may be delivered in any order,
not necessarily first-in first-out. Such executions are also known as non-FIFO
executions. Although each physical link typically delivers the messages sent
on it in FIFO order due to the physical properties of the medium, a logical
link may be formed as a composite of physical links and multiple paths may
exist between the two end points of the logical link. As an example, the mode
of ordering at the Network Layer in connectionless networks such as IPv4 is
non-FIFO. Figure 6.1(a) illustrates an A-execution under non-FIFO ordering.

Figure 6.1 Illustrating FIFO
and non-FIFO executions. (a)
An A-execution that is not a
FIFO execution. (b) An
A-execution that is also a FIFO
execution.

r

2 r

1 r

3

s

1 s

2 s

3
P2

P1
r

1 r

2

s

1 s

2

m

2
m

1
m

3
m

1

m

2

(a) (b)

191 6.1 Message ordering paradigms

6.1.2 FIFO executions

Definition 6.2 (FIFO executions) A FIFO execution is an A-execution in
which,
for all �s� r� and �s′� r ′� ∈ T, (s ∼ s′ and r ∼ r ′ and s ≺ s′) =⇒ r ≺ r ′.
On any logical link in the system, messages are necessarily delivered in the
order in which they are sent. Although the logical link is inherently non-
FIFO, most network protocols provide a connection-oriented service at the
transport layer. Therefore, FIFO logical channels can be realistically assumed
when designing distributed algorithms. A simple algorithm to implement a
FIFO logical channel over a non-FIFO channel would use a separate num-
bering scheme to sequence the messages on each logical channel. The sender
assigns and appends a �sequence_num, connection_id� tuple to each mes-
sage. The receiver uses a buffer to order the incoming messages as per the
sender’s sequence numbers, and accepts only the “next” message in sequence.
Figure 6.1(b) illustrates an A-execution under FIFO ordering.

6.1.3 Causally ordered (CO) executions

Definition 6.3 (Causal order (CO)) A CO execution is an A-execution in
which,
for all �s� r� and �s′� r ′� ∈ T, (r ∼ r ′ and s ≺ s′) =⇒ r ≺ r ′.
If two send events s and s′ are related by causality ordering (not physical time
ordering), then a causally ordered execution requires that their corresponding
receive events r and r ′ occur in the same order at all common destinations.
Note that if s and s′ are not related by causality, then CO is vacuously satisfied
because the antecedent of the implication is false.

Examples

• Figure 6.2(a) shows an execution that violates CO because s1 ≺ s3 and at
the common destination P1, we have r3 ≺ r1.

• Figure 6.2(b) shows an execution that satisfies CO. Only s1 and s2 are
related by causality but the destinations of the corresponding messages are
different.

Figure 6.2 Illustration of
causally ordered executions.
(a) Not a CO execution. (b),
(c), and (d) CO executions.

(a) (b) (c) (d)

P1

P2

P3
s1 s2 s1 s2 s1 s2 s1r2

m2 m2

m3

m3 m1 m3

m1

m2

m2

r3

s2

m1m3

r
2

r
3

r
3

s
3 s

3 r
3

s
3

r
1

r
2

r
1 r

1

r
2

r
1

m1

s3

192 Message ordering and group communication

• Figure 6.2(c) shows an execution that satisfies CO. No send events are
related by causality.

• Figure 6.2(d) shows an execution that satisfies CO. s2 and s1 are related by
causality but the destinations of the corresponding messages are different.
Similarly for s2 and s3.

Causal order is useful for applications requiring updates to shared data,
implementing distributed shared memory, and fair resource allocation such
as granting of requests for distributed mutual exclusion. Some of these uses
will be discussed in detail in Section 6.5 on ordering message broadcasts and
multicasts.

To implement CO, we distinguish between the arrival of a message and its
delivery. A message m that arrives in the local OS buffer at Pi may have to
be delayed until the messages that were sent to Pi causally before m was sent
(the “overtaken” messages) have arrived and are processed by the application.
The delayed message m is then given to the application for processing. The
event of an application processing an arrived message is referred to as a
delivery event (instead of as a receive event) for emphasis.

Example Figure 6.2(a) shows an execution that violates CO. To enforce
CO, message m3 should be kept pending in the local buffer after it arrives at
P1, until m1 arrives and m1 is delivered.

Definition 6.4 (Definition of causal order (CO) for implementations) If
send�m1� ≺ send�m2� then for each common destination d of messages m1

and m2, deliverd�m
1�≺ deliverd�m2� must be satisfied.

Observe that if the definition of causal order is restricted so that m1 and
m2 are sent by the same process, then the property degenerates into the FIFO
property. In a FIFO execution, no message can be overtaken by another
message between the same (sender, receiver) pair of processes. The FIFO
property which applies on a per-logical channel basis can be extended globally
to give the CO property. In a CO execution, no message can be overtaken by
a chain of messages between the same (sender, receiver) pair of processes.

Example Figure 6.2(a) shows an execution that violates CO. Message m1

is overtaken by the messages in the chain �m2�m3�.
CO executions can also be alternatively characterized by Definition 6.5 by

simultaneously dropping the requirement from the implicand of Definition 6.3
that the receive events be on the same process, and relaxing the consequence
from �r ≺ r ′� to ¬�r ′ ≺ r�, i.e., the message m′ sent causally later than m

is not received causally earlier at the common destination. This ordering is
known as message ordering (MO).

Definition 6.5 (Message order (MO)) A MO execution is an A-execution
in which,
for all �s� r� and �s′� r ′� ∈ T, s ≺ s′ =⇒¬�r ′ ≺ r�.

193 6.1 Message ordering paradigms

Example Consider any message pair, saym1 andm3 in Figure 6.2(a). s1≺ s3

but ¬�r3 ≺ r1� is false. Hence, the execution does not satisfy MO.

You are asked to prove the equivalence of MO executions and CO exe-
cutions in Exercise 6.1. This will show that in a CO execution, a message
cannot be overtaken by a chain of messages.

Another characterization of a CO execution in terms of the partial order
�E�≺� is known as the empty-interval (EI) property.

Definition 6.6 (Empty-interval execution) An execution �E�≺� is an
empty-interval (EI) execution if for each pair of events �s� r� ∈ T, the open
interval set 	x ∈ E � s ≺ x ≺ r� in the partial order is empty.

Example Consider any message, say m2, in Figure 6.2(b). There does not
exist any event x such that s2 ≺ x ≺ r2. This holds for all messages in the
execution. Hence, the execution is EI.

You are asked to prove the equivalence of EI executions and CO executions
in Exercise 6.1. A consequence of the EI property is that for an empty interval
�s� r�, there exists some linear extension1 < such that the corresponding
interval 	x ∈ E � s < x < r� is also empty. An empty �s� r� interval in a linear
extension indicates that the two events may be arbitrarily close and can be
represented by a vertical arrow in a timing diagram, which is a characteristic
of a synchronous message exchange. Thus, an execution E is CO if and
only if for each message, there exists some space–time diagram in which that
message can be drawn as a vertical message arrow. This, however, does not
imply that all messages can be drawn as vertical arrows in the same space–
time diagram. If all messages could be drawn vertically in an execution, all
the �s� r� intervals would be empty in the same linear extension and the
execution would be synchronous.

Another characterization of CO executions is in terms of the causal
past/future of a send event and its corresponding receive event. The following
corollary can be derived from the EI characterization above (Definition 6.6).

Corollary 6.1 An execution �E�≺� is CO if and only if for each pair of
events �s� r� ∈ T and each event e ∈ E,

• weak common past: e≺ r =⇒¬�s ≺ e�;
• weak common future: s ≺ e=⇒¬�e≺ r�.

Example Corollary 6.1 can be observed for the executions in Figures
6.2(b)–(d).

1 A linear extension of a partial order �E�≺� is any total order �E�<� such that each ordering
relation of the partial order is preserved.

194 Message ordering and group communication

If we require that the past of both the s and r events are identical (and
analogously for the future), viz., e≺ r =⇒ e≺ s and s ≺ e=⇒ r ≺ e, we get
a subclass of CO executions, called synchronous executions.

6.1.4 Synchronous execution (SYNC)

When all the communication between pairs of processes uses synchronous
send and receive primitives, the resulting order is the synchronous order. As
each synchronous communication involves a handshake between the receiver
and the sender, the corresponding send and receive events can be viewed as
occuring instantaneously and atomically. In a timing diagram, the “instan-
taneous” message communication can be shown by bidirectional vertical
message lines. Figure 6.3(a) shows a synchronous execution on an asyn-
chronous system. Figure 6.3(b) shows the equivalent timing diagram with the
corresponding instantaneous message communication.

The “instantaneous communication” property of synchronous executions
requires a modified definition of the causality relation because for each
�s� r� ∈ T, the send event is not causally ordered before the receive event. The
two events are viewed as being atomic and simultaneous, and neither event
precedes the other.

Definition 6.7 (Causality in a synchronous execution) The synchronous
causality relation � on E is the smallest transitive relation that satisfies the
following:

S1: If x occurs before y at the same process, then x� y.
S2: If �s� r� ∈ T, then for all x ∈ E, [(x� s⇐⇒ x� r) and (s� x⇐⇒

r�x)].
S3: If x� y and y� z, then x� z.

We can now formally define a synchronous execution.

Definition 6.8 (Synchronous execution) A synchronous execution (or
S-execution) is an execution �E��� for which the causality relation � is a
partial order.

Figure 6.3 Illustration of a
synchronous communication.
(a) Execution in an
asynchronous system.
(b) Equivalent instantaneous
communication.

P1

P2

P3
s1 r

2

r
3

r
1

s
5

s
6

s
4s

3s
2 r

5

r
4 r

6 s1 r
2

r
3 s

5

s
2 s

3 s
4 r

5

r
1 s

6

r
4 r

6

m
6 m

6m
4

m
5m

3

m
2m

1
m

1

m
2

m
3

m
5

m
4

(a) (b)

195 6.2 Asynchronous execution with synchronous communication

We now show how to timestamp events in synchronous executions.

Definition 6.9 (Timestamping a synchronous execution) An execution �E�
≺� is synchronous if and only if there exists a mapping from E to T (scalar
timestamps) such that

• for any message M , T�s�M��= T�r�M��;
• for each process Pi, if ei ≺ e′i then T�ei� < T�e′i�.

By assuming that a send event and its corresponding receive event are
viewed atomically, i.e., s�M�≺ r�M� and r�M�≺ s�M�, it follows that for any
events ei and ej that are not the send event and the receive event of the same
message, ei ≺ ej =⇒ T�ei� < T�ej�.

6.2 Asynchronous execution with synchronous communication

When all the communication between pairs of processes is by using syn-
chronous send and receive primitives, the resulting order is synchronous
order. The send and receive events of a message appear instantaneous, see
the example in Figure 6.3. We now address the following question:

• If a program is written for an asynchronous system, say a FIFO system,
will it still execute correctly if the communication is done by synchronous
primitives instead? There is a possibility that the program may deadlock,
as shown by the code in Figure 6.4.

Charron-Bost et al. [7] observed that a distributed algorithm designed to
run correctly on asynchronous systems (called A-executions) may not run
correctly on synchronous systems. An algorithm that runs on an asynchronous
system may deadlock on a synchronous system.

Examples The asynchronous execution of Figure 6.4, illustrated in
Figure 6.5(a) using a timing diagram, will deadlock if run with synchronous
primitives. The executions in Figure 6.5(b)–(c) will also deadlock when run
on a synchronous system.

Figure 6.4 A communication
program for an asynchronous
system deadlocks when using
synchronous primitives.

Process i Process j

 � � �

Send�j� Send�i�

Receive�j� Receive�i�

 � � �

196 Message ordering and group communication

Figure 6.5 Illustrations of
asynchronous executions and
of crowns. (a) Crown of size 2.
(b) Another crown of size 2.
(c) Crown of size 3.

P1

P2

P3

s
1

s
2

s
2 r

1

m
1

s
1 s

3 m
2

m
3

r
1

r
2 r

3 r
2 s

3 r
2

m
2

m
1

m
3

r
3

s
1

r
1s

2

m
1

m
2

(a) (b) (c)

6.2.1 Executions realizable with synchronous communication (RSC)

An execution can be modeled (using the interleaving model) as a feasible
schedule of the events to give a total order that extends the partial order
�E�≺�. In an A-execution, the messages can be made to appear instantaneous
if there exists a linear extension of the execution, such that each send event
is immediately followed by its corresponding receive event in this linear
extension. Such an A-execution can be realized under synchronous commu-
nication and is called a realizable with synchronous communication (RSC)
execution.

Definition 6.10 (Non-separated linear extension) A non-separated linear
extension of �E�≺� is a linear extension of �E�≺� such that for each pair
�s� r� ∈ T, the interval 	 x ∈ E � s ≺ x ≺ r � is empty.

Examples

• Figure 6.2(d): �s2� r2� s3� r3� s1� r1� is a linear extension that is non-
separated. �s2� s1� r2� s3� r3� s1� is a linear extension that is separated.

• Figure 6.3(b): �s1� r1� s2� r2� s3� r3� s4� r4� s5� r5� s6� r6� is a linear extension
that is non-separated. �s1� s2� r1� r2� s3� s4� r4� r3� s5� s6� r6� r5� is a linear
extension that is separated.

Definition 6.11 (RSC execution) [7] An A-execution �E�≺� is an RSC
execution if and only if there exists a non-separated linear extension of the
partial order �E�≺�.
In the non-separated linear extension, if the adjacent send event and its
corresponding receive event are viewed atomically, then that pair of events
shares a common past and a common future with each other. The various
other characterizations of S-executions seen in Section 6.1.4 are also seen to
hold.

To use Definition 6.11 requires checking for all the linear extensions,
incurs exponential overhead. You can verify this by trying to create and
examine all the linear extensions of the execution in Figure 6.5(b) or
(c). Thus, Definition 6.11 does not provide a practical test to determine
whether a program written for a non-synchronous system, say a FIFO system,

197 6.2 Asynchronous execution with synchronous communication

will still execute correctly if the communication is done by synchronous
primitives.

We now study a characterization of the execution in terms of a graph
structure called a crown; the crown leads to a feasible test for a RSC execution.

Definition 6.12 (Crown) Let E be an execution. A crown of size k in E
is a sequence ��si� ri�, i ∈ 	0�

 � k−1�� of pairs of corresponding send and
receive events such that: s0 ≺ r1, s1 ≺ r2,

 , sk−2 ≺ rk−1, sk−1 ≺ r0.

Examples

• Figure 6.5(a): The crown is ��s1� r1�� �s2� r2�� as we have s1 ≺ r2 and
s2 ≺ r1. This execution represents the program execution in Figure 6.4.

• Figure 6.5(b): The crown is ��s1� r1�� �s2� r2�� as we have s1 ≺ r2 and
s2 ≺ r1.

• Figure 6.5(c): The crown is ��s1� r1�� �s3� r3�� �s2� r2�� as we have s1 ≺ r3

and s3 ≺ r2 and s2 ≺ r1.
• Figure 6.2(a): The crown is ��s1� r1�� �s2� r2�� �s3� r3�� as we have s1 ≺ r2

and s2 ≺ r3 and s3 ≺ r1.

In a crown, the send event si and receive event ri+1 may lie on the same pro-
cess (e.g., Figure 6.5(c)) or may lie on different processes (e.g., Figure 6.5(a)).
We can also make the following observations:

• In an execution that is not CO (see the example in Figure 6.2(a)), there
must exist pairs �s� r� and �s′� r ′� such that s ≺ r ′ and s′ ≺ r. It is possible
to generalize this to state that a non-CO execution must have a crown of
size at least 2. (Exercise 6.4 asks you to prove that in a non-CO execution,
there must exist a crown of size exactly 2.)

• CO executions that are not synchronous, also have crowns, e.g., the exe-
cution in Figure 6.2(b) has a crown of size 3.

Intuitively, the cyclic dependencies in a crown indicate that it is not possible
to find a linear extension in which all the �s� r� event pairs are adjacent. In
other words, it is not possible to schedule entire messages in a serial manner,
and hence the execution is not RSC.

To determine whether the RSC property holds in �E�≺�, we need to deter-
mine whether there exist any cyclic dependencies among messages. Rather
than incurring the exponential overhead of checking all linear extensions of
E, we can check for crowns by using the test in Figure 6.6. On the set of
messages T, we define an ordering ↪→ such that m ↪→ m′ if and only if
s ≺ r ′.
Example By drawing the directed graph �T� ↪→� for each of the executions
in Figures 6.2, 6.3, and 6.5, it can be seen that the graphs for Figures 6.2(d)
and Figure 6.3 are acyclic. The other graphs have a cycle.

198 Message ordering and group communication

Figure 6.6 The crown test to
determine the existence of
cyclic dependencies among
messages.

1. Define the ↪→� T× T relation on messages in the execution �E�≺� as
follows. Let ↪→ ��s� r�� �s′� r ′�� if and only if s ≺ r ′. Observe that the
condition s ≺ r ′ (which has the form used in the definition of a crown) is
implied by all the four conditions: (i) s ≺ s′, or (ii) s ≺ r ′, or (iii) r ≺ s′,
and (iv) r ≺ r ′.

2. Now define a directed graph G↪→ = �T� ↪→�, where the vertex set is the
set of messages T and the edge set is defined by ↪→.
Observe that the relation ↪→� T × T is a partial order if and only if G↪→
has no cycle, i.e., there must not be a cycle with respect to ↪→ on the set
of corresponding �s� r� events.

3. It can be seen from the definition of a crown (Definition 6.12) that G↪→
has a directed cycle if and only if �E�≺� has a crown.

This test leads to the following theorem [7].

Theorem 6.1 (Crown criterion) The crown criterion states that an
A-computation is RSC, i.e., it can be realized on a system with synchronous
communication, if and only if it contains no crown.

Example Using the directed graph �T� ↪→� for each of the executions in
Figures 6.2, 6.3(a), and 6.5, it can be seen that the executions in Figures 6.2(d)
and Figure 6.3(a) are RSC. The others are not RSC.

Although checking for a non-separated linear extension of �E�≺� has
exponential cost, checking for the presence of a crown based on the message
scheduling test of Figure 6.6 can be performed in time that is linear in the
number of communication events (see Exercise 6.3). An execution is not RSC
and its graph G↪→ contains a cycle if and only if in the corresponding space–
time diagram, it is possible to form a cycle by (i) moving along message
arrows in either direction, but (ii) always going left to right along the time
line of any process.

As an RSC execution has a non-separated linear extension, it is possible
to assign scalar timestamps to events, as it was assigned for a synchronous
execution (Definition 6.9), as follows.

Definition 6.13 (Timestamps for a RSC execution) An execution �E�≺�
is RSC if and only if there exists a mapping from E to T (scalar timestamps)
such that

• for any message M , T�s�M��= T�r�M��;
• for each �a� b� in �E×E�\T, a≺ b =⇒ T�a� < T�b�.

From the acyclic message scheduling criterion (Theorem 6.1) and the times-
tamping property above, it can be observed that an A-execution is RSC if and
only if its timing diagram can be drawn such that all the message arrows are
vertical.

199 6.2 Asynchronous execution with synchronous communication

Figure 6.7 Hierarchy of
execution classes. (a) Venn
diagram. (b) Example
executions.

��

���	��

�	��

���

���

(a) (b)

6.2.2 Hierarchy of ordering paradigms

Let SYNC (or RSC), CO, FIFO, and A denote the set of all possible
executions ordered by synchronous order, causal order, FIFO order, and non-
FIFO order, respectively. We have the following results:

• For an A-execution, A is RSC if and only if A is an S-execution.
• RSC⊂ CO⊂FIFO⊂A. This hierarchy is illustrated in Figure 6.7(a), and

example executions of each class are shown side-by-side in Figure 6.7(b).
Figure 6.1(a) shows an execution that belongs to A but not to FIFO.
Figure 6.2(a) shows an execution that belongs to FIFO but not to CO.
Figures 6.2(b) and (c) show executions that belong to CO but not to RSC.

• The above hierarchy implies that some executions belonging to a class
X will not belong to any of the classes included in X. Thus, there are
more restrictions on the possible message orderings in the smaller classes.
Hence, we informally say that the included classes have less concurrency.
The degree of concurrency is most in A and least in SYNC.

• A program using synchronous communication is easiest to develop and
verify. A program using non-FIFO communication, resulting in an A-
execution, is hardest to design and verify. This is because synchronous
order offers the most simplicity due to the restricted number of possibilities,
whereas non-FIFO order offers the greatest difficulties because it admits
a much larger set of possibilities that the developer and verifier need to
account for.

Thus, there is an inherent trade-off between the amount of concurrency pro-
vided, and the ease of designing and verifying distributed programs.

6.2.3 Simulations

Asynchronous programs on synchronous systems
Theorem 6.1 indicates that an A-execution can be run using synchronous
communication primitives if and only if it is an RSC execution. The events in

200 Message ordering and group communication

Figure 6.8 Modeling channels
as processes to simulate an
execution using asynchronous
primitives on an synchronous
system.

m

m

m′

m′

Pi

Pi,j

Pj,i

Pj

the RSC execution are scheduled as per some nonseparated linear extension,
and adjacent �s� r� events in this linear extension are executed sequentially
in the synchronous system. The partial order of the asynchronous execution
remains unchanged.

If an A-execution is not RSC, then there is no way to schedule the events
to make them RSC, without actually altering the partial order of the given
A-execution. However, the following indirect strategy that does not alter the
partial order can be used. Each channel Ci�j is modeled by a control process
Pi�j that simulates the channel buffer. An asynchronous communication from
i to j becomes a synchronous communication from i to Pi�j followed by a
synchronous communication from Pi�j to j. This enables the decoupling of the
sender from the receiver, a feature that is essential in asynchronous systems.
This approach is illustrated in Figure 6.8. The communication events at the
application processes Pi and Pj are encircled. Observe that it is expensive to
implement the channel processes.

Synchronous programs on asynchronous systems
A (valid) S-execution can be trivially realized on an asynchronous system
by scheduling the messages in the order in which they appear in the S-
execution. The partial order of the S-execution remains unchanged but the
communication occurs on an asynchronous system that uses asynchronous
communication primitives. Once a message send event is scheduled, the
middleware layer waits for an acknoweldgment; after the ack is received, the
synchronous send primitive completes.

6.3 Synchronous program order on an asynchronous system

There do not exist real systems with instantaneous communication that allows
for synchronous communication to be naturally realized. We need to address
the basic question of how a system with synchronous communication can be
implemented. We first examine non-determinism in program execution, and
CSP as a representative synchronous programming language, before examin-
ing an implementation of synchronous communication.

201 6.3 Synchronous program order on an asynchronous system

Non-determinism
The discussions on the message orderings and their characterizations so far
assumed a given partial order. This suggests that the distributed programs are
deterministic, i.e., repeated runs of the same program will produce the same
partial order. In many cases, programs are non-deterministic in the following
senses (we are not considering here the unpredictable message delays that
cause different runs to non-deterministically have different global orderings
of the events in physical time:)

1. A receive call can receive a message from any sender who has sent a mes-
sage, if the expected sender is not specified. The receive calls in most of the
algorithms in Chapter 5 are non-deterministic in this sense – the receiver
is willing to perform a rendezvous with any willing and ready sender.

2. Multiple send and receive calls which are enabled at a process can be
executed in an interchangeable order.
If i sends to j, and j sends to i concurrently using blocking synchronous
calls, there results a deadlock, similar to the one in Figure 6.4. However,
there is no semantic dependency between the send and the immediately
following receive at each of the processes. If the receive call at one of the
processes can be scheduled before the send call, then there is no deadlock.
In this section, we consider scheduling synchronous communication
events (over an asynchronous system).

6.3.1 Rendezvous

One form of group communication is called multiway rendezvous, which is a
synchronous communication among an arbitrary number of asynchronous pro-
cesses. All the processes involved “meet with each other,” i.e., communicate
“synchronously” with each other at one time. The solutions to this problem
are fairly complex, and we will not consider them further as this model of syn-
chronous communication is not popular. Here, we study rendezvous between
a pair of processes at a time, which is called binary rendezvous as opposed
to the multiway rendezvous.

Support for binary rendezvous communication was first provided by pro-
gramming languages such as CSP and Ada. We consider here a subset of
CSP. In these languages, the repetitive command (the ∗ operator) over the
alternative command (the �� operator) on multiple guarded commands (each
having the form Gi −→ CLi) is used, as follows:

∗�G1 −→ CL1 �� G2 −→ CL2 �� · · · �� Gk −→ CLk��

Each communication command may be a part of a guard Gi, and may also
appear within the statement block CLi. A guard Gi is a boolean expression.
If a guard Gi evaluates to true then CLi is said to be enabled, otherwise CLi
is said to be disabled. A send command of local variable x to process Pk is

202 Message ordering and group communication

denoted as “x !Pk.” A receive from process Pk into local variable x is denoted
as “Pk ?x.” Some typical observations about synchronous communication
under binary rendezvous are as follows:

• For the receive command, the sender must be specified. However, mul-
tiple recieve commands can exist. A type check on the data is implicitly
performed.

• Send and received commands may be individually disabled or enabled. A
command is disabled if it is guarded and the guard evaluates to false. The
guard would likely contain an expression on some local variables.

• Synchronous communication is implemented by scheduling messages
under the covers using asynchronous communication. Scheduling involves
pairing of matching send and receive commands that are both enabled.
The communication events for the control messages under the covers do
not alter the partial order of the execution.

The concept underlying binary rendezvous, which provides synchronous
communication, differs from the concept underlying the classification of syn-
chronous send and receive primitives as blocking or non-blocking (studied
in Chapter 1). Binary rendezvous explicitly assumes that multiple send and
receives are enabled. Any send or receive event that can be “matched” with
the corresponding receive or send event can be scheduled. This is dynamically
scheduling the ordering of events and the partial order of the execution.

6.3.2 Algorithm for binary rendezvous

Various algorithms were proposed to implement binary rendezvous in the
1980s [1, 16]. These algorithms typically share the following features. At
each process, there is a set of tokens representing the current interactions that
are enabled locally. If multiple interactions are enabled, a process chooses
one of them and tries to “synchronize” with the partner process. The problem
reduces to one of scheduling messages satisfying the following constraints:

• Schedule on-line, atomically, and in a distributed manner, i.e., the schedul-
ing code at any process does not know the application code of other
processes.

• Schedule in a deadlock-free manner (i.e., crown-free), such that both the
sender and receiver are enabled for a message when it is scheduled.

• Schedule to satisfy the progress property (i.e., find a schedule within a
bounded number of steps) in addition to the safety (i.e., correctness) property.

Additional features of a good algorithm are: (i) symmetry or some form of
fairness, i.e., not favoring particular processes over others during scheduling,
and (ii) efficiency, i.e., using as few messages as possible, and involving as
low a time overhead as possible.

203 6.3 Synchronous program order on an asynchronous system

We now outline a simple algorithm by Bagrodia [1] that makes the fol-
lowing assumptions:

1. Receive commands are forever enabled from all processes.
2. A send command, once enabled, remains enabled until it completes, i.e.,

it is not possible that a send command gets disabled (by its guard getting
falsified) before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry
to break potential crowns that arise.

4. Each process attempts to schedule only one send event at any time.

The algorithm illustrates how crown-free message scheduling is achieved
on-line.

The message types used are: (i) M , (ii) ack(M), (iii) request(M), and (iv)
permission(M). A process blocks when it knows that it can successfully syn-
chronize the current message with the partner process. Each process maintains
a queue that is processed in FIFO order only when the process is unblocked.
When a process is blocked waiting for a particular message that it is currently
synchronizing, any other message that arrives is queued up.

Execution events in the synchronous execution are only the send of the mes-
sage M and receive of the message M. The send and receive events for the
other message types – ack(M), request(M), and permission(M) which are con-
trol messages – are under the covers, and are not included in the synchronous
execution. The messages request(M), ack(M), and permission(M) use M’s
unique tag; the message M is not included in these messages. We use cap-
ital SEND(M) and RECEIVE(M) to denote the primitives in the application
execution, the lower case send and receive are used for the control messages.

The algorithm to enforce synchronous order is given in Algorithm 6.1. The
key rules to prevent cycles among the messages are summarized as follows
and illustrated in Figure 6.9:

• To send to a lower priority process, messages M and ack(M) are involved
in that order. The sender issues send(M) and blocks until ack(M) arrives.
Thus, when sending to a lower priority process, the sender blocks waiting
for the partner process to synchronize and send an acknowledgement.

• To send to a higher priority process, messages request(M), permission(M),
and M are involved, in that order. The sender issues send(request(M)),
does not block, and awaits permission. When permission(M) arrives, the
sender issues send(M).

Figure 6.9 Messages used to
implement synchronous order.
Pi has higher priority than Pj .
(a) Pi issues SEND(M). (b) Pj

issues SEND(M).

M ack(M)
permission(M)

M
request(M)

(a) (b)

higher
priority

lower
priority

Pi

Pj

permission(M)

204 Message ordering and group communication

(message types)
M , ack(M), request(M), permission(M)

(1) Pi wants to execute SEND(M) to a lower priority process Pj:
Pi executes send(M) and blocks until it receives ack(M) from Pj . The
send event SEND(M) now completes.

Any M′ message (from a higher priority processes) and request(M ′)
request for synchronization (from a lower priority processes) received
during the blocking period are queued.

(2) Pi wants to execute SEND(M) to a higher priority process Pj:

(2a) Pi seeks permission from Pj by executing send(request(M)).
// to avoid deadlock in which cyclically blocked processes queue
// messages.

(2b) While Pi is waiting for permission, it remains unblocked.

(i) If a message M ′ arrives from a higher priority process Pk,
Pi accepts M ′ by scheduling a RECEIVE(M ′) event and then
executes send(ack(M ′)) to Pk.

(ii) If a request(M ′) arrives from a lower priority process Pk, Pi exe-
cutes send(permission(M ′)) to Pk and blocks waiting for the mes-
sageM ′. WhenM ′ arrives, the RECEIVE(M ′) event is executed.

(2c) When the permission(M) arrives, Pi knows partner Pj is synchro-
nized and Pi executes send(M). The SEND(M) now completes.

(3) request(M) arrival at Pi from a lower priority process Pj:
At the time a request(M) is processed by Pi, process Pi executes
send(permission(M)) to Pj and blocks waiting for the message M . When
M arrives, the RECEIVE(M) event is executed and the process unblocks.

(4) Message M arrival at Pi from a higher priority process Pj:
At the time a message M is processed by Pi, process Pi executes
RECEIVE(M) (which is assumed to be always enabled) and then
send(ack(M)) to Pj .

(5) Processing when Pi is unblocked:
When Pi is unblocked, it dequeues the next (if any) message from the
queue and processes it as a message arrival (as per rules 3 or 4).

Algorithm 6.1 A simplified implementation of synchronous order. Code shown is for process Pi ,
1 ≤ i ≤ n.

Thus, when sending to a higher priority process, the sender asks the higher
priority process via the request(M) to give permission to send. When
the higher priority process gives permission to send, the higher priority
process, which is the intended receiver, blocks.

205 6.4 Group communication

Figure 6.10 Examples showing
how to schedule messages
sent with synchronous
primitives.

Pi

Pj

Pk

(highest priority)

(lowest priority)
(a) (b)

M, sent to lower
priority process

ack(M)

permission(M)

M, sent to higher
priority process

blocking period

request(M)

In either case, a higher priority process blocks on a lower priority process.
So cyclic waits are avoided.

In more detail, a cyclic wait is prevented because before sending a mes-
sage M to a higher priority process, a lower priority process requests the
higher priority process for permission to synchronize on M , in a non-blocking
manner. While waiting for this permission, there are two possibilities:

1. If a message M ′ from a higher priority process arrives, it is processed by
a receive (assuming receives are always enabled) and ack(M ′) is returned.
Thus, a cyclic wait is prevented.

2. Also, while waiting for this permission, if a request(M ′) from a lower
priority process arrives, a permission(M ′) is returned and the process blocks
until M ′ actually arrives.

Note that the receive(M ′) event effectively gets permuted before the send(M)
event (steps 2(bi) and 2(bii)).

Examples: Figure 6.10 shows two examples of how the algorithm breaks
cyclic waits to schedule messages. Observe that in all cases in the algorithm,
a higher priority process blocks on lower priority processes, irrespective of
whether the higher priority process is the intended sender or the receiver of
the message being scheduled. In Figure 6.10(a), at process Pk, the receive
of the message from Pj effectively gets permuted before Pk’s own send(M)
event due to step 2(bi). In Figure 6.10(b), at process Pj , the receive of the
request(M ′) message from Pk effectively causes M ′ to be permuted before
Pj’s own message that it was attempting to schedule with Pi, due to step 2(bii).

6.4 Group communication

Processes across a distributed system cooperate to solve a joint task. Often,
they need to communicate with each other as a group, and therefore there
needs to be support for group communication. A message broadcast is the
sending of a message to all members in the distributed system. The notion
of a system can be confined only to those sites/processes participating in the

206 Message ordering and group communication

joint application. Refining the notion of broadcasting, there is multicasting
wherein a message is sent to a certain subset, identified as a group, of the
processes in the system. At the other extreme is unicasting, which is the
familiar point-to-point message communication.

Broadcast and multicast support can be provided by the network protocol
stack using variants of the spanning tree. This is an efficient mechanism for
distributing information. However, the hardware-assisted or network layer
protocol assisted multicast cannot efficiently provide features such as the
following:

• Application-specific ordering semantics on the order of delivery of
messages.

• Adapting groups to dynamically changing membership.
• Sending multicasts to an arbitrary set of processes at each send event.
• Providing various fault-tolerance semantics.

If a multicast algorithm requires the sender to be a part of the destination
group, the multicast algorithm is said to be a closed group algorithm. If the
sender of the multicast can be outside the destination group, the multicast
algorithm is said to be an open group algorithm. Open group algorithms are
more general, and therefore more difficult to design and more expensive to
implement, than closed group algorithms. Closed group algorithms cannot be
used in several scenarios such as in a large system (e.g., on-line reservation or
Internet banking systems) where client processes are short-lived and in large
numbers. It is also worth noting that, for multicast algorithms, the number of
groups may be potentially exponential, i.e., O�2n�, and algorithms that have
to explicitly track the groups can incur this high overhead.

In the remainder of this chapter we will examine multicast and broadcast
mechanisms under varying degrees of strictness of assumptions on the order
of delivery of messages. Two popular orders for the delivery of messages
were proposed in the context of group communication: causal order and total
order. Much of the seminal work on group communication was initiated by
the ISIS project [4,5].

6.5 Causal order (CO)

Causal order has many applications such as updating replicated data, allo-
cating requests in a fair manner, and synchronizing multimedia streams. We
explain here the use of causal order in updating replicas of a data item in the
system. Consider Figure 6.11(a), which shows two processes P1 and P2 that
issue updates to the three replicas R1�d�, R2�d�, and R3�d� of data item d.
Message m creates a causality between send�m1� and send�m2�. If P2 issues
its update causally after P1 issued its update, then P2’s update should be seen
by the replicas after they see P1’s update, in order to preserve the semantics

207 6.5 Causal order (CO)

Figure 6.11 Updates to object
replicas are issued by two
processes.

P1

P2

R1

P1 P2

R2 R3

R3

R2

R1
m1

m2

m2m1
m

m2

m m

m1

(c)(b)(a)

of the application. (In this case, CO is satisfied.) However, this may happen
at some, all, or none of the replicas. Figure 6.11(b) shows that R1 sees P2’s
update first, while R2 and R3 see P1’s update first. Here, CO is violated.
Figure 6.11(c) shows that all replicas see P2’s update first. However, CO is
still violated. If message m did not exist as shown, then the executions shown
in Figure 6.11(b) and (c) would satisfy CO.

Given a system with FIFO channels, causal order needs to be explicitly
enforced by a protocol. The following two criteria must be met by a causal
ordering protocol:

• Safety In order to prevent causal order from being violated, a message
M that arrives at a process may need to be buffered until all systemwide
messages sent in the causal past of the send�M� event to that same desti-
nation have already arrived.
Therefore, we distinguish between the arrival of a message at a process
(at which time it is placed in a local system buffer) and the event at which
the message is given to the application process (when the protocol deems
it safe to do so without violating causal order). The arrival of a message
is transparent to the application process. The delivery event corresponds
to the receive event in the execution model.

• Liveness A message that arrives at a process must eventually be deliv-
ered to the process.

Both the algorithms we will study in this section allow each send event to
unicast, multicast, or broadcast a message in the system.

6.5.1 The Raynal–Schiper–Toueg algorithm [22]

Intuitively, it seems logical that each message M should carry a log of all
other messages, or their identifiers, sent causally before M’s send event,
and sent to the same destination dest�M�. This log can then be examined to
ensure whether it is safe to deliver a message. All algorithms aim to reduce
this log overhead, and the space and time overhead of maintaining the log
information at the processes. Algorithm 6.2 gives a canonical algorithm
that is representative of several algorithms that try to reduce the size of the
local space and message space overhead by various techniques. In order to
implement safety, the messages piggyback the control information that helps

206 Message ordering and group communication

joint application. Refining the notion of broadcasting, there is multicasting
wherein a message is sent to a certain subset, identified as a group, of the
processes in the system. At the other extreme is unicasting, which is the
familiar point-to-point message communication.

Broadcast and multicast support can be provided by the network protocol
stack using variants of the spanning tree. This is an efficient mechanism for
distributing information. However, the hardware-assisted or network layer
protocol assisted multicast cannot efficiently provide features such as the
following:

• Application-specific ordering semantics on the order of delivery of
messages.

• Adapting groups to dynamically changing membership.
• Sending multicasts to an arbitrary set of processes at each send event.
• Providing various fault-tolerance semantics.

If a multicast algorithm requires the sender to be a part of the destination
group, the multicast algorithm is said to be a closed group algorithm. If the
sender of the multicast can be outside the destination group, the multicast
algorithm is said to be an open group algorithm. Open group algorithms are
more general, and therefore more difficult to design and more expensive to
implement, than closed group algorithms. Closed group algorithms cannot be
used in several scenarios such as in a large system (e.g., on-line reservation or
Internet banking systems) where client processes are short-lived and in large
numbers. It is also worth noting that, for multicast algorithms, the number of
groups may be potentially exponential, i.e., O�2n�, and algorithms that have
to explicitly track the groups can incur this high overhead.

In the remainder of this chapter we will examine multicast and broadcast
mechanisms under varying degrees of strictness of assumptions on the order
of delivery of messages. Two popular orders for the delivery of messages
were proposed in the context of group communication: causal order and total
order. Much of the seminal work on group communication was initiated by
the ISIS project [4,5].

6.5 Causal order (CO)

Causal order has many applications such as updating replicated data, allo-
cating requests in a fair manner, and synchronizing multimedia streams. We
explain here the use of causal order in updating replicas of a data item in the
system. Consider Figure 6.11(a), which shows two processes P1 and P2 that
issue updates to the three replicas R1�d�, R2�d�, and R3�d� of data item d.
Message m creates a causality between send�m1� and send�m2�. If P2 issues
its update causally after P1 issued its update, then P2’s update should be seen
by the replicas after they see P1’s update, in order to preserve the semantics

209 6.5 Causal order (CO)

An optimal CO algorithm stores in local message logs and propagates on
messages, information of the form “d is a destination of M” about a message
M sent in the causal past, as long as and only as long as:

(Propagation Constraint I) it is not known that the message M is delivered
to d, and

(Propagation Constraint II) it is not known that a message has been sent to
d in the causal future of Send�M�, and hence it is not guaranteed using
a reasoning based on transitivity that the message M will be delivered
to d in CO.

The Propagation Constraints also imply that if either (I) or (II) is false,
the information “d ∈ M�Dests” must not be stored or propagated, even to
remember that (I) or (II) has been falsified. Stated differently, the information
“d ∈Mi�a�Dests” must be available in the causal future of event ei�a, but:

• not in the causal future of Deliverd�Mi�a�, and
• not in the causal future of ek�c, where d ∈Mk�c�Dests and there is no other

message sent causally between Mi�a and Mk�c to the same destination d.

In the causal future of Deliverd�Mi�a�, and Send�Mk�c�, the information is
redundant; elsewhere, it is necessary. Additionally, to maintain optimality,
no other information should be stored, including information about what
messages have been delivered. As information about what messages have
been delivered (or are guaranteed to be delivered without violating causal
order) is necessary for the Delivery Condition, this information is inferred
using a set-operation based logic.

The Propagation Constraints are illustrated with the help of Figure 6.12.
The message M is sent by process i at event e to process d. The information
“d ∈M�Dests”:

• must exist at e1 and e2 because (I) and (II) are true;
• must not exist at e3 because (I) is false;
• must not exist at e4� e5� e6 because (II) is false;
• must not exist at e7� e8 because (I) and (II) are false.

Information about messages (i) not known to be delivered and (ii) not
guaranteed to be delivered in CO, is explicitly tracked by the algorithm using
(source, timestamp, destination) information. The information must be deleted
as soon as either (i) or (ii) becomes false. The key problem in designing an
optimal CO algorithm is to identify the events at which (i) or (ii) becomes
false. Information about messages already delivered and messages guaranteed
to be delivered in CO is implicitly tracked without storing or propagating it,
and is derived from the explicit information. Such implicit information is used
for determining when (i) or (ii) becomes false for the explicit information
being stored or carried in messages.

210 Message ordering and group communication

Figure 6.12 Illustrating the
necessary and sufficient
conditions for causal
ordering [21].

e8

d

i

e4 e6

e7
e1

M

Deliver(M)

Message sent to d

Info "d is a dest. of M" must not exist for optimality

Info "d is a dest. of M" must exist for correctness

Event at which message is sent to d, and there is no such
event on any causal path between event e and this event

Border of causal future of corresponding event

e e′

e′′

e5

e2

e3

The algorithm is given in Algorithm 6.3. Procedure SND is executed atomi-
cally. Procedure RCV is executed atomically except for a possible interruption
in line 2a where a non-blocking wait is required to meet the Delivery Condi-
tion. Note that the pseudo-code can be restructured to complete the processing
of each invocation of SND and RCV procedures in a single pass of the data
structures, by always maintaining the data structures sorted row–major and
then column–major.

1. Explicit tracking Tracking of (source, timestamp, destination) informa-
tion for messages (i) not known to be delivered and (ii) not guaranteed to
be delivered in CO, is done explicitly using the l�Dests field of entries in
local logs at nodes and o�Dests field of entries in messages. Sets li�a�Dests
and oi�a�Dests contain explicit information of destinations to which Mi�a

is not guaranteed to be delivered in CO and is not known to be delivered.
The information about “d ∈ Mi�a�Dests” is propagated up to the earliest
events on all causal paths from �i� a� at which it is known that Mi�a is
delivered to d or is guaranteed to be delivered to d in CO.

2. Implicit tracking Tracking of messages that are either (i) already deliv-
ered, or (ii) guaranteed to be delivered in CO, is performed implicitly.
The information about messages (i) already delivered or (ii) guaranteed to
be delivered in CO is deleted and not propagated because it is redundant
as far as enforcing CO is concerned. However, it is useful in determining
what information that is being carried in other messages and is being stored
in logs at other nodes has become redundant and thus can be purged. The
semantics are implicitly stored and propagated. This information about
messages that are (i) already delivered or (ii) guaranteed to be delivered in

211 6.5 Causal order (CO)

(local variables)
clockj ←− 0; // local counter clock at node j
SRj�1

 n�←− 0; // SRj�i� is the timestamp of last msg. from i delivered to j
LOGj = 	�i� clocki�Dests��←− 	∀i� �i�0�∅��;

// Each entry denotes a message sent in the causal past, by i at clocki.Dests is the set of
// remaining destinations for which it is not known that

// Mi�clocki
(i) has been delivered, or (ii) is guaranteed to be delivered in CO.

(1) SND: j sends a message M to Dests:

(1a) clockj←− clockj +1;
(1b) for all d ∈ M�Dests do:

OM ←− LOGj ; // OM denotes OMj�clockj
for all o ∈ OM , modify o�Dests as follows:

if d �∈ o�Dests then o�Dests←− �o�Dests \M�Dests�;
if d ∈ o�Dests then o�Dests←− �o�Dests \M�Dests�⋃	d�;
// Do not propagate information about indirect dependencies that are

// guaranteed to be transitively satisfied when dependencies of M are satisfied.
for all os�t ∈ OM do

if os�t �Dests = ∅
∧

(∃o′
s�t′ ∈ OM � t < t′) then OM ←− OM \ 	os�t�;

// do not propagate older entries for which Dests field is ∅
send �j� clockj�M�Dests�OM� to d;

(1c) for all l ∈ LOGj do l�Dests←− l�Dests \Dests;
// Do not store information about indirect dependencies that are guaranteed

// to be transitively satisfied when dependencies of M are satisfied.
Execute PURGE_NULL_ENTRIES�LOGj�; // purge l ∈ LOGj if l�Dests = ∅

(1d) LOGj←− LOGj

⋃
	�j� clockj�Dests��.

(2) RCV: j receives a message �k� tk�M�Dests�OM� from k:

(2a) // Delivery Condition: ensure that messages sent causally before M are delivered.
for all om�tm ∈ OM do

if j ∈ om�tm �Dests wait until tm ≤ SRj�m�;
(2b) Deliver M; SRj�k�←− tk;
(2c) OM ←− 	�k� tk�Dests��

⋃
OM ;

for all om�tm ∈ OM do om�tm �Dests←− om�tm �Dests \ 	j�;
// delete the now redundant dependency of message represented by om�tm sent to j

(2d) // Merge OM and LOGj by eliminating all redundant entries.
// Implicitly track “already delivered” & “guaranteed to be delivered in CO”
// messages.
for all om�t ∈ OM and ls�t′ ∈ LOGj such that s =m do

if t < t′
∧
ls�t �∈ LOGj then mark om�t;

// ls�t had been deleted or never inserted, as ls�t �Dests = ∅ in the causal past
if t′ < t

∧
om�t′ �∈ OM then mark ls�t′ ;

// om�t′ �∈ OM because ls�t′ had become ∅ at another process in the causal past
Delete all marked elements in OM and LOGj ;

// delete entries about redundant information
for all ls�t′ ∈ LOGj and om�t ∈ OM , such that s =m ∧

t′ = t do
ls�t′ �Dests←− ls�t′ �Dests

⋂
om�t�Dests;

// delete destinations for which Delivery
// Condition is satisfied or guaranteed to be satisfied as per om�t

Delete om�t from OM ; // information has been incorporated in ls�t′
LOGj←− LOGj

⋃
OM ; // merge non-redundant information of OM into LOGj

(2e) PURGE_NULL_ENTRIES�LOGj�. // Purge older entries l for which l�Dests = ∅

PURGE_NULL_ENTRIES(Logj): // Purge older entries l for which l�Dests = ∅ is
// implicitly inferred

for all ls�t ∈ Logj do
if ls�t �Dests = ∅

∧
(∃l′

s�t′ ∈ Logj � t < t′) then Logj←− Logj \ 	ls�t�.

Algorithm 6.3 The algorithm by Kshemkalyani–Singhal to optimally implement causal ordering of
messages. Code for Pj , 1 ≤ j ≤ n.

212 Message ordering and group communication

CO is tracked without explicitly storing it. Rather, the algorithm derives
it from the existing explicit information about messages (i) not known to
be delivered and (ii) not guaranteed to be delivered in CO, by examining
only oi�a�Dests or li�a�Dests, which is a part of the explicit information.
There are two types of implicit tracking:

• The absence of a node i.d. from destination information – i.e., ∃d∈
Mi�a�Dests � d �∈ li�a�Dests

∨
d �∈ oi�a�Dests – implicitly contains informa-

tion that the message has been already delivered or is guaranteed to be
delivered in CO tod. Clearly, li�a�Dests=∅ oroi�a�Dests=∅ implies that
messageMi�a has been delivered or is guaranteed to be delivered in CO to
all destinations inMi�a�Dests. An entry whose �Dests = ∅ is maintained
because of the implicit information in it, viz., that of known delivery
or guaranteed CO delivery to all destinations of the multicast, is useful
to purge redundant information as per the Propagation Constraints.

• As the distributed computation evolves, several entries li�a1
, li�a2

�

such that ∀p, li�ap �Dests = ∅ may exist in a node’s log and a mes-
sage may be carrying several entries oi�a1

, oi�a2
�

 such that ∀p,

oi�ap �Dests = ∅. The second implicit tracking uses a mechanism to pre-
vent the proliferation of such entries. The mechanism is based on the
following observation: “For any two multicasts Mi�a1

, Mi�a2
such that a1

< a2, if li�a2
∈ LOGj , then li�a1

∈ LOGj . (Likewise for any message.)”
Therefore, if li�a1

�Dests becomes ∅ at a node j, then it can be deleted
from LOGj provided ∃ li�a2

∈ LOGj such that a1 < a2. The presence
of such li�a1

s in LOGj is automatically implied by the presence of entry
li�a2

in LOGj . Thus, for a multicast Mi�z, if li�z does not exist in LOGj ,
then li�z�Dests = ∅ implicitly exists in LOGj iff ∃ li�a ∈ LOGj � a > z.
As a result of the second implicit tracking mechanism, a node does not
keep (and a message does not carry) entries of type li�a�Dests = ∅ in its
log. However, note that a node must always keep at least one entry of
type li�a (the one with the highest timestamp) in its log for each sender
node i. The same holds for messages.

The information tracked implicitly is useful in purging information explic-
itly carried in other OM ′′s and stored in LOG entries about “yet to be deliv-
ered to” destinations for the same message Mi�a as well as for messages
Mi�a′ , where a′ < a. Thus, whenever oi�a in some OM ′ propagates to node
j, in line (2d), (i) the implicit information in oi�a�Dests is used to eliminate
redundant information in li�a�Dests ∈ LOGj; (ii) the implicit informa-
tion in li�a�Dests ∈ LOGj is used to eliminate redundant information in
oi�a�Dests; (iii) the implicit information in oi�a is used to eliminate redun-
dant information li�a′ ∈ LOGj if � ∃ oi�a′ ∈ OM ′ and a′ < a; (iv) the implicit
information in li�a is used to eliminate redundant information oi�a′ ∈ OM ′

if � ∃ li�a′ ∈ LOGj and a′ < a; and (v) only non-redundant information
remains in OM ′ and LOGj; this is merged together into an updated LOGj .

213 6.5 Causal order (CO)

Example [6] In the example in Figure 6.13, the timing diagram illustrates
(i) the propagation of explicit information “P6 ∈ M5�1�Dests” and (ii) the
inference of implicit information that “M5�1 has been delivered to P6, or is
guaranteed to be delivered in causal order to P6 with respect to any future
messages.” A thick arrow indicates that the corresponding message contains
the explicit information piggybacked on it. A thick line during some interval
of the time line of a process indicates the duration in which this information
resides in the log local to that process. The number “a” next to an event
indicates that it is the ath event at that process.

Figure 6.13 An example to
illustrate the propagation
constraints [6].

Multicasts M5�1 and M4�2

Message M5�1 sent to processes P4 and P6 contains the piggybacked infor-
mation “M5�1�Dests = 	P4�P6�.” Additionally, at the send event (5, 1), the
information “M5�1�Dests = 	P4�P6�” is also inserted in the local log Log5.
When M5�1 is delivered to P6, the (new) piggybacked information “P4 ∈
M5�1�Dests” is stored in Log6 as “M5�1�Dests = 	P4�”; information about “P6

∈ M5�1�Dests,” which was needed for routing, must not be stored in Log6

because of constraint I. Symmetrically, when M5�1 is delivered to process P4

at event (4, 1), only the new piggybacked information “P6 ∈M5�1�Dests” is
inserted in Log4 as “M5�1�Dests = 	P6�,” which is later propagated during
multicast M4�2.

Multicast M4�3

At event (4, 3), the information “P6 ∈M5�1�Dests” in Log4 is propagated on
multicast M4�3 only to process P6 to ensure causal delivery using the Delivery
Condition. The piggybacked information on message M4�3 sent to process P3

must not contain this information because of constraint II. (The piggybacked
information contains “M4�3�Dests = 	P6�.” As long as any future message

2 3 4

2

4321

Causal past contains event (6,1)

1 2 3

1

1

1

1

M5,1

M4,2

M2,3

M4,3M4,2

M4,3

M3,3

5

Information about P6 as a destination
of multicast at event (5,1) propagates
as piggybacked information and in logs

2 3

32 M3,3

M6,2 M5,2

M2,2

M5,1

P6

P5

P4

P3

P2

P1
Message to dest. Piggybacked

M5�1.Dests

M5�1to P4,P6 {P4,P6}
M4�2to P3,P2 {P6}
M2�2to P1 {P6}
M6�2to P1 {P4}
M4�3to P6 {P6}
M4�3to P3 { }
M5�2to P6 {P4,P6}
M2�3to P1 {P6}
M3�3to P2�6 { }

214 Message ordering and group communication

sent to P6 is delivered in causal order w.r.t. M4�3 sent to P6, it will also
be delivered in causal order w.r.t. M5�1 sent to P6.) And as M5�1 is already
delivered to P4, the information “M5�1�Dests = ∅” is piggybacked on M4�3

sent to P3. Similarly, the information “P6 ∈M5�1�Dests” must be deleted from
Log4 as it will no longer be needed, because of constraint II. “M5�1�Dests=∅”
is stored in Log4 to remember that M5�1 has been delivered or is guaranteed
to be delivered in causal order to all its destinations.

Learning implicit information at P2 and P3

When message M4�2 is received by processes P2 and P3, they insert the (new)
piggybacked information in their local logs, as information “M5�1�Dests =
	P6�.” They both continue to store this in Log2 and Log3 and propagate this
information on multicasts until they “learn” at events (2, 4) and (3, 2) on
receipt of messages M3�3 and M4�3, respectively, that any future message is
guaranteed to be delivered in causal order to process P6, w.r.t. M5�1 sent to
P6. Hence by constraint II, this information must be deleted from Log2 and
Log3. The logic by which this “learning” occurs is as follows:

• When M4�3 with piggybacked information “M5�1�Dests=∅” is received by
P3 at (3, 2), this is inferred to be valid current implicit information about
multicast M5�1 because the log Log3 already contains explicit information
“P6 ∈M5�1�Dests” about that multicast. Therefore, the explicit information
in Log3 is inferred to be old and must be deleted to achieve optimality.
M5�1�Dests is set to ∅ in Log3.

• The logic by which P2 learns this implicit knowledge on the arrival of
M3�3 is identical.

Processing at P6

Recall that when message M5�1 is delivered to P6, only “M5�1�Dests = 	P4�”
is added to Log6. Further, P6 propagates only “M5�1�Dests = 	P4�” (from
Log6) on message M6�2, and this conveys the current implicit informa-
tion “M5�1 has been delivered to P6,” by its very absence in the explicit
information.

• When the information “P6 ∈ M5�1�Dests” arrives on M4�3, piggybacked as
“M5�1�Dests = 	P6�,” it is used only to ensure causal delivery of M4�3 using
the Delivery Condition, and is not inserted in Log6 (constraint I) – further,
the presence of “M5�1�Dests = 	P4�” in Log6 implies the implicit informa-
tion that M5�1 has already been delivered to P6. Also, the absence of P4

in M5�1�Dests in the explicit piggybacked information implies the implicit
information that M5�1 has been delivered or is guaranteed to be delivered
in causal order to P4, and, therefore, M5�1�Dests is set to ∅ in Log6.

• When the information “P6 ∈ M5�1�Dests” arrives on M5�2, piggybacked
as “M5�1�Dests = 	P4�P6�,” it is used only to ensure causal delivery of

215 6.6 Total order

M4�3 using the Delivery Condition, and is not inserted in Log6 because
Log6 contains “M5�1�Dests = ∅,” which gives the implicit information that
M5�1 has been delivered or is guaranteed to be delivered in causal order to
both P4 and P6. (Note that at event (5, 2), P5 changes M5�1�Dests in Log5

from 	P4�P6� to 	P4�, as per constraint II, and inserts “M5�2�Dests= 	P6�”
in Log5.)

Processing at P1

We have the following processing:

• When M2�2 arrives carrying piggybacked information “M5�1�Dests= 	P6�,”
this (new) information is inserted in Log1.

• When M6�2 arrives with piggybacked information “M5�1�Dests = 	P4�,”
P1 “learns” implicit information “M5�1 has been delivered to P6” by the
very absence of explicit information “P6 ∈M5�1�Dests” in the piggybacked
information, and hence marks information “P6 ∈ M5�1�Dests” for dele-
tion from Log1. Simultaneously, “M5�1�Dests = 	P6�” in Log1 implies the
implicit information that M5�1 has been delivered or is guaranteed to be
delivered in causal order to P4. Thus, P1 also “learns” that the explicit
piggybacked information “M5�1�Dests = 	P4�” is outdated. M5�1�Dests in
Log1 is set to ∅.

• Analogously, the information “P6 ∈ M5�1�Dests” piggybacked on M2�3,
which arrives at P1, is inferred to be outdated (and hence ignored) using
the implicit knowledge derived from “M5�1�Dests = ∅” in Log1.

6.6 Total order

While causal order has many uses, there are other orderings that are also
useful. Total order is such an ordering [4,5]. Consider the example of updates
to replicated data, as shown in Figure 6.11. As the replicas are of just one data
item d, it would be logical to expect that all replicas see the updates in the
same order, whether or not the issuing of the updates are causally related. This
way, the issue of coherence and consistency of the replica values goes away.
Such a replicated system would still be useful for fault-tolerance, as well as
for easy availability for “read” operations. Total order, which requires that all
messages be received in the same order by the recipients of the messages, is
formally defined as follows:

Definition 6.14 (Total order) For each pair of processes Pi and Pj and
for each pair of messages Mx and My that are delivered to both the pro-
cesses, Pi is delivered Mx before My if and only if Pj is delivered Mx

before My.

216 Message ordering and group communication

Example The execution in Figure 6.11(b) does not satisfy total order. Even
if the messagem did not exist, total order would not be satisfied. The execution
in Figure 6.11(c) satisfies total order.

6.6.1 Centralized algorithm for total order

Assuming all processes broadcast messages, the centralized solution shown
in Algorithm 6.4 enforces total order in a system with FIFO channels. Each
process sends the message it wants to broadcast to a centralized process, which
simply relays all the messages it receives to every other process over FIFO
channels. It is straightforward to see that total order is satisfied. Furthermore,
this algorithm also satisfies causal message order.

(1) When process Pi wants to multicast a message M to group G:
(1a) send M�i�G� to central coordinator.

(2) When M�i�G� arrives from Pi at the central coordinator:
(2a) send M�i�G� to all members of the group G.

(3) When M�i�G� arrives at Pj from the central coordinator:
(3a) deliver M�i�G� to the application.

Algorithm 6.4 A centralized algorithm to implement total order and causal order of messages.

Complexity
Each message transmission takes two message hops and exactly n messages
in a system of n processes.

Drawbacks
A centralized algorithm has a single point of failure and congestion, and is
therefore not an elegant solution.

6.6.2 Three-phase distributed algorithm

A distributed algorithm that enforces total and causal order for closed groups
is given in Algorithm 6.5. The three phases of the algorithm are first described
from the viewpoint of the sender, and then from the viewpoint of the receiver.

Sender
Phase 1 In the first phase, a process multicasts (line 1b) the message M

with a locally unique tag and the local timestamp to the group members.
Phase 2 In the second phase, the sender process awaits a reply from all

the group members who respond with a tentative proposal for a revised
timestamp for that message M . The await call in line 1d is non-blocking,

217 6.6 Total order

record Q_entry
M: int; // the application message
tag: int; // unique message identifier
sender_id: int; // sender of the message
timestamp: int; // tentative timestamp assigned to message
deliverable: boolean; // whether message is ready for delivery

(local variables)
queue of Q_entry: temp_Q�delivery_Q
int: clock // Used as a variant of Lamport’s scalar clock
int: priority // Used to track the highest proposed timestamp
(message types)
REVISE_TS(M� i� tag� ts)

// Phase 1 message sent by Pi, with initial timestamp ts
PROPOSED_TS(j� i� tag� ts)

// Phase 2 message sent by Pj , with revised timestamp, to Pi
FINAL_TS(i� tag� ts) // Phase 3 message sent by Pi, with final timestamp

(1) When process Pi wants to multicast a message M with a tag tag:
(1a) clock← clock+1;
(1b) send REVISE_TS(M� i� tag� clock) to all processes;
(1c) temp_ts← 0;
(1d) await PROPOSED_TS�j� i� tag� tsj� from each process Pj;
(1e) ∀j ∈ N , do temp_ts←max�temp_ts� tsj�;
(1f) send FINAL_TS(i� tag� temp_ts) to all processes;
(1g) clock←max�clock� temp_ts�.

(2) When REVISE_TS(M�j� tag� clk) arrives from Pj:
(2a) priority←max�priority+1� clk�;
(2b) insert �M� tag� j�priority� undeliverable� in temp_Q;

// at end of queue
(2c) send PROPOSED_TS(i� j� tag�priority) to Pj .

(3) When FINAL_TS(j� x� clk) arrives from Pj:
(3a) Identify entry Q_e in temp_Q, where Q_e�tag = x�
(3b) mark Q_e�deliverable as true;
(3c) Update Q_e�timestamp to clk and re-sort temp_Q based on the

timestamp field;
(3d) if �head�temp_Q���tag =Q_e�tag then
(3e) move Q_e from temp_Q to delivery_Q;
(3f) while �head�temp_Q��.deliverable is true do
(3g) dequeue head�temp_Q� and insert in delivery_Q.

(4) When Pi removes a message �M� tag� j� ts�deliverable� from
head�delivery_Qi�:

(4a) clock←max�clock� ts�+1.

Algorithm 6.5 A distributed algorithm to implement total order and causal order of messages. Code
at Pi , 1 ≤ i ≤ n.

218 Message ordering and group communication

i.e., any other messages received in the meanwhile are processed. Once
all expected replies are received, the process computes the maximum
of the proposed timestamps for M , and uses the maximum as the final
timestamp.

Phase 3 In the third phase, the process multicasts the final timestamp to
the group in line (1f).

Receivers
Phase 1 In the first phase, the receiver receives the message with a

tentative/proposed timestamp. It updates the variable priority that tracks
the highest proposed timestamp (line 2a), then revises the proposed
timestamp to the priority, and places the message with its tag and the
revised timestamp at the tail of the queue temp_Q (line 2b). In the queue,
the entry is marked as undeliverable.

Phase 2 In the second phase, the receiver sends the revised timestamp
(and the tag) back to the sender (line 2c). The receiver then waits in a
non-blocking manner for the final timestamp (correlated by the message
tag).

Phase 3 In the third phase, the final timestamp is received from the
multicaster (line 3). The corresponding message entry in temp_Q is
identified using the tag (line 3a), and is marked as deliverable (line 3b)
after the revised timestamp is overwritten by the final timestamp (line 3c).
The queue is then resorted using the timestamp field of the entries
as the key (line 3c). As the queue is already sorted except for the
modified entry for the message under consideration, that message entry
has to be placed in its sorted position in the queue. If the message
entry is at the head of the temp_Q, that entry, and all consecutive
subsequent entries that are also marked as deliverable, are dequeued
from temp_Q, and enqueued in deliver_Q in that order (the loop in
lines 3d–3g).

Complexity
This algorithm uses three phases, and, to send a message to n−1 processes,
it uses 3�n−1� messages and incurs a delay of three message hops.

Example An example execution to illustrate the algorithm is given in
Figure 6.14. Here, A and B multicast to a set of destinations and C and D are
the common destinations for both multicasts.

• Figure 6.14(a) The main sequence of steps is as follows:
1. A sends a REVISE_TS(7) message, having timestamp 7. B sends a

REVISE_TS(9) message, having timestamp 9.
2. C receives A’s REVISE_TS(7), enters the corresponding message in

temp_Q, and marks it as undeliverable; priority = 7. C then sends
PROPOSED_TS(7) message to A.

219 6.6 Total order

Figure 6.14 An example to
illustrate the three-phase total
ordering algorithm. (a) A
snapshot for PROPOSED_TS
and REVISE_TS messages. The
dashed lines show the further
execution after the snapshot.
(b) The FINAL_TS messages in
the example.

7

7

7

10

9

9

9

9

temp_Q delivery_Qtemp_Q

(9,u)(10,u)(7,u)(9,u)

delivery_Q

PROPOSED_TS

(a)

REVISE_TS

9

temp_Q delivery_Qtemp_Q delivery_Q

10

10
9

(9,u)(10,d) (10,u) (9,d)

max(7,9) = 9max(7,10) = 10

FINAL_TS

(b)

BA

D

D

B

C

C

A

3. D receives B’s REVISE_TS(9), enters the corresponding message in
temp_Q, and marks it as undeliverable; priority = 9. D then sends
PROPOSED_TS(9) message to B.

4. C receives B’s REVISE_TS(9), enters the corresponding message in
temp_Q, and marks it as undeliverable; priority = 9. C then sends
PROPOSED_TS(9) message to B.

5. D receives A’s REVISE_TS(7), enters the corresponding message in
temp_Q, and marks it as undeliverable; priority = 10. D assigns a
tentative timestamp value of 10, which is greater than all of the times-
tamps on REVISE_TSs seen so far, and then sends PROPOSED_TS(10)
message to A.

The state of the system is as shown in the figure.
• Figure 6.14(b) The continuing sequence of main steps is as follows:

6. When A receives PROPOSED_TS(7) from C and PROPOSED_TS(10)
from D, it computes the final timestamp as max�7�10�= 10, and sends
FINAL_TS(10) to C and D.

220 Message ordering and group communication

7. When B receives PROPOSED_TS(9) from C and PROPOSED_TS(9)
from D, it computes the final timestamp as max�9�9� = 9, and sends
FINAL_TS(9) to C and D.

8. C receives FINAL_TS(10) from A, updates the corresponding entry in
temp_Q with the timestamp, resorts the queue, and marks the message
as deliverable. As the message is not at the head of the queue, and
some entry ahead of it is still undeliverable, the message is not moved
to delivery_Q.

9. D receives FINAL_TS(9) from B, updates the corresponding entry in
temp_Q by marking the corresponding message as deliverable, and
resorts the queue. As the message is at the head of the queue, it is
moved to delivery_Q.

This is the system snapshot shown in Figure 6.14(b). The following further
steps will occur:
10. When C receives FINAL_TS(9) from B, it will update the correspond-

ing entry in temp_Q by marking the corresponding message as deliv-
erable. As the message is at the head of the queue, it is moved to the
delivery_Q, and the next message (of A), which is also deliverable, is
also moved to the delivery_Q.

11. When D receives FINAL_TS(10) from A, it will update the corre-
sponding entry in temp_Q by marking the corresponding message as
deliverable. As the message is at the head of the queue, it is moved to
the delivery_Q.

Algorithm 6.5 is closely structured along the lines of Lamport’s algorithm
for mutual exclusion. We will later see that Lamport’s mutual exclusion
algorithm has the property that when a process is at the head of its own queue
and has received a REPLY from all other processes, the REQUEST of that
process is at the head of all the queues. This can be exploited to deliver the
message by all the processes in the same total order (instead of entering the
critical section).

6.7 A nomenclature for multicast

In this section, we systematically classify the various kinds of multicast algo-
rithms possible [9]. Observe that there are four classes of source–destination
relationships, as illustrated in Figure 6.15, for open groups:

• SSSG Single source and single destination group.
• MSSG Multiple sources and single destination group.
• SSMG Single source and multiple, possibly overlapping, groups.
• MSMG Multiple sources and multiple, possibly overlapping, groups.

The SSSG and SSMG classes are straightforward to implement, assuming
the presence of FIFO channels between each pair of processes. Both total

221 6.8 Propagation trees for multicast

Figure 6.15 Four classes
of source–destination
relationships for open-group
multicasts. For closed-group
multicasts, the sender needs to
be part of the recipient group.

(a) Single source single group (SSSG) (c) Single source multiple groups (SSMG)

(b) Multiple sources single group (MSSG) (d) Multiple sources multiple groups (MSMG)

order and causal order are guaranteed. The MSSG class is also straightforward
to handle; the centralized implementation in Algorithm 6.4 provides both total
and causal order. The central coordinator effectively converts this class to the
SSSG class.

We now consider a design approach for the MSMG class. This approach,
commonly termed as the propagation tree approach, uses a semi-centralized
structure that adapts the centralized algorithm of Algorithm 6.4 and was
proposed by Chiu and Hsaio [9] and Jia [16].

6.8 Propagation trees for multicast

To manage the complications of delivery order across multiple overlap-
ping groups G = 	G1

 Gg�, the algorithm first identifies a set of meta-
groups MG= 	MG1�

 MGh�with the following properties: (i) each process
belongs to a single metagroup, and has the exact same group membership
as every other process in that metagroup; (ii) no other process outside that
metagroup has that exact group membership.

Example Figure 6.16(a) shows some groups and their metagroups. �ABC�,
�AB�, �AC�, and �A� are the metagroups of user group �A�.

The definition of metagroups transforms the problem of MSMG multicast
to groups, to the problem of MSSG multicast to metagroups, which is easier
to solve.

A distinguished node in each metagroup acts as the manager for that meta-
group. For each user group Gi, one of its metagroups is chosen to be its
primary metagroup (PM) and denoted as PM�Gi�. All the metagroups are

222 Message ordering and group communication

Figure 6.16 Example
illustrating a propagation
tree [9]. Metagroups are
shown in boldface. (a) Groups
A, B, C, D, E, and F, and their
metagroups. (b) A propagation
tree, with the primary
meta-groups labeled.

ABC

AB

A

AC

C CE E

D
B

CD

BD

BC
BCD

DE

F
EF

ABC

BCD

BD

A B C AB AC BC

CD D DE

EFCEE

F

PM(D)

PM(E)
PM(F)

(a) (b)

PM(A), PM(B),
PM(C)

A

E
F

C

B D

organized in a propagation forest or tree structure satisfying the following
property: for user group Gi, its primary metagroup PM�Gi� is at the low-
est possible level (i.e., farthest from the root) of the tree such that all the
metagroups whose destinations contain any nodes of Gi belong to the subtree
rooted at PM�Gi�.

Example In Figure 6.16, �ABC� is the primary metagroup of A, B, and C.
�B�C�D� is the primary metagroup of D. �D�E� is the primary metagroup
of E. �E�F� is the primary metagroup of F.

The following properties can be seen to be satisfied by the propagation
tree:

1. The primary metagroup PM�G�, is the ancestor of all the other metagroups
of G in the propagation tree.

2. PM�G� is uniquely defined.
3. For any metagroup MG, there is a unique path to it from the PM of any

of the user groups of which the metagroup MG is a subset.
4. In addition, for any two primary metagroups PM�G1� and PM�G2�, they

should either lie on the same branch of a tree, or be in disjoint trees. In
the latter case, their groups membership sets are necessarily disjoint.

Key idea
The metagroup PM�Gi� of user group Gi, is useful for multicasts, as follows:
multicasts to Gi are sent first to the metagroup PM�Gi� as only the subtree
rooted at PM�Gi� can contain the nodes inGi. The message is then propagated
down the subtree rooted at PM�Gi�.

The following definitions are useful to understand and explain the
algorithm:

• MG1 subsumes MG2 (where MG1 �=MG2) if for each group G such that
a member of MG2 is a member of G, we have that some member of MG1

is also a member of G. In other words, MG1 is a subset of each user group
G of which MG2 is a subset.

223 6.8 Propagation trees for multicast

Example In Figure 6.16, �AB� subsumes �A�. Any member of MG2 =
�A� is a member of A and each member of �AB� is also a member of A.
Similarly, �AB� subsumes �B�.

• MG1 is joint with MG2 if neither metagroup subsumes the other and there
is some group G such that MG1�MG2 ⊂G.

Example In Figure 6.16, �ABC� is joint with �CD�. Neither subsumes
the other and both are a subset of C.

Example Figure 6.16 shows some groups, their metagroups, and their
propagation tree. Metagroup �ABC� is the primary metagroup PM�A��

PM�B��PM�C�. Meta-group �BCD� is the primary metagroup PM�D�. Thus,
a multicast to group D will be sent to �BCD�.

We note that the propagation tree is not unique because it depends on
the order in which metagroups are processed. Various optimizations on the
propagation tree can also be performed, but we require that features (1)–(4)
above should be satisfied by the tree. Exercise 6.10 asks you to design an
algorithm to construct a propagation tree. A metagroup that has members from
multiple user groups is desirable as the root in order to have a tree with low
height.

Correctness
The rules for forwarding messages during a multicast are given in Algo-
rithm 6.6. Each process needs to know the propagation tree, computed at a
central location. Each metagroup has a distinguished process which acts as
the manager or representative of that metagroup.

The array SV�1

 h� kept by each process Pi tracks in SV�k�, the number
of messages multicast by Pi that will traverse through primary meta-
group PM�Gk�. This array is piggybacked on each message multicast by
process Pi.

The manager of each primary metagroup keeps an array RV�1

 n� that
tracks in RV�k�, the number of messages sent by process Pk that have
been received by this primary metagroup.

As in the CO algorithms, a message from Pi can be processed by a primary
metagroup j if RVj�i� = SVi�j�; otherwise it buffers the message until this
condition is satisfied (lines 2a–2c). At a non-primary metagroup, this check
need not be performed because it never receives a message directly from the
sender of the multicast. The multicast sender always sends the message to
the primary metagroup first. At the non-primary metagroup, the relative order

224 Message ordering and group communication

(local variables)
integer: SV�1

 h�; //kept by each process. h is #(primary

//metagroups), h≤ �G�
integer: RV�1

 n�; //kept by each primary metagroup manager.

//n is #(processes)
set of integers: PM_set; //set of primary metagroups through which

//message must traverse

(1) When process Pi wants to multicast message M to group G:
(1a) send M�i�G�SVi� to manager of PM�G�, primary metagroup of G;
(1b) PM_set←− 	 primary metagroups through which M must traverse �;
(1c) for all PMx ∈ PM_set do
(1d) SVi�x�←− SVi�x�+1.

(2) WhenPi, the manager of a metagroupMG receivesM�k�G�SVk� fromPj:
// Note: Pi may not be a manager of any metagroup

(2a) if MG is a primary metagroup then
(2b) buffer the message until (SVk�i�= RVi�k�);
(2c) RVi�k�←− RVi�k�+1;
(2d) for each child metagroup that is subsumed by MG do
(2e) send M�k�G�SVk� to the manager of that child metagroup;
(2f) if there are no child metagroups then
(2g) send M�k�G�SVk� to each process in this metagroup.

Algorithm 6.6 Protocol to enforce total and causal order using propagation trees.

of messages has already been determined by some ancestor metagroup; so it
simply forwards the message as per lines 2d–2g.

• The logic behind why total order is maintained is straightforward. For
any metagroups MG1 and MG2, and any groups Gx and Gy of which the
metagroups are a subset, the primary metagroups PM�Gx� and PM�Gy�

both subsume MG1 and MG2, and both lie on the same branch of the
propagation tree to either MG1 or MG2. The primary metagroup that
is lower in the tree will necessarily receive the two multicasts in some
order. The assumption of FIFO channels guarantees that all processes in
metagroups subsumed by this lower primary metagroup will receive the
messages sent to the two groups in a common order.

• Causal order is guaranteed because of the check made by managers of the
primary metagroups in lines 2a–2c. Assume that messages M and M ′ are
multicast to G and G′, respectively. For nodes in G∩G′, there are two
cases, as shown in Figure 6.17. In each case, the sequence numbers next
to messages indicate the order in which the messages are sent.

Case Figure 6.17(a) and (b): Here, the senders of M and M ′ are differ-
ent. Pk sends M to G. After Pi ∈G receives M , Pi sends M ′ to G′.

225 6.9 Classification of application-level multicast algorithms

Figure 6.17 The four cases for
the correctness of causal
ordering using propagation
trees. The sequence numbers
indicate the order in which the
messages are sent.

Pk Pk

Pi
Pi

PM(G′)

PM(G)

Pi

1 2

3
4

1

3 4

2

PM(G)

PM(G′)

1

2

2 3

1

Case (a) Case (b)

Case (c) Case (d)

PM(G)

PM(G′)

PM(G′)

PM(G)Pi

2

Thus, we have the causal chain Sendk�k�M�G�, Deliveri�k�M�G�,
Sendi�i�M

′�G′�. For any destination MGq such that MGq ⊂G∩G′,
the primary metagroup of G and G′ must both be ancestors of the
metagroup of Pi because of the assumption of closed groups.

Case (a): PM�G′� will have already received and processed M

(flow 2) before it receives M ′ (flow 4).
Case (b): PM�G�will have already received and processedM (flow

1) before it receives M ′ (flow 4). Assuming FIFO channels, CO
is guaranteed for all processes in G∩G′.

Case Figure 6.17(c) and (d): Pi sends M to G and then Pi sends M ′ to
G′. Thus, we have the causal chain Sendi�i�M�G�, Sendi�i�M

′�G′�.

Case (c): The check in lines 2a–2c by PM�G′� ensures that PM�G′�
will not process M ′ before it processes M .

Case (d): The check in lines 2a–2c by PM�G� ensures that PM�G�
will not process M ′ before it processes M . Assuming FIFO
channels, CO is guaranteed for all processes in G∩G′.

6.9 Classification of application-level multicast algorithms

We have seen some algorithmically challenging techniques in the design
of multicast algorithms. The most general scenario allows each process to
multicast to an arbitrary and dynamically changing group of processes at each
step. As this generality incurs more overhead, algorithms implemented on real
systems tend to be more “centralized” in one sense or another: Defago et al.
give an exhaustive survey and this section is based on this survey [11]. For
details of the various protocols, please refer to the survey. Many multicast
protocols have been developed and deployed, but they can all be classified as
belonging to one of the following five classes.

226 Message ordering and group communication

Communication history-based algorithms
Algorithms in this class use a part of the communication history to guarantee
ordering requirements.

The RST [22] and KS [20,21] algorithms belong to this class, and provide
only causal ordering. They do not need to track separate groups, and hence
work for open-group multicasts.

Lamport’s algorithm, wherein messages are assigned scalar timestamps and
a process can deliver a message only when it knows that no other message with
a lower timestamp can be multicast, also belongs to this class. The NewTop
protocol [12], which extends Lamport’s algorithm to overlapping groups, also
guarantees both total and causal ordering. Both these algorithms use closed-
group configurations.

Privilege-based algorithms
The operation of such algorithms is illustrated in Figure 6.18(a). A token
circulates among the sender processes. The token carries the sequence number
for the next message to be multicast, and only the token-holder can multicast.
After a multicast send event, the sequence number is updated. Destination
processes deliver messages in the order of increasing sequence numbers.
Senders need to know the other senders, hence closed groups are assumed.
Such algorithms can provide total ordering, as well as causal ordering using
a closed group configuration (see Exercise 6.12).

Examples of specific algorithms are On-Demand, and Totem. They differ
in implementation details such as whether a token ring topology is assumed

Figure 6.18 Models for
sequencing messages. (a)
Privilege-based algorithms. (b)
Moving sequencer algorithms.
(c) Fixed sequencer algorithms.
(d) Destination agreement
algorithms.

Destinations

(c) Fixed sequencer

(b) Moving sequencer(a) Privilege-based

(d) Destination agreement

Destinations

Senders

Fixed sequencer

Destinations

Senders

Sequencers

Token
rotates

Senders

Destinations

Senders

Privilege rotates

227 6.9 Classification of application-level multicast algorithms

(Totem) or not (On-Demand). Such algorithms are not scalable because they
do not permit concurrent send events. Hence they are of limited use in large
systems.

Moving sequencer algorithms
The operation of such algorithms is illustrated in Figure 6.18(b). The original
algorithm was proposed by Chang and Maxemchuck [8]; various variants of
it were given by the Pinwheel and RMP algorithms. These algorithms work
as follows. (1) To multicast a message, the sender sends the message to all the
sequencers. (2) Sequencers circulate a token among themselves. The token
carries a sequence number and a list of all the messages for which a sequence
number has already been assigned – such messages have been sent already.
(3) When a sequencer receives the token, it assigns a sequence number to
all received but unsequenced messages. It then sends the newly sequenced
messages to the destinations, inserts these messages in to the token list, and
passes the token to the next sequencer. (4) Destination processes deliver the
messages received in the order of increasing sequence number.

Moving sequencer algorithms guarantee total ordering.

Fixed sequencer algorithms
The operation of such algorithms is illustrated in Figure 6.18(c). This class is
a simplified version of the previous class. There is a single sequencer (unless
a failure occurs), which makes this class of algorithms essentially centralized.

The propagation tree approach studied earlier, belongs to this class. Other
algorithms are the ISIS sequencer, Amoeba, Phoenix, and Newtop’s asym-
metric algorithm. Let us look briefly at Newtop’s asymmetric algorithm.
All processes maintain logical clocks, and each group has an independent
sequencer. The unicast from the sender to the sequencer, as well as the multi-
cast from the sequencer are timestamped. A process that belongs to multiple
groups must delay the sending of the next message (to the relevant sequencer)
until it has received and processed all messages, from the various sequencers,
corresponding to the previous messages it sent. Assuming FIFO channels, it
can be shown that total order is maintained.

Destination agreement algorithms
The operation of such algorithms is illustrated in Figure 6.18(d). In this class of
algorithms, the destinations receive the messages with some limited ordering
information. They then exchange information among themselves to define an
order. There are two sub-classes here: (i) the first sub-class uses timestamps
(Lamport’s three-phase algorithm (Algorithm 6.5) belongs to this sub-class);
(ii) the second sub-class uses an agreement or “consensus” protocol among
the processes. We will study agreement protocols in Chapter 14.

228 Message ordering and group communication

6.10 Semantics of fault-tolerant group communication

A failure-free system can be assumed only in an ideal world. When a system
component fails in the midst of the multicast operation, which is a non-atomic
operation that spans across time and across multiple links and nodes, the
behavior of a multicast protocol must adhere to a well-defined specification,
and, correspondingly, the protocol must ensure that the specification under the
failure mode is also implemented. This enables well-defined actions during
recovery after the failure. This section is based on the results of Hadzilacos
and Toueg [15]. Questions such as the following need to be addressed:

• For a multicast, if one correct process delivers the message M , what can
be said about the other correct processes and faulty processes that also
deliver M?

• For a multicast, if one faulty process delivers the message M , what can
be said about the other correct processes and faulty processes that also
deliver M?

• For causal or total order multicast, if one correct or faulty process delivers
M , what can be said about other correct processes and faulty processes
that also deliver M?

There are two broad flavors of the specifications. In the regular flavor, there
are no conditions on the messages delivered to faulty processors (because
they are faulty). However, assuming the benign failure model, under some
conditions, it may be useful to specify and control the behavior of such faulty
processes also. Therefore, the second flavor of specifications, termed as the
uniform specifications, also states the expected behavior of faulty processes.
In the following description of the specifications [15], the regular flavor and
the uniform flavor are stated. To parse for the regular flavor, the parenthesized
words should be omitted. To parse for the uniform flavor, the italicized and
parenthesized modifiers to the definitions of the regular flavor are included.

(Uniform) Reliable multicast of M .

Validity If a correct process multicasts M , then all correct processes
will eventually deliver M .

(Uniform) agreement If a correct (or faulty) process delivers M ,
then all correct processes will eventually deliver M .

(Uniform) integrity Every correct (or faulty) process delivers M at
most once, and only if M was previously multicast by sender�M�.

The validity property states that once the multicast is initiated by a correct
process, it will go to completion. The agreement property states that all
correct processes get the same view of a message, irrespective of whether a
correct process or a faulty process broadcasts it. The integrity property states
that correct processes have non-duplicate delivery of messages, and that they

229 6.10 Semantics of fault-tolerant group communication

are not delivered spurious messages. While the regular agreement property
permits a faulty process to deliver a message that is never delivered to any
correct process, this undesirable behavior can be problematic in applications
such as atomic commit in database protocols, and is explicitly ruled out
by uniform agreement. While the regular Integrity property permits a faulty
process to deliver a message multiple times, and to deliver a message that
was never sent, this behavior is explicitly ruled out by uniform integrity.

The orderings FIFO order, causal order, and total order are now defined for
multicasts, in both the regular and uniform flavors. The uniform flavor requires
that even faulty processes do not violate the ordering properties. These def-
initions of the regular and uniform flavors are superimposed on the basic
definition of a (uniform) reliable multicast, given above. The regular flavor
and the uniform flavor of each definition is read using the semantics above for
parsing the corresponding flavors of multicast. In these definitions which deal
with the relative order of messages, it is important that the multicast groups are
identical, in which case the messages get broadcast within the common group.

(Uniform) FIFO order If a process broadcasts M before it broadcasts
M ′, then no correct (or faulty) process delivers M ′ unless it previously
delivered M .

(Uniform) causal order If M is broadcast causally before M ′ is broad-
cast, then no correct (or faulty) process delivers M ′ unless it previously
delivered M .

(Uniform) total order If correct (or faulty) processes a and b both deliver
M and M ′, then a delivers M before M ′ if and only if b delivers M
before M ′.

It is time to remember the folklore result that any protocol or implemen-
tation that deals with fault-tolerance incurs a greater cost than what it would
in a failure-free environment. In some case, this extra cost can be substantial.
Nevertheless, it is important to formally specify the behavior in the face of
faults, and to provide the implementations that can realize such behavior. We
will not deal with implementations of the above fault-tolerant specifications
of multicasts.

Excessive delay in delivering a multicast message can also be viewed as
a fault. Applications with real-time constraints require that if a message is
delivered, it should be within a bounded period �, termed the latency, after it
was multicast. This specification can be based on either a global observer’s
notion of time, or the local time at each process, leading to real-time �-
timeliness and local-time �-timeliness, respectively:

(Uniform) real-time �-timeliness For some known constant �, if M is
multicast at real-time t, then no correct (or faulty) process delivers M
after real-time t+�.

230 Message ordering and group communication

(Uniform) local �-timeliness For some known constant �, if M is mul-
ticast at local time tm, then no correct (or faulty) process i delivers M
after its local time tm+� on i’s clock.

Specifying local-time �-timeliness requires care because the local clocks at
processes can vary. It is assumed that the sender timestamps the message
multicast with its local time tm, and any receiver should receive the message
within tm+� on its local clock. The efficacy of this specification depends
on how closely the local clocks are synchronized. A protocol to synchronize
physical clocks was studied in Chapter 3.

6.11 Distributed multicast algorithms at the network layer

Several applications can interface directly with the network layer and the
lower hardware-related layers to exploit the physical connectivity and the
physical topology for group communication. The network is viewed as a
graph �N�L�, and various graph algorithms – centralized or distributed – are
run to establish and maintain efficient routing structures. For example,

• LANs connected by bridges maintain spanning trees for distributing infor-
mation and for forward/backward learning of destinations;

• the network layer of the Internet has a rich suite of multicast algorithms.

In this section, we will study the principles underlying several such algorithms.
Some of the algorithms in this section may not be distributed. Nevertheless,
they are intended for a distributed setting, namely the LAN or the WAN.

6.11.1 Reverse path forwarding (RPF) for constrained flooding

As studied in Chapter 5, broadcasting data using flooding in a network �N�L�
requires up to 2�L� messages. Reverse path forwarding (RPF) is a simple but
elegant technique that brings down the overhead significantly at very little
cost. Network nodes are assumed to run the distance vector routing (DVR)
algorithm (Chapter 5), which was used in the Internet until 1983. (Since 1983,
the LSR-based algorithms described in Chapter 5 have been used. These are
more sophisticated and provide more information than that required by DVR.)

The simple DVR algorithm assumes that each node knows the next hop on
the path to each destination x. This path is assumed to be the approximation to
the “best” path. Let Next_hop�x� denote the function that gives the next hop
on the “best” path to x. The RPF algorithm leverages the DVR algorithm for
point-to-point routing, to achieve constrained flooding. The RPF algorithm
for constrained flooding is shown in Algorithm 6.7.

231 6.11 Distributed multicast algorithms at the network layer

(1) When process Pi wants to multicast message M to group Dests:
(1a) send M�i�Dests� on all outgoing links.

(2) When a node i receives message M�x�Dests� from node j:
(2a) if Next_hop�x�= j then // this will necessarily be a new message
(2b) forward M�x�Dests� on all other incident links besides �i� j�;
(2c) else ignore the message.

Algorithm 6.7 Reverse path forwarding (RPF).

This simple RPF algorithm has been experimentally shown to be effective
in bringing the number of messages for a multicast closer to �N � than to �L�.
Actually, the algorithm does a broadcast to all the nodes, and this broadcast
is smartly curtailed to approximate a spanning tree. The curtailed broadcast is
effective because, implicitly, an approximation to a tree rooted at the source
is identified, without it being computed or stored at any node.

Pruning of the implicit broadcast tree can be used to deal with unwanted
multicast packets. If a node receives the packets but the application running
on it does not need the packets, and all “downstream” (in the implicit tree)
nodes also do not need the packets, the node can send a prune message to
the parent in the tree indicating that packets should not be forwarded on that
edge. Implementing this in a dynamic network where the tree periodically
changes and the application’s node membership also changes dynamically is
somewhat tricky (see Exercise 6.14).

6.11.2 Steiner trees

The problem of finding an optimal “spanning” tree that spans only all nodes
participating in a multicast group, known as the Steiner tree problem, is
formalized as follows.

Steiner tree problem
Given a weighted graph �N�L� and a subset N ′ ⊆ N , identify a subset L′ ⊆ L
such that �N ′�L′� is a subgraph of �N�L� that connects all the nodes of N ′.

A minimal Steiner tree is a minimal-weight subgraph �N ′�L′�. The minimal
Steiner tree problem has been well-studied and is known to be NP-complete.
When the link weights change, the tree has to be recomputed to obtain the
new minimal Steiner tree, making it even more difficult to use in dynamic
networks.

Several heuristics have been proposed to construct an approximation to
the minimal Steiner tree. A simple heuristic constructs a MST, and deletes
edges that are not necessary. This algorithm is given by the first three steps
of Algorithm 6.8. The worst case cost of this heuristic is twice the cost of
the optimal solution. Algorithm 6.8 can show better performance when using
the heuristic by Kou et al. [19], given by steps 4 and 5 in the algorithm.

232 Message ordering and group communication

The resulting Steiner tree cost is also at most twice the cost of the minimal
Steiner tree, but behaves better on average.

Input: weighted graph G= �N�L�, and N ′ ⊆N , where N ′ is the set of Steiner
points

(1) Construct the complete undirected distance graph G′ = �N ′�L′� as fol-
lows:
L′ = 	�vi� vj� �vi� vj in N ′�, and wt�vi� vj� is the length of the shortest
path from vi to vj in �N�L�.

(2) Let T ′ be the minimal spanning tree ofG′. If there are multiple minimum
spanning trees, select one randomly.

(3) Construct a subgraph Gs of G by replacing each edge of the MST T ′ of
G′, by its corresponding shortest path in G. If there are multiple shortest
paths, select one randomly.

(4) Find the minimum spanning tree Ts of Gs. If there are multiple minimum
spanning trees, select one randomly.

(5) Using Ts, delete edges as necessary so that all the leaves are the Steiner
points N ′. The resulting tree, TSteiner , is the heuristic’s solution.

Algorithm 6.8 The Kou–Markowsky–Berman heuristic for a minimum Steiner tree.

Cost The time complexity of the heuristic algorithm for each of the five steps
is as follows: step 1: O��N ′� · �N �2�; step 2: O��N ′�2�; step 3: O��N ��; step
4: O��N �2�; step 5: O��N ��. Step 1 dominates, hence the time complexity is
O��N ′� · �N �2�.

6.11.3 Multicast cost functions

Consider a source node s that has to do a multicast to Steiner nodes. As
before, we are given the weighted graph �N�L� and the Steiner node set N ′.
We can define several cost functions [3]. For example, let cost�i� be the cost
of the path from s to i in the routing scheme R.

The destination cost of R is defined as 1
�N ′ �

∑
i∈N ′ cost�i�. This represents

the average cost of the routing. If the cost is measured in time delay, this
routing function metric gives the shortest average time for the multicast to
reach nodes in N ′.

As a variant, a link is counted only once even if it is used on the minimum
cost path to multiple destinations. This variant reduces to the Steiner tree
problem of Section 6.11.2. The sum of the costs of the edges in the Steiner
tree routing scheme R is defined as the network cost.

233 6.11 Distributed multicast algorithms at the network layer

6.11.4 Delay-bounded Steiner trees

Multimedia networks and interactive applications have given rise to the need
for a minimum Steiner tree that also satisfies delay constraints on the trans-
mission. Thus now, the goal is not only to minimize the cost of the tree
(measured in terms of a parameter such as the link weight, which models the
available bandwidth or a similar cost measure) but also to minimize the delay
(propagation delay). The problem is formalized as follows.

Delay-bounded minimal Steiner tree problem
Given a weighted graph �N�L�, there are two weight functions C�l� and D�l�
for each edge in L. C�l� is a positive real cost function on l ∈ L and D�l� is a
positive integer delay function on l∈L. For a given delay tolerance �, a given
source s and a destination set Dest, where 	s�∪Dest = N ′ ⊆ N , identify a
spanning tree T covering all the nodes in N ′, subject to the constraints below.
Here, we let path�s� v� denote the path from s to v in T .

• ∑
l∈T C�l� is minimized, subject to

• ∀v ∈ N ′, ∑l∈path�s�v� D�l� < �.

Finding such a minimal Steiner tree, subject to another parameter, is at
least as difficult as finding a Steiner tree. It can be shown that this problem
reduces to the Steiner tree problem. A detailed study of two heuristics to solve
this problem is presented by Kompella et al. [18]. A constrained cheapest
path between x and y is the cheapest path between x and y that has delay
less than �. The cost and delay on such a path are denoted by C�x� y� and
D�x� y�, respectively. If two or more paths have the lowest cost, the lowest
delay path is chosen. The steps to compute the constrained Steiner tree are
shown in Algorithm 6.9. Step 1 computes the complete closure graph G′ on
nodes in N ′. The two heuristics given below are used in Step 2 to greedily
build a constrained Steiner tree on G′. Step 3 expands the tree edges in G′

to their original paths in G. An example of a constrained Steiner tree for the
input graph in Figure 6.19(a) is given in Figure 6.19(b).

Figure 6.19 Constrained
Steiner tree example [18]. (a)
Network graph. (b) and (c)
MST and Steiner tree (optimal)
are the same and shown in
thick lines.

B

E

F

G

(9,2)

(5,1)

(1,2)

(a) (b), (c)

(4,2)

(8,3)(1,1)

(2,1)

(5,3)

(5,3)

(2,2)

(2,1) (1,2)

H D

C

Source node Non-steiner node

Steiner node (x,y) (cost, delay)

A A

D

CB

E

F

G

(9,2)

(5,1)

(1,2)

(4,2)

(8,3)

(2,1)

(5,3)

(5,3)

(2,2)

(2,1)

H

(1,2)

(1,1)

Source node Non-steiner node

Steiner node (x,y) (cost, delay)

234 Message ordering and group communication

C�l� // cost of edge l
D�l� // delay of edge l
T; // constrained spanning tree to be constructed
PC�x� y�; // cost of constrained cheapest path from x to y
PD�x� y�; // delay on constrained cheapest path from x to y
Cd�x� y�; // cost of the cheapest path with delay exactly d
Input: weighted graph G = �N�L�, and N ′ ⊆ N , where N ′ is the set of Steiner
points, source is s, and � is the constraint on the delay.

1. Compute the closure graph G′ on �N ′�L�, to be the complete graph on N ′.
The closure graph is computed using the all-pairs constrained cheapest paths
using a dynamic programming approach analogous to Floyd’s algorithm. For
any pair of nodes x� y ∈ N ′:
• PC�x� y�=mind<�Cd�x� y�. This selects the cheapest constrained path, sat-

isfying the condition of �, among the various paths possible between x and
y. The various Cd�x� y� can be calculated using DP as follows:

• Cd�x� y�=minz∈N 	Cd−D�z�y��x� z�+C�z� y��. For a candidate path from x to
y passing through z, the path with weight exactly d must have a delay of
d−D�z� y� for x to z when the edge �z� y� has delay D�z� y�.

In this manner, the complete closure graphG′ is computed. PD�x� y� is the delay
on the constrained cheapest path that corresponds to a cost of PC�x� y�.

2. Construct a constrained spanning tree of G′ using a greedy approach that
sequentially adds edges to the subtree of the constrained spanning tree T (thus
far) until all the Steiner points are included. The initial value of T is the
singleton s. Consider that node u is in the tree and we are considering whether
to add edge �u� v�.
The following two edge selection criteria (heuristics) can be used to decide
whether to include edge �u� v� in the tree:

• CSTCD: fCD�u� v�=
⎧⎨
⎩

C�u� v�
�− �PD�s� u�+D�u� v��

� if PD�s� u�+D�u� v�<�

�� otherwise�

The numerator is the “incremental cost” of adding �u� v� and the denominator
is the “residual delay” that could be afforded. The goal is to minimize the
incremental cost, while also maximizing the residual delay by choosing an
edge that has low delay. Thus, the heuristic picks the neighborv that minimizes
fCD, for all u in T and all v adjacent to T .

• CSTC : fc =
{

C�u� v�� if PD�s� u�+D�u� v� < �
�� otherwise�

This heuristic picks the lowest cost edge between the already included tree
edges and their nearest neighbor, as long as the total delay is less than �.

The chosen node v is included in T . This step 2 is repeated until T includes all
�N ′� nodes inG′.

3. Expand the edges of the constrained spanning tree T on G′ into the constrained
cheapest paths they represent in the original graph G. Delete/break any loops
introduced by this expansion.

Algorithm 6.9 The constrained minimum Steiner tree algorithm using the CSTCD and CSTC heuristics.

235 6.11 Distributed multicast algorithms at the network layer

• Heuristic CSTCD This heuristic tries to choose low-cost edges, while
also trying to pick edges that maximize the remaining allowable delay. The
motivation is to try to reduce the tree cost by path sharing, by extending the
path beyond the selected edge. This heuristic has the tendency to optimize
on delay also, while adding to the cost.

• Heuristic CSTC This heuristic simply minimizes the cost while ensuring
that the delay bound is met.

Complexity Assuming integer-valued �, step 1, which finds the constrained
cheapest shortest paths over all the nodes, has O�n3�� time complexity. This
is because all pairs of end and intermediate nodes have to be examined, for
all integer delay values from 1 to �. Step 2, which constructs the constrained
MST on the closure graph having k nodes, has O�k3� time complexity. Step
3, which expands the constrained spanning tree, involves expanding the k

edges to up to n−1 edges each and then eliminating loops. This has O�kn�
time overhead. The dominating step is step 1.

6.11.5 Core-based trees

In the core-based tree approach, each group has a center node, or core node. A
multicast tree is constructed dynamically, and grows on-demand, as follows.
(i) A node wishing to join the tree as a receiver sends a unicast “join”
message to the core node. (ii) The join message marks the edges as it travels;
it either reaches the core node, or some node which is already a part of
the multicast tree. The path followed by the “join” message from its source
till the core/multicast tree is grafted to the multicast tree, and defines the
path to the “core.” (iii) A node on the tree multicasts a message by using
a flooding on the core tree. (iv) A node not on the tree sends a message
towards the core node; as soon as the message reaches any node on the
tree, the message is flooded on the tree. In a network with a dynamically
changing topology, care needs to be taken to maintain the tree structure and
prevent messages from looping. This problem also exists for normal routing
algorithms, such as the LSR and DVR algorithms (Chapter 5), in dynamic
networks.

Current systems do not widely implement the Steiner tree for group
multicast, even though it is more efficient after the initial cost to con-
struct the Steiner tree. They prefer the simpler core-based tree (CBT)
approach.

Core-based trees have various variants. A multi-core-based tree has more
than one core node. For all CBT algorithms, high-bandwidth links can
be specially chosen over others for forming the tree. Core-based trees
have a natural analog in wireless networks, wherein it is reasonable to

236 Message ordering and group communication

constitute the core tree of high-bandwidth wired links or high-power wireless
links.

6.12 Chapter summary

At the core of distributed computing is the communication by message-
passing among the processes participating in the application. This chapter
studied several message ordering paradigms for communication, such as syn-
chronous, FIFO, causally ordered, and non-FIFO orderings. These orders
form a hierarchy. The chapter then examined several algorithms to imple-
ment these orderings. Group communication is an important aspect of com-
munication in distributed systems. Causal order and total order are the
popular forms of ordering when doing group multicasts and broadcasts.
Algorithms to implement these orderings in group communication were also
studied.

Maintaining communication in the presence of faults is necessary in real-
world systems. Faults and their impacts are unpredictable. However, the
behavior in the presence of faults needs to be clearly specified so that the
application knows what to expect in terms of message delivery and message
ordering in the presence of potential faults. The chapter studied some formal
specifications of the expected behavior of group communication when faults
might occur.

This chapter also studied some distributed multicast algorithms at the net-
work layer. These algorithms include reverse path forwarding, multicast along
Steiner trees and delay-bounded Steiner trees, and multicast based on core-
based trees over the network graph. The solutions to some of these problems
are NP-complete. Hence, only heuristics for polynomial time solutions are
examined assuming a centralized setting to perform the computation.

6.13 Exercises

Exercise 6.1 (Characterizing causal ordering)

1. Prove that the CO property (Definition 6.3) and the message order property (Def-
inition 6.5) characterize an identical class of executions.

2. Prove that the CO property (Definition 6.3) and the empty interval property (Def-
inition 6.6) characterize an identical class of executions.

Exercise 6.2 Draw the directed graph �T� ↪→� for each of the executions in
Figures 6.2, 6.3, and 6.5.

Exercise 6.3 Give a linear time algorithm to determine whether an A-execution �E�≺�
is RSC.
Hint: Use the definition of a crown and perform a topological sort on the messages
using the ↪→ relation.

237 6.13 Exercises

Exercise 6.4 Show that a non-CO execution must have a crown of size 2.

Exercise 6.5 Synchronous systems were defined in Chapter 5. Synchronous send and
receive primitives were also introduced in Chapter 1. Synchronous executions were
defined formally in Definition 6.8.

These concepts are closely related. Explain carefully the differences and relation-
ships between: (i) a synchronous execution, (ii) an (asynchronous) execution that uses
synchronous communication, and (iii) a synchronous system.

Exercise 6.6 Rewrite the spanning tree algorithm of Figure 5.3 using CSP-like nota-
tion. You can assume a wildcard operator in a receive call to specify that any sender
can be matched.

Exercise 6.7 The algorithm to implement synchronous order by scheduling messages,
as given in Algorithm 6.1, uses process identifiers to break cyclic waits.

1. Analyze the fairness of this algorithm.
2. If the algorithm is not fair, suggest some ways to make it fair.
3. Will the use of rotating logical identifiers increase the fairness of the algorithm?

Exercise 6.8 Show the following containment relationships between causally ordered
and totally ordered multicasts (hint: you may use Figure 6.11):

1. Show that a causally ordered multicast need not be a total order multicast.
2. Show that a total order multicast need not be a causal order multicast.

Exercise 6.9 Assume that all messages are being broadcast. Justify your answers to
each of the following:

1. Modify the causal message ordering algorithm (Algorithm 6.2) so that processes
use only two vectors of size n, rather than the n × n array.

2. Is it possible to implement total order using a vector of size n?
3. Is it possible to implement total order using a vector of size O�1�?
4. Is it possible to implement causal order using a vector of size O�1�?

Exercise 6.10 Design a (centralized) algorithm to create a propagation tree satisfying
the properties given in Section 6.8.

Exercise 6.11 For the multicast algorithm based on propagation trees, answer the
following:

1. What is a tight upper bound on the number of multicast groups?
2. What is a tight upper bound on the number of metagroups of the multicast

groups?
3. Examine and justify in detail, the impact (to the propagation tree) of (i) an existing

process departing from one of the multiple groups of which it is a member;
(ii) an existing process joining another group; (iii) the formation of a new group
containing new processes; (iv) the formation of a new group containing processes
that are already part of various other groups.

Exercise 6.12 For multicast algorithms, show the following.

1. Privilege-based multicast algorithms provide (i) causal ordering if closed groups
are assumed, and (ii) total ordering.

238 Message ordering and group communication

2. Moving sequencer algorithms, which work with open groups, provide total ordering.
3. Fixed sequencer algorithms provide total ordering.

Exercise 6.13 In the example of Figure 6.16, draw the propagation tree that would
result if �CE� were considered before �BCD� as a child of �ABC�.
Exercise 6.14 Consider the reverse path forwarding algorithm (Algorithm 6.7) for
doing a multicast.

1. Modify the code to perform pruning of the multicast tree.
2. Now modify the code of (1) to also deal with dynamic changes to the network

topology (use the algorithms in Chapter 5).
3. Now modify the code to deal with dynamic changes in the membership of the

application at the various nodes.

Exercise 6.15 Give a (centralized) algorithm for creating a propagation tree, for any
set of groups.

Exercise 6.16 Prove that the propagation tree for a given set of groups is not unique.

Exercise 6.17 For the graph in Figure 6.19, compute the following spanning trees:

1. Steiner tree (based on the KMB heuristic).
2. Delay-bounded Steiner (heuristic CSTCD), with a delay bound of 8 units.
3. Delay-bounded Steiner (heuristic CSTC), with a delay bound of 8 units.

Exercise 6.18 Design a graph for which the CSTCD and CSTC heuristics yield different
delay-bounded Steiner trees.

Exercise 6.19 The algorithms for creating the propagation tree, the Steiner tree, and
the delay-bounded Steiner tree are centralized. Identify the exact challenges in making
these algorithms distributed.

6.14 Notes on references

The discussion on synchronous, asynchronous, and RSC-executions is based on Charron-

Bost et al. [7]. The CSP language for synchronous communication was first proposed

and formalized by Hoare [16]. The discussion on implementing synchronous order is

based on Bagrodia [1]. The discussion on the group communication paradigm, as well

as on total order and causal order is based on Birman and Joseph [4,5]. The algorithm for

causal order (Algorithm 6.2) is given by Raynal et al. [22]. The space and time optimal

algorithm for causal order is given by Kshemkalyani and Singhal [20,21]. The example

to illustrate this algorithm is taken from [6]. The algorithm for total order (Algorithm 6.5)

is taken from the ISIS project by Birman and Joseph [4,5]. The algorithm for total order

using propagation trees is based on Garcia-Molina and Spauster [13], Jia [17], and Chiu

and Hsiao [9]. The classification of application-level multicast algorithms was given

by Defago et al. [11]. The moving sequencer algorithms were proposed by Chang and

Maxemchuk [8]. An efficient fault-tolerant group communication protcol is given in

[12]. A comprehensive survey of group communication specifications given by Chockler

et al. [10] as well as the survey in [11] discuss the systems Totem, Pinwheel, RMP, On-

Demand, Isis, Amoeba, Phoenix, and Newtop. The Steiner tree problem was named after

239 References

Steiner and developed in [14]. The Steiner tree heuristic discussed was proposed by Kou

et al. [19]. The network cost and destination cost metrics were introduced by [3]. They

further showed a detailed analysis of the bounds on the metrics. The discussion on the

delay-bounded minimum Steiner tree is based on Kompella et al. [18]. The discussion on

the semantics of fault-tolerant group communication is given by Hadzilacos and Toueg

[15]. Core-based trees were proposed by Ballardie et al. [2].

References

[1] R. Bagrodia, Synchronization of asynchronous processes in CSP, ACM
Transactions in Programming Languages and Systems, 11(4), 1989,
585–597.

[2] T. Ballardie, P. Francis, and J. Crowcroft, Core based trees (CBT), ACM SIG-
COMM Computer Communication Review, 23(4), 1993, 85–95.

[3] K. Bharath-Kumar and J. Jaffe, Routing to multiple destinations in computer
networks, IEEE Transactions on Communications, 31(3) 1983, 343–351.

[4] K. Birman and T. Joseph, Reliable communication in the presence of failures,
ACM Transactions on Computer Systems, 5(1), 1987, 47–76.

[5] K. Birman, A. Schiper, and P. Stephenson, Lightweight causal and atomic group
multicast, ACM Transactions on Computer Systems, 9(3), 1991, 272–314.

[6] P. Chandra, P. Gambhire, and A. D. Kshemkalyani, Performance of the optimal
causal multicast algorithm: a statistical analysis, IEEE Transactions on Parallel
and Distributed Systems, 15(1), 2004, 40–52.

[7] B. Charron-Bost, G. Tel, and F. Mattern, Synchronous, asynchronous, and
causally ordered communication, Distributed Computing, 9(4), 1996, 173–191.

[8] J.-M. Chang and N. Maxemchuk, Reliable broadcast protocols, ACM Transac-
tions on Computer Systems, 2(3), 1984, 251–273.

[9] G.-M. Chiu and C.-M. Hsiao, A note on total ordering multicast using propaga-
tion trees, IEEE Transactions on Parallel and Distributed Systems, 9(2), 1998,
217–223.

[10] G. Chockler, I. Keidar, and R. Vitenberg, Group communication specifications:
a comprehensive study, ACM Computing Surveys, 33(4), 2001, 1–43.

[11] X. Defago, A. Schiper, and P. Urban, Total order broadcast and multicast
algorithms: taxonomy and survey, ACM Computing Surveys, 36(4), 2004,
372–421.

[12] P. Ezhilchelvan, R. Macdo, and S. Shrivastava, Newtop: a fault-tolerant group
communication protocol, Proceedings of the 15th IEEE International Conference
on Distributed Computing Systems, Vancouver, Canada, May, 1995, 296–306.

[13] H. Garcia-Molina and A. Spauster, Ordered and reliable multicast communica-
tion, ACM Transactions on Computer Systems, 9(3), 1991, 242–271.

[14] E. Gilbert and H. Pollack, Steiner minimal trees, SIAM Journal of Applied
Mathematics, 16(1), 1968, 1–29.

[15] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems in
Mullender, S. (ed.), Distributed Systems, New York, Addison-Wesley, 1993,
97–146.

[16] C. A. R. Hoare, Communicating sequential processes, Communications of the
ACM, 21(8), 1978, 666–677.

[17] X. Jia, A total ordering multicast protocol using propagation trees, IEEE Trans-
actions on Parallel and Distributed Systems, 6(6), 1995, 617–627.

240 Message ordering and group communication

[18] V. Kompella, J. Pasquale, and G. Polyzos, Multcast routing for multi-
media communication, IEEE/ACM Transactions on Networking, 1(3), 1993,
86–92.

[19] L. Kou, G. Markowsky, and L. Berman, A fast algorithm for Steiner trees, Acta
Informatica, 15, 1981, 141–145.

[20] A. D. Kshemkalyani and M. Singhal, An optimal algorithm for generalized causal
message ordering, Proceedings of the 15th ACM Symposium on Principles of
Distributed Computing, May 1996, 87.

[21] A. D. Kshemkalyani and M. Singhal, Necessary and sufficient conditions on
information for causal message ordering and their optimal implementation, Dis-
tributed Computing, 11(2), 1998, 91–111.

[22] M. Raynal, A. Schiper, and S. Toueg, The causal ordering abstraction and a
simple way to implement it, Information Processing Letters, 39, 1991, 343–350.

C H A P T E R

7 Termination detection

7.1 Introduction

In distributed processing systems, a problem is typically solved in a distributed
manner with the cooperation of a number of processes. In such an environ-
ment, inferring if a distributed computation has ended is essential so that the
results produced by the computation can be used. Also, in some applications,
the problem to be solved is divided into many subproblems, and the execution
of a subproblem cannot begin until the execution of the previous subproblem
is complete. Hence, it is necessary to determine when the execution of a
particular subproblem has ended so that the execution of the next subproblem
may begin. Therefore, a fundamental problem in distributed systems is to
determine if a distributed computation has terminated.

The detection of the termination of a distributed computation is non-trivial
since no process has complete knowledge of the global state, and global
time does not exist. A distributed computation is considered to be globally
terminated if every process is locally terminated and there is no message in
transit between any processes. A “locally terminated” state is a state in which
a process has finished its computation and will not restart any action unless it
receives a message. In the termination detection problem, a particular process
(or all of the processes) must infer when the underlying computation has
terminated.

When we are interested in inferring when the underlying computation
has ended, a termination detection algorithm is used for this purpose. In
such situations, there are two distributed computations taking place in the
distributed system, namely, the underlying computation and the termination
detection algorithm. Messages used in the underlying computation are called

241

242 Termination detection

basic messages, and messages used for the purpose of termination detection
(by a termination detection algorithm) are called control messages.

A termination detection (TD) algorithm must ensure the following:

1. Execution of a TD algorithm cannot indefinitely delay the underlying
computation; that is, execution of the termination detection algorithm must
not freeze the underlying computation.

2. The termination detection algorithm must not require addition of new
communication channels between processes.

7.2 System model of a distributed computation

A distributed computation consists of a fixed set of processes that commu-
nicate solely by message passing. All messages are received correctly after
an arbitrary but finite delay. Communication is asynchronous, i.e., a process
never waits for the receiver to be ready before sending a message. Mes-
sages sent over the same communication channel may not obey the FIFO
ordering.

A distributed computation has the following characteristics:

1. At any given time during execution of the distributed computation, a
process can be in only one of the two states: active, where it is doing
local computation and idle, where the process has (temporarily) finished
the execution of its local computation and will be reactivated only on the
receipt of a message from another process. The active and idle states are
also called the busy and passive states, respectively.

2. An active process can become idle at any time. This corresponds to the
situation where the process has completed its local computation and has
processed all received messages.

3. An idle process can become active only on the receipt of a message from
another process. Thus, an idle process cannot spontaneously become active
(except when the distributed computation begins execution).

4. Only active processes can send messages. (Since we are not concerned
with the initialization problem, we assume that all processes are ini-
tially idle and a message arrives from outside the system to start the
computation.)

5. A message can be received by a process when the process is in either of
the two states, i.e., active or idle. On the receipt of a message, an idle
process becomes active.

6. The sending of a message and the receipt of a message occur as atomic
actions.

We restrict our discussion to executions in which every process eventually
becomes idle, although this property is in general undecidable. If a termination
detection algorithm is applied to a distributed computation in which some

243 7.3 Termination detection using distributed snapshots

processes remain in their active states forever, the TD algorithm itself will
not terminate.

Definition of termination detection
Let pi(t) denote the state (active or idle) of process pi at instant t and ci�j(t)
denote the number of messages in transit in the channel at instant t from
process pi to process pj . A distributed computation is said to be terminated
at time instant t0 iff:

�∀i �� pi�t0�= idle�∧ �∀i� j �� ci�j�t0�= 0��

7.3 Termination detection using distributed snapshots

The algorithm uses the fact that a consistent snapshot of a distributed system
captures stable properties. Termination of a distributed computation is a stable
property. Thus, if a consistent snapshot of a distributed computation is taken
after the distributed computation has terminated, the snapshot will capture the
termination of the computation.

The algorithm assumes that there is a logical bidirectional communication
channel between every pair of processes. Communication channels are reliable
but non-FIFO. Message delay is arbitrary but finite.

7.3.1 Informal description

The main idea behind the algorithm is as follows: when a computation ter-
minates, there must exist a unique process which became idle last. When
a process goes from active to idle, it issues a request to all other pro-
cesses to take a local snapshot, and also requests itself to take a local snap-
shot. When a process receives the request, if it agrees that the requester
became idle before itself, it grants the request by taking a local snapshot
for the request. A request is said to be successful if all processes have
taken a local snapshot for it. The requester or any external agent may
collect all the local snapshots of a request. If a request is successful, a
global snapshot of the request can thus be obtained and the recorded state
will indicate termination of the computation, viz., in the recorded snap-
shot, all the processes are idle and there is no message in transit to any of
the processes.

7.3.2 Formal description

The algorithm needs logical time to order the requests. Each process i main-
tains an logical clock denoted by x, which is initialized to zero at the start of

244 Termination detection

the computation. A process increments its x by one each time it becomes idle.
A basic message sent by a process at its logical time x is of the form B(x).
A control message that requests processes to take local snapshot issued by
process i at its logical time x is of the form R(x, i). Each process synchronizes
its logical clock x loosely with the logical clocks x’s on other processes in
such a way that it is the maximum of clock values ever received or sent
in messages. Besides logical clock x, a process maintains a variable k such
that when the process is idle, (x,k) is the maximum of the values (x, k) on
all messages R(x, k) ever received or sent by the process. Logical time is
compared as follows: (x, k) > (x′, k′) iff (x > x′) or ((x = x′) and (k > k′)),
i.e., a tie between x and x′ is broken by the process identification numbers k
and k′.

The algorithm is defined by the following four rules [8]. We use guarded
statements to express the conditions and actions. Each process i applies one
of the rules whenever it is applicable.

R1: When process i is active, it may send a basic message to process j at
any time by doing

send a B�x� to j�

R2: Upon receiving a B(x’), process i does
let x �= x′ +1�
if�i is idle�→ go active�

R3: When process i goes idle, it does
let x �= x+1�
let k �= i�
send message R�x�k� to all other processes�
take a local snapshot for the request by R�x�k��

R4: Upon receiving message R(x′, k′), process i does
���x′� k′� > �x�k��∧ �i is idle�→ let�x� k� �= �x′� k′��

take a local snapshot for the request byR�x′� k′��
�
��x′� k′�≤ �x� k��∧ �i is idle�→ do nothing�
�
�i is active�→ let x �=max�x′� x���

7.3.3 Discussion

As per rule R1, when a process sends a basic message to any other process,
it sends its logical clock value in the message. From rule R2, when a process

245 7.4 Termination detection by weight throwing

receives a basic message, it updates its logical clock based on the clock value
contained in the message. Rule R3 states that when a process becomes idle,
it updates its local clock, sends a request for snapshot R(x, k) to every other
process, and takes a local snapshot for this request.

Rule R4 is the most interesting. On the receipt of a message R(x′, k′), the
process takes a local snapshot if it is idle and (x′, k′) > (x, k), i.e., timing
in the message is later than the local time at the process, implying that the
sender of R(x′, k′) terminated after this process. In this case, it is likely that
the sender is the last process to terminate and thus, the receiving process takes
a snapshot for it. Because of this action, every process will eventually take a
local snapshot for the last request when the computation has terminated, that
is, the request by the latest process to terminate will become successful.

In the second case, (x′, k′) ≤ (x, k), implying that the sender of R(x′, k′)
terminated before this process. Hence, the sender of R(x′, k′) cannot be the
last process to terminate. Thus, the receiving process does not take a snapshot
for it. In the third case, the receiving process has not even terminated. Hence,
the sender of R(x′, k′) cannot be the last process to terminate and no snapshot
is taken.

The last process to terminate will have the largest clock value. Therefore,
every process will take a snapshot for it; however, it will not take a snapshot
for any other process.

7.4 Termination detection by weight throwing

In termination detection by weight throwing, a process called controlling
agent1 monitors the computation. A communication channel exists between
each of the processes and the controlling agent and also between every pair
of processes.

Basic idea
Initially, all processes are in the idle state. The weight at each process is
zero and the weight at the controlling agent is 1. The computation starts
when the controlling agent sends a basic message to one of the processes.
The process becomes active and the computation starts. A non-zero weight
W (0 <W ≤ 1) is assigned to each process in the active state and to each
message in transit in the following manner: When a process sends a mes-
sage, it sends a part of its weight in the message. When a process receives
a message, it add the weight received in the message to its weight. Thus,
the sum of weights on all the processes and on all the messages in trasit

1 The controlling agent can be one of the processes in the computation.

246 Termination detection

is always 1. When a process becomes passive, it sends its weight to the
controlling agent in a control message, which the controlling agent adds
to its weight. The controlling agent concludes termination if its weight
becomes 1.

Notation
• The weight on the controlling agent and a process is in general represented

by W .
• B(DW): A basic message B is sent as a part of the computation, where

DW is the weight assigned to it.
• C(DW): A control message C is sent from a process to the controlling

agent where DW is the weight assigned to it.

7.4.1 Formal description

The algorithm is defined by the following four rules [9]:

Rule 1: The controlling agent or an active process may send a basic message
to one of the processes, say P, by splitting its weight W into W1 and
W2 such that W1+W2 =W , W1 > 0 and W2 > 0. It then assigns its
weight W �=W1 and sends a basic message B(DW �=W2) to P.

Rule 2: On the receipt of the message B(DW), process P adds DW to its
weight W (W �=W +DW). If the receiving process is in the idle state,
it becomes active.

Rule 3: A process switches from the active state to the idle state at any
time by sending a control message C(DW �=W) to the controlling agent
and making its weight W �= 0.

Rule 4: On the receipt of a message C(DW), the controlling agent adds
DW to its weight (W �=W +DW). If W = 1, then it concludes that the
computation has terminated.

7.4.2 Correctness of the algorithm

To prove the correctness of the algorithm, the following sets are defined:

A: set of weights on all active processes;
B: set of weights on all basic messages in transit;
C: set of weights on all control messages in transit;
Wc: weight on the controlling agent.

247 7.5 A spanning-tree-based termination detection algorithm

Two invariants I1 and I2 are defined for the algorithm:

I1: Wc+
∑

W∈�A∪B∪C�
W = 1.

I2: ∀W ∈ (A∪B∪C), W> 0.

Invariant I1 states that the sum of weights at the controlling process, at all
active processes, on all basic messages in transit, and on all control messages
in transit is always equal to 1. Invariant I2 states that weight at each active
process, on each basic message in transit, and on each control message in
transit is non-zero.

Hence,

Wc = 1

=⇒∑
W∈�A∪B∪C� W = 0 �by I1�

=⇒ �A∪B∪C�= �by I2�

=⇒ �A∪B�= �

Note that (A∪B) = implies that the computation has terminated. Therefore,
the algorithm never detects a false termination.

Further,

�A∪B�=
=⇒Wc+

∑
W∈C W = 1 �by I1��

Since the message delay is finite, after the computation has terminated, even-
tually Wc = 1. Thus, the algorithm detects a termination in finite time.

7.5 A spanning-tree-based termination detection algorithm

The algorithm assumes there are N processes Pi, 0 ≤ i ≤ N , which are
modeled as the nodes i, 0 ≤ i ≤ N , of a fixed connected undirected graph. The
edges of the graph represent the communication channels, through which a
process sends messages to neighboring processes in the graph. The algorithm
uses a fixed spanning tree of the graph with process P0 at its root which is
responsible for termination detection. Process P0 communicates with other
processes to determine their states and the messages used for this purpose are
called signals. All leaf nodes report to their parents, if they have terminated.
A parent node will similarly report to its parent when it has completed
processing and all of its immediate children have terminated, and so on. The
root concludes that termination has occurred, if it has terminated and all of
its immediate children have also terminated.

248 Termination detection

The termination detection algorithm generates two waves of signals moving
inward and outward through the spanning tree. Initially, a contracting wave
of signals, called tokens, moves inward from leaves to the root. If this token
wave reaches the root without discovering that termination has occurred, the
root initiates a second outward wave of repeat signals. As this repeat wave
reaches leaves, the token wave gradually forms and starts moving inward
again. This sequence of events is repeated until the termination is detected.

7.5.1 Definitions

1. Tokens: a contracting wave of signals that move inward from the leaves
to the root.

2. Repeat signal: if a token wave fails to detect termination, node P0 initiates
another round of termination detection by sending a signal called Repeat,
to the leaves.

3. The nodes which have one or more tokens at any instant form a set S.
4. A node j is said to be outside of set S if j does not belong to S and the

path (in the tree) from the root to j contains an element of S. Every path
from the root to a leaf may not contain a node of S.

5. Note that all nodes outside S are idle. This is because, any node that
terminates, transmits a token to its parent. When a node transmits the
token, it goes out of the set S.

We first give a simple algorithm for termination detection and discuss a
problem associated with it. Then we provide the correct algorithm.

7.5.2 A simple algorithm

Initially, each leaf process is given a token. Each leaf process, after it has
terminated, sends its token to its parent. When a parent process terminates and
after it has received a token from each of its children, it sends a token to its
parent. This way, each process indicates to its parent process that the subtree
below it has become idle. In a similar manner, the tokens get propagated to
the root. The root of the tree concludes that termination has occurred, after it
has become idle and has received a token from each of its children.

A problem with the algorithm
This simple algorithm fails under some circumstances. After a process has
sent its token to its parent, it should remain idle. However, this is not the
case. The problem arises when a process after it has sent a token to its parent,
receives a message from some other process. Note that this message could
cause the process (that has already sent a token to its parent) to again become
active. Hence the simple algorithm fails since the process that indicated to
its parent that it has become idle, is now active because of the message it

249 7.5 A spanning-tree-based termination detection algorithm

Figure 7.1 An example of the
problem. 0

1 2

3 4 5 6

T1

T5 T6

m

Denotes a token

received from an active process. Hence, the root node just because it received
a token from a child, can’t conclude that all processes in the child’s subtree
have terminated. The algorithm has to be reworked to accommodate such
message-passing scenarios.

The problem is explained with the example shown in Figure 7.1. Assume
that process 1 has sent its token (T1) to its parent, namely, process 0. On
receiving the token, process 0 concludes that process 1 and its children have
terminated. Process 0 if it is idle, can conclude that termination has occurred,
whenever it receives a token from process 2. But now assume that just before
process 5 terminates, it sends a message m to process 1. On the reception
of this message, process 1 becomes active again. Thus, the information that
process 0 has about process 1 (that it is idle) becomes void. Therefore, this
simple algorithm does not work.

7.5.3 The correct algorithm

We now present the correct algorithm that was developed by Topor [19] and
it works even when messages such as the one if Figure 7.1 are present. The
main idea is to color the processes and tokens and change the color when
such messages are involved.

The basic idea
In order to enable the root node to know that a node in its children’s subtree,
that was assumed to be terminated, has become active due to a message, a
coloring scheme for tokens and nodes is used. The root can determine that
an idle process has been activated by a message, based on the color of the
token it receives from its children. All tokens are initialized to white. If a
process had sent a message to some other process, it sends a black token to
its parent on termination; otherwise, it sends a white token on termination.
Hence, the parent process on getting the black token knows that its child had
sent a message to some other process. The parent, when sending its token (on
terminating) to its parent, sends a black token only if it received a black token

250 Termination detection

from one of its children. This way, the parent’s parent knows that one of the
processes in its child’s subtree had sent a message to some other process.
This gets propagated and finally the root node knows that message-passing
was involved when it receives a black token from one of its children. In this
case, the root asks all nodes in the system to restart the termination detection.
For this, the root sends a repeat signal to all other process. After receiving
the repeat signal, all leaves will restart the termination detection algorithm.

The algorithm description
The algorithm works as follows:

1. Initially, each leaf process is provided with a token. The set S is used for
book-keeping to know which processes have the token. Hence S will be
the set of all leaves in the tree.

2. Initially, all processes and tokens are white. As explained above, coloring
helps the root know if a message-passing was involved in one of the
subtrees.

3. When a leaf node terminates, it sends the token it holds to its parent
process.

4. A parent process will collect the token sent by each of its children. After
it has received a token from all of its children and after it has terminated,
the parent process sends a token to its parent.

5. A process turns black when it sends a message to some other process.
This coloring scheme helps a process remember that it has sent a message.
When a process terminates, if its is black, it sends a black token to its
parent.

6. A black process turns back to white after it has sent a black token to its
parent.

7. A parent process holding a black token (from one of its children), sends
only a black token to its parent, to indicate that a message-passing was
involved in its subtree.

8. Tokens are propagated to the root in this fashion. The root, upon receiving
a black token, will know that a process in the tree had sent a message to
some other process. Hence, it restarts the algorithm by sending a Repeat
signal to all its children.

9. Each child of the root propagates the Repeat signal to each of its children
and so on, until the signal reaches the leaves.

10. The leaf nodes restart the algorithm on receiving the Repeat signal.
11. The root concludes that termination has occurred, if:

(a) it is white;
(b) it is idle; and
(c) it has received a white token from each of its children.

251 7.5 A spanning-tree-based termination detection algorithm

7.5.4 An example

We now present an example to illustrate the working of the algorithm.

1. Initially, all nodes 0 to 6 are white (Figure 7.2). Leaf nodes 3, 4, 5,
and 6 are each given a token. Node 3 has token T3, node 4 has token
T4, node 5 has token T5, and node 6 has token T6. Hence, S is 	3, 4,
5, 6�.

2. When node 3 terminates, it transmits T3 to node 1. Now S changes to 1,
4, 5, 6. When node 4 terminates, it transmits T4 to node 1 (Figure 7.3).
Hence, S changes to 	1, 5, 6�.

3. Node 1 has received a token from each of its children and, when it
terminates, it transmits a token T1 to its parent (Figure 7.4). S changes to
	0, 5, 6�.

4. After this, suppose node 5 sends a message to node 1, causing node 1
to again become active (Figure 7.5). Since node 5 had already sent a
token to its parent node 0 (thereby making node 0 assume that node 5
had terminated), the new message makes the system inconsistent as far
as termination detection is concerned. To deal with this, the algorithm
executes the following steps.

5. Node 5 is colored black, since it sent a message to node 1.

Figure 7.2 All leaf nodes have
tokens. S = {3, 4, 5, 6}. 0

1 2

3 4 65

T5 T6T4T 3

Figure 7.3 Nodes 3 and 4
become idle. S = {1, 5, 6}. 0

1 2

3 4 5 6

T5 T6

T3

T4

252 Termination detection

Figure 7.4 Node 1 becomes
idle. S = {0, 5, 6}. 0

1 2

3 4 5 6

T5 T6

T1

Figure 7.5 Node 5 sends a
message to node 1. 0

1 2

3 4 6

T5 T6

T1

5

Figure 7.6 Nodes 5 and 6
become idle. S = {0, 2}. 0

1 2

3 4 5 6

T1

T6

T5

6. When node 5 terminates, it sends a black token T5 to node 2. So, S
changes to 	0, 2, 6�. After node 5 sends its token, it turns white (Figure
7.6). When node 6 terminates, it sends the white token T6 to node 2.
Hence, S changes to 	0, 2�.

7. When node 2 terminates, it sends a black token T2 to node 0, since it
holds a black token T5 from node 5 (Figure 7.7).

253 7.6 Message-optimal termination detection

Figure 7.7 Node 2 becomes
idle. S = �0�. Node 0 initiates
a repeat signal.

0

1 2

3 4 5 6

T1 T 2

8. Since node 0 has received a black token T2 from node 2, it knows that
there was a message sent by one or more of its children in the tree and
hence sends a repeat signal to each of its children.

9. The repeat signal is propagated to the leaf nodes and the algorithm is
repeated. Node 0 concludes that termination has occurred if it is white, it
is idle, and it has received a white token from each of its children.

7.5.5 Performance

The best case message complexity of the algorithm is O(N), where N is the
number of processes in the computation. The best case occurs when all nodes
send all computation messages in the first round. Therefore, the algorithm
executes only twice and the message complexity depends only on the number
of nodes.

However, the worst case complexity of the algorithm is O(N ∗M), where
M is the number of computation messages exchanged. The worst case occurs
when only computation message is exchanged every time the algorithm is
executed. This causes the root to restart termination detection as many times
as there are no computation messages. Hence, the worst case complexity is
O(N ∗M).

7.6 Message-optimal termination detection

Now we discuss a message optimal termination detection algorithm by
Chandrasekaran and Venkatesan [2]. The network is represented by a graph
G= �V�E�, where V is the set of nodes, and E ⊆ V ×V is the set of edges or
communication links. The communication links are bidirectional and exhibit
FIFO property. The processors and communication links incur arbitrary but
finite delays in executing their functions. The algorithm assumes the existence
of a leader and a spanning tree in the network. If a leader is not available, the
minimum spanning tree algorithm of Gallager et al. [7] can be used to elect
a leader and find a spanning tree using O�� E � + � V � log � V �� messages.

254 Termination detection

7.6.1 The main idea

Let us reconsider the method for termination detection disussed in the previous
section the root of the tree initiates one phase of termination detection by
turning white. An interior node, on receiving a white token from its parent,
turns white and transmits a white token to all of its children. Eventually
each leaf receives a white token and turns white. When a leaf node becomes
idle, it transmits a token to its parent and the token has the same color as
that of the leaf node. An interior node waits for a token from each of its
children. It also waits until it becomes idle. It then sends a white token to
its parent if its color is white and it received a white token from each of
its children. Finally, the root node infers the termination of the underlying
computation if it receives a white token from each child, its color is white, and
it is idle.

This simple algorithm is inefficient in terms of message complexity due to
the following reasons. Consider the scenario shown in Figure 7.8, where node
p sends a message m to node q. Before node q received the message m, it
had sent a white token to its parent (because it was idle and it had received a
white token from each of its children). In this situation, node p cannot send a
white token to its parent until node q becomes idle. To insure this, in Topor’s
algorithm, node p changes its color to black and sends a black token to its
parent so that termination detection is performed once again. Thus, every
message of the underlying computation can potentially cause the execution of
one more round of the termination detection algorithm, resulting in significant
message traffic.

The main idea behind the message-optimal algorithm is as follows: when a
node p sends a message m to node q, p should wait until q becomes idle and
only after that, p should send a white token to its parent. This rule ensures
that if an idle node q is restarted by a message m from from a node p, then the
sender p waits till q terminates before p can send a white token to its parent.
To achieve this, when node q terminates, it sends an acknowledgement (a
control message) to node p informing node p that the set of actions triggered

Figure 7.8 Node p sends a
message m to node q that has
already sent a white token to
its parent [2].

p

White token

q’s parent

q

m

255 7.6 Message-optimal termination detection

by message m has been completed and that node p can send a white token
to its parent. However, note that node q, after being woken up by message
m from node p, may wake up another idle node r, which in turn may wake
up other nodes. Therefore, node q should not send an acknowledgement to
p until it receives acknowledgement messages for all of the messages it sent
after it received message m from node p. This restriction also applies to node
r and other nodes. Clearly, both the sender and the receiver keep track of
each message, and a node will send a white token to its parent only after
it has received an acknowledgement for every message it has sent and has
received a white token from each of its children.

7.6.2 Formal description of the algorithm

Initially, all nodes in the network are in state NDT (not detecting termination)
and all links are uncolored. For termination detection, the root node changes
its state to DT (detecting termination) and sends a warning message on each
of its outgoing edges. When a node p receives a warning message from its
neighbor, say q, it colors2 the incoming link (q, p) and if it is in state NTD,
it changes its state to DT, colors each of its outgoing edges, and sends a
warning message on each of its outgoing edges.

When a node p in state DT sends a basic message to its neighbor q, it
keeps track of this information by pushing the entry TO(q) on its local stack.

When a node x receives a basic message from node y on the link (y, x)
that is colored by x, node x knows that the sender node y will need an
acknowledgement for this message from it. The receiver node x keeps track of
this information by pushing the entry FROM(y) on its local stack. Procedure
receive_message is given in Algorithm 7.1.

Procedure receive_message(y: neighbor);
(* performed when a node x receives a message from its neighbor y on the link
(y,x) that was colored by x *)

begin
receive message from y on the link (y,x)
if (link (y,x) has been colored by x) then

push FROM(y) on the stack
end;

Algorithm 7.1 Procedure receive_message.

2 All links are uncolored or colored. The shade of the color does not matter.

256 Termination detection

Eventually, every node in the network will be in the state DT as the network
is connected. Note that both sender and receiver keep track of every message
in the system.

When a node p becomes idle, it calls procedure stack_cleanup, which is
defined in Algorithm 7.2. Procedure stack_cleanup examines its stack from
the top and, for every entry of the form FROM(q), deletes the entry and sends
the remove_entry message to node q. Node p repeats this until it encounters
an entry of the form TO(x) on the stack. The idea behind this step is to
inform those nodes that sent a message to p that the actions triggered by their
messages to p are complete.

Procedure stack_cleanup;
begin

while (top entry on stack is not of the form “TO()”) do
begin

pop the entry on the top of the stack;
let the entry be FROM(q);
send a remove_entry message to q

end
end;

Algorithm 7.2 Procedure stack_cleanup.

When a node x receives a remove_entry message from its neighbor y, node
x infers that the operations triggered by its last message to y have been
completed and hence it no longer needs to keep track of this information.
Node x on receipt of the control message remove_entry from node y, examines
its stack from the top and deletes the first entry of the form TO(y) from the
stack. If node x is idle, it also performs the stack_cleanup operation. The
procedure receive_remove_entry is defined in Algorithm 7.3.

Procedure receive_remove_entry(y: neighbor);
(* performed when a node x receives a remove_entry message from its
neighbor y *)

begin
scan the stack and delete the first entry of the form TO(y);
if idle then

stack_cleanup
end;

Algorithm 7.3 Procedure receive_remove_entry.

257 7.7 Termination detection in a very general distributed computing model

A node sends a terminate message to its parent when it satisfies all the
following conditions:

1. It is idle.
2. Each of its incoming links is colored (it has received a warning message

on each of its incoming links).
3. Its stack is empty.
4. It has received a terminate message from each of its children (this rule

does not apply to leaf nodes).

When the root node satisfies all of the above conditions, it concludes that
the underlying computation has terminated.

7.6.3 Performance

We analyze the number of control messages used by the algorithm in the worst
case. Each node in the network sends one warning message on each outgoing
link. Thus, each link carries two warning messages, one in each direction.
Since there are � E � links, the total number of warning messages generated
by the algorithm is 2*� E �. For every message generated by the underlying
computation (after the start of the termination detection algorithm), exactly
one remove_message is sent on the network. If M is the number of messages
sent by the underlying computation, then at most M remove_entry messages
are used. Finally, each node sends exactly one terminate message to its parent
(on the tree edge) and since there are only � V � nodes and � V � −1 tree
edges, only � V � − 1 terminate messages are sent. Hence, the total number
of messages generated by the algorithm is 2* � E � + � V � −1+M . Thus, the
message complexity of the algorithm is O(� E � +M) as � E �>� V � −1 for any
connected network. The algorithm is asymptotically optimal in the number of
messages.

7.7 Termination detection in a very general distributed computing model

So far we assumed that the reception of a single message is enough to activate
a passive process. Now we consider a general model of distributed computing
where a passive process does not necessarily become active on the receipt of a
message [1]. Instead, the condition of activation of a passive process is more
general and a passive process requires a set of messages to become active.
This requirement is expressed by an activation condition defined over the set
DSi of processes from which a passive process Pi is expecting messages. The
set DSi associated with a passive process Pi is called the dependent set of
Pi. A passive process becomes active only when its activation condition is
fulfilled.

258 Termination detection

7.7.1 Model definition and assumptions

The distributed computation consists of a finite set P of processes Pi, i =
1,

 ,n, interconnected by unidirectional communication channels. Commu-
nication channels are reliable, but they do not obey FIFO property. Message
transfer delay is finite but unpredictable.

A passive process that has terminated its computation by executing for
example an end or stop statement is said to be individually terminated; its
dependent set is empty and therefore, it can never be activated.

AND, OR, and AND-OR models
There are several request models, such as AND, OR, AND-OR models. In
the AND model, a passive process Pi can be activated only after a message
from every process belonging to DSi has arrived. In the OR model, a passive
process Pi can be activated when a message from any process belonging to
DSi has arrived. In the AND-OR model, the requirement of a passive process
Pi is defined by a set Ri of sets DSi

1, DSi
2,

 ,DSi

qi , such that for all r,
1≤ r≤ qi, DSir⊆P. The dependent set of Pi is DSi = DSi

1∪DSi2∪

 DSiqi .
Process Pi waits for messages from all processes belonging to DSi

1 or for
messages from all processes belonging to DSi

2 or for messages from all
processes belonging to DSi

qi .

The k out of n model
In the k out of n model, the requirement of a passive process Pi is defined
by the set DSi and an integer ki, 1≤ ki ≤ �DSi� = ni and process Pi becomes
active when it has received messages from ki distinct processes in DSi. Note
that a more general k out of n model can be constructed as disjunctions of
several k out of n requests.

Predicate fulfilled
To abstract the activation condition of a passive process Pi, a predicate
fulfilledi(A) is introduced, where A is a subset of P. Predicate fulfilledi(A) is
true if and only if messages arrived (and not yet consumed) from all processes
belonging to set A are sufficient to activate process Pi.

7.7.2 Notation

The following notation will be used to define the termination of a distributed
computation:

• passivei: true iff Pi is passive.
• empty(j� i): true iff all messages sent by Pj to Pi have arrived at Pi; the

messages not yet consumed by Pi are in its local buffer.
• arri(j): true iff a message from Pj to Pi has arrived at Pi and has not yet

been consumed by Pi.

259 7.7 Termination detection in a very general distributed computing model

• ARRi = {processes Pj such that arri(j)}.
• NEi = {processes Pj such that ¬ empty(j� i)}.

7.7.3 Termination definitions

Two different types of terminations are defined, dynamic termination and
static termination:

• Dynamic termination The set of processes P is said to be dynamically
terminated at some instant if and only if the predicate Dterm is true at that
moment where:

Dterm≡ ∀Pi ∈ P �passivei∧¬fulfilledi�ARRi∪NEi��

Dynamic termination means that no more activity is possible from pro-
cesses, though messages of the underlying computation can still be in
transit. This definition is useful in “early” detection of termination as it
allows us to conclude whether a computation has terminated even if some
of its messages have not yet arrived.
Note that dynamic termination is a stable property because once Dterm is
true, it remains true.

• Static termination The set of processes P is said to be statically ter-
minated at some instant if and only if the predicate Sterm is true at that
moment where:

Sterm≡ ∀Pi ∈ P � passivei∧ �NEi = ∅�∧¬fulfilledi�ARRi��

Static termination means all channels are empty and none of the processes
can be activated. Thus, static termination is focused on the state of both
channels and processes. When compared to Dterm, the predicate Sterm
corresponds to “late” detection as, additionally, all channels must be empty.

7.7.4 A static termination detection algorithm

Informal description
A control process Ci, called a controller, is associated with each application
process Pi. Its role is to observe the behavior of process Pi and to cooperate
with other controllers Cj to detect occurrence of the predicate Sterm. In order
to detect static termination, a controller, say Ca, initiates detection by sending
a control message query to all controllers (including itself). A controller Ci
responds with a message reply(ldi), where ldi is a Boolean value. Ca combines
all the Boolean values received in reply messages to compute td := ∧

1≤i≤n
ldi. If

td is true, Ca concludes that termination has occurred. Otherwise, it sends new
query messages. The basic sequence of sending of query messages followed
by the reception of associated reply messages is called a wave.

260 Termination detection

The core of the algorithm is the way a controller Ci computes the value ldi
sent back in a reply message. To ensure safety, the values ld1,

 ldn must
be such that:

∧
1≤i≤n

ldi =⇒ Sterm

=⇒ ∀Pi ∈ P � passivei∧�NEi = ∅�∧¬fulfilledi�ARRi��

A controller Ci delays a response to a query as long as the follow-
ing locally evaluable predicate is false: passivei ∧ (notacki = 0) ∧ ¬
fulfilledi(ARRi). When this predicate is false, the static termination cannot be
guaranteed.

For correctness, the values reported by a wave must not miss the activity
of processes “in the back” of the wave. This is achieved in the following
manner: each controller Ci maintains a Boolean variable cpi (initialized to
true iff Pi is initially passive) in the following way:

• When Pi becomes active, cpi is set to false.
• When Ci sends a reply message to Ca, it sends the current value of cpi

with this message, and then sets cpi to true.

Thus, if a reply message carries value true from Ci to Ca, it means that Pi has
been continuously passive since the previous wave, and the messages arrived
and not yet consumed are not sufficient to activate Pi, and all output channels
of Pi are empty.

Formal description
The algorithm for static termination detection is as follows. By a message,
we mean any message of the underlying computation; queries and replies are
called control messages.

S1: When Pi sends a message to Pj

notacki �= notacki+1

S2: When a message from Pj arrives to Pi

send ack to Cj

S3: When Ci receives ack from Cj

notacki = notacki−1

S4: When Pi becomes active
cpi �= false�

261 7.7 Termination detection in a very general distributed computing model

(* A passive process can only become active when its activation condition
is true; this activation is under the control of the underlying operating
system, and the termination detection algorithm only observes it. *)

S5: When Ci receives query from C�
(* Executed only by C� *)

Wait until
��passivei∧�notacki = ∅�¬fulfilledi�ARRi���
ldi �= cpi�
cpi �= true�
send reply�ldi� to C�

S6: When controller Ca decides to detect static termination

repeat send query to all Ci�
receive reply�ldi� from all Ci�

td �= ∧
1≤i≤n

ldi�

until td�
claim static termination

Performance
The efficiency of this algorithm depends on the implementation of waves.
Two waves are in general necessary to detect static termination. A wave needs
two types of messages: n queries and n replies, each carrying one bit. Thus,
4n control messages of two distinct types carrying at most one bit each are
used to detect the termination once it has occurred. If waves are supported by
a ring, this complexity reduces to 2n. The detection delay is equal to duration
of two sequential wave executions.

7.7.5 A dynamic termination detection algorithm

Recall that a dynamic termination can occur before all messages of the com-
putation have arrived. Thus, termination of the computation can be detected
sooner than in static termination.

Informal description
Let C� denote the controller that launches the waves. In addition to cpi,
each controller Ci has the following two vector variables, denoted as si and
ri, that count messages, respectively, sent to and received from every other
process:

262 Termination detection

• si[j] denotes the number of messages sent by Pi to Pj;
• ri[j] denotes the number of messages received by Pi from Pj .

Let S denote an n×n matrix of counters used by C�; entry S[i� j] represents
C�’s knowledge about the number of messages sent by Pi to Pj .

First, Ca sends to each Ci a query message containing the vector
(S[1,i],

,S[n,i]), denoted by S[.,i]. Upon receiving this query message, Ci
computes the set ANEi of its non-empty channels. This is an approximate
knowledge but is sufficient to ensure correctness. Then Ci computes ldi,
which is true if and only if Pi has been continuously passive since the previous
wave and its requirement cannot be fulfilled by all the messages arrived and
not yet consumed (ARRi) and all messages potentially in its input channels
(ANEi). Ci sends to C� a reply message carrying the values ldi and vector
si. Vector si is used by C� to update row S[i,] and thus gain more accurate
knowledge. If

∧
1≤i≤n

ldi evaluates to true, Ca claims dynamic termination of

the underlying computation. Otherwise, C� launches a new wave by sending
query messages.

Vector variables si and ri allow C� to update its (approximate) global
knowledge about messages sent by each Pi to each Pj and get an approximate
knowledge of the set of non-empty input channels.

Formal description
All controllers Ci execute statements S1 to S4. Only the initiator C� executes
S5. Local variables si, ri, and S are initialized to 0.

S1: When Pi sends a message to Pj
si�j� �= si�j�+1

S2: When a message from Pj arrives at Pi
ri�j� �= ri�j�+1

S3: When Pi becomes active
cpi �= false

S4: When Ci receives query(VC[1...n]) from C�
�∗VC�1���n�= S�1���n� i� is the ith column of S∗�
ANEi �= 	Pj � VC�j� > ri�j���

ldi �= cpi∧¬fulfilledi�ARRi∪NEi��
cpi �= �statei = passive��
send reply�ldi� si� to C�

263 7.8 Termination detection in the atomic computation model

S5: When controller C� decides to detect dynamic termination
repeat for each Ci

send query�S�1��� n� i�� to Ci�
�∗ the ith column ofS is sent to Ci

∗�
receive reply�ldi� si� from all Ci�
∀i ∈ �1��n� � S�i� �� �= si�
td �= ∧

1≤i≤n
ldi

until td�
claim dynamic termination

Performance
The dynamic termination detection algorithm needs two waves after dynamic
termination has occurred to detect it. Thus, its message complexity is 4n,
which is lower than the static termination detection algorithm since no
acknowledgements are necessary. However, messages are composed of n
monotonically increasing counters. As waves are sequential, query (and
reply) messages between C� and each Ci are received and processed in
their sending order; this FIFO property can be used in conjunction with
Singhal–Kshemkalyani’s differential technique to decrease the size of the
control messages. The detection delay is two waves but is shorter than
the delay of the static termination algorithm as acknowledgements are not
used.

7.8 Termination detection in the atomic computation model

Mattern [12] developed several algorithm for termination detection in the
atomic computation model.

Assumptions
1. Processes communicate solely by messages. Messages are received cor-

rectly after an arbitrary but finite delay. Messages sent over the same
communication channel may not obey the FIFO rule.

2. A time cut is a line crossing all process lines. A time line can be a straight
vertical line or a zigzag line, crossing all process lines. The time cut of
a distributed computation is a set of actions characterized by a fact that
whenever an action of a process belongs to that set, all previous actions
of the same process also belong to the set.

3. We assume that all atomic actions are totally globally ordered i.e., no two
actions occur at the same time instant.

264 Termination detection

7.8.1 The atomic model of execution

In the atomic model of the distributed computation, a process may at any
time take any message from one of its incoming communication channels,
immediately change its internal state, and at the same instant send out zero or
more messages. All local actions at a process are performed in zero time. Thus,
consideration of process states is eliminated when performing termination
detection.

In the atomic model, a distributed computation has terminated at time
instant t if at this instant all communications channels are empty. This is
because execution of an internal action at a process is instantaneous.

A dedicated process, P1, the initiator, determines if the distributed compu-
tation has terminated. The initiator P1 starts termination detection by sending
control messages directly or indirectly to all other processes. Let us assume
that processes P1,

,Pn are ordered in sequence of the arrival of the control
message.

7.8.2 A naive counting method

To find out if there are any messages in transit, an obvious solution is to
let every process count the number of basic messages sent and received. We
denote the total number of basic messages Pi has sent at (global) time instant
t by si�t�, and the number of messages received by ri�t�. The values of the
two local counters are communicated to the initiator upon request. Having
directly or indirectly received these values from all processes, the initiator
can accumulate the counters. Figure 7.9 shows an example, where the time
instants at which the processes receive the control messages and communicate
the values of their counters to the initiator are symbolized by striped dots.
These are connected by a line representing a “control wave,” which induces
a time cut.

If the accumulated values at the initiator indicate that the sum of all the
messages received by all processes is the same as the sum of all messages

Figure 7.9 An example
showing a control wave with a
backward communication [12].

Control wave

Pn

P3

P2

P1

265 7.8 Termination detection in the atomic computation model

sent by all processes, it may give an impression that all the messages sent
have been received, i.e., there is no message in transit.

Unfortunately because of the time delay of the control wave, this simple
method is not correct. The example in Figure 7.9 shows that the counters can
become corrupted by messages “from the future,” crossing from the right side
of the control wave to its left.

The accumulated result indicates that one message was sent and one received
although the computation has not terminated. This misleading result is caused by
the fact that the time cut is inconsistent. A time cut is considered to be inconsis-
tent, if when the diagonal line representing it is made vertical, by compressing or
expanding the local time scales, a message crosses the control wave backwards.

However, this naive method for termination detection works if the time cut
representing the control wave is consistent.

Various strategies can be applied to correct the deficiencies of the naive
counting method:

• If the time cut is inconsistent, restart the algorithm later.
• Design techniques that will only provide consistent time cuts.
• Do not lump the count of all messages sent and all messages received.

Instead, relate the messages sent and received between pairs of processes.
• Use techniques like freezing the underlying computation.

7.8.3 The four counter method

A very simple solution consists of counting twice using the naive counting
method and comparing the results. After the initiator has received the response
from the last process and accumulated the values of the counters R∗ and S∗

(where R∗ := ∑
∀i
ri�ti� and S∗ := ∑

∀i
si�ti��, it starts a second control wave

(see Figure 7.10), resulting in values R′∗ and S′∗. The system is terminated
if values of the four counters are equal, i.e., R∗ = S∗ = R′∗ = S′∗. In fact, a
slightly stronger result exists: if R∗ = S′∗, then the system terminated at the
end of the first wave (t2 in Figure 7.10).

Let t2 denote the time instant at which the first wave is finished, and t3
(≥ t2) denote the starting time of the second wave (see Figure 7.10).

1. Local message counters are monotonic, that is, t ≤ t′ implies si(t)≤si(t′)
and ri(t)≤ri(t′). This follows from the definition.

2. The total number of messages sent or received is monotonic, that is, t ≤ t′
implies S(t)≤S(t′) and R(t)≤R(t′).

3. R*≤ R(t2). This follows from (1) and the fact that all values ri are collected
before t2.

4. S′*≥ S(t3). This follows from (1) and the fact that all values si are collected
after t3.

5. For all t, R(t)≤ S(t). This is because the number of messages in transit
D(t):= S(t) − R(t) ≥ 0.

266 Termination detection

Figure 7.10 An example
showing two control waves
[12].

First wave Second wave

Pn

P3

P2

P1

t1 t2 t3 t4

Now we show that if R∗ = S′∗, then the computation had terminated at the
end of the first wave:

R∗ = S′∗ =⇒ R�t2�≥ S�t3�
=⇒ R�t2�≥ S�t2�
=⇒ R�t2�= S�t2�

That is, the computation terminated at t2 (at the end of the first wave).
If the system terminated before the start of the first wave, it is trivial that

all messages arrived before the start of the first wave, and hence the values of
the accumulated counters will be identical. Therefore, termination is detected
by the algorithm in two “rounds” after it had occurred. Note that the second
wave of an unsuccessful termination test can be used as the first wave of
the next termination test. However, a problem with this method is to decide
when to start the next wave after an unsuccessful test – there is a danger of
an unbounded control loop.

7.8.4 The sceptic algorithm

Note that the values of the counters obtained by the first wave of the four
counter method can become corrupted if there is some activity at the right of
the wave. To detect such activity, we use flags which are initialized by the
first wave, and set by the processes when they receive (or alternatively when
they send) messages. The second wave checks if any of the flags have been
set, in which case a possible corruption is indicated. A general drawback is
that at least two waves are necessary to detect the termination.

It is possible to devise several variants based on the logical control topol-
ogy. If the initiator asks every process individually, it corresponds to a star
topology. It is possible to implement the sceptic algorithm on a ring; however,
symmetry is not easily achieved since different waves may interfere when a

267 7.8 Termination detection in the atomic computation model

single flag is used at each process. A spanning tree is also an interesting con-
trol configuration. Echo algorithms used as a parallel graph traversal method
induce two phases. The “down” phase is characterized by the receipt of a
first control message which is propagated to all other neighbors, and the “up”
phase by the receipt of the last of the echoes from its neighboring nodes.
These two phases can be used as two necessary waves of the sceptic method
for termination detection.

7.8.5 The time algorithm

The time algorithm is a single wave detection algorithm where termination
can be detected in one single wave after its occurrence at the expense of
increased amount of control information or augmenting every message with a
timestamp. In the time algorithm, each process has a local clock represented
by a counter initialized to 0.

A control wave started by the initiator at time i, accumulates the values
of the counters and “synchronizes” the local clocks by setting them to i+1.
Thus, the control wave separates “past” from “future.” If a process receives a
message whose timestamp is greater than its own local time, the process has
received a message from the future (i.e., the message crossed the wave from
right to left) and the message has corrupted the counters. After such a message
has been received, the current control wave is nullified on arrival at the
process.

Formal description
Every process Pj (1≤ j ≤ n) has a local message counter COUNT (initialized
to 0) that holds the value sj − rj , a local discrete CLOCK (initialized to 0),
and a variable TMAX (also initialized to 0) that holds the latest send time of
all messages received by Pj .

The psuedo code for process Pj is shown in Algorithm 7.4.
A control message consists of four parameters: the (local) time at which

the control round was started, the accumulator for the message counters, a
flag which is set when a process has received a basic message from the
future (TMAX≥ TIME), and the identification of the initiating process. The
first component of a basic message is always the timestamp.

For each single control wave, any basic message that crosses the wave from
the right side of its induced cut to its left side is detected. Note that different
control waves do not interfere; they merely advance the local clocks further.
Once the system is terminated, the values of the TMAX variables remain
fixed and since for every process Pj , TMAXj ≤max CLOCKi �1 ≤ i ≤ n�,
the process with the maximum clock value can detect global termination in
one round. Other processes may need more rounds.

268 Termination detection

(a) When sending a basic message to Pi:
(1) COUNT←COUNT +1;
(2) send <CLOCK,...> to Pi;

/* timestamped basic message */

(b) When receiving a basic message <TSTAMP,...>:
(3) COUNT←COUNT −1;
(4) TMAX←max(TSTAMP, TMAX);
(5) /* process the message */

(c) When receiving a control message <TIME, ACCU, INVALID, INIT>:
(6) CLOCK←max(TIME, CLOCK): /* synchronize the local closk */
(7) if INIT = j /* complete round? */
(8) then if ACCU = 0 and not INVALID
(9) then “terminated” else “try again”;
(10) endif ;
(11) else send <TIME, ACCU + COUNT, INVALID or

TMAX≥ TIME, INIT> to P�j mod n�+1;
(12) end_if ;

(d) When starting a control round:
(13) CLOCK←CLOCK+1;
(14) send <CLOCK, COUNT, false, j> to P�j mod n�+1;

Algorithm 7.4 The time algorithm [12].

7.8.6 Vector counters method

Vector counters method of termination detection consists of counting mes-
sages in such a way that it is not possible to mislead the accumulated counters.

The configuration used is the ring with n processes where every process Pj
(1 ≤ j ≤ n) has a COUNT vector of length n, where COUNT [i] (1 ≤ i ≤ n)
denotes the ith component of the vector. A circulating control message also
consists of a vector of length n. For each process Pj , the local variable
COUNT[i] (i �= j) holds the number of basic messages that have been sent to
process Pi since the last visit of the control message. Likewise, the negative
value of COUNT[j] indicates how many messages have been received from
any other process. At any (global) time instant, the sum of the kth components
of all n COUNT vectors including the circulating control vector equals the
number of messages currently on their way to process Pk, 1 ≤ k ≤ n. This
property is maintained invariant by the implementation given below. For
simplicity, we assume that no process communicates with itself, Pn+1 is
identical to P1, an operation on a vector is defined by the operating on each
of its components, and 0* denotes the null vector.

The psuedo code for process Pj is shown in Algorithm 7.5.

269 7.8 Termination detection in the atomic computation model

COUNT is initialized to 0*
(a) When sending a basic message to Pi (i �= j):
(1) COUNT[i]← COUNT[i]+ 1;

(b) The following instructions are executed at the end of all local actions
triggered by the receipt of a basic message:

(2) COUNT[j]←COUNT[j]−1;
(3) if COUNT[j] = 0 then
(4) if COUNT = 0*

then “system terminated”
(5) else send accumulate <COUNT> to Pj+1;
(6) COUNT← 0*;
(7) end_if ;
(8) end_if;

(c) When receiving a control message “accumulate ≤ACCU>”:
(9) COUNT←COUNT+ACCU;
(10) if COUNT [j] ≤ 0 then
(11) if COUNT = 0*

then “system terminated”
(12) else send accumulate <COUNT> to Pj+1;
(13) COUNT← 0*;
(14) end_if;
(15) end_if;

Algorithm 7.5 Vector counters algorithm [12].

An initiator Pi starts the algorithm by sending the control message “accu-
mulate <0*>” to Pi+1. A mechanism is needed to ensure that every process
is visited at least once by the control message, i.e., that the control vector
makes at least one complete round after the start of the algorithm.

Every process counts the number of outgoing messages individually by
incrementing the counter indexed by the receiver’s process number (line
1); the counter indexed by its own number is decremented on receipt of a
message (line 2). When a process receives the circulating control message, it
accumulates the values in the message to its COUNT vector (line 9). A check
is then made (line 10) to determine whether any basic messages known to the
control message have still not arrived at Pj . If this is the case (COUNT [j]>0),
the control message is removed from the ring and regenerated at later time
(line 5) when all expected messages have been received by Pj . For this
purpose, every time a basic message is received by a process Pj , a test is
made to check whether COUNT[j] is equal to 0 (line 3). Note that lines 4–15
are only executed when the control vector is at Pj . Note that there is at most
one process Pj with COUNT[j]>0, and if this is the case at Pj , the control

270 Termination detection

vector “waits” at process Pj (lines 11–13 are not executed and the control
vector remains at Pj).

If the control message is not required to wait at nodes for outstanding basic
messages, the algorithm can be simplified considerably by removing lines
3–8 as well as lines 10 and 15.

Performance
The number of control messages exchanged by this algorithm is bounded by
n(m+1), where m denotes the number of basic messages, because at least one
basic message is received in every round of the control message, excluding
the first round. Therefore, the worst case communication complexity for this
algorithm is O(mn).

7.8.7 A channel counting method

The channel counting method is a refinement of the vector counter method in
the following way: a process keeps track of the number of messages sent to
each process and keeps track of the number of messages received from each
process, using appropriate counters.

Each process Pj has n counters, C+j1,

 , C+jn, for outgoing messages and
n counters, C−1j ,

 ,C−nj , for incoming messages. C−ij is incremented when Pj
receives a message from process Pi, and C+jk is incremented when Pj sends a
message to Pk. Upon demand, each process informs the values of the counters
to the initiator. The initiator reports termination if C−ij = C+ij for all i,j.

The method becomes more practical if it is combined with the echo algo-
rithm, where test messages flow down on every edge of the graph and echoes
proceed in the opposite direction. The value of C−ij is transmitted upwards
from process Pj to Pi in an echo; whereas, a test message sent by Pi to Pj
carries the value of C+ij with it. A process receiving a test message from
another process (the activator), propagates it in parallel with any other process
to which it sent basic messages whose receipts have not yet been confirmed.
If it has already done this, or if all basic messages sent out have been con-
firmed, an echo is immediately sent to the activator. There are no special
acknowledgement messages. A process Pi receiving the value of C−ij in an
echo, knows that all messages it sent to Pj have arrived if the value of C−ij
equals the value of its own counter C+ij . An echo is only propagated towards
the activator if an echo has been received from each subtree and all channels
in the subtrees are empty.

Formal description
Each process Pj has the following arrays of counters:

1. OUT[i]: counts the number of basic messages sent to Pi.
2. IN[i]: counts the number of basic messages received from Pi.

271 7.8 Termination detection in the atomic computation model

3. REC[i]: records the number of its messages that Pj knows have been
received by Pi.

OUT[i] corresponds to C+ji and IN[i] to C−ij . A variable ACTIVATOR is used
to hold the index number of the activating process and a counter DEGREE
indicates how many echoes are still missing.

The psuedo code for process Pj is shown in Algorithm 7.6.

{OUT, IN, and REC are initialized to 0* and DEGREE to 0.}

(a) When sending a basic message to Pi:
(1) OUT[i]→OUT[i]+1;

(b) When receiving a basic message from Pi:
(2) IN[i]← IN[i]+1;

(c) On the receipt of a control message test <m> from Pi where m≤ IN[i]:
(3) if DEGREE > 0 or OUT = REC /* already engaged or

subtree is quiet */
(4) then send echo <IN[i]> to Pi;
(5) else ACTIVATOR← i; /* trace activating process */
(6) PROPOGATE /* and test all subtrees */
(7) end_if;

(d) On the receipt of a control message echo <m> from Pi:
(8) REC[i]←m;
(9) DEGREE←DEGREE − 1; /* decrease missing echoes counter */
(10) if DEGREE= 0 then

/* last echo checks whether all subtrees are quiet */
(11) PROPAGATE;
(12) end_if;
(13) if DEGREE= 0 then /*all echoes arrived, everything quiet */
(14) send echo <IN[ACTIVATOR]> to PACTIVATOR;
(15) end_if;

(e) The procedure PROPAGATE called at lines 6 and 11 is defined as follows:
(16) procedure PROPAGATE:
(17) loop for K = 1 to n do
(18) if OUT[K] �=REC[K] then /* confirmation missing */
(19) send test <OUT[K]> to Pk; /* check subtree */
(20) DEGREE←DEGREE + 1;
(21) end_if;
(22) end_loop;
(23) end_procedure;

Algorithm 7.6 Channel counting algorithm [12].

272 Termination detection

Variable DEGREE is incremented when a process sends a test message (line
20) and it is decremented when a process receives an ECHO message (line 9).
If DEGREE > 0, it means the node is “engaged” and a test message is imme-
diately responded to with an echo message (line 4). An echo is also returned
for a test message if OUT = REC (line 3), i.e., if process sent no messages
at all or if all messages sent out by it have been acknowledged. Lines 10–15
insure that an echo is only returned if the arrival of all basic messages has been
confirmed and all computations in the subtree finished. This is done by send-
ing further test messages (via procedure PROPAGATE) after the last echo has
arrived (lines 10–12). These test messages visit any of the subtree root processes
that have not yet acknowledged all basic messages sent to them. The proce-
dure PROPAGATE increases the value of the variable DEGREE if any processes
are visited, thus preventing the generation of an echo (lines 13–15).

To minimize the number of control messages, test messages should not
overtake basic messages. To achieve this, test messages carry with them a
count of the number of basic messages sent over the communication channel
(line 19). If a test messages overtakes some basic messages (and it is not
overtaken by basic messages), its count will be greater than the value of the
IN-counter of the receiver process. In this case, the test message is put on
hold and delivered later when all basic messages with lower count have been
received (guard m ≤ IN [i] in point (c) insures this).

The initiator starts the termination test only once, as if it had received
a test < 0 > message from some imaginary process P0. On termination
detection, instead of eventually sending an echo to P0, it reports termination.
Test messages only travel along those channels that have been used by basic
messages; processes that did not participate in the distributed computation
are not visited by test messages. For each test message, an echo is eventually
sent in the opposite direction.

Performance
At least one basic message must have been sent between the two test mes-
sages along the same channel. This results in an upper bound of 2m control
messages, where m denotes the number of basic messages. Hence, the worst
case communication complexity is O(m). However, the worst case should
rarely occur, particularly if the termination test is started well after the com-
putation started. In many situations, the number of control messages should
be much smaller than m. The exact number of control messages involved in
channel counting is difficult to estimate because it is highly dependent on
communication patterns of the underlying computation.

7.9 Termination detection in a faulty distributed system

An algorithm is presented that detects termination in distributed systems in
which processes fail in a fail-stop manner. The algorithm is based on the

273 7.9 Termination detection in a faulty distributed system

weight-throwing method. In such a distributed system, a computation is said
to be terminated if and only if each healthy process is idle and there is no basic
message in transit whose destination is a healthy process. This is independent
of faulty processes and undeliverable messages (i.e., whose destination is
a faulty process). Based on the weight-throwing scheme, a scheme called
flow detecting scheme is developed by Tseng [20] to derive a fault-tolerant
termination detection algorithm.

Assumptions
Let S = P1, P2,

 , Pn be the set of processes in the distributed computation.
Cij represents the bidirectional channel between Pi and Pj . The communica-
tion network is asynchronous. Communications channels are reliable, but they
are non-FIFO. At any time, an arbitrary number of processes may fail. How-
ever, the network remains connected in the presence of faults. The fail-stop
model implies that a failed process stops all activities and cannot rejoin the
computation in the current session. Detection of faults takes a finite amount
of time.

7.9.1 Flow detecting scheme

Weights may be lost because a process holding a non-zero weight may crash
or a message destined to a crashed process is carrying a weight. Therefore,
due to faulty processes and undeliverable messages carrying weights, it may
not be possible for the leader to accumulate the total weight of 1 to declare
termination. In the case of a process crash, the lost weight must be calculated.
To solve this problem, the concept of flow invariant is used.

The concept of flow invariant
Define H ⊆ S as the set of all healthy processes. Define subsystem H to
be part of the system containing all processes in H and communication
channels connecting two processes in H . According to the concept of flow
invariant, the weight change of the subsystem during time interval I, during
which the system is doing computation, is equal to (weights flowing into
H during I) − (weights flowing out of H during I). To implement this
concept, a variable called neti is assigned to each process Pi belonging
to H . This variable records the total weight flowing into and out of the
subsystem H . Initially, ∀i neti = 0. The following flow-detecting rules are
defined:

Rule 1: Whenever a process Pi which belongs to H receives a message
with weight x from another process Pj which does not belong to H , x is
added to neti.

274 Termination detection

Figure 7.11 Healthy and faulty
process sets and message flow
between them [20].

WH WH

WH → H

WH → H

HH

Rule 2: Whenever a process Pi which belongs to H sends a message with
weight x to a process Pj which does not belong to H , x is subtracted
from neti.

Let WH be the sum of the weights of all processes in H and all in-transit
messages transmitted between processes in H :

WH =
∑
Pi∈H

�neti+1/n��

where 1/n is the initial weight held by each process Pi.
Let H = S–H be the set of faulty processes. The distribution of weights is

divided into four parts:

WH : weights of processes in H .
WH : weights of processes in H .
WH→H : weights held by in-transit messages from H to H .
WH→H : weights held by in-transit messages from H to H .

This is shown in Figure 7.11. WH and WH→H are lost and cannot be used in
the termination detection.

7.9.2 Taking snapshots

In distributed systems, due to the lack of a perfectly synchronized global
clock, it is not possible to get a global view of the subsystem H and hence
it may not possible to determine WH . We obtain WH , which is an estimated
value of WH , by taking snapshots on the subsystem H and by using the above
equation for WH .

However, note that weights in WH→H carried by in-transit messages may
join H and change WH . To obtain a stable value of WH , channels from
H to H are disconnected before taking snapshots of H . Once a channel
is disconnected, a healthy process can no longer send or receive messages
along it.

A snapshot on H is the collection of neti’s from all processes in H . A
snapshot is said to be consistent if all channels from H to H are disconnected
before taking the snapshot (i.e., recording the values of neti).

275 7.9 Termination detection in a faulty distributed system

A snapshot is taken upon a snapshot request by the leader process. The
leader uses the information in a consistent snapshot and equation to compute
WH to calculate WH . Snapshots are requested when a new faulty process is
found or when a new leader is elected. It should be noted that WH is an
estimate of the weight remaining in the system. This is because processes can
fail and stop any time and there may not exist any point in real time in the
computation where H is the healthy set of processes. Suppose H ′ is the set
of healthy processes at some point in time in the computation after taking the
snapshot. If H = H ′, then WH = WH ′ ; otherwise, WH ≥ WH ′ must be true,
because of the fail-stop model of processes. This eliminates the possibility of
declaring termination falsely. Thus, the leader can safely declare termination
after it has collected WH of weight.

7.9.3 Description of the algorithm

The algorithm combines the weight-throwing scheme, the flow detecting
scheme and a snapshot-recording scheme [20]. Process Pi elects itself the
leader if it knows that all Pj , j < i, are faulty. The leader process takes
snapshots and estimates remaining weight in the system.

Data structures
The following data structures are used at process Pi, i= 1, ...,n:

• li is the identity of the leader known to Pi. Initially li = 1.
• wi is the weight currently held by Pi. Initially wi = 1/n.
• si is the systems total weight assumed by Pi. Pi will try to collect this

amount of weight. Initially, si=1.
• NETi[1,

 ,n] is an array of real numbers. NETi[j] keeps track of the

total weight flowing into Pi from Pj . Initially, NETi[j] = 0 for all j =
1,

 ,n.

• Fi is a set of faulty processes. A process Pj belongs to Fi if and only if Pi
knows that Pj is faulty and Pi has disconnected its channel to Pj . Initially,
Fi is a null set.

• SNi is a set of processes. When Pi initiates a snapshot, SNi is a set of
processes to which Pi sends snapshot requests. A process Pj belonging to
SNi is removed from SNi if Pi receives a reply from Pj or if Pi finds Pj
is faulty. No new snapshot is started unless SNi is an empty set. Initially,
SNi is a null set, which implies no snapshot is in progress.

• ti is used for temporarily calculating the total remaining weight while a
snapshot is in progress.

• ci is a boolean, used for temporarily calculating the consistency of a
snapshot.

274 Termination detection

Figure 7.11 Healthy and faulty
process sets and message flow
between them [20].

WH WH

WH → H

WH → H

HH

Rule 2: Whenever a process Pi which belongs to H sends a message with
weight x to a process Pj which does not belong to H , x is subtracted
from neti.

Let WH be the sum of the weights of all processes in H and all in-transit
messages transmitted between processes in H :

WH =
∑
Pi∈H

�neti+1/n��

where 1/n is the initial weight held by each process Pi.
Let H = S–H be the set of faulty processes. The distribution of weights is

divided into four parts:

WH : weights of processes in H .
WH : weights of processes in H .
WH→H : weights held by in-transit messages from H to H .
WH→H : weights held by in-transit messages from H to H .

This is shown in Figure 7.11. WH and WH→H are lost and cannot be used in
the termination detection.

7.9.2 Taking snapshots

In distributed systems, due to the lack of a perfectly synchronized global
clock, it is not possible to get a global view of the subsystem H and hence
it may not possible to determine WH . We obtain WH , which is an estimated
value of WH , by taking snapshots on the subsystem H and by using the above
equation for WH .

However, note that weights in WH→H carried by in-transit messages may
join H and change WH . To obtain a stable value of WH , channels from
H to H are disconnected before taking snapshots of H . Once a channel
is disconnected, a healthy process can no longer send or receive messages
along it.

A snapshot on H is the collection of neti’s from all processes in H . A
snapshot is said to be consistent if all channels from H to H are disconnected
before taking the snapshot (i.e., recording the values of neti).

277 7.9 Termination detection in a faulty distributed system

When Pi is not the leader, it sends its weight to the leader process in a control
message. A4 describes Pi’s response on receiving a control message. In all
actions A1–A4, NETi[1

 n] records the weight-flowing information. In A5,
leader Pi announces the termination.

Actions F1 to F4 in Algorithm 7.8 deal with faults and take snapshots of
the system.

(* Actions for detecting a fault when no snapshot is in progress *)
F1: (Pi detecting Pj faulty) ∧ (Pj �∈ Fi) ∧ (SNi = ∅)→

disconnect the channel from Pi to Pj;
Fi:= Fi ∪ {Pj};
li = min{k � Pk ∈ S – Fi};
if (li = i), then call snapshot(); end if;

(* Actions on receiving a snapshot request *)
F2: (Pi receiving Request(Fj) from Pj)→

li:= j;
for every Pf belonging to Fj − Fi, disconnect the channel Ci�f ;
Fi:= Fi ∪ Fj;
Send a Reply(Fi, NETi[1

 n]) to Pj;

(* Actions on receiving a snapshot response *)
F3: (Pi receiving Reply(Fj , NETj[1

 n] from Pj)→

if (Fi �= Fj) ∨ ¬ci then
for every Pf belonging to Fj − Fi, disconnect the channel Ci�f ;

Fi = Fi ∪ Fj;
ci = false;

else
ti = ti + 1/n + ∑Pf∈Fj NETj[f];

end if;
SNi = SNi – {Pj};
if SNi = ∅ then

if ci then si:= ti else call snapshot(); end if;
end if;

(* Actions for detecting a fault when a snapshot is in progress *)
F4: (Pi detecting Pj faulty) ∧ (SNi � = ∅)→

Disconnect the channel Ci�j;
Fi:= Fi ∪ {Pj};
ci:= false;
SNi:= SNi – {Pj};
if SNi = ∅ then call snapshot(); end if;

(* Snapshot-taking procedure *)
Procedure snapshot() (* assuming the caller is Pi *)

Begin

278 Termination detection

SNi = S – Fi – {Pi}; (* processes that will receive requests *)
∀ Pk ∈ SNi, send a Request(Fi) to Pk;
ti:= 1/n +

∑
Pf∈Fi

NETi[f];

ci:= true;
end;

Algorithm 7.8 Snapshot algorithm [20].

F1 is triggered when Pi detects for the first time that a process Pj is
faulty and no snapshot is currently in progress. The channel from Pi to Pj is
disconnected. Then Pi elects a healthy process with least i.d. as its leader. If
process Pi itself is the leader, then it invokes a snapshot procedure to initiate
a snapshot.

In the snapshot() procedure, first SNi is set to the set of processes to which
the Request()s are to be sent and sends a Request() to these processes. This
prevents F1 from being executed until the snapshot finishes. Assuming that
the current healthy process set is S – Fi and this snapshot is consistent, more
weight is added to ti as Pi receives Reply() messages from other processes.

F2 describes Pi’s response on receiving a Request() message from Pj . Pi
disconnects channels to faulty processes and sends a Reply() message to Pj ,
which sent the Request() message.

The initiator of the snapshot Pi waits for each Pj belonging to SNi for
either a Reply() coming from Pj or Pj being detected as faulty.

If a Reply() is received from Pj , F3 is executed. F3 describes Pi’s actions
on receiving such a snapshot response. The consistency of the snapshot is
checked. If the snapshot is still consistent, ti is updated. Then the barrier SNi
is reduced by one. If the barrier becomes null and the snapshot is consistent, si
is updated to ti. If the snapshot is not consistent, another snapshot is initiated.

The snapshot initiator Pi executes F4 when it detects a process Pj ∈ SNi,
is faulty and a snapshot is in progress. Another snapshot is started only
when SNi = ∅. Such a procedure is repeated until a consistent snapshot is
obtained. Because of the fail-stop model of processes, the number of healthy
processes is a non-increasing function of time and eventually the procedure
will terminate.

7.9.4 Performance analysis

If k processes become faulty, at most 2k snapshots will be taken. Each
snapshot costs at most n – 1 Request()s and n – 1 Reply()s. Thus, the message
overhead due to snapshots is bounded by 4kn.

If M basic messages are issued, processes will be activated by at most M
times. So processes will not turn idle more than M + n times. So at most
M+n control messages C(x) will be issued.

Thus, the message complexity of the algorithm is O(M + kn + n).

279 7.11 Exercises

The termination detection delay is bounded by O(k+1). The termination
detection delay is defined as the maximum number of message hops needed,
after the remination has occurred, by the algorithm to detect the termination.

7.10 Chapter summary

A distributed computation is terminated if every process is locally terminated
and there is no message in transit between any processes. Determining if a
distributed computation has terminated is a fundamental problem in distributed
systems. Detection of the termination of a distributed computation is a non-
trivial task since no process has complete knowledge of the global state.

A number of algorithms have been developed to detect the termination
of a distributed computation. These algorithms are based on the concepts of
snapshot collection, weight throwing, spanning-tree, etc. In this chapter, we
described a set of representative termination detection algorithms. Brzezinski
et al. developed a very general model of the termination a distributed compu-
tation where the reception of a single message may not be enough to activate
a passive process. Instead, the condition of activation is more general and
a passive process requires reception of a set of messages to become active.
Mattern developed several algorithm for termination detection in the atomic
computation model. Tseng developed a weight-throwing algorithm to detect
termination in distributed systems which allows processes to fail in a fail-stop
manner.

Termination detection is a fundamental problem and it finds applications
at several places in distributed systems.

7.11 Exercises

Exercise 7.1 Huang’s termination detection algorithm could be redesigned using a
counter to avoid the need of splitting weights. Present an algorithm for termination
detection that uses counters instead of weights.

Exercise 7.2 Design a termination detection algorithm that is based on the concept of
weight throwing and is tolerant to message losses. Assume that processe do not crash.

Exercise 7.3 Termination detection algorithms assume that an idle process can only
be activated on the reception of a message. Consider a system where an idle process can
become active spontaneously without receiving a message. Do you think a termination
detection algorithm can be designed for such a system? Give reasons for your answer.

Exercise 7.4 Design an efficient termination detection algorithm for a system where
the communication delay is zero.

280 Termination detection

Exercise 7.5 Design an efficient termination detection algorithm for a system where
the computation at a process is instantaneous (that is, all proceses are always in the
idle state.)

7.12 Notes on references

The termination detection problem was brought to prominence in 1980 by Francez [5]
and by Dijkstra and Scholten [4]. Since then, a large number of termination detection
algorithms having different features and for a variety of logical system configurations
have been developed. A termination detection algorithm that uses distributed snapshot
is discussed in [8]. A termination detection algorithm based on weight throwing is
discussed in [9]. A termination detection algorithm based on weight throwing was
first developed by Mattern [13]. Dijkstra et al. [3] present a ring-based termination
detection algorithm. Topor [19] adapts this algorithm to a spanning tree configuration.
Chandrasekaran and Venkatesan [2] present a message optimal termination detection
algorithm. Brzezinski et al. [1] define a very general model of the termination problem,
introduce the concept of static and dynamic terminations, and develop algorthms to
detect static and dynamic terminations. Mattern developed [12] several algorithms
for termination detection for the atomic model of computation. An algorithm for
termination detection under faulty processes is given by Tseng [20]. Mayo and Kearns
[14,15] present efficient termination detection based on roughly synchronized clocks.

Other algorithms for termination detction can be found in [6, 10, 11, 16–18, 21].
Many termination detection algorithms use a spanning tree configuration. An effi-

cient distributed algorithm to construct a minimum-weight spanning tree is given
in [7].

References

[1] J. Brzezinski, J. M. Helary, and M. Raynal, Termination detection in a very gen-
eral distributed computing model, Proceedings of the International Conference
on Distributed Computing Systems, Poland, 1993, 374–381.

[2] S. Chandrasekaran and S. Venkatesan, A message-optimal algorithm for dis-
tributed termination detection. Journal of Parallel and Distributed Computing,
1990, 245–252.

[3] E. W. Dijikstra, W. H. J. Feijen, and A. J. M. van Gasteren, Derivations of a ter-
mination detection algorithm for distributed computations, Information Pro-
cessing Letters, 16(5), 1983, 217–219.

[4] E. W. Dijkstra and C. S. Scholten, Termination detection for distributed com-
putations, Information Processing Letters, 11(1), 1980, 1–4.

[5] N. Francez, Distributed termination, ACM Transactions on Programming Lan-
gauges, 2(1), 1980, 42–55.

[6] N. Francez and M. Rodeh, Achieving distributed termination without freezing,
IEEE Transaction on Software Engineering, May, 1982, 287–292.

[7] R. G. Gallager, P. Humblet, and P. Spira, A distributed algorithm for minimum
weight spanning trees, ACM Transactions on Programming Langauges and
Systems, January, 1983, 66–77.

281 References

[8] Shing-Tsaan Huang, Termination detection by using distributed snapshots,
Information Processing Letters, 32, 1989, 113–119.

[9] S. T. Huang, Detecting termination of distributed computations by external
agents, Proceedings of the 9th International Conference on Distributed Com-
puting Systems, 1989, 79–84.

[10] D. Kumar, A class of termination detection algorithms for distributed computa-
tions, Proceedings of the 5th Conference on Foundation of Software Technology
and Theoretical Computer Science, New Delhi, LNCS 206, 1985, 73–100.

[11] T. H. Lai, Termination detection for dynamically distributed systems with non-
first-in-first-out communication, Journal of Parallel and Distributed Comput-
ing, December, 1986, 577–599.

[12] F. Mattern, Algorithms for distributed termination detection, Distributed Com-
puting, 2, 1987, 161–175.

[13] F. Mattern, Global quiescence detection based on credit distribution and recov-
ery, Information Processing Letters, 30(4), 1989, 195–200.

[14] J. Mayo and P. Kearns, Distributed termination detection with roughly syn-
chronized clocks, Information Processing Letters, 52(2), 1994, 105–108.

[15] J. Mayo and P. Kearns, Efficient distributed termination detection with roughly
synchronized clocks, Parallel and Distributed Computing and Systems, 1995,
305–307.

[16] J. Misra and K. M. Chandy, Termination detection of diffusing computations
in communication sequential processes, ACM Transactions on Programming
Languages and Systems, January, 1982, 37–42.

[17] S. P. Rana, A distributed solution of the distributed termination problem, Infor-
mation Processing Letters, 17(1), 43–46.

[18] S. Ronn and H. Saikkonen, Distributed termination detection with counters,
Information Processing Letters, 34(5), 1990, 223–227.

[19] R. W. Topor, Termination detection for distributed computations, Information
Processing Letters, 18(1), 1984, 33–36.

[20] Yu-Chee Tseng, Detecting termination by weight-throwing in a faulty dis-
tributed system, Journal of Parallel Distributed Computing, 25(1), 1995, 7–15.

[21] Yu-Chee Tseng and Cheng-Chung Tan, On termination detection protocols in
a mobile distributed computing environment, Proceedings of ICPADS, 1998,
156–163.

C H A P T E R

8 Reasoning with knowledge

In a distributed system, processes make local decisions based on their limited
view of the system state. A process learns of new facts when it receives
messages from other processes, and can reason only with the additional
knowledge available to it. This chapter provides a formal framework in which
it is easier to understand the role of knowledge in the system, and how
processes can reason with such knowledge. The first three sections are based
on the book by Fagin et al. [3]. The logic of knowledge, classically termed as
epistemic logic, is the formal logical analysis of reasoning about knowledge.
Epistemic knowledge first received much attention from philosophers in the
mid-twentieth century.

8.1 The muddy children puzzle

Consider the classical “muddy children” puzzle of Halpern and Moses [5]
and Halpern and Fagin [4]. Imagine there are n children who return from
playing outdoors, and k, k≥ 1, of the n children have mud on their foreheads.
Let � denote the fact “at least one child has a muddy forehead.” Assume that
each child can see all other children and their foreheads, but not their own
forehead. We also assume that the children are intelligent and truthful, and
answer any question asked of them, simultaneously. We now consider two
scenarios.

In Scenario A, the father who now shows up on the scene, first makes
a statement announcing � . We assume that this announcement is heard by
everyone, and that everyone is aware that the announcement is being made
in their common presence. The father now repeatedly asks the children, “Do
you have mud on your forehead?” The first k−1 times that the father asks the
question, all the children will say “No” and the kth time the father asks the
question, the children with mud on their foreheads (henceforth, referred to as
the muddy children) will all say “Yes.” This can be proved by induction on k.

282

283 8.2 Logic of knowledge

• If k = 1, the single muddy child, seeing no other muddy children and
knowing the announcement of � , will conclude on hearing the father’s
question that he/she is the muddy child.

• If k = 2, let the two muddy children be m1 and m2. The first time the
question is asked, neither can answer in the affirmative. But when m1
hears the negative answer of m2, m1 can reason that m1 himself must
be muddy because otherwise m2 would have answered “Yes” in the first
round using the logic for the k = 1 case. Hence, m1 answers “Yes” the
second time, and m2 who uses analogous reasoning, also answers “Yes.”

• We assume the induction hypothesis is true for k= x muddy children.
• For k= x+1 muddy children, the proof is as follows. Each muddy child

reasons in the following manner. “If there were x muddy children, then
they would all have answered ‘Yes’ when the question is asked for the xth
time. As that did not happen, there must be more than x muddy children,
and as I can see only x other muddy children, I myself must also be muddy.
So I will answer ‘Yes’ when the question is asked for the (x+1)th time.”

In Scenario B, the father who now shows up on the scene, does not make
the announcement of � , but repeatedly asks the children, “Do you have mud
on your forehead?” All the children repeatedly respond with a “No.” This
can be shown by induction on q, the number of times the father asks the
question, that “no matter how many muddy children there are, all children
answer ‘No’ to the first q questions.” For q = 1, each child answers “No”
because they cannot distinguish between the two situations wherein they do
and do not have mud on their forehead. Assume the hypothesis is true for
q = x. For q = x+ 1, the situation is unchanged because each child has no
further knowledge to distinguish the two situations wherein they do and do
not have mud on their forehead.

In Scenario A, the father announced � whereas in Scenario B, the father
did not announce � , and the responses of the children were very different.
The announcement of � effectively made � common knowledge among
the children, and this enabled the children to reason differently. The above
puzzle introduces the notions of knowledge, levels of knowledge, and common
knowledge in a system. We now define these formally and consider how such
logic can be adapted to computing systems.

8.2 Logic of knowledge

8.2.1 Knowledge operators

A definition of knowledge requires the identification of an appropriate set of
possible worlds (also called possible universes or possible configurations), and
a family of possible relations between those worlds [3]. In a given global state,
the possible worlds at a process denote all the global states that the process

284 Reasoning with knowledge

believes may be consistent with its local state. These states are expressible as
logical formulas.

Fact can be a primitive proposition or a formula using the usual logical
connectives (∧�∨�¬) on primitive propositions, the “knowledge operator”
K, and the “everyone knows” operator E. Propositional logic is adequate to
cover many interesting scenarios that occur in distributed executions, although
first-order and higher-order logics can also be used. The traditional seman-
tics of knowledge, using the K and E operators, were first based on timed
executions. Intuitively, a process i that knows a fact is said to have knowl-
edge Ki��, and if “every process in the system knows ,” then the system
exhibits knowledge E1��=∧i∈N Ki��. A knowledge level of E2�� indi-
cates that every process knows E1��, i.e., E2��= E (E1��). Inductively,
Ek�� = Ek−1 (E1��) for k > 1. Thus, a hierarchy of levels of knowledge
Ej���j ∈ Z∗� gets defined, where Z∗ is used to denote the set of whole
numbers 	0�1�2�3�

 �. It can be seen that Ek+1�� =⇒ Ek��. Each level
in the hierarchy represents a different level of group knowledge among the
processes.

In the limiting case, we have the
∧

j∈Z∗Ej��. Informally, this knowledge
of a fact stands for “everyone knows that everyone knows that everyone
knows

 (infinitely often) the fact .” This limit is informally called com-
mon knowledge of . Strictly speaking, the epistemic logic is finitary and
hence does not allow such infinite conjunctions. On a more formal note,
common knowledge of , denoted as C��, is defined as the knowledge
X that is the greatest fixed point of E�∧X�. Stated differently, common
knowledge is a state of knowledge X satisfying the equality, X = E�∧X�.
The theory of fixed points is quite intricate. For our purposes, it suffices
if we informally view the fixed point as implying the infinite conjunction∧

j∈Z∗ Ej��. Common knowledge of a fact captures the notion of every-
one agreeing on the fact, and is therefore an important notion in distributed
systems.

8.2.2 The muddy children puzzle again

We now revisit the muddy children puzzle. Assume there are k children
m1�

 �mk with mud on their forehead. In this system, Ek−1��� is true, but
not Ek���.

In Scenario A, we have the following:

• Consider k= 1. Here, the child with the mud on the forehead does not see
any muddy child, and hence E��� is false.

• Consider k = 2. Here, E1��� is true because every child can see at least
one muddy child, and thus ∧i∈NKi���. However, m1 can see only one
muddy child m2 and therefore, in some possible world, m1 believes that
at m2, Km2��� may be false, i.e., ¬Km1Km2���, and hence E2��� is false.

285 8.2 Logic of knowledge

• Generalizing this reasoning for k muddy children, Ek−1��� is true because
Ki1

 Kik−1

��� is true for all instantations of i1�

 � ik−1. This is so
because everyone can see at least k−1 muddy children. However, Ek���

is false because Ki1

 Kik

��� is false when i1 is instantiated by any of
m1�

 �mk. This is so because everyone can see k−1 muddy children,
and only the n−k clean children can see the k muddy children.

In Scenario B, the only knowledge available in the system is Ek−1���,
and this is not enough for the children with mud on their forehead to ever
respond affirmatively to the father. In order for the children with mud to be
able to respond affirmatively, Ek��� needs to be true in the system so that
the children can use the knowledge progressively step-by-step and answer
correctly in the kth round of questioning. How was this Ek��� achievable in
Scenario A? When the father announced � in everyone’s common presence,
he provided the system C��� and hence Ek���. Thus, every child knew � ,
and every child knew that every child knew � , and every child knew that
every child knew that every child knew � , and so on. With this Ek���

being present in the system, the children could use it progressively round-
by-round until, in the kth round, they could answer the father’s question
correctly.

8.2.3 Kripke structures

A popular approach to defining semantics is in terms of possible worlds. This
approach is formalized using Kripke structures [3].

Definition 8.1 (Kripke structure) A Kripke structure M for n agents
and a set of primitive propositions � is a tuple �S���K1�

Kn�, where the
components of this tuple are as follows:

1. S is the set of all consistent states (or possible worlds), with respect to an
execution.

2. � is an interpretation that associates a truth assignment to each primitive
proposition in �, for each state s ∈ S. Thus, ∀s ∈ S, ��s� � �→ 	0�1�.

3. Ki is a binary relation on S giving all the pairs of states that are indistin-
guishable by Pi.

A Kripke structure is conveniently viewed as a graph with labeled nodes
connected by labeled edges. The set of nodes is the set of states S; the label of
node s ∈ S also gives the primitive propositions that are true and false at s. In
our simple example, we assume that� contains a single proposition. The logic
can be extended to multiple propositions in a straightforward manner. The
edge �s� t� is labeled by the identity of every process Pi such that �s� t� ∈Ki,
i.e., every process Pi that cannot distinguish between states s and t. We
assume (for simplicity) that edges are bidirectional and that the K relations

286 Reasoning with knowledge

Figure 8.1 The definitions of
regular knowledge [3].

Definition 8.2 (Regular knowledge)

�M� s� �= if and only if is true in state s in Kripke structure M , i.e.,
��s��� = true.

Analogously, we can define formulae using conjunctions and nega-
tions over primitive propositions.

�M� s� �= Ki�� if and only if �M� t� �= , for all states t such that
�s� t� ∈Ki

�M� s� �= E1�� if and only if �M� s� �= ∧i∈N Ki��

�M� s� �= Ek+1�� for k≥ 1 if and only if �M� s� �= ∧i∈N Ki�E
k���, for

k≥ 1
�M� s� �= C�� if and only if �M� s� �= ∧k∈Z∗ Ek��

(Distributed Knowledge D) �M� s� �= D�� if and only if �M� t� �=

for each state t such that �s� t� ∈ ∩iKi

are reflexive, i.e., there is a self-loop at each node. In Section 8.2.4, the
muddy children puzzle is used to illustrate the definitions and concepts of
this section.

The formal definition of knowledge is now given in Figure 8.1 [3]. Here,
“�=” denotes the “satisfaction” operator.

This definition of levels of knowledge has a very convenient and useful
graph-theoretic representation, as we will illustrate for the muddy children
puzzle.

Definition 8.3 (Reachability of states)

1. A state t is reachable from state s in k steps if there exist states
s0� s1�

 � sk such that s0 = s, sk = t, and for all j ∈ �0� k−1�, there exists
some Pi such that �sj� sj+1� ∈Ki.

2. A state t is reachable from state s if t is reachable from s in k steps, for
some k > 1.

Definition 8.3 defines state reachability in the Kripke structure. The follow-
ing definitions of knowledge are expressed in terms of reachability of states
within the Kripke structure, and can be readily seen to mirror the original
definition of knowledge in Figure 8.1.

Theorem 8.1 (Knowledge in terms of reachability of states)

1. �M� s� �= Ek�� if and only if �M� t� �= for each state t that is reachable
from state s in k steps.

2. �M� s� �= C�� if and only if �M� t� �= for each state t that is reachable
from state s.

287 8.2 Logic of knowledge

8.2.4 Muddy children puzzle using Kripke structures

We now illustrate the Kripke structure for the muddy children puzzle. The
definitions and concepts of the previous section will be clarified by the
example.

Let us assume there are n = 3 children; and k = 2 children have mud on
their forehead. Each of the eight states can be described by a boolean n-vector,
where a clean child is denoted by a 0 and a child with mud on their forehead
is denoted by a 1. Let us further assume that the actual state is �1�1�0�. The
Kripke structure M is illustrated in Figure 8.2(a).

In theworld�1�1�0�, eachchildcansee that there isat leastoneotherchildwho
has mud on the forehead, and hence �M� �1�1�0�� �=E� �. From Theorem 8.1, it
follows that �M� �1�1�0�� �= ¬E2��� because the world �0�0�0� is 2-reachable
from �1�1�0� and � is not true in this world. Generalizing this observation in
terms of Kripke structures assuming kmuddy children, we have thatEk−1��� is
true because each world reachable in k− 1 hops has at least one “1”, implying
there isat leastonechildwithamuddyforehead.However,Ek��� is falsebecause
the world �0�

 �0� is reachable in k hops.

Scenario A
Fact � is already known to all children in the state �1�1�0�. Still, when the
father announces � in Scenario A, the state of knowledge changes. Before
the father’s announcement, child 2 believes the state �1�0�0� possible, and
in that state �1�0�0�, child 1 considers the state �0�0�0� possible. After
the father announces � , it becomes common knowledge that one child has
a muddy forehead – this change in the group’s state of knowledge can be
graphically depicted by deleting all the edges connecting state �0�0�0�. After
the father has announced � , even if one child has a muddy forehead, he will
not consider the state �0�0�0� possible. When the father asks the question
the first time and all children respond “No,” then all edges connecting to
all possible worlds with a single “1” in the state tuple get deleted – this
is because if there were only a single child with mud on his/her forehead,

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

2
3 3

33

1 1

2

2

2

1
1

(a)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)
3

33

1 1

2

2

2

1

(b)

(0,0,0)

(c)

2

1

3

(0,1,1)

(0,1,0)

(1,1,1)
(1,0,1)

(0,0,1)

(1,1,0)(1,0,0)

(0,0,0)

Figure 8.2 Kripke structure for the n = 3 muddy children puzzle [3]. Note that the actual state is
(1, 1, 0). (a) The entire Kripke structure. (b) After the father announces � . (c) After the first round of
questioning and its answers.

288 Reasoning with knowledge

he/she would have answered “Yes” in response to the first question. Thus, it
is now common knowledge that there are at least two children with muddy
foreheads. Generalizing this by induction, when the father asks the question
the xth time and all children respond “No,” then all edges connecting to all
possible worlds with x or fewer than x “1”s in the state tuple get deleted –
this is because if there were only x children with mud on their forehead, they
would all have answered “Yes” in response to the xth question. It is now
common knowledge that there are at least x+ 1 children with mud on their
forehead. If there are exactly x+1 children with mud on their forehead, those
children will all answer “Yes” the (x+1�th time the question is asked because
they can see exactly x other children with mud on their foreheads. They could
not answer “Yes” earlier because they considered a world possible in which
they did not have mud on their own forehead.

Graphically, the Kripke structure gets modified in each iteration as follows.
If in the iteration, it becomes common knowledge that world t is impossible,
then for each node s reachable from the actual state r, any edge �s� t� is
deleted. The Kripke structure shown in Figure 8.2(a) gets modified to that
shown in part (b) after the father’s announcement. That further gets modified
as shown in part (c), after the first time the question is asked and all the
children reply “No.”

Scenario B
In Scenario B, the childrens’ state of knowledge never changes and hence
the Kripke structure in Figure 8.2(a) never changes, no matter how often the
father askes the question. When the father asks the question the first time,
all children answer “No” because they each consider both worlds possible –
one in which they have mud on their forehead, and one in which they do
not. As it is common knowledge even before the father asks the question that
the answer is going to be “No,” no knowledge is added by the question or
the response. Inductively, this argument holds for each round of questioning.
Hence, the Kripke structure never changes.

8.2.5 Properties of knowledge

In a formal framework to reason about knowledge, the properties of knowledge
must also be specified formally. Although these properties can be specified with
different semantics, the most common semantics that are adequate for modeling
real distributed systems are given by the axiom system that is historically termed
as the S5 system [3]. We first characterize the formulae that are always true. A
formula is valid in Kripke structureM , denotedM �= , if �M� s� �= , for all
s ∈ S. A formula is satisfiable inM if �M� s� �= , for some s ∈ S. A formula
is valid if it is valid in all structures, and it is satisfiable if it is satisfiable in some
structure. The five axioms of modal logic S5, given in Figure 8.3, are satisfied
for all formulas, all structures, and all processes.

289 8.3 Knowledge in synchronous systems

Figure 8.3 The axioms of the
S5 modal logic [3]. • Distribution axiom: Ki ∧Ki� =⇒ � =⇒ Ki.

Each process knows the logical consequences of its local knowl-
edge. The knowledge operator gets distributed over the implication
relation.

• Knowledge axiom: Ki =⇒ .
If a process knows a fact, then the fact is necessarily true. If Ki is
true in a particular state, then is true in all states that the process
considers as possible.

• Positive introspection axiom: Ki =⇒ KiKi .
A process knows what it knows.

• Negative introspection axiom: ¬Ki =⇒ Ki¬Ki .
A process knows what it does not know.

• Knowledge generalization rule: For a valid formula or fact , Ki .
If is true in all possible worlds, then must be true in all the possible
worlds with respect to any process and any given world. Hence, Ki

must be true in all possible worlds. Here, it is assumed that a process
knows all valid formulas, which are necessarily true. Note that this rule
is different from the rule “ =⇒ Ki .”

8.3 Knowledge in synchronous systems

Classical problems such as the “muddy children” problem and the “cheat-
ing husbands” problem, which are widely used to illustrate the theory of
knowledge, have been explained in the synchronous system model. The def-
initions and the treatment of knowledge we have seen thus far was again for
synchronous systems.

Common knowledge captures the notion of agreement in distributed
systems. What are the various ways by which common knowledge can be
attained in a synchronous system?

• By initializing all the processes with common knowledge of the fact.
• By broadcasting the fact to every process in a round of communication,

and having all the processes know that the fact is being broadcast. Each
process can begin supporting common knowledge from the next round.
This is the mechanism that was used by the father when he announced �
in the muddy children puzzle in Scenario A.

290 Reasoning with knowledge

8.4 Knowledge in asynchronous systems

Here, we adapt the definitions of knowledge given in Figure 8.1 to asyn-
chronous systems [9].

8.4.1 Logic and definitions

In the system model, the possible worlds are the consistent cuts of the set of
possible executions in an asynchronous system. Let �a� c� denote a cut c in
asynchronous execution a. As each cut also identifies a global state, �a� c�
is also used to denote the state of the system after �a� c�. �a� c�i denotes the
projection of c on process i, and is also used to denote the state of process
i after �a� c�. Two cuts c and c′ are indistinguishable by process i, denoted
�a� c� ∼i �a′� c′�, if and only if �a� c�i = �a′� c′�i. The semantics of knowledge
are based on asynchronous executions, instead of timed executions.

The modal operator Ki�� means “ is true in all possible consistent
global states (cuts) that include process i’s local state.” Observe that Ki��

is implicitly quantified over all consistent states over all runs, that include
i’s local state. Similar meanings hold for E�� and Ek��, for k > 1. We
also define E0�� to be for simplicity. Formal definitions of knowledge
for asynchronous distributed systems are given in Definition 8.4.

Definition 8.4 (Knowledge in asynchronous systems defined using
consistent cuts)

�a� c� �= if and only if is true in cut c of asynchronous execution a.
�a� c� �= Ki�� if and only if ∀�a′� c′�, ��a′� c′�∼i �a� c�=⇒ �a′� c′� �= �.
�a� c� �= E0�� if and only if �a� c� �= .
�a� c� �= E1�� if and only if �a� c� �= ∧i∈N Ki��.
�a� c� �= Ek+1�� for k ≥ 1 if and only if �a� c� �= ∧

i∈N Ki�E
k���,

for k≥ 1.
�a� c� �= C�� if and only if �a� c� �= the greatest fixed point knowledge
X satisfying X = E�X∧�. C�� implies

∧
k∈Z∗Ek��.

As knowledge can be known by a process only in a specific local state,
we also say that “i knows in state sxi ,” denoted sxi �= , as a shorthand for
�∀�a� c�� (�a� c�i = sxi =⇒ �a� c� �=). Analogously, we define sxi �= Ki��

to be �∀�a� c�� (�a� c�i = sxi =⇒ �a� c� �=Ki��). Recall that can be of the
form Ek� �, for any fact .

291 8.4 Knowledge in asynchronous systems

Definition 8.5 (Learning) [1,9] Process i learns in state sxi of execution
a if i knows in sxi and, for all states syi in execution a such that y < x, i
does not know .

We also say that a process attains (in some state) if the process learns
 in the present or an earlier state. A fact is attained in an execution a if
∃c� �a� c� �= . Observe that a process cannot attain a fact before the fact is
attained in an execution. This corresponds to the intuition that even though
a fact becomes true in an execution, information may need to be propagated
for a process to learn the fact.

Definition 8.6 (Local fact) A fact is local to process i in system A if
A �= �=⇒ Ki�.

A fact that is not local is a global fact. The state of a process, the local
clock value of a process, and the local component of the vector timestamp of
an event at a process are examples of local facts. The global state of a system
and the timestamp of a cut are examples of global facts.

8.4.2 Agreement in asynchronous systems

We consider the following problem: “Two processes that communicate
by asynchronous message-passing need to agree on a binary value. Does
there exist a protocol that they can follow to reach consensus?” Reach-
ing consensus among a group of processes implies the attainment of com-
mon knowledge among that group of processes. We first consider a system
where communication is not reliable, implying that messages may be lost in
transit.

Theorem 8.2 There does not exist any protocol for two processes to reach
common knowledge about a binary value in an asynchronous message-passing
system with unreliable communication.

An informal argument is as follows. Without loss of generality, we assume
that the fact is true at Pi, and the processes Pi and Pj follow a protocol in which
they send messages to each other serially. Thus, Pi first sends a message M to
Pj informing it of the fact, and because communication is not reliable, Pi needs
an acknowledgement ACK1 back to know that Pj has received the message.
But then, Pj does not know whether Pi has received the acknowledgement
ACK1. Hence, it does not know whether or when Pi will begin supporting
the common knowledge, and hence it itself cannot begin supporting the
common knowledge. Therefore, Pi needs to send back an acknowledgement
ACK2 to Pj to acknowledge the receipt of ACK1. However, Pi now needs
an acknowledgement of the delivery of ACK2, similar to its need for an
acknowledgement for M . This is a non-terminating argument, and hence this
protocol will not work to achieve common knowledge.

292 Reasoning with knowledge

More generally, let there exist a protocol with k messages being sent
between Pi and Pj , and let this be the minimal protocol in the sense of using
the minimum number of messages. Then, the sender of the last message
asserts common knowledge of the fact even if it does not know whether
the message was delivered. Hence, the kth message is redundant, which
implies there is a protocol with k−1 messages to attain common knowledge.
This contradicts the assumption that the minimal protocol requires k mes-
sages. Hence, such a protocol does not exist. Using similar reasoning, we
also have the following similar impossibility result for reliable asynchronous
systems.

Theorem 8.3 There does not exist any protocol for two processes to reach
common knowledge about a binary value in a reliable asynchronous message-
passing system without an upper bound on message transmission times.

Furthermore, even though the upper bound on message transmission time
can be guaranteed, a process does not know when to support the common
knowledge and hence requires an acknowledgement, and the sender of that
acknowledgement will itself require an acknowledgement, and so on.

8.4.3 Variants of common knowledge

Common knowledge captures the notion of agreement among the processes,
and hence attaining common knowledge is a fundamental problem in dis-
tributed systems. Common knowledge requires the notion of simultaneity of
action across the processes. The instantaneous simultaneity attained by tightly
synchronized clocks has some margin of error. Given the impossibility of
achieving simultaneity, and hence of attaining common knowledge in reli-
able asynchronous systems, what hope is there? Fortunately, there are weaker
versions of common knowledge that can be substituted for regular common
knowledge, and these are described below [9].

Epsilon common knowledge
This form of common knowledge corresponds to the processes reaching agree-
ment within ! time units. This definition implicitly assumes timed runs as
it is not possible to exactly define time units in an asynchronous system.
This common knowledge is defined using E! which denotes “everyone knows
within a time duration of ! units.” Epsilon common knowledge C!�� is the
greatest fixed point of X = E!�∧X�, where X is the free variable in the
greatest fixed-point operator.

Eventual common knowledge
This form of common knowledge corresponds to the processes reaching
agreement at some (not necessarily consistent) global state in the execution.

293 8.4 Knowledge in asynchronous systems

E# denotes “everyone will eventually know (at some point in their execu-
tion).” Eventual common knowledge C#�� is the greatest fixed point of
X = E#�∧X�.

Timestamped common knowledge
This form of common knowledge corresponds to the processes reaching
agreement at local states having the same local clock value. It is applicable
to asynchronous systems. Let KT

i �� denote the fact that process i knows
 at local clock value T . Then ET�� =

∧
i K

T
i �� and timestamped com-

mon knowledge CT�� is the greatest fixed point of X = ET�∧X�. If it is
common knowledge that all clocks are always perfectly synchronized, then
timestamped common knowledge is equivalent to regular common knowledge.

Concurrent common knowledge
This form of common knowledge corresponds to the processes reaching agree-
ment at local states that belong to a consistent cut. When a process Pi attains
concurrent common knowledge of a fact , it also knows that each other
process Pj has also attained the same concurrent common knowledge in its
local state which is consistent with Pi’s local state.

This form of knowledge is applicable to asynchronous systems and is the
most popular form of common knowledge in real systems. Hence, we define it
in detail below, and give four protocols for attaining such common knowledge.
Here, we note that this variant of common knowledge is incomparable with
C!, C#, and CT .

8.4.4 Concurrent common knowledge

Concurrent common knowledge is based on the notion of the various processes
attaining the common knowledge on a consistent cut [9]. The possibly

operator1 Pi in conjunction with the Ki operator is used to formally define
such knowlege. Pi�� means “ is true in some consistent state in the same
asynchronous run, that includes process i’s local state.” EC�� is defined as∧

i∈N Ki�Pi���. E
C�� means that every process at the (given) cut knows

only that is true in some cut that is consistent with its own local state. By
induction, similar meanings can be assigned for higher levels of knowledge.
The formal definition of levels of concurrent knowledge EC is as shown in
Definition 8.7.

1 The notation Pi for this operator is not to be confused with Pi used to denote process i.
Also, the semantics of this operator is different from the Possibly modality defined on global
predicates.

294 Reasoning with knowledge

Definition 8.7 (Concurrent knowledge for asynchronous distributed
systems) [7,9]

�a� c� �= if and only if is true in cut c of execution a.
�a� c� �= Ki�� if and only if ∀�a′� c′�, ��a′� c′�∼i �a� c�=⇒ �a′� c′� �=�.
�a� c� �= Pi�� if and only if ∃�a� c′�, ��a� c′�∼i �a� c�∧ �a� c′� �= �.
�a� c� �= EC0

�� if and only if �a� c� �= .
�a� c� �= EC1

�� if and only if �a� c� �= ∧i∈N KiPi��.
�a� c� �= ECk+1

�� for k ≥ 1 if and only if �a� c� �= ∧
i∈N KiPi�E

Ck���,
for k≥ 1.

�a� c� �= CC�� if and only if �a� c� �= the greatest fixed point knowledge
X satisfying X = EC�X∧�.
CC�� implies

∧
k∈Z∗�EC�k��.

The concurrent knowledge definitions are weaker than the corresponding
knowledge definitions in Definition 8.4. But for a local, stable fact, and
assuming other processes learn the fact via message chains, it can be seen
that the two definitions become equivalent [1,7,9].

If concurrent common knowledge CC�� is attained at a consistent cut,
then (informally speaking) each process at its local cut state knows that “in
some state consistent with its own local cut state, is true and that all other
process know all this same knowledge (described within quotes).”

Concurrent common knowledge is a necessary and sufficient condition for
performing concurrent actions in asynchronous distributed systems, analogous
to simultaneous actions and common knowledge in synchronous systems. The
form of knowledge underlying many existing protocols involves processes
reaching agreement about some property of a consistent global state, defined
using logical time and causality, and can be easily understood in terms of
concurrent common knowledge.

Global snapshot algorithms (Chapter 4) can be run concurrently with the
underlying computation and can be used to achieve concurrent common
knowledge. Snapshot algorithms typically require �L� messages and d time
steps, where d is the diameter of the network. More message-efficient
snapshot algorithms that need only O��N �� messages use certain forms of
computation inhibition [2] – local or global inhibition, and send inhibition
and/or receive inhibition based on network characteristics such as availability
of FIFO channels – to reduce the number of messages needed to take a
snapshot. Nevertheless, each snapshot requires at least O��N �� messages and
possibly inhibitory delay as overhead.

Specifically, concurrent common knowledge can be attained in an asyn-
chronous system, as shown by the protocols in Algorithms 8.1–8.4. In these
protocols, each process Pi must attainCC�� on a consistent cut, (i) by learning

295 8.4 Knowledge in asynchronous systems

, and (ii) by learning that each other process Pj will also attain that exact
state of knowledge in a local state that is consistent with Pi’s local state in
which Pi attains CC��.

Snapshot-based algorithm
Protocol 1 (Algorithm 8.1) is a form of a global snapshot algorithm, where
each process knows that all processes are participating in the same algorithm.
It can also be viewed as a variant of the distributed asynchronous breadth-first
search algorithm (seen in Chapter 5). Observe that the set of states denoted as
cut state at each process, and at which the processes begin supporting CC��,
indeed form a consistent set of states.

Complexity
Protocol 1 uses 2l messages and a time complexity equal to the diameter of
the network.

Three-phase send-inhibitory algorithm
Protocol 2 (Algorithm 8.2) has three phases and uses send-inhibition. It
also assumes that the predicate that becomes true when the protocol is
initiated remains true for the duration of the protocol. Observe that send
inhibition is necessary to ensure that the set of cut states at which the
processes begin supporting CC�� are consistent. A process Pi does not
send any message between receiving the PREPARE and sending the CUT
(when it reaches its cut state), and receiving the RESUME control mes-
sage. Any message sent by Pi after receiving the RESUME message will
necessarily be received by any other process Pj after Pj has reached its
cut state. Hence the cut states are guaranteed to be consistent with each
other.

Protocol 1 (Snapshot-based algorithm)

(1) At some time when the initiator I knows :

• it sends a marker MARKER�I��CCK� to each neighbor Pj , and
atomically reaches its cut state.

(2) When a process Pi receives for the first time, a message
MARKER�I��CCK� from a process Pj:

• process Pi forwards the message to all of its neighbors except Pj , and
atomically reaches its cut state.

Algorithm 8.1 Snapshot-based protocol to attain concurrent common knowledge. A process attains
CC��� when it reaches its cut state.

296 Reasoning with knowledge

Protocol 2 (Three-phase send-inhibitory algorithm).

(1) At some time when the initiator I knows :

• it sends a marker PREPARE�I��CCK� to each process Pj .

(2) When a (non-initiator) process receives a marker PREPARE�I��CCK�:

• it begins send-inhibition for non-protocol events;
• it sends a marker CUT�I��CCK� to the initiator I;
• it reaches its cut state at which it attains CC��.

(3) When the initiator I receives a marker CUT�I��CCK� from each other
process:

• the initiator reaches its cut state;
• it sends a marker RESUME�I��CCK� to all other processes.

(4) When a (non-initiator) process receives a marker RESUME�I��CCK�:

• it resumes sending its non-protocol messages that had been inhibited
in step 2.

Algorithm 8.2 Three-phase send-inhibitory protocol to attain concurrent common knowledge. A
process attains CC��� when it reaches its cut state.

Complexity
Protocol 2 uses 3�n− 1� messages and a time complexity of three message
hops. However, it is send-inhibitory and requires FIFO channels.

The three-phase send-inhibitory tree algorithm
Protocol 3 (Algorithm 8.3) is a variant of protocol 2. It uses a (Broadcast –
Convergecast – Broadcast) sequence on a spanning tree (ST) on the network
topology to record the global state along a consistent cut.

Complexity
This message-send inhibitory algorithm requires a total of 3�n−1� messages
and works in a system with non-FIFO channels.

Inhibitory ring algorithm
Protocol 4 (Algorithm 8.4) assumes that a logical ring is superimposed on the
network topology. Each process records its cut state when it receives the CUT
message, and begins send-inhibition. Therefore a process can infer �EC�i��

(for any i) is attained by processes along a consistent cut including the current
local state.

297 8.4 Knowledge in asynchronous systems

Complexity
This message-send inhibitory algorithm requires 2n messages, and works in
a system with FIFO channels. The time complexity is 2n hops.

Algorithms such as the above variants of the classical snapshot algorithm
require at least O�l� messages, or O�n� messages and varying degrees of
message inhibition each time there is a need to achieve concurrent knowledge
of some fact.

Protocol 3 (Three-phase send-inhibitory tree algorithm)

Phase I (broadcast) The root initiates PREPARE control messages down
the ST (spanning tree); when a process receives such a message, it inhibits
computation message sends and propagates the received control message
down the ST.

Phase II (convergecast) A leaf node initiates this phase after it receives
the PREPARE control message broadcast in phase I. The leaf reaches and
records its cut state, and sends a CUT control message up the ST. An
intermediate (and the root) node reaches and records its cut state when it
receives such a CUT control message from each of its children, and then
propagates the control message up the ST.

Phase III (broadcast) The root initiates a broadcast of a RESUME control
message down the ST after phase II terminates. On receiving such a
RESUME message, a process resumes inhibited computation message send
activity and propagates the control message down the ST.

Algorithm 8.3 Three-phase send-inhibitory tree protocol to attain concurrent common knowledge. A
process attains CC��� when it reaches its cut state.

Protocol 4 (Send-inhibitory ring algorithm)

1. Once a fact about the system state is known to some process, the process
atomically reaches its cut state and begins supporting CC��, begins send
inhibition, and sends a control message CUT�� along the ring.

2. This CUT�� message announces . When a process receives the CUT��
message, it reaches its cut state and begins supporting CC��, begins send
inhibition, and forwards the message along the ring.

3. When the initiator gets back CUT��, it stops send inhibition, and forwards
a RESUME message along the ring.

4. When a process receives the RESUME message, it stops send-inhibition,
and forwards the RESUME message along the ring. The protocol terminates
when the initiator gets back the RESUME it initiated.

Algorithm 8.4 Send-inhibitory ring protocol to attain concurrent common knowledge. A process attains
CC��� when it reaches its cut state.

298 Reasoning with knowledge

8.5 Knowledge transfer

Formalizing how processes learn facts is done by relating knowledge gain to
message chains in the execution [1].

Definition 8.8 (Message chain) A message chain in an execution is a
sequence of messages �mik

, mik−1
, mik−2

,

 , mi1
� such that for all 0 <

j ≤ k, mij
is sent by process ij to process ij−1 and receive�mij

� ≺
send�mij−1

�. A message chain identifies the corresponding process chain
�i0� i1�

 � ik−2� ik−1� ik�.

Definition 8.8 adopts the convention that a process chain lists the pro-
cesses in an order which is the reverse of the order in which they send
the messages in the corresponding message chain. Furthermore, a process
chain includes the recipient of the last message sent in the correspond-
ing message chain, and this is the first process in the process chain. A
message chain with k messages thus identifies a process chain with k+ 1
processes. Knowledge can be transferred among processes only if a process
chain exists among those processes. If is false in an execution and later
P1 knows that P2 knows that

 Pk knows , then there must exist a process
chain �i1� i2�

 � ik�.

In the system model used thus far, �a� c�i denotes the projection of c
on process i, and is also used to denote the state of process i after �a� c�.
Two cuts c and c′ are indistinguishable by process i, denoted �a� c� ∼i
�a′� c′�, if and only if �a� c�i = �a′� c′�i. In the interleaving model of the
distributed system execution, wherein all the events at the different processes
are interleaved to form a global total order, the indistinguishability of different
views can be expressed using isomorphism of executions. In the following
explanation, we assume x� y� z denote executions or execution prefixes in
the interleaving model. We let xp denote the projection of execution x on
process p.

Definition 8.9 (Isomorphism of executions) [1]

1. For all executions x and y, relation x�p�y is defined to be true if and only
if xp = yp.

2. For all executions x and y and a process group G, relation x�G�y is
defined to be true if and only if, for all p ∈G, xp = yp.

3. Let Gi be process group i and let k > 1. Then, x�G0�G1�

 �Gk�z if and
only if x�G0�G1�

 �Gk−1�y and y�Gk�z.

Two executions are isomorphic with respect to a group of processes if and
only if none of the processes in the group can distinguish between the two
executions. For Definition 8.9(1) and (2), drawing an analogy with Kripke
structures (Definition 8.1), the edges connecting two state nodes (which would
correspond to the states after executions x and y) are labeled by all the
processes that cannot distinguish between the two states. Thus, for all i

299 8.5 Knowledge transfer

such that �x� y� ∈ Ki, the edge connecting �x� y� is labeled with Pi. For
Definition 8.9(3), analogously in Kripke structures (Definition 8.1), the set
of states reachable from x in k steps, denoted z, can be expressed in terms
of the set of states reachable from x in k− 1 steps, denoted y, and the
set of states z reachable from states in y in one step. The definition of
isomorphism of executions allows an alternate way of reasoning with local
views of processes, tailored more for asynchronous distributed computing
systems. When a message is received in an execution, the set of executions that
are isomorphic can only decrease because now executions that do not contain
the corresponding send event can be ruled out. The knowledge operator in
the interleaving model is defined as follows [1].

Definition 8.10 (Knowledge operator in the interleaving model) p knows
 at execution x if and only if, for all executions y such that x�p�y, is
true at y.

Theorem 8.3 formally shows in the interleaving model that knowledge is
gained sequentially [1].

Theorem 8.3 (Knowledge transfer) For process groups G1,

 , Gk, and
executions x and y, (KG1

KG2

 KGk

�� at x and x�G1�

 �Gk�y) =⇒
KGk

�� at y.

The theorem can be shown to be true by induction on k, along the lines
of the following argument. For k = 1, the result is straightforward. Assume
the induction hypothesis for k− 1. For k, we can infer there exists some z
such that x�G1�

 �Gk−1�z and z�Gk�y. From KG1

KG2

 KGk−1

�KGk
��� at

x, and from the induction hypothesis, it can be inferred that KGk−1
�KGk

���

at z. Hence, KGk
�� at z. As z�Gk�y, KGk

�� at y.
In terms of Kripke structures, Theorem 8.3 states that there is a path

from state node x = s0 to state node y = sk, via state nodes s1, s2,

 ,
sk−1, such that the k edges �si� si+1�, 0 ≤ i ≤ k− 1, on the path are labeled
by Gi+1.

Theorem 8.4 formalizes the observation that there must exist a message
chain �mik

, mik−1
, mik−2

,

 , mi1
� in order that a fact that becomes

known to Pk after execution prefix x of y, leads to the state of knowledge
K1K2

 Kk�� after execution y [1].

Theorem 8.4 (Knowledge gain theorem) For processes P1,

 , Pk, and
executions x and y, where x is a prefix of y, let

• ¬Kk�� at x and K1K2

 Kk�� at y.

Then there is a process chain �i1�

 � ik−1� ik� in �x� y�.

300 Reasoning with knowledge

8.6 Knowledge and clocks

We assume all facts are timestamped (physically or logically) by the time
of their becoming true and by the process at which they became true. A
full-information protocol (FIP) is a protocol in which a process piggybacks
all the knowledge it has on outgoing messages, and in which a process
adds to its knowledge all the knowledge that is piggybacked on any mes-
sage it receives [4]. Thus, knowledge always increases when a message is
received. The amount of knowledge would keep increasing as the execution
proceeds, which may not make FIP protocols a practical way to distribute
knowledge.

Facts can always be appropriately encoded as integers. Monotonic facts
are facts about a property that keep increasing monotonically (e.g., the
latest time of taking a checkpoint at a process). By using a mapping
between logical clocks and monotonic facts, information about the mono-
tonic facts can be communicated between processes using logical clock
values piggybacked on messages. Being monotonic, all earlier facts can
be inferred from the fixed amount of information that is maintained
and piggybacked on messages. As a specific example, the vector clock
Clki�j� indicates the local time at each process Pj , and implicitly that
all lower clock values at Pj have occurred. With appropriate encod-
ing, facts about a monotonic property can be represented using vector
clocks.

Matrix clocks [6–8,10–12] are an extension of the idea behind vector
clocks and contain information about other processes’ views of the sys-
tem execution. A matrix clock is an array of size n × n. Matrix clocks
are used to design distributed database protocols [6], fault-tolerant proto-
cols, and protocols to discard obsolete information in distributed databases

[11]. They are also used to solve the distributed dictionary and dis-
tributed log problems [12]. The rules that process Pi executes atomically
to maintain its matrix clock using the matrix clock protocol are given in
Algorithm 8.5.

Vector clocks can be thought of as imparting knowledge to a process:
when Clk�i� = x at process h, process h knows that process i has executed
at least x events. Matrix clocks impart one more level of knowledge: when
Clk�i� j�= x at process h, process h knows that process i knows that process
j has executed at least x events.

1. The jth row of the matrix clock at process Pi, indicated by Clki�j� ·�, gives
the latest vector clock value of Pj’s clock, as known to Pi.

2. The jth column of the matrix clock at process Pi, indicated by Clki�·� j�,
gives the latest scalar clock values of process Pj , i.e., Clk�j� j�, as known
to each process in the system.

301 8.7 Chapter summary

(local variables)
int Clki�1

 n�1

 n�

MC0: Clki�j� k� is initialized to 0 for all j and k

MC1: Before process i executes an internal event, it does the following:
Clki�i� i� = Clki�i� i� + 1

MC2: Before process i executes a send event, it does the following:
Clki�i� i� = Clki�i� i� + 1
Send message timestamped by Clki.

MC3: When process i receives a message with timestamp T from process j,
it does the following:
�k ∈ N� Clki�i� k� = max�Clki�i� k��T�j� k��;
�l ∈ N \ 	i�� �k ∈ N�, Clki�l� k�=max�Clki�l� k��T�l� k��;
Clki�i� i�= Clki�i� i� + 1;
deliver the message.

Algorithm 8.5 Matrix clocks.

For a vector clock Clki, the jth entry Clki�j� represents the knowledge
KiKj�j�, where j is the local component of process Pj’s clock. For a matrix
clock Clki, the [j� k]th entry Clki�j� k� represents the knowledge KiKjKk�k�,
where k is the local component Clkk�k� k� of process Pk’s clock [7,8].

Vector and matrix clocks are convenient because they are updated without
sending any additional messages; knowledge is imparted via the inhibition-
free ambient message-passing that (i) eliminates protocol messages by using
piggybacking, and (ii) diffuses the latest knowledge using only messages,
whenever sent, by the underlying execution.

Observe that the vector clock at a process provides knowledge E0��,
where is a property of the global state (namely, the local scalar clock value
of each process). Analogously, observe that a matrix clock at a process Pj
gives the knowledge

Kj�E
1���= Kj�

∧
i∈N
Ki����

where is a property of the global state, namely, the local scalar clock value
of each process.

8.7 Chapter summary

Processes in a distributed system can reason only with the partial view they
have of the computation. The knowledge at a process is based on the val-
ues of its variables and any messages received by the process. The chapter

302 Reasoning with knowledge

first discussed the role of knowledge by using the muddy children puzzle of
Halpern and Moses [5]. To formalize the role of knowledge, several knowl-
edge operators – E (every process knows), K (the process knows), and C

(common knowledge) – were introduced, Kripke structures were introduced
to formalize these semantics in terms of possible worlds. The muddy children
puzzle was recast in terms of the more formal Kripke structures.

The definitions of knowledge in synchronous systems and in asynchronous
systems were then studied. The fundamental result that common knowledge
cannot be attained in an error-free message-passing asynchronous system
was then examined. Four weaker versions of common knowledge – epsilion
common knowledge, eventual common knowledge, timestamped common
knowledge, and concurrent common knowledge – that are achievable in
asynchronous systems were then examined. Concurrent common knowledge
underlies most of the protocols in asynchronous systems. Several algorithms
to achieve concurrent common knowledge were then studied – the snapshot
based algorithm, a three-phase send-inhibitory algorithm, an algorithm that
use the tree overlay, and one algorithm that uses a logical ring. A section
on how processes learn new information (viz, gain new knowledge) consid-
ered knowledge transfer and knowledge gain in terms of process chains and
isomorphism of execution views. Finally, the relationship between the level
of knowledge in message-passing asynchronous systems and size of matrix
logical clocks was studied.

8.8 Exercises

Exercise 8.1 In the muddy children puzzle (Section 8.1), if � = “At most k children
have mud on the forehead,” will the muddy children be able to identify themselves?
If yes, in how many rounds of questioning? If not, why not? Analyze this scenario in
detail.

Exercise 8.2 There are two black hats and two white hats. One of these hats is hidden
away and the color of this hat is not known to anybody. The remaining three hats
are placed on the heads of three persons A, B, and C in such a way that none of the
persons knows the color of the hat placed on his/her head. Draw a Kripke structure
that describes this situation.

Exercise 8.3 In a failure-free asynchronous message-passing system of n processes,
process Pi learns a fact .

1. Devise a simple non-inhibitory protocol using a logical ring along which to pass
control messages to achieve the following, and justify your answers. Use timing
diagrams to illustrate your answers.

(a) A protocol to attain E2�� in the system.
(b) A protocol so that each process knows E2��.

2. What is the earliest global time at which all processes know that everyone knows
E2��? How can all the processes know about this time?

303 References

Exercise 8.4 In Theorem 8.3, assume that there exists an upper bound on message
transmission times. Which (if any) variant of common knowledge can hold in the
system? Please state your assumptions clearly to justify the reasoning used in your
answer.

Exercise 8.5 Consider the matrix clocks given in Algorithm 8.5. At any point in time
after the execution of atomic steps MC0, MC1, MC2, or MC3, what is the minimum
number of entries among the n2 entries of Clki that are guaranteed to be replicas of
other entries in Clki? Identify the exact set(s) of elements of the array Clki that will
necessarily be identical.

Exercise 8.6 Prove the following. For the equalities, you need to prove the implication
in both directions. For each part, first prove the results using the interleaving model,
and then prove the results using the partial order model.

(a) Ki ¬ implies that ¬Ki.
(b) Ki ∨ ¬Ki .
(c) Ki ∨ Ki ¬, if is a constant.
(d) Ki ∧ Ki = Ki�∧ �.
(e) Ki ∨ Ki = Ki�∨ �.
(f) Ki�¬Ki�=¬Ki.

8.9 Notes on references

The muddy children example is taken from Halpern and Moses [5] and Halpern
and Fagin [4]. The discussions on Kripke structures, S5 modal logic, and the defini-
tions of regular knowledge and (regular) common knowledge in synchronous systems
(Figure 8.1) are based on an excellent text by Fagin et al. [3]. The discussion on
local facts, learning, knowledge transfer, and isomorphisms is based on the work by
Chandy and Misra [1]. The results (Theorems 8.1 and 8.2) on agreement in asyn-
chronous message-passing systems appear to be folklore. The notion of inhibition
was formalized by Critchlow and Taylor [2]. Concurrent common knowledge and
protocols to attain it for asynchronous systems were formalized by Panangaden and
Taylor [9]. The definitions of epsilon, eventual, and timestamped common knowledge
for asynchronous systems are also based on [9]. The definition of knowledge for
asynchronous systems (Definition 8.4) is based on Kshemkalyani [7,8]. Matrix clocks
are first used by Krishnakumar and Bernstein [6], Wuu and Bernstein [12], and Sarin
and Lynch [11], and also studied by Ruget [10]. The relationship between clocks of
various dimensions and knowledge was formalized by Kshemkalyani [7, 8].

References

[1] K. M. Chandy and J. Misra, How processes learn, Distributed Computing, 1,
1986, 40–52.

[2] C. Critchlow and K. Taylor, The inhibition spectrum and the achievement of
causal consistency, Distributed Computing, 10(1), 1996, 11–27.

304 Reasoning with knowledge

[3] R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Reasoning about Knowledge,
Cambridge, MA, MIT Press, 1995.

[4] J. Halpern and R. Fagin, Modeling knowledge and action in distributed systems,
Distributed Computing, 3(4), 1989, 139–179.

[5] J. Halpern and Y. Moses, Knowledge and common knowledge in a distributed
environment, Journal of the ACM, 37(3), 1990, 549–587.

[6] A. Krishnakumar and A. Bernstein, Bounded ignorance: a technique for increas-
ing concurrency in a replicated system, ACM Transactions on Database Systems,
19(4), 1994, 586–625.

[7] A. Kshemkalyani, The power of logical clock abstractions, Distributed Comput-
ing, 17(2), 2004, 131–151.

[8] A. Kshemkalyani, Concurrent knowledge and logical clock abstractions, Pro-
ceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science, 1974,
Springer-Verlag, 2000, 489–502.

[9] P. Panangaden and K. Taylor, Concurrent common knowledge: defining agree-
ment for asynchronous systems, Distributed Computing, 6(2), 1992, 73–94.

[10] F. Ruget, Cheaper matrix clocks, Proceedings of the 8th Workshop on Distributed
Algorithms, 1994, 355–369.

[11] S. Sarin and N. Lynch, Discarding obsolete information in a distributed database
system, IEEE Transactions on Software Engineering, 13(1), 1987, 39–46.

[12] G. Wuu and A. Bernstein, Efficient solutions to the replicated log and dictionary
problems, Proceedings of the 3rd ACM Symposium on Principles of Distributed
Computing, 1984, 232–242.

C H A P T E R

9 Distributed mutual exclusion
algorithms

9.1 Introduction

Mutual exclusion is a fundamental problem in distributed computing systems.
Mutual exclusion ensures that concurrent access of processes to a shared
resource or data is serialized, that is, executed in a mutually exclusive man-
ner. Mutual exclusion in a distributed system states that only one process is
allowed to execute the critical section (CS) at any given time. In a distributed
system, shared variables (semaphores) or a local kernel cannot be used to
implement mutual exclusion. Message passing is the sole means for imple-
menting distributed mutual exclusion. The decision as to which process is
allowed access to the CS next is arrived at by message passing, in which each
process learns about the state of all other processes in some consistent way.
The design of distributed mutual exclusion algorithms is complex because
these algorithms have to deal with unpredictable message delays and incom-
plete knowledge of the system state. There are three basic approaches for
implementing distributed mutual exclusion:

1. Token-based approach.
2. Non-token-based approach.
3. Quorum-based approach.

In the token-based approach, a unique token (also known as the PRIVILEGE
message) is shared among the sites. A site is allowed to enter its CS if it
possesses the token and it continues to hold the token until the execution of
the CS is over. Mutual exclusion is ensured because the token is unique. The
algorithms based on this approach essentially differ in the way a site carries
out the search for the token. In the non-token-based approach, two or more
successive rounds of messages are exchanged among the sites to determine
which site will enter the CS next. A site enters the critical section (CS) when
an assertion, defined on its local variables, becomes true. Mutual exclusion
is enforced because the assertion becomes true only at one site at any given
time. In the quorum-based approach, each site requests permission to execute

305

306 Distributed mutual exclusion algorithms

the CS from a subset of sites (called a quorum). The quorums are formed in
such a way that when two sites concurrently request access to the CS, at least
one site receives both the requests and this site is responsible to make sure
that only one request executes the CS at any time.

In this chapter, we describe several distributed mutual exclusion algorithms
and compare their features and performance. We discuss relationship among
various mutual exclusion algorithms and examine trade-offs among them.

9.2 Preliminaries

In this section, we describe the underlying system model, discuss the
requirements that mutual exclusion algorithms should satisfy, and discuss
what metrics we use to measure the performance of mutual exclusion
algorithms.

9.2.1 System model

The system consists of N sites, S1, S2, � � � , SN . Without loss of generality,
we assume that a single process is running on each site. The process at site
Si is denoted by pi. All these processes communicate asynchronously over
an underlying communication network. A process wishing to enter the CS
requests all other or a subset of processes by sending REQUEST messages,
and waits for appropriate replies before entering the CS. While waiting the
process is not allowed to make further requests to enter the CS. A site can
be in one of the following three states: requesting the CS, executing the CS,
or neither requesting nor executing the CS (i.e., idle). In the “requesting the
CS” state, the site is blocked and cannot make further requests for the CS.
In the “idle” state, the site is executing outside the CS. In the token-based
algorithms, a site can also be in a state where a site holding the token is
executing outside the CS. Such state is refereed to as the idle token state. At
any instant, a site may have several pending requests for CS. A site queues
up these requests and serves them one at a time.

We do not make any assumption regarding communication channels if
they are FIFO or not. This is algorithm specific. We assume that channels
reliably deliver all messages, sites do not crash, and the network does not
get partitioned. Some mutual exclusion algorithms are designed to handle
such situations. Many algorithms use Lamport-style logical clocks to assign
a timestamp to critical section requests. Timestamps are used to decide the
priority of requests in case of a conflict. The general rule followed is that
the smaller the timestamp of a request, the higher its priority to execute
the CS.

307 9.2 Preliminaries

We use the following notation: N denotes the number of processes or
sites involved in invoking the critical section, T denotes the average message
delay, and E denotes the average critical section execution time.

9.2.2 Requirements of mutual exclusion algorithms

A mutual exclusion algorithm should satisfy the following properties:

1. Safety property The safety property states that at any instant, only one
process can execute the critical section. This is an essential property of a
mutual exclusion algorithm.

2. Liveness property This property states the absence of deadlock and
starvation. Two or more sites should not endlessly wait for messages that
will never arrive. In addition, a site must not wait indefinitely to execute
the CS while other sites are repeatedly executing the CS. That is, every
requesting site should get an opportunity to execute the CS in finite time.

3. Fairness Fairness in the context of mutual exclusion means that each pro-
cess gets a fair chance to execute the CS. In mutual exclusion algorithms,
the fairness property generally means that the CS execution requests are
executed in order of their arrival in the system (the time is determined by
a logical clock).

The first property is absolutely necessary and the other two properties are
considered important in mutual exclusion algorithms.

9.2.3 Performance metrics

The performance of mutual exclusion algorithms is generally measured by
the following four metrics:

• Message complexity This is the number of messages that are required
per CS execution by a site.

• Synchronization delay After a site leaves the CS, it is the time required
and before the next site enters the CS (see Figure 9.1). Note that normally
one or more sequential message exchanges may be required after a site
exits the CS and before the next site can enter the CS.

• Response time This is the time interval a request waits for its CS exe-
cution to be over after its request messages have been sent out (see
Figure 9.2). Thus, response time does not include the time a request waits
at a site before its request messages have been sent out.

• System throughput This is the rate at which the system executes
requests for the CS. If SD is the synchronization delay and E is the aver-
age critical section execution time, then the throughput is given by the
following equation:

System throughput= 1
�SD+E� �

308 Distributed mutual exclusion algorithms

Figure 9.1 Synchronization
delay.

Last site exits the CS

Synchronization delay

Time

Next site enters the CS

Figure 9.2 Response time.

Time

Response time

CS execution time

The site exits the CS

The site enters
the CS

CS request arrives

Request
messages sent out

Generally, the value of a performance metric fluctuates statistically from
request to request and we generally consider the average value of such a metric.

Low and high load performance
The load is determined by the arrival rate of CS execution requests.
Performance of a mutual exclusion algorithm depends upon the load and
we often study the performance of mutual exclusion algorithms under two
special loading conditions, viz., “low load” and “high load.” Under low
load conditions, there is seldom more than one request for the critical
section present in the system simultaneously. Under heavy load conditions,
there is always a pending request for critical section at a site. Thus, in
heavy load conditions, after having executed a request, a site immediately
initiates activities to execute its next CS request. A site is seldom in the
idle state in heavy load conditions. For many mutual exclusion algorithms,
the performance metrics can be computed easily under low and heavy loads
through a simple mathematical reasoning.

Best and worst case performance
Generally, mutual exclusion algorithms have best and worst cases for the
performance metrics. In the best case, prevailing conditions are such that
a performance metric attains the best possible value. For example, in most

309 9.3 Lamport’s algorithm

mutual exclusion algorithms the best value of the response time is a round-
trip message delay plus the CS execution time, 2T +E. Often for mutual
exclusion algorithms, the best and worst cases coincide with low and high
loads, respectively. For examples, the best and worst values of the response
time are achieved when load is, respectively, low and high; in some mutual
exclusion algorithms the best and the worse message traffic is generated at
low and heavy load conditions, respectively.

9.3 Lamport’s algorithm

Lamport developed a distributed mutual exclusion algorithm (Algorithm 9.1)
as an illustration of his clock synchronization scheme [12]. The algorithm
is fair in the sense that a request for CS are executed in the order of their
timestamps and time is determined by logical clocks. When a site processes
a request for the CS, it updates its local clock and assigns the request a
timestamp. The algorithm executes CS requests in the increasing order of
timestamps. Every site Si keeps a queue, request_queuei, which contains
mutual exclusion requests ordered by their timestamps. (Note that this queue
is different from the queue that contains local requests for CS execution await-
ing their turn.) This algorithm requires communication channels to deliver
messages in FIFO order.

Requesting the critical section
• When a site Si wants to enter the CS, it broadcasts a REQUEST(tsi, i)

message to all other sites and places the request on request_queuei. ((tsi,
i) denotes the timestamp of the request.)

• When a site Sj receives the REQUEST(tsi, i) message from site Si, it places
site Si’s request on request_queuej and returns a timestamped REPLY
message to Si.

Executing the critical section
Site Si enters the CS when the following two conditions hold:

L1: Si has received a message with timestamp larger than (tsi, i) from all
other sites.

L2: Si’s request is at the top of request_queuei.

Releasing the critical section
• Site Si, upon exiting the CS, removes its request from the top of its request

queue and broadcasts a timestamped RELEASE message to all other sites.
• When a site Sj receives a RELEASE message from site Si, it removes Si’s

request from its request queue.

Algorithm 9.1 Lamport’s algorithm.

310 Distributed mutual exclusion algorithms

When a site removes a request from its request queue, its own request may
come at the top of the queue, enabling it to enter the CS. Clearly, when a site
receives a REQUEST, REPLY, or RELEASE message, it updates its clock
using the timestamp in the message.

Correctness
Theorem 9.1 Lamport’s algorithm achieves mutual exclusion.

Proof Proof is by contradiction. Suppose two sites Si and Sj are executing
the CS concurrently. For this to happen conditions L1 and L2 must hold at
both the sites concurrently. This implies that at some instant in time, say t,
both Si and Sj have their own requests at the top of their request_queues
and condition L1 holds at them. Without loss of generality, assume that
Si’s request has smaller timestamp than the request of Sj . From condition
L1 and FIFO property of the communication channels, it is clear that at
instant t the request of Si must be present in request_queuej when Sj was
executing its CS. This implies that Sj’s own request is at the top of its own
request_queue when a smaller timestamp request, Si’s request, is present in
the request_queuej – a contradiction! Hence, Lamport’s algorithm achieves
mutual exclusion. �

Theorem 9.2 Lamport’s algorithm is fair.

Proof A distributed mutual exclusion algorithm is fair if the requests for CS
are executed in the order of their timestamps. The proof is by contradiction.
Suppose a site Si’s request has a smaller timestamp than the request of another
site Sj and Sj is able to execute the CS before Si. For Sj to execute the CS, it
has to satisfy the conditions L1 and L2. This implies that at some instant in
time Sj has its own request at the top of its queue and it has also received a
message with timestamp larger than the timestamp of its request from all other
sites. But request_queue at a site is ordered by timestamp, and according to
our assumption Si has lower timestamp. So Si’s request must be placed ahead
of the Sj’s request in the request_queuej . This is a contradiction. Hence
Lamport’s algorithm is a fair mutual exclusion algorithm. �

Example In Figures 9.3 to 9.6, we illustrate the operation of Lamport’s
algorithm. In Figure 9.3, sites S1 and S2 are making requests for the CS and
send out REQUEST messages to other sites. The timestamps of the requests
are (1,1) and (1,2), respectively. In Figure 9.4, both the sites S1 and S2 have
received REPLY messages from all other sites. S1 has its request at the top
of its request_queue but site S2 does not have its request at the top of its
request_queue. Consequently, site S1 enters the CS. In Figure 9.5, S1 exits
and sends RELEASE mesages to all other sites. In Figure 9.6, site S2 has
received REPLY from all other sites and also received a RELEASE message

311 9.3 Lamport’s algorithm

Figure 9.3 Sites S1 and S2 are
Making Requests for the CS.

S2

S3

S1

(1,1)

(1,2)

Figure 9.4 SiteS1 enters the CS. Site S1 enters the CS

(1,1)

(1,2)

S1

S2

S3

Figure 9.5 Site S1 exits the CS
and sends RELEASE messages.

S1

S2

S3

(1,1), (1,2)

(1,1), (1,2)

(1,1)

(1,2)

Site S1 enters the CS Site S1 exits the CS

(1,2)

Figure 9.6 SiteS2 enters the CS.

S1

S2

S3

(1,1), (1,2)

(1,1), (1,2)

(1,1)

(1,2)

Site S1 enters the CS Site S1 exits the CS

Site S2 enters the CS

312 Distributed mutual exclusion algorithms

from site S1. Site S2 updates its request_queue and its request is now at the
top of its request_queue. Consequently, it enters the CS next.

Performance
For each CS execution, Lamport’s algorithm requires �N − 1� REQUEST
messages, �N−1� REPLY messages, and �N−1� RELEASE messages. Thus,
Lamport’s algorithm requires 3�N − 1� messages per CS invocation. The
synchronization delay in the algorithm is T .

An optimization
In Lamport’s algorithm, REPLY messages can be omitted in certain situations.
For example, if site Sj receives a REQUEST message from site Si after it has
sent its own REQUEST message with a timestamp higher than the timestamp
of site Si’s request, then site Sj need not send a REPLY message to site Si.
This is because when site Si receives site Sj’s request with a timestamp higher
than its own, it can conclude that site Sj does not have any smaller timestamp
request which is still pending (because communication channels preserves
FIFO ordering).

With this optimization, Lamport’s algorithm requires between 3�N − 1�
and 2�N −1� messages per CS execution.

9.4 Ricart–Agrawala algorithm

The Ricart–Agrawala [21] algorithm (Algorithm 9.2) assumes that the com-
munication channels are FIFO. The algorithm uses two types of messages:
REQUEST and REPLY. A process sends a REQUEST message to all other
processes to request their permission to enter the critical section. A process
sends a REPLY message to a process to give its permission to that process.
Processes use Lamport-style logical clocks to assign a timestamp to critical
section requests. Timestamps are used to decide the priority of requests in
case of conflict – if a process pi that is waiting to execute the critical section
receives a REQUEST message from process pj , then if the priority of pj’s
request is lower, pi defers the REPLY to pj and sends a REPLY message to
pj only after executing the CS for its pending request. Otherwise, pi sends a
REPLY message to pj immediately, provided it is currently not executing the
CS. Thus, if several processes are requesting execution of the CS, the highest
priority request succeeds in collecting all the needed REPLY messages and
gets to execute the CS.

Each process pi maintains the request-deferred array, RDi, the size of
which is the same as the number of processes in the system. Initially, ∀i ∀j:

313 9.4 Ricart–Agrawala algorithm

RDi�j� = 0. Whenever pi defers the request sent by pj , it sets RDi�j� = 1,
and after it has sent a REPLY message to pj , it sets RDi�j�= 0.

Requesting the critical section
(a) When a site Si wants to enter the CS, it broadcasts a timestamped

REQUEST message to all other sites.
(b) When site Sj receives a REQUEST message from site Si, it sends a

REPLY message to site Si if site Sj is neither requesting nor executing
the CS, or if the site Sj is requesting and Si’s request’s timestamp is
smaller than site Sj’s own request’s timestamp. Otherwise, the reply is
deferred and Sj sets RDj�i� �= 1.

Executing the critical section

(c) Site Si enters the CS after it has received a REPLY message from every
site it sent a REQUEST message to.

Releasing the critical section

(d) When site Si exits the CS, it sends all the deferred REPLY mes-
sages: ∀j if RDi�j� = 1, then sends a REPLY message to Sj and sets
RDi�j� �= 0.

Algorithm 9.2 The Ricart–Agrawala algorithm.

When a site receives a message, it updates its clock using the timestamp
in the message. Also, when a site takes up a request for the CS for pro-
cessing, it updates its local clock and assigns a timestamp to the request.
In this algorithm, a site’s REPLY messages are blocked only by sites that are
requesting the CS with higher priority (i.e., smaller timestamp). Thus, when
a site sends out deferred REPLY messages, the site with the next highest
priority request receives the last needed REPLY message and enters the CS.
Execution of the CS requests in this algorithm is always in the order of their
timestamps.

Correctness
Theorem 9.3 Ricart–Agrawala algorithm achieves mutual exclusion.

Proof Proof is by contradiction. Suppose two sites Si and Sj are executing
the CS concurrently and Si’s request has higher priority (i.e., smaller times-
tamp) than the request of Sj . Clearly, Si received Sj’s request after it has made
its own request. (Otherwise, Si’s request will have lower priority.) Thus, Sj
can concurrently execute the CS with Si only if Si returns a REPLY to Sj (in
response to Sj’s request) before Si exits the CS. However, this is impossi-
ble because Sj’s request has lower priority. Therefore, the Ricart–Agrawala
algorithm achieves mutual exclusion. �

314 Distributed mutual exclusion algorithms

In the Ricart–Agrawala algorithm, for every requesting pair of sites, the
site with higher priority request will always defer the request of the lower
priority site. At any time only the highest priority request succeeds in getting
all the needed REPLY messages.

Example Figures 9.7 to 9.10 illustrate the operation of the Ricart–Agrawala
algorithm. In Figure 9.7, sites S1 and S2 are each making requests for the

Figure 9.7 SitesS1 andS2

each make a request for the CS.

(1,2)
S2

S3

S1

(1,1)

Figure 9.8 SiteS1 enters the CS.

(1,2)
S2

S3

S1

(1,1)

Site S1 enters the CSRequest is deferred

Figure 9.9 Site S1 exits the CS
and sends a REPLY message to
S2’s deferred request.

(1,2)
S2

S3

S1

(1,1)

Site S1 enters the CS Site S1 exits the CSRequest is deferred

315 9.5 Singhal’s dynamic information-structure algorithm

Figure 9.10 Site S2 enters
the CS.

(1,2)
S2

S3

S1

(1,1)

Site S1 enters the CS Site S1 exits the CS

Site S2 enters the CS

Request is deferred

CS and sending out REQUEST messages to other sites. The timestamps of
the requests are (2,1) and (1,2), respectively. In Figure 9.8, S2 has received
REPLY messages from all other sites and, consequently, enters the CS.
In Figure 9.9, S2 exits the CS and sends a REPLY mesage to site S1. In
Figure 9.10, site S1 has received REPLY from all other sites and enters the
CS next.

Performance
For each CS execution, the Ricart–Agrawala algorithm requires �N − 1�
REQUEST messages and �N − 1� REPLY messages. Thus, it requires
2�N −1� messages per CS execution. The synchronization delay in the
algorithm is T .

9.5 Singhal’s dynamic information-structure algorithm

Most mutual exclusion algorithms use a static approach to invoke mutual
exclusion, i.e., they always take the same course of actions to invoke
mutual exclusion no matter what is the state of the system. A problem
with these algorithms is the lack of efficiency because these algorithms
fail to exploit the changing conditions in the system. Note that an algo-
rithm can exploit dynamic conditions of the system to optimize the perfor-
mance.

For example, if few sites are invoking mutual exclusion very frequently and
other sites invoke mutual exclusion much less frequently, then a frequently
invoking site need not ask for the permission of less frequently invoking site
every time it requests an access to the CS. It only needs to take permission
from all other frequently invoking sites. Singhal [28] developed an adap-
tive mutual exclusion algorithm based on this observation. The information-
structure of the algorithm evolves with time as sites learn about the state of the
system through messages. Dynamic information-structure mutual exclusion

316 Distributed mutual exclusion algorithms

algorithms are attractive because they can adapt to fluctuating system condi-
tions to optimize the performance.

The design of such adaptive mutual exclusion algorithms is challenging
and we list some of the design challenges next:

• How does a site efficiently know what sites are currently actively invoking
mutual exclusion?

• When a less frequently invoking site needs to invoke mutual exclusion,
how does it do it?

• How does a less frequently invoking site makes a transition to more
frequently invoking site and vice-versa?

• How do we ensure that mutual exclusion is guaranteed when a site does
not take the permission of every other site?

• How do we ensure that a dynamic mutual exclusion algorithm does
not waste resources and time in collecting systems state, offsetting
any gain?

System model
We consider a distributed system consisting of n autonomous sites, say S1,
S2, � � � , Sn, which are connected by a communication network. We assume that
the sites communicate completely by message passing. Message propagation
delay is finite but unpredictable and, between any pair of sites, messages are
delivered in the order they are sent. For the ease of presentation, we assume
that the underlying communication network is reliable and sites do not crash.
However, methods have been proposed for recovery from message losses and
site failures.

Data structures
The information-structure at a site Si consists of two sets. The first set Ri,
called the request set, contains the sites from which Si must acquire permission
before executing CS. The second set Ii, called the inform set, contains the
sites to which Si must send its permission to execute CS after executing
its CS.

Every site Si maintains a logical clock Ci, which is updated according
to Lamport’s rules. Every request for CS execution is assigned a timestamp
which is used to determine its priority. The smaller the timestamp of a request,
the higher its priority. Every site maintains three boolean variables to denote
the state of the site: Requesting, Executing, and My_ priority. Requesting
and Executing are true if and only if the site is requesting or executing CS,
respectively. My_ priority is true if the pending request of Si has priority over
the current incoming request.

317 9.5 Singhal’s dynamic information-structure algorithm

Initialization
The system starts in the following initial state:

For a site Si (i= 1 to n),
Ri �= {S1, S2, … , Si−1, Si}
Ii �= Si
Ci �= 0
Requesting = Executing �= False

Thus, initially site Si, 1 ≤ i ≤ n, sends request messages only to sites Si,
Si−1, � � � , S1. If we stagger sites Sn to S1 from left to right, then the initial
system state has the following two properties:

1. Each site requests permission from all the sites to its right and from no
site to its left. Conversely, for a site, all the sites to its left asks for its
permission and no site to its right asks for its permission. Or putting
together, for a site, only all the sites to its left will ask for its permission
and it will ask for the permission of only all the sites to its right. Therefore,
every site Si divides all the sites into two disjoint groups: all the sites in
the first group request permission from Si, and Si requests permission from
all the sites in the second group. This property is important for enforcing
mutual exclusion.

2. The cardinality of Ri decreases in a stepwise manner from left to right.
Due to this reason, this configuration has been called “staircase pattern”
in topological sense [26].

9.5.1 Description of the algorithm

Site Si executes the three steps shown in Algorithm 9.3 to invoke mutual exclu-
sion. The REQUEST message handler at a site processes incoming REQUEST
messages. It takes actions such as updating the information-structure and
sending REQUEST/REPLY messages to other sites. The REQUEST message
handler at site Si is given in Algorithm 9.3. The REPLY message handler
at a site processes incoming REPLY messages. It updates the information-
structure. The REPLY message handler at site Si is given in Algorithm 9.3.
Note that the REQUEST and REPLY message handlers and the steps of the
algorithm access shared data structures, viz., Ci, Ri, and Ii. To guarantee
the correctness, it’s important that execution of the REQUEST and REPLY
message handlers and all three steps of the algorithm (except “wait for Ri = ∅
to hold” in step 1) mutually exclude each other.

318 Distributed mutual exclusion algorithms

Step 1: (Request critical section)
Requesting = true;
Ci�=Ci+1;
Send REQUEST(Ci, i) message to all sites in Ri;
Wait until Ri = ∅; /* Wait until all sites in Ri have sent

a reply to Si */
Requesting �= false;

Step 2: (Execute critical section)
Executing �= true;
Execute CS;
Executing �= false;

Step 3: (Release critical section)
For every site Sk in Ii (except Si) do

Begin
Ii �= Ii – {Sk};
Send REPLY(Ci�i) message to Sk;
Ri �= Ri+ 	Sk}

End
REQUEST message handler:

/* Site Si is handling message REQUEST(c, j) */
Ci �=max	Ci�c�;
Case

Requesting = true:
Begin
if My_ priority then Ii �= Ii+ 	Sj�
/*My_Priority is true if the pending request of Si has priority over the incoming
request */
Else

Begin
Send REPLY(Ci, i) message to Sj ;
If not (Sj ∈ Ri) then

Begin
Ri �= Ri+ 	Sj�;
Send REQUEST(Ci, i) message to site Sj ;

End;
End;

End;

Executing = true: Ii �= Ii+ 	Sj�;
Executing = false ∧ Requesting = false:
Begin
Ri �= Ri+ 	Sj�;
Send REPLY(Ci, i) message to Sj ;
End;

REPLY message handler:
/* Site Si is handling a message REPLY(c, j) */

Begin
Ci�= max{Ci, c};
Ri �= Ri – {Sj};
End;

Algorithm 9.3 Singhal’s dynamic information-structure algorithm [28].

319 9.5 Singhal’s dynamic information-structure algorithm

An explanation of the algorithm
At high level, Si acquires permission to execute the CS from all sites in its
request set Ri and it releases the CS by sending a REPLY message to all sites
in its inform set Ii.

If site Si, which itself is requesting the CS, receives a higher priority
REQUEST message from a site Sj , then Si takes the following actions: (i) Si
immediately sends a REPLY message to Sj , (ii) if Sj is not in Ri, then1 Si
also sends a REQUEST message to Sj , and (iii) Si places an entry for Sj in
Ri. Otherwise (i.e., if the request of Si has priority over the request of Sj), Si
places an entry for Sj into Ii so that Sj can be sent a REPLY message when
Si finishes with the execution of the CS.

If Si receives a REQUEST message from Sj when it is executing the CS,
then it simply puts Sj in Ii so that Sj can be sent a REPLY message when
Si finishes with the execution of the CS. If Si receives a REQUEST message
from Sj when it is neither requesting nor executing the CS, then it places an
entry for Sj in Ri and sends Sj a REPLY message.

Rules for information exchange and updating request and inform sets are
such that the staircase pattern is preserved in the system even after the sites
have executed the CS any number of times. However, the positions of sites
in the staircase pattern change as the system evolves. (For a proof of this,
see [28].) The site to execute CS last positions itself at the right end of the
staircase pattern.

9.5.2 Correctness

We informally discuss why the algorithm achieves mutual exclusion and why
it is free from deadlocks. For a formal proof, the readers are referred to [27].

Achieving mutual exclusion
Note that the initial state of the information-structure satisfies the follow-
ing condition: for every Si and Sj , either Sj ∈ Ri or Si ∈ Rj . Therefore,
if two sites request CS, one of them will always ask for the permission
of the another. However, this is not sufficient for mutual exclusion [28].
Whenever there is a conflict between two sites (i.e., they concurrently invoke
mutual exclusion), the sites dynamically adjust their request sets such that
both request permission of each other satisfying the condition for mutual
exclusion. This is a nice feature of the algorithm because if the information-
structures of the sites satisfy the condition for mutual exclusion all the

1 Absence of Sj from Ri implies that Si has not previously sent a REQUEST message to Sj .
This is the reason why Si also sends a REQUEST message to Sj when it receives a REQUEST
message from Sj . This step is also required to preserve the staircase pattern of the information-
structure of the system.

320 Distributed mutual exclusion algorithms

time, the sites will exchange more messages. Instead, it is more desir-
able to dynamically adjust the request set of the sites as and when needed
to insure mutual exclusion because it optimizes the number of messages
exchanged.

Freedom from deadlocks
In the algorithm, each request is assigned a globally unique timestamp which
determines its priority. The algorithm is free from deadlocks because sites use
timestamp ordering (which is unique system wide) to decide request priority
and a request is blocked only by higher priority requests.

Example Consider a system with five sites S1�

 � S5. Suppose S2 and S3

want to enter the CS concurrently, and they both send appropriate request
messages. S3 sends a request message to sites in its Request set – {S1, S2},
and S2 sends a request message to the only site in its Request set – {S1}.
There are three possible scenarios:

1. If timestamp of S3’s request is smaller, then on receiving S3’s request,
S2 sends a REPLY message to S3. S2 also adds S3 to its Request set and
sends S3 a REQUEST message. On receiving a REPLY message from S2,
S3 removes S2 from its Request set. S1 sends a REPLY to both S2 and
S3 because it is neither requesting to enter the CS nor executing the CS.
S1 adds S2 and S3 to its Request set because any one of these sites could
possibly be in the CS when S1 requests for an entry into CS in the future.
On receiving S1’s REPLY message, S3 removes S1 from its Request set
and, since it has REPLY messages from all sites in its (initial) Request
set, it enters the CS.

2. If timestamp of S3 is larger, then on receiving S3’s request, S2 adds S3 to
its Inform set. When S2 gets a REPLY from S1, it enters the CS. When S2

relinquishes the CS, it informs S3 (the i.d. of S3 is present in S2’s Inform
set) about its consent to enter the CS. Then, S2 removes S3 from its Inform
set and add S3 to its Request set. This is logical because S3 could be
executing in CS when S2 requests a “CS entry” permission in the future.

3. If S2 receives a REPLY from S1 and starts executing CS before S3’s
REQUEST reaches S2, S2 simply adds S3 to its Inform set, and sends S3 a
REPLY after exiting the CS.

9.5.3 Performance analysis

The synchronization delay in the algorithm is T . Below, we compute the
message complexity in low and heavy loads.

Low load condition
In the case of low traffic of CS requests, most of the time only one or no
request for the CS will be present in the system. Consequently, the staircase

321 9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm

pattern will re-establish between two sucssive requests for CS and there will
seldom be an interference among the CS requests from different sites. In
the staircase configuration, the cardinality of the request sets of the sites
will be 1, 2,

 , (n−1), n, respectively, from right to left. Therefore, when
the traffic of requests for CS is low, sites will send 0, 1, 2,

 , (n− 1)
number of REQUEST messages with equal likelihood (assuming uniform
traffic of CS requests at sites). Therefore, the mean number of REQUEST
messages sent per CS execution for this case will be= �0+1+2+

 +�n−
1��/n= �n−1�/2. Since a REPLY message is returned for every REQUEST
message, the average number of messages exchanged per CS execution will
be 2 ∗�n−1�/2= �n−1�.

Heavy load condition
When the rate of CS requests is high, all the sites will always have a
pending request for CS execution. In this case, a site receives on aver-
age �n− 1�/2 REQUEST messages from other sites while waiting for its
REPLY messages. Since a site sends REQUEST messages only in response
to REQUEST messages of higher priority, on average it will send �n−1�/4
REQUEST messages while waiting for REPLY messages. Therefore, the
average number of messages exchanged per CS execution in high demand
will be 2 ∗ ��n−1�/2+ �n−1�/4�= 3 ∗ �n−1�/2.

9.5.4 Adaptivity in heterogeneous traffic patterns

An interesting feature of the algorithm is that its information-structure adapts
itself to the environments of heterogeneous traffic of CS requests and to
statistical fluctuations in traffic of CS requests to optimize the performance
(the number of messages exchanged per CS execution). In non-uniform traffic
environments, sites with higher traffic of CS requests will position themselves
towards the right end of the staircase pattern. That is, sites with higher traffic
of CS requests will tend to have lower cardinality of their request sets. Also,
at a high traffic site Si, if Sj ∈ Ri, then Sj is also a high traffic site (this comes
intuitively because all high traffic sites will cluster towards the right end of
the staircase). Consequently, high traffic sites will mostly send REQUEST
messages only to other high traffic sites and will seldom send REQUEST
messages to sites with low traffic. This adaptivity results in a reduction in
the number of messages as well as a delay in granting CS in environments of
heterogeneous traffic.

9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm

Lodha and Kshemakalyani’s algorithm [13] (Algorithm 9.4) decreases the
message complexity of the Ricart–Agrawala algorithm by using the following

322 Distributed mutual exclusion algorithms

interesting observation: when a site is waiting to execute the CS, it need not
receive REPLY messages from every other site. To enter the CS, a site only
needs to receive a REPLY message from the site whose request just precedes
its request in priority. For example, if sites Si1 ,Si2 , ..Sin have a pending request
for CS and the request of Si1 has the highest priority and that of Sin has the
lowest priority and the priority of requests decreases from Si1 to Sin , then a site
Sik only needs a REPLY message from site Sik−1

, 1< k≤ n to enter the CS.

9.6.1 System model

Each request is assigned a priority ReqID and requests for CS access are
granted in the order of decreasing priority. We will defer the details of
what ReqID is composed of to later sections. The underlying communication
network is assumed to be error free.

Definition 9.1 Ri and Rj are concurrent iff Pi’s REQUEST message is
received by Pj after Pj has made its request and Pj’s REQUEST message is
received by Pi after Pi has made its request.

Definition 9.2 Given Ri, we define the concurrency set of Ri as follows:
CSeti = {Rj � Ri is concurrent with Rj}

⋃
{Ri}.

9.6.2 Description of the algorithm

Algorithm 9.4 uses three types of messages (REQUEST, REPLY, and
FLUSH) and obtains savings on the number of messages exchanged per
CS access by assigning multiple purposes to each. For the purpose of
blocking a mutual exclusion request, every site Si has a data structure
called local_request_queue (denoted as LRQi), which contains all concurrent
requests made with respect to Si’s request, and these requests are ordered
with respect to their priority.

All requests are totally ordered by their priorities and the priority is deter-
mined by the timestamp of the request. Hence, when a process receives a
REQUEST message from some other process, it can immediately determine
if it is allowed to access the CS before the requesting process or after it.

In this algorithm, messages play multiple roles and this will be discussed
first.

Multiple uses of a REPLY message

1. A REPLY message acts as a reply from a process that is not
requesting.

2. A REPLY message acts as a collective reply from processes that have
higher priority requests.

A REPLY(Rj) from a process Pj indicates that Rj is the request made by Pj for
which it has executed the CS. It also indicates that all the requests with priority
≥ priority of Rj have finished executing CS and are no longer in contention.

323 9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm

Thus, in such situations, a REPLY message is a logical reply and denotes
a collective reply from all processes that had made higher priority requests.

Uses of a FLUSH message
Similar to a REPLY message, a FLUSH message is a logical reply and denotes
a collective reply from all processes that had made higher priority requests.
After a process has exited the CS, it sends a FLUSH message to a process
requesting with the next highest priority, which is determined by looking up
the process’s local request queue. When a process Pi finishes executing the
CS, it may find a process Pj in one of the following states:

1. Rj is in the local queue of Pi and located in some position after Ri, which
implies that Rj is concurrent with Ri.

2. Pj had replied to Ri and Pj is now requesting with a lower priority. (Note
that in this case Ri and Rj are not concurrent.)

3. Pj’s requst had higher priority than Pi’s (implying that it had finished the
execution of the CS) and is now requesting with a lower priority. (Note
that in this case Ri and Rj are not concurrent.)

A process Pi, after executing the CS, sends a FLUSH message to a process
identified in state 1 above, which has the next highest priority, whereas it
sends REPLY messages to the processes identified in states 2 and 3 as their
requests are not concurrent with Ri (the resuests of processes in states 2 and 3
were deferred by Pi till it exits the CS). Now it is up to the process receiving
the FLUSH message and the processes recieving REPLY messages in states
2 and 3 to determine who is allowed to enter the CS next.

Consider a scenario where we have a set of requests R3, R0, R2, R4, R1

ordered in decreasing priority, where R0, R2, R4 are concurrent with one
another, then P0 maintains a local queue of [R0, R2, R4] and, when it exits
the CS, it sends a FLUSH (only) to P2.

Multiple uses of a REQUEST message
Considering two processes Pi and Pj , there can be two cases:

Case 1 Pi and Pj are not concurrently requesting. In this case, the process
which requests first will get a REPLY message from the other process.

Case 2 Pi and Pj are concurrently requesting. In this case, there can be
two subcases:

1. Pi is requesting with a higher priority than Pj . In this case, Pj’s
REQUEST message serves as an implicit REPLY message to Pi’s
request. Also, Pj should wait for REPLY/FLUSH message from some
process to enter the CS.

2. Pi is requesting with a lower priority than Pj . In this case, Pi’s
REQUEST message serves as an implicit REPLY message to Pj’s
request. Also, Pi should wait for REPLY/FLUSH message from some
process to enter the CS.

324 Distributed mutual exclusion algorithms

(1) Initial local state for process Pi:
• int My_Sequence_Numberi = 0
• array of boolean RV i�j�= 0, ∀j ∈ {1...N }
• queue of ReqID LRQi is NULL
• int Highest_Sequence_Number_Seeni = 0

(2) InvMutEx: Process Pi executes the following to invoke mutual exclusion:
(2a) My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1.
(2b) LRQi = NULL.
(2c) Make REQUEST(Ri) message, where Ri = (My_Sequence_

Numberi, i).
(2d) Insert this REQUEST in LRQi in sorted order.
(2e) Send this REQUEST message to all other processes.
(2f) RVi�k�= 0∀k ∈ 	1 …N�− 	i�. RVi[i]=1.

(3) RcvReq: Process Pi receives REQUEST(Rj), where Rj = �SN� j�, from
process Pj:

(3a) Highest_Sequence_Number_Seeni =max(Highest_Sequence_
Number_Seeni, SN).

(3b) If Pi is requesting:
(3bi) If RV i[j] = 0, then insert this request in LRQi (in sorted order) and

mark RV i[j] = 1. If (CheckExecuteCS), then execute CS.
(3bii) If RV i[j] = 1, then defer the processing of this request, which will

be processed after Pi executes CS.
(3c) If Pi is not requesting, then send a REPLY(Ri) message to Pj . Ri

denotes the ReqID of the last request made by Pi that was satisfied.

(4) RcvReply: Process Pi receives REPLY(Rj) message from process Pj . Rj
denotes the ReqID of the last request made by Pj that was satisfied:

(4a) RVi[j]=1.
(4b) Remove all requests from LRQi that have a priority ≥ the priority

of Rj .
(4c) If (CheckExecuteCS), then execute CS.

(5) FinCS: Process Pi finishes executing CS:
(5a) Send FLUSH(Ri) message to the next candidate in LRQi. Ri denotes

the ReqID that was satisfied.
(5b) Send REPLY(Ri) to the deferred requests. Ri is the ReqID

corresponding to which Pi just executed the CS.

(6) RcvFlush: Process Pi receives a FLUSH(Rj) message from a process Pj:
(6a) RVi[j] = 1
(6b) Remove all requests inLRQi that have the priority≥ the priority ofRj .
(6c) If (CheckExecuteCS) then execute CS.

(7) CheckExecuteCS: If (RVi[k] = 1, ∀k ∈ {1

 N }) and Pi’s request is at
the head of LRQi, then return true, else return false.

Algorithm 9.4 Lodha and Kshemkalyani’s fair mutual exclusion algorithm [13].

325 9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm

Examples

• Figure 9.11 Processes P1 and P2 are concurrent and they send out
REQUESTs to all other processes. The REQUEST sent by P1 to P3 is
delayed and hence is not shown until in Figure 9.13.

• Figure 9.12 When P3 receives the REQUEST from P2, it sends REPLY
to P2.

• Figure 9.13 The delayed REQUEST of P1 arrives at P3 and at the same
time, P3 sends out its REQUEST for CS, which makes it concurrent with
the request of P1.

• Figure 9.14 P1 exits the CS and sends out a FLUSH message to P2.
• Figure 9.15 Since the requests of P2 and P3 are not concurrent, P2 sends

a FLUSH message to P3. P3 removes (1,1) from its local queue and enters
the CS.

The data structures LRQ and RV are updated in each step as discussed
previously.

9.6.3 Safety, fairness and liveness

Proofs for safety, fairness and liveness are quite involved and interested
readers are referred to the original paper for detailed proofs.

9.6.4 Message complexity

To execute the CS, a process Pi sends (N−1) REQUEST messages. It receives
(N− � CSeti �) REPLY messages. There are two cases to consider:

1. � CSeti �≥ 2. There are two subcases here:

(a) There is at least one request in CSeti whose priority is smaller than
that of Ri. So Pi will send one FLUSH message. In this case the total
number of messages for CS access is 2N− � CSeti �. When all the
requests are concurrent, this reduces to N messages.

(b) There is no request in CSeti, whose priority is less than the priority of
Ri. Pi will not send a FLUSH message. In this case, the total number
of messages for CS access is 2N −1− � CSeti �. When all the requests
are concurrent, this reduces to N −1 messages.

2. � CSeti �= 1. This is the worst case, implying that all requests are satisfied
serially. Pi will not send a FLUSH message. In this case, the total number
of messages for CS access is 2(N −1) messages.

326 Distributed mutual exclusion algorithms

Figure 9.11 Processes P1 and
P2 send out REQUESTs.

P1

P2

P3

Figure 9.12 P3 sends a REPLY
message to P2 only.

P1

P2

P3

Figure 9.13 P3 sends out a
REQUEST message.

P1

P2

P3

P1 enters the CS

Figure 9.14 P1 exits the CS
and sends a FLUSH message
to P2. P1

P2

P3

P1 enters the CS

P1 sends a FLUSH
message to P2

327 9.7 Quorum-based mutual exclusion algorithms

Figure 9.15 P3 enters the CS.

P1

P2

P3

P1 enters the CS

P1 sends a FLUSH
message to P2

P2 sends a FLUSH
message to P3

P3 enters the CS

REQUEST from P3

REPLY from P3

REQUEST from P1

REQUEST from P2

FLUSH message

9.7 Quorum-based mutual exclusion algorithms

Quorum-based mutual exclusion algorithms respresented a departure from the
trend in the following two ways:

1. A site does not request permission from all other sites, but only from a
subset of the sites. This is a radically different approach as compared to
the Lamport and Ricart–Agrawala algorithms, where all sites participate
in conflict resolution of all other sites. In quorum-based mutual exclusion
algorithm, the request set of sites are chosen such that ∀i ∀j : 1 ≤ i� j ≤
N :: Ri ∩ Rj �= �. Consequently, every pair of sites has a site which
mediates conflicts between that pair.

2. In quorum-based mutual exclusion algorithm, a site can send out only one
REPLY message at any time. A site can send a REPLY message only after
it has received a RELEASE message for the previous REPLY message.
Therefore, a site Si locks all the sites in Ri in exclusive mode before
executing its CS.

Quorum-based mutual exclusion algorithms significantly reduce the message
complexity of invoking mutual exclusion by having sites ask permission from
only a subset of sites.

Since these algorithms are based on the notion of “Coteries” and “Quo-
rums,” we first describe the idea of coteries and quorums. A coterie C is

328 Distributed mutual exclusion algorithms

defined as a set of sets, where each set g∈C is called a quorum. The following
properties hold for quorums in a coterie:

• Intersection property For every quorum g, h∈C, g∩h �= ∅.
For example, sets 	1,2,3�, 	2,5,7�, and 	5,7,9� cannot be quorums in
a coterie because the first and third sets do not have a common
element.

• Minimality property There should be no quorums g, h in coterie C

such that g ⊇ h. For example, sets {1,2,3} and {1,3} cannot be quorums in
a coterie because the first set is a superset of the second.

Coteries and quorums can be used to develop algorithms to ensure mutual
exclusion in a distributed environment. A simple protocol works as follows:
let “a” be a site in quorum “A.” If “a” wants to invoke mutual exclusion,
it requests permission from all sites in its quorum “A.” Every site does the
same to invoke mutual exclusion. Due to the Intersection property, quorum
“A” contains at least one site that is common to the quorum of every other
site. These common sites send permission to only one site at any time. Thus,
mutual exclusion is guaranteed.

Note that the Minimality property ensures efficiency rather than correctness.
In the simplest form, quorums are formed as sets that contain a majority of
sites. There exists a variety of quorums and a variety of ways to construct
quorums. For example, Maekawa [14] used the theory of projective planes
to develop quorums of size

√
N .

9.8 Maekawa’s algorithm

Maekawa’s algorithm [14] was the first quorum-based mutual exclusion algo-
rithm. The request sets for sites (i.e., quorums) in Maekawa’s algorithm are
constructed to satisfy the following conditions:

M1 (∀i ∀j : i �= j, 1≤ i� j ≤ N :: Ri ∩ Rj �=).
M2 (∀i : 1≤ i ≤ N :: Si ∈ Ri).
M3 (∀i : 1≤ i ≤ N :: �Ri� = K).
M4 Any site Sj is contained in K number of Ris, 1≤ i� j ≤ N .

Maekawa used the theory of projective planes and showed that
N = K�K−1�+1. This relation gives �Ri� =

√
N .

Since there is at least one common site between the request sets of any two
sites (condition M1), every pair of sites has a common site which mediates
conflicts between the pair. A site can have only one outstanding REPLY
message at any time; that is, it grants permission to an incoming request if it
has not granted permission to some other site. Therefore, mutual exclusion is

329 9.8 Maekawa’s algorithm

guaranteed. This algorithm requires delivery of messages to be in the order
they are sent between every pair of sites.

Conditions M1 and M2 are necessary for correctness; whereas conditions
M3 and M4 provide other desirable features to the algorithm. Condition M3
states that the size of the requests sets of all sites must be equal, which
implies that all sites should have to do an equal amount of work to invoke
mutual exclusion. Condition M4 enforces that exactly the same number of
sites should request permission from any site, which implies that all sites
have “equal responsibility” in granting permission to other sites.

In Maekawa’s algorithm, a site Si executes the steps shown in Algorithm 9.5
to execute the CS.

Requesting the critical section:
(a) A site Si requests access to the CS by sending REQUEST(i) messages

to all sites in its request set Ri.
(b) When a site Sj receives the REQUEST(i) message, it sends a REPLY(j)

message to Si provided it hasn’t sent a REPLY message to a site since
its receipt of the last RELEASE message. Otherwise, it queues up the
REQUEST(i) for later consideration.

Executing the critical section:

(c) Site Si executes the CS only after it has received a REPLY message from
every site in Ri.

Releasing the critical section:

(d) After the execution of the CS is over, site Si sends a RELEASE(i)
message to every site in Ri.

(e) When a site Sj receives a RELEASE(i) message from site Si, it sends
a REPLY message to the next site waiting in the queue and deletes that
entry from the queue. If the queue is empty, then the site updates its state
to reflect that it has not sent out any REPLY message since the receipt
of the last RELEASE message.

Algorithm 9.5 Maekawa’s algorithm.

Correctness
Theorem 9.3 Maekawa’s algorithm achieves mutual exclusion.

Proof Proof is by contradiction. Suppose two sites Si and Sj are concurrently
executing the CS. This means site Si received a REPLY message from all
sites in Ri and concurrently site Sj was able to receive a REPLY message
from all sites in Rj . If Ri ∩ Rj = 	Sk}, then site Sk must have sent REPLY
messages to both Si and Sj concurrently, which is a contradiction. �

330 Distributed mutual exclusion algorithms

Performance
Note that the size of a request set is

√
N . Therefore, an execution of the

CS requires
√
N REQUEST,

√
N REPLY, and

√
N RELEASE messages,

resulting in 3
√
N messages per CS execution. Synchronization delay in this

algorithm is 2T . This is because after a site Si exits the CS, it first releases all
the sites in Ri and then one of those sites sends a REPLY message to the next
site that executes the CS. Thus, two sequential message transfers are required
between two successive CS executions. As discussed next, Maekawa’s algo-
rithm is deadlock-prone. Measures to handle deadlocks require additional
messages.

9.8.1 Problem of deadlocks

Maekawa’s algorithm can deadlock because a site is exclusively locked by
other sites and requests are not prioritized by their timestamps [14,22]. Thus,
a site may send a REPLY message to a site and later force a higher priority
request from another site to wait.

Without loss of generality, assume three sites Si, Sj , and Sk simultaneously
invoke mutual exclusion. Suppose Ri ∩ Rj = 	Sij}, Rj ∩ Rk = 	Sjk}, and
Rk ∩ Ri = 	Ski�. Since sites do not send REQUEST messages to the sites
in their request sets in any particular order and message delays are arbitrary,
the following scenario is possible: Sij has been locked by Si (forcing Sj to
wait at Sij), Sjk has been locked by Sj (forcing Sk to wait at Sjk), and Ski has
been locked by Sk (forcing Si to wait at Ski). This state represents a deadlock
involving sites Si, Sj , and Sk.

Handling deadlocks
Maekawa’s algorithm handles deadlocks by requiring a site to yield a lock if
the timestamp of its request is larger than the timestamp of some other request
waiting for the same lock (unless the former has succeeded in acquiring locks
on all the needed sites) [14, 22]. A site suspects a deadlock (and initiates
message exchanges to resolve it) whenever a higher priority request arrives
and waits at a site because the site has sent a REPLY message to a lower
priority request.

Deadlock handling requires the following three types of messages:

FAILED A FAILED message from site Si to site Sj indicates that Si
cannot grant Sj’s request because it has currently granted permission to
a site with a higher priority request.

INQUIRE An INQUIRE message from Si to Sj indicates that Si would
like to find out from Sj if it has succeeded in locking all the sites in its
request set.

YIELD A YIELD message from site Si to Sj indicates that Si is returning
the permission to Sj (to yield to a higher priority request at Sj).

331 9.9 Agarwal–El Abbadi quorum-based algorithm

Details of how Maekawa’s algorithm handles deadlocks are as follows:

• When a REQUEST(ts, i) from site Si blocks at site Sj because Sj has
currently granted permission to site Sk, then Sj sends a FAILED(j) message
to Si if Si’s request has lower priority. Otherwise, Sj sends an INQUIRE(j)
message to site Sk.

• In response to an INQUIRE(j) message from site Sj , site Sk sends a
YIELD(k) message to Sj provided Sk has received a FAILED message
from a site in its request set and if it sent a YIELD to any of these sites,
but has not received a new REPLY from it.

• In response to a YIELD(k) message from site Sk, site Sj assumes as if it
has been released by Sk, places the request of Sk at appropriate location in
the request queue, and sends a REPLY (j) to the top request’s site in the
queue.

Thus, Maekawa-type algorithms require extra messages to handle dead-
locks and may exchange these messages even though there is no deadlock.
The maximum number of messages required per CS execution in this case
is 5
√
N .

9.9 Agarwal–El Abbadi quorum-based algorithm

Agarwal and El Abbadi [1] developed a simple and efficient mutual exclusion
algorithm by introducing tree quorums. They gave a novel algorithm for
constructing tree-structured quorums in the sense that it uses hierarchical
structure of a network. The mutual exclusion algorithm is independent of
the underlying topology of the network and there is no need for a multicast
facility in the network. However, such facility will improve the performance
of the algorithm. The mutual exclusion algorithm assumes that sites in the
distributed system can be organized into a structure such as tree, grid, binary
tree, etc. and there exists a routing mechanism to exchange messages between
different sites in the system.

The Agarwal–El Abbadi quorum-based algorithm, however, constructs quo-
rums from trees. Such quorums are called “tree-structured quorums.” The
following sections describe an algorithm for constructing tree-structured quo-
rums and present an analysis of the algorithm and a protocol for mutual
exclusion in distributed systems using tree-structured quorums.

9.9.1 Constructing a tree-structured quorum

All the sites in the system are logically organized into a complete binary tree.
To build such a tree, any site could be chosen as the root, any other two sites
may be chosen as its children, and so on. For a complete binary tree with

332 Distributed mutual exclusion algorithms

level “k,” we have 2k+1−1 sites with its root at level k and leaves at level 0.
The number of sites in a path from the root to a leaf is equal to the level of
the tree k+1, which is equal to O(log n). There will be 2k leaves in the tree.
A path in a binary tree is the sequence a1, a2, … , ai , ai+1, … , ak such that
ai is the parent of ai+1.

The algorithm for constructing structured quorums from the tree is given
in Algorithm 9.6. For the purpose of presentation, we assume that the tree is
complete, however, the algorithm works for any arbitrary binary tree.

(1) FUNCTION GetQuorum(Tree: NetworkHierarchy): QuorumSet;
(2) VAR left, right: QuorumSet;
(3) BEGIN
(4) IF Empty (Tree) THEN
(5) RETURN ({});
(6) ELSE IF GrantsPermission(Tree↑.Node) THEN
(7) RETURN((Tree↑.Node) ∪ GetQuorum (Tree↑.LeftChild));
(8) OR
(9) RETURN((Tree↑.Node) ∪ GetQuorum (Tree↑.RightChild));
(10) ELSE
(11) left←GetQuorum(Tree↑.left);
(12) right←GetQuorum(Tree↑.right);
(13) IF (left=∅ ∨ right=∅) THEN
(14) (* Unsuccessful in establishing a quorum *)
(15) EXIT(-1);
(16) ELSE
(17) RETURN(left ∪ right);
(18) END; (* IF *)
(19) END; (* IF *)
(20) END; (* IF *)

(21) END GetQuorum

Algorithm 9.6 Algorithm for constructing a tree-structured quorum [1].

The algorithm for constructing tree-structured quorums uses two functions
called GetQuorum(Tree) and GrantsPermission(site) and assumes that there
is a well-defined root for the tree. GetQuorum is a recursive function that
takes a tree node “x” as the parameter and calls GetQuorum for its child node
provided that the GrantsPermission(x) is true. The GrantsPermission(x) is
true only when the node “x” agrees to be in the quorum. If the node “x” is
down due to a failure, then it may not agree to be in the quorum and the
value of GrantsPermission(x) will be false. The algorithm tries to construct
quorums in a way that each quorum represents any path from the root to
a leaf, i.e., in this case the (no failures) quorum is any set a1, a2, … , ai,
ai+1, … , ak, where a1 is the root and ak is a leaf, and for all i < k, ai is the
parent of ai+1. If it fails to find such a path (say, because node “x” has failed),
the control goes to the ELSE block which specifies that the failed node “x”

333 9.9 Agarwal–El Abbadi quorum-based algorithm

is substituted by two paths both of which start with the left and right children
of “x” and end at leaf nodes. Note that each path must terminate in a leaf site.
If the leaf site is down or inaccessible due to any reason, then the quorum
cannot be formed and the algorithm terminates with an error condition. The
sets that are constructed using this algorithm are termed as tree quorums.

9.9.2 Analysis of the algorithm for constructing tree-structured quorums

The best case scenario of the algorithm takes O(log n) sites to form a tree
quorum. There are certain cases where even in the event of a failure, O(log n)
sites are sufficient to form a tree quorum. For example, if the site that is parent
of a leaf node fails, then the number of sites that are necessary for a quorum
will be still O(log n). Thus, the algorithm requires very few messages in a
relatively fault-free environment. It can tolerate the failure up to n−O(log n)
sites and still form a tree quorum. In the worst case, the algorithm requires
the majority of sites to construct a tree quorum and the number of sites is
same for all cases (faults or no faults). The worst case tree quorum size is
determined as O((n+1)/2) by induction.

9.9.3 Validation

The tree quorums constructed by the above algorithm are valid, i.e., they
conform to the coterie properties such as Intersection property and Minimality
property. To prove the correctness of the algorithm, consider a binary tree
with level k+1. Assume that root of the tree is a1. The tree can be viewed
as consisting of a root, a left subtree, and a right subtree. According to
Algorithm 9.6, the constructed quorums contain one of the following:

1. {a1} ∪ { sites from the left subtree};
2. {a1} ∪ {sites from the right subtree};
3. {sites from the quorum set of left subtree} ∪ {sites from the quorum set

of right subtree}.

Clearly, the quorum of type 1 has non-empty intersection with those quo-
rums formed using types 2 or 3, which shows that the Intersection property
holds true. Also, the members in the quorum of type 1 are not contained in
quorums of types 2 and 3. Thus, the Minimality property holds true. Similar
conditions exist for quorums of types 2 and 3. This forms as the basis for
proving correctness of the algorithm based on induction.

9.9.4 Examples of tree-structured quorums

Now we present examples of tree-structured quorums for a better understand-
ing of the algorithm. In the simplest case, when there is no node failure, the
number of quorums formed is equal to the number of leaf sites.

334 Distributed mutual exclusion algorithms

Figure 9.16 A tree of 15 sites.
1

2

4

8 9

5 6 7

3

10 11 12 13 14 15

Consider the tree of height 3 shown in Figure 9.16 constructed from
15 (23+1−1) sites. Now, a quorum has all sites along any path from root to
leaf. In this case eight quorums are formed from eight possible root-leaf paths:
1–2–4–8, 1–2–4–9, 1–2–5–10, 1–2–5–11, 1–3–6–12, 1–3–6–13, 1–3–7–14
and 1–3–7–15. If any site fails, the algorithm substitutes for that site two
possible paths starting from the site’s two children and ending in leaf nodes.
For example, when node 3 fails, we consider the possible paths starting from
children 6 and 7 and ending at the leaf nodes. The possible paths starting from
child 6 are 6–12 and 6–13, while the possible paths starting from child 7 are
7–14 and 7–15. So, when node 3 fails, the following eight quorums can be
formed: 	1,6,12,7,14�, 	1,6,12,7,15�, 	1,6,13,7,14�, 	1,6,13,7,15�, 	1,2,4,8�,
	1,2,4,9�, 	1,2,5,10�, 	1,2,5,11�.

If a failed site is a leaf node, the operation has to be aborted and a tree-
structured quorum cannot be formed (see lines 13–15 of the algorithm above).
However, quorum formation can continue with other working nodes. Since
the number of nodes from root to leaf in an “n” node complete tree is log
n, the best case for quorum formation, i.e, the least number of nodes needed
for a quorum is log n. In the worst case, a majority of sites are needed for
mutual exclusion. For example, if sites 1 and 2 are down in Figure 9.16, the
quorums that are formed must include either 	4,8� or 	4,9� and either	5,10�
or 	5,11� and one of the four paths 	3,6,12�, 	3,6,13� 	3,7,14� or 	3,7,15�.
In this case, the following are the candidates for quorums: 	4,5,3,6,8,10,12�,
	4,5,3,6,8,10,13�, 	4,5,3,6,8,11,12�, 	4,5,3,6,8,11,13�, 	4,5,3,6,9,10,12�,
	4,5,3,6,9,10,13�, 	4,5,3,6,9,11,12�, 	4,5,3,6,9,11,13�, 	4,5,3,7,8,10,14�,
	4,5,3,7,8,10,15�, 	4,5,3,7,8,11,14�, 	4,5,3,7,8,11,15�, 	4,5,3,7,9,10,14�,
	4,5,3,7,9,10,15�, 	4,5,3,7,9,11,14�, and 	4,5,3,7,9,11,15�.

When the number of node failures is greater than or equal to log n, the algo-
rithm may not be able to form tree-structured quorum. For example when sites
1, 2, 4, and 8 are inaccessible, the set of sites 	3,5,6,7,8,9,10,11,12,13,14,15�
form a majority of sites but not a structured quorum. So, as long as the

335 9.9 Agarwal–El Abbadi quorum-based algorithm

number of site failures is less than log n, the tree quorum algorithm gurantees
the formation of a quorum and it exhibits the property of “graceful degra-
dation,” which is useful in distributed fault tolerance. As failures occur and
increase, the probability of forming quorums decreases and mutual exclusion
is achieved at increasing costs because when a node fails, instead of one
path from node, the quorum must include two paths starting from the node’s
children. For example, in a tree of level k, the size of quorum is (k+ 1). If
a node failure occurs at level i > 0, then the quorum size increases to (k− i)
+2i. The penalty is severe when the failed node is near the root. Thus, the
tree quorum algorithm may still allow quorums to be formed even after the
failures of n− | log n | sites.

9.9.5 The algorithm for distributed mutual exclusion

We now describe the algorithm for achieving distributed mutual exclusion
using tree-structured quorums. Suppose a site s wants to enter the critical
section (CS). The following events should occur in the order given:

1. Site s sends a “Request” message to all other sites in the structured quorum
it belongs to.

2. Each site in the quorum stores incoming requests in a request queue,
ordered by their timestamps.

3. A site sends a “Reply” message, indicating its consent to enter CS, only to
the request at the head of its request queue, having the lowest timestamp.

4. If the site s gets a “Reply” message from all sites in the structured quorum
it belongs to, it enters the CS.

5. After exiting the CS, s sends a “Relinquish” message to all sites in the
structured quorum. On the receipt of the “Relinquish” message, each site
removes s’s request from the head of its request queue.

6. If a new request arrives with a timestamp smaller than the request at the
head of the queue, an “Inquire” message is sent to the process whose
request is at the head of the queue and waits for a “Yield” or “Relinquish”
message.

7. When a site s receives an “Inquire” message, it acts as follows:

• If s has acquired all of its necessary replies to access the CS, then it
simply ignores the “Inquire” message and proceeds normally and sends
a “Relinquish” message after exiting the CS.

• If s has not yet collected enough replies from its quorum, then it sends
a “Yield” message to the inquiring site.

8. When a site gets the “Yield” message, it puts the pending request (on
behalf of which the “Inquire” message was sent) at the head of the queue
and sends a “Reply” message to the requestor.

336 Distributed mutual exclusion algorithms

9.9.6 Correctness proof

Mutual exclusion is guaranteed because the set of quorums satisfy the Intersec-
tion property. Proof for freedom from deadlock is similar to that of Maekawa’s
algorithm. The readers are referred to the original source [14].

Example Consider a coterie C which consists of quorums 	1,2,3�, 	2,4,5�,
and 	4,1,6�. Suppose nodes 3, 5, and 6 want to enter CS, and they send
requests to sites (1, 2), (2, 4), and (1, 4), respectively. Suppose site 3’s
request arrives at site 2 before site 5’s request. In this case, site 2 will grant
permission to site 3’s request and reject site 5’s request. Similarly, suppose
site 3’s request arrives at site 1 before site 6’s request. So site 1 will grant
permission to site 3’s request and reject site 6’s request. Since sites 5 and 6
did not get consent from all sites in their quorums, they do not enter the CS.
Since site 3 alone gets consent from all sites in its quorum, it enters the CS
and mutual exclusion is achieved.

9.10 Token-based algorithms

In token-based algorithms, a unique token is shared among the sites. A site is
allowed to enter its CS if it possesses the token. A site holding the token can
enter its CS repeatedly until it sends the token to some other site. Depending
upon the way a site carries out the search for the token, there are numerous
token-based algorithms. Next, we discuss two token-based mutual exclusion
algorithms.

Before we start with the discussion of token-based algorithms, two com-
ments are in order. First, token-based algorithms use sequence numbers
instead of timestamps. Every request for the token contains a sequence number
and the sequence numbers of sites advance independently. A site increments
its sequence number counter every time it makes a request for the token.
(A primary function of the sequence numbers is to distinguish between old and
current requests.) Second, the correctness proof of token-based algorithms,
that they enforce mutual exclusion, is trivial because an algorithm guarantees
mutual exclusion so long as a site holds the token during the execution of the
CS. Instead, the issues of freedom from starvation, freedom from deadlock,
and detection of the token loss and its regeneration become more prominent.

9.11 Suzuki–Kasami’s broadcast algorithm

In Suzuki–Kasami’s algorithm [29] (Algorithm 9.7), if a site that wants to
enter the CS does not have the token, it broadcasts a REQUEST message
for the token to all other sites. A site that possesses the token sends it to the
requesting site upon the receipt of its REQUEST message. If a site receives

337 9.11 Suzuki–Kasami’s broadcast algorithm

a REQUEST message when it is executing the CS, it sends the token only
after it has completed the execution of the CS.

Although the basic idea underlying this algorithm may sound rather simple,
there are two design issues that must be efficiently addressed:

1. How to distinguishing an outdated REQUEST message from a current
REQUEST message Due to variable message delays, a site may receive
a token request message after the corresponding request has been satisfied.
If a site cannot determined if the request corresponding to a token request
has been satisfied, it may dispatch the token to a site that does not need
it. This will not violate the correctness, however, but it may seriously
degrade the performance by wasting messages and increasing the delay
at sites that are genuinely requesting the token. Therefore, appropriate
mechanisms should implemented to determine if a token request message
is outdateded.

2. How to determine which site has an outstanding request for the CS
After a site has finished the execution of the CS, it must determine what
sites have an outstanding request for the CS so that the token can be
dispatched to one of them. The problem is complicated because when a
site Si receives a token request message from a site Sj , site Sj may have an
outstanding request for the CS. However, after the corresponding request
for the CS has been satisfied at Sj , an issue is how to inform site Si (and
all other sites) efficiently about it.

Outdated REQUEST messages are distinguished from current REQUEST
messages in the following manner: a REQUEST message of site Sj has the
form REQUEST(j, n) where n (n = 1�2� � � �) is a sequence number that
indicates that site Sj is requesting its nth CS execution. A site Si keeps an
array of integers RNi[1, … ,N] where RNi[j] denotes the largest sequence
number received in a REQUEST message so far from site Sj . When site Si
receives a REQUEST(j, n) message, it sets RNi[j]�= max(RNi[j], n). Thus,
when a site Si receives a REQUEST(j, n) message, the request is outdated if
RNi[j]> n.

Sites with outstanding requests for the CS are determined in the following
manner: the token consists of a queue of requesting sites, Q, and an array of
integers LN [1, … ,N], where LN [j] is the sequence number of the request
which site Sj executed most recently. After executing its CS, a site Si updates
LN [i] : = RNi[i] to indicate that its request corresponding to sequence num-
ber RNi[i] has been executed. Token array LN [1, … ,N] permits a site to
determine if a site has an outstanding request for the CS. Note that at site
Si if RNi[j]=LN [j]+1, then site Sj is currently requesting a token. After
executing the CS, a site checks this condition for all the j’s to determine all
the sites that are requesting the token and places their i.d.’s in queue Q if
these i.d.’s are not already present in Q. Finally, the site sends the token to
the site whose i.d. is at the head of Q.

338 Distributed mutual exclusion algorithms

Requesting the critical section:
(a) If requesting site Si does not have the token, then it increments its

sequence number, RNi[i], and sends a REQUEST(i, sn) message to all
other sites. (“sn” is the updated value of RNi[i].)

(b) When a site Sj receives this message, it sets RNj[i] to max(RNj[i], sn).
If Sj has the idle token, then it sends the token to Si if RNj[i]=LN [i]+ 1.

Executing the critical section:

(c) Site Si executes the CS after it has received the token.

Releasing the critical section: Having finished the execution of the CS, site
Si takes the following actions:

(d) It sets LN [i] element of the token array equal to RNi[i].
(e) For every site Sj whose i.d. is not in the token queue, it appends its i.d.

to the token queue if RNi[j] = LN [j]+ 1.
(f) If the token queue is nonempty after the above update, Si deletes the top

site i.d. from the token queue and sends the token to the site indicated
by the i.d.

Algorithm 9.7 Suzuki–Kasami’s broadcast algorithm.

Thus, as shown in Algorithm 9.7, after executing the CS, a site gives
priority to other sites with outstanding requests for the CS (over its pending
requests for the CS). Note that Suzuki–Kasami’s algorithm is not symmetric
because a site retains the token even if it does not have a request for the
CS, which is contrary to the spirit of Ricart and Agrawala’s definition of
symmetric algorithm: “no site possesses the right to access its CS when it has
not been requested.”

Correctness
Mutual exclusion is guaranteed because there is only one token in the system
and a site holds the token during the CS execution.

Theorem 9.3 A requesting site enters the CS in finite time.

Proof Token request messages of a site Si reach other sites in finite time.
Since one of these sites will have token in finite time, site Si’s request will
be placed in the token queue in finite time. Since there can be at most N −1
requests in front of this request in the token queue, site Si will get the token
and execute the CS in finite time. �

Performance
The beauty of the Suzuki–Kasami algorithm lies in its simplicity and effi-
ciency. No message is needed and the synchronization delay is zero if a site

339 9.12 Raymond’s tree-based algorithm

holds the idle token at the time of its request. If a site does not hold the token
when it makes a request, the algorithm requires N messages to obtain the
token. The synchronization delay in this algorithm is 0 or T .

9.12 Raymond’s tree-based algorithm

Raymond’s tree-based mutual exclusion algorithm [19] uses a spanning tree
of the computer network to reduce the number of messages exchanged per
critical section execution. The algorithm exchanges only O(log N) messages
under light load, and approximately four messages under heavy load to execute
the CS, where N is the number of nodes in the network.

The algorithm assumes that the underlying network guarantees message
delivery. The time or order of message arrival cannot be predicted. All nodes
of the network are completely reliable. (Only for the initial part of the discus-
sion, i.e., until node failure is discussed.) If the network is viewed as a graph,
where the nodes in the network are the vertices of the graph, and the links
between nodes are the edges of the graph, a spanning tree of a network of N
nodes will be a tree that contains all N nodes. A minimal spanning tree is one
such tree with minimum cost. Typically, this cost function is based on the
network link characteristics. The algorithm operates on a minimal spanning
tree of the network topology or logical structure imposed on the network.

The algorithm considers the network nodes to be arranged in an unrooted
tree structure as shown in Figure 9.17. Messages between nodes traverse
along the undirected edges of the tree in the Figure 9.17. The tree is also
a spanning tree of the seven nodes A, B, C, D, E, F, and G. It also turns
out to be a minimal spanning tree because it is the only spanning tree of
these seven nodes. A node needs to hold information about and communicate
only to its immediate-neighboring nodes. In Figure 9.17, for example, node
C holds information about and communicates only to nodes B, D, and G; it
does not need to know about the other nodes A, E, and F for the operation of
the algorithm.

Similar to the concept of tokens used in token-based algorithms, this algo-
rithm uses a concept of privilege to signify which node has the privilege to
enter the critical section. Only one node can be in possession of the privilege
(called the privileged node) at any time, except when the privilege is in transit

Figure 9.17 Nodes with an
unrooted tree structure.

F

D

E

A B C

G

340 Distributed mutual exclusion algorithms

from one node to another in the form of a PRIVILEGE message. When there
are no nodes requesting for the privilege, it remains in possession of the node
that last used it.

9.12.1 The HOLDER variables

Each node maintains a HOLDER variable that provides information about
the placement of the privilege in relation to the node itself. A node stores in
its HOLDER variable the identity of a node that it thinks has the privilege
or leads to the node having the privilege. The HOLDER variables of all the
nodes maintain directed paths from each node to the node in the possession
of the privilege.

For two nodes X and Y, if HOLDERX = Y, we could redraw the undirected
edge between the nodes X and Y as a directed edge from X to Y. Thus,
for instance, if node G holds the privilege, Figure 9.17 can be redrawn with
logically directed edges as shown in Figure 9.18. The shaded node repre-
sents the privileged node. The following will be the values of the HOLDER
variables of various nodes:

HOLDERA=B�Since the privilege is located in a sub-tree of A denoted by B.�

Proceeding with similar reasoning, we have

HOLDERB = C�

HOLDERC = G�

HOLDERD = C�

HOLDERE = A�

HOLDERF = B�

HOLDERG = self�

Now suppose that node B, which does not hold the privilege, wants to
execute the critical section. Then B sends a REQUEST message to HOLDERB,
i.e., C, which in turn forwards the REQUEST message to HOLDERC , i.e.,
G. So a series of REQUEST messages flow between the node making the
request for the privilege and the node having the privilege.

Figure 9.18 Tree with logically
directed edges, all pointing in
a direction towards node G –
the privileged node.

F

C D

E

A B

G

341 9.12 Raymond’s tree-based algorithm

Table 9.1 Variables used in the algorithm.

Variable name Possible values Comments

HOLDER “self ” or the identity of
one of the immediate
neighbors.

Indicates the location of the
privileged node in relation to
the current node.

USING True or false. Indicates if the current node is
executing the critical section.

REQUEST_Q A FIFO queue that
could contain “self ” or
the identities of
immediate neighbors as
elements.

The REQUEST_Q of a node
consists of the identities of
those immediate neighbors that
have requested for privilege but
have not yet been sent the
privilege.

ASKED True or false. Indicates if node has sent a
request for the privilege.

Figure 9.19 Tree with logically
directed edges, all pointing in
a direction towards node G –
the privileged node.

GF

C D

E

A B

The privileged node G, if it no longer needs the privilege, sends the
PRIVILEGE message to its neighbor C, which made a request for the
privilege, and resets HOLDERG to C. Node C, in turn, forwards the
PRIVILEGE to node B, since it had requested the privilege on behalf of B.
Node C also resets HOLDERC to B. The tree in Figure 9.18 will now look
as shown in Figure 9.19.

Thus, at any stage, except when the PRIVILEGE message is in transit, the
HOLDER variables collectively make sure that directed paths are maintained
from each of the N – 1 nodes to the privileged node in the network.

9.12.2 The operation of the algorithm

Data structures
Each node maintains variables that are defined in Table 9.1. The value “self”
is placed in REQUEST_Q if the node makes a request for the privilege for
its own use. The maximum size of REQUEST_Q of a node is the number
of immediate neighbors + 1 (for “self ”). ASKED prevents the sending of
duplicate requests for privilege, and also makes sure that the REQUEST_Qs
of the various nodes do not contain any duplicate elements.

342 Distributed mutual exclusion algorithms

9.12.3 Description of the algorithm

The algorithm consists of the following parts:

• ASSIGN_PRIVILEGE;
• MAKE_REQUEST;
• events;
• message overtaking.

ASSIGN_PRIVILEGE
This is a routine to effect the sending of a PRIVILEGE message. A privileged
node will send a PRIVILEGE message if:

• it holds the privilege but is not using it;
• its REQUEST_Q is not empty; and
• the element at the head of its REQUEST_Q is not “self.” That is, the

oldest request for privilege must have come from another node.

A situation where “self” is at the head of REQUEST_Q may occur imme-
diately after a node receives a PRIVILEGE message. The node will enter into
the critical section after removing “self” from the head of REQUEST_Q. If
the i.d. of another node is at the head of REQUEST_Q, then it is removed
from the queue and a PRIVILEGE message is sent to that node. Also, the
variable ASKED is set to false since the currently privileged node will not
have sent a request to the node (called HOLDER-to-be) that is about to receive
the PRIVILEGE message.

MAKE_REQUEST
This is a routine to effect the sending of a REQUEST message. An unprivi-
leged node will send a REQUEST message if:

• it does not hold the privilege;
• its REQUEST_Q is not empty, i.e., it requires the privilege for itself, or

on behalf of one of its immediate neighboring nodes; and
• it has not sent a REQUEST message already.

The variable ASKED is set to true to reflect the sending of the REQUEST
message. The MAKE_REQUEST routine makes no change to any other vari-
ables. The variable ASKED will be true at a node when it has sent REQUEST
message to an immediate neighbor and has not received a response. The vari-
able will be false otherwise. A node does not send any REQUEST messages,
if ASKED is true at that node. Thus the variable ASKED makes sure that
unnecessary REQUEST messages are not sent from the unprivileged node,
and consequently ensures that the REQUEST_Q of an immediate neighbor
does not contain duplicate entries of a neighboring node. This makes the
REQUEST_Q of any node bounded, even when operating under heavy load.

343 9.12 Raymond’s tree-based algorithm

Table 9.2 Events in the algorithms.

Event Algorithm functionality

A node wishes to execute critical
section.

Enqueue (REQUEST_Q, Self);
ASSIGN_PRIVILEGE; MAKE_REQUEST

A node receives a REQUEST
message from one of its immediate
neighbors X.

Enqueue(REQUEST_Q, X);
ASSIGN_PRIVILEGE; MAKE_REQUEST

A node receives a PRIVILEGE
message.

HOLDER := self; ASSIGN_PRIVILEGE;
MAKE_REQUEST

A node exits the critical section. USING := false; ASSIGN_PRIVILEGE;
MAKE_REQUEST

Events
The four events that constitute the algorithm are shown in Table 9.2.

• A node wishes critical section entry If it is the privileged node, the
node could enter the critical section using the ASSIGN_PRIVILEGE
routine. If not, the node could send a REQUEST message using the
MAKE_REQUEST routine in order to get the privilege.

• A node receives a REQUEST message from one of its immediate
neighbors If this node is the current HOLDER, it may send the PRIV-
ILEGE to a requesting node using the ASSIGN_PRIVILEGE routine. If
not, it could forward the request using the MAKE_REQUEST routine.

• A node receives a PRIVILEGE message The ASSIGN_PRIVILEGE
routine could result in the execution of the critical section at the node,
or may forward the privilege to another node. After the privilege is for-
warded, the MAKE_REQUEST routine could send a REQUEST message
to reacquire the privilege, for a pending request at this node.

• A node exits the critical section On exit from the critical section,
this node may pass the privilege on to a requesting node using the
ASSIGN_PRIVILEGE routine. It may then use the MAKE_REQUEST
routine to get back the privilege, for a pending request at this node.

Message overtaking
This algorithm does away with the use of sequence numbers because of its
inherent operations and by the acyclic structure it employs. Figure 9.20 shows
the logical pattern of message flow between any two neighboring nodes (nodes
A and B here).

If any message overtaking occurs between nodes A and B, it can occur
when a PRIVILEGE message is sent from node A to node B, which is then
very closely followed by a REQUEST message from node A to node B. In
other words, node A sends the privilege and immediately wants it back. Such

344 Distributed mutual exclusion algorithms

Figure 9.20 Logical pattern of
message flow between
neighboring nodes A and B.

<pattern repeats>

Node A <−−−− REQUEST −−−−− Node B

Node A −−−−− PRIVILEGE −−−−> Node B

Node A −−−−− REQUEST −−−−> Node B

Node A <−−−− PRIVILEGE −−−−− Node B

message overtaking as described above will not affect the operation of the
algorithm. If node B receives the REQUEST message from node A before
receiving the PRIVILEGE message from node A, A’s request will be queued
in REQUEST_QB. Since B is not a privileged node, it will not be able to send a
privilege to node A in reply. When node B receives the PRIVILEGE message
from A after receiving the REQUEST message, it could enter the critical
section or could send a PRIVILEGE message to an immediate neighbor at the
head of REQUEST_QB, which need not be node A. So message overtaking
does not affect the algorithm.

9.12.4 Correctness

The algorithm provides the following guarantees:

• mutual exclusion is guaranteed;
• deadlock is impossible;
• starvation is impossible.

Mutual exclusion is guaranteed
The algorithm ensures that, at any instant of time, no more than one node holds
the privilege, which is a necessity for mutual exclusion. Whenever a node
receives a PRIVILEGE message, it becomes privileged. Similarly, whenever
a node sends a PRIVILEGE message, it becomes unprivileged. Between the
instants one node becomes unprivileged and another node becomes privileged,
there is no privileged node. Thus, there is at most one privileged node at any
point of time in the network.

Deadlock is impossible
When the critical section is free, and one or more nodes want to enter the
critical section but are not able to do so, a deadlock may occur. This could
happen due to any of the following scenarios:

1. The privilege cannot be transferred to a node because no node holds the
privilege.

345 9.12 Raymond’s tree-based algorithm

2. The node in possession of the privilege is unaware that there are other
nodes requiring the privilege.

3. The PRIVILEGE message does not reach the requesting unprivileged node.

None of the above three scenarios can occur in this algorithm, thus guard-
ing against deadlocks. Scenario 1 can never occur in this algorithm because
we have assumed that nodes do not fail and messages are not lost. There can
never be a situation where REQUEST messages do not arrive at the privileged
node. The logical pattern established using HOLDER variables ensures that a
node that needs the privilege sends a REQUEST message either to a node hold-
ing the privilege or to a node that has a path to a node holding the privilege.
Thus scenario 2 can never occur in this algorithm. The series of REQUEST
messages are enqueued in the REQUEST_Qs of various nodes such that the
REQUEST_Qs of those nodes collectively provide a logical path for the tran-
fer of the PRIVILEGE message from the privileged node to the requesting
unprivileged nodes. So scenario 3 can never occur in this algorithm.

Starvation is impossible
When node A holds the privilege, and node B requests the privilege, the
identity of B or the i.d.s of the proxy nodes for node B will be present in
the REQUEST_Qs of various nodes in the path connecting the requesting
node to the currently privileged node. So, depending upon the position of the
i.d. of node B in those REQUEST_Qs, node B will sooner or later receive
the privilege. Thus once node B’s REQUEST message reaches the privileged
node A, node B is sure to receive the privilege.

To better illustrate, let us consider Figure 9.19. Node B is the current holder
of the privilege. Suppose that node C is already at the head of REQUEST_QB.
Assume that the REQUEST_Qs of all other nodes are empty. Now if node E
wants to enter the critical section, it will send a REQUEST message to its
immediate neighbor, node A. We will show that node E does not starve.
Assume that B is executing the critical section by the time E’s REQUEST
is propagated to node B. At this instance, the REQUEST_Qs of E, A, and B
will be as follows:

REQUEST_QE = self�

REQUEST_QA = E�

REQUEST_QB = C�A�

When node B exits the critical section, it removes the node at the head of
REQUEST_QB, i.e., node C, and send the privilege to node C. Node B will
then send a REQUEST to node C on behalf of node A, which requested priv-
ilege on behalf of node E. After node C receives the privilege and completes

346 Distributed mutual exclusion algorithms

executing the critical section, the REQUEST_Qs of nodes C, B, A, and E
will look as follows:

REQUEST_QC = B�

REQUEST_QB = A�

REQUEST_QA = E�

REQUEST_QE = self�

Now, the next node to receive the privilege will be node E, a fact that is
represented by the logical path “BAE” that the REQUEST_Qs of nodes C,
B, and A form. Since node B had requested privilege on behalf of node A,
and node A on behalf of node E, the PRIVILEGE ultimately gets propagated
to node E. Thus, a node never starves.

9.12.5 Cost and performance analysis

The algorithm exhibits the following worst-case cost: (2 * longest path length
of the tree) messages per critical section entry. This happens when the priv-
ilege is to be passed between nodes at either end of the longest path of the
minimal spanning tree. Thus the worst possible network topology for this algo-
rithm will be one where all nodes are arranged in a straight line. In a straight
line the longest path length will be N – 1, and thus the algorithm will exchange
2 * (N – 1) messages per CS execution. However, if all nodes generate equal
number of REQUEST messages for the privilege, the average number of mes-
sages needed per critical section entry will be approximately 2N /3 because the
average distance between a requesting node and a privileged node is (N+1)/3.

The best topology for the algorithm is the radiating star topology. The
worst-case cost of this algorithm for this topology is O(logK−1N). Even
among radiating star topologies, trees with higher fan-outs are preferred. The
longest path length of such trees is typically O(log N). Thus, on average, this
algorithm involves the exchange of O(log N) messages per critical section
execution.

When under heavy load, the algorithm exhibits an interesting property:
“as the number of nodes requesting the privilege increases, the number of
messages exchanged per critical section entry decreases.” In fact, it requires
the exchange of only four messages per CS execution as explained below.

When all nodes are sending privilege requests, PRIVILEGE messages
travel along all N – 1 edges of the minimal spanning tree exactly twice to
give the privilege to all N nodes. Each of these PRIVILEGE messages travel
in response to a REQUEST message. Thus, a total of 4 * (N – 1) mes-
sages travel across the minimal spanning tree. Hence, the total number of
messages exchanged per critical section execution is 4(N−1)/N, which is
approximately 4.

347 9.12 Raymond’s tree-based algorithm

9.12.6 Algorithm initialization

Algorithm initialization begins with one node being chosen as the privileged
node. This node then sends INITIALIZE messages to its immediate neighbors.
On receiving the INITIALIZE message, a node sets its HOLDER variable to
the node that sent the INITIALIZE message, and send INITIALIZE messages
to its own immediate neighbors. Once INITIALIZE message is received, a
node can start making privilege requests even if the entire tree is not initialized.

The initialization of the following variables is the same at all nodes:

USING �= false�

ASKED �= false�

REQUEST_Q �= empty�

9.12.7 Node failures and recovery

If a node fails, lost information can be reconstructed on restart. Once a node
restarts, it enters into a recovery phase and selects a delay period for the
recovery phase in order to get back all the lost information. It sends RESTART
messages to its immediate neighbors and waits for ADVISE messages. During
the recovery phase, the node can still receive REQUEST and PRIVILEGE
messages; it acts as any normal node would act in response to those messages
except that ASSIGN_PRIVILEGE and MAKE_REQUEST routines are not
executed.

The ADVISE message that a recovering node A receives from each imme-
diate neighbor B will contain information on the HOLDER, ASKED, and
REQUEST_Q variables of B, from which A can reconstruct its own HOLDER,
ASKED, and REQUEST_Q variables.

For example, if HOLDERB = A for all immediate neighbors B of node A,
it means node A holds the privilege, and hence HOLDERA = self. Similar
reasoning can be applied to determine value of ASKEDA and the elements of
REQUEST_QA. REQUEST_QA can be reconstructed but the elements may
not be in proper order. To ensure proper order, the ADVISE messages could
provide real or logical timestamps for its REQUEST messages. USINGA can
be set to false.

The recovering node’s REQUEST_Q can have duplicates if it processes
REQUEST messages sent currently and the ones it receives in the ADVISE
messages. However, this does not affect the working of the algorithm as long
as the REQUEST_Q is large enough to accommodate such situations. A node
can also possibly fail when recovering from an earlier failure. In such a case,
ASSIST messages related to the first recovery phase can be identified by
making use of the delay chosen for recovery or unique identifiers, and those
messages can be discarded.

348 Distributed mutual exclusion algorithms

9.13 Chapter summary

Mutual exclusion is a fundamental problem in distributed computing systems,
where concurrent access to a shared resource or data is serialized. Mutual
exclusion in a distributed system requires that only one process be allowed
to execute the critical section at any given time. Mutual exclusion algo-
rithms for distributed computing systems have been designed based on three
approaches: token-based approach, non-token-based approach, and quorum-
based approach. In token-based algorithms, a unique token is shared among
the sites and a site is allowed to enter its critical section only if it possesses
the token. Depending upon the way the token is managed in the system, there
are several token-based algorithms.

In the non-token-based approach, sites exchange two or more rounds of
messages to determine which site will enter the critical section next. In the
quorum-based approach, each site requests permission from a subset of sites
(called a quorum). The quorums are formed in such a way that when two
sites concurrently request access to the CS, at least one site receives both the
requests and which is responsible to make sure that only one request executes
the critical section at any time.

A large number of mutual exclusion algorithms based on these approaches
have been developed. In this chapter, we described a set of representative
mutual exclusion algorithms. Early mutual exclusion algorithms were static in
the sense they always take the same course of actions to invoke mutual exclu-
sion regardless of the state of the system. These algorithms lack efficiency
because these algorithms fail to exploit the changing conditions in the system.
Lately, dynamic mutual exclusion algorithms have been developed. Such algo-
rithms exploit dynamic conditions of the system to optimize the performance.

9.14 Exercises

Exercise 9.1 Consider the following simple method to enforce mutual exclusion: all
sites are arranged in a logical ring fashion and a unique token circulates around the
ring hopping from a site to another site. When a site needs to executes its CS, it waits
for the token, grabs the token, executes the CS, and then dispatches the token to the
next site on the ring. If a site does not need the token on its arrival, it immediately
dispatches the token to the next site (in zero time).

1. What is the reponse time when the load is low?
2. What is the reponse time when the load is heavy?

Assume there are N sites, the message/token delay is T , and the CS execution
time is E.

Exercise 9.2 In Lamport’s algorithm, condition L1 can hold concurrently at several
sites. Why do we need this condition for guaranteeing mutual exclusion?

349 9.15 Notes on references

Exercise 9.3 Show that in Lamport’s algorithm if a site Si is executing the critical
section, then Si’s request need not be at the top of the request_queue at another site
Sj . Is this still true when there are no messages in transit?

Exercise 9.4 What is the purpose of a REPLY message in Lamport’s algorithm? Note
that it is not necessary that a site must always return a REPLY message in response
to a REQUEST message. State the condition under which a site does not have to
return REPLY message. Also, give the new message complexity per critical section
execution in this case.

Exercise 9.5 Show that in the Ricart–Agrawala algorithm the critical section is accessed
in increasing order of timestamp. Does the same hold in Maekawa’s algorithm?

Exercise 9.6 Mutual exclusion can be achieved using the following simple method in
a distributed system (called the “centralized” mutual exclusion algorithm): to access
the shared resource, a site sends the request to the site that contains the resource.
This site executes the requests using any classical methods for mutual exclusion (like
semaphores).

Discuss what prompted Lamport’s mutual exclusion algorithm even though it
requires many more messages (3(N −1) as compared to only 3).

Exercise 9.7 Show that in Lamport’s algorithm the critical section is accessed in
increasing order of timestamp.

Exercise 9.8 Show by examples that the staircase configuration among sites is pre-
served in Singhal’s dynamic mutual exclusion algorithm when two or more sites
request the CS concurrently and have executed the CSs.

9.15 Notes on references

Singhal gives a taxonomy on distributed mutual exclusion in [24]. Raynal presents
a survey of mutual exclusion algorithms in [20]. A large number of token-based
mutual exclusion algorithms have appeared in last several years, e.g., mutual exclusion
algorithms by Ahamad and Bernabeu [2], Helary et al. [10], Naimi and Trehel [15],
Chang et al. [6], and Neilsen and Mizuno [16]. In [23], Saxena and Rai present a
survey of permission-based distributed mutual exclusion algorithms.

Nishio et al. [18] presented a technique for generation of unique token in case of
a token loss. A dynamic heuristic-based token mutual exclusion algorithm is given in
[26]. Snepscheut [30] extended tree-based algorithms to handle a connected network

of any topology (i.e., graphs). Due to network topology, such algorithms are fault-
tolerant to site and link failures. Chang et al. [7] present a fault-tolerant mutual
exclusion algorithm. Goscinski [8] has presented two mutual exclusion algorithms
for real-time distributed systems. Coterie-based mutual exclusion algorithms, which
are a generalization of Maekawa’s

√
N algorithm, have lately attracted considerable

attention. Barbara and Garcia-Molina [9] and Ibaraki and Kameda [11] have discussed
theoretical aspects of coteries. Cao and Singhal developed a delay optimal coterie-
based mutual exclusion algorithm [5].

Sanders [22] gave the concept of information structures to develop a generalized
mutual exclusion algorithm. Other mutual exclusion algorithms can be found in
[3, 4, 17, 25].

350 Distributed mutual exclusion algorithms

References

[1] D. Agrawal and A. E. Abbadi, An efficient and fault-tolerant solution for
distributed mutual exclusion, ACM Transactions on Computer Systems, 9(1),
1991, 1–20.

[2] J. M. Bernabeu-Auban and M. Ahamad, Applying a path-compression tech-
nique to obtain an effective distributed mutual exclusion algorithm, Proceed-
ings of the 3rd International Workshop on Distributed Algorithms, September
1989, 33–44.

[3] G. Buckley and A. Silberschatz, A failure tolerant centralized mutual exclusion
algorithm, Proceedings of the 4th International Conference on Distributed
Computing Systems, May 1984, 347–356.

[4] O. S. F. Carvalho and G. Roucairol, On mutual exclusion in real-time distributed
computing systems, technical Correspondence, Communications of the ACM,
26(2), 1983, 146–147.

[5] G. Cao and M. Singhal, A delay-optimal quorum-based mutual exclusion algo-
rithm for distributed systems, IEEE Transactions on Parallel and Distributed
Systems, 12(12), 2001, 1256–1268.

[6] Y. Chang, M. Singhal, and M. Liu, A dynamic token-based distributed mutual
exclusion algorithm, Proceedings of the 10th IEEE International Phoenix Con-
ference on Computer and Communications, March 1991, 240–246.

[7] Y. Chang, M. Singhal, and M. Liu, A fault-tolerant mutual exclusion algo-
rithm for distributed systems, Proceedings of the 9th Symposium on Reliable
Distributed Software and Systems, October 1990, 146–154.

[8] A. Goscinski, Two algorithms for mutual exclusion in real-time distributed
computing systems, Journal of Parallel and Distributed Computing, 9(1), 1990,
77–82.

[9] H. Garcia-Molina and D. Barbara, How to assign votes in a distributed system,
Journal of the ACM, 1985.

[10] M. Helary, N. Plouzeau, and M. Raynal A distributed algorithm for mutual
exclusion in an arbitrary network, Computing Journal, 31(4), 1988, 289–295.

[11] T. Ibaraki and T. Kameda, Theory of Coteries, Technical Report, CSS/LCCR
TR90-09, University of Kyoto, Kyoto, Japan, 1990.

[12] L. Lamport Time, clocks and ordering of events in distributed systems, Com-
munications of the ACM, 21(7), 1978, 558–565.

[13] S. Lodha and A. Kshemkalyani, A fair distributed mutual exclusion algorithm,
IEEE Transactions on Parallel and Distributed Systems, 11(6), 2000, 537–549.

[14] M. Maekawa, A
√
N algorithm for mutual exclusion in decentralized systems,

ACM Transactions on Computer Systems, 3(2), 1995, 145–159.
[15] M. Naimi and M. Trehel, An improvement of the logN distributed algorithm

for mutual exclusion, Proceedings of the 7th International Conference on
Distributed Computing Systems, September 23–25, 1987, 371–377.

[16] M. L. Neilsen and M. Mizuno, A DAG-based algorithm for distributed mutual
exclusion, Proceedings of the 11th International Conference on Distributed
Computing Systems, May 21–23, 1991, 354–360.

[17] M. Nesterenko and M. Mizuno, A quorum-based self-stabilizing distributed
mutual exclusion algorithm, Journal of Parallel and Distributed Computing,
62(2), 2002, 284–305.

[18] S. Nishio, K. F. Li, and E. G. Manning, A resilient mutual exclusion algo-
rithm for computer networks, IEEE Transactions on Parallel and Distributed
Systems, 1(3), 1990, 344–356.

351 References

[19] K. Raymond, Tree-based algorithm for distributed mutual exclusion, ACM
Transactions on Computer Systems, 7, 1989, 61–77.

[20] M. Raynal, A simple taxonomy of distributed mutual exclusion algorithms,
Operating Systems Review, 25(2), 1991, 47–50.

[21] G. Ricart and A. K. Agrawala, An optimal algorithm for mutual exclusion in
computer networks, Communications of the ACM, 24(1), 1981, 9–17.

[22] B. Sanders, The information structure of distributed mutual exclusion
algorithms, ACM Transactions on Computer Systems, 5(3), 1987, 284–299.

[23] P. C. Saxena and J. Rai, A survey of permission-based distributed mutual
exclusion algorithms, Computer Standards and Interfaces, 25(2), 2003,
159–181.

[24] M. Singhal, A taxonomy of distributed mutual exclusion, Journal of Parallel
and Distributed Computing, 18(1), 1993, 94–101.

[25] M. Singhal, “A class of deadlock-free Maekawa type mutual exclusion algo-
rithms for distributed systems”, Distributed Computing, 4(3), 1991, 131–138.

[26] M. Singhal, A heuristically-aided algorithm for mutual exclusion in distributed
systems, IEEE Transactions on Computers, 38(5), 1989, 651–662.

[27] M. Singhal, A dynamic information structure mutual exclusion algorithm for
distributed systems, Proceedings of the 9th International Conference on Dis-
tributed Computing Systems, June 5–9, 1989, Newport Beach, CA, 70–78.

[28] M. Singhal, A dynamic information-structure mutual exclusion algorithm for
distributed systems, IEEE Transactions on Parallel and Distributed Systems,
3(1), 1992, 121–125.

[29] I. Suzuki and T. Kasami, A distributed mutual exclusion algorithm, ACM
Transactions on Computer Systems, 3(4), 1985, 344–349.

[30] J. L. A. Vas de Snepscheut, Fair mutual exclusion on a graph of processes,
Distributed Computing, 2, 1987, 113–115.

C H A P T E R

10 Deadlock detection in distributed
systems

10.1 Introduction

Deadlocks are a fundamental problem in distributed systems and deadlock
detection in distributed systems has received considerable attention in the
past. In distributed systems, a process may request resources in any order,
which may not be known a priori, and a process can request a resource
while holding others. If the allocation sequence of process resources is not
controlled in such environments, deadlocks can occur. A deadlock can be
defined as a condition where a set of processes request resources that are held
by other processes in the set.

Deadlocks can be dealt with using any one of the following three strategies:
deadlock prevention, deadlock avoidance, and deadlock detection. Deadlock
prevention is commonly achieved by either having a process acquire all the
needed resources simultaneously before it begins execution or by pre-empting
a process that holds the needed resource. In the deadlock avoidance approach
to distributed systems, a resource is granted to a process if the resulting global
system is safe. Deadlock detection requires an examination of the status of
the process–resources interaction for the presence of a deadlock condition.
To resolve the deadlock, we have to abort a deadlocked process.

In this chapter, we study several distributed deadlock detection techniques
based on various strategies.

10.2 System model

A distributed system consists of a set of processors that are connected by a
communication network. The communication delay is finite but unpredictable.
A distributed program is composed of a set of n asynchronous processes P1,
P2,

 , Pi,

 , Pn that communicate by message passing over the commu-
nication network. Without loss of generality we assume that each process
is running on a different processor. The processors do not share a common

352

353 10.3 Preliminaries

global memory and communicate solely by passing messages over the com-
munication network. There is no physical global clock in the system to which
processes have instantaneous access. The communication medium may deliver
messages out of order, messages may be lost, garbled, or duplicated due to
timeout and retransmission, processors may fail, and communication links
may go down. The system can be modeled as a directed graph in which
vertices represent the processes and edges represent unidirectional communi-
cation channels.

We make the following assumptions:

• The systems have only reusable resources.
• Processes are allowed to make only exclusive access to resources.
• There is only one copy of each resource.

A process can be in two states, running or blocked. In the running state
(also called active state), a process has all the needed resources and is either
executing or is ready for execution. In the blocked state, a process is waiting
to acquire some resource.

10.2.1 Wait-for graph (WFG)

In distributed systems, the state of the system can be modeled by directed
graph, called a wait-for graph (WFG). In a WFG, nodes are processes and
there is a directed edge from node P1 to mode P2 if P1 is blocked and is
waiting for P2 to release some resource. A system is deadlocked if and only
if there exists a directed cycle or knot in the WFG.

Figure 10.1 shows a WFG, where process P11 of site 1 has an edge to
process P21 of site 1 and an edge to process P32 of site 2. Process P32 of site 2
is waiting for a resource that is currently held by process P33 of site 3. At the
same time process P21 at site 1 is waiting on process P24 at site 4 to release
a resource, and so on. If P33 starts waiting on process P24, then processes in
the WFG are involved in a deadlock depending upon the request model.

10.3 Preliminaries

10.3.1 Deadlock handling strategies

There are three strategies for handling deadlocks, viz., deadlock prevention,
deadlock avoidance, and deadlock detection. Handling of deadlocks becomes
highly complicated in distributed systems because no site has accurate knowl-
edge of the current state of the system and because every inter-site com-
munication involves a finite and unpredictable delay. Deadlock prevention
is commonly achieved either by having a process acquire all the needed

354 Deadlock detection in distributed systems

P11

P21

P32

P54

P24P44

P33

Site 1 Site 2

Site 4

Site 3

resources simultaneously before it begins executing or by pre-empting a pro-
cess that holds the needed resource. This approach is highly inefficient and
impractical in distributed systems.

Figure 10.1 Example of a
WFG.

In deadlock avoidance approach to distributed systems, a resource is granted
to a process if the resulting global system state is safe (note that a global state
includes all the processes and resources of the distributed system). Due to
several problems, however, deadlock avoidance is impractical in distributed
systems.

Deadlock detection requires an examination of the status of process–
resource interactions for the presence of cyclic wait. Deadlock detection in
distributed systems seems to be the best approach to handle deadlocks in dis-
tributed systems. In this chapter, we limit the discussion to deadlock detection
techniques in distributed systems.

10.3.2 Issues in deadlock detection

Deadlock handling using the approach of deadlock detection entails addressing
two basic issues: first, detection of existing deadlocks and, second, resolution
of detected deadlocks.

Detection of deadlocks
Detection of deadlocks involves addressing two issues: maintenance of the
WFG and searching of the WFG for the presence of cycles (or knots).
Since, in distributed systems, a cycle or knot may involve several sites, the
search for cycles greatly depends upon how the WFG of the system is rep-
resented across the system. Depending upon the way WFG information is

355 10.4 Models of deadlocks

maintained and the search for cycles is carried out, there are centralized,
distributed, and hierarchical algorithms for deadlock detection in distributed
systems [43].

Correctness criteria
A deadlock detection algorithm must satisfy the following two conditions:

• Progress (no undetected deadlocks) The algorithm must detect all exist-
ing deadlocks in a finite time. Once a deadlock has occurred, the dead-
lock detection activity should continuously progress until the deadlock is
detected. In other words, after all wait-for dependencies for a deadlock
have formed, the algorithm should not wait for any more events to occur
to detect the deadlock.

• Safety (no false deadlocks) The algorithm should not report deadlocks
that do not exist (called phantom or false deadlocks). In distributed systems
where there is no global memory and there is no global clock, it is difficult
to design a correct deadlock detection algorithm because sites may obtain
an out-of-date and inconsistent WFG of the system. As a result, sites may
detect a cycle that never existed but whose different segments existed in
the system at different times. This is the main reason why many deadlock
detection algorithms reported in the literature are incorrect.

Resolution of a detected deadlock
Deadlock resolution involves breaking existing wait-for dependencies
between the processes to resolve the deadlock. It involves rolling back one
or more deadlocked processes and assigning their resources to blocked pro-
cesses so that they can resume execution. Note that several deadlock detection
algorithms propagate information regarding wait-for dependencies along the
edges of the wait-for graph. Therefore, when a wait-for dependency is bro-
ken, the corresponding information should be immediately cleaned from the
system. If this information is not cleaned in a timely manner, it may result in
detection of phantom deadlocks. Untimely and inappropriate cleaning of bro-
ken wait-for dependencies is the main reason why many deadlock detection
algorithms reported in the literature are incorrect.

10.4 Models of deadlocks

Distributed systems allow many kinds of resource requests. A process might
require a single resource or a combination of resources for its execution. This
section introduces a hierarchy of request models starting with very restricted
forms to the ones with no restrictions whatsoever. This hierarchy shall be
used to classify deadlock detection algorithms based on the complexity of the
resource requests they permit.

356 Deadlock detection in distributed systems

10.4.1 The single-resource model

The single-resource model is the simplest resource model in a distributed
system, where a process can have at most one outstanding request for only
one unit of a resource. Since the maximum out-degree of a node in a WFG
for the single resource model can be 1, the presence of a cycle in the WFG
shall indicate that there is a deadlock. In a later section, an algorithm to detect
deadlock in the single-resource model is presented.

10.4.2 The AND model

In the AND model, a process can request more than one resource simul-
taneously and the request is satisfied only after all the requested resources
are granted to the process. The requested resources may exist at different
locations. The out degree of a node in the WFG for AND model can be more
than 1. The presence of a cycle in the WFG indicates a deadlock in the AND
model. Each node of the WFG in such a model is called an AND node.

Consider the example WFG described in the Figure 10.1. Process P11 has
two outstanding resource requests. In case of the AND model, P11 shall
become active from idle state only after both the resources are granted. There
is a cycle P11→ P21→ P24→ P54→ P11, which corresponds to a deadlock
situation.

In the AND model, if a cycle is detected in the WFG, it implies a deadlock
but not vice versa. That is, a process may not be a part of a cycle, it can still be
deadlocked. Consider process P44 in Figure 10.1. It is not a part of any cycle
but is still deadlocked as it is dependent on P24, which is deadlocked. Since
in the single-resource model, a process can have at most one outstanding
request, the AND model is more general than the single-resource model.

10.4.3 The OR model

In the OR model, a process can make a request for numerous resources
simultaneously and the request is satisfied if any one of the requested resources
is granted. The requested resources may exist at different locations. If all
requests in the WFG are OR requests, then the nodes are called OR nodes.
Presence of a cycle in the WFG of an OR model does not imply a deadlock
in the OR model. To make it more clear, consider Figure 10.1. If all nodes
are OR nodes, then process P11 is not deadlocked because once process
P33 releases its resources, P32 shall become active as one of its requests is
satisfied. After P32 finishes execution and releases its resources, process P11

can continue with its processing.
In the OR model, the presence of a knot indicates a deadlock [19]. In a

WFG, a vertex v is in a knot if for all u :: u is reachable from v : v is reachable
from u. No paths originating from a knot shall have dead ends.

357 10.4 Models of deadlocks

A deadlock in the OR model can be intuitively defined as follows [6]:
a process Pi is blocked if it has a pending OR request to be satisfied. With
every blocked process, there is an associated set of processes called dependent
set. A process shall move from an idle to an active state on receiving a
grant message from any of the processes in its dependent set. A process is
permanently blocked if it never receives a grant message from any of the
processes in its dependent set. Intuitively, a set of processes S is deadlocked
if all the processes in S are permanently blocked. To formally state that a set
of processes is deadlocked, the following conditions hold true:

1. Each of the process is the set S is blocked.
2. The dependent set for each process in S is a subset of S.
3. No grant message is in transit between any two processes in set S.

We now show that a set of processes S shall remain permanently blocked
in the OR model if the above conditions are met. A blocked process P is the
set S becomes active only after receiving a grant message from a process in
its dependent set, which is a subset of S. Note that no grant message can be
expected from any process in S because they are all blocked. Also, the third
condition states that no grant messages in transit between any two processes
in set S. So, all the processes in set S are permanently blocked.

Hence, deadlock detection in the OR model is equivalent to finding knots
in the graph. Note that, there can be a deadlocked process that is not a part
of a knot. Consider Figure 10.1, where P44 can be deadlocked even though it
is not in a knot. So, in an OR model, a blocked process P is deadlocked if it
is either in a knot or it can only reach processes on a knot.

10.4.4 The AND-OR model

A generalization of the previous two models (OR model and AND model)
is the AND-OR model. In the AND-OR model, a request may specify any
combination of and and or in the resource request. For example, in the AND-
OR model, a request for multiple resources can be of the form x and (y
or z). The requested resources may exist at different locations. To detect the
presence of deadlocks in such a model, there is no familiar construct of graph
theory using WFG. Since a deadlock is a stable property (i.e., once it exists,
it does not go away by itself), this property can be exploited and a deadlock
in the AND-OR model can be detected by repeated application of the test
for OR-model deadlock. However, this is a very inefficient strategy. Efficient
algorithms to detect deadlocks in AND-OR model are discussed in [16].

10.4.5 The
(

p
q

)
model

Another form of the AND-OR model is the
(
p

q

)
model (called the P-out-of-Q

model), which allows a request to obtain any k available resources from a pool

358 Deadlock detection in distributed systems

of n resources. Both the models are the same in expressive power. However,(
p

q

)
model lends itself to a much more compact formation of a request.

Every request in the
(
p

q

)
model can be expressed in the AND-OR model

and vice-versa. Note that AND requests for p resources can be stated as
(
p

p

)
and OR requests for p resources can be stated as

(p
1

)
.

10.4.6 Unrestricted model

In the unrestricted model, no assumptions are made regarding the underlying
structure of resource requests. In this model, only one assumption that the
deadlock is stable is made and hence it is the most general model. This way
of looking at the deadlock problem helps in separation of concerns: concerns
about properties of the problem (stability and deadlock) are separated from
underlying distributed systems computations (e.g., message passing versus
synchronous communication). Hence, these algorithms can be used to detect
other stable properties as they deal with this general model. But, these algo-
rithms are of more theoretical value for distributed systems since no further
assumptions are made about the underlying distributed systems computations
which leads to a great deal of overhead (which can be avoided in simpler
models like AND or OR models).

10.5 Knapp’s classification of distributed deadlock detection algorithms

Distributed deadlock detection algorithms can be divided into four classes
[22]: path-pushing, edge-chasing, diffusion computation, and global state

detection.

10.5.1 Path-pushing algorithms

In path-pushing algorithms, distributed deadlocks are detected by maintaining
an explicit global WFG. The basic idea is to build a global WFG for each
site of the distributed system. In this class of algorithm, whenever deadlock
computation is performed, each site sends its local WFG to all the neighbor-
ing sites. After the local data structure of each site is updated, this updated
WFG is then passed along to other sites, and the procedure is repeated until
one site has a sufficiently complete picture of the global state to announce
deadlock or to establish that no deadlocks are present. This feature of send-
ing around the paths of the global WFG has led to the term path-pushing
algorithms.

Examples of such algorithms are Menasce-Muntz [33], Gligor and
Shattuck [11], Ho and Ramamoorthy [18], and Obermarck [38].

359 10.5 Knapp’s classification of distributed deadlock detection algorithms

10.5.2 Edge-chasing algorithms

In an edge-chasing algorithm, the presence of a cycle in a distributed graph
structure is verified by propagating special messages called probes along the
edges of the graph. These probe messages are different to the request and
reply messages. The formation of a cycle can be detected by a site if it
receives the matching probe sent by it previously.

Whenever a process that is executing receives a probe message, it simply
discards this message and continues. Only blocked processes propagate probe
messages along their outgoing edges. An interesting variation of this method
can be found in Mitchell [35], where probes are sent upon request and in the
opposite direction of the edges.

The main advantage of edge-chasing algorithms is that probes are fixed size
messages that are normally very short. Examples of such algorithms include
the Chandy et al. [6], Choudhary et al. [7], Kshemkalyani–Singhal [27], and
Sinha–Natarajan [42] algorithms.

10.5.3 Diffusing computation-based algorithms

In diffusion computation-based distributed deadlock detection algorithms,
deadlock detection computation is diffused through the WFG of the system.
These algorithms make use of echo algorithms to detect deadlocks [5]. This
computation is superimposed on the underlying distributed computation. If
this computation terminates, the initiator declares a deadlock. The main feature
of the superimposed computation is that the global WFG is implicitly reflected
in the structure of the computation. The actual WFG is never built explicitly.

To detect a deadlock, a process sends out query messages along all the
outgoing edges in the WFG. These queries are successively propagated (i.e.,
diffused) through the edges of the WFG. Queries are discarded by a running
process and are echoed back by blocked processes in the following way: when
a blocked process first receives a query message for a particular deadlock
detection initiation, it does not send a reply message until it has received a
reply message for every query it sent (to its successors in the WFG). For all
subsequent queries for this deadlock detection initiation, it immediately sends
back a reply message. The initiator of a deadlock detection detects a deadlock
when it has received a reply for every query it has sent out. Examples of
these types of deadlock detection algorithms include the Chandy–Misra–Haas
algorithm for one OR model [6] and the Chandy–Herman algorithm [16].

10.5.4 Global state detection-based algorithms

Global state detection-based deadlock detection algorithms exploit the fol-
lowing facts: (i) a consistent snapshot of a distributed system can be obtained
without freezing the underlying computation, and (ii) a consistent snapshot
may not represent the system state at any moment in time, but if a stable

360 Deadlock detection in distributed systems

property holds in the system before the snapshot collection is initiated, this
property will still hold in the snapshot.

Therefore, distributed deadlocks can be detected by taking a snapshot of
the system and examining it for the condition of a deadlock. Examples of
these types of algorithms include the Bracha–Toueg [2], Wang et al. [45],
and Kshemkalyani–Singhal [26] algorithms.

10.6 Mitchell and Merritt’s algorithm for the single-resource model

Mitchell and Merritt’s algorithm [35] belongs to the class of edge-chasing
algorithms where probes are sent in the opposite direction to the edges of
the WFG. When a probe initiated by a process comes back to it, the process
declares deadlock. The algorithm has many good features, such as:

1. Only one process in a cycle detects the deadlock. This simplifies the
deadlock resolution – this process can abort itself to resolve the deadlock.
This algorithm can be improvised by including priorities, and the lowest
priority process in a cycle detects deadlock and aborts.

2. In this algorithm, a process that is detected in deadlock is aborted spon-
taneously, even though under this assumption phantom deadlocks cannot
be excluded. It can be shown, however, that only genuine deadlocks will
be detected in the absence of spontaneous aborts.

Each node of the WFG has two local variables, called labels: a private label,
which is unique to the node at all times, though it is not constant, and a public
label, which can be read by other processes and which may not be unique. Each
process is represented as u/v, where u and v are the public and private labels,
respectively. Initially, private and public labels are equal for each process.

A global WFG is maintained and it defines the entire state of the system.
The algorithm is defined by the four state transitions shown in Figure 10.2,
where z = inc�u� v�, and inc�u� v� yields a unique label greater than both
u and v. Labels that are not shown do not change. Block creates an edge in
the WFG. Two messages are needed: one resource request and one message
back to the blocked process to inform it of the public label of the process
it is waiting for. Activate denotes that a process has acquired the resource
from the process it was waiting for. Transmit propagates larger labels in the
opposite direction to the edges by sending a probe message. Whenever a
process receives a probe that is less than its public label, it simply ignores
that probe. Detect means that the probe with the private label of some process
has returned to it, indicating a deadlock.

Mitchell and Merritt showed that every deadlock is detected. Next, we
show that, in the absence of spontaneous aborts, only genuine deadlocks are
detected. As there are no spontaneous aborts, we have the following invariant:

for all processes u/v: v� u.

361 10.6 Mitchell and Merritt’s algorithm for the single-resource model

Activate

Transmit

Block

z

z vu u

u

u < v

z

z

Detect

u

u

vv

v v v

Figure 10.2 The four possible
state transitions [22].

Proof Initially u = v for all processes. The only requests that change u or
v are:

1. Block: u and v are set such that u= v.
2. Transmit: u is increased.

Hence, the invariant follows. �

From the previous invariant, we have the following lemmas.

Lemma 10.1 For any process u/v, if u > v, then u was set by a Transmit
step.

Theorem 10.1 If a deadlock is detected, a cycle of blocked nodes exists.

Proof A deadlock is detected if the following edge p→ p′ exists:

u u

u

362 Deadlock detection in distributed systems

We will prove the following claims:

1. u has been propagated from p to p′ via a sequence of transmits.
2. p has been continuously blocked since it transmitted u.
3. All intermediate nodes in the Transmit path of (l), including p′, have been

continuously blocked since they transmitted u.

From the above claims, the proof for the theorem follows as discussed below.
From the invariant and the uniqueness of private label v of p′ : v < u. By

Lemma 10.1, u was set by a Transmit step. From the semantics of Transmit,
there is some p′′ with private label u and public label w. If w = u, then
p′′ = p, and it is a success. Otherwise, if w < u, we repeat the argument.
Since there is only one process with u = v, it is p. If p is active then it
indicates that it has transmitted u else it is blocked if it detects deadlock.
Hence upon blocking it incremented its private label. But private and public
labels cannot be equal. Consider a process that has been active since it
transmitted u. Clearly, its predecessor is also active, as Transmits migrate in
opposite direction. By repeating this argument, we can show that p has been
active since it transmitted u. �

The above algorithm can easily be extended to include priorities, so that
whenever a deadlock occurs, the lowest priority process gets aborted. This
algorithm has two phases. The first phase is almost identical to the algorithm.
In the second phase the smallest priority is propagated around the circle. The
propagation stops when one process recognizes the propagated priority as
its own.

Message complexity
Now we calculate the complexity of the algorithm. If we assume that a
deadlock persists long enough to be detected, the worst-case complexity of
the algorithm is s�s−1�/2 Transmit steps, where s is the number of processes
in the cycle.

10.7 Chandy–Misra–Haas algorithm for the AND model

We now discuss Chandy–Misra–Haas’s distributed deadlock detection algo-
rithm for the AND model [6], which is based on edge-chasing.

The algorithm uses a special message called probe, which is a triplet (i, j,
k), denoting that it belongs to a deadlock detection initiated for process Pi and
it is being sent by the home site of process Pj to the home site of process Pk.
A probe message travels along the edges of the global WFG graph, and a dead-
lock is detected when a probe message returns to the process that initiated it.

A process Pj is said to be dependent on another process Pk if there exists a
sequence of processes Pj , Pi1, Pi2 , . . . , Pim, Pk such that each process except

363 10.7 Chandy–Misra–Haas algorithm for the AND model

Pk in the sequence is blocked and each process, except the Pj , holds a resource
for which the previous process in the sequence is waiting. Process Pj is said
to be locally dependent upon process Pk if Pj is dependent upon Pk and both
the processes are on the same site.

Data structures
Each process Pi maintains a boolean array, dependenti, where dependenti�j�
is true only if Pi knows that Pj is dependent on it. Initially, dependenti�j� is
false for all i and j.

The algorithm
Algorithm 10.1 is executed to determine if a blocked process is deadlocked.
Therefore, a probe message is continuously circulated along the edges of the
global WFG graph and a deadlock is detected when a probe message returns
to its initiating process.

if Pi is locally dependent on itself
then declare a deadlock
else for all Pj and Pk such that

(a) Pi is locally dependent upon Pj , and
(b) Pj is waiting on Pk, and
(c) Pj and Pk are on different sites,

send a probe (i, j, k) to the home site of Pk

On the receipt of a probe (i, j, k), the site takes
the following actions:

if
(d) Pk is blocked, and
(e) dependentk�i� is false, and
(f) Pk has not replied to all requests Pj ,
then

begin
dependentk�i� = true;
if k= i

then declare that Pi is deadlocked
else for all Pm and Pn such that

(a′) Pk is locally dependent upon Pm, and
(b′) Pm is waiting on Pn, and
(c′) Pm and Pn are on different sites,

send a probe (i, m, n) to the home site of Pn
end.

Algorithm 10.1 Chandy–Misra–Haas algorithm for the AND model [6].

364 Deadlock detection in distributed systems

Performance analysis
In the algorithm, one probe message (per deadlock detection initiation) is
sent on every edge of the WFG which connects processes on two sites. Thus,
the algorithm exchanges at most m(n− 1)/2 messages to detect a deadlock
that involves m processes and spans over n sites. The size of messages is
fixed and is very small (only three integer words). The delay in detecting a
deadlock is O�n�.

10.8 Chandy–Misra–Haas algorithm for the OR model

We now discuss Chandy–Misra–Haas’s distributed deadlock detection algo-
rithm for the OR model [6], which is based on the approach of diffusion-
computation (see Algorithm 10.2).

A blocked process determines if it is deadlocked by initiating a diffusion
computation. Two types of messages are used in a diffusion computation:
query(i, j, k) and reply(i, j, k), denoting that they belong to a diffusion
computation initiated by a process Pi and are being sent from process Pj to
process Pk.

Basic idea
A blocked process initiates deadlock detection by sending query messages to
all processes in its dependent set (i.e., processes from which it is waiting to
receive a message). If an active process receives a query or reply message, it
discards it. When a blocked process Pk receives a query(i, j, k) message, it
takes the following actions:

1. If this is the first query message received by Pk for the deadlock detection
initiated by Pi (called the engaging query), then it propagates the query to
all the processes in its dependent set and sets a local variable numk�i� to
the number of query messages sent.

2. If this is not the engaging query, then Pk returns a reply message to it
immediately provided Pk has been continuously blocked since it received
the corresponding engaging query. Otherwise, it discards the query.

Process Pk maintains a boolean variable waitk�i� that denotes the fact that it
has been continuously blocked since it received the last engaging query from
process Pi. When a blocked process Pk receives a reply(i, j, k) message, it
decrements numk�i� only if waitk�i� holds. A process sends a reply message
in response to an engaging query only after it has received a reply to every
query message it has sent out for this engaging query.

The initiator process detects a deadlock when it has received reply messages
to all the query messages it has sent out.

365 10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

The algorithm
The algorithm works as shown in Algorithm 10.2. For ease of presentation, we
have assumed that only one diffusion computation is initiated for a process.
In practice, several diffusion computations may be initiated for a process (a
diffusion computation is initiated every time the process gets blocked), but at
any time only one diffusion computation is current for any process. However,
messages for outdated diffusion computations may still be in transit. The
current diffusion computation can be distinguished from outdated ones by
using sequence numbers.

Initiate a diffusion computation for a blocked process Pi:
send query(i, i, j) to all processes Pj in the dependent set DSi of Pi;
numi�i� �= �DSi�; waiti�i� �= true;

When a blocked process Pk receives a query(i, j, k):
if this is the engaging query for process Pi then

send query(i, k, m) to all Pm in its dependent set DSk;
numk�i� �= �DSk�; waitk�i� �= true

else if waitk�i� then send a reply(i, k, j) to Pj .

When a process Pk receives a reply(i, j, k):
if waitk�i� then
numk�i� �= numk�i�−1;
if numk�i�= 0 then

if i= k then declare a deadlock
else send reply(i, k, m) to the process Pm

which sent the engaging query.

Algorithm 10.2 Chandy–Misra–Haas algorithm for the OR model [6].

Performance analysis
For every deadlock detection, the algorithm exchanges e query messages and
e reply messages, where e= n�n−1� is the number of edges.

10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

The Kshemkalyani–Singhal algorithm [26] (Algorithm 10.3) to detect
deadlocks in the P-out-of-Q model (also called the generalized distributed
deadlocks) is based on the global state detection approach. The
Kshemkalyani–Singhal algorithm [26] is a single-phase algorithm, which
consists of a fan-out sweep of messages outwards from an initiator process
and a fan-in sweep of messages inwards to the initiator process. A sweep

366 Deadlock detection in distributed systems

Data structures: a node i has the following local variables:
waiti : boolean (:= false); /*records the current status.*/
ti : integer (:= 0); /*denotes the current time.*/
t_blocki : real; /*denotes the local time when i blocked last.*/
in�i� : set of nodes whose requests are outstanding at node i.
out�i� : set of nodes on which node i is waiting.
pi : integer (:= 0); /*the number of replies required for unblocking.*/
wi : real (:= 1.0); /*keeps weight to detect the termination of

the algorithm.*/
Computation events:
REQUEST_SEND(i):
/*Executed by node i when it blocks on a pi-out-of-qi request.*/

For every node j on which i is blocked do
out�i� ← out�i�

⋃
{j};

send REQUEST(i) to j;
set pi to the number of replies needed;
t_blocki ← ti;
waiti ← true;

REQUEST_RECEIVE(j):
/*Executed by node i when it receives a request made by j. */

in�i� ← in�i�
⋃
	j�.

REPLY_SEND(j):
/*Executed by node i when it replies to a request by j.*/

in�i� ← in�i� − 	j�;
send REPLY(i) to j.

REPLY_RECEIVE(j):
/*Executed by node i when it receives a reply from j to its request.*/

if valid reply for the current request
then

begin
out�i� ← out�i� − 	j�;
pi ← pi −1;
pi = 0→

{waiti ← false;
∀k ∈ out�i�, send CANCEL(i) to k;
out�i� ←∅.}

end
CANCEL_RECEIVE(j):
/*Executed by node i when it receives a cancel from j.*/

if j ∈ in�i� then in�i�← in�i� − 	j�.
Algorithm 10.3 Kshemkalyani–Singhal algorithm for the P-out-of-Q model.

367 10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

of a WFG is a traversal of the WFG in which all messages are sent in the
direction of the WFG edges (outward sweep) or all messages are sent against
the direction of the WFG edges (inward sweep). In the outward sweep, the
algorithm records a snapshot of a distributed WFG. In the inward sweep, the
recorded distributed WFG is reduced to determine if the initiator is dead-
locked. Both the outward and the inward sweeps are executed concurrently
in the algorithm. Complications are introduced because the two sweeps can
overlap in time at a process, i.e., the reduction of the WFG at a process can
begin before the WFG at that process has been completely recorded. The
algorithm deals with these complications.

System model
The system has n nodes, and every pair of nodes is connected by a logical
channel. An event in a computation can be an internal event, a message send
event, or a message receive event. Events are assigned timestamps using
Lamport’s clocks [29].

The computation messages can be either REQUEST, REPLY, or CAN-
CEL messages. To execute a pi-out-of-qi request, an active node i sends qi
REQUESTs to qi other nodes and remains blocked until it receives sufficient
number of REPLY messages. When node i blocks on node j, node j becomes
a successor of node i and node i becomes a predecessor of node j in the
WFG. A REPLY message denotes the granting of a request. A node i unblocks
when pi out of its qi requests have been granted. When a node unblocks,
it sends CANCEL messages to withdraw the remaining qi–pi requests it
had sent.

Sending and receiving of REQUEST, REPLY, and CANCEL messages are
computation events. The sending and receiving of deadlock detection algo-
rithm messages are algorithmic or control events.

10.9.1 Informal description of the algorithm

When a node init blocks on a P-out-of-Q request, it initiates the dead-
lock detection algorithm. The algorithm records the part of the WFG that
is reachable from init (henceforth, called the init’s WFG) in a distributed
snapshot [4]; the distributed snapshot includes only those dependency edges
and nodes that form init’s WFG.

The distributed WFG is recorded using FLOOD messages in the outward
sweep and the recorded WFG is examined for deadlocks using ECHO mes-
sages in the inward sweep. To detect a deadlock, the initiator init records its
local state and sends FLOOD messages along all of its outward dependencies.
When node i receives the first FLOOD message along an existing inward
dependency, it records its local state. If node i is blocked at this time, it sends
out FLOOD messages along all of its outward dependencies to continue the

368 Deadlock detection in distributed systems

recording of the WFG in the outward sweep. If node i is active at this time
(i.e., it does not have any outward dependencies and is a leaf node in the
WFG), then it initiates reduction of the WFG by returning an ECHO mes-
sage along the incoming dependency even before the states of all incoming
dependencies have been recorded in the WFG snapshot at the leaf node.

ECHO messages perform reduction of the recorded WFG by simulating
the granting of requests in the inward sweep. A node i in the WFG is reduced
if it receives ECHOs along pi out of its qi outgoing edges indicating that pi
of its requests can be granted. An edge is reduced if an ECHO is received on
the edge indicating that the request it represents can be granted. After a local
snapshot has been recorded at node i, any transition made by i from idle to
active state is captured in the process of reduction. The nodes that can be
reduced do not form a deadlock whereas the nodes that cannot be reduced are
deadlocked. The order in which reduction of the nodes and edges of the WFG
is performed does not alter the final result. Node init detects the deadlock if
it is not reduced when the deadlock detection algorithm terminates.

In general, WFG reduction can begin at a non-leaf node before recording of
the WFG has been completed at that node; this happens when an ECHO mes-
sage arrives and begins reduction at a non-leaf node before all the FLOODs
have arrived at it and recorded the complete local WFG at that node. Thus, the
activities of recording and reducing the WFG snapshot are done concurrently
in a single phase. Unlike the algorithm in [45], no serialization is imposed
between the two activities. Since a reduction is done on an incompletely
recorded WFG at nodes, the local snapshot at each node has to be carefully
manipulated so as to give the effect that WFG reduction is initiated after
WFG recording has been completed.

When multiple nodes block concurrently, they may each initiate the dead-
lock detection algorithm concurrently. Each invocation of the deadlock detec-
tion algorithm is treated independently and is identified by the initiator’s
identity and initiator’s timestamp when it blocked. Every node maintains a
local snapshot for the latest deadlock detection algorithm initiated by every
other node. We will describe only a single instance of the deadlock detection
algorithm.

The problem of termination detection
The algorithm requires a termination detection technique so that the initiator
can determine that it will not receive any more ECHO messages. The
algorithm uses a termination detection technique based on weights [20] in
conjunction with SHORT messages to detect the termination of the algorithm.
A weight of 1.0 at the initiator node, when the algorithm is initiated, is
distributed among all FLOOD messages sent out by the initiator. When
the first FLOOD is received at a non-leaf node, the weight of the received
FLOOD is distributed among the FLOODs sent out along outward edges at
that node to expand the WFG further. Since any subsequent FLOOD arriving

369 10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

at a non-leaf node does not expand the WFG further, its weight is returned to
the initiator in a SHORT message. When a FLOOD is received at a leaf node,
its weight is piggybacked to the ECHO sent by the leaf node to reduce the
WFG. When an ECHO arriving at a node unblocks the node, the weight of the
ECHO is distributed among the ECHOs that are sent by that node along the
incoming edges in its WFG snapshot. When an ECHO arriving at a node does
not unblock the node, its weight is sent directly to the initiator in a SHORT
message.

Note that the following invariant holds in an execution of the algo-
rithm: the sum of the weights in FLOOD, ECHO, and SHORT messages
plus the weight at the initiator (received in SHORT and ECHO messages)
is always 1.0. The algorithm terminates when the weight at the initiator
becomes 1.0, signifying that all WFG recording and reduction activity has
completed.

FLOOD, ECHO, and SHORT messages carry weights for termination detec-
tion. Variable w, a real number in the range �0�1�, denotes the weight in a
message.

10.9.2 The algorithm

A node i stores the local snapshot for snapshots initiated by other nodes in a
data structure LSi (local snapshot), which is an array of records:
LSi: array [1,

 , n] of record;

A record has several fields to record snapshot related information and
is defined in Algorithm 10.4 for an initiator init. The deadlock detection
algorithm is defined by the following procedures: SNAPSHOT-INITIATE,
FLOOD-RECEIVE, ECHO-RECEIVE, and SHORT-RECEIVE. They are exe-
cuted atomically.

Example We now illustrate the operation of the algorithm with the help
of an example [26]. Figure 10.3 shows initiation of deadlock detection by
node A and Figure 10.4 shows the state after node D is reduced. The notation
x/y beside a node in the figures indicates that the node is blocked and needs
replies to x out of the y outstanding requests to unblock.

In Figure 10.3, node A sends out FLOOD messages to nodes B and C.
When node C receives FLOOD from node A, it sends FLOODs to nodes D, E,
and F. If the node happens to be active when it receives a FLOOD message,
it initiates reduction of the incoming wait-for edge by returning an ECHO
message on it. For example, in Figure 10.3, node H returns an ECHO to node
D in response to a FLOOD from it. Note that node can initiate reduction
(by sending back an ECHO in response to a FLOOD along an incoming
wait-for edge) even before the states of all other incoming wait-for edges
have been recorded in the WFG snapshot at that node. For example, node F

370 Deadlock detection in distributed systems

LSi�init��out : set of integers (:= ∅); /*nodes on which i is waiting in the
snapshot.*/

LSi�init��in : set of integers (:= ∅); /*nodes waiting on i in the snapshot.*/
LSi�init��t : integer (:= 0); /*time when init initiated snapshot.*/
LSi�init��s : boolean (:= false); /*local blocked state as seen by snapshot.*/
LSi�init��p : integer; /*value of pi as seen in snapshot.*/

SNAPSHOT_INITIATE
/*Executed by node i to detect whether it is deadlocked. */

init ← i;
wi ← 0;
LSi�init��t ← ti;
LSi�init��out ← out�i�;
LSi�init��s ← true;
LSi�init��in ←∅;
LSi�init��p ← pi;
send FLOOD�i� i� ti�1/�out�i��� to each j in out�i�. /* 1/�out�i�� is the

fraction of weight sent

in a FLOOD message. */

FLOOD_RECEIVE(j, init, t_init, w)
/*Executed by node i on receiving a FLOOD message from j. */

LSi�init��t < t_init
∧
j ∈ in�i�→ /*Valid FLOOD for a new snapshot. */

LSi�init��out ← out�i�;
LSi�init��in ← 	j�;
LSi�init��t ← t_init;
LSi�init��s ← waiti;
waiti = true → /* Node is blocked. */

LSi�init��p ← pi;
send FLOOD�i� init� t_init� w/�out�i��� to each k ∈ out�i�;

waiti = false→ /* Node is active. */

LSi�init��p ← 0;
send ECHO�i� init� t_init�w� to j;
LSi�init��in ← LSi�init��in − 	j�.

�
LSi�init��t < t_init

∧
j �∈ in�i�→ /* Invalid FLOOD for a new snapshot. */

send ECHO�i� init� t_init�w� to j.
�
LSi�init��t = t_init

∧
j �∈ in�i�→ /* Invalid FLOOD for current snapshot. */

send ECHO�i� init� t_init�w� to j.
�
LSi�init��t = t_init

∧
j ∈ in�i�→ /*Valid FLOOD for current snapshot. */

LSi�init��s = false→
send ECHO�i� init� t_init�w� to j;

371 10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

LSi�init��s = true→
LSi�init��in ← LSi�init��in

⋃
	j�;

send SHORT�init� t_init�w� to init.
�
LSi�init��t > t_init → discard the FLOOD message. /*Out-dated FLOOD. */

ECHO_RECEIVE(j, init, t_init, w)
/*Executed by node i on receiving an ECHO from j. */

[
/*Echo for out-dated snapshot. */

LSi�init��t > t_init → discard the ECHO message.
�
LSi�init��t < t_init → cannot happen. /*ECHO for unseen snapshot. */

�
LSi�init��t = t_init → /*ECHO for current snapshot. */

LSi�init��out ← LSi�init��out − 	j�;
LSi�init��s = false→ send SHORT�init� t_init�w� to init.
LSi�init��s = true→

LSi�init��p ← LSi�init��p −1;
LSi�init��p = 0→ /* getting reduced */

LSi�init��s ← false;
init = i → declare not deadlocked; exit.
send ECHO�i� init� t_init�w/�LSi�init��in�� to all k
∈ LSi�init��in;

LSi�init��p �= 0→
send SHORT�init� t_init�w� to init.

]

SHORT_RECEIVE(init, t_init, w)
/*Executed by node i (which is always init) on receiving a SHORT. */

[
/*SHORT for out-dated snapshot. */

t_init < t_blocki → discard the message.
�
/*SHORT for uninitiated snapshot. */

t_init > t_blocki → not possible.
�
/*SHORT for currently initiated snapshot. */

t_init = t_blocki
∧
LSi�init��s = false→ discard. /* init is active. */

t_init = t_blocki
∧
LSi�init��s = true→

wi ← wi +w�
wi = 1→ declare a deadlock.

]

Algorithm 10.4 Deadlock detection algorithm [26].

372 Deadlock detection in distributed systems

Figure 10.3 An example-run
of the algorithm – initiation of
deadlock detection by node
A [26].

REQUEST
FLOOD
REPLY
ECHO

B
1/2

C
2/3

D

2/4 E

1/2

FGH

I

1/2

A (initiator)

Figure 10.4 An example-run
of the algorithm – the state
after node D is reached [26].

REQUEST
FLOOD
REPLY
ECHO

B
1/2

C
2/3

D

E

1/2

F

A (initiator)

1/2

373 10.9 Kshemkalyani–Singhal algorithm for the P-out-of-Q model

in Figure 10.3 starts reduction after receiving a FLOOD from C even before
it has received FLOODs from D and E.

Note that when a node receives a FLOOD, it need not have an incoming
wait-for edge from the node that sent the FLOOD because it may have already
sent back a REPLY to the node. In this case, the node returns an ECHO in
response to the FLOOD. For example, in Figure 10.3, when node I receives
a FLOOD from node D, it returns an ECHO to node D.

ECHO messages perform reduction of the nodes and edges in the WFG
by simulating the granting of requests in the inward sweep. A node that is
waiting a p-out-of-q request gets reduced after it has received ECHOs. When
a node is reduced, it sends ECHOs along all the incoming wait-for edges
incident on it in the WFG snapshot to continue the progress of the inward
sweep.

In general, WFG reduction can begin at a non-leaf node before record-
ing of the WFG has been completed at that node. This happens when
ECHOs arrive and begin reduction at a non-leaf node before FLOODs have
arrived along all incoming wait-for edges and recorded the complete local
WFG at that node. For example, node D in Figure 10.3 starts reduction
(by sending an ECHO to node C) after it receives ECHOs from H and
G, even before FLOOD from B has arrived at D. When a FLOOD on
an incoming wait-for edge arrives at a node which is already reduced, the
node simply returns an ECHO along that wait-for edge. For example, in
Figure 10.4, when a FLOOD from node B arrives at node D, node D returns an
ECHO to B.

In Figure 10.3, node C receives a FLOOD from node A followed by a
FLOOD from node B. When node C receives a FLOOD from B, it sends a
SHORT to the initiator node A. When a FLOOD is received at a leaf node,
its weight is returned in the ECHO message sent by the leaf node to the
sender of the FLOOD. Note that an ECHO is like a reply in the simulated
unblocking of processes. When an ECHO arriving at a node does not reduce
the node, its weight is sent directly to the initiator through a SHORT message.
For example, in Figure 10.3, when node D receives an ECHO from node H, it
sends a SHORT to the initiator node A. When an ECHO that arrives at a node
reduces that node, the weight of the ECHO is distributed among the ECHOs
that are sent by that node along the incoming edges in its WFG snapshot.
For example, in Figure 10.4, at the time node C gets reduced (after receiving
ECHOs from nodes D and F), it sends ECHOs to nodes A and B. (When node
A receives an ECHO from node C, it is reduced and it declares no deadlock.)
When an ECHO arrives at a reduced node, its weight is sent directly to the
initiator through a SHORT message. For example, in Figure 10.4, when an
ECHO from node E arrives at node C after node C has been reduced (by
receiving ECHOs from nodes D and F), node C sends a SHORT to initiator
node A.

374 Deadlock detection in distributed systems

Correctness
Proving the correctness of the algorithm involves showing that it satisfies the
following conditions:

1. The execution of the algorithm terminates.
2. The entire WFG reachable from the initiator is recorded in a consistent

distributed snapshot in the outward sweep.
3. In the inward sweep, ECHO messages correctly reduce the recorded snap-

shot of the WFG.

The algorithm is initiated within a timeout period after a node blocks on a
P-out-of-Q request. On the termination of the algorithm, only all the nodes
that are not reduced are deadlocked. For a correctness proof of the algorithm,
the readers are referred to the original source [26].

Complexity analysis
The message complexity of the algorithm has been analyzed in [26]. The
algorithm has a message complexity of 4e−2n+2l and a time complexity1

of 2d hops, where e is the number of edges, n the number of nodes, l the
number of leaf nodes, and d the diameter of the WFG. This is better than two-
phase algorithms for detecting generalized deadlocks and gives the best time
complexity that can be achieved by an algorithm that reduces a distributed
WFG to detect generalized deadlocks in distributed systems.

10.10 Chapter summary

Out of the three approaches to handle deadlocks, deadlock detection is the
most promising in distributed systems. Detection of deadlocks requires per-
forming two tasks: first, maintaining or constructing whenever needed a WFG;
second, searching the WFG for a deadlock condition (cycles or knots).

In distributed deadlock-detection algorithms, every site maintains a portion
of the global state graph and every site participates in the detection of a
global cycle or knot. Due to lack of globally shared memory, design of
distributed deadlock-detection algorithms is difficult because sites may report
the existence of a global cycle after seeing its segments at different instants
(though all the segments never existed simultaneously).

Distributed deadlock detection algorithms can be divided into four classes:
path-pushing, edge-chasing, diffusion computation, and global state detection.
In path-pushing algorithms, wait-for dependency information of the global
WFG is disseminated in the form of paths (i.e., a sequence of wait-for depen-
dency edges). In edge-chasing algorithms, special messages called probes are

1 Time complexity denotes the delay in detecting a deadlock after its detection has been initiated.

375 10.12 Notes on references

circulated along the edges of the WFG to detect a cycle. When a blocked
process receives a probe, it propagates the probe along its outgoing edges in
the WFG. A process declares a deadlock when it receives a probe initiated
by it. Diffusion computation type algorithms make use of echo algorithms to
detect deadlocks. Deadlock detection messages are successively propagated
(i.e, “diffused” through) through the edges of the WFG. Global state detection-
based algorithms detect deadlocks by taking a snapshot of the system and by
examining it for the condition of a deadlock.

10.11 Exercises

Exercise 10.1 Consider the following simple approach to handle deadlocks in dis-
tributed systems by using “time-outs”: a process that has waited for a specified period
for a resource declares that it is deadlocked and aborts to resolve the deadlock. What
are the shortcomings of using this method?

Exercise 10.2 Suppose all the processes in the system are assigned priorities which
can be used to totally order the processes. Modify Chandy et al.’s algorithm for the
AND model so that when a process detects a deadlock, it also knows the lowest
priority deadlocked process.

Exercise 10.3 Show that, in the AND model, false deadlocks can occur due to dead-
lock resolution in distributed systems [43]. Can something be done about it or they
are bound to happen?

Exercise 10.4 Show that in the Kshemkalyani–Singhal algorithm for the P-out-of-Q
model, if the weight at the initiator process becomes 1.0, then the intiator is involved
in a deadlock.

10.12 Notes on references

Two survey articles on distributed deadlock detection can be found in papers by
Knapp [22] and Singhal [43]. The literature is full of distributed deadlock detection
algorithms. Path-pushing distributed deadlock detection algorithms can be found in
papers by Gligor and Shattuck [11], Menasce and Muntz [33], Ho and Ramamoor-
thy [18], and Obermarck [38]. Other edge-chasing distributed deadlock detection
algorithms can be found in papers by Choudary et al. [7], and Kshemkalyani and
Singhal [27]. Herman and Chandy [16] discuss detection of deadlocks in the AND/OR
model. In [24], Kshemkalyani and Singhal give an optimal algorithm to detect dis-

tributed deadlocks under the generalized request model. Other algorithms to detect
generalized deadlocks include Bracha and Toueg [2] and Wang et al. [45].

In [25], Kshemkalyani and Singhal give a characterization of distributed deadlocks.

A rigorous correctness proof of a distributed deadlock detection algorithm is given in

Kshemkalyani and Singhal [27]. Brezezinski et al. [3] discuss the deadlock models

under a very generalized blocking conditions. Two knot detection algorithms in dis-

376 Deadlock detection in distributed systems

tributed systems are given in Chandy and Misra [34] and Manivannan and Singhal [31].

Gray et al. [12] present a simple analysis of the probability of deadlocks in database

systems. Lee and Kim [30] present a performance analysis of distributed deadlock

detection algorithms. Other algorithms for deadlock detection in distributed systems

can be found in [1, 8–10, 13–15, 17, 21, 23, 28, 32, 36, 37, 39, 40, 41, 44]. Wu et al. [46]

present an algorithm to avoid distributed deadlock in the AND model.

References

[1] B. Awerbuch and S. Micali, Dynamic deadlock resolution protocols, in Proceed-
ings of the Foundations of Computer Science, Toronto, Canada, 1986, 196–207.

[2] G. Bracha and S. Toueg, Distributed deadlock detection, Distributed Computing,
2(3), 1987, 127–138.

[3] J. Brezezinski, J. M. Helary, M. Raynal, and M. Singhal, Deadlock models and
generalized algorithm for distributed deadlock detection, Journal of Parallel and
Distributed Computing, 31(2), 1995, 112–125.

[4] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states
of distributed systems, ACM Transactions on Programming Language Systems,
3(1), 1985, 63–75.

[5] K. M. Chandy and J. Misra, A distributed algorithm for detecting resource dead-
locks in distributed systems, Proceedings of the ACM Symposium on Principles
of Distributed Computing, Ottawa, Canada, August 1982, 157–164.

[6] K. M. Chandy, J. Misra, and L. M. Haas, Distributed deadlock detection, ACM
Transactions on Computer Systems, 1(2), 1983, 144–156.

[7] A. Choudhary, W. Kohler, J. Stankovic, and D. Towsley, A modified priority
based probe algorithm for distributed deadlock detection and resolution, IEEE
Transactions on Software Engineering, 15(1) 1989, 10–17.

[8] J. R. G. de Mendivil, F. Farina, J. Garitagoitia, C. F. Alastruey, and J. M.
Bernabeu-Auban, A distributed deadlock resolution algorithm for the AND
model, IEEE Transactions on Parallel and Distributed Systems, 10(5), 1999,
433–447.

[9] A. K. Elmagarmid, N. Soundararajan, and M. T. Liu, A distributed deadlock
detection and resolution algorithm and its correctness proof, IEEE Transactions
on Software Engineering, 14(10), 1988, 1443–1452.

[10] M. Flatebo and A. K. Datta, Self-stabilizing deadlock detection algorithms, Pro-
ceedings of the 1992 ACM Annual Conference on Communications, Kansas City,
Missouri, March 1992, 117–122.

[11] V. Gligor and S. Shattuck, On deadlock detection in distributed databases, IEEE
Transactions on Software Engineering, SE-6(5), 1980, 435–440.

[12] J. N. Gray, P. Homan, H. F. Korth, and R. L. Obermarck, A straw man analysis
of the probability of waiting and deadlock in a database system, Technical Report
RJ 3066, IBM Research Laboratory, San Jose, CA, 1981.

[13] L. M. Haas, Two approaches to deadlock detection in distributed systems. Ph.D.
dissertation, Department of Computer Sciences, University of Texas, Austin, TX,
1981.

[14] L. M. Haas and C. Mohan, A distributed deadlock detection algorithm for a
resource-based system, Research Report RJ 3765, IBM Research Laboratory,
San Jose, CA, 1983.

377 References

[15] J. Helary, C. Jard, N. Plouzeau, and M. Raynal, Detection of stable properties
in distributed applications, Proceedings of the ACM Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, 125–136.

[16] T. Herman and K. M. Chandy, A Distributed Procedure to Detect AND/OR
Deadlock, Technical Report TR LCS-8301, Department of Computer Sciences,
University of Texas, Austin, TX, 1983.

[17] B. A. Sanders and P. A. Heuberger, Distributed deadlock detection and resolution
with probes, Proceedings of the 3rd International Workshop on Distributed
Algorithms, September 26–28, 1989, 207–218.

[18] G. S. Ho and C. V. Ramamoorthy, Protocols for deadlock detection in distributed
database systems, IEEE Transactions on Software Engineering, 8(6), 1982,
554–557.

[19] R. C. Holt, Some deadlock properties on computersystems, ACM Computing
Surveys, 4(3), 1972, 179–196.

[20] S.-T. Huang, Detecting termination of distributed computations by external
agents, ICDCS, 1989, 79–84.

[21] J. R. Jagannathan and R. Vasudevan, A distributed deadlock detection and resolu-
tion scheme; performance study, Proceedings of the 3rd International Conference
on Distributed Computing Systems, Miami, Florida, 1982, 496–501.

[22] E. Knapp, Deadlock detection in distributed databases, ACM Computing Surveys,
19(4), 1987, 303–328.

[23] M. Krishnamurthi, A. Basavatia, and S. Thallikar, Deadlock detection
and resolution in simulation models, Proceedings of the 26th confer-
ence on Winter simulation, p.708-715, December 11-14, 1994, Orlando,
Florida.

[24] A. Kshemkalyani and M. Singhal, A one-phase algorithm to detect distributed
deadlocks in replicated databases, IEEE Transactions on Knowledge and Data
Engineering, 11(6), 1999, 880–895.

[25] A. Kshemkalyani and M. Singhal, On characterization and correctness of dis-
tributed deadlocks, Journal of Parallel and Distributed Computing, 22(1), 1994,
44–59.

[26] A. Kshemkalyani and M. Singhal, Efficient detection and resolution of general-
ized distributed deadlocks, IEEE Transactions on Software Engineering, 20(1),
1994, 43–54.

[27] A. Kshemkalyani and M. Singhal, An invariant-based verification of a probe
algorithm for distributed deadlock detection and resolution, IEEE Transactions
on Software Engineering, 17(8) 1991, 789–799.

[28] N. Krivokapic, A. Kemper, and E. Gudes, Deadlock detection in distributed
database systems: a new algorithm and a comparative performance analysis,
VLDB Journal: Very Large Data Bases, 8(2), 1999, 79–100.

[29] L. Lamport, Time, clocks, and the ordering of events in distributed systems,
Communications of the ACM 21(7), 1978, 558–565.

[30] S. Lee and J. L. Kim, Performance analysis of distributed deadlock detection
algorithms, IEEE Transactions on Knowledge and Data Engineering, 13(4),
2001, 623–636.

[31] D. Manivannan and M. Singhal, An efficient distributed algorithm for detection
of knots and cycles in a distributed graph, IEEE Transactions on Parallel and
Distributed Systems, 14(10), 2003, 961–972.

[32] J. Mayo and P. Kearns, Distributed deadlock detection and resolution based on
hardware clocks, ICDCS 1999, 208–215.

[33] D. E. Menasce and R. Muntz, Locking and deadlock detection in distributed
databases, IEEE Transactions on Software Engineering, 5(3), 1979, 195–202.

378 Deadlock detection in distributed systems

[34] J. Misra and K. M. Chandy, A distributed graph algorithm: knot detection, ACM
Transactions on Programming Language Systems, 4(4), 1982, 678–686.

[35] D. P. Mitchell and M. J Merritt, A distributed algorithm for deadlock detection
and resolution, Proceedings of the ACM Symposium on Principles of Distributed
Computing, 1984, 282–284.

[36] N. Natarajan, A distributed scheme for detecting communication deadlock, IEEE
Transactions on Software Engineering SE-12(4), 1986, 531–537.

[37] R. Obermarck, Deadlock detection for all resourse classes, Research Report
RJ2955, IBM Research Laboratory, San Jose, CA, 1980.

[38] R. Obermarck, Distributed deadlock detection algorithm, ACM Transactions on
Database Systems, 7(2), 1982, 187–208.

[39] Y. C. Park, P. Scheuermann, and H. L. Tung, A distributed deadlock detection
and resolution algorithm based on a hybrid wait-for graph and probe generation
scheme, Proceedings of the 4th International Conference on Information and
Knowledge Management, Baltimore, MD 1995, 378–386.

[40] Y. C. Park, P. Scheuermann, and S. H. Lee, A periodic deadlock detection and
resolution algorithm with a new graph model for sequential transaction process-
ing, Proceedings of the 8th International Conference on Data Engineering, 1992,
202–209.

[41] M. Roesler and W. A. Burkhard, Resolution of deadlocks in object-oriented
distributed systems, IEEE Transactions on Computers, 38(8), 1989, 1212–1224.

[42] M. K. Sinha and N. Natarajan, A distributed deadlock detection algorithm based
on timestamps, Proceedings of the 4th International Conference on Distributed
Computing Systems, 1984, 546–556.

[43] M. Singhal, Deadlock detection in distributed systems, IEEE Computer,
November, 1989, 37–48.

[44] J. Villadangos, F. Farina, J. R. G. de Mendivil, J. Garitagoitia, and A. Cordoba,
A safe algorithm for resolving OR deadlocks, IEEE Transactions on Software
Engineering, 29(7), 2003, 608–622.

[45] J. Wang, S. Huang, and N. Chen, A distributed algorithm for detecting gener-
alized deadlocks, Technical Report, Department of Computer Science, National
Tsing-Hua University, 1990.

[46] H. Wu, W.-N. Chin, and J. Jaffar, An efficient distributed deadlock avoidance
algorithm for the AND model, IEEE Transactions on Software Engineering,
28(1), 2002, 18–29.

C H A P T E R

11 Global predicate detection

11.1 Stable and unstable predicates

Specifying predicates on the system state provides an important handle to
specify, observe, and detect the behavior of a system. This is useful in formally
reasoning about the system behavior. By being able to detect a specified pred-
icate in the execution, we gain the ability to monitor the execution. Predicate
specification and detection has uses in distributed debugging, sensor networks
used for sensing in various applications, and industrial process control. As
an example in the manufacturing process, a system may be monitoring the
pressure of Reagent A and the temperature of Reagent B. Only when 1 =
(PressureA > 240 KPa) ∧ (TemperatureB > 300 'C) should the two reagents
be mixed. As another example, consider a distributed execution where vari-
ables x, y, and z are local to processes Pi, Pj , and Pk, respectively. An appli-
cation might be interested in detecting the predicate 2 = xi+yj+zk <−125.
In a nuclear power plant, sensors at various locations would monitor the rel-
evant parameters such as the radioactivity level and temperature at multiple
locations within the reactor.

Observe that the “predicate detection” problem is inherently different from
the global snapshot problem. A global snapshot gives one of the possible
states that could have existed during the period of the snapshot execution.
Thus, a snapshot algorithm can observe only one of the predicate values that
could have existed during the algorithm execution.

Predicates can be either stable or unstable. A stable predicate is a predicate
that remains true once it becomes true [6]. In traditional systems, a predicate
is stable if =⇒�, where “�” is the “henceforth” operator from temporal
logic [21]. In distributed executions, a more precise definition is needed, due
to the absence of global time. Formally, a predicate at a cut C is stable if
the following holds:

�C �= � =⇒ �∀C ′ �C ⊆ C ′�C ′ �= ��

379

380 Global predicate detection

Deadlock in a system is a stable property because the deadlocked processes
continue to remain deadlocked (until deadlock resolution is performed). Ter-
mination of an execution is another stable property. Specific algorithms to
detect termination of the execution, and to detect deadlock were considered
in earlier chapters. Here, we look at a general technique to detect a stable
predicate.

11.1.1 Stable predicates

Deadlock [13, 17]
A deadlock represents a system state where a subset of the processes are
blocked on one another, waiting for a reply from the other processes in that
subset. The waiting relationship is represented by a wait-for graph (WFG)
where an edge from i to j indicates that process i is waiting for a reply
from process j. Given a wait-for graph G= �V�E�, a deadlock is a subgraph
G′ = �V ′�E′� such that V ′ ⊆ V and E′ ⊆ E and for each process i in V ′, the
process i remains blocked unless it receives a reply from some process(es)
in V ′. There are two conditions that characterize the deadlock state of the
execution:

• (local condition:) each deadlocked process is locally blocked, and
• (global condition:) the deadlocked process will not receive a reply from

some process(es) in V ′.

Termination [20]
Termination of an execution is another stable property, and is best understood
by viewing a process as alternating between two states: active state and passive
state. An active process spontaneously becomes passive when it has no further
work to do; a passive process can become active only when it receives a
message from some other process. If such a message arrives, then the process
becomes active by doing CPU processing and maybe sending messages as a
result of the processing. An execution is terminated if each process is passive,
and will not become active unless it receives more messages. There are two
conditions that characterize the termination state of the execution:

• (local condition:) each process is in passive state; and
• (global condition:) there is no message in transit between any pair of

processes.

Generalizing from the above two most frequently encountered stable prop-
erties, we assume that each stable property can be characterized by a local
process state component, and a channel component or a global component.
Recall from our discussion of global snapshots [6] that any channel property
can be observed by observing the local states at the two endpoints of the
channel, in a consistent manner. Thus, any global condition can be observed
by observing the local states of the processes.

381 11.1 Stable and unstable predicates

Figure 11.1 Two-phase
detection of a stable property.
If the values of the relevant
local variables that capture the
property have not changed
between the two phases, then
the stable property is true.

P1

P2

Pn−1

Pn

phase 2phase 1

Event at which local variables are sampled

Time

We now address the question: “What are the most effective techniques
for detecting a stable property?” Clearly, repeatedly or periodically taking a
global snapshot will work; if the property is true in some snapshot, then it can
be claimed that the property is henceforth true. However, recording a snapshot
is expensive; recall that it can require up to O�n2� control messages without
inhibition, or O�n� messages with inhibition. The approach that has been
widely adopted is the two-phase approach of observing potentially inconsistent
global states. In each state observation, all the local variables necessary for
defining the local conditions, as well as the global conditions, are observed.
Two potentially inconsistent global states are recorded consecutively, such
that the second recording is initiated after the first recording has completed
[13,17]. This is illustrated in Figure 11.1. The stable property can be declared
to be true if the following holds:

• The variables on which the local conditions as well as the global conditions
are defined have not changed in the two observations, as well as between
the two observations.

If none of the variables changes between the two observations, it can be
claimed that after the termination of the first observation and before the
start of the second observation, there is an instant in physical time when
the variables still have the same value. Even though the two observations are
each inconsistent, if the global property is true at a common physical time,
then the stable property will necessarily be true.

The most common ways of taking a pair of consecutive, not necessarily
consistent, snapshots using O�n� control messages are as follows:

• Each process randomly records its state variables and sends them to a
central process via control messages. When the central process receives
this message from each other process, the central process informs each
other process to send its (uncoordinated) local state again.

• A token is passed around a ring, and each process appends its local state
to the contents of the token. When the token reaches the initiator, it passes
the token around for a second time. Each process again appends its local
state to the contents of the token.

382 Global predicate detection

• On a predefined spanning tree, the root (coordinator) sends a query message
in the fan-out sweep of the tree broadcast. In the fan-in sweep of the
ensuing tree convergecast, each node collects the local states of the nodes
in its subtree rooted at itself and forwards these local states to its parent.
When the root gets the local states from all the nodes in its tree, the
first phase completes. The second phase, which contains another broadcast
followed by a convergecast, is initiated.

11.1.2 Unstable predicates

An unstable predicate is a predicate that is not stable and hence may hold
only intermittently [8,18]. The following are some of the several challenges
in detecting unstable predicates:

• Due to unpredictable message propagation times, and unpredictable
scheduling of the various processes on the processors under various load
conditions, even for deterministic executions, multiple executions of the
same distributed program may pass through different global states. Further,
the predicate may be true in some executions and false in others.

• Due to the non-availability of instantaneous time in a distributed system:

– even if a monitor finds the predicate to be true in a global state, it may
not have actually held in the execution;

– even if a predicate is true for a transient period, it may not be detected
by intermittent monitoring.

Hence, periodic monitoring of the execution is not adequate.

These challenges are faced by snapshot-based algorithms as well as by a
central monitor that evaluates data collected from the monitored processes.
To address these challenges, we can make two important observations [8,18].

• It seems necessary to examine all the states that arise in the execution, so
as not to miss the predicate being true. Hence, it seems useful to define
predicates, not on individual states, but on the observation of the entire
execution.

• For the same distributed program, even given that it is deterministic,
multiple observations may pass through different global states. Further, a
predicate may be true in some of the program observations but not in others.
Hence it is more useful to define the predicates on all the observations of
the distributed program and not just on a single observation of it.

11.2 Modalities on predicates

To address the above complications, predicates are defined, not on global
states or on an individual observation of an execution, but on all the possible

383 11.2 Modalities on predicates

observations of the distributed execution. The following two modalities on
any predicate are defined [8, 18]:

• Possibly��: There exists a consistent observation of the execution such
that predicate holds in a global state of the observation.

• Definitely��: For every consistent observation of the execution, there
exists a global state of it in which predicate holds.

Consider the example in Figure 11.2(a). The execution is run at processes
P1 and P2. Event eki denotes the kth event at process Pi. Variable a is local to
P1 and variable b is local to P2. The state lattice for the execution is shown
in Figure 11.2(b). Each state is labeled by a tuple �c1� c2�, where c1 and c2

are the event counts at P1 and P2, respectively. The execution shown in part
(a) goes through the following sequence of global states, and events causing
the state transitions between the global states:

�0�0�� e1
2� �0�1�� e1

1� �1�1�� e2
2� �1�2�� e2

1� �2�2�� e3
2� �2�3�� e4

2� �2�4�� e3
1�

�3�4�� e4
1� �4�4�� e5

2� �4�5�� e5
1� �5�5�� e6

1� �6�5�� e6
2� �6�6�� e7

2� �6�7�

(a)

Local
variable

a = 3 a = 8 a = 0

Local
variable b = 7 b = 5 b = 2 b = –3

a + b = 5 a + b = 5

a + b = 5

a + b = 10

a + b = 10

1
1

e 2
1

e

1
2

e 2
2

e 3
2

e 4
2

e 5
2

e 6
2

e 7
2

e

3
1

e 4
1

e 5
1

e 6
1

e

Time

P1

P1 P2

P2

5, 4

6, 4

4, 3

5, 3

6, 3 4, 5

3, 5

6, 6

5, 5

4, 4

3, 3

2, 3

2, 4

2, 5

3, 2

4, 2

3, 4

(b)

Initial state

Final state 6, 7

5, 7

5, 66, 5

5, 2

6, 2

2, 1

1, 1

1, 0

2, 0

2, 2

1, 2

0, 2

0, 1

0, 0

Figure 11.2 Example to illustrate Possibly��� and Definitely��� [16]. (a) The example execution.
(b) The state lattice for the execution. Each label in the lattice gives the event count at P1� P2.

384 Global predicate detection

When the same distributed program is run again, observe that it may not pass
through the same intermediate states as the state transitions from the initial
state (0, 0) to the final state (6, 7).

• Now observe thatDefinitely�a+b= 10� holds by the following reasoning.
When b is assigned 7 at event e1

2, process P1’s execution may be in any
state from the initial state up to the state preceding event e3

1, in which a= 3.
However, before the value of b changes from 7 to 5 at event e4

2, and in fact
before P2 executes event e3

2, P1 must have executed event e1
1 at which time

a= 3. This is true for all equivalent executions. Hence, Definitely�a+b=
10� holds. With respect to the state lattice in Figure 11.2(b), the states in
which a+b = 10 is true are marked therein. From the state lattice, it can
be seen that, in every execution, the state (2, 2) must occur, and in this
state, a+b = 10.

• Observe that Possibly�a+ b = 5� holds by the following reasoning. The
predicate a+ b = 5 can be true only if: (i) a = 3 ∧ b = 2, which is
true in states (2, 5) and (3, 5), or (ii) a = 0 ∧ b = 5, which is true in
state (6, 4), or (iii) a = 8 ∧ b = −3, which is true in state (5, 7), in
some equivalent execution. State (i) is possible in physical time after the
occurrence of event e5

2 and before the occurrence of e4
1. In the execution

shown, e5
2 occurs after e4

1. However, in an equivalent execution, event e4
1

may be delayed to occur after event e5
2, in which case b changes to a

value other than 2 after a becomes 8. Hence, the predicate is true in this
equivalent execution. It so happens that a similar argument also holds for
(ii) and (iii).

• Predicate Definitely�a+b= 5� is not true in the shown execution because
there exists at least one path through the state lattice such that a+b = 5
is never true in any state along that path.

11.2.1 Complexity of predicate detection

As we suspect from the examples in this section, the predicate detection
problem is complex. For n processes and a maximum of m events per process,
we need to examine up to an exponential number mn states. The global
predicate detection problem can be readily shown to be NP-complete using a
standard reduction from the satisfiability problem (see Exercise 11.4).

11.3 Centralized algorithm for relational predicates

To detect predicates, we first assume that the state lattice is available. A
global state GS = 	sk1

1 � s
k2
2 �

 � s

kn
n � is abbreviated as GSk1�k2�

 kn .

• Possibly��: To detect Possibly��, an exhaustive search of the state
lattice for any one state that satisfies needs to be done. The search can

385 11.3 Centralized algorithm for relational predicates

terminate as soon as such a state is found. Presumably, there is particular
interest in finding the “earliest” state that satisfies . The level of a global
state �skii �∀i�� is

∑i=n
i=1 ki. Algorithm 11.1 [8,18] examines the state lattice

level-by-level, beginning from the initial state at level 0 and going to the
final state. Each level is examined to find a state in which is true. If
such a state is found, the algorithm terminates.

• Definitely��: For Definitely�� to be true, there should exist a set of
states satisfying such that every path through the lattice goes through
one of these states. It is sufficient but not necessary that all the states at any
particular level in the lattice satisfy . To see this, consider the execution
in Figure 11.3. Here, Definitely�� is true, yet the states satisfying are
at different levels.
As Definitely�� may be true but there may not exist any level in which
all the states satisfy , Algorithm 11.1 cannot use an approach similar to
that used for Possibly�� to detect Definitely��. In particular, replacing
the loop condition in line 1a by the following will not work: “(some
state in Reach satisfies ¬).” The algorithm examines the state lattice
level-by-level but differs in the following two respects:

(variables)
set of global states Reach�Reach_Next ←− 	GS0�0�

 0�

int lvl←− 0

(1) Possibly��:
(1a) while (no state in Reach satisfies) do
(1b) if (Reach = 	final state�) then return false;
(1c) lvl←− lvl+1;
(1d) Reach←− {states at level lvl};
(1e) return true.

(2) Definitely��:
(2a) remove from Reach those states that satisfy
(2b) lvl←− lvl+1;
(2c) while (Reach �= ∅) do
(2d) Reach_Next←− {states of level lvl reachable from a state

in Reach};
(2e) remove from Reach_Next all the states satisfying ;
(2f) if Reach_Next = {final state} then return false;
(2g) lvl←− lvl+1;
(2h) Reach←− Reach_Next;
(2i) return true.

Algorithm 11.1 Detecting a relational predicate by examining the state lattice (on-line, centralized) [8,18].

386 Global predicate detection

1. Rather than track the states (at a level) in which is true, it tracks the
states in which is not true.

2. Additionally, the set of states tracked at a level have to be reachable
from the set of those states at the previous level, that are known to
satisfy (1) and recursively this same property (2).

The variable Reach_Next is used to track such states at level lvl, as con-
structed from the states at the previous level. Thus, Reach_Next at level
lvl contains the set of states at level lvl that are reachable from the initial
state without passing through any state satisfying . The algorithm termi-
nates successfully when Reach_Next becomes the empty set; otherwise
it terminates unsuccessfully after examining the final state.

Example Figure 11.3 shows an example execution and the corresponding
state lattice. The states belonging to Reach_Next (line 2d) at any level
are either marked by shaded circles or clear circles. The states belonging to
Reach_Next (line 2f) at any level are marked by clear circles. In line 2b,
when lvl= 11, Reach becomes ∅ and the algorithm exits from the loop.

The centralized algorithms in Algorithm 11.1 assumed that the states at
any level were readily available. But in an on-line algorithm, these global
states need to be assembled from local states, on the fly. How can that be

State lattice labelled using event numbers

(b)

0

1

2

3

4

5

6

9

8

7

10

11

12

13

14

15

Levels

State reachable without predicate being true

State in which predicate is true

initial
0, 0

1, 1

2, 2

3, 22, 3

3, 4

4, 2

5, 2

7, 46, 5

5, 54, 6

P1 p2 p1

P2

(a)

1e1
2e1

1e2
2e2

3e2
4e2

5e2
6e2

7e2

3e1
4e1

5e1
6e1

7e1
8e1

Figure 11.3 Example to show that states in which Definitely��� is satisfied need not be at the same
level in the state lattice. (a) Execution. (b) Corresponding state lattice.

387 11.3 Centralized algorithm for relational predicates

Figure 11.4 Queues Q1 to Qn

for each of the n processes.
Q1

Q2

Qn

X1

Y1 Y2 Y3 Y4

Z1

X2
X1X2

Y1

Z1

P1

P2

Pn

Y4 Y3 Y2

accomplished? Each process Pi can send a local trace of its local states skii ,
with their vector timestamps, to the central process P0. P0 maintains n queues,
Q1

 Qn, for the events of each of the processes, as shown in Figure 11.4.
Each local state received from process Pi is enqueued in Qi. As global state
GS = 	sk1

1 � s
k2
2 �

 � s

kn
n �, also abbreviated as GSk1�k2�

 kn , is assembled from

the corresponding local states, how long does a local state need to be kept in
its queue? This is answered by the following two observations, based on the
vector clocks VC [9,19]:

• The earliest global state GSk1�k2�

 kn
min containing skii is identified as follows.

The jth component of VC�skii � is the local value of Pj in its local snapshot

state s
kj
j . This is expressed as:

�∀j� VC�skjj ��j�= VC�skii ��j�� (11.1)

It now follows that the lowest level of the state lattice, in which local
state skii (kth local state of Pi) participates, is the sum of the components
of VC�skii � – this assumes that in the vector clock operation, the local
component is incremented by 1 for each local event.

• The latest global state GSk1�k2�

 kn
max containing skii is identified as follows.

The ith component of VC�s
kj
j � should be the largest possible value but

cannot exceed or equal VC�skii ��i� for consistency of the two states skii and
s
kj
j . VC�s

kj
j � is identified as per Eq. (11.2); but note that the condition on

VC�s
kj+1
j ��i� is not applicable if s

kj
j is the last state at Pj:

�∀j� VC�skjj ��i� < VC�s
ki
i ��i�≤ VC�skj+1

j ��i� (11.2)

Hence, the highest level of the state lattice, in which local state skii partic-
ipates, is

∑n
j=1 VC�s

kj
j ��j� subject to the above equation.

From Eqs (11.1) and (11.2), we have that
∑n

j=1 VC�s
ki
i ��j� is the lowest level,

and
∑n

j=1 VC�s
kj
j ��j�, where s

kj
j ∈GSmax, is the highest level, between which

local state skii is useful in constructing a global state.
Given the states of level lvl, the set of states at level lvl+ 1 can be

constructed as follows. For each state GSk1�k2�

 �kn , construct the n global
states GSk1+1�k2�

 �kn , GSk1�k2+1�

 �kn

 GSk1�k2�

 �kn+1.

388 Global predicate detection

Deterministic versus non-deterministic programs
We need to remember that the entire analysis of predicates and their modal-
ities, and detection algorithms, applies only to deterministic programs. For
non-deterministic programs, different executions may have different partial
orders.

11.4 Conjunctive predicates

The predicates considered so far are termed relational predicates because
the predicate can be an arbitrary relation on the variables in the system. A
predicate is a conjunctive predicate if and only if can be expressed
as the conjunction

∧
i∈N i, where i is a predicate local to process i. For

a wide range of applications, the predicate of interest can be modeled as a
conjunctive predicate. Conjunctive predicates have the following property:

• If is false in any cut C, then there is at least one process i such that the
local state of i in cut C will never form part of any other cut C ′ such that
 is true in C ′. More formally, this property of a conjunctive predicate
is defined as the following:

C ��= =⇒ ∃i ∈ N�∀C ′ ∈ �uts�C ′ ��= � where C ′�i�= C�i��

Here, the state C�i� is a forbidden state because it will never form part
of any cut that satisfies the predicate. Given a conjunctive predicate, if it
is evaluated as false in some cut C, we can advance the local state of at
least one process to the next event, and then evaluate the predicate in the
resulting cut.

This gives a O�mn� time algorithm, where m is the number of events at any
process, to check for a conjunctive predicate, as opposed to an exponential
algorithm required by a relational predicate.

Consider the following example on modalities on conjunctive predicates,
shown for the same execution considered earlier in Figure 11.2:

• The predicate Possibly�a = 3∧b = 2� holds by the following reasoning.
The predicate can be true only if a = 3∧ b = 2 simultaneously in the
execution. This is possible in physical time after the occurrence of event
e5

2 and before the occurrence of e4
1. In the execution shown, e4

1 occurs
before e5

2. However, in an equivalent execution, event e4
1 may be delayed

to occur after event e5
2, in which case, a changes to a value other than 3

after b becomes 2. Hence, Possibly�a = 3∧ b = 2� is true. Note that in
Figure 11.2, a+b = 5 was true in states �2�5�, �3�5�, �6�4�, and �5�7�.
Among these, a= 3∧b = 2 is true only in �2�5� and �3�5�.

• Definitely�a = 3∧ b = 7� holds by the following reasoning. When a is
assigned 3 at event e1

1, process P2’s execution may be at any event from e0
2

389 11.4 Conjunctive predicates

up to but not including e3
2. However, before the value of a changes from 3

to 8 at event e4
1, P2 must have executed event e2

2 at which time b= 7. This
is true for all equivalent executions. Note that in Figure 11.2, a+b = 10
was true in states �1�1�, �2�1�, �1�2�, �2�2�, �3�2�, �2�3�, �3�3�, �4�5�,
�5�5�, and �5�6�. Among these, a = 3∧ b = 7 is true only in all except
�4�5�, �5�5�, and �5�6�.

11.4.1 Interval-based centralized algorithm for conjunctive predicates

Conjunctive predicates are a popular class of predicates. Conjunctive predi-
cates have the advantage that each process can locally determine whether the
local component i is satisfied; if not, the local state cannot be part of any
global state satisfying . This has the following implication: starting with the
initial state, we examine global states. If is not satisfied, then the local state
of at least one process can be advanced and the next global state is examined.
Either is satisfied, or we repeat the step. Within mn steps, we will have
examined all necessary global states, giving a O�mn� upper bound on the
time complexity.

There are two broad approaches to detecting conjunctive predicates: the
global state-based approach and the interval-based approach [15]. The global
state-based approach involves examining the global states, as suggested above
and also seen in Section 11.3.

In the interval-based approach, each process identifies alternating time
durations when the local predicate alternates between true and false. This is
illustrated in Figure 11.5. Let us consider any two processes Pi and Pj , and let
the intervals at these processes when the local predicates i and j are true
be denoted Xi and Yj , respectively. Let the start and end of an interval X be
denoted as min�X� and max�X�, respectively. Assume the global predicate
is defined on these two processes. We can observe the following definitions
of Definitely�� and Possibly�� with the aid of Figure 11.6:

Definitely�� � min�X�≺max�Y�∧min�Y�≺max�X�� (11.3)

Possibly�� � max�X�≺min�Y�∨max�Y�≺min�X�� (11.4)

When the global predicate is defined on more than two processes, the
following results for Possibly and Definitely are expressible in terms of

Figure 11.5 For a conjunctive
predicate, the shaded
durations indicate the periods
when the local predicates are
true.

P0

P1

P2

390 Global predicate detection

Figure 11.6 Illustrating
conditions for Definitely���

and ¬Possibly���, for two
processes.

min(Y) max(Y)

min(X) max(X)X

max(Y)min(Y) Y Y

min(X) max(X)X

(a) Definitely(φ) (b) Possibly(φ)

Possibly and Definitely for pairs of processes [16]. The results can be
observed to be true with the help of Figure 11.5.

Definitely�� if and only if
∧

i�j∈N Definitely�i∧j�� (11.5)

Possibly�� if and only if
∧

i�j∈N Possibly�i∧j�� (11.6)

Algorithm 11.2 gives an algorithm that is run by a central server P0 to
detect Possibly�� or Definitely�� for a conjunctive predicate [5,11,12].
Whenever an interval completes, a process could send the vector timestamp
of the start and of the end events of that interval as a Log entry to the central
server process. But observe that, for any two local intervals Y and Y ′, if there
is no send or receive event between the start of the previous interval and
the end of the latter interval, then Y and Y ′ have the exact same relation
with respect to all other intervals at all other processes. Hence, an interval
needs to be sent to P0 if there is a send or receive event since the start of the
previous interval and the end of this interval. Each execution message thus
causes at most four control messages to P0 – two at the sender and two at
the receiver.

The algorithm uses two queues, updatedQueues and newUpdatedQueues.
The updatedQueues stores the indices of all the queues whose heads got
updated. The latter is a temporary variable for updating updatedQueues.
A queue gets updated when a new interval potentially becomes the head
of the queue; such a new interval becomes a “candidate” interval for the
solution. A queue gets updated under two situations: (i) a new interval is
enqueued on to an empty queue, or (ii) the current head of a queue gets
deleted because it is determined that it cannot possibly be a part of the solu-
tion. Each new candidate interval (i.e., the head of some queue) is examined
with respect to the heads of all other queues, in accordance with Eqs (11.3)
and (11.4), to determine if the desired modality is satisfied. In each com-
parison, if the desired modality is not satisfied, one of the two intervals
examined is marked for deletion (and the corresponding queue is said to be
updated).

391 11.4 Conjunctive predicates

queue of Log: Q1�Q2�

 Qn←−⊥
set of int: updatedQueues, newUpdatedQueues ←− 	�
On receiving interval from process Pz at P0:
(1) Enqueue the interval onto queue Qz

(2) if (number of intervals on Qz is 1) then
(3) updatedQueues←− 	z�
(4) while (updatedQueues is not empty)
(5) newUpdatedQueues←− 	�
(6) for each i ∈ updatedQueues do
(7) if (Qi is non-empty) then
(8) X←− head of Qi

(9) for j = 1 to n do
(10) if (Qj is non-empty) then
(11) Y ←− head of Qj

(12) if (min�X� �≺max�Y�) then // Definitely
(13) newUpdatedQueues←−	j�∪newUpdatedQueues
(14) if (min�Y� �≺max�X�) then // Definitely
(15) newUpdatedQueues←−	i�∪newUpdatedQueues
(12′) if (max�X�≺min�Y�) then // Possibly
(13′) newUpdatedQueues←−	i�∪newUpdatedQueues
(14′) if (max�Y�≺min�X�) then // Possibly
(15′) newUpdatedQueues←−	j�∪newUpdatedQueues
(16) Delete heads of all Qk where k ∈ newUpdatedQueues
(17) updatedQueues←− newUpdatedQueues
(18) if (all queues are non-empty) then
(19) solution found. Heads of queues identify intervals solution.

Algorithm 11.2 Detecting a conjunctive predicate (centralized, on-line) for Possibly or Definitely

modality. For Definitely���, lines 12–15 are executed. For Possibly���, lines 12′–15′ are executed. To
detect both, disjoint data structures are required.

• Specifically, lines 12–15 can be used to check for Definitely�� in accor-
dance with Eq. (11.3).

• Lines 12′–15′ can be used to check for Possibly�� in accordance with
Eq. (11.4).

The set updatedQueues stores the indices of all the queues whose heads get
updated. In each iteration of the while loop, the index of each queue whose
head is updated is stored in set newUpdatedQueues (lines 12–15 or 12′–15′).
In lines 16 and 17, the heads of all these queues are deleted and indices of
the updated queues are stored in the set updatedQueues. Thus, an interval
gets deleted only if it cannot be part of the solution. Now observe that each
interval gets processed unless a solution is found using an interval from each
process. From Eqs (11.5) and (11.6), if every queue is non-empty and their

392 Global predicate detection

heads cannot be pruned, then a solution exists and the set of intervals at the
head of each queue forms a solution.

Termination
If a solution exists, it is eventually detected by lines 18–19. Otherwise, P0

waits to receive an interval from some process. The code can be modified to
detect the end of the execution at a process, and to notify P0 about it.

Complexity
Let p be the number of intervals per process, and M be the number of
messages sent in the execution.

• Message complexity The number of control messages sent by the n

processes to P0 is min�pn�4M�. The first term denotes a message being
sent for each interval completed. The second term denotes that at most four
control messages get sent for each execution message, in accordance with
the observation made earlier. Each control message contains two vector
timestamps, which has size 2n integers.

• Space complexity The space complexity at P0 is min�pn�4M� · 2n
because all the intervals may have to be queued up among the queues
Q1�

 Qn.

• Time complexity When an interval is compared with others (loop in
lines 6–15), there are O�n� steps. As there are min�pn�4M� intervals
enqueued, the time complexity is O�n · �min�pn�4M���.

11.4.2 Global state-based centralized algorithm for Possibly���, where � is conjunctive

A more efficient algorithm to detect Possibly�� than the generic algorithm
in Algorithm 11.2 can be devised by tailoring an algorithm to this specific
modality.

Observe that Possibly�� holds if and only if there is a consistent global
state in the execution in which holds. Thus, detecting Possibly�� is
equivalent to identifying a consistent global state in which the local state
at each process Pi satisfies i. In this consistent global state, for any
two local states si and sj at Pi and Pj , respectively, the following must
hold:

(mutually concurrent) ∀i�∀j� si �≺ sj ∧ sj �≺ si� (11.7)

393 11.4 Conjunctive predicates

Each process Pi sends the vector timestamp of the local state when i becomes
true, to the server process P0. In fact, such a message needs to be sent only each
time that the local predicate becomes true for the first time since the previous
communication event. This is because internal events that are not separated
by communication events are equivalent in terms of consistent global states.
Algorithm 11.3 tracks the most recent global state that can potentially satisfy
Possibly�� using a two-dimensional array GS�1

 n�1

 n�, where row
GS�i� stores the vector timestamp of the local state of process Pi. At P0,
the queuing of the vector timestamps received from Pi into Qi is not shown
explicitly. The algorithm run by P0 picks any process Pj such that Valid�j�= 0
and dequeues the head of Qj for consideration of consistency with respect

integer: GS�1

 n�1

 n�; //ith row tracks vector time of Pi
boolean: Valid�1

 n�; //Valid�j�= 0 implies Pj state GS�j� ·�

//needs to be advanced
queue of array of integer: Q1�Q2�

 Qn←−⊥;

//Qi stores timestamp info from Pi

(1) while (∃j �Valid�j�= 0) do //Pj’s state GS�j� ·� is not consistent with
//others

(2) if (Qj =⊥ and Pj has terminated) then
(3) return(0);
(4) else
(5) await Qj becomes non-empty;
(6) GS�j�1

 n�←− head�Qj�; //Consider next state of Pj for

//consistency
(7) dequeue�head�Qj��;
(8) Valid�j�←− 1;
(9) for k= 1 to n do //Check Pj’s state w.r.t. Pk’s state (for every Pk)
(10) if k �= j and Valid�k�= 1 then
(11) if GS�j� j�≤GS�k� j� then //Pj’s state is inconsistent

//with Pk’s state
(12) Valid�j�←− 0; //next state of Pj needs to be

//considered
(13) else ifGS�k�k�≤GS�j� k� then //Pk’s state is inconsistent

//with Pj’s state
(14) Valid�k�←− 0; //next state of Pk needs to be

//considered
(15) return(1).

Algorithm 11.3 Global state-based detection of a conjunctive predicate (centralized, on-line,
Possibly).

394 Global predicate detection

Figure 11.7 In Algorithm 11.3,
P0 tests whether Pj ’s and Pk ’s
candidate local states are
consistent with each other. (a)
Pj ’s old state is invalid. (b) Pk ’s
old state is invalid.

(b)(a)

GS[j, k]

GS[k, k]

k

j

GS[k, j]

GS[j, j]

to the current states of all processes (lines 6–8). The main check is in lines
9–14 where Pj’s state is checked for mutual consistency with Pk’s state, for
all k (this check is based on vector clocks [9, 19]):

• If Pj’s state is old and hence causes inconsistency, it is marked as invalid
(lines 11–12). See Figure 11.7(a).

• If Pk’s state is old and hence causes inconsistency, it is marked as invalid
(lines 13–14). See Figure 11.7(b).

After this main check, the algorithm continues in the main while loop and
picks another process Pj such that Valid�j�= 0. A consistent state is detected
when Valid�j�= 1 for all j.

Termination
The algorithm terminates successfully (line 15) if Valid�j� = 1 for all j,
indicating a solution is found. It terminates unsuccessfully (line 3) if some
process terminates and its queue is empty.

Complexity
Let m be the number of local states at any process. Let M denote the total
number of messages sent in the execution.

• Time complexity As there are at most mn local states that are processed
by P0, and for each such local state the for loop in line 9 is invoked once
and requires 2n integer comparisons, the time complexity of the algorithm
is O�n2m�.

• Space complexity The space complexity at P0 is O�n2m� because there
are at most mn states, each represented as a vector timestamp, that can be
queued among the n queues Q1 to Qn.

• Message complexity The number of control messages sent by the n

processes to P0 is 2M , and each message contains the vector timestamp,
which has size n integers.

395 11.5 Distributed algorithms for conjunctive predicates

11.5 Distributed algorithms for conjunctive predicates

11.5.1 Distributed state-based token algorithm for Possibly���, where � is conjunctive

Algorithm 11.4 [10] is a distributed version of Algorithm 11.3. Each queue
Qi is maintained locally at Pi. The data structure GS no longer needs to be a
n×n array. Instead, a unique token is passed among the processes serially.
The token carries a vector GS corresponding to the vector timestamp of the
earliest global state under consideration as a candidate solution.

struct token 	
integer: GS�1

 n�; //Earliest possible global state as a

//candidate solution
boolean: Valid�1

 n�; �Token� //Valid�j�= 0 indicates

//Pj’s state GS�j� is invalid
queue of array of integer: Qi←−⊥;

Initialization. Token is at a randomly chosen process.
On receiving Token at Pi:
(1) while (Token�Valid�i�= 0) do //Token�GS�i� is the latest state of Pi

//known to be inconsistent
(2) await (Qi to be nonempty); //with other candidate local

//state of Pj , for some j
(3) if (�head�Qi���i� > Token�GS�i�) then
(4) Token�GS�i�←− �head�Qi���i�; //earliest possible

//state of Pi that can be part of
//solution is written

(5) Token�Valid�i�←− 1; //to Token and its validity is set.
(6) else dequeue head�Qi�;
(7) for j = 1 to n (j �= i) do //for each other process Pj: based on Pi’s

//local state, determine whether
(8) if j �= i and �head�Qi���j�≥ Token�GS�j� then //Pj’s

//candidate local state (in Token)
//is consistent. If not, Pj needs to
//consider a later candidate

(9) Token�GS�j�←− �head�Qi���j�; // state with a
//timestamp > �head�Qi���j�

(10) Token�Valid�j�←− 0;
(11) dequeue �headQi�;
(12) if for some k, Token�Valid�k�= 0 then
(13) send Token to Pk;
(14) else return(1).

Algorithm 11.4 Global state-based detection of a conjunctive predicate (distributed, on-line, Possibly)
[10]. Code shown is for Pi , 1 ≤ i ≤ n.

396 Global predicate detection

A process Pi receives a token only when Token�Valid�i� = 0. All local
states of Pi up to Token�GS�i� will necessarily be not consistent with the
earliest possible candidate local state of some other process. So Pi has to now
consider from its local queue Qi, the first local state with timestamp greater
than Token�GS�i� (lines 3–6). Based on such a state of Pi, now written to
Token�GS�i� in line 4, for each j, Pi now determines in line 8 whether Pj’s
candidate local state Token�GS�j� is consistent with Token�GS�i�. This test
is illustrated in Figure 11.8.

• If the condition in line 8 is true (Figure 11.8(a)), Pj’s state is not consistent.
Token�Valid�j� is reset. This implies that the token must visit Pj before
termination of the algorithm and Pj needs to find a local state that is
mutually consistent with all the other states in Token�GS.

• If the condition in line 8 is false (Figure 11.8(b)), Pj’s state is consistent.

Termination
The algorithm finds a solution when Token�Valid�j� is 1, for all j (line
14). If a solution is not found, the code hangs in line 2. The code can
be modified to terminate unsuccessfully in line 2 by modeling an explicit
“process terminated” state in this case.

Complexity
• Time complexity Each time a token is received by Pi, at least one local

state is examined and deleted. This involves O�n� comparisons in the main
loop (lines 7–10). Assuming a total of m states at a process, the time
overhead at a process is O�mn�. The time overhead across processes is
cumulative as the token travels serially. Hence, total time complexity is
O�mn2�.

• Space complexity In the worst case, all the local states may get queued
in Qi, leading to a space requirement of O�mn�. Across all processes the
space requirement becomes O�mn2�.

• Message complexity The token makes O�mn� hops, and the size of the
token is 2n integers.

Figure 11.8 In Algorithm 11.4,
Pi tests whether Pj ’s candidate
local state TokenGS� j � is
consistent with head�Qi ��i �,
which is assigned to
TokenGS�i �. The two
possibilities are illustrated. (a)
Not consistent. (b) Consistent.

Token.GS[j]

Token.GS[j]

head(Q_i)[j] head(Q_i)[j]

head(Q_i)head(Q_i)

i

j

(b)(a)

397 11.5 Distributed algorithms for conjunctive predicates

11.5.2 Distributed interval-based token algorithm for Definitely���, where � is
conjunctive

We now study an interval-based distributed token-based algorithm to detect
Definitely�� based on the tests in Eqs (11.3) and (11.5) [3]. Define Ii ↪→ Ij
as: min�Ii�≺max�Ij�.
Problem statement
In a distributed execution, identify a set of intervals I containing one interval
from each process, such that (i) the local predicate i is true in Ii ∈ I, and
(ii) for each pair of processes Pi and Pj , Definitely�i�j� holds, i.e., Ii ↪→ Ij
and Ij ↪→ Ii.

The algorithm is given in Algorithm 11.6. The vector timestamps of the
start of and of the end of an interval form a data type Log, as shown in
Algorithm 11.5. When an interval completes at process Pi, the interval’s Log is
added to a local queue Qi selectively, as shown in Algorithm 11.5. An interval
Y at Pj is deleted if on comparison with some interval X on Pi, X �↪→ Y ,

type Log
start: array�1

 n� of integer;
end: array�1

 n� of integer;

type Q: queue of Log;

When an interval begins:
Logi�start←− Vi.
When an interval ends:
Logi�end←− Vi
if (a receive event has occurred since the last time a Log was queued on
Qi) then

Enqueue Logi on to the local queue Qi.

Algorithm 11.5 Maintaining intervals for detection of a conjunctive predicate (distributed, on-line,
Definitely) [3].

i.e., Vi�min�X���i� �≤ Vj�max�Y���i�. Thus the interval (Y) being deleted or
retained depends on its value of Vj�max�Y���i�. The value Vj�max�Y���i�

changes only when a message is received. Hence an interval needs to be
stored only if a receive has occurred since the last time a Log of a local
interval was queued. Let V−�X� and V+�X� denote the vector timestamps of
the start of interval X and the end of interval X, respectively.

The token-based algorithm uses three types of messages (see Algo-
rithm 11.6) that are sent among the processes. Request messages of type
REQUEST, reply messages of type REPLY, and token messages of type
TOKEN, denoted REQ, REP, and T , respectively. Only the token-holder

398 Global predicate detection

type REQUEST //used by Pi to send a request to each Pj
start : integer; //contains Logi�start�i� for the interval at the queue

//head of Pi
end : integer; //contains Logi�end�j� for the interval at the queue

//head of Pi, when sending to Pj
type REPLY //used to send a response to a received request

updated: set of integer; //contains the indices of the updated queues
type TOKEN //used to transfer control between two processes

updatedQueues: set of integer; //contains the index of all the updated
//queues

(1) Process Pi initializes local state:
(1a) Qi is empty.

(2) Token initialization:
(2a) A randomly elected process Pi holds the token T .
(2b) T�updatedQueues←− 	1�2�

 � n�.

(3) RcvToken � When Pi receives a token T :
(3a) Remove index i from T�updatedQueues
(3b) wait until (Qi is nonempty)
(3c) REQ�start←− Logi�start�i�, where Logi is the log at head of Qi

(3d) for j = 1 to n do
(3e) REQ�end←− Logi�end�j�
(3f) Send the request REQ to process Pj
(3g) wait until (REPj is received from each process Pj)
(3h) for j = 1 to n do
(3i) T�updatedQueues←− T�updatedQueues∪REPj�updated
(3j) if (T�updatedQueues is empty) then
(3k) Solution detected. Heads of the queues identify intervals that

form the solution.
(3l) else
(3m) if (i ∈ T�updatedQueues) then
(3n) dequeue the head from Qi

(3o) Send token to Pk where k is randomly selected from the set
T�updatedQueues.

(4) RcvReq � When a REQ from Pi is received by Pj:
(4a) wait until (Qj is non-empty)
(4b) REP�updated←−
(4c) Y ←− head of local queue Qj

(4d) V−i �X��i�←− REQ�start and V+i �X��j�←− REQ�end
(4e) Determine X ↪→ Y and Y ↪→ X
(4f) if �Y �↪→ X� then REP�updated←− REP�updated∪ 	i�
(4g) if �X �↪→ Y� then
(4h) REP�updated←− REP�updated∪ 	j�
(4i) Dequeue Y from local queue Qj

(4j) Send reply REP to Pi.

Algorithm 11.6 Interval-based detection of a conjunctive predicate (distributed, on-line, Definitely) [3].

399 11.5 Distributed algorithms for conjunctive predicates

process can send REQs and receive REPs. The process (Pi) having the token
sends REQs to all other processes (line 3f). Logi�start�i� and Logi�end�j�

for the interval at the head of the queue Qi are piggybacked on the request
REQ sent to process Pj (lines 3c–3e). On receiving a REQ from Pi, pro-
cess Pj compares the piggybacked interval X with the interval Y at the
head of its queue Qj (line 4e). The comparisons between intervals on pro-
cess Pi and Pj can result in these outcomes. (i) Definitely�i�j� is satis-
fied. (ii) Definitely�i�j� is not satisfied and interval X can be removed
from the queue Qi. The process index i is stored in REP�updated (line 4f).
(iii) Definitely�i�j� is not satisfied and interval Y can be removed from the
queue Qj . The interval at the head of Qj is dequeued and process index j

is stored in REP�updated (lines 4g, 4h). Note that outcomes (ii) and (iii)
may occur together. After the comparisons, Pj sends REP to Pi. Once the
token-holder process Pi receives a REP from all other processes, it stores the
indices of all the updated queues in the set T�updatedQueues (lines 3h, 3i).
A solution, identified by the set I formed by the interval Ik at the head of
each queue Qk, is detected if the set updatedQueues is empty. Otherwise,
if index i is contained in T�updatedQueues, process Pi deletes the inter-
val at the head of its queue Qi (lines 3m, 3n). If the set T�updatedQueues
is non-empty, the token is sent to a process selected randomly from the
set (line 3o).

The crux of the correctness of this algorithm is based on Eqs (11.3) and
(11.5) for Definitely��. We can make the following observations from the
algorithm:

• If Definitely�i�j� is not true for a pair of intervals Xi and Yj , then either
i or j is inserted into T�updatedQueues.

• An interval is deleted from queue Qi at process Pi if and only if the index
i is inserted into T�updatedQueues.

• When a solution I is detected by the algorithm, the solution is correct, i.e.,
for each pair Pi�Pj ∈ N , the intervals Ii = head�Qi� and Ij = head�Qj�

are such that Ii ↪→ Ij and Ij ↪→ Ii (and hence by Eqs (11.3) and (11.5),
Definitely�� must be true).

• If a solution I exists, i.e., for each pair Pi�Pj ∈ N , the intervals
Ii� Ij belonging to I are such that Ii ↪→ Ij and Ij ↪→ Ii (and hence
Definitely�� must be true), then the solution is detected by the
algorithm.

Complexity
The complexity analysis can be done in terms of two parameters – the maxi-
mum number of messages sent per process (m) and the maximum number of
intervals per process (p).

400 Global predicate detection

• Space complexity This is analyzed for each process, and for the entire
system.

• The worst-case space overhead across all the processes is 2mn2. The
worst-case space overhead at any process is O�mn2�.
• The total number of Logs stored at each process is p because, in the

worst case, the Log for each interval may need to be stored. As each
Log has size 2n, the worst-case overhead is 2np integers over all Logs
per process, and the worst-case space complexity across all processes
is 2n2p= O�n2p�.

As the total number of Logs stored on all the processes ismin�np�mn�, the
worst-case space overhead across all the processes is min�2n2p�2n2m�.
This is equivalent to min�2np�2nm� per process if the mn message des-
tinations are divided equally among the processes (implying that each
process has up to min�p�m� Logs). The worst-case space overhead at a
process is min�2np�2n�n−1�m�.

• Time complexity The two components contributing to time complexity
are RcvReq and RcvToken:
RcvReq: In the worst case, the number of REQs received by a process

is equal to the number of Logs on all other processes, because a
REQ is sent only once for each Log. The total number of Logs over
all the queues is min�np�mn�, hence the number of interval pairs
compared per process is min��n− 1�p�m�n− 1��. As it takes O�1�
time to execute RcvReq, the worst-case time complexity per process
for RcvReq is O�min�np�mn��. As the processes execute RcvReq in
parallel, this is also the total time complexity for RcvReq.

RcvToken: The token makes at most min�np�mn� hops serially and
each hop requires O�n� time complexity. Hence the worst-case time
complexity for RcvToken across all processes is O�min�pn2�mn2��.
In the worst case, a process receives the token each time its queue head
is deleted, and this can happen as many times as the number of Logs at
the process. As the number of Logs at a process is min�p�m�n−1��,
the worst-case time complexity per process is O�min�pn�mn2��.

The worst-case time complexity across all the processes is
O�min�pn2�mn2��. This is equivalent to O�min�pn�mn�� per process if
the mn message destinations are divided equally among the processes
(implying that each process has up to min�p�m� Logs). The worst-case
time complexity at a process is O�min�pn�mn2��.

• Message complexity For each Log, either no messages are sent, or n−1
REQs, n−1 REPs, and one token T are sent.

• As the total number of Logs over all the queues is min�np�mn�,
hence the worst-case number of messages over all the processes is
O�nmin�np�mn��.
• The size of each T is equal toO�n�, while the size of each REP and each
REQ is O�1�. Thus for each Log, the message space overhead is O�n�

401 11.5 Distributed algorithms for conjunctive predicates

Figure 11.9 Illustrations of
definitions used by
Algorithm 11.7. (a) Definition
of an interval. (b) Definitions
of interval vectors Least_Sol,
Current_Conc_Ints, and Log

entries.

i

j

k

Log entry

Least_Sol Current_Conc_Ints

(b)(a)
Interval

if any messages are sent for that Log. Hence the worst-case message
space overhead over all the processes is equal to O�nmin�np�mn��.

11.5.3 Distributed interval-based piggybacking algorithm for Possibly���, where � is
conjunctive

Unlike the previous algorithm which was a token-based algorithm to detect
Definitely��, we now look at the distributed algorithm by Hurfin et al. [14]
for detecting Possibly�� without using any control messages. Instead, the
algorithm piggybacks the necessaryinformation on the application messages.
The algorithm therefore illustrates a different design approach.

In Algorithm 11.7, the semantics of an interval is that each interval at
a process represents the duration between two consecutive communication
events at the process (see Figure. 11.9(a)). Intervals are sequentially numbered
at any process Pi, as I0

i � I
1
i � I

2
i �

 . Two intervals at Pi and Pj are concurrent

if Possibly�� is true as determined by Eq. (11.4), and assuming i is true
in Ii and j is true in Ij .

The following variables are used at each process:

• not_yet_logged�1

 n�, a boolean array, is used to determine whether
in the current interval, the “sequence number” of the interval is logged
when the predicate first became true in this interval. This variable helps to
minimize the number of intervals logged, by ensuring that in any interval,
the interval is logged only once in the local log (see below) when the local
predicate first becomes true in the interval (lines 1a–1b). Logging just once
is important when the predicate may toggle its truth value multiple times
within an interval.

• Current_Conc_Ints�1

 n�, an array of integers, is used to keep track of
the latest known concurrent set of intervals (as per Eqs (11.4) and (11.6)).
However, it is not necessarily known whether the local predicates at the
various processes are true in these intervals, because this array is updated
at the start of an interval.

• Least_Sol�1

 n�, an array of integers, is used to track the least possible
global state (i.e., set of intervals) that could possibly satisfy Possibly��.

402 Global predicate detection

integer: Least_Sol�1

 n�;
boolean: Valid�1

 n�;
integer: Current_Conc_Ints�1

 n�;
queue of Current_Conc_Ints: Log←−⊥;
boolean: not_yet_loggedi ←− 1;

(1) When local predicate i becomes true at Pi:
(1a) if not_yet_loggedi then
(1b) enqueue�Logi�Current_Conc_Intsi�; not_yet_loggedi ←−

false;
(1c) if Least_Soli�i�= Current_Conc_Intsi�i� then
(1d) Validi�i�←− true.
(2) Pi sends a message, with �Current_Conc_Intsi, Least_Soli, Validi�

appended:
(2a) Current_Conc_Intsi�i�←− Current_Conc_Intsi�i�+1;
(2b) not_yet_loggedi ←− true;
(2c) if empty�Logi� then
(2d) Least_Soli�i�←− Current_Conc_Intsi�i�;
(2e) send the message with vectors �Current_Conc_Intsi�

Least_Soli� Validi� piggybacked.

(3) When Pi receives a message from Pj with �Current_Conc_Intsj�
Least_Solj�Validj� piggybacked:

(3a) Current_Conc_Intsi←−max�Current_Conc_Intsi�
Current_Conc_Intsj�;

(3b) �Least_Soli� Validi�←− Combine_Maxima��Least_Soli� Validi��
�Least_Solj�Validj��;

(3c) Current_Conc_Intsi�i�←− Current_Conc_Intsi�i�+1;
(3d) not_yet_loggedi ←− true;
(3e) while (�not empty�Logi�� and ��head�Logi���i� < Least_Soli�i�� do
(3f) dequeue�Logi�;
(3g) if empty�Logi� then
(3h) Least_Soli←− Current_Conc_Intsi; Validi←− �0�0�

 �0�;
(3i) else
(3j) �Least_Soli� Validi�←− Combine_Maxima��Least_Soli�

Validi�� �head�Logi�� �0�0�

 �0���;
(3k) Validi�i�←− 1;
(3l) if Validi←− �1�1�

 �1� then
(3m) Possibly�� is true in global state Least_Soli;
(3n) Deliver the message.

(4) function Combine_Maxima��C1�A1�� �C2�A2��:
integer: C�1

 n�;
boolean: A�1

 n�;
(4a) for x = 1 to n do
(4b) case:
(4c) C1�x� > C2�x�−→ �C�x�←− C1�x��A�x�←− A1�x��;
(4d) C1�x� < C2�x�−→ �C�x�←− C2�x��A�x�←− A2�x��;
(4e) C1�x�= C2�x�−→ �C�x�←− C1�x��A�x�←− �A1�x�

or A2�x���;
(4f) return �C�A�.

Algorithm 11.7 Interval-based detection of a conjunctive predicate (distributed, on-line, Possibly) [14].

403 11.5 Distributed algorithms for conjunctive predicates

In other words, no interval at any process, that precedes that process’s
interval in Least_Sol, can ever be part of the solution global state.

We have that (∀k) Current_Conc_Ints�k� ≥ Least_Sol�k�. See
Figure 11.9(b).

• Valid�1

 n�, a boolean array, tells whether the corresponding interval in
Least_Sol is valid, i.e., whether the local predicate is ever satisfied in that
interval. Valid�j�= 1 means j is necessarily satisfied in Least_Sol�j�; if
0, it is not yet known whether j is satisfied because the interval has not
yet completed.
It follows that Possibly�� is true and is satisfied in the state identified
by Least_Sol when all the entries in array Valid are true.

• The queue Log at each process tracks the various values (vectors) of
intervals (one interval per process) that are locally generated, one for each
local communication event. In some sense, this tracks the intermediate
states Current_Conc_Ints as they are generated, between global state
Least_Sol and the “current” global state Current_Conc_Ints.

At the time the local predicate becomes true and not_yet_logged is false, (i)
Current_Conc_Ints is enqueued locally, and (ii) if Current_Conc_Ints�i�=
Least_Sol�i�, then Valid�i� is set to true (lines 1c–1d).

The array Current_Conc_Ints’s local component is always updated for
each send and receive event. The array is also piggybacked on each message
sent. The receiver takes the maxima of its local array and the sender’s array
(line 3a). Thus, this global state is always kept up to date.

The array Least_Sol plays “catch up” with Current_Conc_Ints. At a send
event at Pi, Least_Sol�i� is set to Current_Conc_Int�i� if the log Logi is
empty (lines 2c–2d). The arrays Least_Sol and Valid are also piggybacked
on the message sent (line 2e). At a receive event, the receiver Pi takes the
more up-to-date information (line 3b) on Least_Sol and Valid that it has
and receives from Pj . (Assuming a solution is not found here, i.e., Valid
is not all 1, further processing is necessary to advance Least_Sol.) In this
step, the previous value of Least_Sol�i� may advance. As a result, entries
of Current_Conc_Ints in the log Logi that are older than the new value
of Least_Sol�i� are dequeued and deleted (lines 3e–3f). If Logi becomes
empty, Least_Sol catches up completely with Current_Conc_Ints and all the
entries in the vector Valid are reset as we no longer know whether the local
predicates were true in the corresponding intervals of Current_Conc_Ints
(lines 3g–3h). If Logi is non-empty (line 3i), then the current head of the Log
represents one of the earlier values of Current_Conc_Ints. The information
of this queue head and associated validity vector of all 0s, is combined with
the value of �Least_Soli� Validi� (line 3j) and Valid�i� is set to 1 (line 3k)
because the global state from head�Logi� implies that i was true in the local
interval in that global state. At this stage, if Validi�k� is true for all k, then a
solution state is given by Least_Sol.

404 Global predicate detection

Termination
If Valid�k� = 1 for all k, the algorithm finds a set of intervals satisfying
Possibly��. Note that for this to happen, some process must have received
information about all such intervals and that they were valid. It may happen
that such a set of intervals indeed exists but no process is able to see all
these intervals under two related conditions: (i) there is not enough com-
munication on which such information can be piggybacked; and (ii) the
underlying execution terminates shortly after such a set of intervals come
into existence. Exercise 11.8 asks you to analyze this termination condition
further.

Complexity
Let Ms and Mc denote the number of messages sent by a process, and the
number of communication events at a process, respectively.

• Time complexity Each message send and message receive requires O�n�
processing. The time complexity at a process is O�Mcn� and, across all
processes, this is O�Mcn

2� = O�Msn
2�.

• Space complexity The Log at a process may have to hold up to Mc

intervals, each of sizeO�n�. The other data structures are integer or boolean
arrays of size n and require O�n� space locally. Hence, the system space
complexity is O�

∑n
i=1Mcn� = O�Mcn

2� = O�Msn
2�.

• Message complexity On each message sent by the application, O�3n�
data is piggybacked. No control messages are used. If a process sends up
to Ms messages, the total space overhead is O�Msn

2�.
• Fault-tolerance The algorithm is resilient to message losses because it

uses piggybacking of control information (See Exercise 11.9).

11.6 Further classification of predicates

We have thus far seen relational predicates, conjunctive predicates, local
predicates, and stable predicates. Here we formally define local predicates,
and then consider two more types of predicates:

• Local predicate A local predicate is a predicate whose value is fully
controlled by a single process.

• Disjunctive predicates If a predicate can be expressed as the dis-
junction

∨
i∈N i, where i is a predicate local to process i, then is a

disjunctive predicate. Disjunctive predicates are straightforward to detect;
each process monitors the local disjunct, and when it becomes true, informs
the other processes. If the disjunct at Pi becomes true after the xth local
event, then in the state lattice diagram, will be true in all global states

405 11.7 Chapter summary

having x events at Pi. It is now easy to see that for a disjunctive predicate,
Possibly�� = Definitely��.

• Observer-independent predicates Different observers may observe dif-
ferent cuts of the execution; an observer can only determine if the predicate
 became true in the cuts it can observe. If is observer-independent,
different observers will all agree on whether the predicate became true.

We have seen that Definitely�� =⇒ Possibly��. If the predicate
 also satisfies the condition Possibly�� =⇒ Definitely��, and thus
Possibly�� = Definitely��, then it is an observer-independent pred-
icate. The predicate will be seen to hold or to not hold independent of
the observer.

Stable predicates as well as disjunctive predicates are both observer-
independent.
The modalities Possibly and Definitely are coarse-grained. Predicates can
also be detected under a rich, fine-grained suite of modalities based on the
causality relation [2, 15, 16].

11.7 Chapter summary

Observing global states is a fundamental problem in asynchronous distributed
systems, as studied in Chapter 4. A natural extension of this problem is
to detect global states that satisfy a given predicate on the variables of the
distributed program. The chapter first considered stable predicates, which are
predicates that remain true once they become true. Deadlock detection and
termination detection are based on stable predicate detection.

Unstable predicates on the program variables are difficult to detect because
the values of variables that make the predicate true can change and falsify the
predicate. Hence, unstable predicates are defined under modalities: Possibly
and Definitely. Furthermore, a predicate can be broadly classified as conjunc-
tive or relational. A relational predicate is a predicate using any relation on
the distributed variables, whereas a conjuctive predicate is defined to be a
conjunct of local predicates.

The chapter studied a centralized algorithm for detecting relational predi-
cates, having exponential complexity. This complexity seems to be inherent
for relational predicates. The next centralized algorithms considered for con-
junctive predicates were: (i) an interval-based algorithm for detecting both
modalities Possibly and Definitely; and (ii) a global state-based algorithm for
detecting under Possibly modality.

The chapter then covered three distributed algorithms for conjunctive
predicates, all having polynomial complexity. The first was a state-based
token-based algorithm for the Possibly modality. The second was an
interval-based token-based algorithm for the Definitely modality. The third

406 Global predicate detection

was an interval-based piggybacking algorithm for the Possibly modality.
These representative algorithms illustrate different techniques for conjunctive
predicate detection. The chapter concluded by mentioning other more
sophisticated predicate modalities.

11.8 Exercises

Exercise 11.1 State whether each of the following is True or False. Justify your
answers.

1. Possibly��=⇒¬Definitely��
2. Possibly��=⇒Definitely��

3. Possibly��=⇒Definitely�¬�
4. Possibly��=⇒¬Definitely�¬�
5. Definitely��=⇒ Possibly��

6. Definitely��=⇒ Possibly�¬�
7. Definitely��=⇒¬Possibly��
8. Definitely��=⇒¬Possibly�¬�

Exercise 11.2 A conjunctive predicate =∧i∈N i, where i is a predicate defined
on variables local to process Pi.

In a distributed execution �E�≺�, let First_Cut�� denote the earliest or smallest
consistent cut in which the global conjunctive predicate becomes true.

Recall that in different equivalent executions, a different “path” may be traced
through the state lattice. Therefore, for different re-executions of this (deterministic)
distributed program, is the state First_Cut�� well-defined? That is, is it uniquely
identified? In other words, is the set of cuts C�� closed under intersection?

Exercise 11.3 [17] Define all the relevant variables and formulate in detail, a dead-
lock detection algorithm based on stable predicate detection.

Exercise 11.4 Prove that the predicate detection problem is NP-complete. (Hint: Show
a reduction from the satisfiability (SAT) problem.)

Exercise 11.5 If it is known that Possibly�� is true and Definitely�� is false in
an execution, then what can be said about in terms of the paths of the state lattice
of that execution?

Exercise 11.6 For Algorithm 11.1, answer the following:

1. When can the algorithm begin constructing the global states of level lvl?
2. When are all the global states of level lvl constructed?

Exercise 11.7 Can the algorithm for global state-based detection of a conjunc-
tive predicate (centralized, on-line, Possibly) of Algorithm 11.3 be modified
to detect Definitely��? If yes, give the modified algorithm and show it is
correct.

Exercise 11.8 Determine whether the interval-based distributed algorithm (Algo-
rithm 11.7) to detect Possibly�� will always detect Possibly��, even though the

407 11.9 Notes on references

algorithm is correct in principle. If it will not, extend the algorithm to ensure that a
solution is always detected if it exists. (Hint: Consider the termination of the execution
and the Possibly modality holding just a little before the termination.)

Exercise 11.9 Analyze the degree to which Algorithm 11.7 is resilient to message
losses.

Exercise 11.10 Show the following relationships among the various classes of pred-
icates:

1. The set of stable predicates is a proper subset of the set of observer-independent
predicates.

2. The set of disjunctive predicates is a proper subset of the set of observer-independent
predicates.

Exercise 11.11 Consider the algorithm for detecting Possibly�� for a conjunctive
predicate (Algorithm 11.4). Can the algorithm be modified to delete line 11? How
will the correctness of the algorithm be affected?

11.9 Notes on references

The discussion on stable and unstable predicates is based on Chandy and Lamport [6].
Pnueli first introduced a temporal logic for programs with the “henceforth” operator
[21]. The discussion on detecting deadlocks is based on Kshemkalyani and Singhal
[17] and the discussion on termination detection is based on Mattern [20]. The

challenges in detecting unstable predicates, the Possibly and Definitely modalities,
and the notion of the state lattice were formulated by Cooper and Marzullo [8]
and Marzullo and Neiger [18]. The centralized algorithms to detect Possibly and
Definitely for relational predicates are based on Cooper and Marzullo [8]. Various
techniques to improve the efficiency are given by Alagar and Venkatesan [1]. Conjunc-
tive predicates were discussed by Venkatesan and Dathan [22], Garg and Waldecker
[11], and Kshemkalyani [15]. The discussion on the conditions to detect conjunctive

predicates is based on Kshemkalyani [15] and Chandra and Kshemkalyani [4]. The
centralized algorithm for Possibly�� and Definitely�� where is conjunctive,
in Algorithm 11.2, is adapted from Chandra and Kshemkalyani [2] and Garg and
Waldecker [11,12]. The centralized algorithm for Possibly�� where is conjunctive,
in Algorithm 11.3, is based on the test for consistent states using vector clocks of
Mattern [19] and Fidge [9]. The distributed state-based algorithm for Possibly��
where is conjunctive, in Algorithm 11.4, is based on Garg and Chase [10]. The
distributed interval-based algorithm for Definitely�� where is conjunctive, in
Algorithm 11.6, is based on Chandra and Kshemkalyani [3]. The distributed interval-
based algorithm for Possibly�� where is conjunctive, in Algorithm 11.7, is based
on Hurfin et al. [14]. Observer-independent predicates were introduced by Charron-
Bost et al. [7]. A fine-grained set of modalities was introduced by [15]. Their mapping
to the Possibly/Definitely modalities was proposed in [16]. Algorithms to detect
predicates under these fine-grained modalities were given in [2, 4, 5].

408 Global predicate detection

References

[1] S. Alagar and S. Venkatesan, Techniques to tackle state explosion in global
predicate detection, IEEE Transactions Software Engineering, 27(8), 2001,
704–714.

[2] P. Chandra and A. D. Kshemkalyani, Algorithms for detecting global predicates
under fine-grained modalities, Proceedings of ASIAN 2003, December 2003,
LNCS, 91–109.

[3] P. Chandra and A. D. Kshemkalyani, Distributed algorithm to detect
strong conjunctive predicates, Information Processing Letters, 87(5), 2003,
243–249.

[4] P. Chandra and A. D. Kshemkalyani, Detection of orthogonal interval relations,
Proceedings of the High-Performance Computing Conference, LNCS 2552,
2002, 323–333.

[5] P. Chandra and A. D. Kshemkalyani, Causality-based predicate detection across
space and time, IEEE Transactions on Computers, 54(11), 2005, 1438–1453.

[6] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states
of distributed systems, ACM Transactions on Computer Systems, 3(1), 1985,
63–75.

[7] B. Charron-Bost, C. Deloprte-Gallet and H. Fauconnier, Local and temporal
predicates in distributed systems, ACM Transactions on Programming Lan-
guages and Systems, 17(1), 1995, 157–179.

[8] R. Cooper and K. Marzullo, Consistent detection of global predicates, Pro-
ceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
May 1991, 163–173.

[9] C. J. Fidge, Timestamps in message-passing systems that preserve partial order-
ing, Australian Computer Science Communications, 10(1), 1988, 56–66.

[10] V. K. Garg and C. Chase, Distributed algorithms for detecting conjunctive pred-
icates, Proceedings of the 15th IEEE International Conference on Distributed
Computing Systems, 1995, 423–430.

[11] V. K. Garg and B. Waldecker, Detection of weak unstable predicates in dis-
tributed programs, IEEE Transactions on Parallel and Distributed Systems,
5(3), 1994, 299–307.

[12] V. K. Garg, and B. Waldecker, Detection of strong unstable predicates in
distributed programs, IEEE Transactions on Parallel and Distributed Systems,
7(12), 1996, 1323–1333.

[13] G. Ho and C. Ramamoorthy, Protocols for deadlock detection in distributed
database systems, IEEE Transactions on Software Engineering, 8(6), 1982,
554–557.

[14] M. Hurfin, M. Mizuno, M. Raynal and M. Singhal, Efficient distributed detec-
tion of conjunctions of local predicates, IEEE Transactions on Software Engi-
neering, 24(8), 1998, 664–677.

[15] A. D. Kshemkalyani, Temporal interactions of intervals in distributed systems,
Journal of Computer and System Sciences, 52(2), 1996, 287–298.

[16] A. D. Kshemkalyani, A fine-grained modality classification for global predi-
cates, IEEE Transactions on Parallel and Distributed Systems, 14(8), 2003,
807–816.

[17] A. D. Kshemkalyani and M. Singhal, Correct two-phase and one-phase dead-
lock detection algorithms for distributed systems, Proceedings of the 2nd IEEE
Symposium on Parallel and Distributed Processing, December 1990, 126–129.

409 References

[18] K. Marzullo and G. Neiger, Detection of global state predicates, Proceedings
of the 5th Workshop on Distributed Algorithms, LNCS 579, October 1991,
254–272.

[19] F. Mattern, Virtual time and global states of distributed systems, Proceedings
of the International Workshop on Parallel and Distributed Algorithms, October
1998, 215–226.

[20] F. Mattern, Algorithms for distributed termination detection, Distributed Com-
puting, 2, 1987, 161–175.

[21] A. Pnueli, The temporal logic of programs, Proceedings of the IEEE Symposium
on Foundations of Computer Science, 1977, 46–57.

[22] S. Venkatesan and B. Dathan, Testing and debugging distributed programs
using global predicates, IEEE Transactions on Software Engineering, 21(2),
1995, 163–177.

C H A P T E R

12 Distributed shared memory

12.1 Abstraction and advantages

Distributed shared memory (DSM) is an abstraction provided to the
programmer of a distributed system. It gives the impression of a single
monolithic memory, as in traditional von Neumann architecture. Program-
mers access the data across the network using only read and write primitives,
as they would in a uniprocessor system. Programmers do not have to deal
with send and receive communication primitives and the ensuing complexity
of dealing explicitly with synchronization and consistency in the message-
passing model. The DSM abstraction is illustrated in Figure 12.1. A part of
each computer’s memory is earmarked for shared space, and the remainder is
private memory. To provide programmers with the illusion of a single shared
address space, a memory mapping management layer is required to manage
the shared virtual memory space.

DSM has the following advantages:

1. Communication across the network is achieved by the read/write abstrac-
tion that simplifies the task of programmers.

2. A single address space is provided, thereby providing the possibility of
avoiding data movement across multiple address spaces, and simplify-
ing passing-by-reference and passing complex data structures containing
pointers.

3. If a block of data needs to be moved, the system can exploit locality of
reference to reduce the communication overhead.

4. DSM is often cheaper than using dedicated multiprocessor systems,
because it uses simpler software interfaces and off-the-shelf hardware.

5. There is no bottleneck presented by a single memory access bus.
6. DSM effectively provides a large (virtual) main memory.
7. DSM provides portability of programs written using DSM. This portability

arises due to a common DSM programming interface, which is independent
of the operating system and other low-level system characteristics.

410

411 12.1 Abstraction and advantages

Shared virtual memory

Memory
manager

Memory
manager

Memory
manager

CPU CPU CPU
Memory Memory Memory

Although a familiar (i.e., read/write) interface is provided to the pro-
grammer (see Figure 12.2) there is a catch to it. Under the covers, there
is inherently a distributed system and a network, and the data needs to be
shared in some fashion. There is no silver bullet. Moreover, with the pos-
sibility of data replication and/or the concurrent access to data, concurrency
control needs to be enforced. Specifically, when multiple processors wish
to access the same data object, a decision about how to handle concurrent
accesses needs to be made. As in traditional databases, if a locking mech-
anism based on read and write locks for objects is used, concurrency is
severely restrained, defeating one of the purposes of having the distributed
system. On the other hand, if concurrent access is permitted by different

Figure 12.1 Abstract view of
DSM.

Figure 12.2 Detailed
abstraction of DSM and
interaction with application
processes.

processors to different replicas, the problem of replica consistency (which is
a generalization of the problem of cache consistency in computer architecture
studies) needs to be addressed. The main point of allowing concurrent access
(by different processors) to the same data object is to increase throughput.
But in the face of concurrent access, the semantics of what value a read oper-
ation returns to the program needs to be specified. Programmers ultimately
need to understand this semantics, which may differ from the Von Neu-
mann semantics, because the program logic depends greatly on this seman-
tics. This compromises the assumption that the DSM is transparent to the
programmer.

Shared virtual memory

Memory
manager

Memory
manager

Memory
manager

Distributed shared memory

Process Process Process

response

invocation invocation

response

invocation

response

412 Distributed shared memory

Before examining the challenges in implementing replica coherency in
DSM systems, we look at its disadvantages:

1. Programmers are not shielded from having to know about various replica
consistency models and from coding their distributed applications accord-
ing to the semantics of these models.

2. As DSM is implemented under the covers using asynchronous message-
passing, the overheads incurred are at least as high as those of a message-
passing implementation. As such, DSM implementations cannot be more
efficient than asynchronous message-passing implementations. The gener-
ality of the DSM software may make it less efficient.

3. By yielding control to the DSM memory management layer, programmers
lose the ability to use their own message-passing solutions for accessing
shared objects. It is likely that the standard vanilla implementations of
DSM have a higher overhead than a programmer-written implementation
tailored for a specific application and system.

The main issues in designing a DSM system are the following:

• Determining what semantics to allow for concurrent access to shared
objects. The semantics needs to be clearly specified so that the programmer
can code his program using an appropriate logic.

• Determining the best way to implement the semantics of concurrent access
to shared data. One possibility is to use replication. One decision to be
made is the degree of replication – partial replication at some sites, or
full replication at all the sites. A further decision then is to decide on
whether to use read-replication (replication for the read operations) or
write-replication (replication for the write operations) or both.

• Selecting the locations for replication (if full replication is not used), to
optimize efficiency from the system’s viewpoint.

• Determining the location of remote data that the application needs to
access, if full replication is not used.

• Reducing communication delays and the number of messages that are
involved under the covers while implementing the semantics of concurrent
access to shared data.

There is a wide range of choices on how these issues can be addressed. In
part, the solution depends on the system architecture. Recall from Chapter 1
that DSM systems can range from tightly coupled (hardware and software)
multicomputers to wide-area distributed systems with heterogenous hardware
and software. There are four broad dimensions along which DSM systems
can be classified and implemented:

• Whether data is replicated or cached.
• Whether remote access is by hardware or by software.
• Whether the caching/replication is controlled by hardware or software.
• Whether the DSM is controlled by the distributed memory managers, by

the operating system, or by the language runtime system.

413 12.2 Memory consistency models

Table 12.1 Comparison of DSM systems (adapted from [29]).

Type of DSM Examples Management Caching Remote access

Single-bus multiprocessor Firefly, Sequent by MMU hardware control by hardware
Switched multiprocessor Alewife, Dash by MMU hardware control by hardware
NUMA system Butterfly, CM* by OS software control by hardware
Page-based DSM Ivy, Mirage by OS software control by software
Shared variable DSM Midway, Munin by language software control by software

runtime system
Shared object DSM Linda, Orca by language software control by software

runtime system

The various options for each of these four dimensions, and their comparison,
are shown in Table 12.1, as adapted from [29].

Figure 12.3 Sequential
invocations and responses in a
DSM system, without any
pipelining.

12.2 Memory consistency models

Memory coherence is the ability of the system to execute memory operations
correctly. Assume n processes and si memory operations per process Pi. Also
assume that all the operations issued by a process are executed sequentially
(that is, pipelining is disallowed), as shown in Figure 12.3. Observe that there
are a total of

�s1+ s2+

 + sn�!/�s1!s2!

 sn!�

possible permutations or interleavings of the operations issued by the pro-
cesses. The problem of ensuring memory coherence then becomes the problem
of identifying which of these interleavings are “correct,” which of course
requires a clear definition of “correctness.” The memory consistency model
defines the set of allowable memory access orderings. While a traditional
definition of correctness says that a correct memory execution is one that
returns to each Read operation, the value stored by the most recent Write
operation, the very definition of “most recent” becomes ambigious in the
presence of concurrent access and multiple replicas of the data item. Thus,
a clear definition of correctness is required in such a system; the objective
is to disallow the interleavings that make no semantic sense, while not being
overly restrictive so as to permit a high degree of concurrency.

Process

Local
memory manager

opkop1 op2 op3

response
invocation invocation

response
invocation

response
invocation

response

414 Distributed shared memory

The DSM system enforces a particular memory consistency model; pro-
grammers write their programs keeping in mind the allowable interleavings
permitted by that specific memory consistency model. A program written for
one model may not work correctly on a DSM system that enforces a different
model. The model can thus be viewed as a contract between the DSM system
and the programmer using that system. We now consider six consistency
models, which are related as shown in Figure 12.8.

Notation A write of value a to variable x is denoted as Write(x,a). A read
of variable x that returns value a is denoted as Read(x,a). A subscript on
these operations is sometimes used to denote the processor that issues these
operations.

12.2.1 Strict consistency/atomic consistency/linearizability

The strictest model, corresponding to the notion of correctness on the tradi-
tional Von Neumann architecture or the uniprocessor machine, requires that
any Read to a location (variable) should return the value written by the most
recent Write to that location (variable). Two salient features of such a system
are the following: (i) a common global time axis is implicitly available in a
uniprocessor system; (ii) each write is immediately visible to all processes.
Adapting this correctness model to a DSM system with operations that can
be concurrently issued by the various processes gives the strict consistency
model, also known as the atomic consistency model. The model is more
formally specified as follows [13, 21]:

1. Any Read to a location (variable) is required to return the value written
by the most recent Write to that location (variable) as per a global time
reference.
For operations that do not overlap as per the global time reference, the
specification is clear. For operations that overlap as per the global time
reference, the following further specifications are necessary.

2. All operations appear to be executed atomically and sequentially.
3. All processors see the same ordering of events, which is equivalent to the

global-time occurrence of non-overlapping events.

An alternate way of specifying this consistency model is in terms of the
“invocation” and “response” to each Read and Write operation, as shown
in Figure 12.3. Recall that each operation [13] takes a finite time interval
and hence different operations by different processors can overlap in time.
However, the invocation and the response to each invocation can both be
separately viewed as being atomic events. An execution sequence in global
time is viewed as a sequence Seq of such invocations and responses. Clearly,
Seq must satisfy the following conditions:

415 12.2 Memory consistency models

• (Liveness:) Each invocation must have a corresponding response.
• (Correctness:) The projection of Seq on any processor i, denoted Seqi,

must be a sequence of alternating invocations and responses if pipelining
is disallowed.

Despite the concurrent operations, a linearizable execution needs to generate
an equivalent global order on the events that is a permutation of Seq, satisfying
the semantics of linearizability. More formally, a sequence Seq of invocations
and responses is linearizable (LIN) if there is a permutation Seq′ of adjacent
pairs of corresponding �invoc� resp� events satisfying:

1. For every variable v, the projection of Seq′ on v, denoted Seq′v, is such
that every Read (adjacent �invoc� resp� event pair) returns the most recent
Write (adjacent �invoc� resp� event pair) that immediately preceded it.

2. If the response op1�resp� of operation op1 occurred before the invocation
op2�invoc� of operation op2 in Seq, then op1 (adjacent �invoc� resp�
event pair) occurs before op2 (adjacent �invoc� resp� event pair) in Seq′.

Condition 1 specifies that every processor sees a common order Seq′ of
events, and that in this order, the semantics is that each Read returns the
most recent completed Write value. Condition 2 specifies that the common
order Seq′ must satisfy the global time order of events, viz., the order of
non-overlapping operations in Seq must be preserved in Seq′.

Examples Figure 12.4 shows three executions:

• Figure 12.4(a) The execution is not linearizable because although the Read
by P2 begins after Write�x�4�, the Read returns the value that existed before
the Write. Hence, a permutation Seq′ satisfying the condition 2 above on
global time order does not exist.

• Figure 12.4(b) The execution is linearizable. The global order of operations
(corresponding to �invocation, response� pairs in Seq′), consistent with the
real-time occurrence, is: Write�y�2�, Write�x�4�, Read�x�4�, Read�y�2�. This
permutation Seq′ satisfies conditions 1 and 2.

• Figure 12.4(c) The execution is not linearizable. The two dependencies:
Read�x�0� before Write�x�4�, and Read�y�0� before Write�x�2� cannot both
be satisfied in a global order while satisfying the local order of operations at
each processor. Hence, there does not exist any permutation Seq′ satisfying
conditions 1 and 2.

Implementations
Implementing linearizability is expensive because a global time scale needs
to be simulated. As all processors need to agree on a common order, the
implementation needs to use total order. For simplicity, we assume full repli-
cation of each data item at all the processors. Hence, total ordering needs
to be combined with a broadcast. Algorithm 12.1 gives the implementation

416 Distributed shared memory

Figure 12.4 Examples to
illustrate definitions of
linearizability and sequential
consistency. The initial values
of variables are zero.

(b) Sequentially consistent and linearizable

(c) Not sequentially consistent (and hence not linearizable)

(a) Sequentially consistent but not linearizable

P1

P2

P1

P2

P1

P2

Read(y, 2)

Read(y, 2)

Read(y, 0)

Read(x, 4)

Read(x, 0)

Read(x, 0)

Write(x, 4)

Write(x, 4)

Write(x, 4)

Write(y, 2)

Write(y, 2)

Write(y, 2)

assuming the existence of a total order broadcast primitive that broadcasts to
all processors including the sender. Hence, the memory manager software has
to be placed between the application above it and the total order broadcast
layer below it.

(shared var)
int: x;

(1) When the memory manager receives a Read or Write from application:
(1a) total_order_broadcast the Read or Write request to all processors;
(1b) await own request that was broadcast;
(1c) perform pending response to the application as follows
(1d) case Read: return value from local replica;
(1e) case Write: write to local replica and return ack to application.

(2) When the memory manager receives a total_order_broadcast(Write,
x, val) from network:

(2a) write val to local replica of x.

(3) When the memory manager receives a total_order_broadcast(Read,
x) from network:

(3a) no operation.

Algorithm 12.1 Implementing linearizability (LIN) using total order broadcasts [6]. Code shown is for
Pi , 1 ≤ i ≤ n.

Although Algorithm 12.1 appears simple, it is also subtle. The total order
broadcast ensures that all processors see the same order:

• For two non-overlapping operations at different processors, by the very
definition of non-overlapping, the response to the former operation pre-
cedes the invocation of the latter in global time.

• For two overlapping operations, the total order ensures a common view
by all processors.

417 12.2 Memory consistency models

Figure 12.5 A violation of
linearizability (LIN) if Read
operations do not participate
in the total order broadcast [6].

total order
broadcast

Pi

Pj

Pk

Write(x, 4)

Read(x, 0)

Read(x, 4)

For a Read operation, when the memory managers systemwide receive the
total order broadcast, they do not perform any action. Why is the broadcast
then necessary? The reason is this. If Read operations do not participate in
the total order broadcasts, they do not get totally ordered with respect to the
Write operations as well as with respect to the other Read operations. This
can lead to a violation of linearizability, as shown in Figure 12.5. The Read
by Pk returns the value written by Pi. The later Read by Pj returns the initial
value of 0. As per the global time ordering requirement of linearizability, the
Read by Pj that occurs after the Read by Pk must also return the value 4.
However, that is not the case in this example, wherein the Read operations
do not participate in the total order broadcast.

12.2.2 Sequential consistency

Linearizability or strict/atomic consistency is difficult to implement because
the absence of a global time reference in a distributed system necessitates that
the time reference has to be simulated. This is very expensive. Programmers
can deal with weaker models. The first weaker model, that of sequential con-
sistency (SC) was proposed by Lamport [19] and uses logical time reference
instead of the global time reference.

Sequential consistency is specified as follows:

• The result of any execution is the same as if all operations of the processors
were executed in some sequential order.

• The operations of each individual processor appear in this sequence in the
local program order.

Although any possible interleaving of the operations from the different pro-
cessors is possible, all the processors must see the same interleaving. In this
model, even if two operations from different processors (on the same or dif-
ferent variables) do not overlap in a global time scale, they may appear in
reverse order in the common sequential order seen by all the processors.

More formally [13], a sequence Seq of invocation and response events
is sequentially consistent if there is a permutation Seq′ of adjacent pairs of
corresponding �invoc� resp� events satisfying:

1. For every variable v, the projection of Seq′ on v, denoted Seq′v, is such
that every Read (adjacent �invoc� resp� event pair) returns the most recent
Write (adjacent �invoc� resp� event pair) that immediately preceded it.

418 Distributed shared memory

2. If the response op1�resp� of operation op1 at process Pi occurred before
the invocation op2�invoc� of operation op2 by process Pi in Seq, then
op1 (adjacent �invoc� resp� event pair) occurs before op2 (adjacent
�invoc� resp� event pair) in Seq′.

Condition 1 is the same as that for linearizability. Condition 2 differs from
that for linearizability. It specifies that the common order Seq′ must satisfy
only the local order of events at each processor, instead of the global order
of non-overlapping events. Hence the order of non-overlapping operations
issued by different processors in Seq need not be preserved in Seq′.

Examples Three examples are considered in Figure 12.4:

• Figure 12.4(a) The execution is sequentially consistent. The global order
Seq′ is: Write�y�2�, Read�x�0�, Write�x�4�, Read�y�2�.

• Figure 12.4(b) As the execution is linearizable (seen in Section 12.2.1), it is
also sequentially consistent. The global order of operations (corresponding to
�invocation, response� pairs in Seq′), consistent with the real-time occurrence,
is: Write�y�2�, Write�x�4�, Read�x�4�, Read�y�2�.

• Figure 12.4(c) The execution is not sequentially consistent (and hence
not linearizable). The two dependencies: Read�x�0� before Write�x�4�, and
Read�y�0� before Write�x�2� cannot both be satisfied in a global order while
satisfying the local order of operations at each processor. Hence, there does
not exist any permutation Seq′ satisfying conditions 1 and 2.

Implementations
As sequential consistency (SC) is less restrictive than linearizability (LIN),
it should be easier to implement it. As all processors are required to see the
same global order, but global time ordering need not be preserved across
processes, it is sufficient to use total order broadcasts for the Write operations
only. In the simplified algorithm, no total order broadcast is required for Read
operations, because:

1. all consecutive operations by the same processor are ordered in the same
order because pipelining is not used;

2. Read operations by different processors are independent of each other
and need to be ordered only with respect to the Write operations in the
execution.

In Exercise 12.1, you will be asked to reason this more thoroughly. Two
algorithms for SC by Attiya and Welch [6] that exhibit a trade-off of the
inhibition of Read versus Write operations are given next.

419 12.2 Memory consistency models

(shared var)
int: x;
(1) When the memory manager at Pi receives a Read or Write from

application:
(1a) case Read: return value from local replica;
(1b) case Write(x,val): total_order_broadcasti(Write(x, val)) to all

processors including itself.

(2) When the memory manager at Pi receives a total_order_broadcastj
(Write, x, val) from network:

(2a) write val to local replica of x;
(2b) if i= j then return acknowledgement to application.

Algorithm 12.2 Implementing sequential consistency (SC) using local Read operations [6]. Code
shown is for Pi , 1 ≤ i ≤ n.

Local-read algorithm
The first algorithm for SC, given in Algorithm 12.2, is a direct simplification
of the algorithm for linearizability, given in Algorithm 12.1. In the algorithm,
a Read operation completes atomically, whereas a Write operation does not.
Between the invocation of a Write by Pi (line 1b) and its acknowledgement
(lines 2a, 2b), there may be multiple Write operations initiated by other
processors that take effect at Pi (line 2a). Thus, a Write issued locally has
its completion locally delayed. Such an algorithm is acceptable for Read-
intensive programs.

Local-write algorithm
Algorithm 12.3 does not delay acknowledgement of Writes. For Write-
intensive programs, it is desirable that a locally issued Write gets acknowl-
edged immediately (as in lines 2a–2c), even though the total order broadcast
for the Write, and the actual update for the Write may not go into effect by
updating the variable at the same time (line 3a). The algorithm achieves this
at the cost of delaying a Read operation by a processor until all previously
issued local Write operations by that same processor have locally gone into
effect (i.e., previous Writes issued locally have updated their local variables
being written to). The variable counter is used to track the number of Write
operations that have been locally initiated but not completed at any time. A
Read operation completes only if there are no prior locally initiated Write
operations that have not written to their variables (line 1a), i.e., there are
no pending locally initiated Write operations to any variable. Otherwise, a
Read operation is delayed until after all previously initiated Write operations
have written to their local variables (lines 3b–3d), which happens after the
total order broadcasts associated with the Write have delivered the broadcast
message locally.

420 Distributed shared memory

(shared var)
int: x;
(1) When the memory manager at Pi receives a Read(x) from application:
(1a) if counter = 0 then
(1b) return x
(1c) else keep the Read pending.

(2) When the memory manager at Pi receives a Write(x,val) from
application:

(2a) counter←− counter+1;
(2b) total_order_broadcasti Write(x� val);
(2c) return acknowledgement to the application.

(3) When the memory manager at Pi receives a total_order_broadcastj
(Write, x, val) from network:

(3a) write val to local replica of x;
(3b) if i= j then
(3c) counter←− counter−1;
(3d) if (counter = 0 and any Reads are pending) then
(3e) perform pending responses for the Reads to the

application.

Algorithm 12.3 Implementing Sequential Consistency (SC) using local Write operations [6]. Code
shown is for Pi , 1 ≤ i ≤ n.

This algorithm performs fast (local) Writes and slow Reads. The algorithm
pipelines all Write updates issued by a processor. The Read operations have
to wait for all Write updates issued earlier by that processor to complete (i.e.,
take effect) locally before the value to be read is returned to the application.

12.2.3 Causal consistency

For the sequential consistency model, it is required that Write operations
issued by different processors must necessarily be seen in some common
order by all processors. This requirement can be relaxed to require only
that Writes that are causally related must be seen in that same order by all
processors, whereas “concurrent” Writes may be seen by different processors
in different orders. The resulting consistency model is the causal consistency
model, as defined by [4]. We have seen the definition of causal relationships
among events in a message-passing system. What does it mean for two Write
operations to be causally related?

The causality relation for shared memory systems is defined as follows:

• Local order At a processor, the serial order of the events defines the
local causal order.

421 12.2 Memory consistency models

• Inter-process order A Write operation causally precedes a Read oper-
ation issued by another processor if the Read returns a value written by
the Write.

• Transitive closure The transitive closure of the above two relations
defines the (global) causal order.

Figure 12.6 Examples to
illustrate definitions of
sequential consistency (SC),
causal consistency (CC), and
PRAM consistency. The initial
values of variables are zero.

Examples The examples in Figure 12.6 illustrate causal consistency:

• Figure 12.6(a) The execution is sequentially consistent (and hence causally
consistent). Both P3 and P4 see the operations at P1 and P2 in sequential order
and in causal order.

• Figure 12.6(b) The execution is not sequentially consistent but it is causally
consistent. Both P3 and P4 see the operations at P1 and P2 in causal order
because the lack of a causality relation between the Writes by P1 and by P2

allows the values written by the two processors to be seen in different orders
in the system. The execution is not sequentially consistent because there is
no global satisfying the contradictory ordering requirements set by the Reads
by P3 and by P4. What can be said if the two Read operations of P4 returned
7 first and then 4? (See Exercise 12.4.)

• Figure 12.6(c) The execution is not causally consistent because the second
Read by P4 returns 4 after P4 has already returned 7 in an earlier Read.

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4
(c) Not causally consistent but PRAM consistent

(a) Sequentially consistent and causally consistent

(b) Causally consistent but not sequentially consistent

W(x, 2) W(x, 4)

W(x, 2) W(x, 4)

W(x, 2) W(x, 4)

W(x, 7)

W(x, 7)

W(x, 7)

R(x, 4)

R(x, 4)

R(x, 2) R(x, 7)

R(x, 2)

R(x, 4)

R(x, 4)

R(x, 7)

R(x, 2)

R(x, 4)

R(x, 7)

R(x, 7)

R(x, 7)

R(x, 7)

422 Distributed shared memory

Implementation
We first examine the definition of sequential consistency. Even though all
processors only need to see some total order of the Write operations, observe
that if two Write operations are related by causality (i.e., the second Write
begins causally after a Read that reads the value written by the first Write),
then the order of the two Writes seen by all the processors also satisfies causal
order! In the implementation, even though a total order broadcast primitive
is used, observe that it implicitly provides causal ordering on all the Write
operations. Thus, due to the nature of the definition of causal ordering in
shared memory systems, a total order broadcast also provides causal order
broadcast, unlike the case for message-passing systems. (Exactly why is it so?)

In contrast to the SC requirement, causal consistency implicitly requires
only that causal order be provided. Thus, a causal order broadcast can be
used in the implementation. The details of the implementation are left as
Exercise 12.5.

12.2.4 PRAM (pipelined RAM) or processor consistency

Causal consistency requires all causally related Writes to be seen in the same
order by all processors. This may be viewed as being too restrictive for some
applications. A weaker form of consistency requires only that Write operations
issued by the same (any one) processor are seen by all other processors in
the same order that they were issued, but Write operations issued by different
processors may be seen in different orders by different processors. In relation
to the “causality” relation between operations, only the local causality relation,
as defined by the local order of Write operations, needs to be seen by other
processors. Hence, this form of consistency is termed processor consistency.
An equivalent name for this consistency model is pipelined RAM (PRAM),
to capture the behavior that all operations issued by any processor appear to
the other processors in a FIFO pipelined sequence. PRAM consistency was
defined by [25].

Examples

• In Figure 12.6(c), the execution is PRAM consistent (even though it is not
causally consistent) because (trivially) both P3 and P4 see the updates made
by P1 and P2 in FIFO order along the channels P1 to P3 and P2 to P3, and
along P1 to P4 and P2 to P4, respectively.

• While PRAM consistency is more permissive than causal consistency,
this model must be used with care by the programmer because it can
lead to rather unintuitive results. For example, examine the code in
Algorithm 12.4, where x and y are shared variables. It is possible that, on
a PRAM system, both processes P1 and P2 get killed. This can happen as
follows: (i) P1 writes 4 to x in line 1a and P2 writes 6 to y in line 2a at
about the same time; (ii) before these written values propagate to the other

423 12.2 Memory consistency models

processor, P1 reads y (as being 0) in line 1b and P2 reads x (as being 0) in
line 2b. Here, a Read (e.g., in lines 1b or 2b) can effectively “overtake” a pre-
ceding Write (of lines 2a or 1a, respectively) if the two accesses by the same
processor are to different locations. However, this would not be expected on
a conventional machine, where at most one process may get killed, depending
on the interleaving of the statements.

• The execution in Figure 12.7 (a) violates PRAM consistency. An explanation
is given in Section 12.2.5.

(shared variables)
int: x� y;

Process 1 Process 2

(1a) x←− 4; (2a) y←− 6;
(1b) if y = 0 then kill(P2). (2b) if x = 0 then kill(P1).

Algorithm 12.4 A counter-intuitive behavior of a PRAM-consistent program. The initial values of
variables are zero.

Implementations
PRAM consistency can be implemented using FIFO broadcast. The imple-
mentation details are left as Exercise 12.6.

12.2.5 Slow memory

The next weaker consistency model is that of slow memory [14]. This model
represents a location-relative weakening of the PRAM model. In this model,
only all Write operations issued by the same processor and to the same
memory location must be observed in the same order by all the processors.

Examples The examples in Figure 12.7 illustrate slow memory consistency:

• Figure 12.7(a) The updates to each of the variables are seen pipelined
separately in a FIFO fashion. The “x” pipeline from P1 to P2 is slower than the
“y” pipeline from P1 to P2. Thus, the overtaking effect is allowed. However,
PRAM consistency is violated because the FIFO property is violated over the
single common “pipeline” from P1 to P2 – the update to y is seen by P2 but
the much older value of x = 0 is seen by P2 later.

• Figure 12.7(b) Slow memory consistency is violated because the FIFO
property is violated for the pipeline for variable x. “x = 7” is seen by P2

before it sees “x= 0” and “x= 2” although 7 was written to x after the values
of 0 and 2.

424 Distributed shared memory

Figure 12.7 Examples to
illustrate definitions of PRAM
consistency and slow memory.
The initial values of variables
are zero.

W(y, 4)

R(y, 4)

W(x, 7)

R(x, 7)R(x, 0)

(a) Slow memory but not PRAM consistent

W(x, 2)

R(y, 4)

W(x, 7)

(b) Violation of slow memory consistency

R(x, 7) R(x, 0) R(x, 2)

R(x, 0)

W(y, 4)

W(x, 2)
P1

P2

P1

P2

Implementations
Slow memory can be implemented using a broadcast primitive that is weaker
than even the FIFO broadcast. What is required is a FIFO broadcast per vari-
able in the system, i.e., the FIFO property should be satisfied only for updates
to the same variable. The implementation details are left as Exercise 12.7.

Figure 12.8 A strict hierarchy
of the memory consistency
models.

12.2.6 Hierarchy of consistency models

Based on the definitions of the memory consistency models seen so far, there
exists a hierarchy among the models, as depicted in Figure 12.8.

12.2.7 Other models based on synchronization instructions

We have seen several popular consistency models. Based on the consistency
model, the behavior of the DSM differs, and the programmer’s logic therefore
depends on the underlying consistency model. It is also possible that newer
consistency models may arise in the future.

The consistency models seen so far apply to all the instructions in the dis-
tributed program. We now briefly mention some other consistency models that
are based on a different principle, namely that the consistency conditions apply
only to a set of distinguished “synchronization” or “coordination” instructions.
These synchronization instructions are typically from some run-time library.
A common example of such a statement is the barrier synchronization. Only

No consistency model

Pipelined RAM (PRAM)

Slow memory

Causal consistency

Sequential consistency

Linearizability/
atomic consistency/
strict consistency

425 12.2 Memory consistency models

the synchronization statements across the various processors must satisfy the
consistency conditions; other program statements between synchronization
statements may be executed by the different processors without any con-
ditions. Examples of consistency models based on this principle are: entry
consistency, weak consistency, and release consistency. The synchronization
statements are inserted in the program based on the semantics of the types of
accesses. For example, accesses may be conflicting (to the same variable) or
non-conflicting (to different variables), conflicting accesses may be compet-
ing (a Read and a Write, or two Writes) or non-conflicting (two Reads), and
so on. We outline the definitions of these consistency models but skip further
implementation details of such models.

Weak consistency [11]
Some applications do not require even seeing all Writes, let alone seeing them
in some order. Consider the case of a process executing a CS, repeatedly
reading and writing some variables in a loop. Other processes are not supposed
to read or write these variables until the first process has exited its CS.
However, if the memory has no way of knowing when a process is in a CS
and when it is not, the DSM has to propagate all Writes to all memories in
the usual way. But by using synchronization variables, processes can deduce
whether the CS is occupied.

A synchronization variable in this model has the following semantics: it
is used to propagate all writes to other processors, and to perform local
updates with regard to changes to global data that occurred elsewhere in the
distributed system. When synchronization occurs, all Writes are propagated
to other processes, and all Writes done by others are brought locally. In an
implementation specifically for the CS problem, updates can be propagated
in the system only when the synchronization variable is accessed (indicating
an entry or exit into the CS).

Weak consistency (defined by [11]) has the following three properties
which guarantee that memory is consistent at the synchronization points:

• Accesses to synchronization variables are sequentially consistent.
• No access to a synchronization variable is allowed to be performed until

all previous writes have completed everywhere.
• No data access (either Read or Write) is allowed to be performed until all

previous accesses to synchronization variables have been performed.

An access to the synchronization variable forces Write operations to complete,
and effectively flushes the pipelines. Before reading shared data, a process
can perform synchronization to ensure it accesses the most recent data.

Release consistency [12]
The drawback of weak consistency is that when a synchronization variable is
accessed, the memory does not know whether this is being done because the

426 Distributed shared memory

process is finished writing the shared variables (exiting the CS) or about to
begin reading them (entering the CS). Hence, it must take the actions required
in both the following cases:

1. Ensuring that all locally initiated Writes have been completed, i.e., propa-
gated to all other processes.

2. Ensuring that all Writes from other machines have been locally reflected.

If the memory could differentiate between entering the CS and leaving the CS,
a more efficient implementation is possible. To provide this information, two
kinds of synchronization variables or operations are needed instead of one.

Release consistency provides these two kinds. Acquire accesses are used
to tell the memory system that a critical region is about to be entered. Hence,
the actions for case 2 above need to be performed to ensure that local replicas
of variables are made consistent with remote ones. Release accesses say that
a critical region has just been exited. Hence, the actions for case 1 above
need to be performed to ensure that remote replicas of variables are made
consistent with the local ones that have been updated. The Acquire and
Release operations can be defined to apply to a subset of the variables. The
accesses themselves can be implemented either as ordinary operations on
special variables or as special operations.

If the semantics of a CS is not associated with the Acquire and Release
operations, then the operations effectively provide for barrier synchronization.
Until all processes complete the previous phase, none can enter the next
phase.

The following rules are followed by the protected variables in the general
case [12]:

• All previously initiated Acquire operations must complete successfully
before a process can access a protected shared variable.

• All accesses to a protected shared variable must complete before a Release
operation can be performed.

• The Acquire and Release operations effectively follow the PRAM consis-
tency model.

A relaxation of the release consistency model is called the lazy release
consistency model. Rather than propagating the updated values throughout the
system as soon as a process leaves a critical region (or enters the next phase in
the case of barrier synchronization), the updated values are propagated to the
rest of the system only on demand, i.e., only when they are needed. Changes
to shared data are only communicated when an Acquire access is performed
by another process.

Entry consistency [9]
Entry consistency requires the programmer to use Acquire and Release at the
start and end of each CS, respectively. Unlike release consistency, however,

427 12.3 Shared memory mutual exclusion

entry consistency requires each ordinary shared variable to be associated with
some synchronization variable such as a lock or barrier. When an Acquire is
performed on a synchronization variable, only access to those ordinary shared
variables that are guarded by that synchronization variable is regulated.

12.3 Shared memory mutual exclusion

Operating systems have traditionally dealt with multi-process synchronization
using algorithms based on first principles (e.g., the well-known bakery algo-
rithm), high-level constructs such as semaphores and monitors, and special
“atomically executed” instructions supported by special-purpose hardware
(e.g., Test&Set, Swap, and Compare&Swap [17]). These algorithms are appli-
cable to all shared memory systems. In this section, we will review the bakery
algorithm, which requires O�n� accesses in the entry section, irrespective
of the level of contention. We will then study fast mutual exclusion, which
requires O�1� accesses in the entry section in the absence of contention. This
algorithm also illustrates an interesting technique in resolving concurrency.
As hardware primitives have the in-built atomicity that helps to easily solve
the mutual exclusion problem, we will then examine mutual exclusion based
on these primitives.

12.3.1 Lamport’s bakery algorithm

Lamport proposed the classical bakery algorithm for n-process mutual exclu-
sion in shared memory systems [18]. The algorithm is so called because it
mimics the actions that customers follow in a bakery store. A process wanting
to enter the critical section picks a token number that is one greater than the
elements in the array choosing�1

 n�. Processes enter the critical section
in the increasing order of the token numbers. In case of concurrent accesses
to choosing by multiple processes, the processes may have the same token
number. In this case, a unique lexicographic order is defined on the tuple
�token�pid�, and this dictates the order in which processes enter the critical
section. The algorithm for process i is given in Algorithm 12.5. The algorithm
can be shown to satisfy the three requirements of the critical section problem:
(i) mutual exclusion, (ii) bounded waiting, and (iii) progress.

In the entry section, a process chooses a timestamp for itself, and resets it
to 0 in the exit section. In lines 1a–1c, each process chooses a timestamp for
itself, as the max of the latest timestamps of all processes, plus one. These
steps are non-atomic; thus multiple processes could be choosing timestamps
in overlapping durations. When process i reaches line 1d, it has to check the
status of each other process j, to deal with the effects of any race conditions
in selecting timestamps. In lines 1d–1f, process i serially checks the status
of each other process j. If j is selecting a timestamp for itself, j’s selection

428 Distributed shared memory

interval may have overlapped with that of i, leading to an unknown order
of timestamp values. Process i needs to make sure that any other process j
(j < i) that had begun to execute line 1b concurrently with itself and may still
be executing line 1b does not assign itself the same timestamp. Otherwise
mutual exclusion could be violated as i would enter the CS, and subsequently,
j, having a lower process identifier and hence a lexicographically lower
timestamp, would also enter the CS. Hence, i waits for j’s timestamp to
stabilize, i.e., choosing�j� to be set to false. Once j’s timestamp is stabilized,
i moves from line 1e to line 1f. Either j is not requesting (in which case j’s
timestamp is 0) or j is requesting. Line 1f determines the relative priority
between i and j. The process with a lexicographically lower timestamp has
higher priority and enters the CS; the other process has to wait (line 1g).
Hence, mutual exclusion is satisfied.

Bounded waiting is satisfied because each other process j can “overtake”
process i at most once after i has completed choosing its timestamp. The
second time j chooses a timestamp, the value will necessarily be larger than
i’s timestamp if i has not yet entered its CS.

Progress is guaranteed because the lexicographic order is a total order and
the process with the lowest timestamp at any time in the loop (lines 1d–1g)
is guaranteed to enter the CS.

(shared vars)
boolean: choosing�1

 n�;
integer: timestamp�1

 n�;

repeat

(1) Pi executes the following for the entry section:
(1a) choosing�i�←− 1;
(1b) timestamp�i�←−maxk∈�1

 n��timestamp�k��+1;
(1c) choosing�i�←− 0;
(1d) for count = 1 to n do
(1e) while choosing�count� do no-op;
(1f) while timestamp�count� �= 0 and �timestamp�count�� count�

< �timestamp�i�� i� do
(1g) no-op.
(2) Pi executes the critical section (CS) after the entry section
(3) Pi executes the following exit section after the CS:
(3a) timestamp�i�←− 0.
(4) Pi executes the remainder section after the exit section
until false;

Algorithm 12.5 Lamport’s n-process bakery algorithm for shared memory mutual exclusion. Code
shown is for process Pi , 1 ≤ i ≤ n.

429 12.3 Shared memory mutual exclusion

Attempts to improve the bakery algorithm have lead to several important
results:

• Space complexity: A lower bound of n registers, specifically, the
timestamp array, has been shown for the shared memory critical section
problem [10]. Thus, one cannot hope to have a more space-efficient
algorithm for distributed shared memory mutual exclusion.

• Time complexity: In many environments, the level of contention may
be low. The O�n� overhead of the entry section does not scale well for
such environments. This concern is addressed by the field of fast mutual
exclusion that aims to have O�1� time overhead for the entry and exit
sections of the algorithm, in the absence of contention. Although this
algorithm guarantees mutual exclusion and progress, unfortunately, this
fast algorithm has a price – in the worst case, it does not guarantee
bounded delay. Next, we will study Lamport’s algorithm for fast mutual
exclusion in asynchronous shared memory systems. This algorithm is
notable in that it is the first algorithm for fast mutual exclusion, and
uses the asynchronous shared memory model. Further, it illustrates an
important technique for resolving contention. The worst-case unbounded
delay in the presence of persisting contention has been addressed
subsequently, by using a timed model of execution, wherein there is an
upper bound on the time it takes to execute any step. We will not discuss
mutual exclusion under the timed model of execution.

12.3.2 Lamport’s WRWR mechanism and fast mutual exclusion

Lamport’s fast mutual exclusion algorithm [23] is given in Algorithm 12.6.
The algorithm illustrates an important technique – the �W −R−W −R�
sequence that is a necessary and sufficient sequence of operations to check for
contention and to ensure safety in the entry section, using only two registers.

Lines 1b, 1c, 1g , and 1h represent a basic �W�x�−R�y�−W�y�−R�x��
sequence whose necessity in identifying a minimal sequence of operations
for fast mutual exclusion is justified as follows:

1. The first operation needs to be a Write, say to variable x. If it were a
Read, then all contending processes could find the value of the variable
even outside the entry section.

2. The second operation cannot be a Write to another variable, for that could
equally be combined with the first Write to a larger variable. The second
operation should not be a Read of x because it follows Write of x and if
there is no interleaved operation from another process, the Read does not
provide any new information. So the second operation must be a Read of
another variable, say y.

3. The sequence must also contain Read(x) and Write(y) because there is no
point in reading a variable that is not written to, or writing a variable that
is never read.

430 Distributed shared memory

(shared variables among the processes)
integer: x� y; // shared register initialized
boolean b�1

 n�; // flags to indicate interest in critical section

repeat
(1) Pi (1≤ i ≤ n) executes entry section:
(1a) b�i�←− true;
(1b) x←− i;
(1c) if y �= 0 then
(1d) b�i�←− false;
(1e) await y = 0;
(1f) goto (1a);
(1g) y←− i;
(1h) if x �= i then
(1i) b�i�←− false;
(1j) for j = 1 to n do
(1k) await ¬b�j�;
(1l) if y �= i then
(1m) await y = 0;
(1n) goto (1a);
(2) Pi (1≤ i ≤ n) executes critical section:
(3) Pi (1≤ i ≤ n) executes exit section:
(3a) y←− 0;
(3b) b�i�←− false;
forever.

Algorithm 12.6 Lamport’s deadlock-free fast mutual exclusion solution, using ��n� registers. Code is
for process Pi , where 1 ≤ i ≤ n.

4. The last operation in the minimal sequence of the entry section must be a
Read, as it will help determine whether the process can enter CS. So the
last operation should be Read(x), and the second-last operation should be
the Write(y).

In the absence of contention, each process writes its own i.d. to x and
then reads y. Then finding that y has its initial value, the process writes its
own i.d. to y and then reads x. Finding x to still be its own i.d., it enters
CS. Correctness needs to be shown in the presence of contention – let us
discuss this after considering the structure of the remaining entry and exit
section code.

In the exit section, the process must do a Write to indicate its completion
of the CS. The Write cannot be to x, which is also the first variable written
in the entry section. So the operation must be Write�y�.

Now consider the sequence of interleaved operations by processes i, j, and
k in the entry section, as shown in Figure 12.9. Process i enters its critical

431 12.3 Shared memory mutual exclusion

Figure 12.9 An example
showing the need for a
boolean vector for fast mutual
exclusion.

Process Pi Process Pj Process Pk Variables
Wj�x� �x = j� y = 0�

Wi�x� �x = i� y = 0�
Ri �y� �x = i� y = 0�

Rj �y� �x = i� y = 0�
Wi�y� �x = i� y = i�

Wj�y� �x = i� y = j�
Ri �x� �x = i� y = j�

Wk�x� �x = k� y = j�
Rj �x� �x = k� y = j�

section, but there is no record of its identity or that it had written any variables
at all, because the variables it wrote (shown boldfaced above) have been
overwritten. In order that other processes can discover when (and who) leaves
the CS, there needs to be another variable that is set before the CS and reset
after the CS. This is the boolean, b�i�. Additionally, y needs to be reset on
exiting the CS.

The code in lines 1c–1f has the following use. If a process p finds y �= 0,
then another process has executed at least line 1g and not yet executed line
3a. So process p resets its own flag, and before retrying again, it awaits for
y = 0. If process p finds y = 0 in line 1c, it sets y = p in line 1g and checks if
x = p.

• If x= p, then no other process has executed line 1b, and any later process
would be blocked in the loop in lines 1c–1f now because y = p. Thus, if
x = p, process p can safely enter the CS.

• If x �= p, then another process, say q, has overwritten x in line 1b and
there is a potential race. Two broad cases are possible:

– Process q finds y �= 0 in line 1c. It resets its flag, and stays in the 1d–1f
section at least until p has exited the CS. Process p on the other hand
resets its own flag (line 1i) and waits for all other processes such as q
to reset their own flags. As process q is trapped in lines 1d–1f, process
p will find y = p in line 1l and enter the CS.

– Process q finds y = 0 in line 1c. It sets y to q in line 1g, and enters
the race, even closer to process p, which is at line 1h. Of the pro-
cesses such as p and q that contend at line 1h, there will be a unique
winner:

∗ If no other process r has since written to x in line 1b, the winner
is the process among p and q that executed line 1b last, i.e., wrote
its own i.d. to x. That winner will enter the CS directly from line
1h, whereas the losers will reset their own flags, await the winner to
exit and reset its flag, and also await other contenders at line 1h and
newer contenders to reset their own flags. The losers will compete
again from line 1a after the winner has reset y.

432 Distributed shared memory

∗ If some other process r has since written its i.d. to x in line 1b,
both p and q will enter code in lines 1i–1n. Both p and q reset
their flags, await for r, which will be trapped in lines 1d–1f to
reset its flag, and then both p and q check the value of y. Between
p and q, the process that last wrote to y in line 1g will become
the unique winner and enter the CS directly. The loser will then
await for the winner to reset y, and then compete again from
line 1a.

Thus, mutual exclusion is guaranteed, and progress is also guaranteed. How-
ever, a process may be starved, although with decreasing probability, as its
number of attempts increases.

12.3.3 Hardware support for mutual exclusion

Hardware support can allow for special instructions that perform two or more
operations atomically. Two such instructions, Test&Set and Swap [17], are
defined and implemented as shown in Algorithm 12.7. The atomic execu-
tion of two actions (a Read and a Write operation) can greatly simplify
a mutual exclusion algorithm, as seen from the mutual exclusion code in
Algorithm 12.8 and Algorithm 12.9, respectively. Algorithm 12.8 can lead
to starvation. Algorithm 12.9 is enhanced to guarantee bounded waiting by
using a “round-robin” policy to selectively grant permission when releasing
the critical section.

(shared variables among the processes accessing each of the different object
types)
register: Reg←− initial value; // shared register initialized
(local variables)
integer: old←− initial value; // value to be returned

(1) Test&Set(Reg) returns value:
(1a) old←− Reg;
(1b) Reg←− 1;
(1c) return(old).

(2) Swap(Reg, new) returns value:
(2a) old←− Reg;
(2b) Reg←− new;
(2c) return(old).

Algorithm 12.7 Definitions of synchronization operations Test&Set and Swap.

433 12.3 Shared memory mutual exclusion

(shared variables)
register: Reg←− false; // shared register initialized
(local variables)
integer: blocked←− 0; // variable to be checked before entering CS
repeat
(1) Pi executes the following for the entry section:
(1a) blocked←− true;
(1b) repeat
(1c) blocked←− Swap�Reg�blocked�;
(1d) until blocked = false;
(2) Pi executes the critical section (CS) after the entry section
(3) Pi executes the following exit section after the CS:
(3a) Reg←− false;
(4) Pi executes the remainder section after the exit section
until false;

Algorithm 12.8 Mutual exclusion using Swap. Code shown is for process Pi , 1 ≤ i ≤ n.

(shared variables)
register: Reg←− false; // shared register initialized
boolean: waiting�1

 n�;
(local variables)
integer: blocked←− initial value; // value to be checked before

// entering CS
repeat
(1) Pi executes the following for the entry section:
(1a) waiting�i�←− true;
(1b) blocked←− true;
(1c) while waiting�i� and blocked do
(1d) blocked←− Test&Set�Reg�;
(1e) waiting�i�←− false;
(2) Pi executes the critical section (CS) after the entry section
(3) Pi executes the following exit section after the CS:
(3a) next←− �i+1�modn;
(3b) while next �= i and waiting�next�= false do
(3c) next←− �next+1�modn;
(3d) if next = i then
(3e) Reg←− false;
(3f) else waiting�j�←− false;
(4) Pi executes the remainder section after the exit section
until false;

Algorithm 12.9 Mutual exclusion with bounded waiting, using Test&Set . Code shown is for process
Pi , 1 ≤ i ≤ n.

434 Distributed shared memory

12.4 Wait-freedom

Processes that interact with each other, whether by message passing or by
shared memory, need to synchronize their interactions. Traditional solutions to
synchronize asynchronous processes via shared memory objects (also called
concurrent objects) use solutions based on locking, busy waiting, critical
sections, semaphores, or conditional waiting. An arbitrary delay of a process or
its crash failure can prevent other processes from completing their operations.
This is undesirable.

Wait-freedom is a property that guarantees that any process can complete
any synchronization operation in a finite number of lower-level steps, irre-
spective of the execution speed of other processes [15,24]. More precisely, a
wait-free implementation of a concurrent object guarantees that any process
can complete an operation on it in a finite number of steps, irrespective of
whether other processes crash or encounter unexpected delays. Thus, pro-
cesses that crash, or encounter unexpected delays (such as delays due to high
processor load, swapping out of memory, or CPU schedulng policies) should
not delay other processes in a wait-free implementation of a concurrent object.

Not all synchronizations have wait-free solutions. As a trivial example, a
producer–consumer synchronization between two processes cannot be imple-
mented in a wait-free manner if the producer process crashes before posting
its value – the consumer is necessarily blocked. Nevertheless, the notion of
wait-freedom is an important concept in designing fault-tolerant systems and
algorithms whenever possible. An alternate view of wait-freedom in terms of
fault-tolerance is as follows:

• An f -resilient system is a system in which up to f of the n processes can
fail, and the other n− f processes can complete all their operations in a
finite number of steps, independent of the states of the f processes that
may fail.

• When f = n− 1, any process is guaranteed to be able to complete its
operations in a finite number of steps, independent of all other processes.
A process does not depend on other processes, and its execution is there-
fore said to be wait-free. Wait-freedom provides independence from the
behavior of other processes, and is therefore a very desirable property.

In the remainder of this chapter, which deals with shared register accesses,
only wait-free solutions are considered.

12.5 Register hierarchy and wait-free simulations

Observe from our analysis of DSM consistency models that an underlying
assumption was that any memory access takes a finite time interval, and
the operation, whether a Read or Write, takes effect at some point during

435 12.5 Register hierarchy and wait-free simulations

Figure 12.10 Examples to
illustrate definitions of safe,
regular, and atomic registers.
The regular lines assume a
SRSW register. If the dashed
line is also used, the register is
assumed to be SRMW.

Read32
(x, ?)Read22

(x, ?)Read12
(x, ?)

Write21
(x, 6)

Write13
(x, –6)

Write11
(x, 4)

P1

P2

P3

this time duration. In the face of concurrent accesses to a memory location,
hereafter called a register, we cannot predict the outcome. In particular,
in the face of a concurrent Read and Write operation, the value returned
by the Read is unpredictable. This observation is true even for a simpler
multiprocessor memory, without the context of a DSM. This observation led
to the research area that tried to define the properties of access orderings
for the most elementary memory unit. The access orderings depend on the
properties of the register. An implicit assumption is that of the availability of
global time. This is a reasonable assumption because we are studying access
to a single register. Whether that register value is replicated in the system
or not is a lower detail that is not relevant to the level of abstraction of this
analysis.

In keeping with the semantics of the Read and Write operations, the fol-
lowing register types have been identified by Lamport [20–22] to specify the
value returned to a Read in the face of a concurrent Write operation. For the
time being, we assume that there is a single reader process and a single writer
process.

• Safe register A Read operation that does not overlap with a Write opera-
tion returns the most recent value written to that register. A Read operation
that does overlap with a Write operation returns any one of the values that
the register could possibly contain at any time.
Consider the example of Figure 12.10, which shows several operations on
an integer-valued register. We consider two cases, without and with the
Write by P3:
– No Write by P3 If the register is safe, Read12 must return the value 4,

whereas Read22 and Read32 can return any possible integer (up to
MAXINT) because these operations overlap with a Write, and the value
returned is therefore ambiguous.

– Write by P3 Same as for the “no Write” case.
If multiple writers are allowed, or if Write operations are allowed to be
pipelined, then what defines the most recent value of the register in the face
of concurrent Write operations becomes complicated. We explicitly disal-
low pipelining in this model and analysis. In the face of Write operations
from different processors that overlap in time, the notion of a serialization
point is defined. Observe that each Write or Read operation has a finite
duration between its invocation and its response. In this duration, there is

436 Distributed shared memory

effectively a single time instant at which the operation takes effect. For
a Read operation, this instant is the one at which the instantaneous value
is selected to be returned. For a Write operation, this instant is the one at
which the value written is first “reflected” in the register. Using this notion
of the serialization point, the “most recent” operation is unambiguously
defined.

• Regular register In addition to being a safe register, a Read that is
concurrent with a Write operation returns either the value before the Write
operation, or the value written by the Write operation.
In the example of Figure 12.10, we consider the two cases, with and
without the Write by P3:

– No Write by P3 Read12 must return 4, whereas Read22 can return
either 4 or 6, and Read32 can also return either 4 or 6.

– Write by P3 Read12 must return 4, whereas Read22 can return either
4 or −6 or 6, and Read32 can also return either 4 or −6 or 6.

• Atomic register In addition to being a regular register, the register is
linearizable (defined in Section 12.2.1) to a sequential register.
In the example of Figure 12.10, we consider the two cases, with and
without the Write by P3:

– No Write by P3 Read12 must return 4, whereas Read22 can return
either 4 or 6. If Read22 returns 4, then Read32 can return either 4 or 6,
but if Read22 returns 6, then Read32 must also return 6.

– Write by P3 Read12 must return 4, whereas Read22 can return either
4 or −6 or 6, depending on the serialization points of the operations.

1. If Read22 returns 6 and the serialization point of Write13 precedes
the serialization point of Write21, then Read32 must return 6.

2. If Read22 returns 6 and the serialization point of Write21 precedes
the serialization point of Write13, then Read32 can return +6 or −6.

3. Cases (3) and (4) where Read22 returns −6 are similar to cases (1)
and (2).

The following properties, summarized in Table 12.2, characterize registers:

• whether the register is single-valued (boolean) or multi-valued
• whether the register is a single-reader (SR) or multi-reader (MR) register
• whether the register is a single-writer (SW) or multi-writer (MW) register
• whether the register is safe, regular, or atomic

The above characteristics lead to a hierarchy of 24 register types, with the
most elementary being the boolean SRSW safe register and the most complex
being the multi-valued MRMW atomic register.

A study of register construction deals with designing the more complex
registers using simpler registers. Such constructions allow us to construct

437 12.5 Register hierarchy and wait-free simulations

Table 12.2 Classification of registers by type,
value, writing access, and reading access. The
strength of the register increases down each
column.

Type Value Writing Reading

safe binary single-writer single-reader
regular integer multi-writer multi-reader
atomic

Figure 12.11 Register
simulations.

Read from R

Write to R

Writes to individual Ri

RqR1

R

Reads from individual Ri

any register type from the most elementary register – the boolean SRSW
safe register. We will study such constructions by assuming the following
convention: R1

 Rq are q registers that are used to construct a stronger
register R, as shown in Figure 12.11. We assume n processes exist; note that
for various constructions, q may be different from n.

Although the traditional memory architecture, based on serialized access
via memory ports to a memory location, does not require such an elabo-
rate classification, the bigger picture needs to be kept in mind. In addition
to illustrating algorithmic design techniques, this study paves the way for
accommodating newer technologies such as quantum computing and DNA
computing for constructing system memory.

12.5.1 Construction 1: SRSW safe to MRSW safe

Algorithm 12.10 gives the construction of a MRSW safe register R using
only SRSW safe registers [21]. Assume the single writer is process P0 and
the n reader processes are P1 to Pn. Each of the n processes Pi can read only
SRSW register Ri. As multiple readers are not allowed to access the same
register, in essence, the data needs to be replicated. So in the construction,
the writer P0 writes the same value to the n registers. Register Ri is read by
Pi. In Figure 12.11, the value of q would hence be n. When a Read by Pi and
a Write by P0 do not overlap their access to Ri, the Read obtains the correct
value. When a Read by Pi and a Write by P0 overlap their access to Ri, as Ri
is a safe register, Pi reads a legitimate value from Ri.

438 Distributed shared memory

Complexity
This construction has a space complexity of n times the size of a single
register, which may be either binary or integer-valued. The time complexity
is n steps.

(shared variables)
SRSW safe registers R1

 Rn←− 0; // Ri is readable by Pi, writable

// by P0

(1) Write�R� val� executed by single writer P0

(1a) for all i ∈ 	1

 n� do
(1b) Ri←− val.

(2) Readi�R� val� executed by reader Pi, 1≤ i ≤ n
(2a) val←− Ri
(2b) return�val�.

Algorithm 12.10 Construction 1: SRSW safe register to MRSW safe register R. This construction can
also be used for SRSW regular register to MRSW regular register R.

12.5.2 Construction 2: SRSW regular to MRSW regular

This construction is identical to construction 1 (Algorithm 12.10) except that
regular registers are used instead of safe registers [21]. When a Read by Pi
and a Write by P0 do not overlap their access to Ri, the Read obtains the
correct value. When a Read by Pi and a Write by P0 overlap their access to
Ri, as Ri is a regular register, Pi reads from Ri either the earlier value or the
value being written.

Complexity
This construction has a space complexity of n times the size of a single
register, which may be either binary or integer-valued. The time complexity
is n steps.

12.5.3 Construction 3: boolean MRSW safe to integer-valued MRSW safe

Algorithm 12.11 gives the construction of an integer-valued MRSW safe reg-
ister R [21]. Assume the single writer is process P0 and the n reader processes
are P1 to Pn. The construction can use only boolean MRSW registers – to
construct an integer register of size m, at least log�m� boolean registers are
necessary. So in the construction, the writer P0 writes the value in its binary
notation to the log�m� registers R1 to Rlog�m�. Similarly, any reader reads
registers Ri to Rlog�m�. When a Read by Pi and a Write by P0 do not overlap,
the Read obtains the correct value. When a Read by Pi and a Write by P0

439 12.5 Register hierarchy and wait-free simulations

overlap their access to the registers, as the Ri (i= 1 to log�m�) registers are
safe, Pi reads a legitimate value.

Complexity
This construction has a space complexity of O�log�m��. The time complexity
is O�log�m�� steps.

(shared variables)
boolean MRSW safe registers R1

 Rlog�m�←− 0; // Ri readable by

// all, writable by P0.
(local variable)
boolean: Val�1

 log�m��;

(1) Write�R�Val�1

 logm�� executed by single writer P0

(1a) for all i ∈ 	1

 log�m�� do
(1b) Ri←− Val�i�.

(2) Readi�R�Val�1

 log�m��� executed by reader Pi, 1≤ i ≤ n
(2a) for all j ∈ 	1

 logm� do Val�j�←− Rj
(2b) return�Val�1

 log�m���.

Algorithm 12.11 Construction 3: boolean MRSW safe register to integer-valued MRSW safe register R.

12.5.4 Construction 4: boolean MRSW safe to boolean MRSW regular

Algorithm 12.12 gives the construction of a boolean MRSW regular register
R from a MRSW safe register [21]. Assume the single writer is process P0

and the reader processes are Pi �1 ≤ i ≤ n�. With respect to Figure 12.11, q
has the value 1. P0 writes R1 and all n processes read R1.

When a Read by Pi and a Write by P0 do not overlap, the Read obtains the
correct value. When a Read by Pi and a Write by P0 overlap, the safe register
may not necessarily return the overlapping or the previous value (as required
by a regular register), but may return a value written much earlier. If the
value written before the Read begins is �, and the value being written by the
concurrent Write is also �, the Read could return � or �1−�� from the safe
register, which is a problem for the regular register. The solution bypasses
this problem by having the Write use a local variable previous to track the
previous value of val. If the previous value that was written (line 1b) and
stored in previous (line 1c) is the same as the new value to be written, then
the new value is simply not written. This avoids any concurrent access to R.

440 Distributed shared memory

(shared variables)
boolean MRSW safe register: R′ ←− 0; // R′ is readable by all,

// writable by P0.
(local variables)
boolean local to writer P0: previous←− 0;

(1) Write�R� val� executed by single writer P0

(1a) if previous �= val then
(1b) R′ ←− val;
(1c) previous←− val.

(2) Readi�R� val� executed by process Pi, 1≤ i ≤ n
(2a) val←− R′;
(2b) return�val�.

Algorithm 12.12 Construction 4: boolean MRSW safe register to boolean MRSW regular register R.

Complexity
This construction uses O�1� space and time.

Can the above construction also construct a binary SRSW atomic register
from a safe register? No. Consider P1 issues a Write11��� that completes;
then Write21�1−�� begins and overlaps with Read12 and Read22 of P2. With
the above construction, Read12 could return 1−� whereas the later Read22

could return �, thus violating the property of an atomic register.

12.5.5 Construction 5: boolean MRSW regular to integer-valued MRSW regular

Algorithm 12.13 gives the construction of an integer-valued MRSW regular
register R using boolean MRSW regular registers [21]. Assume the single
writer is process P0 and the n reader processes are P1 to Pn. The construction
can use only boolean MRSW registers – to construct an integer register of
size m, unary notation is used, so m boolean registers are necessary. In
Figure 12.11, q =m, and all n processes can read all q registers.

When a Read by Pi and a Write by P0 do not overlap, the Read obtains
the correct value. To deal with a Read by Pi and a Write(s) by P0 overlap-
ping their access to the registers, the following approach is used. A reader
Pi scans left-to-right looking for a “1” whereas the P0 writer process writes
“1” to the out entries right-to-left. The Read is guaranteed to see a “1”
written by one of the Write operations it overlaps with, or the Rval loca-
tion and then zeros “1” written by the Write that completed just before the
Read began. As each of the bits are regular, its current or previous value
is read; if the value is “0,” it is guaranteed that a “1” has been written
to the right. An implicit assumption here is the integer size, bounded by the

441 12.5 Register hierarchy and wait-free simulations

(shared variables)
boolean MRSW regular registers R1

 Rm−1←− 0; Rm←− 1;

// Ri readable by all, writable by P0.
(local variables)
integer: count;

(1) Write�R� val� executed by writer P0

(1a) Rval←− 1;
(1b) for count = val−1 down to 1 do
(1c) Rcount←− 0.

(2) Readi(R�val) executed by Pi, 1≤ i ≤ n
(2a) count = 1;
(2b) while Rcount = 0 do
(2c) count←− count+1;
(2d) val←− count;
(2e) return�val�.

Algorithm 12.13 Construction 5: boolean MRSW regular register to integer-valued MRSW regular
register R.

number of bits in use. The register is initialized by this largest value. The
construction is illustrated in Figure 12.12. In the figure, the reader scans from
left to right as marked.

Complexity
This construction uses m binary registers, where m is the largest integer that
can be written by the application. The time complexity is O�m�.

Figure 12.12 Illustrating
constructions 5 and 6.

Zero out entries

Scan for first "1"; then scan backwards

and update pointer to lowest-ranked
register containing a "1"

Rval Rm

R

Scan for "1"; return index (bool MRSW regular to int MRSW regular)

(bool MRSW atomic to int MRSW atomic)

Read(R)

Write val to R

R1 R2 R3

Write 1

442 Distributed shared memory

Figure 12.13 Example to
illustrate inversion of values
read by Pa and Pb .

Read(R1, 0) Read(R2, 0) Read(R3, 1)

Read1b(R, ?) returns 3 Read2b(R, ?) returns 2

Write1a(R, 2)

Write(R2, 1) Write(R1, 0) Write(R3, 1) Write(R2, 0)

Write2a(R, 3)

Pa

Pb

Write(R1, 0)

Read(R1, 0) Read(R2, 1)

12.5.6 Construction 6: boolean MRSW regular to integer-valued MRSW atomic

Can the construction (in Algorithm 12.13) also construct an integer-valued
MRSW atomic register from boolean MRSW regular registers? No. The prob-
lem is that when two successive Read operations overlap Write operations,
“inversion” of values returned by the Read operations can occur.

Consider the following sequence of operations, depicted in Figure 12.13:

1. Write1a�R�2�: The low-level operation Write�R2�1� begins, i.e., R2←− 1
begins.

2. Read1b�R� ?�: The following low-level operations get executed. count←−
1; Read�Rcount�0�; count←− 2; Read�Rcount�0�; count←− 3.

3. Write1a�R�2�: The low-level operation Write�R2�1� from step 1 com-
pletes, i.e., the value “1” gets written to R2; then the left scan to zero out
R1 proceeds by executing Write�R1�0�.

4. Write2a�R�3�: The low-level operation Write�R3�1� executes, i.e., R3←−
1 begins and ends.

5. Read1b�R� ?�: The low-level operation Read�Rcount=3� ?� that was to begin
after step 2 returns 1; the high-level Read completes and returns a value of 3.

6. Read2b�R� ?�: This operation’s left-to-right scan for a “1” finds R2 = 1 and
returns 2. This is because the low-level operation Write2�R2�0� belonging
to the high-level operation Write2a�R�3� has not yet zeroed out R2.

Here, Read2b�R�2� returns the value written by Write1a�R�2�; whereas the
earlier Read1b�R�3� returns the value written by the later Write2a�R�3�.
Hence, this execution is not linearizable.

Algorithm 12.14 gives Vidyasankar’s construction [30] of a integer-valued
MRSW atomic registerRby modifying the above solution as follows. The reader
makes a right-to-left scan for a “1” after its left-to-right scan completes. If it
finds a “1” in a lower index, it updates the value to be returned to this index. The
purpose is to make sure that the lowest index (say �) in which a “1” is found in
this second “right-to-left” scan is returned by the Read. As the writer also zeros
out entries “right-to-left,” it is not possible that a later Read will find a “1” written
earlier in a position lower than �, by a Write that occurred earlier than the Write
that wrote�. This allows a linearizable execution. With respect to Figure 12.11,
q = m, and all n processes can read all q registers. This construction is also
illustrated in Figure 12.12, as marked therein.

443 12.5 Register hierarchy and wait-free simulations

(shared variables)
boolean MRSW regular registers R1

 Rm−1←− 0; Rm←− 1.

// Ri readable by all; writable by P0.
(local variables)
integer: count� temp;

(1) Write�R� val� executed by P0

(1a) Rval←− 1;
(1b) for count = val−1 down to 1 do
(1c) Rcount←− 0.

(2) Readi(R�val) executed by Pi, 1≤ i ≤ n
(2a) count←− 1;
(2b) while Rcount = 0 do
(2c) count←− count+1;
(2d) val←− count;
(2e) for temp= count down to 1 do
(2f) if Rtemp = 1 then
(2g) val←− temp;
(2h) return�val�.

Algorithm 12.14 Construction 6: boolean MRSW regular register to integer-valued MRSW atomic
register R.

A formal argument that this construction is correct needs to show that any
execution is linearizable. To do so, it would define the linearization point of
a Read and Write operation to capture the notion of the exact instant at which
that operation effectively appears to take effect.

• The value of the MRSW register at any moment is x, where Rx = 1 and
∀y < x, Ry = 0.

• The linearization point of a Write�R�x� operation is the first instant (line
1a or 1c) when Rx = 1 and ∀y < x, Ry = 0.

• The linearization point of a Read�R� val� that returns �x� is the first instant
(line 2d or 2g) when val gets assigned x in the low-level operations.

The following observation can now be made from the construction and the
definition of the linearization point of a Write:

• The value of the MRSW register remains unchanged between the lineariza-
tion points of any two consecutive Write operations.

The Write operations are naturally ordered in the linearization sequence. In
order to determine a complete linearization of the Read operations in addition
to the Write operations, observe the following:

444 Distributed shared memory

• A Read operation returns the value written by that Write operation which
has the latest linearization point that precedes the Read operation’s lin-
earization point.

It naturally follows that a later Read will never return the value written by a
earlier Write, and hence the construction is linearizable.

Complexity
This construction uses m binary registers, where m is the largest integer that
is written by the application program. The time complexity is O�m�.

12.5.7 Construction 7: integer MRSW atomic to integer MRMW atomic

We are given MRSW atomic registers, i.e., each register has only a single
writer. To simulate a MRMW atomic register R, the variable has multiple
copies, R1

 Rn, one per writer process. Writer Pi can only write to its
copy Ri. Reader Pi can read all the registers R1

 Rn. When concurrent
updates occur, a global linearization order must be created somehow. The
Read operations must be able to recognize such a global order, and then return
the appropriate version as per the semantics of the atomic register. That is the
challenge.

The construction by Vitanyi and Awerbuch [31] is shown in Algo-
rithm 12.15. With respect to Figure 12.11, q= n, and all n processes can read
all q MRSW registers but only Pi can write to Ri. The idea used is similar to
that used by the Bakery algorithm for mutual exclusion (Section 12.3.1). Here
each process, when behaving as a writer process, does not compete directly
with other writer processes. The competing processes that make concurrent
accesses (behaving as the reader processes) then read all the flags and deduce
a global order that resolves the contention.

Each register Ri has two fields: Ri�data and Ri�tag, where tag =
�seq_no�pid�. A lexicographic order is defined on the tags, using seq_no as
the primary key, and then pid as the secondary key. A common procedure
invoked by the readers and writers is Collect, which reads all the registers,
in no particular order. The reader returns the data corresponding to the (lex-
icographically) most recent Write. A writer chooses a tag greater than the
(lexicographically) greatest tag returned by Collect, when it writes its new
value.

All the Write operations are lexicographically totally ordered. Each Read
is ordered so that it immediately follows that Write with the matching tag.
Thus, this execution is linearizable.

Complexity
This construction has a space complexity of O�n� integer registers. The time
complexity is O�n�.

445 12.5 Register hierarchy and wait-free simulations

(shared variables)
MRSW atomic registers of type �data� tag�, where tag = �seq_no�pid�:
R1

 Rn;

(local variables)
MRSW atomic registers of type �data� tag�, where tag= �seq_no�pid�:
Reg_Array�1

 n�;

integer: seq_no� j� k;

(1) Writei�R� val� executed by Pi, 1≤ i ≤ n
(1a) Reg_Array←− Collect�R1�

 �Rn�;
(1b) seq_no←−max�Reg_Array�1��tag�seq_no�

Reg_Array�n��tag�seq_no�+1;
(1c) Ri←− �val� �seq_no� i��.

(2) Readi(R�val) executed by Pi, 1≤ i ≤ n
(2a) Reg_Array←− Collect�R1�

 �Rn�;
(2b) identify j such that for all k �= j, Reg_Array�j��tag > Reg_Array�k��tag;
(2c) val←− Reg_Array�j��data;
(2d) return�val�.

(3) Collect�R1�

 �Rn� invoked by Read and Write routines
(3a) for j = 1 to n do
(3b) Reg_Array�j�←− Rj;
(3c) return�Reg_Array�.

Algorithm 12.15 Construction 7: integer MRSW atomic register to integer MRMW atomic register R.

12.5.8 Construction 8: integer SRSW atomic to integer MRSW atomic

We are given SRSW atomic registers. To simulate a MRSW atomic register
R, the variable has multiple copies, R1�

 Rn, one per reader process. The
single writer can write to all of these registers.

A first attempt at this construction would have the writer write to all the
registers R1

 Rn, whereas reader Pi reads Ri. In Figure 12.11, q = n, and
each Ri is read by Pi and written to by the single writer P0. However, such
a construction does not give a linearizable execution. Consider two reads
Read1i and Read2j that both overlap a Write, and Read2 begins after Read1
terminates. It is possible that:

1. Read1i reads Ri after the Write has written to Ri;
2. but Read2j reads Rj before the writer has had a chance to update Rj .

This results in a non-linearizable execution.
The problem above arose because a reader did not have access to what

other readers read; in particular, a reader Pi cannot tell if another Read by Pj
that completed before this Read began got a value that is newer than the value

446 Distributed shared memory

Figure 12.14 Illustrating
the data structures for
construction 8.

1, 1 1, 2

2, 1 2, 2 2, n

1, n

n, nn, 2n, 1

R1 R2 Rn

Mailboxes Last_Read_Values[1...n,1...n]
(SRSW atomic registers)

SRSW atomic registers, one per process

R

that the writer has written to Ri. In fact, performing multiple reads by the Pi
processes, and/or more writes by P0, and/or using more registers cannot solve
this problem.

In the solution by Israeli and Li [16], a reader process Pi must
choose the latest of the values that other reader processes have last
read, and the value in Ri. As only SRSW registers are available, unfor-
tunately, this requires communication between each pair of reader pro-
cesses, leading to O�n2� variables. Thus, a reader process must also
write. An array Last_Read_Values�1

 n�1

 n� is used for this purpose.
Last_Read_Values�i� j� is the value that Pi’s last Read returned, which Pi
has set aside for Pj to know about. Once a reader Pi determines the lat-
est of the values that other readers read (lines 2b–d), and the value written
for it by the writer process (line 2a), the reader publishes this value in
Last_Read_Values�i�∗� (lines 2e–2f). As there is a single writer, the format
�data� seq_no� for each register value and each Last_Read_Value entry is
adequate to give a total order on all the values written by it. The construction
is shown in Algorithm 12.16 and illustrated in Figure 12.14. Here, q = n2+n
as there are n2 SRSW registers that act as personalized mailboxes between the
pairs of processes and the n registers that are the mailboxes between writer
P0 and each reader Pi.

Complexity
This construction uses O�n2� integer registers. The time complexity is O�n�.

Achieving linearizability
All the Write operations form a total order. A Read by Pi returns the value of
the latest preceding Write, as observed directly from the register Ri, or indi-
rectly from the register Rj and communicated to Pi via Last_Read_Values.
In a linearized execution, a Read is placed after the Write whose value it
reads. For non-overlapping Reads, their relative order represents the order
in a linearizable execution, because of the indirect communication among

447 12.6 Wait-free atomic snapshots of shared objects

(shared variables)
SRSW atomic register of type �data� seq_no�, where data� seq_no are
integers: R1

 Rn ←− �0�0�;
SRSW atomic register of type �data� seq_no�, where data� seq_no are
integers: Last_Read_Values�1

 n�1

 n�←− �0�0�;
(local variables)
type �data� seq_no�: Last_Read�0

 n�;
integer: seq� count;

(1) Write�R� val� executed by writer P0

(1a) seq←− seq+1;
(1b) for count = 1 to n do
(1c) Rcount←− �val� seq�. // write to each SRSW register

(2) Readi(R�val) executed by Pi, 1≤ i ≤ n
(2a) �Last_Read�0��data�Last_Read�0��seq_no�←− Ri;

// Last_Read�0� stores value of Ri
(2b) for count = 1 to n do // read into Last_Read�count�,

// the latest values stored for Pi by Pcount
(2c) �Last_Read�count��data�Last_Read�count��seq_no�←−

�Last_Read_Values�count� i��data�
Last_Read_Values�count� i��seq_no�;

(2d) identify j such that for all k �= j, Last_Read�j��seq_no ≥
Last_Read�k��seq_no;

(2e) for count = 1 to n do
(2f) �Last_Read_Values�i� count��data�

Last_Read_Values�i� count��seq_no�←−
�Last_Read�j��data�Last_Read�j��seq_no�;

(2g) val←− Last_Read�j��data;
(2h) return�val�.

Algorithm 12.16 Construction 8: integer SRSW atomic register to integer MRSW atomic register R.

readers. For overlapping Reads, their ordering in a linearized execution is
consistent with the Writes whose values they read. Hence, the construction is
a valid construction.

12.6 Wait-free atomic snapshots of shared objects

Observing the global state of a distributed system is a fundamental problem.
For message-passing systems, we have studied how to record global snap-
shots which represent an instantaneous possible global state that could have
occurred in the execution. The snapshot algorithms used message-passing of

448 Distributed shared memory

control messages, and were inherently inhibition-free, although some variants
that use fewer control messages do require inhibition.

In this section, we examine the counterpart of the global snapshot problem
in a shared-memory system, where only Read and Write primitives can be
used. The problem can be modeled as follows.

Given a set of SWMR atomic registers R1

 Rn, where Ri can be written
only by Pi and can be read by all processes, and which together form a
compound high-level object, devise a wait-free algorithm to observe the state
of the object at some instant in time. The following actions are allowed on
this high-level object, as also illustrated in Figure 12.15:

• Scani: This action invoked by Pi returns the atomic snapshot that is an
instantaneous view of the object �R1�

 �Rn� at some instant between the
invocation and termination of the Scan.

• Updatei�val�: This action invoked by Pi writes the data val to register Ri.

Figure 12.15 Atomic snapshot
object, using MRSW atomic
registers.

Clearly, any kind of locking mechanism is unacceptable because it is not
wait-free. Consider the following attempt at a wait-free solution. The format of
each registerRi is assumed to be the tuple: �data� seq_no� in order to uniquely
identify each Write operation to the register. A scanner would repeatedly
scan the high-level object until two consecutive scans, called double-collect
in the shared memory context, returned identical content. This principle of
“double-collect” has been encountered in multiple contexts, such in two-
phase deadlock detection and two-phase termination detection algorithms,
and essentially embodies the two-phase observation rule (see Chapter 11).
However, this solution in not wait-free because between the two observations
of each double-collect, an Update by another process can prevent the Scan
from being successful.

A wait-free solution [3,5] is given in Algorithm 12.17. Process Pi can write
to its MRSW register Ri and can read all registers R1�

 Rn. To design a wait-
free solution, it needs to be ensured that a scanner is not indefinitely prevented
from getting identical scans in the double-collect, by some writer process
periodically making updates. The problem arises because of the imbalance
in the roles of the scanner and updater – the updater is inherently more
powerful in that it can prevent all scanners from being successful. One elegant
solution therefore neutralizes the unfair advantage of the updaters by forcing

seq_no old_snapshot data seq_no old_snapshot

R1 Rn

PnP1

UPDATE
UPDATE

ScanScan

Snapshot object composed of n MRSW atomic registers

data

449 12.6 Wait-free atomic snapshots of shared objects

the updaters to follow the same rules as the scanner. Namely, the updaters
also have to perform a double-collect, and only after performing a double-
collect can an updater write the value it needs to. Additionally, an updater
also writes the snapshot it collected in the register, along with the new value
of the data item. Now, if a scanner detects that an updater has made an update
after the scanner initiated its Scan, then the scanner can simply “borrow” the
snapshot recorded by the updater in its register. The updater helps the scanner
to obtain a consistent value. This is the principle of “helping” that is often
used in designing wait-free solutions for various problems.

(shared variables)
MRSW atomic register of type �data� seq_no�old_snapshot�, where
data� seq_no are of type integer, and old_snapshot is array �1

 n� of
integer: R1

 Rn;

(local variables)
integer: changed�1

 n�;
type �data� seq_no�old_snapshot�: v1�1

 n�� v2�1

 n�� v�1

 n�;

(1) Updatei�x�
(1a) v�1

 n�←− Scani;
(1b) Ri←− �x�Ri�seq_no+1� v�1

 n��.

(2) Scani
(2a) for count = 1 to n do
(2b) changed�count�←− 0;
(2c) while true do
(2d) v1�1

 n�←− collect��;
(2e) v2�1

 n�←− collect��;
(2f) if �∀k�1≤ k≤ n��v1�k��seq_no = v2�k��seq_no� then
(2g) return�v2�1��data�

 � v2�n��data�;
(2h) else
(2i) for k= 1 to n do
(2j) if v1�k��seq_no �= v2�k��seq_no then
(2k) changed�k�←− changed�k�+1;
(2l) if changed�k�= 2 then
(2m) return(v2�k��old_snapshot).

Algorithm 12.17 Wait-free atomic snapshot of a shared MRSW object.

A scanner detects that an updater has made an update after the scanner
initiated its Scan, by using the local array changed. This array is reset to 0
when the Scan is invoked. Location changed�k� is incremented (line 2k) if
the Scan procedure detects (line 2j) that process Pk has changed its data and
seq_no (and implicitly the old_snapshot) fields in Rk. Based on the value

450 Distributed shared memory

Figure 12.16 Nesting of
double-collects, in scanning for
atomic snapshots of object.

double-collect

collect collect
Pi

Pi

Pj

j j

changed[j] = 1 changed[j] = 2

Pj writes in
this period

Pj writes in
this period

Pj writes Pj writes

(a) double-collect sees identical values in both collects

(b) Pj’s double-collect nested within Pi’s SCAN. The double-collect
is successful, or Pj borrowed snapshot from Pk’s double-collect
nested within Pj’s Scan. And so on recursively, up to n times.

j j

of changed�k�, different inferences can be made, as now explained with the
help of Figure 12.16:

• If changed�k�= 2 (line 2l), then two updates (line 1b) were made by Pk
after Pi began its Scan. Between the first and the second update, the Scan
preceding the second update must have completed successfully, and the
scanned value was recorded in the old_snapshot field. This old snapshot
can be safely borrowed by the scanner Pi (line 2m) because it was recorded
after Pk finished its first double-collect, and hence after the scanner Pi
initiated its Scan.

• However, if changed�k�= 1, it cannot be inferred that the old_snapshot
recorded by Pk was taken after Pi’s Scan began. When Pk does its
Update (the first “write” shown in Figure 12.16(b)), the value it writes in
old_snapshot is only the result of a double-scan that preceded the “write”
and may be a value that existed before Pi’s Scan began.

There are two cases by which a snapshot can be captured, as illustrated
using Figure 12.16:

1. A scanner can collect a snapshot (line 2g) if the double-collect (lines
2d–2e) returns identical views (line 2f). (see Figure 12.16(a)). The returned
snapshot represents an instantaneous state that existed at all times between
the end of the first collect (line 2d) and the start of the second collect (line 2e).

2. Otherwise the scanner returns a borrowed snapshot (line 2m) from Pk if Pk
has been noticed to have made two updates (lines 2l) and therefore Pk has
made a Scan embedded inside Pi’s Scan. This borrowed snapshot itself
(i) may have been obtained directly via a double-collect, or (ii) indirectly
been borrowed from another process (line 2l). In case (i), it represents

451 12.7 Chapter summary

an instantaneous state in the duration of the double-collect. In case (ii),
a recursive argument can be applied. Observe that there are n processes,
so the recursive argument can hold at most n−1 times. The nth time, a
double-collect must have been successful (see Figure 12.16(b)). Note that
between the two double-collects of Pi that are shown, there may be up to
(n−2) other unsuccessful double-collects of Pi. Each of these �n−2� other
double-collects corresponds to some Pk, k �= i� j, having “changed” once.

The linearization of the Scan and Update operations follows in a straight-
forward manner. For example, non-overlapping operations get linearized in
the order of their occurrence. An operation by Pi that borrows a snapshot
from Pk gets linearized after Pk.

Complexity
The local space complexity is O�n2� integers. The shared space is O�n2� cor-
responding to each of the n registers of size O�n� each. The time complexity
is O�n2�. This is because the main Scan loop has a complexity of O�n� and
the loop may be executed at most n times – the nth time, at least one process
Pk must have caused Pi’s local changed�k� to reach a value of two, triggering
an end to the loop (lines 2k–2l).

12.7 Chapter summary

Distributed shared memory (DSM) is an abstraction whereby distributed pro-
grams can communicate with memory operations (Read and Write) as opposed
to using message-passing. The main motivation is to simplify the burden
on the programmers. The chapter surveyed this and other motivating factors
for DSMs, as well as provided different ways to classify DSMs. The DSM
has to be implemented by the middleware layer. Furthermore, in the face of
concurrent operations on the shared variables, the expected behavior seen by
the programmers should be well-defined. The chapter examined the following
consistency models – linearizability, sequential consistency, causal consis-
tency, pipelined RAM (PRAM), and slow memory. Each model is a contract
between the programmer and the system provider because the program logic
must adhere to the consistency model being provided by the middleware.

The chapter then examined the fundamental problem of mutal exclusion.
The well-known bakery algorithm was studied first. Next, Lamport’s algo-
rithm for fast mutual exclusion – which gives an O�1� complexity when there
are no contentions – was studied. Mutual exclusion using hardware instruc-
tions – Test&Set and Swap – was then examined. Such hardware instructions
can perform a Read operation and a Write operation atomically. Hence, they
are powerful, but are also expensive to implement in a machine.

452 Distributed shared memory

In the context of DSM mutual exclusion, and more generally, DSM syn-
chronization operations, fault-tolerance was then examined. The notion of
wait freedom is the ability to complete all the operations of a process, irre-
spective of the behavior of other processes. This makes the system n−1 fault
tolerant. Next, wait-free register constructions were considered. Registers can
be classified as being binary or multi-valued. An orthogonal classification
allows single-reader or multiple reader, single-writer or multiple writer regis-
ters. Also orthogonally, registers can be safe, regular, or atomic. This allows
24 possible configurations. The chapter considered some of these 24 possible
wait-free constructions. The constructions provide insight into how different
techniques can be used in the DSM setting. Finally, wait-free atomic snapshots
of shared objects was considered. For an object, reading its value atomically
in a wait-free manner (without locking) gives an “instantaneous” snapshot of
its state. Hence, this is an important problem for DSMs.

12.8 Exercises

Exercise 12.1 Why do the algorithms for sequential consistency (Section 12.2.2) not
require the Read operations to be broadcast?

Exercise 12.2 Give a formal proof to justify the correctness of Algorithm 12.2 that
implements sequential consistency using local Read operations.

Exercise 12.3 In the algorithm to implement sequential consistency using local Write
operations, as given in Algorithm 12.3, why is a single counter counter sufficient for
the algorithm’s correctness?

In other words, why is a separate counter counterx not required to track the number
of updates issued to each variable x, where a Read operation on x gets delayed
only if counterx > 0? If such a separate counter were used for every variable, what
consistency model would be implemented?

Exercise 12.4 1. In Figure 12.6(a), analyze whether the execution is linearizable.
2. In Figure 12.6(b), what forms of memory consistency are satisfied if the two Read
operations of P4 return 7 first and then 4?

Exercise 12.5 Give a detailed implementation of causal consistency, and provide a
correctness argument for your implementation.

Exercise 12.6 Give a detailed implementation of PRAM consistency, and provide a
correctness argument for your implementation.

Exercise 12.7 Give a detailed implementation of slow memory, and provide a cor-
rectness argument for your implementation. Is the implementation less expensive than
that of PRAM consistency which is a stricter consistency model?

Exercise 12.8 Show that constructions 1 and 2 (Algorithm 12.10) work for binary
registers as well as integer-valued registers.

453 12.9 Notes on references

Exercise 12.9 Why are two passes needed by the reader in construction 6,
(Algorithm 12.14), for a MRSW atomic register? Why does a single right-to-left pass
not suffice?

Exercise 12.10 Assume that the writer does a single pass from left to right in con-
struction 6, (Algorithm 12.14), for a MRSW register. Can the code for the readers be
modified to devise a correct algorithm? Justify your answer.

Exercise 12.11 Peterson’s mutual exclusion algortihm for two processes is shown in
Algorithm 12.18 [26].

1. Show that it satisfies mutual exclusion, progress, and bounded waiting.
2. Use this algorithm as a building block to construct a hierarchical mutual exclusion

algorithm for an arbitrary number of processes. (Hint: Use a logarithmic number of
steps in the hierarchy.)

(shared variables)
boolean: turn←− false; // shared register initialized
boolean: wanting�0�1�;

repeat
(1) Pi executes the following for the entry section:
(1a) wanting�i�←− true;
(1b) turn←− 1− i;
(1c) while wanting�1− i� and turn= 1− i do
(1d) no-op;

(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:
(3a) wanting�i�←− false;

(4) Pi executes the remainder section after the exit section

until false;

Algorithm 12.18 Peterson’s mutual exclusion for two processes Pi = 0� 1 [26]. Modulo 2 arithmetic is
used.

Exercise 12.12 Determine the average case time complexity of the wait-free atomic
snapshot of a shared object, given in Algorithm 12.17.

12.9 Notes on references

A good survey on distributed shared memory systems is given by Protic et al. [28]
and by Tanenbaum [29]. This includes coverage of the various DSM systems such as
Firefly, Sequent, Alewife, Dash, Butterfly, CM∗, Ivy, Mirage, Midway, Munin, Linda,
and Orca.

454 Distributed shared memory

The sequential consistency model was defined by Lamport [19]. The linearizabil-
ity model was formalized by Lamport [21] and developed by Herlihy and Wing [13].
The implementations of linearizability and sequential consistency based on the broad-
cast primitive and assuming full replication are from Attiya and Welch [6], whereas a
similar implementation of sequential consistency is given by Bal et al. [8]. The causal
consistency model was proposed by [4]. The PRAM model was proposed by Lipton and
Sandberg [25]. The slow memory model was proposed by Hutto and Ahamad [14]. Other
consistency models such as weak consistency [11], release consistency [12], and entry
consistency [9] that apply to selected instructions in the code, were developed mainly in
the computer architecture research community, and are discussed in [1, 2].

The bakery algorithm for mutual exclusion was presented by Lamport [18]. The
fast mutual exclusion algorithm was presented by Lamport [23]. The two-process
mutual exclusion algorithm was presented by Peterson [26]. Its modification that is
asked as Exercise 12.11 is based on the algorithm by Peterson and Fischer [27].

The notion of wait-freedom was proposed by Lamport [24] and developed by
Herlihy [15]. The definition and classification of registers as safe, regular, and atomic
were given by Lamport [20–22]. Constructions 1 to 5 were proposed by Lamport [21].
Register construction 6 was proposed by Vidyasankar [30]. Register construction 7
was proposed by Vitanyi and Awerbuch [31]. Register construction 8 was proposed
by Israeli and Li [16]. A construction of a MRMW snapshot object using MRSW
snapshot objects and MRMW registers was proposed by Anderson [5] and Afek
et al. [3]. The register constructions are also presented by Attiya and Welch [7].

References

[1] S. Adve and K. Gharachorloo, Shared memory consistency models: a tutorial,
IEEE Computer Magazine, 29(12), 1996, 66–76.

[2] S. Adve and M. Hill, A unified formalization of four shared-memory models,
IEEE Transactions on Parallel and Distributed Systems, 4(6), 1993, 613–624.

[3] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic
snapshots of shared memory, Journal of the ACM, 40(4), 1993, 873–890.

[4] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, Causal memory:
definitions, implementation, and programming, Distributed Computing, 9(1),
1995, 37–49.

[5] J. Anderson, Multi-writer composite registers, Distributed Computing, 7(4),
1994, 175–196.

[6] H. Attiya and J. Welch, Sequential consistency versus linearizability, ACM
Transactions on Computer Systems, 12(2), 1994, 91–122.

[7] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and
Advanced Topics, Chichester, Wiley, 2004.

[8] H. Bal, F. Kaashoek and A. Tanenbaum, Orca: a language for parallel program-
ming of distributed systems, IEEE Transactions on Software Engineering, 18(3),
1992, 180–205.

[9] B. Bershad, M. Zekauskas, and W. Sawdon, The Midway Distributed Shared
Memory System, CMU Technical Report CMU-CS-93-119. (Also in Proceedings
of COMPCON 1993.)

[10] J. Burns and N. Lynch, Bounds on shared memory for mutual exclusion, Infor-
mation and Computation, 107(2), 1993, 171–184.

455 References

[11] M. Dubois and C. Scheurich, Memory access dependencies in shared-memory
multiprocessors, IEEE Transactions on Software Engineering, 16(6), 1990,
660–673.

[12] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L.
Hennessy, Memory consistency and event ordering in scalable shared-memory
multiprocessors, Proceedings of the 17th International Symposium on Computer
Architecture, Seattle, WA, May 1990, 15–26.

[13] M. Herlihy and J. Wing, Linearizability: a correctness condition for concurrent
objects, ACM Transactions on Programming Languages and Systems, 12(3),
1990, 463–492.

[14] P. Hutto and M. Ahamad, Slow memory: weakening consistency to enchance
concurrency in distributed shared memories, Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Systems, 1990, 302–311.

[15] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming
Languages and Systems, 13(1), 1991, 124–149.

[16] A. Israeli and M. Li, Bounded timestamps, Distributed Computing, 6(4), 1993,
205–209.

[17] C. Kruskal, L. Rudolf, and M. Snir, Efficient synchronization of multiprocessors
with shared memory, Proceedings of the ACM Conference on Principles of
Distributed Computing, 1986.

[18] L. Lamport, A new solution of Dijkstra’s concurrent programming problem,
Communications of the ACM, 17(8), 1974, 453–455.

[19] L. Lamport, How to make a multiprocessor that correctly executes multiprocess
programs, IEEE Transactions on Computers, 28(9), 1979, 690–691.

[20] L. Lamport, On interprocess communication, part I: basic formalism, Distributed
Computing, 1(2), 1986, 77–85.

[21] L. Lamport, On interprocess communication, part II: algorithms, Distributed
Computing, 1(2), 1986, 86–101.

[22] L. Lamport, The mutual exclusion problem, part II: statement and solutions,
Journal of the ACM, 33(2), 1986, 327–348.

[23] L. Lamport, A fast mutual exclusion algorithm, ACM Transactions on Computer
Systems, 5(1), 1987, 1–11.

[24] L. Lamport, Concurrent reading and writing, Communications of the ACM,
20(11), 1977, 806-811.

[25] R. Lipton and J. Sandberg, PRAM: a Scalable Shared Memory, Technical
Report CS-TR-180-88, Princeton University, Department of Computer Science,
September 1988.

[26] G. L. Peterson, Myths about the mutual exclusion problem, Information Process-
ing Letters, 12, 1981, 115–116.

[27] G. L. Peterson and M. Fischer, Economical solutions for the mutual exclusion
problem in a distributed system, Proceedings of the 9th ACM Symposium on
Theory of Computing, 1977, 91–97.

[28] J. Protic, M. Tomasevic, and V. Milutinovic, Distributed shared memory: con-
cepts and systems, IEEE Concurrency, 4(2), 1996, 63–79.

[29] A. Tanenbaum, Distributed Operating Systems, Harlow, Pearson Education,
1995.

[30] K. Vidyasankar, Converting Lamport’s regular register to atomic register, Infor-
mation Processing Letters, 28, 1988, 287–290.

[31] P. Vitanyi and B. Awerbuch, Atomic shared register access by asynchronous
hardware, Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science, 1986, 233–243.

C H A P T E R

13 Checkpointing and rollback
recovery

13.1 Introduction

Distributed systems today are ubiquitous and enable many applications,
including client–server systems, transaction processing, the World Wide Web,
and scientific computing, among many others. Distributed systems are not
fault-tolerant and the vast computing potential of these systems is often ham-
pered by their susceptibility to failures. Many techniques have been developed
to add reliability and high availability to distributed systems. These tech-
niques include transactions, group communication, and rollback recovery.
These techniques have different tradeoffs and focus. This chapter covers the
rollback recovery protocols, which restore the system back to a consistent
state after a failure.

Rollback recovery treats a distributed system application as a collection
of processes that communicate over a network. It achieves fault tolerance by
periodically saving the state of a process during the failure-free execution,
enabling it to restart from a saved state upon a failure to reduce the amount
of lost work. The saved state is called a checkpoint, and the procedure of
restarting from a previously checkpointed state is called rollback recovery.
A checkpoint can be saved on either the stable storage or the volatile storage
depending on the failure scenarios to be tolerated.

In distributed systems, rollback recovery is complicated because messages
induce inter-process dependencies during failure-free operation. Upon a fail-
ure of one or more processes in a system, these dependencies may force some
of the processes that did not fail to roll back, creating what is commonly called
a rollback propagation. To see why rollback propagation occurs, consider the
situation where the sender of a message m rolls back to a state that precedes
the sending of m. The receiver of m must also roll back to a state that precedes
m’s receipt; otherwise, the states of the two processes would be inconsistent
because they would show that message m was received without being sent,
which is impossible in any correct failure-free execution. This phenomenon
of cascaded rollback is called the domino effect. In some situations, rollback

456

457 13.2 Background and definitions

propagation may extend back to the initial state of the computation, losing all
the work performed before the failure.

In a distributed system, if each participating process takes its checkpoints
independently, then the system is susceptible to the domino effect. This
approach is called independent or uncoordinated checkpointing. It is obvi-
ously desirable to avoid the domino effect and therefore several techniques
have been developed to prevent it. One such technique is coordinated check-
pointing where processes coordinate their checkpoints to form a system-wide
consistent state. In case of a process failure, the system state can be restored
to such a consistent set of checkpoints, preventing the rollback propagation.
Alternatively, communication-induced checkpointing forces each process to
take checkpoints based on information piggybacked on the application mes-
sages it receives from other processes. Checkpoints are taken such that a
system-wide consistent state always exists on stable storage, thereby avoiding
the domino effect.

The approaches discussed so far implement checkpoint-based rollback
recovery, which relies only on checkpoints to achieve fault-tolerance. Log-
based rollback recovery combines checkpointing with logging of non-
deterministic events. Log-based rollback recovery relies on the piecewise
deterministic (PWD) assumption, which postulates that all non-deterministic
events that a process executes can be identified and that the information
necessary to replay each event during recovery can be logged in the event’s
determinant. By logging and replaying the non-deterministic events in their
exact original order, a process can deterministically recreate its pre-failure
state even if this state has not been checkpointed. Log-based rollback recov-
ery in general enables a system to recover beyond the most recent set of
consistent checkpoints. It is therefore particularly attractive for applications
that frequently interact with the outside world, which consists of input and
output devices that cannot roll back.

13.2 Background and definitions

13.2.1 System model

A distributed system consists of a fixed number of processes, P1, P2�

 � PN ,
which communicate only through messages. Processes cooperate to execute
a distributed application and interact with the outside world by receiving and
sending input and output messages, respectively. Figure 13.1 shows a system
consisting of three processes and interactions with the outside world.

Rollback-recovery protocols generally make assumptions about the reliabil-
ity of the inter-process communication. Some protocols assume that the com-
munication subsystem delivers messages reliably, in first-in-first-out (FIFO)
order, while other protocols assume that the communication subsystem can

458 Checkpointing and rollback recovery

Figure 13.1 An example of a
distributed system with three
processes.

P1

m0 m1
m4

m3
m2

P2

P3

Input message
Output message

Distributed system

Outside world

lose, duplicate, or reorder messages. The choice between these two assump-
tions usually affects the complexity of checkpointing and failure recovery.

A generic correctness condition for rollback-recovery can be defined as
follows [36]: “a system recovers correctly if its internal state is consistent with
the observable behavior of the system before the failure.” Rollback-recovery
protocols therefore must maintain information about the internal interactions
among processes and also the external interactions with the outside world.

13.2.2 A local checkpoint

In distributed systems, all processes save their local states at certain instants
of time. This saved state is known as a local checkpoint. A local checkpoint
is a snapshot of the state of the process at a given instance and the event of
recording the state of a process is called local checkpointing. The contents
of a checkpoint depend upon the application context and the checkpointing
method being used.

Depending upon the checkpointing method used, a process may keep sev-
eral local checkpoints or just a single checkpoint at any time. We assume that
a process stores all local checkpoints on the stable storage so that they are
available even if the process crashes. We also assume that a process is able
to roll back to any of its existing local checkpoints and thus restore to and
restart from the corresponding state.

Let Ci�k denote the kth local checkpoint at process Pi. Generally, it is
assumed that a process Pi takes a checkpoint Ci�0 before it starts execution.
A local checkpoint is shown in the process-line by the symbol “�”.

13.2.3 Consistent system states

A global state of a distributed system is a collection of the individual states
of all participating processes and the states of the communication channels.
Intuitively, a consistent global state is one that may occur during a failure-free
execution of a distributed computation. More precisely, a consistent system
state is one in which a process’s state reflects a message receipt, then the
state of the corresponding sender must reflect the sending of that message [9].

459 13.2 Background and definitions

Figure 13.2 Examples of
consistent and inconsistent
states [13].

(a) (b)

Consistent state Inconsistent state

P0

P1

P2

P0

P1

P2

m1 m1

m2 m2

For instance, Figure 13.2 shows two examples of global states. The state in
Figure 13.2(a) is consistent and the state in Figure 13.2(b) is inconsistent.
Note that the consistent state in Figure 13.2(a) shows message m1 to have
been sent but not yet received, but that is alright. The state in Figure 13.2(a)
is consistent because it represents a situation in which every message that
has been received, there is a corresponding message send event. The state in
Figure 13.2(b) is inconsistent because process P2 is shown to have received
m2 but the state of process P1 does not reflect having sent it. Such a state is
impossible in any failure-free, correct computation. Inconsistent states occur
because of failures. For instance, the situation shown in Figure 13.2(b) may
occur if process P1 fails after sending message m2 to process P2 and then
restarts at the state shown in Figure 13.2(b).

Thus, a local checkpoint is a snapshot of a local state of a process and
a global checkpoint is a set of local checkpoints, one from each process.
A consistent global checkpoint is a global checkpoint such that no message
is sent by a process after taking its local checkpoint that is received by
another process before taking its local checkpoint. The consistency of global
checkpoints strongly depends on the flow of messages exchanged by processes
and an arbitrary set of local checkpoints at processes may not form a consistent
global checkpoint.

The fundamental goal of any rollback-recovery protocol is to bring the
system to a consistent state after a failure. The reconstructed consistent state
is not necessarily one that occurred before the failure. It is sufficient that the
reconstructed state be one that could have occurred before the failure in a
failure-free execution, provided that it is consistent with the interactions that
the system had with the outside world.

13.2.4 Interactions with the outside world

A distributed application often interacts with the outside world to receive
input data or deliver the outcome of a computation. If a failure occurs, the
outside world cannot be expected to roll back. For example, a printer cannot
roll back the effects of printing a character, and an automatic teller machine

460 Checkpointing and rollback recovery

cannot recover the money that it dispensed to a customer. To simplify the
presentation of how rollback-recovery protocols interact with the outside
world, we model the latter as a special process that interacts with the rest of
the system through message passing. We call this special process the “outside
world process” (OWP). It is therefore necessary that the outside world see a
consistent behavior of the system despite failures. Thus, before sending output
to the OWP, the system must ensure that the state from which the output is
sent will be recovered despite any future failure. This is commonly called
the output commit problem. Similarly, input messages that a system receives
from the OWP may not be reproducible during recovery, because it may not
be possible for the outside world to regenerate them. Thus, recovery protocols
must arrange to save these input messages so that they can be retrieved when
needed for execution replay after a failure. A common approach is to save
each input message on the stable storage before allowing the application
program to process it.

An interaction with the outside world to deliver the outcome of a compu-
tation is shown on the process-line by the symbol “��”.

13.2.5 Different types of messages

A process failure and subsequent recovery may leave messages that were
perfectly received (and processed) before the failure in abnormal states. This
is because a rollback of processes for recovery may have to rollback the send
and receive operations of several messages.

In this section, we identify several types such messages using the example
shown in Figure 13.3. Figure 13.3 shows an example consisting of four
processes. Process P1 fails at the point indicated and the whole system
recovers to the state indicated by the recovery line; that is, to global state
{C1�8�C2�9�C3�8�C4�8}.

Figure 13.3 Different types of
messages [25].

0

0

0

0

3

2

321

4

4

4 6

6

65 7 8

8

8

9

Recovery line

Failure
P1

P2

P3

P4

m2

m5m1

m3

m4

461 13.2 Background and definitions

In-transit messages
In Figure 13.3, the global state {C1�8�C2�9�C3�8�C4�8} shows that message m1

has been sent but not yet received. We call such a message an in-transit
message. Message m2 is also an in-transit message.

When in-transit messages are part of a global system state, these messages
do not cause any inconsistency. However, depending on whether the system
model assumes reliable communication channels, rollback-recovery protocols
may have to guarantee the delivery of in-transit messages when failures
occur. For reliable communication channels, a consistent state must include
in-transit messages because they will always be delivered to their destinations
in any legal execution of the system. On the other hand, if a system model
assumes lossy communication channels, then in-transit messages can be
omitted from system state.

Lost messages
Messages whose send is not undone but receive is undone due to rollback
are called lost messages. This type of messages occurs when the process
rolls back to a checkpoint prior to reception of the message while the sender
does not rollback beyond the send operation of the message. In Figure 13.3,
message m1 is a lost message.

Delayed messages
Messages whose receive is not recorded because the receiving process
was either down or the message arrived after the rollback of the receiving
process, are called delayed messages. For example, messages m2 and m5 in
Figure 13.3 are delayed messages.

Orphan messages
Messages with receive recorded but message send not recorded are called
orphan messages. For example, a rollback might have undone the send of
such messages, leaving the receive event intact at the receiving process.
Orphan messages do not arise if processes roll back to a consistent global
state.

Duplicate messages
Duplicate messages arise due to message logging and replaying during process
recovery. For example, in Figure 13.3, message m4 was sent and received
before the rollback. However, due to the rollback of process P4 to C4�8 and
process P3 to C3�8, both send and receipt of message m4 are undone. When
process P3 restarts from C3�8, it will resend message m4. Therefore, P4 should

462 Checkpointing and rollback recovery

not replay message m4 from its log. If P4 replays message m4, then message
m4 is called a duplicate message.

Message m5 is an excellent example of a duplicate message. No matter
what, the receiver of m5 will receive a duplicate m5 message.

13.3 Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent
state, but also appropriately handle messages that are left in an abnormal state
due to the failure and recovery [33].

We now describe the issues involved in a failure recovery with the help of a
distributed computation shown in Figure 13.4. The computation comprises of
three processes Pi, Pj , and Pk, connected through a communication network.
The processes communicate solely by exchanging messages over fault-free,
FIFO communication channels. Processes Pi, Pj , and Pk have taken check-
points {Ci�0, Ci�1}, {Cj�0, Cj�1, Cj�2}, and {Ck�0, Ck�1}, respectively, and these
processes have exchanged messages A to J as shown in Figure 13.4.

Suppose process Pi fails at the instance indicated in the figure. All the
contents of the volatile memory of Pi are lost and, after Pi has recovered
from the failure, the system needs to be restored to a consistent global state
from where the processes can resume their execution. Process Pi’s state is
restored to a valid state by rolling it back to its most recent checkpoint
Ci�1. To restore the system to a consistent state, the process Pj rolls back
to checkpoint Cj�1 because the rollback of process Pi to checkpoint Ci�1
created an orphan message H (the receive event of H is recorded at process
Pj while the send event of H has been undone at process Pi). Note that
process Pj does not roll back to checkpoint Cj�2 but to checkpoint Cj�1,
because rolling back to checkpoint Cj�2 does not eliminate the orphan message
H. Even this resulting state is not a consistent global state, as an orphan
message I is created due to the roll back of process Pj to checkpoint Cj�1. To
eliminate this orphan message, process Pk rolls back to checkpoint Ck�1. The

Figure 13.4 Illustration of
issues in failure recovery.

Ci,0 Ci,1

Cj,1 Cj,2Cj,0

Ck,0

Ck,1 Ck,2

Failure

A B

F
EC

I
G

D

J

H
Pi

Pj

Pk

463 13.3 Issues in failure recovery

restored global state {Ci�1, Cj�1, Ck�1} is a consistent state as it is free from
orphan messages. Although the system state has been restored to a consistent
state, several messages are left in an erroneous state which must be handled
correctly.

Messages A, B, D, G, H, I, and J had been received at the points indi-
cated in the figure and messages C, E, and F were in transit when the failure
occurred. Restoration of system state to checkpoints {Ci�1, Cj�1,Ck�1} automat-
ically handles messages A, B, and J because the send and receive events of
messages A, B, and J have been recorded, and both the events for G, H, and I
have been completely undone. These messages cause no problem and we call
messages A, B, and J normal messages and messages G, H, and I vanished
messages [33].

Messages C, D, E, and F are potentially problematic. Message C is in
transit during the failure and it is a delayed message. The delayed message
C has several possibilities: C might arrive at process Pi before it recovers, it
might arrive while Pi is recovering, or it might arrive after Pi has completed
recovery. Each of these cases must be dealt with correctly.

Message D is a lost message since the send event for D is recorded in the
restored state for process Pj , but the receive event has been undone at process
Pi. Process Pj will not resend D without an additional mechanism, since the
send D at Pj occurred before the checkpoint and the communication system
successfully delivered D.

Messages E and F are delayed orphan messages and pose perhaps the
most serious problem of all the messages. When messages E and F arrive
at their respective destinations, they must be discarded since their send
events have been undone. Processes, after resuming execution from their
checkpoints, will generate both of these messages, and recovery tech-
niques must be able to distinguish between messages like C and those like
E and F.

Lost messages like D can be handled by having processes keep a message
log of all the sent messages. So when a process restores to a checkpoint,
it replays the messages from its log to handle the lost message problem.
However, message logging and message replaying during recovery can result
in duplicate messages. In the example shown in Figure 13.4, when process
Pj replays messages from its log, it will regenerate message J. Process Pk,
which has already received message J, will receive it again, thereby causing
inconsistency in the system state. Therefore, these duplicate messages must
be handled properly.

Overlapping failures further complicate the recovery process. A process
Pj that begins rollback/recovery in response to the failure of a process Pi
can itself fail and develop amnesia with respect process Pi’s failure; that is,
process Pj can act in a fashion that exhibits ignorance of process Pi’s failure.
If overlapping failures are to be tolerated, a mechanism must be introduced
to deal with amnesia and the resulting inconsistencies.

464 Checkpointing and rollback recovery

13.4 Checkpoint-based recovery

In the checkpoint-based recovery approach, the state of each process and the
communication channel is checkpointed frequently so that, upon a failure,
the system can be restored to a globally consistent set of checkpoints. It
does not rely on the PWD assumption, and so does not need to detect, log,
or replay non-deterministic events. Checkpoint-based protocols are therefore
less restrictive and simpler to implement than log-based rollback recovery.
However, checkpoint-based rollback recovery does not guarantee that pre-
failure execution can be deterministically regenerated after a rollback. There-
fore, checkpoint-based rollback recovery may not be suitable for applications
that require frequent interactions with the outside world. Checkpoint-based
rollback-recovery techniques can be classified into three categories: uncoordi-
nated checkpointing, coordinated checkpointing, and communication-induced
checkpointing [13].

13.4.1 Uncoordinated checkpointing

In uncoordinated checkpointing, each process has autonomy in deciding when
to take checkpoints. This eliminates the synchronization overhead as there
is no need for coordination between processes and it allows processes to
take checkpoints when it is most convenient or efficient. The main advantage
is the lower runtime overhead during normal execution, because no coordi-
nation among processes is necessary. Autonomy in taking checkpoints also
allows each process to select appropriate checkpoints positions. However,
uncoordinated checkpointing has several shortcomings [13].

First, there is the possibility of the domino effect during a recovery, which
may cause the loss of a large amount of useful work. Second, recovery from
a failure is slow because processes need to iterate to find a consistent set
of checkpoints. Since no coordination is done at the time the checkpoint is
taken, checkpoints taken by a process may be useless checkpoints. (A useless
checkpoint is never a part of any global consistent state.) Useless checkpoints
are undesirable because they incur overhead and do not contribute to advanc-
ing the recovery line. Third, uncoordinated checkpointing forces each process
to maintain multiple checkpoints, and to periodically invoke a garbage collec-
tion algorithm to reclaim the checkpoints that are no longer required. Fourth,
it is not suitable for applications with frequent output commits because these
require global coordination to compute the recovery line, negating much of
the advantage of autonomy.

As each process takes checkpoints independently, we need to determine a
consistent global checkpoint to rollback to, when a failure occurs. In order
to determine a consistent global checkpoint during recovery, the processes
record the dependencies among their checkpoints caused by message exchange

465 13.4 Checkpoint-based recovery

Figure 13.5 Checkpoint index
and checkpoint interval [13].

m(i,x)

Cj,0 Cj,1

Ij,y

Ii,x

Cj,y–1

Ci,x–1 Ci,x

Cj,y

Ci,0 Ci,1

Pj

Pi

during failure-free operation. The following direct dependency tracking tech-
nique is commonly used in uncoordinated checkpointing.

Let Ci�x be the xth checkpoint of process Pi, where i is the process i.d. and
x is the checkpoint index (we assume each process Pi starts its execution with
an initial checkpoint Ci�0). Let I i�x denote the checkpoint interval or simply
interval between checkpoints Ci�x−1 and Ci�x. Consider the example shown
in Figure 13.5. When process Pi at interval I i�x sends a message m to Pj ,
it piggybacks the pair (i, x) on m. When Pj receives m during interval I j�y,
it records the dependency from I i�x to I j�y, which is later saved onto stable
storage when Pj takes checkpoint Cj�y.

When a failure occurs, the recovering process initiates rollback by broad-
casting a dependency request message to collect all the dependency infor-
mation maintained by each process. When a process receives this message,
it stops its execution and replies with the dependency information saved on
the stable storage as well as with the dependency information, if any, which
is associated with its current state. The initiator then calculates the recovery
line based on the global dependency information and broadcasts a rollback
request message containing the recovery line. Upon receiving this message,
a process whose current state belongs to the recovery line simply resumes
execution; otherwise, it rolls back to an earlier checkpoint as indicated by the
recovery line.

13.4.2 Coordinated checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activ-
ities so that all local checkpoints form a consistent global state [13]. Coordi-
nated checkpointing simplifies recovery and is not susceptible to the domino
effect, since every process always restarts from its most recent checkpoint.
Also, coordinated checkpointing requires each process to maintain only one
checkpoint on the stable storage, reducing the storage overhead and eliminat-
ing the need for garbage collection. The main disadvantage of this method is
that large latency is involved in committing output, as a global checkpoint is

466 Checkpointing and rollback recovery

needed before a message is sent to the OWP. Also, delays and overhead are
involved everytime a new global checkpoint is taken.

If perfectly synchronized clocks were available at processes, the following
simple method can be used for checkpointing: all processes agree at what
instants of time they will take checkpoints, and the clocks at processes trigger
the local checkpointing actions at all processes. Since perfectly synchronized
clocks are not available, the following approaches are used to guarantee
checkpoint consistency: either the sending of messages is blocked for the
duration of the protocol, or checkpoint indices are piggybacked to avoid
blocking.

Blocking coordinated checkpointing
A straightforward approach to coordinated checkpointing is to block commu-
nications while the checkpointing protocol executes. After a process takes a
local checkpoint, to prevent orphan messages, it remains blocked until the
entire checkpointing activity is complete. The coordinator takes a checkpoint
and broadcasts a request message to all processes, asking them to take a
checkpoint. When a process receives this message, it stops its execution,
flushes all the communication channels, takes a tentative checkpoint, and
sends an acknowledgment message back to the coordinator. After the coor-
dinator receives acknowledgments from all processes, it broadcasts a commit
message that completes the two-phase checkpointing protocol. After receiving
the commit message, a process removes the old permanent checkpoint and
atomically makes the tentative checkpoint permanent and then resumes its
execution and exchange of messages with other processes. A problem with
this approach is that the computation is blocked during the checkpointing and
therefore, non-blocking checkpointing schemes are preferable.

Non-blocking checkpoint coordination
In this approach the processes need not stop their execution while taking
checkpoints. A fundamental problem in coordinated checkpointing is to pre-
vent a process from receiving application messages that could make the
checkpoint inconsistent. Consider the example in Figure 13.6(a) [13]: mes-
sage m is sent by P0 after receiving a checkpoint request from the checkpoint
coordinator. Assume m reaches P1 before the checkpoint request. This sit-
uation results in an inconsistent checkpoint since checkpoint c1�x shows the
receipt of message m from P0, while checkpoint c0�x does not show m being
sent from P0.

If channels are FIFO, this problem can be avoided by preceding the first
post-checkpoint message on each channel by a checkpoint request, forcing
each process to take a checkpoint before receiving the first post-checkpoint
message, as illustrated in Figure 13.6(b). An example of a non-blocking
checkpoint coordination protocol using this idea is the snapshot algorithm of

467 13.4 Checkpoint-based recovery

Figure 13.6 Non-blocking
coordinated checkpointing: (a)
checkpoint inconsistency; (b)
a solution with FIFO
channels [13].

Checkpoint request

m

Initiator

Checkpoint request

Initiator

m

c0,x

c1,x c1,x

c0,x
P0 P0

P1 P1

(a) (b)

Chandy and Lamport [9] in which markers play the role of the checkpoint-
request messages. In this algorithm, the initiator takes a checkpoint and sends
a marker (a checkpoint request) on all outgoing channels. Each process takes
a checkpoint upon receiving the first marker and sends the marker on all
outgoing channels before sending any application message. The protocol
works assuming the channels are reliable and FIFO.

If the channels are non-FIFO, the following two approaches can be used:
first, the marker can be piggybacked on every post-checkpoint message.
When a process receives an application message with a marker, it treats it
as if it has received a marker message, followed by the application message.
Alternatively, checkpoint indices can serve the same role as markers, where
a checkpoint is triggered when the receiver’s local checkpoint index is lower
than the piggybacked checkpoint index.

Coordinated checkpointing requires all processes to participate in every
checkpoint. This requirement generates valid concerns about its scalability.
It is desirable to reduce the number of processes involved in a coordinated
checkpointing session. This can be done since only those processes that have
communicated with the checkpoint initiator either directly or indirectly since
the last checkpoint need to take new checkpoints. A two-phase protocol by
Koo and Toueg [22] achieves minimal checkpoint coordination.

13.4.3 Impossibility of min-process non-blocking checkpointing

A min-process, non-blocking checkpointing algorithm is one that forces only
a minimum number of processes to take a new checkpoint, and at the same
time it does not force any process to suspend its computation. Clearly, such
checkpointing algorithms will be very attractive. Cao and Singhal [7] showed
that it is impossible to design a min-process, non-blocking checkpointing
algorithm.

Of course, the following type of min-process checkpointing algorithms are
possible. The algorithm consists of two phases. During the first phase, the

468 Checkpointing and rollback recovery

checkpoint initiator identifies all processes with which it has communicated
since the last checkpoint and sends them a request. Upon receiving the request,
each process in turn identifies all processes it has communicated with since
the last checkpoint and sends them a request, and so on, until no more
processes can be identified. During the second phase, all processes identified
in the first phase take a checkpoint. The result is a consistent checkpoint that
involves only the participating processes. In this protocol, after a process takes
a checkpoint, it cannot send any message until the second phase terminates
successfully, although receiving a message after the checkpoint has been taken
is allowable.

Based on a concept called “Z-dependency,” Cao and Singhal proved that
there does not exist a non-blocking algorithm that will allow a minimum
number of processes to take their checkpoints. Here we give only a sketch
of the proof and readers are referred to the original source [7] for a detailed
proof.

Z-dependency is defined as follows: if a process Pp sends a message to
process Pq during its ith checkpoint interval and process Pq receives the
message during its jth checkpoint interval, then Pq Z-depends on Pp during
Pp’s ith checkpoint interval and Pq’s jth checkpoint interval, denoted by Pp
→i

j Pq. If Pp →i
j Pq and Pq → j

kPr , then Pr transitively Z-depends depends
on Pp during Pr’s kth checkpoint interval and Pp’s ith checkpoint interval,
and this is denoted as Pp

∗→i
kPr .

A min process algorithm is one that satisfies the following condition: when
a process Pp initiates a new checkpoint and takes checkpoint Cp�i, a process Pq
takes a checkpoint Cq�jassociated with Cp�i if and only if Pq

∗→j−1
i−1Pp. In

a min-process non-blocking algorithm, process Pp initiates a new checkpoint
and takes a checkpoint Cp�i and if a process Pr sends a message m to Pq after
it takes a new checkpoint associated with Cp�i, then Pq takes a checkpoint
Cq�i before processing m if and only if Pq

∗→ j−1
i−1Pp. According to the

min-process definition, Pq takes checkpoint Cq�j if and only if Pq
∗→j−1

i−1Pp,
but Pq should take Cq�i before processing m. If it takes Cq�j after processing
m, m becomes an orphan. Therefore, when a process receives a message m,
it must know if the initiator of a new checkpoint transitively Z-depends on
it during the previous checkpoint interval. But it has been proved that there
is not enough information at the receiver of a message to decide whether the
initiator of a new checkpoint transitively Z-depends on the receiver. Therefore,
no min-process, non-blocking algorithm exists.

13.4.4 Communication-induced checkpointing

Communication-induced checkpointing is another way to avoid the domino
effect, while allowing processes to take some of their checkpoints inde-
pendently. Processes may be forced to take additional checkpoints (over
and above their autonomous checkpoints), and thus process independence

469 13.4 Checkpoint-based recovery

is constrained to guarantee the eventual progress of the recovery line.
Communication-induced checkpointing reduces or completely eliminates the
useless checkpoints. In communication-induced checkpointing, processes take
two types of checkpoints, namely, autonomous and forced checkpoints. The
checkpoints that a process takes independently are called local checkpoints,
while those that a process is forced to take are called forced checkpoints.
Communication-induced checkpointing piggybacks protocol-related informa-
tion on each application message. The receiver of each application mes-
sage uses the piggybacked information to determine if it has to take a
forced checkpoint to advance the global recovery line. The forced checkpoint
must be taken before the application may process the contents of the mes-
sage, possibly incurring some latency and overhead. It is therefore desirable
in these systems to minimize the number of forced checkpoints. In con-
trast with coordinated checkpointing, no special coordination messages are
exchanged.

There are two types of communication-induced checkpointing [13]: model-
based checkpointing and index-based checkpointing. In model-based check-
pointing, the system maintains checkpoints and communication structures
that prevent the domino effect or achieve some even stronger properties. In
index-based checkpointing, the system uses an indexing scheme for the local
and forced checkpoints, such that the checkpoints of the same index at all
processes form a consistent state.

Model-based checkpointing
Model-based checkpointing prevents patterns of communications and check-
points that could result in inconsistent states among the existing checkpoints.
A process detects the potential for inconsistent checkpoints and independently
forces local checkpoints to prevent the formation of undesirable patterns. A
forced checkpoint is generally used to prevent the undesirable patterns from
occurring. No control messages are exchanged among the processes during
normal operation. All information necessary to execute the protocol is piggy-
backed on application messages. The decision to take a forced checkpoint is
done locally using the information available.

There are several domino-effect-free checkpoint and communication mod-
els. The MRS (mark, send, and receive) model of Russell [34] avoids the
domino effect by ensuring that within every checkpoint interval all message-
receiving events precede all message-sending events. This model can be
maintained by taking an additional checkpoint before every message-receiving
event that is not separated from its previous message-sending event by a
checkpoint. Another way to prevent the domino effect by avoiding rollback
propagation completely is by taking a checkpoint immediately after every
message-sending event. Recent work has focused on ensuring that every
checkpoint can belong to a consistent global checkpoint and therefore is not
useless.

470 Checkpointing and rollback recovery

Index-based checkpointing
Index-based communication-induced checkpointing assigns monotonically
increasing indexes to checkpoints, such that the checkpoints having the same
index at different processes form a consistent state. Inconsistency between
checkpoints of the same index can be avoided in a lazy fashion if indexes
are piggybacked on application messages to help receivers decide when they
should take a forced a checkpoint. For instance, the protocol by Briatico
et al. [5] forces a process to take a checkpoint upon receiving a message
with a piggybacked index greater than the local index. More sophisticated
protocols piggyback more information on application messages to minimize
the number of forced checkpoints.

13.5 Log-based rollback recovery

A log-based rollback recovery makes use of deterministic and non-
deterministic events in a computation. So first we discuss these events.

13.5.1 Deterministic and non-deterministic events

Log-based rollback recovery exploits the fact that a process execution can
be modeled as a sequence of deterministic state intervals, each starting with
the execution of a non-deterministic event. A non-deterministic event can be
the receipt of a message from another process or an event internal to the
process. Note that a message send event is not a non-deterministic event. For
example, in Figure 13.7, the execution of process P0 is a sequence of four
deterministic intervals. The first one starts with the creation of the process,
while the remaining three start with the receipt of messages m0, m3, and
m7, respectively. Send event of message m2 is uniquely determined by the
initial state of P0 and by the receipt of message m0, and is therefore not a
non-deterministic event.

Log-based rollback recovery assumes that all non-deterministic events can
be identified and their corresponding determinants can be logged into the sta-
ble storage. During failure-free operation, each process logs the determinants

Figure 13.7 Deterministic and
non-deterministic events.

P0

P1

P2

m0

m1 m4 m6

m2 m3 m5 m7

471 13.5 Log-based rollback recovery

of all non-deterministic events that it observes onto the stable storage.
Additionally, each process also takes checkpoints to reduce the extent of roll-
back during recovery. After a failure occurs, the failed processes recover by
using the checkpoints and logged determinants to replay the corresponding
non-deterministic events precisely as they occurred during the pre-failure exe-
cution. Because execution within each deterministic interval depends only on
the sequence of non-deterministic events that preceded the interval’s begin-
ning, the pre-failure execution of a failed process can be reconstructed during
recovery up to the first non-deterministic event whose determinant is not
logged.

The no-orphans consistency condition
Let e be a non-deterministic event that occurs at process p. We define the
following [13]:

• Depend(e): the set of processes that are affected by a non-deterministic
event e. This set consists of p, and any process whose state depends on
the event e according to Lamport’s happened before relation [23].

• Log(e): the set of processes that have logged a copy of e’s determinant in
their volatile memory.

• Stable(e): a predicate that is true if e’s determinant is logged on the stable
storage.

Suppose a set of processes � crashes. A process p in � becomes an orphan
when p itself does not fail and p’s state depends on the execution of a non-
deterministic event e whose determinant cannot be recovered from the stable
storage or from the volatile memory of a surviving process. Formally, it can
be stated as follows [13]:

∀�e� � ¬Stable�e�=⇒Depend�e�⊆ Log�e��

This property is called the always-no-orphans condition [13]. It states that if
any surviving process depends on an event e, then either event e is logged on
the stable storage, or the process has a copy of the determinant of event e. If
neither condition is true, then the process is an orphan because it depends on
an event e that cannot be generated during recovery since its determinant is
lost.

Log-based rollback-recovery protocols guarantee that upon recovery of all
failed processes, the system does not contain any orphan process, i.e., a process
whose state depends on a non-deterministic event that cannot be reproduced
during recovery. Log-based rollback-recovery protocols are of three types:
pessimistic logging, optimistic logging, and causal logging protocols. They
differ in their failure-free performance overhead, latency of output commit,
simplicity of recovery and garbage collection, and the potential for rolling
back surviving processes.

472 Checkpointing and rollback recovery

13.5.2 Pessimistic logging

Pessimistic logging protocols assume that a failure can occur after any
non-deterministic event in the computation. This assumption is “pessimistic”
since in reality failures are rare. In their most straightforward form, pessimistic
protocols log to the stable storage the determinant of each non-deterministic
event before the event affects the computation. Pessimistic protocols imple-
ment the following property, often referred to as synchronous logging, which
is a stronger than the always-no-orphans condition [13]:

∀e � ¬Stable�e�=⇒ �Depend�e�� = 0�

That is, if an event has not been logged on the stable storage, then no process
can depend on it. In addition to logging determinants, processes also take
periodic checkpoints to minimize the amount of work that has to be repeated
during recovery. When a process fails, the process is restarted from the most
recent checkpoint and the logged determinants are used to recreate the pre-
failure execution. Consider the example in Figure 13.8. During failure-free
operation the logs of processes P0, P1, and P2 contain the determinants needed
to replay messages m0, m4, m7, m1, m3, m6, and m2, m5, respectively. Suppose
processes P1 and P2 fail as shown, restart from checkpoints B and C, and
roll forward using their determinant logs to deliver again the same sequence
of messages as in the pre-failure execution. This guarantees that P1 and P2

will repeat exactly their pre-failure execution and re-send the same messages.
Hence, once the recovery is complete, both processes will be consistent with
the state of P0 that includes the receipt of message m7 from P1. In a pessimistic
logging system, the observable state of each process is always recoverable.

The price paid for these advantages is a performance penalty incurred
by synchronous logging. Synchronous logging can potentially result in a
high performance overhead. Implementations of pessimistic logging must
use special techniques to reduce the effects of synchronous logging on the
performance. This overhead can be lowered using special hardware. For

Figure 13.8 Pessimistic
logging [13].

A

B

C

Failure

Failure

Maximum recoverable state

P0

P1

P2

m0
m1

m2 m3

m4

m5
m6

m7

473 13.5 Log-based rollback recovery

example, fast non-volatile semiconductor memory can be used to implement
the stable storage. Another approach is to limit the number of failures that can
be tolerated. The overhead of pessimistic logging is reduced by delivering
a message or executing an event and deferring its logging until the process
communicates with another process or with the outside world.

Synchronous logging in such an implementation is orders of magnitude
cheaper than with a traditional implementation of stable storage that uses
magnetic disk devices. Another form of hardware support uses a special bus
to guarantee atomic logging of all messages exchanged in the system. Such
hardware support ensures that the log of one machine is automatically stored
on a designated backup without blocking the execution of the application
program. This scheme, however, requires that all non-deterministic events be
converted into external messages.

Some pessimistic logging systems reduce the overhead of synchronous log-
ging without relying on hardware. For example, the sender-based message
logging (SBML) protocol keeps the determinants corresponding to the deliv-
ery of each message m in the volatile memory of its sender. The determinant
of m, which consists of its content and the order in which it was delivered,
is logged in two steps. First, before sending m, the sender logs its content in
volatile memory. Then, when the receiver of m responds with an acknowledg-
ment that includes the order in which the message was delivered, the sender
adds to the determinant the ordering information. SBML avoids the overhead
of accessing stable storage but tolerates only one failure and cannot handle
non-deterministic events internal to a process. Extensions to this technique
can tolerate more than one failure in special network topologies.

13.5.3 Optimistic logging

In optimistic logging protocols, processes log determinants asynchronously
to the stable storage [13]. These protocols optimistically assume that logging
will be complete before a failure occurs. Determinants are kept in a volatile
log, and are periodically flushed to the stable storage. Thus, optimistic logging
does not require the application to block waiting for the determinants to
be written to the stable storage, and therefore incurs much less overhead
during failure-free execution. However, the price paid is more complicated
recovery, garbage collection, and slower output commit. If a process fails,
the determinants in its volatile log are lost, and the state intervals that were
started by the non-deterministic events corresponding to these determinants
cannot be recovered. Furthermore, if the failed process sent a message during
any of the state intervals that cannot be recovered, the receiver of the message
becomes an orphan process and must roll back to undo the effects of receiving
the message.

Optimistic logging protocols do not implement the always-no-orphans con-
dition. The protocols allow the temporary creation of orphan processes which

474 Checkpointing and rollback recovery

Figure 13.9 Optimistic
logging [13]. A

D

B

C

P0

P1

P2

m0
m1

m2 m3

m4 m7

m5 m6

X

are eventually eliminated. The always-no-orphans condition holds after the
recovery is complete. This is achieved by rolling back orphan processes until
their states do not depend on any message whose determinant has been lost.

Consider the example shown in Figure 13.9. Suppose process P2 fails
before the determinant for m5 is logged to the stable storage. Process P1 then
becomes an orphan process and must roll back to undo the effects of receiving
the orphan message m6. The rollback of P1 further forces P0 to roll back to
undo the effects of receiving message m7.

To perform rollbacks correctly, optimistic logging protocols track causal
dependencies during failure free execution. Upon a failure, the dependency
information is used to calculate and recover the latest global state of the
pre-failure execution in which no process is in an orphan. Optimistic logging
protocols require a non-trivial garbage collection scheme. Also note that
pessimistic protocols need only keep the most recent checkpoint of each
process, whereas optimistic protocols may need to keep multiple checkpoints
for each process.

Since determinants are logged asynchronously, output commit in optimistic
logging protocols requires a guarantee that no failure scenario can revoke the
output. For example, if process P0 needs to commit output at state X, it must
log messages m4 and m7 to the stable storage and ask P2 to log m2 and m5.
In this case, if any process fails, the computation can be reconstructed up to
state X.

13.5.4 Causal logging

Causal logging combines the advantages of both pessimistic and optimistic
logging at the expense of a more complex recovery protocol [13]. Like
optimistic logging, it does not require synchronous access to the stable storage
except during output commit. Like pessimistic logging, it allows each process
to commit output independently and never creates orphans, thus isolating
processes from the effects of failures at other processes. Moreover, causal
logging limits the rollback of any failed process to the most recent checkpoint
on the stable storage, thus minimizing the storage overhead and the amount
of lost work.

475 13.5 Log-based rollback recovery

Figure 13.10 Causal
logging [13].

A

B

C

Failure

Failure

Maximum recoverable state

P0

P1

P2

m0 m1

m2 m3

m4

m5 m6

X

Causal logging protocols make sure that the always-no-orphans property
holds by ensuring that the determinant of each non-deterministic event that
causally precedes the state of a process is either stable or it is available
locally to that process. Consider the example in Figure 13.10. Messages m5

and m6 are likely to be lost on the failures of P1 and P2 at the indicated
instants. Process P0 at state X will have logged the determinants of the non-
deterministic events that causally precede its state according to Lamport’s
happened-before relation. These events consist of the delivery of messages
m0, m1, m2, m3, and m4. The determinant of each of these non-deterministic
events is either logged on the stable storage or is available in the volatile log
of process P0. The determinant of each of these events contains the order in
which its original receiver delivered the corresponding message. The message
sender, as in sender-based message logging, logs the message content. Thus,
process P0 will be able to “guide” the recovery of P1 and P2 since it knows
the order in which P1 should replay messages m1 and m3 to reach the state
from which P1 sent message m4. Similarly, P0 has the order in which P2

should replay message m2 to be consistent with both P0 and P1. The content
of these messages is obtained from the sender log of P0 or regenerated
deterministically during the recovery of P1 and P2. Note that information
about messages m5 and m6 is lost due to failures. These messages may be
resent after recovery possibly in a different order. However, since they did
not causally affect the surviving process or the outside world, the resulting
state is consistent.

Each process maintains information about all the events that have causally
affected its state. This information protects it from the failures of other
processes and also allows the process to make its state recoverable by
simply logging the information available locally. Thus, a process does not
need to run a multi-host protocol to commit output. It can commit output
independently.

476 Checkpointing and rollback recovery

13.6 Koo–Toueg coordinated checkpointing algorithm

Koo and Toueg’s [22] coordinated checkpointing and recovery technique
takes a consistent set of checkpoints and avoids the domino effect and livelock
problems during the recovery. Processes coordinate their local checkpointing
actions such that the set of all checkpoints in the system is consistent [9].

13.6.1 The checkpointing algorithm

The checkpoint algorithm makes the following assumptions about the dis-
tributed system: processes communicate by exchanging messages through
communication channels. Communication channels are FIFO. It is assumed
that end-to-end protocols (such as the sliding window protocol) exist to cope
with message loss due to rollback recovery and communication failure. Com-
munication failures do not partition the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable
storage: permanent and tentative. A permanent checkpoint is a local check-
point at a process and is a part of a consistent global checkpoint. A tentative
checkpoint is a temporary checkpoint that is made a permanent checkpoint on
the successful termination of the checkpoint algorithm. In case of a failure,
processes roll back only to their permanent checkpoints for recovery.

The checkpointing algorithm assumes that a single process invokes the
algorithm at any time to take permanent checkpoints. The algorithm also
assumes that no process fails during the execution of the algorithm.

The algorithm consists of two phases.

First phase
An initiating process Pi takes a tentative checkpoint and requests all other
processes to take tentative checkpoints. Each process informs Pi whether it
succeeded in taking a tentative checkpoint. A process says “no” to a request if
it fails to take a tentative checkpoint, which could be due to several reasons,
depending upon the underlying application. If Pi learns that all the processes
have successfully taken tentative checkpoints, Pi decides that all tentative
checkpoints should be made permanent; otherwise, Pi decides that all the
tentative checkpoints should be discarded.

Second phase
Pi informs all the processes of the decision it reached at the end of the first
phase. A process, on receiving the message from Pi, will act accordingly.
Therefore, either all or none of the processes advance the checkpoint by
taking permanent checkpoints.

The algorithm requires that after a process has taken a tentative checkpoint,
it cannot send messages related to the underlying computation until it is
informed of Pi’s decision.

477 13.6 Koo–Toueg coordinated checkpointing algorithm

Correctness
A set of permanent checkpoints taken by this algorithm is consistent because
of the following two reasons: first, either all or none of the processes take
permanent checkpoints; second, no process sends a message after taking a
tentative checkpoint until the receipt of the initiating process’s decision, as
by then all processes would have taken checkpoints. Thus, a situation will
not arise where there is a record of a message being received but there is
no record of sending it. Thus, a set of checkpoints taken will always be
inconsistent.

An optimization
Note that the above protocol may cause a process to take a checkpoint even
when it is not necessary for consistency. Since taking a checkpoint is an
expensive operation, we would like to avoid taking checkpoints if it is not
necessary.

Consider the example shown in Figure 13.11. The set 	x1� y1� z1� is a
consistent set of checkpoints. Suppose process X decides to initiate the check-
pointing algorithm after receiving message m. It takes a tentative checkpoint
x2 and sends “take tentative checkpoint" messages to processes Y and Z, caus-
ing Y and Z to take checkpoints y2 and z2, respectively. Clearly, 	x2� y2� z2�

forms a consistent set of checkpoints. Note, however, that 	x2� y2� z1� also
forms a consistent set of checkpoints. In this example, there is no need for
process Z to take checkpoint z2 because Z has not sent any message since its
last checkpoint. However, process Y must take a checkpoint since it has sent
messages since its last checkpoint.

13.6.2 The rollback recovery algorithm

The rollback recovery algorithm restores the system state to a consistent state
after a failure. The rollback recovery algorithm assumes that a single process

Figure 13.11 Example
of checkpoints taken
unnecessarily.

Take a tentative
checkpoint message

Tentative
checkpointx1 x2

y1

z1 z2

y2

X

Y

Z

m

Time

478 Checkpointing and rollback recovery

invokes the algorithm. It also assumes that the checkpoint and the rollback
recovery algorithms are not invoked concurrently. The rollback recovery
algorithm has two phases.

First phase
An initiating process Pi sends a message to all other processes to check if they
all are willing to restart from their previous checkpoints. A process may reply
“no” to a restart request due to any reason (e.g., it is already participating
in a checkpoint or recovery process initiated by some other process). If Pi
learns that all processes are willing to restart from their previous checkpoints,
Pi decides that all processes should roll back to their previous checkpoints.
Otherwise, Pi aborts the rollback attempt and it may attempt a recovery at a
later time.

Second phase
Pi propagates its decision to all the processes. On receiving Pi’s decision, a
process acts accordingly.

During the execution of the recovery algorithm, a process cannot send
messages related to the underlying computation while it is waiting for Pi’s
decision.

Correctness
All processes restart from an appropriate state because, if they decide to restart,
they resume execution from a consistent state (the checkpointing algorithm
takes a consistent set of checkpoints).

An optimization
The above recovery protocol causes all processes to roll back irrespective of
whether a process needs to roll back or not. Consider the example shown in
Figure 13.12. In the event of failure of process X, the above protocol will
require processes X, Y , and Z to restart from checkpoints x2, y2, and z2,
respectively. However, note that process Z need not roll back because there
has been no interaction between process Z and the other two processes since
the last checkpoint at Z.

13.7 Juang–Venkatesan algorithm for asynchronous checkpointing and recovery

We now describe the algorithm of Juang and Venkatesan [18] for recovery
in a system that employs asynchronous checkpointing.

479 13.7 Juang–Venkatesan algorithm for asynchronous checkpointing and recovery

Figure 13.12 Example of an
unnecessary rollback.

Failurex1 x2

y1

z1 z2

y2

X

Y

Z

Time

13.7.1 System model and assumptions

The algorithm makes the following assumptions about the underlying system:
the communication channels are reliable, deliver the messages in FIFO order,
and have infinite buffers. The message transmission delay is arbitrary, but
finite. The processors directly connected to a processor via communication
channels are called its neighbors.

The underlying computation or application is assumed to be event-driven:
a processor P waits until a message m is received, it processes the message
m, changes its state from s to s′, and sends zero or more messages to some
of its neighbors. Then the processor remains idle until the receipt of the next
message. The new state s′ and the contents of messages sent to its neighbors
depend on state s and the contents of message m. The events at a processor
are identified by unique monotonically increasing numbers, ex0, ex1, ex2,

(see Figure 13.13).

To facilitate recovery after a process failure and restore the system to a
consistent state, two types of log storage are maintained, volatile log and
stable log. Accessing the volatile log takes less time than accessing the stable

Figure 13.13 An event-driven
computation.

Time

ex 0 ex1 ex 2

ey 0 ey1

ez1 ez 2 ez 3

ey 2 ey 3

ez 0

X

Y

Z

Failure

480 Checkpointing and rollback recovery

log, but the contents of the volatile log are lost if the corresponding processor
fails. The contents of the volatile log are periodically flushed to the stable
storage.

13.7.2 Asynchronous checkpointing

After executing an event, a processor records a triplet 	s�m�msgs_sent� in
its volatile storage, where s is the state of the processor before the event, m is
the message (including the identity of the sender of m, denoted as m.sender)
whose arrival caused the event, and msqs_sent is the set of messages that
were sent by the processor during the event. Therefore, a local checkpoint at
a processor consists of the record of an event occurring at the processor and
it is taken without any synchronization with other processors. Periodically, a
processor independently saves the contents of the volatile log in the stable
storage and clears the volatile log. This operation is equivalent to taking a
local checkpoint.

13.7.3 The recovery algorithm

Notation and data structure
The following notation and data structure are used by the algorithm:

• RCVDi←j�CkPti� represents the number of messages received by processor
pi from processor pj , from the beginning of the computation until the
checkpoint CkPti.

• SENTi→j�CkPti� represents the number of messages sent by processor pi
to processor pj , from the beginning of the computation until the checkpoint
CkPti.

Basic idea
Since the algorithm is based on asynchronous checkpointing, the main issue in
the recovery is to find a consistent set of checkpoints to which the system can
be restored. The recovery algorithm achieves this by making each processor
keep track of both the number of messages it has sent to other processors
as well as the number of messages it has received from other processors.
Recovery may involve several iterations of roll backs by processors. Whenever
a processor rolls back, it is necessary for all other processors to find out if any
message sent by the rolled back processor has become an orphan message.
Orphan messages are discovered by comparing the number of messages sent to
and received from neighboring processors. For example, if RCVDi←j�CkPti�

> SENTj→i�CkPtj� (that is, the number of messages received by processor pi
from processor pj is greater than the number of messages sent by processor
pj to processor pi, according to the current states of the processors), then one
or more messages at processor pj are orphan messages. In this case, processor

481 13.7 Juang–Venkatesan algorithm for asynchronous checkpointing and recovery

pj must roll back to a state where the number of messages received agrees
with the number of messages sent.

Consider an example shown in Figure 13.13. Suppose processor Y crashes
at the point indicated and rolls back to a state corresponding to checkpoint
ey1. According to this state, Y has sent only one message to X; however,
according to X’s current state (ex2), X has received two messages from Y .
Therefore, X must roll back to a state preceding ex2 to be consistent with Y ’s
state. We note that if X rolls back to checkpoint ex1, then it will be consistent
with Y ’s state, ey1. Likewise, processor Z must roll back to checkpoint ez1
to be consistent with Y ’s state, ey1. Note that similarly processors X and
Z will have to resolve any such mutual inconsistencies (provided they are
neighbors).

Description of the algorithm
When a processor restarts after a failure, it broadcasts a ROLLBACK message
that it has failed.1 The recovery algorithm at a processor is initiated when
it restarts after a failure or when it learns of a failure at another processor.
Because of the broadcast of ROLLBACK messages, the recovery algorithm
is initiated at all processors. The algorithm is shown in Algorithm 13.1.

The rollback starts at the failed processor and slowly diffuses into the
entire system through ROLLBACK messages. Note that the procedure has |N |
iterations. During the kth iteration (k �= 1), a processor pi does the following:
(i) based on the state CkPti it was rolled back in the (k− 1)th iteration, it
computes SENTi→j�CkPti� for each neighbor pj and sends this value in a
ROLLBACK message to that neighbor; and (ii) pi waits for and processes
ROLLBACK messages that it receives from its neighbors in kth iteration and
determines a new recovery point CkPti for pi based on information in these
messages. At the end of each iteration, at least one processor will rollback
to its final recovery point, unless the current recovery points are already
consistent.

Example Consider an example shown in Figure 13.14 consisting of three
processors. Suppose processor Y fails and restarts. If event ey2 is the lat-
est checkpointed event at Y , then Y will restart from the state correspond-
ing to ey2. Because of the broadcast nature of ROLLBACK messages,
the recovery algorithm is also initiated at processors X and Z. Initially,
X, Y , and Z set CkPtX ← ex3, CkPtY ← ey2 and CkPtZ ← ez2, respec-
tively, and X, Y , and Z send the following messages during the first iter-
ation: Y sends ROLLBACK(Y , 2) to X and ROLLBACK(Y , 1) to Z; X
sends ROLLBACK(X, 2) to Y and ROLLBACK(X, 0) to Z; and Z sends
ROLLBACK(Z, 0) to X and ROLLBACK(Z, 1) to Y .

1 Such a broadcast can be done using only O(|E|) messages where |E| is the total number of
communication links.

482 Checkpointing and rollback recovery

Procedure RollBack_Recovery: processor pi executes the following:
STEP (a)
if processor pi is recovering after a failure then
CkPti �= latest event logged in the stable storage

else
CkPti �= latest event that took place in pi {The latest event at pi can be
either in stable or in volatile storage.}

end if
STEP (b)
for k= 1 to N {N is the number of processors in the system} do

for each neighboring processor pj do
compute SENTi→j�CkPti�

send a ROLLBACK�i� SENTi→j�CkPti�� message to pj
end for
for every ROLLBACK�j� c� message received from a neighbor j do

if RCVDi←j�CkPti� > c {Implies the presence of orphan messages}
then
find the latest event e such that RCVDi←j�e�= c {Such an event e
may be in the volatile storage or stable storage.}
CkPti �= e

end if
end for

end for{for k}

Algorithm 13.1 Juang–Venkatesan algorithm

Since RCVDX←Y �CkPtX� = 3 > 2 (2 is the value received in the
ROLLBACK(Y , 2) message from Y), X will set CkPtX to ex2 satisfying
RCVDX←Y �ex2� = 2 ≤ 2. Since RCVDZ←Y �CkPtZ� = 2 > 1, Z will set CkPtZ
to ez1 satisfying RCVDZ←Y �ez1� = 1 ≤ 1. At Y , RCVDY←X�CkPtY � = 1 < 2

Figure 13.14 An example of
the Juan–Venkatesan
algorithm.

Time

ex0 ex1 ex2 ex3

ey0 ey1

ez1z1

x1

y1

ez2

ey2 ey3

ez0

X

Y

Z

Failure

483 13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

and RCVDY←Z�CkPtY � = 1 = SENTZ←Y �CkPtZ�. Hence, Y need not
roll back further. In the second iteration, Y sends ROLLBACK(Y , 2)
to X and ROLLBACK(Y , 1) to Z; Z sends ROLLBACK(Z, 1) to Y

and ROLLBACK(Z, 0) to X; X sends ROLLBACK(X, 0) to Z and
ROLLBACK(X, 1) to Y . Note that if Y rolls back beyond ey3 and loses the
message from X that caused ey3, X can resend this message to Y because
ex2 is logged at X and this message is available in the log. The second and
third iteration will progress in the same manner. Note that the set of recovery
points chosen at the end of the first iteration, {ex2, ey2, ez1}, is consistent, and
no further rollback occurs.

13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

When processes independently take their local checkpoints, there is a pos-
siblity that some local checkpoints can never be included in any consistent
global checkpoint. (Recall that such local checkpoints are called the useless
checkpoints.) In the worst case, no consistent checkpoint can ever be formed.

The Manivannan–Singhal quasi-synchronous checkpointing algorithm [25]
improves the performance by eliminating useless checkpoints. The algorithm
is based on communication-induced checkpointing, where each process takes
basic checkpoints asynchronously and independently, and in addition, to pre-
vent useless checkpoints, processes take forced checkpoints upon the reception
of messages with a control variable.

The Manivannan–Singhal quasi-synchronous checkpointing algorithm
combines coordinated and uncoordinated checkpointing approaches to get the
best of both:

• It allows processes to take checkpoints asynchronously.
• It Uses communication-induced checkpointing to eliminates the “useless"

checkpoints.
• Since every checkpoint lies on consistent checkpoint, determination of the

recovery line during a rollback a recovery is simple and fast.

Each checkpoint at a process is assigned a unique sequence number. The
sequence numbers assigned to basic checkpoints are picked from the local
counters, which are incremented periodically.

When a process Pi sends a message, it appends the sequence number of
its latest checkpoint to the message. When a process Pj receives a message,
if the sequence number received in the message is greater than the sequence
number of the latest checkpoint of Pj , then, before processing the message,
Pj takes a (forced) checkpoint and assigns the sequence number received in
the message as the sequence number of the checkpoint taken. When it is time
for a process to take a basic checkpoint, it skips taking a basic checkpoint
if its latest checkpoint has a sequence number greater than or equal to the

484 Checkpointing and rollback recovery

current value of its counter. This strategy helps to reduce the checkpointing
overhead, i.e., the number of checkpoints taken. An alternative approach to
reduce the number of checkpoints is to allow a process to delay processing a
received message until the sequence number of its latest checkpoint is greater
than or equal to the sequence number received in the message.

13.8.1 Checkpointing algorithm

Now, we present the quasi-synchronous checkpointing algorithm formally
(Algorithm 13.2). The variable nexti of process Pi represents its local counter.
It keeps track of the current number of checkpoint intervals at process Pi.
The value of the variable sni represents the sequence number of the latest
checkpoint of Pi at any time. So, whenever a new checkpoint is taken, the
checkpoint is assigned a sequence number and sni is updated accordingly.
C.sn denotes the sequence number assigned to checkpoint C and M.sn denotes
the sequence number piggybacked to message M.

Properties
When processes take checkpoints in this manner, checkpoints satisfy the
following interesting properties (Ci�k denotes a checkpoint with sequence
number k at process Pi):

1. Checkpoint Ci�m of process Pi is concurrent with checkpoints C∗�m of all
other processes. For example, in Figure 13.15, checkpoint C2�3 is concur-
rent with checkpoints C1�3 and C3�3.

2. Checkpoints C∗�m of all processes form a consistent global checkpoint. For
example, in Figure 13.15, checkpoints {C1�4, C2�4, C3�4} form a consistent
global checkpoint. An interesting application of this result is that if process
P3 crashes and restarts from checkpoint C3�5 (in Figure 13.15), then P1

will need to take a checkpoint C1�5 (without rolling back) and the set of
checkpoints {C1�5, C2�5, C3�5} will form a consistent global checkpoint.
Since there may be gaps in the sequence numbers assigned to checkpoints
at a process, we have the following result:

3. The checkpoint Ci�m of process Pi is concurrent with the earliest check-
point Cj�n at process Pj such that m ≤ n. For example, in Figure 13.15,
checkpoints {C1�3, C2�2, C3�2} form a consistent global checkpoint.

The following corollary gives a sufficient condition for a set of local
checkpoints to be a part of a global checkpoint.

Corollary 13.1 Let S = 	Ci1�mi1
�Ci2�mi2

�

 �Cik�mik
� be a set of local check-

points from distinct processes. Let m=min	mi1
�mi2

�

 �mik
�. Then, S can

be extended to a global checkpoint if ∀ l �1 ≤ l ≤ k�, Cil�mil
is the earliest

checkpoint of Pil such that mil
≥ m.

The following corollary gives a sufficient condition for a global checkpoint
to be consistent.

485 13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

Data Structures at Process Pi:
sni �= 0; {Sequence number of the current checkpoint, initialized to 0.

This is updated every time a new checkpoint is taken.}
nexti �= 1; {Sequence number to be assigned to the next basic

checkpoint; initialized to 1.}

When it is time for process Pi to increment nexti:
nexti�= nexti +1; {nexti is incremented at periodic time intervals of X

time units}

When process Pi sends a message M:
M.sn �= sni; {sequence number of the current checkpoint is appended

to M}
send (M);

Process Pj receives a message from process Pi:
if snj < M.sn then {if sequence number of the current checkpoint

Take checkpoint C; is less than checkpoint number received in the
C.sn �= M.sn; message, then take a new checkpoint before
snj �= M.sn; processing the message}

Process the message.

When it is time for process Pi to take a basic checkpoint:
if nexti > sni then {skips taking a basic checkpoint if nexti ≤ sni

Take checkpoint C; (i.e., if it already took a forced checkpoint
sni �= nexti; with sequence number ≥ nexti)}
C.sn �= sni;

Algorithm 13.2 Manivannan–Singhal quasi-synchronous checkpointing algorithm [25].

Corollary 13.2 Let S = 	C1�m1
�C2�m2

�

 �CN�mN
� be a set of local check-

points one for each process. Let m = min	m1�m2�

 �mN�. Then, S is a
global checkpoint if ∀ i �1 ≤ i ≤ N�, Ci�mi

is the earliest checkpoint of Pi
such that mi ≥m.

These properties have a strong implication on the failure recovery. The
task of finding a consistent global checkpoint after a failure is considerably
simplified. If the failed process rolls back to a checkpoint with sequence
number m, then all other processes simply need to roll back to the earliest
local checkpoint C∗�n such that m≤ n.

Example We illustrate the basic idea behind the checkpoints algorithm
using an example.

486 Checkpointing and rollback recovery

Consider a system consisting of three processes P1, P2, and P3 shown in
Figure 13.15. The basic checkpoints are shown in the figure as “�” and forced
checkpoints are shown as “�∗”. The sequence numbers assigned to checkpoints
are also shown in the figure. Each process Pi increments its variable nexti
every x time units. Process P3 takes a basic checkpoint every x time units, P2

takes a basic checkpoint every 2x time units, and P1 takes a basic checkpoint
every 3x time units. Message M0 forces P3 to take a forced checkpoint with
sequence number 2 before processing message M0. As a result P3 skips taking
a basic checkpoint with sequence number 2. Message M1 forces process
P2 to take a forced checkpoint with sequence number 3 before processing
M1 because M1�sn > sn2 while receiving the message. Similarly message M2

forces P1 to take a checkpoint before processing the message and M4 forces
P2 to take a checkpoint before processing the message. However, M3 does
not force process P3 to take a checkpoint before processing it. Note that
there may be gaps in the sequence numbers assigned to checkpoints at a
process.

13.8.2 Recovery algorithm

The recovery process is asynchronous; that is, when a process fails, it just
rolls back to its latest checkpoint and broadcasts a rollback request message to
every other process and continues its processing without waiting for any reply
message from them. The recovery is based on the assumption that if a process
Pi fails, then no other process fails until the system is restored to a consistent
state. In addition to the variables defined in the checkpoint algorithm, the
processes also maintains two other variables: inci and rec_linei. The inci is
the incarnation number for process Pi. It is incremented every time a process
fails and restarts from its latest checkpoint. The rec_linei is the recovery
line number. These variables are stored in the stable storage, so that they
are made available for recovery. Initially, ∀i, inci = 0 and rec_linei = 0.
With each message M , the current values of the three variables inci, sni, and
rec_linei are piggybacked. The values of these variable piggybacked to M is
denoted by M�inc, M�sn, and M�rec_line, respectively. C�sn denotes the sequence
number of checkpoint C. We present the basic recovery algorithm formally in
Algorithm 13.3.

An explanation
When process Pi fails, it rolls back to its latest checkpoint and broadcasts a
rollback(inci, rec_linei) message to all other processes and continues its nor-
mal execution. Upon receiving this rollback message, a process Pj rolls back
to its earliest checkpoint whose sequence number ≥ rec_linei, and continues
normal execution. If process Pj does not have such a checkpoint, it takes
a checkpoint with the sequence number equal to rec_linei, and continues

487 13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

Data structures at process Pi:
integer sni = 0;
integer nexti = 1;
integer inci = 0;
integer rec_linei = 0;

Checkpointing algorithm:
When it is time for process Pi to increment nexti

nexti �= nexti+1;

When it is time for process Pi to take a basic checkpoint
If (nexti > sni) {

Take checkpoint C;
C�sn �= nexti;
sni �= C�sn;

}

When process Pi sends a message M:
M�sn �= sni;
M�rec_line �= rec_linei;
M�inc �= inci;
send�M�;

When process Pj receives a message M:
if (M�inc > incj) {

rec_linej �=M�rec_line;
incj �=M�inc;
Roll_Back(Pj);

}
If (M�sn > snj) {

Take checkpoint C;
C�sn �=M�sn;
snj �= C�sn;

}
Process the message;

Basic recovery algorithm (BRA):
Recovery initiated by process Pi after failure:

Restore the latest checkpoint;
inci �= inci+1;
rec_linei �= sni;
send rollback(inci, rec_linei) to all other processes;
resume normal execution;

Process Pj upon receiving Roll_Back(inci, rec_linei) from Pi:
If (inci > incj) {

488 Checkpointing and rollback recovery

incj �= inci;
rec_linj �= rec_linei;
Roll_Back(Pj);
continue as normal;

}
else

Ignore the rollback message;

Procedure Roll_Back(Pj):
If (rec_linej > snj) {

Take checkpoint C;
C�sn �= rec_linej;
snj �= C�sn;

}
else
{

Find the earliest checkpoint C with C�sn ≥ rec_linej;
snj �= C�sn;
Restore checkpoint C;
Delete all checkpoints after C;

}

Algorithm 13.3 Manivannan–Singhal quasi-synchronous recovery algorithm [25].

normally. Due to message delays, the broadcast message might be delayed and
a process Pj may come to know about a rollback indirectly through some other
process that has already seen the rollback message. Since every message is
piggybacked with M�inc, M�sn, and M�rec_line, the indirect application message
that Pj receives indicates a rollback incarnation by some other process. If
process Pj receives such a message M , and M�inc > incj , then Pj infers that
some failed process had initiated a rollback with incarnation number M�inc and
Pj rolls back to its earliest checkpoint whose sequence number ≥ M�rec_line;
if Pj later receives a rollback message corresponding to this incarnation, it
ignores it. Thus, after knowing directly or indirectly about the failure of a
process Pi, all other processes rollback to their earliest checkpoint whose
sequence number is greater than equal to rec_linei. If any process does not
have such a checkpoint, it takes a checkpoint and adds it to the rec_line and
proceeds normally. Note that not all processes need to perform a rollback to
its earliest checkpoint.

Example We illustrate the basic recovery using the example in Figure 13.15.
Suppose process P3 fails at the instant shown. When P3 recovers, it increments
inc3 to 1, sets rec_line3 to sn3�= 5�, rolls back to its latest checkpoint C3�5

and sends a rollback(1, 5) message to all other processes. Upon receiving

489 13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

Figure 13.15 An example
illustrating the
Manivannan–Singhal
algorithm [25].

P1

P2

P3

M0

M1 M2

M3 M4

B

C

2

1 2

3 4

3 40

0

0

5

5

3 4

6

*

*

*

*

Failure

this message, P2 will rollback to checkpoint C2�5 since C2�5 is the earliest
checkpoint at P2 with sequence number ≥ 5. However, since P1 does not have
a checkpoint with sequence number greater than or equal to 5, it takes a local
checkpoint and assigns 5 as its sequence number. Thus, 	C1�5�C2�5�C3�5� is
the recovery line corresponding this failure.

Thus, the recovery is simple. The failed process (on recovering from the
failure) rolls back to its latest checkpoint and requests other processes to
rollback to a consistent checkpoint which they can easily determine solely
based on the local information. There is no domino effect and the recovery
is fast and efficient.

In this example, we find that the sequence number of all checkpoints in the
recovery line is the same, but it need not always be the case.

13.8.3 Comprehensive message handling

Rollback to a recovery line that is consistent may result in lost, delayed,
orphan, or even duplicated messages. Existence of these types of message
may lead the system to an inconsistent state. Next, we discuss on how to
modify the BRA to handle these messages.

Handling the replay of messages
Not all messages stored in the stable storage need to be replayed. The BRA
has to be modified so that it can decide which messages need to be replayed.
In Figure 13.16, if we assume that process P1 fails at the point marked X and
initiates a recovery with a new incarnation. After failure it rolls back to its
latest checkpoint, C1�10, then increments the incarnation inc1 to 1 and sets the
rec_line1 to 10, and sends a rollback(1, 10) message to all other processes.
Upon receiving the rollback message from P1, process P2 rolls back to its
checkpoint C2�12. Consequently, all other processes roll back to an appropriate
checkpoint following the BRA approach. After all the processes have rolled
back to a set of consistent checkpoints, these checkpoints form a recovery

490 Checkpointing and rollback recovery

Figure 13.16 Handling of
messages during the
recovery [25].

0

4 6 8 102

4 6 9 123

0 2 3 54 6 107 119

10

B

C

0

0

84

1

inc = 1
rec_line = 10

Message sent before the rollback

Message sent after the rollback

Failure
P1

M1
M6

M2

M4

M3

M5

M8

M7

P2

P3

P4

8

line with number 10. The messages sent to the left of the recovery line carry
incarnation number 0 and messages sent to the right of the recovery line carry
incarnation 1.

To avoid lost messages, when a process rolls back it must replay all
messages from its log whose receive was undone and whose send was not
undone. In other words, a process must replay only those messages that
originated from the left of the recovery line and delivered to the right of
the recovery line. In the example, after the rollback process P2 must replay
messages M1 and M2 from its log but must not replay M3, because the send of
M1 and M2 were not undone but the send of M3 was. It is easy to determine
the origin of the send of a message M by looking at the sequence number
(M�sn) piggybacked. Therefore, we can state a rule for replaying messages as
follows:

Message replay rule: After a process Pj rolls back to checkpoint C, it replays a
message M only if it was received after C and if M�sn < recovery line number.

Handling of received messages
This section discusses how a process handles received messages. Suppose
process Pj receives a message M from process Pi. At the time of receiving the
message, if Pj is replaying messages from the message log, then Pj will buffer
the message M and will process it only after it finishes with the replaying
of messages from the message log. If Pj does not do this then the following
three cases may occur.

491 13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm

Case 1: M is a delayed message
A delayed message with respect to a recovery line carries an incarnation
number less than the incarnation number of the receiving process. The process
Pi that sent such a message M was not aware of the recovery process at the
time of sending of M . Therefore, the piggybacked incarnation number of Pi
is less than the latest incarnation number of Pj , the receiving process. In such
a situation, if M .sn < rec_linej , then M is first logged in the message log and
then processed; otherwise, it is discarded because Pi will eventually rollback
and resend the message. In the figure, M4 is logged and then processed by
P2 so that P2 might have to replay M4 due to a failure that may occur later,
whereas M5 is discarded by P2. P2 discards M5 because M .sn > rec_line2

(11 > 10) and M .inc�= 0� is less than inc2�= 1�. Therefore, we have the
following rule for handling delayed messages:

Rule for determining and handling delayed messages: A delayed message M received
by process Pj has M�inc less than incj . Such a delayed message is processed by process
Pj only if M .sn < rec_linej ; otherwise, it is discarded.

Case 2: M was sent in the current incarnation
Suppose Pj receives a message M such that incj = M .inc. In this case, if M .sn
< snj , then Pj must log M before processing it. This is done because Pj
might need to replay M due to a future failure. For example, in Figure 13.16,
message M7 is sent by process P1 to process P2 after P1’s recovery and after
P2’s rollback during the same incarnation. In this case, M .inc = inc2 = 1 and
M .sn�= 10� < sn2�= 12�, and M7 must be logged before being processed
because P2 might have to roll back to checkpoint C2�12 in case of a failure.
In that case, P2 will need to replay message M7. Therefore, the rule for
message logging in this case is stated as follows:

Message logging rule: A message received by process Pj is logged into the message
log if M .inc < incj and M .sn < rec_linej or M .inc = incj and M .sn < snj .

Case 3: Message M was sent in a future incarnation
In this case, M .inc > incj and Pj handles it as follows: Pj sets rec_linej to
M .rec_line and incj to M .inc, and then rolls back to the earliest checkpoint with
sequence number ≥ rec_linej . After the roll back, message M is handled as
in case 2, because M .inc = incj .

Features
The Manivannan–Singhal quasi-synchronous checkpointing algorithm has
several interesting features:

• Communication-induced checkpointing intelligently guides the check-
pointing activities to eliminates “useless" checkpoints. Thus, every check-
point lies on consistent checkpoint.

• There is no extra message overhead involved in checkpointing. Only a
scalar is piggybacked on application messages.

492 Checkpointing and rollback recovery

• It ensures the existence of a recovery line consistent with the latest check-
point of any process all the time. This helps bound the depth of rollback
during a rollback recovery.

• A failed process rolls back to its latest checkpoint and requests other
processes to rollback to a consistent checkpoint (no domino-effect).

• Helps in garbage collection. After a process has established a recovery
line, all checkpoints preceding the line can be deleted.

• The algorithm achieves the best of the both worlds:
• it has easeness and low overhead of uncoordinated checkpointing;
• it has recovery time advantages of coordinated checkpointing.

13.9 Peterson–Kearns algorithm based on vector time

The Peterson–Kearns [28] checkpointing and recovery protocol is based on
the optimistic rollback. Vector time is used to capture causality to identify
events and messages that become orphans when a failed process rolls back.

13.9.1 System model

We assume that there are N processors in the system, which are logically
configured as a ring. Each processor knows its successor on the ring and
this knowledge is stored in its stable storage since it is critical that it be
recoverable after a failure. We assume a single process is executing on each
processor. These N processes are denoted as P0� P1� P2··· � PN−1. We assume
that P�i+1� mod N is the successor of Pi for 0 ≤ i < N .

Each process Pi has a vector clock Vi[j], 0 ≤ j ≤ N − 1. Vi(ei) denotes
the clock value of an event ei which occurred at Pi. The ith component of
the vector is incremented before each event at process Pi and the current
timestamp vector is sent on each message to update the receiving process’s
clock. Vi(pi) denotes the current vector clock time of process Pi and ei denotes
the most recent event in Pi. Thus Vi(pi) = Vi(ei). Each send and receive
event increments the vector time. The processes take periodic checkpoints
of process state and also maintain a message log on the stable storage. The
receipt of incoming messages is also logged periodically. The current vector
clock value is considered a part of the process state and is logged to the stable
storage when a checkpoint is taken.

Notation
The following notation is used to explain the algorithm:

• eij: The ith event on Pj . We use e′ and e′′ to refer to generic events of Pj .
• s: A send event of the underlying computation.
• ��s�: The process where send event s occurs.

493 13.9 Peterson–Kearns algorithm based on vector time

• ��s�: The process where the receive event matched with send event s
occurs.

• f ij : The ith failure on Pj .
• ckij: The ith state checkpoint on Pj . The checkpoint resides on the stable

storage.
• rsij: The ith restart event on Pj .
• rbij: The ith rollback event on Pj .
• LastEvent�f ij � = e′ iff e′ �→ rsij .

In a rollback protocol, every process must be contacted at least once to
indicate that a failure has occurred and to send it the information necessary
for recovery. This process is characterized as a series of one or more polling
waves which are typified by the arrival of a polling message which transmits
information necessary for rollback and a response by the polled process. We
define two new event types:

• Ci�k(m): The arrival of the final polling wave message for rollback from
failure fmi at process Pk.

• wi�k(m): The response to this final polling wave by Pk. If no response is
required, wi�k(m) = Ci�k(m)

The final polling wave for recovery from failure fmi is defined as:

PWi�m�=
N−1⋃
k=0

wi�k�m� ∪
N−1⋃
k=0

Ci�k�m��

13.9.2 Informal description of the algorithm

When a process Pi restarts after failure fmi , it retrieves its latest checkpoint,
including its vector clock value Vi�Latest�ck�f

m
i ��, from the stable stor-

age and rolls back to it. The message log is replayed until it is exhausted.
Since the vector time of each message is logged with the message, when the
messages are replayed, the clock value of the recovering process is appropri-
ately updated. After the logged messages have been replayed, the recovering
process executes a restart event, rsmi , to begin the global rollback proto-
col, originates a token message containing the vector timestamp of rsi

m and
sends the token to its successor process. The token associated with failure
fmi and restart event rsi

m is denoted by tk(i,m). The timestamp of this token
is denoted as tk(i, m).ts. Process Pi buffers all incoming application mes-
sages until the return of the token. When this occurs, Pi resumes normal
execution.

494 Checkpointing and rollback recovery

The token is circulated through all the processes on the ring. When the
token arrives at process Pj , the timestamp in the token is used to deter-
mine whether the process Pj must roll back. If tk(i, m).ts < Vj(pj), then an
orphan event has occurred at Pj and Pj must roll back to an earlier state.
This is accomplished by restoring Pj to the state of ck′j , where ck′j is the
latest checkpoint at Pj for which Vj(ck

′
j) < tk(i, m).ts, and then replay-

ing logged messages as long as the timestamp of the message is less than
tk(i, m).ts.

It is possible that an orphan event in Pj is the receipt of a message orig-
inating in a non-orphaned send event in process Pi. Since the send event
corresponding to such a receipt does not causally succeed any lost event in Pi,
the recovery of Pi will not result in the replay of such messages. Therefore,
these messages are lost unless some special actions are taken. To make sure
that these messages are not lost, Pj must request their retransmission during
the rollback.

During the rollback, Pj must also retransmit any message that it sent to Pi
that was lost due to failure. Process Pj can determine whether the messages
it had sent have been received by the failed process Pi by comparing the
vector timestamps of the messages to the timestamp in the token. If Vj(s)[j]
>V i(rs

m
i (j)), where s is the message that was sent to Pi, then it is possible that

the failed process has lost the message and it must be resent. It is also possible
that the message is not lost, but is still in transit; thus Pi must discard any
duplicate messages. Because channels are FIFO, Pi can identify any duplicate
message from its timestamp.

After the logged messages have been replayed and retransmissions of the
required messages are done, Pj instigates a rollback event, rbkj , to indicate
that rollback at it is complete. Vector time is not incremented for this event
so V (jrbkj)= V j(e

′
j), where e′j is the last event replayed. Any logged event

whose vector time exceeds tk(i, m).ts is discarded.
If tk(i, m).ts ≮ Vj�Pj� when the token arrives, the state of Pj is not

changed. For consistency, however, a rollback event is instigated to indicate
that rollback is complete at Pj and to allow the token to be propagated.

Note that, after the rollback is complete, Vj�Pj� ≯ Vj�rs
m
i �, that is, every

event in Pj either happens before the restart event rsi
m or is concurrent to it.

The property of vector time that e
′
i→ e

′′
j iff Vi(e

′
i) < Vj(e

′′
j) allows us to make

this claim.
The token is propagated from process Pi to process P�i+1�modN . As the

token propagates, it rolls back orphan events at every process. When
the token returns to the originating process, the roll back recovery is
complete.

Handling in-transit orphan messages
It is possible for orphan messages to be in transit during the rollback process.
If these messages are received and processed during or after the rollback

495 13.9 Peterson–Kearns algorithm based on vector time

procedure, an inconsistent global state will result. To identify these orphan
messages and discard them on arrival, it is necessary to include an incarnation
number with each message and with the token. inci denotes the current
incarnation number of process Pi, and Inc(ei) denotes the incarnation number
of event ei. The value returned for an event equals the current incarnation
number of the process in which the event occurred. The incarnation number
in the token is denoted by tk(i, m).inc.

When Pi initiates the rollback process, it increments its current incarnation
number by one and attaches it to the token. A process receiving the token
saves both the vector timestamp of the token and the incarnation number in
the stable storage. Because there is no bound on message transmission time,
the vector timestamps and associated incarnation numbers that have arrived in
the token must be accumulated in a set denoted as OrVecti. The set OrVecti
is composed of ordered pairs of token timestamps and incarnation numbers
received by process Pi.

When an application message is received by process Pi� the vector times-
tamp of the message is compared to the vector timestamps stored in OrVecti.
If the vector timestamp of the message is found to be greater than a timestamp
in OrVecti, then the incarnation number of the message is compared to the
incarnation number corresponding to the timestamp in OrVecti. If the mes-
sage incarnation number is smaller, then the message is discarded. Clearly,
this is an orphan message that was in transit during the rollback process.
In all other cases, the message is accepted and processed. Upon the receipt
of a token, the receiving process sets its incarnation number to that in the
token.

13.9.3 Formal description of the rollback protocol

The causal rollback protocol is described as set of six rules, CRB1 to CRB6.
For each rule, we first present its formal description and then give a verbal
explanation of the rule.

The rollback protocol

CRB1 wi�i(m) occurs iff there exists fmi , rsi
m such that fmi �→ rsmi →

wi�i(m).

A formerly failed process creates and propagates a token, event
wi�i(m), only after restoring the state from the latest checkpoint and
executing the message log from the stable storage.

CRB2 The occurrence of wi�i�m� implies that
tk��i�m��ts = Vi(rsi

m) ∧

496 Checkpointing and rollback recovery

tk��i�m��inc = Inc�Latest�ck�fmi ��+1∧
Inci = Inc�Latest�ck�fmi ��+1

The restart event increments the incarnation number at the recov-
ering process, and the token carries the vector timestamp of the
restart event and the newly incremented incarnation number.

CRB3 wi�j�m�� i �= j occurs iff
∃ rbi

k such that ci�j�m�→ rbki → wi�j�m�∧
∀ e′j such that Vj(e

′
j) > tk�i�m��ts, ¬ Recorded(e

′
j)

A non-failed process will propagate the token only after it has
rolled back.

CRB4 The occurrence of wi�j�m� implies that
Inci = tk�i�m��inc∧ �tk�i�m��ts� tk�i�m��inc� ∈ OrVectj
A non-failed process will propagate the token only after it has
incremented its incarnation number and has stored the vector times-
tamp of the token and the incarnation number of the token in its
OrVect set.

CRB5 Polling wave PWi�m� is complete when Ci�j�m� occurs.

When the process that failed, recovered, and initiated the token,
receives its token back, the rollback is complete.

CRB6 Any message received by event, n�s�, is discarded iff ∃ m ∈
OrVect�p�s�� such that Inc(s) < Inc�m�∧V�m� < V�s�.

Messages that were in transit and which were orphaned by the
failure and subsequent restart and recovery must be discarded.

Example Consider an example consisting of three processes shown in
Figure 13.17. The processes have taken checkpoints C1

0 , C1
1� C

1
2 . Each event

on a process time line is tagged with the vector time (x� y� z) of its occurrence.
Each message is tagged with [i](x� y� z), where i is the incarnation number
associated with the message send event, and (x� y� z) is the vector time of the
send event. Process P0 fails just after sending message m5, which increments
its vector clock to (5, 4, 0).

Upon restart of P0, the checkpoint C1
0 is restored, and the restart event, rs1

0

is performed by the protocol. We assume that message m4 was not logged
into the stable storage at P0, hence it cannot be replayed during the recovery.
A token, [1](4, 0, 0), is created and propagated to P1. This is shown in the
figure by a dotted vertical arrow. Upon the receipt of the token, P1 rolls back
to a point such that its vector time is not greater than (3, 0, 0), the time in the
token. Hence P1 rolls back to its state at time (1, 4, 0). P1 then records the
token in its OrVect set and sends the token to P2. P2 takes a similar action
and rolls back to message send event with time (1, 4, 4). The token is then
returned to P0 and recovery is complete.

497 13.9 Peterson–Kearns algorithm based on vector time

[1](3, 0, 0)

(1, 4, 4)

[1](3, 0, 0)

(1,4,0)

W1,0(1)

C1,2(1) W1,2(1)

C1,1(1)

W1,1(1)

C1,0(1)

[1](3, 0, 0)

(3, 0, 0)
Failure

1
C0

1
C2

1
C1

1f0

1rs0

1rb1

1rb2

(3, 0, 0)

(1, 2, 0)

(0, 0, 1)

(1, 1, 0)

(1, 0, 0)

[0](1, 0, 0)
m5m4m2

m1
m3

m6

m0

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(1, 4, 4)

[0](2, 0, 0)

(5, 4, 0)(2, 0, 0) (4, 4, 0)

[0](1, 4, 0)

(1, 3, 0)

(1, 3, 2)

[0](1, 3, 0)

(1, 4, 0)

(1, 4, 3)

[0](1, 4, 0)

[0](5, 4, 0)

[0](1, 4, 4)

P0

P1

P2

Figure 13.17 An example of
rollback recovery in the
Peterson–Kearns algorithm. Three messages are in transit while the polling wave is executing. The

message m2 from P0 to P2 with label [0](2, 0, 0) will be accepted when
it arrives. Likewise, message m6 from P2 will be accepted by P1 when
it arrives. However, application of rule CRB6 will result in message m5

with label [0](5, 4, 0) being discarded when it arrives at P1. The net effect
of the recovery process is that the application is rolled back to a consis-
tent global state indicated by the dotted line, and all processes have suf-
ficient information to discard messages sent from orphan events on their
arrival.

13.9.4 Correctness proof

First we show that all orphaned events are detected and eliminated [28].

Theorem 13.1 The completion of a wave in casual rollback protocol insures
that every event orphaned by failure fmi is eliminated before the final polling
wave.

Proof We prove that when the initiator process receives the token back, all
the orphan events have been detected and eliminated. That is, for an event
wi�j�m�, as specified in the causal rollback protocol,

¬Orphan�wi�j�m�� f
m
i ��

First we prove that the token, as constructed during the restoration of a
failed process, contains necessary information to determine if any event is
orphaned by a failure. If there exists any orphan event e′i due to failure f jm,
then the vector timestamp in the token will be less than the vector time of
the event, i.e., tk�j�m��ts < Vi�e

′
i�. By CRB2, the vector timestamp in the

498 Checkpointing and rollback recovery

token, tk�j�m��ts must equal to Vj�rs
m
j �, and Vj�rs

m
j �= Vj�LastEvent�fmj ��.

In other words, the timestamp in the token must be equal to the vector time of
the restart event rsmj at process Pj denoted as Vj (rsmj), and the vector time of
the restart event at Pj will be one more than the vector time of the latest event
before failure f jm. Since rsmj occupies the same position in causal partial order
as e′j and LastEvent�fmj � �→ e′j , the following must hold: Vj�rs

m
j � ≤ Vj�e′j�.

If there exists an orphan e′i, then there exist e′j such that LastEvent(fmj) →
e′j→ e′i.

Therefore, Vj�e
′
j� < Vi�e

′
i� and Vj�rs

m
j � < Vi�e

′
i�, which proves that when

tk�j�m��ts < Vj�e
′
i�� (13.1)

there exists an orphan event e′i.
We use the above result to prove that there exists no orphan event at the

end of the final polling wave:

¬Orphan�wi�j�m�� f
m
i �� (13.2)

The proof is by contradiction. Let us assume that there exist a polling event
wi�j�m� for which Orphan(wi�j�m�� f

m
i) is true. Then there exists an event e′i

such that LastEvent(fmi �→ e′i→ wi�j�m�. Then there must exist e′j such that
e′i→ e′j→wi�j�m�. This implies Orphan(e′j� f

m
i). But according to Eq. (13.1),

tk�i�m��ts < Vj�e′j�, which contradicts CRB3: wi�j�m� occurs iff there exists
rbkj such that ci�j�m�→ rbkj → wi�j�m� and for every e′j such that Vj�e

′
j� >

tk�i�m��ts, ¬ recorded�e′j�.
Therefore, every event orphaned by a failure fmi is eliminated before the

final polling wave is completed. �

Now we show that only all orphaned messages are discarded [28].

Theorem 13.2 All orphaned messages are discarded and all non-orphaned
messages are eventually delivered.

Proof Let us consider a send event s, which is not orphaned by the failure
fmi . In this case, n�s�→ wi�p�s��m�∨wi�p�s��m�→ n�s�.

Given reliable channels, the message will eventually arrive. The receipt of
a message can only disappear from the causal order if it is lost by a failed
process, rolled back by the protocol, or discarded upon arrival.

The first possibility is that process Pi lost the message due to its failure.
In this case the receiving process p�s� is i. During the rollback at P��s� (the
process where the send event occurred), this message will be retransmitted
as the occurrence of the rb event associated with wi���s��m� guarantees this.
Therefore wi�i→ n�s�.

499 13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced protocol

The second possibility is that n�s�→wi�p�s� and n�s� has rolled back because
n�s� was orphaned by the failure fmi . However, if event s is not orphaned
by fmi , Pp�s� (the receiving process) will request retransmission before the
occurrence of the rollback event rb, and wi�p�s�→ n�s�.

The final possibility is that n�s� occurs after the wave but is discarded upon
arrival. By CRB6, n�s� will be discarded if and only if V�s� > tk�i�m��ts

and inc�s� < tk�i�m��inc. If s→ wi���s� and Orphan�s� f im�, then V�s� ≯
tk�i�m��ts. If wi���s�→ s, then Inc�s�≮ tk�i�m��inc. Therefore, n�s� will not
be discarded and wi�p�s�→ n�s�.

We now prove the converse:

Ifn�s�→ wi�p�s��m�∨wi�p�s�→ n�s�then¬Orphan�s� fmi ��
Assume n�s�→ wi�p�s�. From Eq. (13.2), we know ¬ Orphan�wi�p�s�, f

m
i).

Therefore ¬ Orphan�n�s�� fmi � and ¬ Orphan�s� fmi �.
Assume wi�p�s� → n�s� and Orphan�s� fmi �. By Eq. (13.1), this implies

tk�i�m��ts < V��s�. Rule CRB2 of the protocol guarantees that if
Orphan�s� fmi � is true, then Inc�s� < tk�i�m��inc. Rule CRB4 requires that
tk�i�m��ts and tk�i�m��inc are stored in OrVectj before wi�j�m� occurs.
Therefore, there exists z∈OrVectj such that V�z� < V�s� and Inc�z� > Inc�s�.
CRB6 requires such a message must be discarded, contradicting our assump-
tion that wi�p�s�→ n�s�. �

13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced protocol

The Helary–Mostefaoui–Netzer–Raynal [15, 16] communication-induced
checkpointing protocol prevents useless checkpoints and does it efficiently.
To prevent useless checkpoints, some coordination is required in taking local
checkpoints. Coordinated checkpointing protocols use additional control mes-
sages to synchronize their checkpointing activities, but these result in reduced
process autonomy and degraded performance of the underlying application.
Communication-induced checkpointing protocols achieve this coordination
by piggybacking control information on application messages. No control
messages are needed and no synchronization is added to the application.
More precisely, processes take local checkpoints independently, called basic
checkpoints, and the protocol directs them to take additional local check-
points, called forced checkpoints. A process takes a forced checkpoint when
it receives a message and a predicate at it becomes true. This predicate is
based on local control variables of the receiving process and on the control
values carried by the message. The values of the local control variables at the
process are based on causal dependencies appearing in its past.

The Helary–Mostefaoui–Netzer–Raynal communication-induced check-
pointing protocol ensures that no local checkpoint is useless and it takes as
few forced checkpoints as possible. It is based on the Z-path and Z-cycle

500 Checkpointing and rollback recovery

Cj,y Cj,y

Pj

Pi

Pk

Pj

Pi

Pk

Ck,z Ck,z
Ci,x

m2 m2

m1m1

(a) (b)

Figure 13.18 To checkpoint or
not to checkpoint [16]?

theory introduced by Netzer and Xu [27]. The protocol is based on Z-path
and Z-cycle theory introduced by Netzer and Xu who showed that a useless
checkpoint exactly corresponds to the existence of a Z-cycle in the distributed
computation. At the model level, the protocol prevents Z-cycles. At the oper-
ational level, each message is piggybacked with an integer (Lamport’s clock
value), a vector of integers (checkpoint sequence number), and two boolean
vectors (the size of each vector is n, the number of processes). An interest-
ing feature of this protocol is that for any checkpoint C, it is very easy to
determine a consistent global checkpoint to which C belongs.

13.10.1 Design principles

With each checkpoint C, let us associate a timestamp denoted by C�t. The
protocol depends on the following result:

For any pair of checkpoints Cj�y and Ck�z, such that there is a Z-path from Cj�y to Ck�z,
Cj�y�t < Ck�z�t implies that there is no Z-cycle.

Thus, if we can manage the timestamps and take checkpoints in such a
way that the timestamps always increase along any Z-path, then no Z-cycles
will form, and no checkpoints will be useless. Each process Pi has a logical
clock lci managed in the following way:

1. Before a process Pi takes a (basic or forced) checkpoint, it increases its
clock by 1 and associates the new clock value with the checkpoint.

2. Every message m is timestamped with the value of its sender clock (let
m�t denote the timestamp associated with message m).

3. When a process Pi receives a message m, it updates its local clock lci =
max�lci�m�t�.

It follows from this mechanism that, if there is a causal Z-path from Cj�y to
Ck�z, then we have Cj�y�t < Ck�z�t.

To checkpoint or not to checkpoint?
Let us consider the computation depicted in Figure 13.18, where Cj�y is a local
checkpoint taken by Pj before sending m1 and Ck�z is the first checkpoint of
Pk taken after the delivery of m2. As the sending of m2 and the delivery of

501 13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced protocol

m1 belong to the same interval of Pi, messages m1 and m2 constitute a Z-path
from Cj�y to Ck�z. When Pi receives m1, two cases can occur:

1. m1�t ≤m2�t. In this case, Cj�y�t < m1�t < m2�t < Ck�z�t. Hence, the Z-path
due to messages m1 and m2 in Figure 13.18(a) is in accordance with the
above result.

2. m1�t > m2�t. In this case, a safe strategy to prevent Z-cycle formation is to
direct Pi to take a forced checkpoint Ci�x before delivering m1 (as shown
in Figure 13.18(b)),. This “breaks” the m1� m2 Z-path, so it is no longer a
Z-pattern.

This strategy can be implemented in the following way. Each process Pi
maintains a boolean array sent_toi�1

 n� to determine whether the reception
of a message creates a Z-pattern. The value of sent_toi�k� is true iff Pi has
sent a message to Pk since its last checkpoint. Each process Pi also maintains
an array of integers min_toi�1

 n�, where min_toi�k� keeps the timestamp
of the first message Pi sent to Pk since its last checkpoint.

The condition m1�t > m2�t is then expressed as:

C≡ �∃ k� sent_toi�k�∧m1�t > min_toi�k���

Therefore, Pi takes a forced checkpoint if C is true. The predicate C is true
if there exists a message from Pi to Pk since its last checkpoint and the
timestamp of m1 is greater than the first message Pi sent to Pk since its last
checkpoint.

Reducing the number of forced checkpoints
Each process Pi maintains the local clock values of other processes. For each
k�1 ≤ k ≤ n�, let cli�k� denote the value of Pk’s local clock as perceived by
Pi. If k = i, obviously cli�i�= lci. However, if k �= i, the perception of Pk’s
local clock by Pi is only an approximation such that cli�k� ≤ lck. Consider
again the situation in Figure 13.18. If the following property holds:

�m1�t < m2�t�∨P�whereP ≡ �Cj�y�t ≤m1�t ≤ cli�k� < Ck�z�t��

then the Z-path due to messages m1 and m2 is in accordance with the above
result. Let us consider the property P in the case where m1�t > m2�t. Since
m1�t carries the value lcj when m1 is sent, the first relation Cj�y�t ≤ m1�t

necessarily holds when m1 is received. So, the property P can be violated
only if, when m1 is received, m1�t > cli�k� or if cli�k�≥ Ck�z�t.

Therefore, to prevent the formation of a Z-path due to messages m1 and
m2 that would violate property P, the protocol requires process Pi to take a
forced checkpoint before delivering m1 if m1�t > cli�k� or if cli�k�≥ Ck�z�t.

Now we have to determine which value of clk, the approximation cli�k�

refers to. Let us consider the following two possible cases:

502 Checkpointing and rollback recovery

1. The value of cli�k� has been brought to Pi by a causal Z-path that started
from Pk and ended before Ck�z. This situation is illustrated in Figure 13.19.
The value of cli�k� is brought to Pi by m′ in Figure 13.19(a) and by
m′′ and m1 in Figure 13.19(b). In this case, we have cli�k� < Ck�z�t and,
consequently, Pi has to take a forced checkpoint only if m1�t > cli�k�.

2. The value of cli�k� has been brought to Pi by a causal Z-path that started
from Pk and ended after Ck�z. This situation is illustrated in Figure 13.20.
Here the relevant causal Z-path is m′ in Figure 13.20(a) and m′′ and
m1 in Figure 13.20(b). Both these figures can be redrawn so that they
corresponds to the pattern in Figure 13.21. In one case, m′ brings the last
value of Pk’s local clock to Pi, and in the other case it is m′′�m1. In this
case, we have cli�k�≥Ck�z�t and Pi has to recognize this pattern and take a
forced checkpoint if it occurs. Let C1 be a predicate describing this pattern
occurrence.

The previous condition C can be redefined as C ′ as follows:

C ′ ≡ �∃k� sent_toi�k�∧ �m1�t > min_toi�k��∧ �m1�t > cli�k�∨C1���

The predicate C ′ has two parts. The first part is the previous condition C and
the second part is a predicate C1. The second part will be true if the timestamp
of message m1 is greater than Pk’s local clock value as perceived by Pi or if
predicate C1 is true.

Figure 13.19 The value of
cli �k� has been brought to Pi

by a causal Z-path [16].

Cj,y Cj,y

Pj

Pi

Pk

Pj

Pi

Pk

Ck,z Ck,z
m2

m2

m1m1

m′ m′′

(a) (b)

Cj,y

Ci,x

Ck,z

Cj,y

Ci,x

Pj

Pi

Pk

Pj

Pi

Pk

Ck,z
m2 m2

m1m1

m′ m′′

(a) (b)

Figure 13.20 The value of cli �k� has been brought to Pi by a causal Z-path [16].

503 13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced protocol

Figure 13.21 An example of a
Z-cycle [16].

m′

Ck,z

Ci,x

m2

Pi

Pk

To evaluate the predicate C1, each process maintains two additional arrays:

1. Array ckpti is a vector that counts the number of checkpoints taken by
each process. So, ckpti�k� denoted the number of checkpoints taken by Pk
to Pi’s knowledge. Let m.ckpt be the value appended to m by its sender Pi,
which is the value of the array ckpti at the time of sending of message m.

2. A boolean array takeni is used in conjunction with ckpti to evaluate C1.
The value of takeni�k� is true iff there is a causal Z-path from the last
checkpoint of Pk known by Pi to the next checkpoint of Pi and this causal
Z-path includes a checkpoint.

The array takeni is updated in the following way:

• When process a Pi takes a checkpoint, it sets to true all entries of takeni
except takeni�i�, which always remains false: ∀k �= i: takeni �k� = true.

• When process Pi sends a message, Pi appends to its current value of takeni
to the message.

• When process Pi receives m, Pi updates takeni in the following way:

∀k �= i do case
m�ckpt�k� < ckpti�k�→ skip
m�ckpt�k� > ckpti�k�→ takeni�k� �=m�taken�k�
m�ckpt�k�= ckpti�k�→ takeni�k� �= �takeni�k�∨m�taken�k��
end docase

With these data structures, the predicate C1 can be expressed as follows:

C1 ≡ �m1�ckpt�i�= ckpti�i��∧m1�taken�i��

Consider the example shown in Figure 13.21. The first part of the condition
C1 states that there is a causal Z-path starting from Ci�x and arriving at Pi
before Ci�x+1, while the second part indicates that some process has taken a
checkpoint along this causal Z-path.

13.10.2 The checkpointing protocol

Next (see Algorithm 13.4) we describe the Helary–Mostefaoui–Netzer–Raynal
communication-induced checkpointing protocol, which takes as few forced
checkpoints as possible and also ensures that no local checkpoint is useless.

504 Checkpointing and rollback recovery

Procedure take-checkpoint:
∀k do sent_toi�k� := false end do;
∀k do min_toi�k� := +� end do;
∀k �= i do takeni�k� := true end do;
clocki�i� �= clocki�i�+1;
Save the current local state with a copy of clocki�i�;
/* let Ci�x denote this checkpoint. We have Ci�x�t = clocki�i� */
ckpti�i� �= ckpti�i�+1;

(S0) initialization:
∀k do clocki�k� �= 0; ckpti�k� �= 0 end do;
takeni�i� := false;
take_checkpoint;

(S1) When Pi sends a message to Pk:
if ¬ sent_toi[k] then sent_toi[k] := true; min_toi[k]:= clocki[i]

end if;
Send (m, clocki, ckpti, takeni) to Pk;

(S2) When Pi receives (m, clocki i, ckpti, takeni) from Pj:
/* m�clock�j� is the Lamport’s timestamp of m (i.e., m�t) */
if (∃k : sent_toi�k�∧ �m�clock�j� > min_toi�k��∧
��m�clock�j� > max�clocki�k��m�clock�k���∨

�m�ckpt�i�= ckpti�i�∧m�taken�i����
then take_checkpoint /*forced checkpoint */

end if;
clocki�i� �=max�clocki�i��m�clock�j��; /* update of the

scalar clock lci ≡ clocki�i� */
∀k �= i do

clocki�k� �=max�clocki�k��m�clock�k��;
case

m�ckpt�k� < ckpti�k�→ skip
m�ckpt�k� > ckpti�k�→ ckpti�k� �=m�ckpt�k�;
takeni�k� �=m�taken�k�

m�ckpt�k� < ckpti�k�→ takeni�k� �= takeni�k�∨
m�taken�k�

end case
end do

deliver (m);

Algorithm 13.4 The Helary–Mostefaoui–Netzer–Raynal communication-induced checkpointing
protocol [16].

The protocol is executed by each process Pi. S0, S1, and S2 describe
the initialization, the statements executed by Pi when it sends a message,
and statements it executes when it receives a message, respectively. The

505 13.11 Chapter summary

procedure take-checkpoint is called each time Pi takes a checkpoint (basic or
forced).

The protocol uses the following additional data structure: every process Pi
maintains an array clocki�1

 n�, where clocki�j� denotes the highest value
of lcj known to Pi. clocki�1

 n� is initialized to (0, 0,…,0) and is updated
as follows:

• When a process Pi takes a (basic or forced) checkpoint, it increases
clocki�i� by 1.

• When Pi sends a message m, the current value of clocki is sent on the
message. Let m�clock be the timestamp associated with a message m.

• When a process Pi receives a message m from Pj , it updates its clock as
follows:

• clocki�i� �=max�clocki�i��m�clock�j��
• ∀k �= i � clocki�k� �=max�clocki�k��m�clock�k��

Note that clocki�i� is lci, so we do not need to keep lci.
Helary et al. [15] showed that given a local checkpoint Ci�x with timestamp

a, the checkpoint can be associated with the consistent global checkpoint it
belongs to using the following result:

Theorem 13.5 Let a be a Lamport timestamp and Ca be a global checkpoint,
{C1�x1, C2�x2�

 ,Cn�xn,}. If ∀ k, Ck�xk is the last checkpoint of Pk such that
Ck�xk.t ≤ a, then Ca is a consistent global checkpoint.

Proof For a proof, the readers are referred to the original source [15, 16].
This result implies that given a local checkpoint at a process, it is easy to
determine what local checkpoints at other processes form a consistent global
checkpoint with it. This result has a strong implications on the recovery from
a failure. �

13.11 Chapter summary

Rollback recovery achieves fault tolerance by periodically saving the state of
a process during the failure-free execution, and restarting from a saved state
on a failure to reduce the amount of lost computation.

There are three basic approaches for checkpointing and failure recovery:
uncoordinated checkpointing, coordinated checkpointing, and communication-
induced checkpointing.

In uncoordinated checkpointing, each participating process takes its check-
points independently; during a failure recovery, all processes communicate to
find a consistent global checkpoint.

In coordinated checkpointing, processes coordinate their checkpointing
activities to form a system-wide consistent state. In case of a process failure,

506 Checkpointing and rollback recovery

the system state can be restored to such a consistent set of checkpoints, pre-
venting the rollback propagation. This techniques has additional overhead at
run time but it avoids the domino effect at recovery time. Communication-
induced checkpointing forces each process to take checkpoints based on
information piggybacked on the application messages it receives from other
processes. Checkpoints are taken such that construction of a consistent check-
point at recovery is simple, efficient, and fast and the domino effect is avoided.

Message logging can help with the handling of various types of abnormal-
messages and with the recovery after a failure. There are three types of
message logging: pessimistic logging, optimistic logging, and causal logging
protocols.

Over the last two decades, checkpointing and failure recovery has been a
very active area of research and several checkpointing and failure recovery
algorithms have been proposed. In this chapter, we described a set of repre-
sentative checkpointing and recovery algorithms. Lately, useless checkpoints
and techniques to eliminate useless checkpoints have been the main focus of
attention.

13.12 Exercises

Exercise 13.1 Consider the following simple checkpointing algorithm. A process
takes a local checkpoint right after sending a message. Show that the last checkpoint
at all processes will always be consistent. What are the trade-offs with this method?

Exercise 13.2 Show by example that, in the Koo–Toueg checkpointing algrithm, if
processes do not block after taking a tentative checkpoint, then global checkpoint
taken by all processes may not be consistent.

Exercise 13.3 Show that, in the Manivannan–Singhal algorithm, every checkpoint
taken is useful.

Exercise 13.4 Design a checkpointing and recovery algorithm that uses vector clocks,
and does not assume any underlying topology (like ring or tree).

Exercise 13.5 Give a rigorous proof of the impossibility of a min-process, non-
blocking checkpointing algorithm.

13.13 Notes on references

Checkpointing and failure recovery is a well-studied topic and a large number of
checkpointing and failure-recovery algorithms exist. A classical paper on fault toler-
ance is by Randell [32]. Classical failure-recovery algorithms are Leu–Bhargava [4],
Sistla–Welch [35], Kim [19–21], and Strom–Yemini [36]. Other checkpointing and
failure recovery algorithms can be found in [3,8,11,12,14,15,24,30,31,38–41] [15].

An excellent review paper on the topic is by Elnozahy [13]. Richard and
Singhal give a comprehensive recovery protocol using vector timestamp [33]. An

507 References

impossibility proof of min-process non-blocking in coordinated checkpointing is
given in [7]. Cao and Singhal introduced the concept of mutable checkpoint-
ing [6, 8] to improve the performance. Alvisi and Marzullo discuss various mes-
sage logging techniques [1]. Netzer and Xu discuss necessary and sufficient con-
ditions for consistent global snapshots in distributed systems [27]. Manivannan
et al. [26] and Wang [41] discuss how to construct consistent global check-
points that contain a given set of local checkpoints. Prakash and Singhal dis-
cuss how to take maximal global snapshot with concurrent initiators [29]. Other
communication-induced checkpointing algorithms can be found in paper by Baldoni
et al. [2,3,17]. Tong et al. [37] present rollback recovery using loosely synchronized
clocks.

References

[1] L. Alvisi and K. Marzullo, Message logging: pessimistic, optimistic, causal, and
optimal, IEEE Transactions on Software Engineering, 24(2), 1998, 149–159.

[2] R. Baldoni, J. M. Helary, A. Mostefaoui and M. Raynal, A communication-
induced checkpointing protocol that ensures rollback-dependency trackability,
Symposium on Fault-Tolerant Computing, 1997, 68–77.

[3] R. Baldoni, A communication-induced checkpointing protocol that ensures
rollback-dependency trackability, Proceedings of the 27th International Sympo-
sium on Fault-Tolerant Computing (FTCS’97), June 25–27, 1997, p. 68.

[4] B. Bhargava and P. Leu, Concurrent robust checkpointing and recovery in dis-
tributed systems, Proceedings of the IEEE International Conference on Data
Engineering, February 1988, 154–163.

[5] D. Briatico, A. Ciuffoletti, and L. Simoncini, A distributed domino-effect free
recovery algorithm, Proceedings of the Symposium on Reliability in Distributed
Software and Database Systems, Silver Spring, MD, October 1984, 207–215.

[6] G. Cao and M. Singhal, Mutable checkpoints: a new checkpointing
approach for mobile computing systems, IEEE Transactions on Paral-
lel and Distributed Systems, 12(2), 2001, 157–172. Available online at:
www.cse.psu.edu/ gcao/paper/gcao/TPDS01.pdf).

[7] G. Cao and M. Singhal, On the impossibility of min-process non-blocking check-
pointing and an efficient checkpointing algorithm for mobile computing systems,
Proceedings of the 1998 International Conference on Parallel Processing, 1998,
37–44.

[8] G. Cao and M. Singhal, Checkpointing with mutable checkpoints, Theo-
retical Computer Science, 290(2), 2003, 1127–1148. Available online at:
www.cse.psu.edu/ gcao/paper/gcao/TCS03.pdf.

[9] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states of
distributed systems, ACM Transactions on Computer Systems 3(1), 1985, 63–75.

[10] M. Chandy and C. V. Ramamoorthy, Rollback and recovery strategies for com-
puter programs, IEEE Transactions Computing 21(6), 1972, 546–556.

[11] O. P. Damani, Yi-Min Wang, and V. K. Garg, Distributed recovery with K-
optimistic logging, Journal of Parallel and Distributed Computing, 63(12), 2003,
1193–1218.

[12] E. N. Elnozahy and W. Zwaenepoel, Manetho: transparent rollback-recovery
with low overhead, limited rollback, and fast output commit, available online at:
www.cs.utexas.edu/users/mootaz/cs372/Projects/paper2.pdf.

508 Checkpointing and rollback recovery

[13] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, A survey of rollback-
recovery protocols in message-passing systems, ACM Computing Surveys,
34(3), 2002, 375–408. Available online at: www.cs.utexas.edu/users/lorenzo/
papers/SurveyFinal.pdf.

[14] E. N. Elnozahy and J. S. Plank, Checkpointing for peta-scale systems: a look into
the future of practical rollback-recovery, IEEE Transactions on Dependable and
Secure Computing, 1(2), 2004, 97–108.

[15] J. M. Helary, A. MosteFaul, R. H. Netzer, and M. Raynal, Communication-
based prevention of useless checkpoints in distributed computations, Distributed
Computing, 13(1), 2000, 183–190.

[16] J.-M. Helary and A. Mostefaoui, and M. Raynal, Preventing useless checkpoints
in distributed computations, Proceedings of the 16th Symposium on Reliable
Distributed Systems (SRDS’97), October 22–24, 1997, 183–190.

[17] J.-M. Helary, A. Mostefaoui, and M. Raynal, Communication-induced determi-
nation of consistent snapshots, IEEE Transactions on Parallel and Distributed
Systems, 10(9), 1999, 865–877.

[18] T. T.-Y. Juang and S. Venkatesan, Crash recovery with little overhead, Pro-
ceedings of the 11th International Conference on Distributed Computer Systems,
1991, 454–461.

[19] K. H. Kim, Programmer-transparent coordination of recovering concurrent pro-
cesses: philosophy and rules for efficient implementation, IEEE Transactions on
Software Engineering, 14(6), 1988, 810–821.

[20] K. H. Kim, Approach to mechanization of the conversation scheme based
on monitor, IEEE Transactions on Software Engineering, 8(3), 1982,
189–197.

[21] K. H. Kim, Software fault tolerance, in C. R. Vick and C. V. Ramamoorthy
(eds), Handbook of Software Engineering, New York, Van Nostrand Reinhold,
1984.

[22] R. Koo and S. Toueg, Checkpointing and rollback-recovery for distributed sys-
tems, IEEE Transactions on Software Engineering, 13(1) 1987, 23–31.

[23] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7), 1978, 558–565.

[24] D. Manivannan and M. Singhal, Asynchronous recovery without using vec-
tor timestamps, Journal of Parallel and Distributed Computing, 62(12), 2002,
1695–1728.

[25] D. Manivannan and M. Singhal, A low overhead recovery technique using quasi-
synchronous checkpointing, Proceedings of the 16th International Conference
on Distributed Computing Systems, 1996, 100–107.

[26] D. Manivannan, R. H. B. Netzer, and M. Singhal, Finding consistent global
checkpoints in a distributed computation, IEEE Transactions on Parallel and
Distributed Systems, 8(6), 1997, 623–627.

[27] R. H. B. Netzer and J. Xu, Necessary and sufficient conditions for consistent
global snapshots, IEEE Transactions on Parallel and Distributed Systems, 6(2),
1995, 165–169.

[28] S. L. Peterson and P. Kearns, Rollback based on vector time, Proceedings of the
Symposium on Reliable Distributed Systems, 1993, 68–77.

[29] R. Prakash and M. Singhal, Maximal global snapshot with concurrent initiators,
Proceedings of the 6th IEEE Symposium on Parallel Distributed Processing,
Dallas, TX, 1994, 344–351.

[30] R. Prakash and M. Singhal, Low-cost checkpointing and failure recovery in
mobile computing systems, IEEE Transactions on Parallel and Distributed Sys-
tems, 7(10), 1996, 1035–1048.

509 References

[31] P. Ramanathan and K. G. Shin, Use of common time base for checkpointing
and rollback recovery in a distributed system, IEEE Transactions on Software
Engineering, 19(6), 1993, 571–583.

[32] B. Randell, System structure for software fault tolerance, IEEE Transactions on
Software Engineering, 1(2), 1975, 220–232.

[33] G. G. Richard III and M. Singhal, Complete process recovery: using vector time
to handle multiple failures in distributed systems, IEEE Parallel and Distributed
Technology: Systems and Technology, 5(2), 1997, 50–59.

[34] D. L. Russell, State restoration in systems of communicating processes, IEEE
Transactions of Software Engineering, 6(2), 1980, 183–194.

[35] A. P. Sistla and J. L. Welch, Efficient distributed recovery using message logging,
Proceedings of the 8th annual ACM Symposium on Principles of Distributed
Computing, Edmonton, Alberta, Canada, 1989, 223–238.

[36] R. Strom and S. Yemini, Optimistic recovery in distributed systems ACM Trans-
actions on Computer Systems, 3(3), 1985, 204–226.

[37] Z. Tong, R. Y. Kain, and W. T. Tsai, Rollback recovery in distributed systems
using loosely synchronized clocks, IEEE Transactions on Parallel and Dis-
tributed Systems, 3(2), 1992, 246–251.

[38] S. Venkatesan, T. T.-Y. Juang and S. Alagar, Optimistic crash recovery without
changing application messages, IEEE Transactions on Parallel and Distributed
Systems, 8(3), 1997, 263–271.

[39] Y.-M. Wang and W. K. Fuchs, Lazy checkpoint coordination for bounding roll-
back propagation, IEEE Symposium on Reliable Distributed Systems, 1993.

[40] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. K. Fuchs, Checkpoint space reclama-
tion for uncoordinated checkpointing in message-passing systems, IEEE Trans-
actions on Parallel and Distributed Systems, 6(5), 1995, 546–554.

[41] Y.-M. Wang, Consistent global checkpoints that contain a given set of local
checkpoints, IEEE Transactions on Computers, 46(4), 1997, 456–468.

C H A P T E R

14 Consensus and agreement
algorithms

14.1 Problem definition

Agreement among the processes in a distributed system is a fundamental
requirement for a wide range of applications. Many forms of coordination
require the processes to exchange information to negotiate with one another
and eventually reach a common understanding or agreement, before taking
application-specific actions. A classical example is that of the commit deci-
sion in database systems, wherein the processes collectively decide whether
to commit or abort a transaction that they participate in. In this chapter, we
study the feasibility of designing algorithms to reach agreement under vari-
ous system models and failure models, and, where possible, examine some
representative algorithms to reach agreement.

We first state some assumptions underlying our study of agreement
algorithms:

• Failure models Among the n processes in the system, at most f

processes can be faulty. A faulty process can behave in any manner allowed
by the failure model assumed. The various failure models – fail-stop, send
omission and receive omission, and Byzantine failures – were discussed
in Chapter 5. Recall that in the fail-stop model, a process may crash in
the middle of a step, which could be the execution of a local operation or
processing of a message for a send or receive event. In particular, it may
send a message to only a subset of the destination set before crashing. In
the Byzantine failure model, a process may behave arbitrarily. The choice
of the failure model determines the feasibility and complexity of solving
consensus.

• Synchronous/asynchronous communication If a failure-prone process
chooses to send a message to process Pi but fails, then Pi cannot detect the
non-arrival of the message in an asynchronous system because this scenario
is indistinguishable from the scenario in which the message takes a very
long time in transit. We will see this argument again when we consider

510

511 14.1 Problem definition

the impossibility of reaching agreement in asynchronous systems in any
failure model. In a synchronous system, however, the scenario in which a
message has not been sent can be recognized by the intended recipient, at
the end of the round. The intended recipient can deal with the non-arrival
of the expected message by assuming the arrival of a message contain-
ing some default data, and then proceeding with the next round of the
algorithm.

• Network connectivity The system has full logical connectivity, i.e., each
process can communicate with any other by direct message passing.

• Sender identification A process that receives a message always knows
the identity of the sender process. This assumption is important – because
even with Byzantine behavior, even though the payload of the message can
contain fictitious data sent by a malicious sender, the underlying network
layer protocols can reveal the true identity of the sender process.

When multiple messages are expected from the same sender in a single
round, we implicitly assume a scheduling algorithm that sends these mes-
sages in sub-rounds, so that each message sent within the round can be
uniquely identified.

• Channel reliability The channels are reliable, and only the processes
may fail (under one of various failure models). This is a simplifying
assumption in our study. As we will see even with this simplifying assump-
tion, the agreement problem is either unsolvable, or solvable in a complex
manner.

• Authenticated vs. non-authenticated messages In our study, we will be
dealing only with unauthenticated messages. With unauthenticated mes-
sages, when a faulty process relays a message to other processes, (i) it can
forge the message and claim that it was received from another process,
and (ii) it can also tamper with the contents of a received message before
relaying it. When a process receives a message, it has no way to verify its
authenticity. An unauthenticated message is also called an oral message
or an unsigned message.

Using authentication via techniques such as digital signatures, it is easier
to solve the agreement problem because, if some process forges a message
or tampers with the contents of a received message before relaying it, the
recipient can detect the forgery or tampering. Thus, faulty processes can
inflict less damage.

• Agreement variable The agreement variable may be boolean or multi-
valued, and need not be an integer. When studying some of the more
complex algorithms, we will use a boolean variable. This simplifying
assumption does not affect the results for other data types, but helps in the
abstraction while presenting the algorithms.

Consider the difficulty of reaching agreement using the following example,
that is inspired by the long wars fought by the Byzantine Empire in the Middle

512 Consensus and agreement algorithms

Figure 14.1 Byzantine
generals sending confusing
messages.

0

1

1

1
0

0

1

0

0

01

0

G1

G3 G4

G2

Ages. Four camps of the attacking army, each commanded by a general, are
camped around the fort of Byzantium.1 They can succeed in attacking only if
they attack simultaneously. Hence, they need to reach agreement on the time
of attack. The only way they can communicate is to send messengers among
themselves. The messengers model the messages. An asynchronous system
is modeled by messengers taking an unbounded time to travel between two
camps. A lost message is modeled by a messenger being captured by the
enemy. A Byzantine process is modeled by a general being a traitor. The traitor
will attempt to subvert the agreement-reaching mechanism, by giving mis-
leading information to the other generals. For example, a traitor may inform
one general to attack at 10 a.m., and inform the other generals to attack at
noon. Or he may not send a message at all to some general. Likewise, he may
tamper with the messages he gets from other generals, before relaying those
messages.

A simple example of Byzantine behavior is shown in Figure 14.1. Four
generals are shown, and a consensus decision is to be reached about a
boolean value. The various generals are conveying potentially misleading
values of the decision variable to the other generals, which results in con-
fusion. In the face of such Byzantine behavior, the challenge is to deter-
mine whether it is possible to reach agreement, and if so under what con-
ditions. If agreement is reachable, then protocols to reach it need to be
devised.

14.1.1 The Byzantine agreement and other problems

The Byzantine agreement problem
Before studying algorithms to solve the agreement problem, we first define
the problem formally [20, 25]. The Byzantine agreement problem requires a
designated process, called the source process, with an initial value, to reach

1 Byzantium was the name of present-day Istanbul; Byzantium also had the name of
Constantinople.

513 14.1 Problem definition

agreement with the other processes about its initial value, subject to the
following conditions:

• Agreement All non-faulty processes must agree on the same value.
• Validity If the source process is non-faulty, then the agreed upon value

by all the non-faulty processes must be the same as the initial value of the
source.

• Termination Each non-faulty process must eventually decide on a value.

The validity condition rules out trivial solutions, such as one in which the
agreed upon value is a constant. It also ensures that the agreed upon value
is correlated with the source value. If the source process is faulty, then the
correct processes can agree upon any value. It is irrelevant what the faulty
processes agree upon – or whether they terminate and agree upon anything
at all.

There are two other popular flavors of the Byzantine agreement problem –
the consensus problem, and the interactive consistency problem.

The consensus problem
The consensus problem differs from the Byzantine agreement problem in that
each process has an initial value and all the correct processes must agree on
a single value [20, 25]. Formally:

• Agreement All non-faulty processes must agree on the same (single)
value.

• Validity If all the non-faulty processes have the same initial value, then
the agreed upon value by all the non-faulty processes must be that same
value.

• Termination Each non-faulty process must eventually decide on a value.

The interactive consistency problem
The interactive consistency problem differs from the Byzantine agreement
problem in that each process has an initial value, and all the correct processes
must agree upon a set of values, with one value for each process [20, 25].
The formal specification is as follows:

• Agreement All non-faulty processes must agree on the same array of
values A�v1

 vn�.

• Validity If process i is non-faulty and its initial value is vi, then all non-
faulty processes agree on vi as the ith element of the array A. If process j
is faulty, then the non-faulty processes can agree on any value for A�j�.

• Termination Each non-faulty process must eventually decide on the
array A.

514 Consensus and agreement algorithms

14.1.2 Equivalence of the problems and notation

The three problems defined above are equivalent in the sense that a solution
to any one of them can be used as a solution to the other two problems [9].
This equivalence can be shown using a reduction of each problem to the
other two problems. If problem A is reduced to problem B, then a solution
to problem B can be used as a solution to problem A in conjunction with the
reduction. Exercise 14.1 asks the reader to show these reductions.

Formally, the difference between the agreement problem and the consensus
problem is that, in the agreement problem, a single process has the initial
value, whereas in the consensus problem, all processes have an initial value.
However, the two terms are used interchangably in much of the literature and
hence we shall also use the terms interchangably.

14.2 Overview of results

Table 14.1 gives an overview of the results and lower bounds on solving the
consensus problem under different assumptions.

It is worth understanding the relation between the consensus problem and
the problem of attaining common knowledge of the agreement value. For the
“no failure” case, consensus is attainable. Further, in a synchronous system,
common knowledge of the consensus value is also attainable, whereas in the
asynchronous case, concurrent common knowledge of the consensus value is
attainable.

Consensus is not solvable in asynchronous systems even if one process
can fail by crashing. To circumvent this impossibility result, weaker variants

Table 14.1 Overview of results on agreement. f denotes number of failure-prone
processes. n is the total number of processes.

Failure Synchronous system Asynchronous system
mode (message-passing and shared

memory)
(message-passing and shared
memory)

No Agreement attainable Agreement attainable
failure Common knowledge also

attainable
Concurrent common
knowledge attainable

Crash Agreement attainable Agreement not attainable
failure f < n processes

��f +1� rounds

Byzantine Agreement attainable Agreement not attainable
failure f ≤ (�n−1�/3) Byzantine

processes
��f +1� rounds

515 14.3 Agreement in a failure-free system (synchronous or asynchronous)

Table 14.2 Some solvable variants of the agreement problem in an
asynchronous system. The overhead bounds are for the given algorithms, and are
not necessarily tight bounds for the problem.

Solvable Failure model and overhead Definition
variants

Reliable
broadcast

Crash failures, n > f (MP) Validity, agreement, integrity
conditions (Section 14.5.7)

k-set
consensus

Crash failures, f < k < n (MP
and SM)

Size of the set of values agreed
upon must be at most k
(Section 14.5.4)

!-agreement Crash failures, n≥ 5f +1 (MP) Values agreed upon are within
! of each other (Section 14.5.5)

Renaming Up to f fail-stop processes,
n ≥ 2f + 1 (MP)
Crash failures, f ≤ n−1 (SM)

Select a unique name from a
set of names (Section 14.5.6)

Figure 14.2 Circumventing the
impossibility result for
consensus in asynchronous
systems.

Circumventing the impossibility results for consensus in asynchronous systems

k-set consensus
epsilon-consensus
Renaming
Reliable broadcast

Shared memory

Using atomic registers and
atomic snapshot objects
constructed from atomic
registers.

k-set consensus
epsilon-consensus
Renaming

Consensus

Using more powerful
objects than atomic
registers.
This is the study of
universal objects and
universal constructions.

Message−passing

of the consensus problem are defined in Table 14.2. The overheads given in
this table are for the algorithms described. Figure 14.2 shows further how
asynchronous message-passing systems and shared memory systems deal with
trying to solve consensus.

14.3 Agreement in a failure-free system (synchronous or asynchronous)

In a failure-free system, consensus can be reached by collecting information
from the different processes, arriving at a “decision,” and distributing this
decision in the system. A distributed mechanism would have each process
broadcast its values to others, and each process computes the same function
on the values received. The decision can be reached by using an application-
specific function – some simple examples being the majority, max, and min
functions. Algorithms to collect the initial values and then distribute the deci-
sion may be based on the token circulation on a logical ring, or the three-phase

516 Consensus and agreement algorithms

tree-based broadcast–convergecast–broadcast, or direct communication with
all nodes.

• In a synchronous system, this can be done simply in a constant number of
rounds (depending on the specific logical topology and algorithm used).
Further, common knowledge of the decision value can be obtained using
an additional round (see Chapter 8).

• In an asynchronous system, consensus can similarly be reached in a con-
stant number of message hops. Further, concurrent common knowledge of
the consensus value can also be attained, using any of the algorithms in
Chapter 8.

Reaching agreement is straightforward in a failure-free system. Hence, we
focus on failure-prone systems.

14.4 Agreement in (message-passing) synchronous systems with failures

14.4.1 Consensus algorithm for crash failures (synchronous system)

Algorithm 14.1 gives a consensus algorithm for n processes, where up to
f processes, where f < n, may fail in the fail-stop model [8]. Here, the
consensus variable x is integer-valued. Each process has an initial value xi.
If up to f failures are to be tolerated, then the algorithm has f +1 rounds. In
each round, a process i sends the value of its variable xi to all other processes
if that value has not been sent before. Of all the values received within the
round and its own value xi at the start of the round, the process takes the
minimum, and updates xi. After f +1 rounds, the local value xi is guaranteed
to be the consensus value.

(global constants)
integer: f ; // maximum number of crash failures tolerated
(local variables)
integer: x←− local value;

(1) Process Pi (1≤ i ≤ n) executes the consensus algorithm for up to
f crash failures:

(1a) for round from 1 to f +1 do
(1b) if the current value of x has not been broadcast then
(1c) broadcast(x);
(1d) yj←− value (if any) received from process j in this round;
(1e) x←−min∀j�x� yj�;
(1f) output x as the consensus value.

Algorithm 14.1 Consensus with up to f fail-stop processes in a system of n processes, n > f [8]. Code
shown is for process Pi � 1 ≤ i ≤ n.

517 14.4 Agreement in (message-passing) synchronous systems with failures

• The agreement condition is satisfied because in the f+1 rounds, there must
be at least one round in which no process failed. In this round, say round
r, all the processes that have not failed so far succeed in broadcasting their
values, and all these processes take the minimum of the values broadcast
and received in that round. Thus, the local values at the end of the round
are the same, say xri for all non-failed processes. In further rounds, only
this value may be sent by each process at most once, and no process i will
update its value xri .

• The validity condition is satisfied because processes do not send fictitious
values in this failure model. (Thus, a process that crashes has sent only
correct values until the crash.) For all i, if the initial value is identical,
then the only value sent by any process is the value that has been agreed
upon as per the agreement condition.

• The termination condition is seen to be satisfied.

Complexity
There are f + 1 rounds, where f < n. The number of messages is at most
O�n2� in each round, and each message has one integer. Hence the total
number of messages is O��f +1� ·n2�. The worst-case scenario is as follows.
Assume that the minimum value is with a single process initially. In the first
round, the process manages to send its value to just one other process before
failing. In subsequent rounds, the single process having this minimum value
also manages to send that value to just one other process before failing.

Algorithm 14.1 requires f + 1 rounds, independent of the actual num-
ber of processes that fail. An early-stopping consensus algorithm terminates
sooner; if there are f ′ actual failures, where f ′ < f , then the early-stopping
algorithm terminates in f ′ + 1 rounds. Exercise 14.2 asks you to design an
early-stopping algorithm for consensus under crash failures, and to prove its
correctness.

A lower bound on the number of rounds [8]
At least f +1 rounds are required, where f < n. The idea behind this lower
bound is that in the worst-case scenario, one process may fail in each round;
with f + 1 rounds, there is at least one round in which no process fails. In
that guaranteed failure-free round, all messages broadcast can be delivered
reliably, and all processes that have not failed can compute the common
function of the received values to reach an agreement value.

14.4.2 Consensus algorithms for Byzantine failures (synchronous system)

14.4.3 Upper bound on Byzantine processes

In a system of n processes, the Byzantine agreement problem (as also the
other variants of the agreement problem) can be solved in a synchronous

518 Consensus and agreement algorithms

Figure 14.3 Impossibility of
achieving Byzantine agreement
with n = 3 processes and
f = 1 malicious process.

Pc Pc

Pa PbPa Pb

(a) (b)

Malicious process

0

1

1

0

Second round messageFirst round message

Correct process

0 00

CommanderCommander

1

system only if the number of Byzantine processes f is such that f ≤ (n−1
3)

[20, 25].
We informally justify this result using two steps:

• With n= 3 processes, the Byzantine agreement problem cannot be solved
if the number of Byzantine processes f = 1. The argument uses the illus-
tration in Figure 14.3, which shows a commander Pc and two lieutenant
processes Pa and Pb. The malicious process is the lieutenant Pb in the
first scenario (Figure 14.3(a)) and hence Pa should agree on the value
of the loyal commander Pc, which is 0. But note the second scenario
(Figure 14.3(b)) in which Pa receives identical values from Pb and Pc, but
now Pc is the disloyal commander whereas Pb is a loyal lieutenant. In this
case, Pa needs to agree with Pb. However, Pa cannot distinguish between
the two scenarios and any further message exchange does not help because
each process has already conveyed what it knows from the third process.

In both scenarios, Pa gets different values from the other two processes.
In the first scenario, it needs to agree on a 0, and if that is the default value,
the decision is correct, but then if it is in the second indistinguishable
scenario, it agrees on an incorrect value. A similar argument shows that
if 1 is the default value, then in the first scenario, Pa makes an incorrect
decision. This shows the impossibility of agreement when n= 3 and f = 1.

• With n processes and f ≥ n/3 processes, the Byzantine agreement problem
cannot be solved. The correctness argument of this result can be shown
using reduction. Let Z�3�1� denote the Byzantine agreement problem
for parameters n = 3 and f = 1. Let Z�n ≤ 3f� f� denote the Byzan-
tine agreement problem for parameters n�≤ 3f� and f . A reduction
from Z�3�1� to Z�n ≤ 3f� f� needs to be shown, i.e., if Z�n ≤ 3f� f�
is solvable, then Z�3�1� is also solvable. After showing this reduction,
we can argue that as Z�3�1� is not solvable, Z�n ≤ 3f� f� is also not
solvable.

519 14.4 Agreement in (message-passing) synchronous systems with failures

The main idea of the reduction argument is as follows. In Z�n≤ 3f� f�,
partition the n processes into three sets S1� S2� S3, each of size ≤ n/3. In
Z�3�1�, each of the three processes P1�P2�P3 simulates the actions of the
corresponding set S1, S2, S3 in Z�n ≤ 3f� f�. If one process is faulty in
Z�3�1�, then at most f , where f ≤ n/3, processes are faulty in Z�n� f�. In
the simulation, a correct process in Z�3�1� simulates a group of up to n/3
correct processes in Z�n� f�. It simulates the actions (send events, receive
events, intra-set communication, and inter-set communication) of each of
the processes in the set that it is simulating.

With this reduction in place, if there exists an algorithm to solve Z�n≤
3f� f�, i.e., to satisfy the validity, agreement, and termination conditions,
then there also exists an algorithm to solve Z�3�1�, which has been seen to
be unsolvable. Hence, there cannot exist an algorithm to solve Z�n≤ 3f� f�.

Byzantine agreement tree algorithm: exponential (synchronous
system)
Recursive formulation
We begin with an informal description of how agreement can be achieved with
n = 4 and f = 1 processes [20, 25], as depicted in Figure 14.4. In the first
round, the commanderPc sends its value to the other three lieutenants, as shown
by dotted arrows. In the second round, each lieutenant relays to the other two
lieutenants, the value it received from the commander in the first round. At
the end of the second round, a lieutenant takes the majority of the values it
received (i) directly from the commander in the first round, and (ii) from the
other two lieutenants in the second round. The majority gives a correct esti-
mate of the “commander’s” value. Consider Figure 14.4(a) where the com-
mander is a traitor. The values that get transmitted in the two rounds are as

Figure 14.4 Achieving
Byzantine agreement when
n = 4 processes and f = 1
malicious process.

01

(a)

1

1
0

0

0

0 0

Pd

Pb

Pc

Pa

00

(b)

0

0
0

0

0

1 1

Pd

Pb

Pc

Pa

Commander Commander

Malicious process

Second round exchangeFirst round exchange

Correct process

520 Consensus and agreement algorithms

shown. All three lieutenants take the majority of (1, 0, 0) which is “0,” the agree-
ment value. In Figure 14.4(b), lieutenant Pd is malicious. Despite its behavior
as shown, lieutenants Pa and Pb agree on “0,” the value of the commander.

(variables)
boolean: v←− initial value;
integer: f ←− maximum number of malicious processes, ≤ (�n−1�/3);
(message type)
OM(v�Dests�List� faulty), where
v is a boolean,
Dests is a set of destination process i.d.s to which the message is sent,
List is a list of process i.d.s traversed by this message, ordered from most

recent to earliest,
faulty is an integer indicating the number of malicious processes to be

tolerated.
Oral_Msg (f), where f > 0:
(1) The algorithm is initiated by the commander, who sends his source value

v to all other processes using a OM(v�N� �i�� f) message. The commander
returns his own value v and terminates.

(2) [Recursion unfolding:] For each message of the form OM(vj ,
Dests�List� f ′) received in this round from some process j, the process i
uses the value vj it receives from the source j, and using that value, acts
as a new source. (If no value is received, a default value is assumed.)

To act as a new source, the process i initiates Oral_Msg (f ′ −1), wherein
it sends
OM(vj�Dests− 	i�� concat��i��L�� �f ′ −1�)
to destinations not in concat��i��L�
in the next round.

(3) [Recursion folding:] For each message of the form OM(vj ,
Dests�List� f ′) received in step 2, each process i has computed the agree-
ment value vk, for each k not in List and k �= i, corresponding to the value
received from Pk after traversing the nodes in List, at one level lower in
the recursion. If it receives no value in this round, it uses a default value.
Process i then uses the value majorityk �∈List�k �=i�vj� vk� as the agreement
value and returns it to the next higher level in the recursive invocation.

Oral_Msg(0):
(1) [Recursion unfolding:] Process acts as a source and sends its value to

each other process.
(2) [Recursion folding:] Each process uses the value it receives from the

other sources, and uses that value as the agreement value. If no value is
received, a default value is assumed.

Algorithm 14.2 Byzantine generals algorithm – exponential number of unsigned messages, n > 3f .
Recursive formulation.

521 14.4 Agreement in (message-passing) synchronous systems with failures

Table 14.3 Relationships between messages and rounds in the oral messages
algorithm for the Byzantine agreement.

Round
number

A message
has already
visited

Aims to
tolerate
these many
failures

Each
message
gets sent to

Total number of messages in
round

1 1 f n−1 n−1
2 2 f −1 n−2 �n−1� · �n−2�

x x �f +1�−x n−x �n−1��n−2�

 �n−x�
x+1 x+1 �f +1�−

x−1
n−x−1 �n−1��n−2�

 �n−x−1�

f +1 f +1 0 n−f −1 �n−1��n−2�

 �n−f −1�

The first algorithm for solving Byzantine agreement was proposed by
Lamport et al. [20]. We present two versions of the algorithm.

The recursive version of the algorithm is given in Algorithm 14.2. Each
message has the following parameters: a consensus estimate value (v); a set
of destinations (Dests); a list of nodes traversed by the message, from most
recent to least recent (List); and the number of Byzantine processes that the
algorithm still needs to tolerate (faulty). The list L = �Pi�Pk1

 Pkf+1−faulty�
represents the sequence of processes (subscripts) in the knowledge expression
Ki�Kk1

�Kk2

 Kkf+1−faulty �v0�

 ��. This knowledge is what Pkf+1−faulty con-

veyed to Pkf−faulty conveyed to

 Pk1
conveyed to Pi who is conveying to the

receiver of this message, the value of the commander (Pkf+1−faulty)’s ini-
tial value.

The commander invokes the algorithm with parameter faulty set to f , the
maximum number of malicious processes to be tolerated. The algorithm uses
f +1 synchronous rounds. Each message (having this parameter faulty = k)
received by a process invokes several other instances of the algorithm with
parameter faulty = k− 1. The terminating case of the recursion is when
the parameter faulty is 0. As the recursion folds, each process progres-
sively computes the majority function over the values it used as a source
for that level of invocation in the unfolding, and the values it has just com-
puted as consensus values using the majority function for the lower level of
invocations.

There are an exponential number of messages O�nf � used by this algorithm.
Table 14.3 shows the number of messages used in each round of the algorithm,
and relates that number to the number of processes already visited by any
message as well as the number of destinations of that message.

As multiple messages are received in any one round from each of the other
processes, they can be distinguished using the List, or by using a scheduling

522 Consensus and agreement algorithms

algorithm within each round. A detailed iterative version of the high-level
recursive algorithm is given in Algorithm 14.3. Lines 2a–2e correspond to the
unfolding actions of the recursive pseudo-code, and lines 2f–2h correspond
to the folding of the recursive pesudo-code. Two operations are defined
in the list L: head�L� is the first member of the list L, whereas tail�L�

(variables)
boolean: v←− initial value;
integer: f ←− maximum number of malicious processes, ≤ (�n−1�/3);
tree of boolean:

• level 0 root is vLinit, where L= ��;
• level h �f ≥ h > 0� nodes: for each vLj at level h− 1 = sizeof�L�, its

n− 2− sizeof�L� descendants at level h are vconcat��j��L�k , ∀k such that
k �= j� i and k is not a member of list L.

(message type)
OM�v�Dests�List� faulty�, where the parameters are as in the recursive for-
mulation.

(1) Initiator (i.e., commander) initiates the oral Byzantine agreement:
(1a) send OM(v�N − 	i�� �Pi�� f) to N − 	i�;
(1b) return(v).

(2) (Non-initiator, i.e., lieutenant) receives the oral message (OM):
(2a) for rnd = 0 to f do
(2b) for each message OM that arrives in this round, do
(2c) receive OM(v�Dests�L= �Pk1

 Pkf+1−faulty�� faulty) from Pk1
;

// faulty + rnd = f; �Dests�+ sizeof�L�= n
(2d) v

tail�L�

head�L�←− v; // sizeof�L�+faulty = f +1. fill in estimate.
(2e) send OM(v�Dests− 	i�� �Pi�Pk1

 Pkf+1−faulty�� faulty−1)
to Dests− 	i� if rnd < f;

(2f) for level= f −1 down to 0 do
(2g) for each of the 1 · �n−2� ·

 �n− �level+1�� nodes vLx in level

level, do
(2h) vLx �x �= i� x �∈ L�=majorityy �∈ concat��x��L��y �=i�vLx � vconcat��x��L�y �;

Algorithm 14.3 Byzantine generals algorithm – exponential number of unsigned messages, n > 3f .
Iterative formulation. Code for process P i .

is the list L after removing its first member. Each process maintains a tree of
boolean variables. The tree data structure at a non-initiator is used as follows:

• There are f +1 levels from level 0 through level f .
• Level 0 has one root node, v��init, after round 1.

523 14.4 Agreement in (message-passing) synchronous systems with failures

• Level h, 0 < h≤ f has 1 · �n−2� · �n−3� · · · �n−h� · �n− �h+1�� nodes
after round h+1. Each node at level �h−1� has �n−�h+1�� child nodes.

• Node vLk denotes the command received from the node head�L� by node
k which forwards it to node i. The command was relayed to head�L�

by head�tail�L��, which received it from head�tail�tail�L���, and so on.
The very last element of L is the commander, denoted Pinit.

• In the f +1 rounds of the algorithm (lines 2a–2e of the iterative version),
each level k, 0 ≤ k≤ f , of the tree is successively filled to remember the
values received at the end of round k+ 1, and with which the process
sends the multiple instances of the OM message with the fourth parameter
as f − �k+1� for round k+2 (other than the final terminating round).

• For each message that arrives in a round (lines 2b–2c of the iterative
version), a process sets vtail�L�head�L� (line 2d). It then removes itself from Dests,
prepends itself to L, decrements faulty, and forwards the value v to the
updated Dests (line 2e).

• Once the entire tree is filled from root to leaves, the actions in the folding
of the recursion are simulated in lines 2f–2h of the iterative version,
proceeding from the leaves up to the root of the tree. These actions are
crucial – they entail taking the majority of the values at each level of the
tree. The final value of the root is the agreement value, which will be the
same at all processes.

Example Figure 14.5 shows the tree at a lieutenant node P3, for n = 10
processes P0 through P9 and f = 3 processes. The commander is P0. Only
one branch of the tree is shown for simplicity. The reader is urged to work
through all the steps to ensure a thorough understanding. Some key steps from
P3’s perspective are outlined next, with respect to the iterative formulation of
the algorithm.

Figure 14.5 Local tree at P3

for solving the Byzantine
agreement, for n = 10 and
f = 3. Only one branch of the
tree is shown for simplicity.

Enter after round 1

Round 2

Round 3

Round 4

Level 1

Level 0

Level 2

Level 3

< >v0

< 0 >v1

< 5,0 >v1

< 7,5,0 >v1
< 7,5,0 >v2

< 7,5,0 >v4
< 7,5,0 >v6

< 7,5,0 >v8
< 7,5,0 >v9

< 5,0 >v2
< 5,0 >v4

< 5,0 >v6
< 5,0 >v7

< 5,0 >v8
< 5,0 >v9

< 0 >v2
< 0 >v4

< 0 >v6
< 0 >v7

< 0 >v8
< 0 >v9

< 0 >v5

524 Consensus and agreement algorithms

• Round 1 P0 sends its value to all other nodes. This corresponds to invoking
Oral_Msg (3) in the recursive formulation. At the end of the round, P3 stores
the received value in v��0 .

• Round 2 P3 acts as a source for this value and sends this value to all
nodes except itself and P0. This corresponds to invoking Oral_Msg (2) in the
recursive formulation. Thus, P3 sends 8 messages. It will receive a similar
message from all other nodes except P0 and itself; the value received from
Pk is stored in v�0�k .

• Round 3 For each of the 8 values received in round 2, P3 acts as a
source and sends the values to all nodes except (i) itself, (ii) nodes vis-
ited previously by the corresponding value, as remembered in the super-
script list, and (iii) the direct sender of the received message, as indi-
cated by the subscript. This corresponds to invoking Oral_Msg (1) in the
recursive formulation. Thus, P3 sends 7 messages for each of these 8 val-
ues, giving a total of 56 messages it sends in this round. Likewise it
receives 56 messages from other nodes; the values are stored in level 2 of
the tree.

• Round 4 For each of the 56 messages received in round 3, P3 acts a source
and sends the values to all nodes except (i) itself, (ii) nodes visited previously
by the corresponding value, as remembered in the superscript list, and (iii)
the direct sender of the received message, as indicated by the subscript. This
corresponds to invoking Oral_Msg (0) in the recursive formulation. Thus, P3

sends 6 messages for each of these 56 values, giving a total of 336 messages
it sends in this round. Likewise, it receives 336 messages, and the values are
stored at level 3 of the tree. As this round is Oral_Msg (0), the received values
are used as estimates for computing the majority function in the folding of the
recursion.

An example of the majority computation is as follows:

• P3 revises its estimate of v�5�0�7 by taking majority �v
�5�0�
7 � v

�7�5�0�
1 � v

�7�5�0�
2 �

v
�7�5�0�
4 � v

�7�5�0�
6 � v

�7�5�0�
8 � v

�7�5�0�
9 �. Similarly for the other nodes at level 2 of

the tree.
• P3 revises its estimate of v�0�5 by taking majority �v

�0�
5 � v

�5�0�
1 � v

�5�0�
2 � v

�5�0�
4 �

v
�5�0�
6 � v

�5�0�
7 � v

�5�0�
8 � v

�5�0�
9 �. Similarly for the other nodes at level 1 of the tree.

• P3 revises its estimate of v
��
0 by taking majority�v

��
0 � v

�0�
1 � v

�0�
2 �

v
�0�
4 � v

�0�
5 � v

�0�
6 � v

�0�
7 � v

�0�
8 � v

�0�
9 �. This is the consensus value.

Correctness
The correctness of the Byzantine agreement algorithm (Algorithm 14.3) can
be observed from the following two informal inductive arguments. Here we
assume that the Oral_Msg algorithm is invoked with parameter x, and that
there are a total of f malicious processes. There are two cases depending on

525 14.4 Agreement in (message-passing) synchronous systems with failures

whether the commander is malicious. A malicious commander causes more
chaos than an honest commander.

Loyal commander
Given f and x, if the commander process is loyal, then Oral_Msg �x� is
correct if there are at least 2f +x processes.

This can easily be seen by induction on x:

• For x = 0, Oral_Msg �0� is executed, and the processes simply use the
(loyal) commander’s value as the consensus value.

• Now assume the above induction hypothesis for any x.
• Then for Oral_Msg �x+ 1�, there are 2f +x+ 1 processes including the

commander. Each loyal process invokes Oral_Msg �x� to broadcast the
(loyal) commander’s value v0 – here it acts as a commander for this
invocation it makes. As there are 2f+x processes for each such invocation,
by the induction hypothesis, there is agreement on this value (at all the
honest processes) – this would be at level 1 in the local tree in the folding
of the recursion. In the last step, each loyal process takes the majority of
the direct order received from the commander (level 0 entry of the tree),
and its estimate of the commander’s order conveyed to other processes as
computed in the level 1 entries of the tree. Among the 2f +x values taken
in the majority calculation (this includes the commanders’s value but not
its own), the majority is loyal because x > 0. Hence, taking the majority
works.

No assumption about commander
Given f , Oral_Msg �x� is correct if x ≥ f and there are a total of 3x+1 or
more processes.

This case accounts for both possibilities – the commander being malicious
or honest. An inductive argument is again useful.

• For x = 0, Oral_Msg �0� is executed, and as there are no malicious pro-
cesses (0≥ f) the processes simply use the (loyal) commander’s value as
the consensus value. Hence the algorithm is correct.

• Now assume the above induction hypothesis for any x.
• Then for Oral_Msg �x+ 1�, there are at least 3x+ 4 processes including

the commander and at most x+1 are malicious.

• (Loyal commander:) If the commander is loyal, then we can apply the
argument used for the “loyal commander” case above, because there
will be more than (2�f +1�+ �x+1�) total processes.
• (Malicious commander:) There are now at most x other malicious

processes and 3x+3 total processes (excluding the commander). From
the induction hypothesis, each loyal process can compute the consensus
value using the majority function in the protocol.

526 Consensus and agreement algorithms

Illustration of arguments
In Figure 14.6(a), the commander who invokes Oral_Msg (x) is loyal, so all
the loyal processes have the same estimate. Although the subsystem of 3x pro-
cesses has x malicious processes, all the loyal processes have the same view to
begin with. Even if this case repeats for each nested invocation of Oral_Msg,
even after x rounds, among the processes, the loyal processes are in a simple
majority, so the majority function works in having them maintain the same
common view of the loyal commander’s value. (Of course, had we known the
commander was loyal, then we could have terminated after a single round, and
neither would we be restricted by the n > 3x bound.) In Figure 14.6(b), the
commander who invokes Oral_Msg (x) may be malicious and can send con-
flicting values to the loyal processes. The subsystem of 3x processes has x−1
malicious processes, but all the loyal processes do not have the same view to
begin with.

Complexity
The algorithm requires f+1 rounds, an exponential amount of local memory,
and

�n−1�+ �n−1��n−2�+· · ·+ ��n−1��n−2� · · · �n−f −1�� messages�

Phase-king algorithm for consensus: polynomial (synchronous
system)
The Lamport–Shostak–Pease algorithm [21] requires f + 1 rounds and can
tolerate up to f ≤ (n−1

3) malicious processes, but requires an exponential
number of messages. The phase-king algorithm proposed by Berman and
Garay [4] solves the consensus problem under the same model, requiring
f+1 phases, and a polynomial number of messages (which is a huge saving),

Figure 14.6 The effects of a
loyal or a disloyal commander
in a system with n = 14 and
f = 4. The subsystems that
need to tolerate k and k − 1
traitors are shown for two
cases. (a) Loyal commander.
(b) No assumptions about
commander.

Oral_Msg(k) Oral_Msg(k)

? ?

1

00

Malicious processCorrect process

Oral_Msg(k − 1) Oral_Msg(k − 1)

Commander

(a) (b)

CommanderCommander

527 14.4 Agreement in (message-passing) synchronous systems with failures

but can tolerate only f < *n/4, malicious processes. The algorithm is so
called because it operates in f+1 phases, each with two rounds, and a unique
process plays an asymmetrical role as a leader in each round.

The phase-king algorithm is given in Algorithm 14.4, and assumes a binary
decision variable. The message pattern is illustrated in Figure 14.7.

(variables)
boolean: v←− initial value;
integer: f ←− maximum number of malicious processes, f < *n/4,;
(1) Each process executes the following f +1 phases, where f < n/4:
(1a) for phase = 1 to f +1 do
(1b) Execute the following round 1 actions:
(1c) broadcast v to all processes;
(1d) await value vj from each process Pj;
(1e) majority←− the value among the vj that occurs > n/2 times

(default value if no majority);
(1f) mult←− number of times that majority occurs;
(1g) Execute the following round 2 actions:
(1h) if i= phase then
(1i) broadcast majority to all processes;
(1j) receive tiebreaker from Pphase (default value if nothing is

received);
(1k) if mult > n/2+f then
(1l) v←−majority;
(1m) else v←− tiebreaker;
(1n) if phase= f +1 then
(1o) output decision value v.

Algorithm 14.4 Phase-king algorithm [4] – polynomial number of unsigned messages, n > 4f . Code
is for process Pi , 1 ≤ i ≤ n.

Figure 14.7 Message pattern
for the phase-king algorithm.

Phase f + 1Phase 1 Phase 2

Pf + 1

P0

P1

Pk

528 Consensus and agreement algorithms

• Round 1 In the first round (lines 1b–1f) of each phase, each process
broadcasts its estimate of the consensus value to all other processes, and
likewise awaits the values broadcast by others. At the end of the round,
it counts the number of “1” votes and the number of “0” votes. If either
number is greater than n/2, then it sets its majority variable to that
consensus value, and sets mult to the number of votes received for the
majority value. If neither number is greater than n/2, which may happen
when the malicious processes do not respond, and the correct processes
are split among themselves, then a default value is used for the majority
variable.

• Round 2 In the second round (lines 1g–1o) of each phase, the phase
king initiates processing – the phase king for phase k is the process with
identifier Pk, where k ∈ 	1

 n�. The phase king broadcasts its majority
value majority, which serves the role of a tie-breaker vote for those other
processes that have a value of mult of less than n/2+ f . Thus, when a
process receives the tie-breaker from the phase king, it updates its estimate
of the decision variable v to the value sent by the phase king if its own
mult variable < n/2+ f . The reason for this is that among the votes for
its own majority value, f votes could be bogus and hence it does not have
a clear majority of votes (i.e., > n/2) from the non-malicious processes.
Hence, it adopts the value of the phase king. However, if mult > n/2+f
(lines 1k–1l), then it has received a clear majority of votes from the non-
malicious processes, and hence it updates its estimate of the consensus
variable v to its own majority value, irrespective of what tie-breaker value
the phase king has sent in the second round.

At the end of f + 1 phases, it is guaranteed that the estimate v of all the
processes is the correct consensus value.

Correctness
The correctness reasoning is in three steps:

1. Among the f +1 phases, the phase king of some phase k is non-malicious
because there are at most f malicious processes.

2. As the phase king of phase k is non-malicious, all non-malicious processes
can be seen to have the same estimate value v at the end of phase k.
Specifically, observe that any two non-malicious processes Pi and Pj can
set their estimate v in three ways:

(a) Both Pi and Pj use their own majority values. Assume Pi’s majority
value is x, which implies that Pi’s mult > n/2+f , and of these voters,
at least n/2 are non-malicious. This implies that Pj must also have
received at least n/2 votes for x, implying that its majority value
majority must also be x.

529 14.5 Agreement in asynchronous message-passing systems with failures

(b) Both Pi and Pj use the phase king’s tie-breaker value. As Pk is non-
malicious it must have sent the same tie-breaker value to both Pi and Pj .

(c) Pi uses its majority value as the new estimate and Pj uses the phase
king’s tie-breaker as the new estimate. Assume Pi’s majority value
is x, which implies that Pi’s mult > n/2+ f , and of these voters, at
least n/2 are non-malicious. This implies that phase king Pk must also
have received at least n/2 votes for x, implying that its majority value
majority that it sends as tie-breaker must also be x.

For all three possibilities, any two non-malicious processes Pi and Pj agree
on the consensus estimate at the end of phase k, where the phase king Pk
is non-malicious.

3. All non-malicious processes have the same consensus estimate x at the
start of phase k+1 and they continue to have the same estimate at the end
of phase k+1. This is self-evident because we have that n > 4f and each
non-malicious process receives at least n− f > n/2+ f votes for x from
the other non-malicious processes in the first round of phase k+1. Hence,
all the non-malicious processes retain their estimate v of the consensus
value as x at the end of phase k+1.
The same logic holds for all subsequent phases. Hence, the consensus
value is correct.

Complexity
The algorithm requires f +1 phases with two sub-rounds in each phase, and
�f +1���n−1��n+1�� messages.

14.5 Agreement in asynchronous message-passing systems with failures

14.5.1 Impossibility result for the consensus problem

Fischer et al. [12] showed a fundamental result on the impossibility of
reaching agreement in an asynchronous (message-passing) system, even if
a single process is allowed to have a crash failure. This result, popularly
known as the FLP impossibility result, has a significant impact on the field of
designing distributed algorithms in a failure-susceptible system. The correct-
ness proof of this result also introduced the important notion of valency of
global states.

For any global state GS, let v(GS) denote the set of possible values that can
be agreed upon in some global state reachable from GS. �v�GS�� is defined as
the valency of global state GS. For a boolean decision value, a global state can
be bivalent, i.e., have a valency of two, or monovalent, i.e., having a valency
of one. A monovalent state GS is 1-valent if v�GS� = 	1� and it is 0-valent
if v�GS� = 	0�. Bivalency of a global state captures the idea of uncertainty

530 Consensus and agreement algorithms

in the decision, as either a 0-valent or a 1-valent state may be reachable from
this bivalent state.

In an (asynchronous) failure-free system, Section 14.3 showed how to
design protocols that can reach consensus. Observe that the consensus
value can be solely determined by the inputs. Hence, the initial state is
monovalent.

In the face of failures, it can be shown that a consensus protocol necessarily
has a bivalent initial state (assuming each process can have an arbitrary
initial value from 	0�1�, to rule out trivial solutions). This argument is by
contradiction. Clearly, the initial state where inputs are all 0 is 0-valent and
the initial state where inputs are all 1 is 1-valent. Transforming the input
assignments from the all-0 case to the all-1 case, observe that there must exist
input assignments -Ia and -Ib that are 0-valent and 1-valent, respectively, and
that they differ in the input value of only one process, say Pi. If a 1-failure
tolerant consensus protocol exists, then:

1. Starting from -Ia, if Pi fails immediately, the other processes must agree
on 0 due to the termination condition.

2. Starting from -Ib, if Pi fails immediately, the other processes must agree
on 1 due to the termination condition.

However, execution 2 looks identical to execution 1, to all processes, and
must end with a consensus value of 0, a contradiction. Hence, there must
exist at least one bivalent initial state.

Observe that reaching consensus requires some form of exchange of the
intial values (either by message-passing or shared memory, depending on
the model). Hence, a running process cannot make a unilateral decision on
the consensus value. The key idea of the impossibility result is that, in the
face of a potential process crash, it is not possible to distinguish between a
crashed process and a process or link that is extremely slow. Hence, from
a bivalent state, it is not possible to transition to a monovalent state. More
specifically, the argument runs as follows. For a protocol to transition from a
bivalent global state to a monovalent global state, and using the global time
interleaved model for reasoning in the proof, there must exist a critical step
execution that changes the valency by making a decision on the consensus
value. There are two possibilities:

• The critical step is an event that occurs at a single process. However, other
processes cannot tell apart the two scenarios in which this process has
crashed, and in which this process is extremely slow. In both scenarios,
the other processes can continue to wait forever and hence the processes
may not reach a consensus value, remaining in bivalent state.

• The critical step occurs at two or more independent (i.e., not send–receive
related) events at different processes. However, as independent events at
different processes can occur in any permutation, the critical step is not
well-defined and hence this possibility is not admissible.

531 14.5 Agreement in asynchronous message-passing systems with failures

Thus, starting from a bivalent state, it is not possible to transition to a
monovalent state. This is the key to the impossibility result for reaching
consensus in asynchronous systems.

The impossibility result is significant because it implies that all problems
to which the agreement problem can be reduced are also not solvable in any
asynchronous system in which crash failures may occur. As all real systems
are prone to crash failures, this result has practical significance. We can
show that all the problems, such as the following, requiring consensus are not
solvable in the face of even a single crash failure:

• The leader election problem.
• The computation of a network-side global function using broadcast–

convergecast flows.
• Terminating reliable broadcast.
• Atomic broadcast.

The common strategy is to use a reduction mapping from the consensus
problem to the problem X under consideration. We need to show that, by
using an algorithm to solve X, we can solve consensus. But as consensus is
unsolvable, so must be problem X.

14.5.2 Terminating reliable broadcast

As an example, consider the terminating reliable broadcast problem, which
states that a correct process always gets a message even if the sender crashes
while sending. If the sender crashes while sending the message, the message
may be a null message but it must be delivered to each correct process.
The formal specification of reliable broadcast was studied in Chapter 6; here
we have an additional termination condition, which states that each correct
process must eventually deliver some message.

• Validity If the sender of a broadcast message m is non-faulty, then all
correct processes eventually deliver m.

• Agreement If a correct process delivers a message m, then all correct
processes deliver m.

• Integrity Each correct process delivers a message at most once. Further,
if it delivers a message different from the null message, then the sender
must have broadcast m.

• Termination Every correct process eventually delivers some message.

The reduction from consensus to terminating reliable broadcast is as fol-
lows. A commander process broadcasts its input value using the terminating
reliable broadcast. A process decides on a “0” or “1” depending on whether it
receives “0” or “1” in the message from this process. However, if it receives
the null message, it decides on a default value. As the broadcast is done
using the terminating reliable broadcast, it can be seen that the conditions

532 Consensus and agreement algorithms

of the consensus problem (Section 14.1.1) are satisfied. But as consensus
is not solvable, an algorithm to implement terminating reliable broadcast
cannot exist.

14.5.3 Distributed transaction commit

Database transactions require the commit operation to preserve the ACID
properties (atomicity, consistency, integrity, durability) of transactional
semantics. The commit operation requires polling all participants whether the
transaction should be committed or rolled back. Even a single rollback vote
requires the transaction to be rolled back. Whatever the decision, it is con-
veyed to all the participants in the transaction. Clearly, this can be seen to be a
consensus problem. Exercise 14.5 asks you to formally prove that distributed
commit is not solvable under a crash failure.

Despite the unsolvability of the distributed commit problem under crash
failure, the (blocking) two-phase commit and the non-blocking three-phase
commit protocols do solve the problem. This is because the protocols use
a somewhat different model in practice, than that used for our theoretical
analysis of the consensus problem. The two-phase protocol waits indefinitely
for a reply, and it is assumed that a crashed node eventually recovers and sends
in its vote. Optimizations such as presumed abort and presumed commit are
pessimistic and optimistic solutions that are not guaranteed to be correct under
all circumstances. Similarly, the three-phase commit protocol uses timeouts
to default to the “abort” decision when the coordinator does not get a reply
from all the participants within the timeout period.

14.5.4 k-set consensus

Although consensus is not solvable in an asynchronous system under crash
failures, a weaker version, known as the k-set consensus problem [6], is
solvable as long as the number of crash failures f is less than the parameter
k. The parameter k indicates that the nonfaulty processes agree on different
values, as long as the size of the set of values agreed upon is bounded by k.

Assuming that the consensus value is from a multi-valued domain, the
problem specification is as follows:

• k-agreement All non-faulty processes must make a decision, and the set
of values that the processes decide on can contain up to k values.

• Validity If a non-faulty process decides on some value, then that value
must have been proposed by some process.

• Termination Each non-faulty process must eventually decide on a value.

The k-agreement condition is new, the validity condition is different from
that for regular consensus, and the termination condition is unchanged from
that for regular consensus. The protocol in Algorithm 14.5 can be seen to

533 14.5 Agreement in asynchronous message-passing systems with failures

solve k-set consensus in a straightforward manner, as long as the number of
crash failures f is less than k. Let n= 10� f = 2� k= 3 and let each process
propose a unique value from 	1�2

 10�. Then the 3-set is 	8�9�10�.

(variables)
integer: v←− initial value;

(1) A process Pi, 1≤ i ≤ n, executes k-set consensus:
(1a) broadcast v to all processes;
(1b) await values from �N �−f processes and add them to set V ;
(1c) decide on max�V�.

Algorithm 14.5 Protocol for k-set consensus [6]. Code shown is for process Pi , 1 ≤ i ≤ n.

14.5.5 Approximate agreement

Another weaker version of consensus that is solvable in an asynchronous
system under crash failures is known as the approximate consensus problem.
Like k-set consensus, approximate agreement also assumes the consensus
value is from a multi-valued domain. However, rather than restricting the set
of consensus values to a set of size k, !-approximate agreement requires that
the agreed upon values by the non-faulty processes be within ! of each other.
The problem specification is as follows.

• !-agreement All non-faulty processes must make a decision and the
values decided upon by any two non-faulty processes must be within !

range of each other.
• Validity If a non-faulty process Pi decides on some value vi, then that

value must be within the range of values initially proposed by the processes.
• Termination Each non-faulty process must eventually decide on a value.

Algorithm outline
The Dolev et al. [7] algorithm to solve approximate agreement in the message-
passing model is studied next. The algorithm for the message-passing model
assumes n≥ 5f +1, although the problem is solvable for n > 3f +1.

The asynchronous approximate agreement algorithm simulates synchronous
communication by operating in rounds (Algorithm 14.6). Lines 1a–1c perform
the initialization computation to decide the number of synchronous rounds
to be simulated. We will examine this logic after examining the rest of the
algorithm. The main loop, in lines 1d–1f, performs an all-to-all message
exchange asynchronously for the determined number of rounds. In each round
(simulated by Asynchronous_Exchange), a process broadcasts its estimate of
the agreement value, and awaits n− f such messages from other processes
before moving to the next round. After each round, each process revises its
estimate of the consensus value. The estimate is revised in such a way that the
choices of the different processes are guaranteed to converge at a certain rate.

534 Consensus and agreement algorithms

(variables)
real: v←− input value; //initial value
multiset of real V ;
integer r←− 0; // number of rounds to execute

(1) Execution at process Pi�1≤ i ≤ n:
(1a) V ←− Asynchronous_Exchange�v�0�;
(1b) v←− any element in�reduce2f �V��;
(1c) r←− *logc�diff�V��/!,, where c = c�n−3f�2f�.
(1d) for round from 1 to r do
(1e) V ←− Asynchronous_Exchange�v� round�;
(1f) v←− new2f�f �V�;
(1g) broadcast ��v�halt�� r+1�;
(1h) output v as decision value.

(2) Asynchronous_Exchange(v,h) returns V :
(2a) broadcast �v�h� to all processes;
(2b) await n−f responses belonging to round h and add to V ;
(2c) for each process Pk that sent �x�halt� as value, use x as its

input henceforth;
(2d) return the multiset V .

Algorithm 14.6 Asynchronous approximation agreement algorithm [7]. Here, n ≥ 5f + 1.

Consider any sorted collection U . The new estimate of a process is chosen
by computing newk�f �U�, which is parameterized by k and f , and defined as
mean�selectk�reduce

f �U���:

• reducef �U� removes the f largest and f smallest members of U .
• selectk�U� selects every kth member of U , beginning with the first. If U

has m members, selectk�U� has c�m�k�= (�m−1�/k)+1 members. This
constant c represents a convergence factor towards the final agreement
value, i.e., if x is the range of possible values held by correct processes
before a round, then x/c is the possible range of estimate values held by
those processes after that round.

Illustration of definitions
Figure 14.8 shows the selectk�reduce

f �U�� operation, with k= 5 and f = 4.
The mean of the selected members is the new estimate new5�4�U�.

The algorithm uses m= n−3f and k= 2f . So c�n−3f�2f� will represent
the convergence factor towards reaching approximate agreement and new2f�f

is the new estimate after each round. The choice of these parameters will be
justified.

535 14.5 Agreement in asynchronous message-passing systems with failures

Figure 14.8 Illustrating
selectk �reducef �U��, with
k = 5 and f = 4. reduce4�U�

has 26 members, hence
c�26� 5� = 6 members are
selected.

Shaded members belong to select5 (reduce4(U))

k = 5

f = 4
reduce f (U)

u0 u5 u10 u15 u20 u25

U

Notation
The algorithm uses multisets, which are sets with repeating elements included.
Union, intersection, and set difference operations on multisets are natural
extensions of the counterparts for regular sets.mean�U� is the arithmetic mean
of U , calculated by considering each instance in the multiset. min�U� and
max�U� are defined as for sets. range�U� is the interval �min�U��max�U��.
diff�U� is max�U�−min�U�.

Some essential combinatorial results are first proved. Let �U � =m, and let
the m elements u0

 um−1 of multiset U be in non-decreasing order. The
following properties on non-empty multisets U , V , and W can easily be seen:

• Property 1 The number of the elements in multisets U and V is reduced
by at most 1 when the smallest element is removed from both. Similarly
for the largest element.

• Property 2 The number of elements common to U and V before and
after j reductions differ by at most 2j. Thus, for j ≥ 0 and �V �� �W � ≥ 2j,
�V ∩W �− �reducej�V�∩ reducej�W�� ≤ 2j.

• Property 3 Let V contain at most j values not in U , i.e., �V −U � ≤ j,
and let size of V be at least 2j. Then by removing the j low and j high
elements from V , it is easy to see that remaining elements in V must
belong to the range of U , see Figure 14.9. Thus,

Figure 14.9 Illustrating
property 3 for the �-agreement
problem. 	V 	 = 	W 	 = m,
	V −W 	 = 	W −V 	 = k, and
	V −U	� 	W −U	 ≤ f . Note
that the horizontal spacing in
the figure shows only the
relative positioning of elements
in the sorted multisets and
need not be to scale.

V

U

W

range (U)

newk, f (V) newk, f (W)

< = diff (U)/c (m − 2f, k)

range (reduce f (V))

range (reduce f (W))

536 Consensus and agreement algorithms

• each value in reducej�V� is in the range of U , i.e., range�reducej�V��
⊆ range�U�;
• newk�j�V� ∈ range�U�.

Convergence rate of approximation
Let U be the multiset of estimates, one estimate per correct process, at the
start of a round. Let V and W be the multisets received at two arbitrary correct
proceses in that round. The processes use the approximation function to choose
their values for the next round. The new estimates chosen by any two arbitrary
correct processes, using the approximation function newk�f , are guaranteed
to be within range�U�/c�m�k� of each other, when (i) �V � = �W � = m, (ii)
�W −V �� �V −W � ≤ k, and (iii) �V −U �� �W −U � ≤ f .

Convergence rate
Let k > 0, f ≥ 0, and m > 2f . For the multisets received, �V � = �W � = m.
Let the multisets received differ from U in at most f elements (�V −U ��
�W −U � ≤ f), and let the multisets received differ from each other in at most
k elements (�W −V �� �V −W � ≤ k). Then

�newk�f �V�−newk�f �W�� ≤ diff�U�/c�m−2f� k�� (14.1)

The proof of this relationship is outlined next. There are exactly m−2f mem-
bers in each of M = reducef �V� and N = reducef �W�. Hence, selectk�M�=
	m0�m1

 mc−1� and selectk�N� = 	n0� n1

 nc−1�, where selectk�M� and
selectk�N� each have c = c�m− 2f� k� members. Observe that (i) at least
ki+1 members of M are less than or equal to any mi (likewise for N). Also,
(ii) at most ki members of M are less than mi (likewise for N). The following
can be shown using the earlier properties and definitions:

max�mi�ni�≤min�mi+1� ni+1�� where 0 ≤ i ≤ c−2� (14.2)

This directly follows if mi ≤ ni+1 and ni ≤mi+1 can be shown.
Assume to the contrary that mi > ni+1. From (i), at least k�i+ 1�+ 1

elements of N are less than or equal to ni+1, and hence less than mi. But from
(ii), at most ki elements of M are less than mi. Hence, at least k+1 elements
in N are not in M , i.e., �N −M� ≥ k+1.

Observe that �W−V � ≤ k and �W ∩V � ≥m−k. Using property 2, this implies
that �N ∩M� ≥m−k−2f and hence �N −M� ≤ �m−2f�− �m−k−2f�≤ k.
This contradicts the conclusion of the assumption aboutmi > ni+1. Hence,mi ≤
ni+1. Symmetrically, ni ≤mi+1 can be shown. Therefore, Eq. (14.2) holds:

�newk�f �V�−newk�f �W�� =
1
c
�
c−1∑
i=0

�mi−ni�� ≤
1
c

c−1∑
i=0

�mi−ni�

= 1
c

c−1∑
i=0

�max�mi�ni�−min�mi�ni��

537 14.5 Agreement in asynchronous message-passing systems with failures

Using Eq. (14.2) in the R.H.S., expanding terms, and simplifying:

�newk�f �V�−newk�f �W�� ≤
1
c
�max�mc−1� nc−1�−min�m0� n0���

Using property 3, max�mc−1� nc−1�−min�m0� n0�≤ range�U� and Eq. (14.1)
follows.

Correctness
Let T , the set of correct processes, be such that �T � ≥ n−f . Let U and U ′ be
the multiset of estimates (one estimate from each process) before and after
some round h. �V � = �W � = n−f . Also, �V −U �� �W−U � ≤ f because at most
f processes are faulty. �V ∩W � ≥ n− 3f because both p and q would have
received the same values from the correct processes from which both received
messages. Hence, the difference between V and W, �V −W � = �W −V � =
�V �− �V ∩W � ≤ 2f (the upper bound on this was denoted as k in Eq. (14.1)).
Then, we have the following:

• !-agreement �new2f�f �V�− new2f�f �W�� ≤ diff�U�/c�n− 3f�2f�. This
immediately follows by observing that the multisets U , V , and W satisfy
Eq. (14.1) when m is set to n−f and k is set to 2f , and hence c�m−2f� k�
becomes c�n−3f�2f�.
This inequality implies that the range of the multiset of estimates chosen
by all processes in T reduces by a factor of c�n− 3f�2f�. This ≥ 2 as
the algorithm assumes that n≥ 5f +1. Hence, after a logarithmic number
of iterations (determined in lines 1a–1c and described below), this range
reduces to below !.

• Validity range�U ′�⊆ range�U�. As the multisets U and V satisfy Prop-
erty 3, we have that new2f�f �V� ∈ range�U�. For each round, it can be seen
that the value of each correct process is within the range of the values of
the correct processes at the start of the first round.

Initialization (lines 1a–1c)
The upper bound on the number of iterations is determined in the initialization
phase, in lines 1a–1c. Let the multisets of estimates received by two arbitrary
correct processes Pp and Pq after line 1a be Vp and Vq. �Vp�� �Vq� > 4f because
n≥ 5f+1; and �Vp−Vq�� �Vq−Vp� ≤ 2f (shown above). We can apply property
2 to bothVp andWq with respect to each other (and by setting j = 2f) – to get that
range�reduce2f �Vp��⊆ range�Vq� and range�reduce2f �Vq��⊆ range�Vp�.

It follows that vp ∈ range�Vq� and vq ∈ range�Vp� after line 1b. This
guarantees that each correct process Pq knows at the end of the initializa-
tion round that its range range�Vq� contains all the values vp of all correct
processes Pp at the end of this initialization round. Knowing ! and the con-
vergence rate c, ! ≥ �diff�V�/cround� and hence it is adequate to execute
round = *logc�diff�V�/!�, rounds. Hence, the number of rounds computed

538 Consensus and agreement algorithms

in line 1c is an upper bound on the number of iterations in which every two
correct processes are guaranteed to converge to within !.

Termination (lines 1g–1h)
Observe that each process may determine a different number of rounds to
execute at line 1c. When a process finishes the required number of rounds, it
executes lines 1g–1h wherein it sends a special symbol “halt” and terminates
itself. When some process Pq receives such a message from Pp, it should use
the value of Pp for this and all of its subsequent rounds until it finishes its
own precomputed number of rounds. This detail is left out of the pseudo-code
for simplicity.

Complexity
• Time complexity *logc�diff�V�/!�,+1 rounds.
• Message complexity n× �*logc�diff�V�/!�,+1� messages of size O�1�

each.

14.5.6 Renaming problem

Problem definition
The consensus problem which was a problem about agreement required the
processes to agree on a single value, or a small set of values (k-set consensus),
or a set of values close to one another (approximate agreement), or reach
agreement with high probability (probabilistic or randomized agreement). A
different agreement problem introduced by Attiya et al. [1] requires the
processes to agree on necessarily distinct values. This problem is termed as
the renaming problem. The renaming problem assigns to each process Pi, a
name mi from a domain M , and is formally specified as follows:

• Agreement For non-faulty processes Pi and Pj , mi �=mj .
• Termination Each nonfaulty process is eventually assigned a name mi.
• Validity The name mi belongs to M .
• Anonymity The code executed by any process must not depend on its

initial identifier.

The renaming problem is useful for name space transformation. A specific
example where this problem arises is when processes from different domains
need to collaborate, but must first assign themselves distinct names from a
small domain. A second example of the use of renaming is when processes
need to use their names as “tags” to simply mark their presence, as in a
priority queue. A third example is when the name space has to be con-
densed. This can occur when, for a system consisting of a large number
of processes, k-mutual exclusion has to be enforced. Of the large pool of
processes, only k can be in the mutual exclusion at any time to use the k
copies of a replicated resource. Each resource can be viewed as holding a

539 14.5 Agreement in asynchronous message-passing systems with failures

permit, 1 through k. For a process to gain access to the resource, it has to gain
a permit.

The assumptions about the renaming problem are as follows:

• The n processes P1

 Pn have their identifiers in the old name space. Pi
knows only its identifier, and the total number of processes, n. The names
of other processes are not known to a process.

• The n processes take on new identifiers m1

 mn, respectively, from the
name space M .

• Due to asynchrony, each process that chooses its new name must continue
to cooperate with the others until they have chosen their new names.

The above formulation of the renaming problem is called the one-time
renaming problem. If processes continually acquire and release names from a
common pool, then the formulation becomes the long-lived renaming problem.
Long-lived renaming is a resource acquisition problem.

Algorithm
Attiya et al. [1] give a algorithm for one-time renaming when n≥ 2f+1, and
up to f processes may fail in a fail-stop manner. The size of the transformed
name space M is n+f .

The high-level functioning of the algorithm is given in Figure 14.10. Each
process has a list View in which it tracks the latest proposed name by each
process, as and when it learns of it. Its own proposed name is tracked in
View�1�. In more details, the view of a name has four components, as described
in the View data structure in Algorithm 14.7. View is a list of up to n

Figure 14.10 Flow-chart
of the asynchronous
renaming algorithm in a
message-passing system.

Name
conflict

rank
< f + 2

Pick new name
based on rank
as own name

V not
same as
MRV

count = 0

V = MRV

No

Yes

YesYes

No

Broadcast own
name as most
recent View (MRV)

Decide MRV as name and help others to decide

No

S
T
A
R
T

count++

count
> n − f

MRV New view
V arrives

540 Consensus and agreement algorithms

objects of type bid. Various views are ordered by the ≤ relation, defined as
follows:
View ≤ View′ if and only if for each process Pi such that View�k��P = Pi,

we also have that for some k′, View′�k′��P = Pi and View�k��attempt ≤
View′�k′��attempt.

If View′ �≤ View (line 1n), then View is updated using View′ (line 1o) by:

1. including all process entries from View′ that are missing in View (i.e.,
View′�k′��P is not equal to View�k��P, for all k), so such entries View′�k′�
are added to View.

2. replacing older entries for the same process with more recent ones, (i.e., if
View′�k′��P = Pi = View�k��P and View′�k′��attempt > View�k��attempt,
replace View�k� by View′�k′�).

Any new information learnt is broadcast to all processes (lines 1c, 1v), and
a process uses a counter count to track the number of other processes that
have broadcast the exact same view as the latest view of this process (line
1k). If the view in a received message contains information that is not in the
current view (line 1n), the current view is updated (line 1o). Note that this is
similar to taking the pairwise maximum of vector clocks. However, a crucial
difference is that the ordering of the components is not predetermined, as
each process may order the other processes differently. When count reaches
n− f (line 1l), no more messages may arrive because the other f processes
may have failed. Such a view for which n−f affirmations were received is
said be a stable view.

Once a process determines a view to be stable (lines 1m, 1q), the process
checks if there is a conflict with its choice of a new name and the choices
of other processes (lines 1r, 1s). If there is no conflict, it finalizes its choice
of the new name (lines 1t, 1u) and goes to the loop (lines 1G-1K) wherein
it helps other processes to gain stable views and finalize their new name

(local variables)
struct bid:

integer P; // old name of process
integer x; // new name being bid by the process
integer attempt; // the number of bids so far, including this current

// bid
boolean decide; // whether new name x is finalized

list of bid: View�1

 n�←− ��i�0�0� false��; // initialize list with an
// entry for Pi

integer count; // number of copies of the latest local view, received from
// others

boolean: restart, stable, no_choose; // loop control variables

541 14.5 Agreement in asynchronous message-passing systems with failures

(1) A process Pi�1≤ i ≤ n, participates in renaming:
(1a) repeat
(1b) restart←− false;
(1c) broadcast message�View�;
(1d) count←− 1;
(1e) repeat
(1f) no_choose←− 0;
(1g) repeat
(1h) await message�View′�;
(1i) stable←− false;
(1j) if View′ = View then
(1k) count←− count+1;
(1l) if count ≥ n−f then
(1m) stable←− true;
(1n) else if View′ �≤ View then
(1o) update View using View′ by taking latest

information for each process;
(1p) restart←− true;
(1q) until (stable= true or restart = true); // n−f copies

// received, or new view obtained
(1r) if restart = false then // View�1� has

// information about Pi
(1s) if View�1��x �= 0 and View�1��x �= View�j��x

for any j then
(1t) decide View�1��x;
(1u) View�1��decide←− true;
(1v) broadcast message�View�;
(1w) else
(1x) let r be the rank of Pi in UNDECIDED�View�;
(1y) if r ≤ f +1 then
(1z) View�1��x←− FREE�View��r�, the rth

free name in View;
(1A) View�1��attempt←− View�1��attempt+1;
(1B) restart←− 1;
(1C) else
(1D) no_choose←− 1;
(1E) until no_choose= 0;
(1F) until restart = 0;
(1G) repeat
(1H) on receiving message�View′�
(1I) update View with View′ if necessary;
(1J) broadcast message�View�;
(1K) until false.

Algorithm 14.7 Asynchronous renaming in the message-passing model [1]. Code shown is for
process Pi � 1 ≤ i ≤ n.

542 Consensus and agreement algorithms

choices. If there is a conflict (lines 1w–1F), a new name must be chosen
once again and competed with other processes. There are two cases here,
depending on the rank of the process among all the processes that have
not yet finalized their new names (i.e., among all processes except those
for which View�j��decide = 1). Let the set of such processes be denoted as
UNDECIDED�View�. Clearly, as the new names of such processes are not
finalized, the rank is determined based on the old names (line 1x).

• If the rank r is less than f + 2 (line 1y), the process chooses the
rth free name from FREE�View�, the “free” names from M that have
not been finalized by the processes (which have their decide compo-
nent set to 1 in View). The process has to restart the bidding process,
by going back to step (1a), broadcasting its updated view (line 1c),
and so on.

• If the rank r exceeds f + 1 (lines 1C,ID), the process goes to line (1e)
and then waits for some other process to send its updated views. The logic
here is that at least one correct process will have a rank up to f +1 among
UNDECIDED, and will pick and stabilize its new name before processes
with rank greater than f +1 begin to compete for a new name.

Some definitions and properties are now given:

• P1 An algorithm is locally proper if for each run and each process, the
sequence of the View list is totally ordered by ≤. Algorithm 14.7 is seen
to be locally proper, from lines 1j–1o.

• P2 A view is stable with respect to a process if the process has received
n−f −1 messages containing identical information in the accompanying
view. (Along with its own identical view, there are n−f affirmations.) A
view is stable in a run if it is stable with respect to some process.

• P3 If an algorithm is locally proper, then in any run, the set of stable
views is totally ordered.

This is seen as follows. Let views View and View′ be stable with respect
to processes i and j, respectively. Then n−f processes (say, set Ai) agree
on View, and n−f processes (say, set Aj) agree on View′.

If View and View′ are not totally ordered, Ai ∩ Aj = ∅. Disjointness
implies size of Aj is at most n− �n−f�= f . Thus, n−f ≤ f , implying,
n ≤ 2f . This contradicts the assumption that n ≥ 2f + 1, hence, at least
one process must have sent both View and View′. So View and View′ must
be totally ordered.

• P4 As Algorithm 14.7 is locally proper, its set of stable views is totally
ordered.

Correctness
Safety
A process finalizes a new name once it has a stable view. Pi and Pj cannot
finalize the same name because the stable views are totally ordered. Without

543 14.5 Agreement in asynchronous message-passing systems with failures

loss of generality, assume that Pi’s stable view ≤ Pj’s stable view when
they respectively finalize their names. Then Pj’s stable view must include the
name finalized by Pi, and Pj will not pick the same name.

Liveness/termination
Observe that when a process picks a new name (line 1z), there are at most
n−1 names used by others, so f +1 names are available. To show that all
processes eventually finalize a name, let FREE�View� be the set of free names
from M as per View. Let DECIDED be the set of processes that finalize
their new names (i.e., for which bid�decide is true). Then N −DECIDED is
UNDECIDED, the set of processes which cannot finalize a new name. We
now argue using contradiction that UNDECIDED is empty.

• Consider the execution after the time that all processes in DECIDED

have decided their new names, and at least one bid sent by every other
correct process has been received by each correct process, implying that
�View� ≥ n−f . As no correct process blocks, this point in time will occur.
Let Viewmin be the smallest stable view after this point in time. By P4, all
the views are totally ordered and hence Viewmin is uniquely defined. Let
the set of free names at this time be denoted as FREE�Viewmin� and the set
of undecided processes at this time be denoted as UNDECIDED�Viewmin�.

• Among the processes in UNDECIDED�Viewmin�, consider the process
Pmin with the smallest rank, based on the old names. The rank is at most
f +1, and hence the process will select a new name (lines 1y, 1z, 1A). As
rank is unique, no other process in UNDECIDED�Viewmin� will now or
henceforth choose this name chosen by Pmin.

• Pmin updates and broadcasts its view. When other processes receive this
view, they update their local views with this new information, and will
also broadcast their updated views:

• either in the loop (lines 1G–1K); or
• via execution of lines (1C–1D), then lines (1n–1o), and then (1b–1c).

Pmin and all other correct processes receive at least n− f confirmations,
making the view containing Pmin’s choice of a new name a stable view.
Hence, Pmin can decide a new name, leading to a contradiction that
UNDECIDED�Viewmin� is empty.

Complexity
Each time a process bids with a new name for itself, a broadcast is sent (n−1
messages) and each recipient of the broadcast, seeing a new view, also does
a broadcast (n− 1 messages). This leads to O�n2� messages per new name
bid. Let the final stable view be denoted by Viewfinal. The total number of
messages is "n

i=1Viewfinal�attempti×n2. Exercise 14.9 asks you to analyze
the bound on the number of attempts made by the processes.

544 Consensus and agreement algorithms

14.5.7 Reliable broadcast

Although reliable terminating broadcast (RTB) is not solvable under failures
(recall that we showed a reduction from consensus to that problem in
Section 14.5.2), a weaker version of RTB, namely reliable broadcast, in which
the termination condition is dropped, is solvable under crash failures. The
protocol is shown in Algorithm 14.8. This protocol uses up to O�n2� messages
to broadcast message M and works in the face of any number of failures.
The key difference between RTB and reliable broadcast is that RTB requires
eventual delivery of some message – even if the sender fails just when about
to broadcast. In this case, a null message must get sent, whereas this null
message need not be sent under reliable broadcast. Thus, RTB requires the
recognition of the failure (as described above) as opposed to no message
getting sent. This reduces to the ability of being able to distinguish between a
slow process and a failed process, which was the crux in solving the consensus
problem under crash failure.

(1) Process P0 initiates reliable broadcast:
(1a) broadcast message M to all processes.

(2) A process Pi, 1≤ i ≤ n, receives message M:
(2a) if M was not received earlier then
(2b) broadcast M to all processes;
(2c) deliver M to the application.

Algorithm 14.8 Protocol for reliable broadcast.

14.6 Wait-free shared memory consensus in asynchronous systems

14.6.1 Impossibility result

The impossibility of achieving consensus in asynchronous message-passing
systems in a system prone to crash failures (discussed in Section 14.5.1) also
extends to asynchronous shared memory systems. A shared memory system
can be emulated by a message-passing system – if consensus could be reached
in a shared memory system, it could also be reached in a message-passing
system, leading to a contradiction. Thus, consensus cannot be reached in an
asynchronous shared memory system in the crash failure model. The intuition
behind the impossibility result in shared memory systems is similar – in the
face of a potential process crash, it is not possible to distinguish between a
crashed process and a process that is extremely slow in doing its Read or
Write operation. The FLP argument using 0-valent and 1-valent states and
the critical step used earlier for asynchronous message-passing systems can

545 14.6 Wait-free shared memory consensus in asynchronous systems

also be used here for asynchronous shared memory systems. The reasoning
to show that consensus cannot be achieved even if a single process fails runs
informally along the following lines [21, 22].

Assume there exists a protocol in which consensus can be reached even if
a single process fails. Recall from Section 14.5.1 that there exists a bivalent
initial state. Due to the termination requirement of the problem, there must
exist some process i that makes a transition from a bivalent state to an
univalent state even if there are no failures. (For a wait-free consensus, this is
also true.) So there must be some execution prefix X that is bivalent, but from
which a step by i makes it 0-valent, whereas a step by i after an extension Y
of X leads to a 1-valent state. (See Figure 14.11.) If there are multiple events
between X and Y , then there must be a prefix Z such that a step by i leads to
0-valence but a step by another process j (j �= i as processes are assumed to
be deterministic) followed by a step by i leads to 1-valence.

The argument now uses a simple case analysis based on the actions of i
and j after Z, to show that the configuration of Z as shown in Figure 14.11 is
impossible, showing the impossibility of a 1-failure consensus protocol. The
notation extend�Z� i ' j� denotes the state after processes i and j take steps
in that order, after execution Z.

• Process i’s event is a Read (see Figure 14.12(a)) Then extend�Z� i' j�
and extend�Z� j ' i� are identical to all processes except i. If i does not take
any step after extend�Z� i ' j�, then all process must eventually terminate
with consensus on 0 while executing a suffix, say �. But if the same suffix
is executed after extend�Z� j ' i�, they must reach a consensus on 1. As
extend�Z� i' j� and extend�Z� j ' i� are isomorphic to all processes except
the stopped process i, we have a contradiction.

• Process j’s event is a Read The states after extend�Z� i� and
extend�Z� j ' i� are identical to all processes except j. The same logic as
for the previous case, this time letting j stop instead of i, leads to a similar
contradiction.

• Processes i and j execute Write on different variables (see Figure
14.12(b)) The system state after extend�Z� i ' j�, which is 0-valent, is
the same as the system state after extend�Z� j ' i�, which is 1-valent. There
now arises a contradiction, irrespective of whether all processes decide on
0 or on 1.

Figure 14.11 Execution prefix
used to show impossibility
of 1-failure tolerant
consensus [21,22]. i

jX

iii

0−val 0−val 1−val 1−val

Z
Y

546 Consensus and agreement algorithms

• Processes i and j execute Write on the same variable (see Figure
14.12(c)) The system state after extend�Z� i� and extend�Z� j ' i� are
identical to all processes except j. If all processes except j run after
extend�Z� i�, the consensus value must be 0. If all processes except j run
after extend�Z� j ' i�, the consensus value must be 1. As extend�Z� j ' i�
and extend�Z� i� are isomorphic to all processes except the stopped process
j, we have a contradiction.

Hence, there cannot exist any bivalent state that allows any process to go a
univalent state.

The key reason why this result for the 1-failure case is different from that
for the failure-free case is that the 1-failure case allows for a bivalent initial
state, whereas the initial state for a failure-free execution is univalent.

Between the time a process reads various registers and (deciding on a
consensus value) writes its consensus value, the values of the other registers
read can get updated by other processes. Herein lies the difficulty for shared
memory systems – the reads and the writes are not together guaranteed to
be an atomic action – and hence taking action about deciding a consensus
value, independent of processes that are “suspected” to have failed, can lead
to an erroneous decision on consensus. Hence, from a bivalent state, it is not
possible to transition to a univalent state. This leads to the following two
results – the second one follows trivially from the first:

• It is not possible to reach consensus in an asynchronous shared memory
system using Read/Write atomic registers, even if a single process can fail
by crashing.

• There is no wait-free consensus algorithm for reaching consensus in an
asynchronous shared memory system using Read/Write atomic registers.

There are two ways of overcoming the impossibility result:

Figure 14.12 Various cases to
show impossibility of 1-failure
tolerant consensus in the
asynchronous message-passing
model [21,22].

Read
by i

Read
by i Write

by j
Write
by i

Write
by j

Write
by j

Write
by i

Write
by i

Write
by ij

j

0−val

0−val0−val

Z Z Z

0−val0−val

(a) i does a Read
(same logic if
j does a Read)

(c) i and j write to
the same variable

0−val

1−val1−val

(b) i and j write to
different variables

All processes
except i

All processes
except j

547 14.6 Wait-free shared memory consensus in asynchronous systems

• Weakening the consensus problem, as was done for message-passing
systems. This area covers the design of asynchronous algorithms for k-set
consensus, approximate consensus, and renaming using atomic registers
and atomic snapshot objects which are built from atomic registers, studied
in Chapter 12. These algorithms are studied in Sections 14.6.4–14.6.6.

• Using memory that is stronger than atomic Read/Write memory to design
wait-free consensus algorithms. Such a memory would have corresponding
access primitives.

Recall that a wait-free algorithm in a system of n processes is a �n−1�-
crash resilient algorithm. Thus, any process should be able to perform its
execution, independent of any other processes. The above results lead to
the question:

• Are there objects (with supporting operations) for which there is a
wait-free algorithm for reaching consensus in a n-process system?

In the remainder of this section, we assume only the crash failure model, and
also require the solutions to be wait-free.

As it turns out, the answer is Yes [14]. Objects/primitives such as Test&Set,
Swap, Compare&Swap, and Memory Move, which were designed in the con-
text of efficient computer architectures, do indeed allow consensus to be
reached in a wait-free manner. Such objects are stronger than the safe, regular,
or atomic Read/Write registers. The notion of consensus number provides a
metric to measure the degree to which these various primitives allow con-
sensus to be reached. This study of these more complex objects also extends
our study of the register simulations of Chapter 12, wherein stronger register
types were simulated from weaker register types.

14.6.2 Consensus numbers and consensus hierarchy [14]

Definition 14.1 An object of type X has consensus number k, denoted as
CN�X�= k, if k is the largest number for which the object X can solve wait-
free k-process consensus in an asynchronous system subject to k− 1 crash
failures, using only objects of type X and read/write objects.

The consensus numbers of some well-known objects are shown in Table 14.4.
Algorithm 14.9 gives the definitions of some of these objects. Definitions of
Swap and Fetch&Increment were seen in Algorithm 12.7. As seen from Def-
inition 14.1, there is an infinite hierarchy – called the consensus hierarchy –
that gets defined, according to the power of the objects to solve wait-free
consensus under crash failures.

548 Consensus and agreement algorithms

Table 14.4 Consensus numbers of some object types [14]. Some of these objects
are described in Algorithm 14.9.

Object Consensus number

Read/Write objects 1
Test&Set, stack, FIFO queue, Fetch&Inc 2
Augmented queue with peek – size k k
Compare&Swap, augmented queue, memory–memory move, �

memory-memory swap, Fetch&Cons, store-conditional

(shared variables among the processes accessing each of the different object
types)
register: Reg←− initial value; // shared register initialized
(local variables)
integer: old←− initial value; // value to be returned
integer: key←− comparison value for conditional update;

(1) RMW (Reg, function f) returns value:
(1a) old←− Reg;
(1b) Reg←− f�Reg�;
(1c) return(old).

(2) Compare&Swap(Reg, key, new) returns value:
(2a) old←− Reg;
(2b) if key = old then
(2c) Reg←− new;
(2d) return(old).

(3) Fetch&Inc(Reg) returns value:
(3a) old←− Reg;
(3b) Reg←− old+1;
(3c) return(old).

Algorithm 14.9 Definitions of synchronization operations RMW , Compare&Swap, Fetch&Inc [17].

A natural consequence of the definition of consensus number is the fol-
lowing result.

Theorem 14.1 For objects X and Y such that CN�X� < CN�Y�, there is
no wait-free simulation of object Y using X and read/write registers (whose
consensus number is 1) in a system with more than CN�X� processes.

If such a simulation did exist, then by Definition 14.1, CN�X� = CN�Y�,
leading to a contradiction. Note that if there are up to CN�X� processes, it
is possible (as shown in Section 14.6.3) for X and read/write registers to

549 14.6 Wait-free shared memory consensus in asynchronous systems

wait-free simulate Y because the full power of reaching consensus among
more than CN�X� processes is never required to be exercised.

A corollary of this result is that there is no wait-free simulation of any
object with consensus number more than one, using only read/write atomic
registers. This corollary is important because it implies that objects with
stronger properties than the read/write atomic register are needed. The ability
to read and write, perhaps conditionally, in an atomic manner was earlier
found to be useful in designing semaphores in operating systems, and certain
primitives in computer architecture and design. Several of the objects in
Algorithm 14.9 were first designed in hardware in these specialized contexts
[17]. We will now see two examples of achieving wait-free consensus – one

using the FIFO queue, and another using the Compare&Swap instruction.

FIFO queue
Algorithm 14.10 shows how 2-consensus is achieved using a FIFO queue
[14]. The queue operations are enqueue and dequeue. The queue is initialized
with a single value, 0. Both processes try to dequeue from the queue. However,
due to the atomicity of the dequeue operation, access is always serialized. The
first process that dequeues the “0” element uses its own initial value (local x)
as the consensus value and outputs it. The other process, on completing its
dequeue operation, gets⊥, and learns that the first process has dequeued first,
and therefore borrows the value set aside by the first process in Choice�1− i�.

(shared variables)
queue: Q←− �0�; // queue Q initialized
integer: Choice�0�1�←− �⊥�⊥�� // preferred value of

// each process
(local variables)
integer: temp←− 0;
integer: x←− initial choice;

(1) Process Pi�0 ≤ i ≤ 1, executes this for 2-process consensus using
a FIFO queue:

(1a) Choice�i�←− x;
(1b) temp←− dequeue�Q�;
(1c) if temp= 0 then
(1d) output�x�
(1e) else output�Choice�1− i��.
Algorithm 14.10 Protocol for 2-process wait-free consensus using a FIFO queue [14]. Code for
Pi � 0 ≤ i ≤ 1.

Thus, both processes agree on the same value and hence 2-process consensus
is achieved. The operations of any process can be seen to be wait-free. The
same logic cannot be extended to three processes because of the following

550 Consensus and agreement algorithms

informal reasoning. Some one process will dequeue the “0.” When the other
two processes dequeue and get a ⊥, they know that one of the other two
processes’ value is the consensus value, but do not know which of the other
two processes it is. This is because the queue object does not atomically allow
the first process to leave behind (i.e., write) its identifier as an imprint for
the second and third processes to learn about when they issue their dequeue.
Therefore, CN�queue�= 2.

Compare&Swap
Algorithm 14.11 shows how wait-free consensus is achieved among any num-
ber of processes using the Compare&Swap operation (see Algorithm 14.9)
on a shared register Reg [14]. The Compare&Swap performs all actions of an
invocation atomically, thus serializing all concurrent accesses. Each process
executes Compare&Swap�Reg�⊥� x�. The value of the object Reg is read
into local variable val, and if this value val equals the key ⊥, then the pro-
cess’s preference x gets written to Reg atomically. Due to the serialization of
the operations, some process always gets serialized first, even if accesses are
concurrent. There are thus two cases.

(shared variables)
integer: Reg←−⊥; // shared register Reg initialized
(local variables)
integer: temp←− 0; // temp variable to read value of Reg
integer: x←− initial choice; // initial preference of process

(1) Process Pi� �∀i ≥ 1�, executes this for consensus using Compare&Swap:
(1a) temp←− Compare&Swap�Reg�⊥� x�;
(1b) if temp=⊥ then
(1c) output�x�
(1d) else output�temp�.

Algorithm 14.11 Protocol for wait-free consensus using Compare&Swap, for any number of processes
[14]. Code for Pi � 1 ≤ i ≤
.

• Consider the process that gets serialized first. The value of Reg read via
Compare&Swap�Reg�⊥� x� equals the key ⊥, and the preference x of
this process gets written to Reg. The process returns its x as the consensus
value.

• Any other process executing Compare&Swap�Reg�⊥� x� will find that
the value of Reg (which is the value x set by the first process) does not
match the key ⊥. Hence it leaves Reg unmodified and returns the value
of Reg as the consensus value. The implication is that another process
has earlier found Reg =⊥ and set its own preference as the value of Reg.
So this process borrows the value set by the earlier process in Reg as the
consensus value.

551 14.6 Wait-free shared memory consensus in asynchronous systems

Due to the atomicity of the Compare&Swap operation and the fact that this
logic works for any number of processes, the code for consensus is wait-free and
can tolerate up to n−1 failures, for all n. Hence,CN�Compare&Swap� is�.

Read–modify–write abstraction
Read–modify–write (abbreviated as RMW) abstracts several objects wherein
a register can be read and modified using an arbitrary function f atomi-
cally [17]. Such objects include Fetch&Inc, Swap, and Test&Set. The RMW
object has a consensus number of at least 2 because the first process to read
the object can atomically modify its value to leave an imprint that the object
has been accessed at least once (e.g., as in the FIFO queue). If the imprint can
also include the identity of the first process to read, or of the choice of the first
process, processes that subsequently access the object can by pointed to the
choice made by the first process, and the consensus number may then be more
than 2.

The various RMW objects differ in their function f . A function is termed
as interfering if for all process pairs i and j, and for all legal values v of
the register, (i) fi�fj�v��= fj�fi�v��, i.e., function is commutative, or (ii) the
function is not write-preserving, i.e., fi�fj�v��= fi�v� or vica-versa with the
roles of i and j interchanged.

Examples The Fetch&Inc commutes even though it is write-preserving.
The Test&Set commutes and is not write-preserving. The Swap does not
commute but it is not write-preserving. Hence, all three objects uses functions
that are interfering.

Algorithm 14.12 shows how wait-free consensus is achieved among two
processes using the RMW operation (defined in Algorithm 14.9) on a shared
register Reg [14]. The RMW performs all actions of an invocation atomically,
thus serializing all concurrent accesses. Each process executes RMW�Reg� f�,
where x is the initial choice of the process. The shared data structures are
shown in Figure 14.13. Reg has an initial distinguished value ⊥, known to all
processes. The assumption here is that the function f is non-trivial, meaning
it is not the identity function.

RMW register

[0] [1]

Reg

Choice

Figure 14.13. Shared data
structures for solving 2-process
wait-free consensus using the
RMW operation.

Although any non-trivial RMW operation has a consensus number of at
least 2, it can be seen that a nontrivial interfering RMW operation has a
consensus number of exactly 2, i.e., there is no algorithm to reach consensus
with three processes. An informal argument to see this is as follows. Consider
the third process to access the object. If the RMW operation is commutative,
the third process cannot tell which of the other two processes accessed the
object first, and hence does not know what consensus value to use. If the
RMW operation is not write-preserving, the third process cannot tell if it
is the second or the third process to access the object; and hence does not
know what consensus value to use. Operations such as Compare&Swap are
noninterfering operations, and hence have consensus numbers higher than 2.

552 Consensus and agreement algorithms

(shared variables)
integer: Reg←−⊥; // shared register Reg initialized
integer: Choice�0�1�←− �⊥�⊥�; // data structure
(local variables)
integer: x←− initial choice; // initial preference of process

(1) Process Pi� �0 ≤ i ≤ 1�, executes this for consensus using RMW:
(1a) Choice�i�←− x;
(1b) val←− RMW �Reg� f�;
(1c) if val=⊥ then
(1d) output�Choice�i��
(1e) else output�Choice�1− i��.
Algorithm 14.12 Protocol for wait-free consensus for two processes using RMW [14]. Code is for Pi ,
0 ≤ i ≤ 1.

14.6.3 Universality of consensus objects [14]

In Chapter 12, we studied the wait-free simulations of various types of regis-
ters using weaker forms of registers. We now build on this notion of wait-free
simulation of one object type using another object type, in the context of
consensus under crash failures. An object is defined to be universal if that
object along with read/write registers can simulate any other object in a
wait-free manner [14]. The main result of this section is that in any system
containing up to k processes, an object X such that CN�X�= k is universal,
i.e., it can simulate any other object. The condition on the number of pro-
cesses in the system is essential; because X does not and cannot manifest the
greater power that is required when the number of objects exceeds CN�X�.
If the condition were removed, then an object X would truly wait-free sim-
ulate another object with a greater consensus number in a system with more
than CN�X� processes, leading to a violation of the definition of consensus
number.

For any system with up to k processes, the universality of objects X with
consensus number k is shown by giving a universal algorithm to wait-free
simulate any object using only objects of type X and read/write registers.
This is shown in two steps:

1. A universal algorithm to wait-free simulate any object whatsoever using
read/write registers and arbitrary k-processor consensus objects is given.
This is the main step.

2. Then, the arbitrary k-process consensus objects are simulated with objects
of type X, also having consensus number k. This trivially follows after the
first step.

553 14.6 Wait-free shared memory consensus in asynchronous systems

Hence, any object X with consensus number k is universal in a system with
n≤ k processes. In the rest of this subsection, we study a universal algorithm
to wait-free simulate any object whatsoever using read/write registers and
arbitrary k-processor consensus objects (step 1). The following two concepts
are useful:

• An arbitrary consensus object X allows a single operation, Decide�X�vin�
and returns a value vout, where both vin and vout have to assume a legal
value from known domains Vin and Vout, respectively. For the correctness
of this shared object version of the consensus problem, all vout values
returned to each invoking process must equal the vin of some process.

• A non-blocking operation, in the context of shared memory operations, is
an operation that may not complete itself but is guaranteed to complete
(i.e., provide a response indication (see Chapter 12) to) at least one of the
pending operations in a finite number of steps. This operation is a weaker
version of a wait-free operation.

We will first study a universal algorithm that does a non-blocking simulation
of any object, and then refine this algorithm to get a wait-free algorithm.

A non-blocking universal algorithm
Algorithm 14.13 uses a linked list (with the initial record termed
anchor_record) to store the linearized sequence of operations and resulting
states on an arbitrary object Z. The data structure op defines the format of
one such element in this linked list. The linked list and data structure format
are illustrated in Figure 14.14. Operations to the arbitrary object Z are simu-
lated in a non-blocking way using only an arbitrary consensus object (namely,
the field op−>next in each record) which is accessed via the Decide call.
We are not concerned with how the consensus object itself or Decide is
implemented.

When an operation Z being simulated is invoked using invoc, a record
pointed to by my_new_record is allocated and the record’s operation field is
set to the invoked operation (lines 1a–1b). The main challenge in simulating
Z is to linearize all the operations being invoked on it concurrently by the
various processes – there is competition among the processes to apply their
own operation next, i.e., to thread their own operation next to the tail of the
linked list. This is where the consensus object comes in useful – with respect
to the current most recent operation that has been linearized, the consensus
object “decides” on the next operation that is to be linearized.

Before a process competes, it first needs to identify the tail of the linked
list which is dynamically changing. Array Head stores pointers to the tail
of the linked list; Head�i� is Pi’s best estimate of the pointer that points to
the tail record. In loop (1c)-(1e), Pi selects the most up to date estimate of
the tail pointer. However, observe that this may still be hopelessly out of date

554 Consensus and agreement algorithms

(shared variables)
record op

integer: seq ←− 0; // sequence number of serialized operation
operation←−⊥; // operation, with associated parameters
state←− initial state; // the state of the object after the operation
result ←−⊥; // the result of the operation, to be returned to invoker
op ∗next ←−⊥; // pointer to the next record

op ∗Head�1

 k�←− &�anchor_record�;
(local variables)
op ∗my_new_record, ∗winner;

(1) Process Pi�1≤ i ≤ k performs operation invoc on an arbitrary
consensus object:

(1a) my_new_record←−malloc�op�;
(1b) my_new_record−>operation←− invoc;
(1c) for count = 1 to k do
(1d) if Head�i�−>seq < Head�count�−>seq then
(1e) Head�i�←−Head�count�;
(1f) repeat
(1g) winner←−Decide�Head�i�−>next�my_new_record�;
(1h) winner−>seq←−Head�i�−>seq+1;
(1i) winner−>state�winner−>result←− apply�winner−>

operation�Head�i�−>state�;
(1j) Head�i�←− winner;
(1k) until winner =my_new_record;
(1l) enable the response to invoc, that is stored at winner−>result.
Algorithm 14.13 Non-blocking universal algorithm to simulate an arbitrary object using any consensus
object [2,14]. Code for Pi � 1 ≤ i ≤ k.

due to the nonatomic nature of scanning the array Head. Still, Head�i� is Pi’s
best estimate of the pointer to the record that is at the tail of the linked list. In
the main loop (lines 1f–1k), Pi competes on the consensus object Head�i�−>
next to thread itself next to the list (line 1g). The following possibilities arise:

Figure 14.14 Wait-free
simulation of a universal
consensus object [2]. For a
non-blocking simulation of the
object, the array Announce is
not used.

Announce[1...n]Head[1...n]

Anchor_Record

op

result
state

operation
seq n

e
x
t

555 14.6 Wait-free shared memory consensus in asynchronous systems

1. Head�i� points to the correct tail of the list. The process Pi invokes Decide
on the consensus object which is the next field of the record pointed to by
Head�i� – to learn if it succeeds in threading its operation next. But there
may be concurrent calls to Decide. The winner of the “race” is pointed to
by winner. (We do not yet know if Pi won.) The fields of the record – its
new state, new sequence number, new result – are computed and stored as
per lines 1h–1i. Head�i� is updated to winner (line 1j).

(a) If winner is the same as my_new_record (line 1k), then Pi won the
race and succeeded in threading its operation after the Head�i� record
before the current iteration of the repeat loop. The process exits after
returning the value stored in the result field (line 1l).

(b) If winner is not the same as my_new_record, then Pi lost the race.
The pointer to the record of the true winner of the race was returned
in winner by the consensus object. The record of the true winner got
filled in again by Pi in lines 1h–1j. But now Head�i� is pointing to the
next record, i.e., the record with sequence number one more than in the
previous iteration. The process competes again by going through the
next iteration of the repeat loop.

2. Head�i� points to an old tail of the list. The process executes the repeat
loop (see case 1(b), which repeats itself) until Head�i� points to the record
that is the most recent tail. It then competes to thread its own operation
pointed to by my_new_record as in step 1.

We make some notes that give an insight into the design of this algorithm:

• We cannot use a single consensus object because consensus has to be
reached on-line with respect to the current most recent operation, on the
next operation to be linearized. A consensus object always returns the
same decision value. Thus the algorithm uses as many consensus objects
(the next fields of the records) as there are records on whose order to
reach consensus.

• A single pointer in a read/write object cannot be used instead of the array
Head to point to the latest operation record. This is because reading the
pointer to contend, and updating it after contention is over and threaded
to the list, cannot be done atomically in a wait-free manner.

• The linearization of the operations is given by the sequence numbers. The
sequence numbers increase monotonically along the linked list.

• A process may never succeed in threading its own operation to the list.
It continues the repeat loop forever. This may happen if it loses the
contention every time to another process trying to thread concurrently.
This can be used to observe that the algorithm is not wait-free but the
algorithm is non-blocking.

• The estimate of the tail of the list in lines 1c–1e may be very out of date
due to the way it is computed. This is a drawback as the process has to

556 Consensus and agreement algorithms

iterate through the repeat loop at least as many times as the number of
operations by which the estimate is out of date.

Complexity
The worst-case time complexity to thread a specific operation is not bounded
due to the non-blocking nature of the algorithm. Exercise 14.14 asks you to
perform an average-case analysis.

A wait-free universal algorithm
The non-blocking algorithm in the previous section is enhanced to make
it wait-free. To ensure that a process does not happen to continually lose
the contention, a round-robin approach of “helping” is used. If a process Pj
determines that the next operation is to be assigned sequence number x, then
it first checks whether the process Pi such that i = x �modn� is contending
for threading its operation. If so, then Pj tries to thread Pi’s operation instead
of its own.

The algorithm is shown in Algorithm 14.14. The implementation of the
round-robin “helping” is done using the array Announce�1

 n�. When a
process Pi wants to thread its operation, it first announces it by making
Announce�i� point to the record where the operation is stored (lines 1a–1b).
It then proceeds as before to estimate the latest tail of the list, using the Head
array (lines 1c–1e). Each process is required to determine whether it should
try to thread the record of the rightful process (lines 1g–1h), as determined
by the modulo function, or its own (line 1j). Only if the “rightful” process is
not interested in threading its own operation does a process try to thread its
own operation (line 1j).

We argue using contradiction that within n iterations of the while loop,
process Pi will have succeeded in having its operation threaded to the linked
list, and exit the loop. Assume by way of contradiction that Pi’s record is not
threaded by Pi’s �n+1�th iteration of the while loop. After the Announce�i�
having been set in lines 1a–1b, n other records initiated by other processes
must have been threaded to the linked list. But of these n sequence numbers,
one of them modulo n must have equalled i and the other processes would
have threaded Pi’s record instead of their own (see lines 1g–1i).

Complexity
Each process completes its operation within n iterations of the main while
loop, irrespective of the other processes.

14.6.4 Shared memory k-set consensus

The message-passing version of k-set consensus for the crash failure model
and k>f was presented in Section 14.5.4. Here, its counterpart for the
shared memory model assuming an atomic snapshot object is given in

557 14.6 Wait-free shared memory consensus in asynchronous systems

(shared variables)
record op

integer: seq ←− 0; // sequence number of serialized operation
operation←−⊥; // operation, with associated parameters
state←− initial state; // state of the object after the operation
result ←−⊥; // result of the operation, to be returned to invoker
op ∗next ←−⊥; // pointer to the next record

op ∗Head�1

 k��∗Announce�1

 k�←− &�anchor_record�;
(local variables)
op ∗winner; ∗my_new_record;

(1) Process Pi�1≤ i ≤ k performs operation invoc on an arbitrary
consensus object:

(1a) Announce�i�←−malloc�op�;
(1b) Announce�i�−>operation←− invoc; Announce�i�−>seq←− 0;
(1c) for count = 1 to k do
(1d) if Head�i�−>seq < Head�count�−>seq then
(1e) Head�i�←−Head�count�;
(1f) while Announce�i�−>seq = 0 do
(1g) turn←− �Head�i�−>seq+1�mod �k�;
(1h) if Announce�turn�−>seq = 0 then
(1i) my_new_record←− Announce�turn�;
(1j) else my_new_record←− Announce�i�;
(1k) winner←−Decide�Head�i�−>next�my_new_record�;
(1l) winner−>seq←−Head�i�−>seq+1;
(1m) winner−>state�winner−>result←− apply�winner−>

operation�Head�i�−>state�;
(1n) Head�i�←− winner;
(1o) enable the response to invoc, that is stored at winner−>result.
Algorithm 14.14 Wait-free universal algorithm to simulate an arbitrary object using any consensus
object [2,14]. Code for Pi � 1 ≤ i ≤ k.

Algorithm 14.15. The algorithm can be easily derived from the message-
passing algorithm. A process Pi writes its initial value v to its component
within the shared object Obj�i�, and repeatedly scans the shared object until
n−f processes have written to the object. It then takes the maximum of the
values scanned.

14.6.5 Shared memory renaming

The renaming problem was introduced in Section 14.5.6 and an algorithm to
solve renaming in the message passing model was given. An asynchronous algo-
rithm for wait-free renaming for the shared memory model under crash failures is
given inAlgorithm14.16.ThealgorithmassumesanatomicsnapshotobjectObj,

558 Consensus and agreement algorithms

which has the nice property that it linearizes all asynchronous operations to it.
Each Pi can write to its component in Obj and read all components atomically
(see Section 12.6). We assume Pi does not have a unique index from [1

 n]
to access Obj. Each process begins by bidding a new name of “1” for itself
(line 1a). The process then repeats the following loop. It writes its latest bid to
its component of Obj (line 1c); it reads the entire object using a scan into its

(local variables)
integer: v←− initial value;
array of integer local_array←−⊥;
(shared variables)
atomic snapshot object Obj�1

 n�←−⊥;

(1) A process Pi�1≤ i ≤ n, executes k-set consensus:
(1a) updatei�Obj�i�� with v;
(1b) repeat
(1c) local_array←− scani�Obj�;
(1d) until there are at least �N �−f non-null values in Obj;
(1e) v←− maximum of the values in local_array.

Algorithm 14.15 Asynchronous protocol for k-set consensus in the shared memory model using an
atomic snapshot object. Code shown is for process Pi � 1 ≤ i ≤ n.

(local variables)
integer: mi←− 0;
integer: Pi←− name from old domain space;
list of integer tuples local_array←− �⊥�⊥�;
(shared variables)
atomic snapshot object Obj ←− �⊥�⊥�; // n components

(1) A process Pi�1≤ i ≤ n, participates in wait-free renaming:
(1a) mi←− 1;
(1b) repeat
(1c) updatei�Obj� �Pi�mi��; // update own component with bid mi

(1d) local_array��P1�m1��

 �Pn�mn��←− scani�Obj�;
(1e) if mi =mj for some j �= i then
(1f) Determine rank ranki of Pi in 	Pj �Pj �=⊥ ∧j ∈ �1� n��;
(1g) mi←− rankith smallest integer not in

	mj �mj �=⊥ ∧j ∈ �1� n� ∧j �= i�;
(1h) else
(1i) decide(mi); exit;
(1j) until false.

Algorithm 14.16 Asynchronous wait-free renaming using an atomic snapshot object in the shared
memory model [2]. Code shown is for process Pi � 1 ≤ i ≤ n.

559 14.6 Wait-free shared memory consensus in asynchronous systems

local array (line 1d). Pi examines the local array for a possible conflict with
its proposed new name (line 1e).

• If Pi detects a conflict with its proposed name mi (line 1e) it determines its
rank rank among the old names (line 1f); and selects the rankth smallest
integer among the names that have not been proposed in the view of the
object just read (line 1g). This will be used as Pi’s bid for a new name in
the next iteration.

• If Pi detects no conflict with its proposed name mi (line 1e), it selects this
name and exits (line 1i).

We now consider the following properties of this algorithm:

• Correctness If two processes were to choose the same new name, then
the Scans returned to them in their final iteration must have indicated
that the name they bid was unique. However, due to the linearizability
property of the atomic snapshot object Obj, the Scan that was returned
to the “later” process could not have indicated that the name it bid was
unique. Hence, no two processes can choose the same name when they
terminate.

• Size of name space At any time, there are at most n− 1 names that
are bid by other processes, and the rank of a process is at most n. Hence,
a process will never bid a name greater than 2n− 1. The name space is
confined to �1�2n−1�.

• Termination Assume there is a subset T ⊆ N of processes that never
terminate. Let min�T� be the process in T with the lowest ranked process
identifier (old name). Let rank�min�T�� be the rank of this process among
all the processes P1

 Pn. Once every process in T has done at least one
update, and once all the processes in T have terminated, we have the
following:

• The set of names of the terminated processes, say MT , remains fixed.
• The process min�T� will choose a name not in MT , that is ranked
rank�min�T��. As rank�min�T�� is unique, no other process in T will
ever choose this name.
• Hence, min�T� will not detect any conflict with rank�min�T�� and will

terminate.

As min�T� cannot exist, the set T = ∅.
• Wait-freedom A process can choose its new name independent of the

actions of the other processes.

Complexity
Exercise 14.17 asks you to perform a time complexity analysis of this algo-
rithm, and show the following lower bounds.

560 Consensus and agreement algorithms

Lower bounds
Let M be the new name space. For crash-failures, the following lower bounds
can be seen to exist:

• For wait-free renaming, wherein all other n− 1 processes may fail, the
name space must be of size 2n−1.

• To tolerate up to f failures, the name space must be of size n+f .

14.6.6 Shared memory renaming using splitters

Moir and Anderson [23] presented a very elegant wait-free renaming algo-
rithm using the splitter concurrent object defined as follows [19]. When n
(n ≥ 1� processes invoke the splitter, each is returned a value from the set
	stop�down� right� subject to the following constraints:

• At most one process is returned stop.
• At most n−1 processes are returned down.
• At most n−1 processes are returned right.

(shared variables)
integer X←−⊥;
boolean Y←− false;
(1) splitter(), executed by process Pi�1≤ i ≤ n:
(1a) X←− i;
(1b) if Y then
(1c) return(right);
(1d) else
(1e) Y ←− true;
(1f) if X = i then return(stop);
(1g) else return(down).

Algorithm 14.17 A wait-free implementation of a splitter [23]. Code shown is for process Pi � 1 ≤ i ≤ n.

Figure 14.15 shows a schematic definition of a splitter. Algorithm 14.17
shows a wait-free implementation of a splitter using MRMW atomic variables.

• The first time that some process Pi finds X equal to its own identifier in
line 1f, Y must be true, and hence all other processes must get the value
right (unless they fail) while Pi must get value stop. Hence, at most one
process is returned stop.

• Let Pi be the last process to execute line 1a. Unless Pi crashes, it will
either get value right if another process executed line 1e, or if no other
process executed line 1e yet, Pi will execute line 1f and return stop. Hence
at most n−1 processes are returned down.

561 14.6 Wait-free shared memory consensus in asynchronous systems

Figure 14.15 The structure for
a splitter [23].

At most n − 1
processes

processesn

At most
n − 1
processes

DOWN

At most
1 process

STOP

RIGHT

• The first process that reads Y in line 1b cannot get value right because Y
is initialized to false. Hence, not all processes can are returned right.

The renaming algorithm is now constructed using n�n+ 1�/2 splitters
arranged as shown in Figure 14.16. Each splitter is labelled by coordinates
r�d. Observe that each process is guaranteed to get a stop value from one of
the n�n+1�/2 splitters, and no two processes will stop at the same splitter.
So the coordinates of the splitter where a process stops can serve as the new
label. The code is shown in Algorithm 14.18. The array of shared variables
corresponding to the grid of splitter is not shown.

Complexity
The new name space is n�n+1�/2 when the number of processes is n. Each
process takes O�n� steps to select its new name. The algorithm is clearly
wait-free.

Figure 14.16 The
Moir–Anderson wait-free
renaming algorithm using
splitters [23]. Code shown is
for Pi , 1 ≤ i ≤ n.

0,30,20,10,0

2,0

3,0

1,11,0 1,2

2,2

d

r

562 Consensus and agreement algorithms

(local variables)
next� r�d�new_name←− 0;

(1) Process Pi�1≤ i ≤ n, participates in wait-free renaming:
(1a) r�d←− 0;
(1b) while next �= stop do
(1c) next←− splitter�r�d�;
(1d) case
(1e) next = right then r←− r+1;
(1f) next = down then d←− d+1;
(1g) next = stop then break();
(1h) return(new_name= n ·d−d�d−1�/2+ r).
Algorithm 14.18 Moir and Anderson’s asynchronous wait-free renaming using splitters [23]. Code
shown is for process Pi � 1 ≤ i ≤ n.

14.7 Chapter summary

Consensus problems are fundamental aspects of distributed computing
because they require inherently distributed processes to reach agreement.
This chapter first covers different forms of the consensus problem, which are
shown to be equivalent to one another. Consensus is attainable in fault-free
systems. The chapter then gives an overview of what forms of consensus
are solvable under different failure models and different assumptions on the
synchrony/asynchrony.

The chapter covers agreement in the following categories. (i) Synchronous
message-passing systems with failures. Here, different fault models are con-
sidered – the fail-stop model and the Byzantine model. Lower bounds on
the number of failure-prone processes are given. Also, representative algo-
rithms under different assumptions and fault models are given. (ii) Asyn-
chronous message-passing systems with failures. The first result here is that
it is impossible to reach consensus in this model. Hence, several weaker
versions of the consensus problem, such as k-set consensus, approximate
consensus, the renaming problem, and reliable broadcast are considered.
Algorithms to solve the weakened forms of consensus in these models are
then given. (iii) Wait-free shared memory consensus in asynchronous sys-
tems. Here, the first result is the impossibility result, analogous to that for
message-passing systems. The chapter then solves consensus using registers
(or objects) that are stronger than the atomic read/write registers. The con-
sensus hierarchy that naturally emerges for stronger consensus objects is then
studied. Algorithms for shared memory renaming and k-set consensus are also
covered.

563 14.8 Exercises

14.8 Exercises

Exercise 14.1 For each of the six ordered pairs of problems among: the Byzantine
agreement problem, the Consensus problem, and the Interactive consistency problem,
demonstrate a reduction from the former to the latter.

Exercise 14.2 Modify Algorithm 14.1 to design an early-stopping algorithm for con-
sensus under failstop failures, that terminates within f ′ +1 rounds, where f ′, the actual
number of stop-failures, is less than f . Prove the correctness of your algorithm.
(Hint: A process can be required to send a mesage in each round, even if the value
was sent in the earlier round. Processes should also track the other processes that
failed, which is detectable by identifying the processes from which no message was
received.)

Exercise 14.3 Modify the iterative Byzantine Agreement algorithm and the tree data
structure specification given in Algorithm 14.3, as well as the example in Figure 14.5,
to now solve the consensus problem.

Exercise 14.4 Examine the phase-king algorithm for consensus in the face of Byzan-
tine failures, as given in Algorithm 14.4. This algorithm works when n > 4f . Presum-
ably, the algorithm will fail for 4f ≥ n> 3f , even though this condition is a sufficient
condition for the existence of a solution to the consensus problem in a synchronous
message-passing system.

1. Why will the algorithm fail for 4f ≥ n > 3f?
2. Even though the algorithm is not correct for 4f ≥ n> 3f , under some circumstance(s),

the correct processors will end up with the same value. Characterize one such circum-
stance, independent of the behavior of the malicious processes.

3. To derive a correct solution for 4f > n > 3f , change line 1k to read:

if mult > 2f�

Will this solution work?
4. To derive another correct solution for 4f ≥ n > 3f , run the algorithm for 4�f + 1�

rounds instead of for 2�f + 1� rounds of the original algorithm. Will this solution
work?

Exercise 14.5 Prove that the distributed commit problem is not solvable under a crash
failure.
(Hint: Show a reduction from the consensus problem to the distributed commit prob-
lem.)

Exercise 14.6 Prove that the leader election problem is not solvable under a crash
failure.

Exercise 14.7 In the !-agreement problem, can a correct process halt if it receives
f +1 halting tags from other processes, even before it has completed its precomputed
number of rounds? Justify your answer.

Exercise 14.8 How can the algorithm for !-agreement, given in Algorithm 14.6, be
simplified if a synchronous system is available? Identify all the changes to the various
parameter values. Can a better value be obtained for the convergence rate?

564 Consensus and agreement algorithms

Exercise 14.9 Analyze the number of bids for a new name made by each process in
the asynchronous renaming algorithm given in Algorithm 14.7.

Exercise 14.10 How can the algorithm for asynchronous renaming, given in
Algorithm 14.7, be simplified if a synchronous system is available?

Exercise 14.11 Examine the Test&Set instruction in Algorithm 12.7. What is the
consensus number x of this register object? Give an algorithm to achieve consensus
for this consensus number.

Exercise 14.12 (k-Write instruction)

1. Consider the 2-Write instruction that can write two locations atomically. Show how
the 2-Write instruction can be used to implement a wait-free 2-consensus protocol.
(Hint: structure the solution using a structure similar to that of the protocols for RMW
and Swap.)

2. Consider the k-Write instruction. Can this k-Write instruction be used to implement a
wait-free consensus protocol for k processes? Justify your answer.

Exercise 14.13 Examine the standard stack object, having its standard push and pop
operations. What is the consensus number x of the stack? Give the code for achieving
2-process consensus using the stack.

Exercise 14.14 Perform an average-case time complexity analysis of the non-blocking
universal algorithm for consensus objects given in Algorithm 14.13.

Exercise 14.15 Simplify the non-blocking universal algorithm for consensus objects
(Algorithm 14.14) by using the specific Compare&Swap object, but also eliminating
the Head array.

Exercise 14.16 Adapt the asynchronous message-passing approximate agreement
algorithm given in Section 14.5.5 for a shared memory system.

Exercise 14.17 Perform a time complexity analysis of the wait-free renaming
algorithm using the atomic snapshot object in asynchronous systems, given in
Algorithm 14.16. Also prove the lower bounds on the size of the name space, as
indicated in Section 14.6.5.

Exercise 14.18 Show how the number of splitters used in the renaming algorithm of
Section 14.6.6 can be reduced to n�n−1�/2.

14.9 Notes on references

The Byzantine agreement and the consensus problems were defined by Lamport
et al. [20, 25]. The exponential messages algorithm for solving consensus in the face
of Bzyantine failures and the 3f +1 lower bound were given in these papers. A later
proof of the exponential algorithm was given by Bar-Noy et al. [3], and a later proof
of the 3f +1 lower bound was given by Fischer et al. [11]. The polynomial-message
phase-king algorithm to solve consensus in the same Byzantine failure model was
given by Berman and Garey [4]. A polynomial-message algorithm requiring t+ 1
rounds and n > 3t processes has been given by Garey and Moses [13]. The result on

565 References

the impossibility of reaching consensus in an asynchronous message-passing system
was given by Fischer et al. [12]. The same impossbility result for an asynchronous
shared memory system was given by Loui and Abu-Amara [21]. Fischer and Lynch
[10] and Dolev and Strong [8] proved the lower bound of f +1 rounds for reaching

consensus in the Byzantine failure and crash failure models, respectively.
The k-set consensus problem was defined by Chaudhuri [6]. This work also pre-

sented the first algorithm for solving k-set consensus under f faults, where f < k. The
lower bound of f < k crash-failure processes for solving this problem was shown by
Borowski and Gafni [5], Herlihy and Shavit [15], and Saks and Zaharoglou [27].
The approximate agreement problem was proposed, and solved for crash failure and
Byzantine failures in the message-passing model by Dolev et al. [7]. The wait-free
shared memory solution to this problem was proposed by Moran [24].

Wait-free synchronization was introduced by Lamport [18] and developed by
Peterson [26]. The theory of wait-free synchronization, consensus hierarchy, and the
universal constructions for arbitrary consensus objects was given by Herlihy [14].
The discussion of RMW operations and the analysis of the consensus number of
RMW objects with interfering operations is given by Kruskal et al. [17]. The renaming
problem was proposed and solved for the message-passing model by Attiya et al. [1].
They also showed that at least n+1 new names are needed if f crash failures are to
be tolerated. This lower bound was tightened to n+ f by Herlihy and Shavit [15].
This lower bound, as well as the lower bound for k-set consensus are derived from a
theorem that characterizes the solvable problems by a f -resilient algorithm using only
Read and Write operations, as shown by Herlihy and Shavit [16]. The wait-free k-set
consensus for shared memory is adapted from Attiya and Welch [2]. The wait-free
renaming algorithm for the shared memory pardigm is adapted from [1] and Attiya
and Welch [2]. The wait-free shared memory renaming algorithm using splitters was
proposed by Moir and Anderson [23]. The abstraction of wait-free splitters was
proposed and implemented by Lamport [19].

References

[1] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an
asynchronous environment, Journal of the ACM, 41(1), 1990, 524–548.

[2] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, 2nd edn, Hoboken, NJ, Wiley Interscience, 2004.

[3] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong, Shifting gears: changing
algorithms on the fly to expedite Byzantine agreement, Information and Com-
putation, 92(2), 1992, 205–233.

[4] P. Berman and J. Garay, Closure votes: n/4-resilient distributed consensus in
�t+1� rounds, Mathematical Systems Theory, 26(1), 1993, 3–19.

[5] E. Borowski and E. Gafni, Generalized FLP impossibility result for t-resilient
asynchronous computations, Proceedings of the 25th IEEE Symposium on Theory
of Computing, 1993, 91–100.

[6] S. Chaudhuri, More choices allow more faults: set consensus problems in totally
asynchronous systems, Information and Computation, 105(1), 1993, 132–158.

[7] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl, Reaching approximate
agreements in the presence of faults, Journal of the ACM, 33(3), 1986, 499–516.

566 Consensus and agreement algorithms

[8] D. Dolev and H. R. Strong, Authenticated algorithms for Byzantine agreement,
SIAM Journal of Computing, 12(4), 1983, 656–666.

[9] M. Fischer, The consensus problem in unreliable distributed systems (a brief
survey), 1983 Conference on Fault-Tolerant Computing, 1983.

[10] M. Fischer and N. Lynch, A lower bound for the time to assure interactive
consistency, Information Processing Letters, 14(4), 1982, 183–186.

[11] M. Fischer, N. Lynch, and M. Merritt, Easy impossibility proofs for distributed
consensus problems, Distributed Computing, 1(1), 1986, 26–39.

[12] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus
with one faulty processor, Journal of the ACM, 32(2), 1985, 374–382.

[13] J. Garey and Y. Moses, Fully polynomial Byzantine agreement for n > 3t pro-
cessors in t+1 rounds, SIAM Journal of Computing, 27(1), 1998, 247–290.

[14] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming
Languages and Systems, 11(1), 1991, 124–149.

[15] M. Herlihy and N. Shavit, The asynchronous computability theorem for t-resilient
tasks, Proceedings of the 25th IEEE Symposium on Theory of Computing, 1993,
111–120.

[16] M. Herlihy and N. Shavit, The topological structure of asynchronous computabil-
ity, Journal of the ACM, 46(6), 1999, 858–923.

[17] C. Kruskal, L. Rudolph, and M. Snir, Efficient synchronization of multiprocessors
with shared memory, Proceedings of ACM Principles of Distributed Computing,
August 1986, 218–228.

[18] L. Lamport, Concurrent reading and writing, Communications of the ACM,
20(11), 1977, 806–811.

[19] L. Lamport, A fast mutual exclusion algorithm, ACM Transactions on Computer
Systems, 5(1), 1987, 1–11.

[20] L. Lamport, R. Shostak, and M. Pease, The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems, 4(3), 1982, 382–401.

[21] M. C. Loui and H. H. Abu-Amara, Memory requirements for agreement among
unreliable asynchronous processes, Advances in Computing Research, Vol. 4:
Parallel and Distributed Computing, Greenwich, CT, JAI Press, 1987, 163–183.

[22] N. Lynch, Distributed Algorithms, MIT Press and Morgan Kaufmann, 1996
[23] M. Moir and J. Anderson, Wait-free algorithms for fast long-lived renaming,

Science of Computer Programming, 25(1), 1995, 1–39.
[24] S. Moran, Using approximate agreement to obtain complete disagreement: the

output structure of input free asynchronous computations, Proceedings of the
3rd Israeli Symposium on Theory of Computing and Systems, 1995, 251–257.

[25] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of
faults, Journal of the ACM, 27(2), 1980, 228–234.

[26] G. Peterson, Concurrent reading while writing, ACM Transactions on Program-
ming Languages and Systems, 5(1), 1983, 46–55.

[27] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: the topology
of public knowledge, Proceedings of the 25th IEEE Symposium on Theory of
Computing, 1993, 101–110.

C H A P T E R

15 Failure detectors

15.1 Introduction

This chapter deals with the design of fault-tolerant distributed systems. It is
widely known that the design and verification of fault-tolerent distributed
systems is a difficult problem. Consensus and atomic broadcast are two impor-
tant paradigms in the design of fault-tolerent distributed systems and they find
wide applications. Consensus allows a set of processes to reach a common
decision or value that depends upon the initial values at the processes, regard-
less of failures. In atomic broadcast, processes reliably broadcast messages
such that they agree on the set of messages delivered and the order of message
deliveries.

This chapter focuses on solutions to consensus and atomic broadcast
problems in asynchronous distributed systems. In asynchronous distributed
systems, there is no bound on the time it takes for a process to execute a
computation step or for a message to go from its sender to its receiver. In an
asynchronous distributed system, there is no upper bound on the relative pro-
cessor speeds, execution times, clock drifts, and delay during the transmission
of messages although they are finite. This is mainly casued by unpredictable
loads on the system that causes asynchrony in the system and one cannot
make any timing assumptions of any types. On the other hand, synchronous
systems are characterized by strict bounds on the execution times and message
transmission delays.

The asynchronous model of distributed system has simpler semantics when
compared to synchronous model. Applications based on the asynchronous
model are easily portable because there are no strict timing assumptions to take
care of. The asynchronous model of distributed systems is very popular and
has attracted lot of attention due to these reasons. Inspite of the attractiveness
of asynchronous distributed systems, it is well known that consensus, atomic
broadcast, and several other reliable broadcast problems cannot be solved
deterministically even for a single process failure due to the unbounded timing
characteristics. The main cause of this impossibility result is that it is very

567

568 Failure detectors

difficult to determine in asynchronous systems whether a process has failed
or is simply taking a long time for execution; so it is difficult to deal with
failures in these systems. On the other hand, in synchronous systems due to
strict timing constraints, failures can easily be detected.

The asynchronous model of distributed systems is widely used, and such
systems are prone to failures. Thus, detection and/or prevention of failures
in these systems is of vital importance. The detection of process failures is
a crucial task in the design of fault tolerant distributed systems. Detection
of crashed processes is especially difficult in asynchronous systems as it is
impossible to determine whether a process has really crashed or is very slow
(as there are no timing constraints present).

In this chapter, we discuss the concept of unreliable failure detectors to
deal with the impossibility results in asynchronous distributed systems with
crash failures. Basically, the asynchronous model of computation is extended
with a failure detection mechanism that is prone to errors in the sense that
a process can brand another process as crashed even though the process is
running. We study failure detectors in asynchronous distributed systems. We
investigate two major problems faced in asynchronous distributed environ-
ments, namely, consensus and atomic broadcast. We study several solutions
for these problems.

15.2 Unreliable failure detectors

Chandra and Toueg [3] introduced the concept of unreliable failure detectors
and showed how unreliable failure detectors can be used to solve two fun-
damental paradigms of asynchronous distributed systems with crash failures,
namely, consensus and atomic broadcast.

15.2.1 The system model

We consider asynchronous distributed systems in which there is no bound on
message delay, clock drift, or the time taken to execute a step. The system
consists of a finite set of n processes, Q = 	p1� p2� ���� pn�. Each pair of
processes is connected by a reliable communication channel. A process can
fail by crashing only, i.e., by prematurely halting. A process behaves correctly
(i.e., according to its specification) until it crashes.

A discrete global clock is assumed, and the range of the clock’s ticks, �, is
the set of natural numbers. The global clock is used for the sake of simplicity
of presentation and reasoning and is not accessible to the processes.

A process pi is said to crash at time t if pi does not perform any action
after time t. Process failures are permanent; once a process crashes, it does
not recover. A correct process is a process that has not crashed.

569 15.2 Unreliable failure detectors

Informally, a run is an infinite execution of the system. Given any run � ,
Crashed(t, �) is the set of processes that have crashed by time t and Up�t���
is the set of processes that are correct (i.e., have not crashed) by time t, that
is, Up(t, �) = Q − Crashed�t, �). Crashed(�) is the set of processes that
have crashed in a run � and is equal to

⋃
tCrashed(t, �). Up(�) is the set of

processes that are correct in a run � and is equal to Q − Crashed(�). If a
process p ∈Crashed(�), we say that p is a faulty process in � . If a process p
∈ Up(�), we say that p is a correct process in � . We consider only execution
runs where at least one process is correct.

Failure patterns and environments
A failure pattern is a function F from � to 2Q, where F (t) denotes the set
of processes that have crashed through time t. An environment E is a set of
failure patterns. Environments describe the crashes that can occur in a system.
In general, we consider the environments that contain all possible failure
patterns, i.e., there is no bound on the number of processes that crash.

Each process pi has a local failure detector module of D, denoted by Di.
Associated with each failure detector D is a range RD of values output by
the failure detector. A failure detector history H with range R is a fuction H
from �X� to R. D(F) denotes the set of possible failure detector histories
permitted for the failure pattern F , i.e., each history represents a possible
behavior of D for the failure pattern F . For any failure detector D, any failure
pattern F , and any historyH inD(F),H(pi, t) is the set of processes suspected
by process pi at time t.

15.2.2 Failure detectors

A failure detector D is a distributed oracle that gives hints about failure
patterns. Each process pi in the distributed environment has its own local
failure detector Di, which monitors all other processes and maintains a list of
processes, currently pi suspects to have crashed. The suspicion is based on
relative timeouts of other processes at pi.

Thus, a failure detector D as the vector D = �Dp1�Dp2� ����Dpn�, where Di

is the failure detector module at process pi, that outputs the set of processes
that it currently suspects to have crashed. Formally, a failure detector is a
function “from time and the set of all runs” to 2Q. Dp�t��� is the set of
processes that are suspected to have crashed by p’s failure detector module
at time t in run � . If q ∈ Dp�t���, we say that p suspects q at time t in run
� . After a process crashes, it is immaterial what its failure detector module
indicates. We formalize this by assuming that if p ∈ Crashed�t, �), then
Dp�t� ��= .

The failure detectors can make mistakes, i.e., a correct process may be
added to the list of suspects and can later be removed if the failure detector
realizes that it was a mistake. Thus, a failure detector may continually add

570 Failure detectors

and remove processes from its list of suspects. Processes can be added and
removed from the list of suspects by each failure detector module any number
of times. At any time, failure detector modules at two processes may have
different lists of suspects.

It should be noted that the addition of a correct process to the list of
suspects by any other process or by all other processes should not prevent
this process from behaving correctly, according to its specifications.

15.2.3 Completeness and accuracy properties

Chandra and Toueg [3] classified failure detectors in terms of their complete-
ness and accuracy properties. Informally, completeness requires that a failure
detector eventually suspects all processes that have crashed and accuracy
resticts the mistakes a failure detector can make (i.e., a correct process suspect
another correct process). They define two types of completeness and four
types of accuracy properties, giving rise to eight classes of failure detectors.

Chandra and Toueg [3] introduced the concept of reducibility among
failure detectors. Informally, a failure detector D is reducible into another
failure detector D′ if there exists a distributed algorithm that can transform
D into D′. In this case, any problem that can be solved using D′ can also be
solved using D. If two failure detectors are reducible to each other, they are
said to be equivalent.

Chandra and Toueg [3] put failure detectors into eight classes and ordered
them into a hierarchy according to the reducibility relationship. In this hierar-
chy, some failure detectors can solve the consensus problem with any number
of process failures, while others require a certain number of correct processes
to solve the consensus problem. This requirement and the boundary where
this requirement becomes necessary have been clearly specified.

We now define completeness and accuracy properties of a failure detector.

Completeness
Definition 15.1 (Completeness) There is a time after which every process
that has crashed is permanently suspected by a correct process.

Completeness can be of two types:

• Strong completeness Eventually every process that crashes is perma-
nently suspected by every correct process. Notationally,

∀��∀p ∈ Crashed����∀q ∈ Up����∃t such that ∀t′ ≥ t � p ∈Dq�t
′����

• Weak completeness Eventually every process that crashes is perma-
nently suspected by some correct process. Notationally,

∀��∀p ∈ Crashed����∃q ∈ Up����∃t such that ∀t′ ≥ t � p ∈Dq�t
′����

571 15.2 Unreliable failure detectors

Note that completeness by itself may not be of much use. For example,
a failure detector may satisfy the strong completeness property by having
every process permanently suspect all other processes. Such a failure detector
is useless because it provides no information about actual failures. Thus, a
failure detector must satisfy some accuracy property to be useful. We define
this property next.

Accuracy
Definition 15.2 (Accuracy) There is a time after which a correct process
is never suspected by any correct process.

There are two types of accuracy property:

• Strong accuracy Correct processes are never suspected by any correct
process. Formally,

∀��∀t�∀p�q ∈ Up�t��� � p �∈Dq�t����

Since in any practical system it is extremely difficult to achieve accuracy, we
weaken it as follows:

• Weak accuracy Some correct process is never suspected by any correct
process. Formally,

∀��∃p ∈ Up����∀t�∀q ∈ Up�t��� � p �∈Dq�t����

We collectively refer to strong accuracy and weak accuracy as the perpetual
accuracy properties because these properties hold all the time. Note that even
weak accuracy is difficult to achieve, because a failure detector (even at
a correct process) may suspect a correct process and then later correct its
mistake. The weak accuracy property does not permit this. Thus, we further
weaken the accuracy requirement and allow failure detectors that may suspect
a correct process at some points in the run, but they eventually satisfy the
strong and weak accuracy properties.

Eventual accuracy
Definition 15.3 (Eventual accuracy) We need not require accuracy prop-
erty to be satisfied by each process at all the time. Instead, we require the
accuracy property to be eventually satisfied.

There are two types of eventual accuracy:

• Eventual strong accuracy There is a time after which correct processes
are not suspected by any correct process. Formally,

∀��∃t�∀t′ ≥ t�∀p�q ∈ Up�t′��� � p �∈Dq�t
′����

572 Failure detectors

• Eventual weak accuracy There is a time after which some correct pro-
cess is not suspected by any correct process. Formally,

∀��∃t�∀t′ ≥ t�∃p ∈ Up����∀q ∈ Up��� � p �∈Dq�t
′����

We collectively refer to eventual strong accuracy and eventual weak accuracy
as the eventual accuracy properties because these properties hold eventually.

15.2.4 Types of failure detectors

Based on types of accuracies and completeness defined above, failure detec-
tors can be classified into the following categories:

• Perfect failure detectors (P) Failure detectors that satisfy the strong
completeness and the strong accuracy properties are called perfect failure
detectors.

• Eventually perfect failure detectors (♦P) Failure detectors that satisfy
the strong completeness and the eventual strong accuracy properties are
called eventually perfect failure detectors.

• Strong failure detectors (S) Failure detectors that satisfy the strong
completeness and the weak accuracy properties are called strong failure
detectors.

• Eventually strong failure detectors (♦S) Failure detectors that satisfy
the strong completeness and the eventual weak accuracy properties are
called eventually strong failure detectors.

• Weak failure detectors (W) Failure detectors that satisfy the weak
completeness and the weak accuracy properties are called weak failure
detectors.

• Eventually weak failure detectors (♦W) Failure detectors that satisfy
the weak completeness and the eventual weak accuracy properties are
called eventually weak failure detectors.

• Another class of failure detector is the one that satisfies weak completeness
and strong accuracy properties. This class is denoted by #.

• The last class is the set of failure detectors that satisfy weak completeness
and eventually strong accuracy properties. This class is denoted by ♦#.

15.2.5 Reducibility of failure detectors

A failure detector D is reducible to another failure detector D′ if there is an
algorithm that transforms a failure detector D into another failure detector D′.
A natural question is: what does it mean that an algorithm transforms D into
D′? An algorithm TD → D′ transforms a failure detector D into another failure
detector D′ if and only if for every run R of TD → D′ under a failure pattern
F using D, outputR∈ D′(F), where outputR is the output of run R using fail-
ure detector D and D′(F) denotes the set of histories of failure detector D′ for

573 15.2 Unreliable failure detectors

failure pattern F . That is, variable outputp at process p emulates the output of
D′. Thus, TD → D′ can emulate D′ using D. TD → D′ need not emulate all fail-
ure detector histories of D′; however, all failure detector histories it emulates
must be histories of D′. Algorithm TD → D′ is called the reduction algorithm.

Given a reduction algorithm TD → E , any problem that can be solved
using E, can also be solved using D. We illustrate this with an example:
suppose a given algorithm A requires failure detector E, but only failure
detector D is available. We can execute A using failure detector D as follows.
Concurrently with A, processes run TD → E to transform D to E. Algorithm
A is modified at process p as follows: whenever A requires that p queries
its failure detector module, p reads the current value of outputp, which is
concurrently maintained by TD → E .

Since TD → E is able to use D to emulate E, D must provide at least
as much information about process failures as E does. Thus, if there is an
algorithm TD → E that transforms D into E, we say that E is weaker than D
and denote it by D / E. Note that / is a transitive relation. If D / E and
E /D, then we say that D and E are equivalent and denote it by D ≡ E.

If D and $ are two classes of failure detectors and there exists an algorithm TD

→ E that can transform every failure detectorD ∈D into a failure detectorE ∈ $,
then we say that the class of failure detectors D is reducible to the class of failure
detectors $ and this is denoted by D / $. In this case, $ is weaker than D. If
D / $ and $ / D, then D and $ are equivalent and this is denoted by D ≡ $.

From a trivial reduction algorithm, where each process p periodically writes
the current output of its failure detector module into outputp, the following
relations between the classes of failure detectors are obvious:

Observation 15.1 P / #, S / W , ♦P /♦#�♦S /♦W .

15.2.6 Reducing weak failure detector W to a strong failure detector S

In Algorithm 15.1, we give a reduction algorithm TD → D′ (due to Chandra and
Toueg [3]) that transforms any given failure detector D that satisfies weak
completeness, into a failure detector D′ that satisfies strong completeness.
D′ satisfies the same accuracy property that D satisfies. Thus, this algorithm
strenghtens the completeness while preserving the accuracy.

Informally, the conversion of any weak failure detector W to a strong
failure detector S is as follows: initially, for every process p, outputp is set
to null. (Recall that outputp is the variable emulating the output of the failure
detector module D′p.) Every process p periodically sends (p, suspectsp) to
every process, where suspectsp denotes the set of processes that p suspects
according to its failure detector module Dp. When a process p recieves a
message (q, suspectsq) from a process q, process p adds the suspect list of
process q, suspectsq, to its output, outputp, and removes the process q from
its output as it is a correct process.

574 Failure detectors

Every process p executes the following:

outputp←

cobegin

��Task 1: repeat forever

suspectsp←Dp {p queries its local failure detector module Dp}
send(p, suspectsp) to all other processes.

��Task 2: when receive (q, suspectsq) for a process q

outputp← �outputp∪ suspectsq� − {q} {outputp emulates Ep}

coend

Algorithm 15.1 Transforming weak completeness to strong completeness [3].

A correctness argument
The correctness proof of the algorithm involves showing the following three
properties:

1. It transforms weak completeness into strong completeness.
2. It preserves the perpetual accuracy.
3. It preserves the eventual accuracy.

We show these properties in the following three lemmas.

Lemma 15.1 Let p be any process that crashes. If eventually some cor-
rect process permanently suspects p in HD, then eventually all correct pro-
cesses permanently suspect p in outputR, where HD is the history of failure
detector D and outputR is the output of an arbitrary run R using failure
detector D.

Since process p crashes, there is a time t′ after which no process recieves
a message from p. Suppose there is a correct process q that permanently
suspects p in HD after time t. Consider the execution of task 1 by process
q after time tp= max�t� t′�. Process q sends a message (q, suspectsq) such
that p ∈ suspectsq to all processes. Eventually, every correct process recieves
(q, suspectsq) and adds p to output (in task 2). Since no correct process
recieves any messages from p after time t′ and tp ≥ t′, no correct process
removes p from its output after tp. Thus, there is a time after which every
correct process permanently suspects p in outputR.

Lemma 15.2 Let p be any process. If no process suspects p in HD before
time t, then no process suspects p in outputR before time t.

Suppose there is a time t before which no process suspects process p in HD.
Thus, no process sends a message of type (–, suspects) such that p ∈ suspects
before time t. Thus, no process q adds p to outputq before time t.

575 15.2 Unreliable failure detectors

Lemma 15.3 Let p be a correct process. If there is a time after which no
correct process suspects p in HD, then there is a time after which no correct
process suspects p in outputR.

Suppose there is a time t after which no correct process suspects p in HD.
Thus, all processes that suspect p after time t eventually crash. Thus, there
is time after which no process will send messages of type (–, suspects) such
that p ∈ suspects. Thus, there is a time t′ after which no correct process
recieves a message of type (–, suspects) such that p ∈ suspects. Let q be a
correct process. We need to show that there is a time after which q does not
suspect p in outputR. Consider the execution of task 1 by process p after
time t′. Process p sends the message (p, suspectsp) to q. When q receives
this message, it removes p from outputq if p is present in outputq (task 2).
Note that q does not receive any messages of type (–, suspects) such that
p ∈ suspects after time t′; therefore, q does not add p to outputq after time
t′. Thus, there is a time after which q does not suspect p in outputR.

Theorem 15.1 # / P�W / S�♦# /♦P and ♦W /♦S.

Proof Let D be any failure detector in #, W , ♦#, or ♦ W . We show
that TD → E transforms D into a failure detector E in P, S, ♦P, or ♦S.
Since D satisfies weak completeness, E satisfies strong completeness (from
Lemma 15.1). We now argue that D and E have the same accuracy properties.
If D is in # or W , then D and E have the same accuracy property (from
Lemma 15.2). If D is in ♦# or ♦W , then D and E have the same accuracy
property (from Lemma 15.3).

Thus, we have:

/ P�W / S�♦# /♦P and ♦W /♦S� �

From Theorem 15.1 and Observation 15.1, we have the following result:

P ≡ #�S ≡W�♦P ≡♦#� and ♦S ≡♦W�

A significance of this result is that if we solve a problem for the four failure
detectors with strong completeness, the problem is automatically solved for
the remaining four failure detectors.

15.2.7 Reducing an eventually weak failure detector ♦W to an eventually strong failure
detector ♦S

Algorithm 15.2 gives an algorithm that converts any eventually weak failure
detector D ∈ ♦W into an eventually strong failure detector E ∈ ♦S. Q is the
set of all processes.

At process p, variable suspectedp(r, q) denotes how many times process
q has suspected process r and variable refutedp(r, q) denotes how many

576 Failure detectors

times process r has refuted process q. Both variables are initialized to zero.
Sp denotes the suspect list of process p.

Process p runs the following:

for all q, r ∈ Q
{Number of times q suspected r according to p}
suspectedp(r, q)← 0
{Number of times r refuted q according to p}
refutedp(r, q)← 0

cobegin
��Task 1: repeat forever
if (r ∈Dp and refutedp(r, p) ≤ suspectedp(r, p)) then

p rbcasts (p, suspects, r, refutedp(r, p) + 1)

��Task 2: when p rbdelivers (q, suspects, r, k)
suspectedp(r, q)← k
if p= r then p rbcasts (p, refutes, q, k)

��Task 3: when p redelivers (r, refutes, q, k)
refutedp(r, q)← k

��Task 4: repeat forever
for all processes r

if ∃ q : suspectedp(r, q) > refutedp(r, q)
then Sp← Sp

⋃
	r�

else Sp← Sp− 	r�
coend

Algorithm 15.2 An algorithm to reduce an eventually weak failure detector into an eventually strong
failure detector [3].

An explanation of the algorithm
The algorithm consists of four tasks.

In task 1, a process p continuously performs the following for every process
r that it suspects according to its failure detector module Dp: if the number
of times process r is suspected by p is greater than the number of times r has
refuted p, then p broadcasts a suspect message that contains the incremented
refuted value.

In task 2, when process p receives a suspect message (q, suspects, r, k)
from a process q, it updates suspectedp(r, q) to k. If process p discovers
that it was erroneously suspected by process q, p broadcasts an appropriate
refutation, refuting the suspicion of process q.

In task 3, when process p receives a refutation message (r, refutes, q, k)
from process r, it updates refutedp(r, q) to k.

577 15.3 The consensus problem

In task 4, the following is repeatedly done for every process r: if there
exists a process q such that the number of times q suspects process r is greater
than the number of times the process r refutes q according to p, then process
r is added to the suspect list of process p. Otherwise, r is removed from the
suspect list of process p.

Correctness argument
A correctness argument of the algorithm is as follows. When a process q
receives a suspect message accusing process p, process q may add p to its list
of suspects Sq. However, upon receiving p’s refutation, process q will remove
p from its list of suspects Sq. However, p can be suspected again and added to
Sq a second time. However, a further refutation from p will cause p to be again
removed from Sq. Thus, a possibly infinite sequence of suspicions followed
by corresponding refutations may occur, resulting in p being repeatedly added
to and removed from Sq. However, from the eventual weak accuracy property
of D, there is a time after which some correct process is not suspected. That
is, there is a process p such that there is a time after which no correct process
receives a message of type (*, suspects, p, k), suspecting p. Thus, after a
time no correct process adds process p to its suspect list. Together with the
refutation mechanism, this ensures the eventual weak accuracy property of
the constructed E.

Now let us see why E satisfies the strong completeness property. Since
D satisfies the weak completeness property, eventually every process that
crashes is permanently suspected by some correct process, say p. Thus, even-
tually process pwill repeatedly broadcast (p, suspects, *, k) messages for these
crashed processes and since these processed have crashed, no one will send
refute messages for them. Thus all crashed processes will eventually belong to
the suspect list of all correct processes. Thus, due to the broadcast of suspect
messages and weak completeness property of D, E satisfies the strong com-
pleteness property. Thus E satisfies strong completeness and weak accuracy.

15.3 The consensus problem

In the consensus problem, each correct process proposes a value and all
processes must reach a unanimous and irrevocable decision on a value that
is related to the proposed values [9]. The consensus problem is defined in
terms of the following properties:

• Termination Every correct process eventually decides some value.
• Uniform integrity Every process decides at most once.
• Agreement No two correct processes decide differently.
• Uniform validity If a process decides a value v, then some process

proposed v.

578 Failure detectors

It is widely known that the consensus cannot be solved in asynchronous
systems in the presence of even a single crash failure. This is primarily
because one cannot distinguish between a process that has crashed and a
process that is responding very slow (may be due to the slow network).

15.3.1 Solutions to the consensus problem

Chandra and Toueg [3] showed how to solve the consensus problem using
unreliable failure detectors for each of the eight classes of failure detectors.
From the following property, the classes of failure detectors P, S, ♦P�♦S
are, respectively, equivalent to failure detectors #�W�♦#�♦W . Notationally,

P ≡ #�S ≡W�♦P ≡♦#� and ♦S ≡♦W�

So the problem of solving the consensus problem using unreliable failure
detectors reduces to solving it for four classes of failure detectors that satisfy
strong completeness (i.e., P, S, ♦P and ♦S), instead of solving it for all eight
classes. Since P is reducible to S and ♦P is reducible to ♦S (i.e., P / S
and ♦ P /♦ S), the algorithms for solving consensus using S also solve the
consensus using P and the algorithms for solving consensus using ♦S also
solve the consensus using ♦P.

Next, we present algorithms that solve consensus using S and ♦S. The
consensus algorithm using S can tolerate any number of process failures.
However, the consensus algorithm using ♦S requires a majority of the pro-
cesses to be operational.

15.3.2 A solution using strong failure detector S

Algorithm 15.3 solves the consensus problem in an asynchronous system
using a failure detectorD that satisfies strong completeness and weak accuracy
(i.e., D ∈ S). This algorithm tolerates any number of process failures (up to
n−1 faulty processes among a total of n processes).

The following notation will be used:

• ip is the value proposed by process p.
• ⊥ is the null value.
• Vp�q� is the process p’s estimate of process q’s proposed value.
• Vp is process p’s estimate of the proposed values by all other processes.
• 0p contains all the values of Vp.
• rp is the current round number of process p.
• msgsp�rp� is the set of messages that p recieves from other processes about

the proposed values in round rp.
• lastmsgsp contains the recieved Vq for all processes q by process p.

579 15.3 The consensus problem

Every process p executes the following:
procedure propose(ip)

Vp←<⊥�⊥�

 �⊥> {p’s estimate of the proposed values}
Vp�p�← ip;
0p← Vp

Phase 1: 	Execute round rp, 1 ≤ rp ≤ n−1�
for rp ← l to n−1
p sends (rp�0p, p) to all other processes
wait until �∀q : received (rp�0q, q) or q ∈Dp� {query the failure

detector}
msgsp�rp�← 	�rp�0q� q� � received(rp�0q,q)�
0p←<⊥�⊥� � � ��⊥>
for k← 1 to n

if (Vp�k�=⊥ and ∃�rp�0q� q� ∈msgsp�rp� with 0q�k� �=⊥)
then Vp�k�←0q�k�

0p�k�←0q�k�

Phase 2: p sends Vp to all processes
wait until �∀q : received Vq or q ∈Dp� {query the failure detector}
lastmsgsp← 	Vq � received Vq�
for k← 1 to n

if ∃ Vq ∈ lastmsgsp with Vq�k�=⊥
then Vp�k�←⊥

Phase 3: decide on the first non-⊥ element of Vp

Algorithm 15.3 An algorithm to solve the consensus problem using a strong failure detector D ∈ S [3].

An explanation of the algorithm
This algorithm has three phases. Initially, Vp is set to null and Vp�p� contains
the value, ip, proposed by process p.

In the first phase, each process executes n− 1 asynchronous rounds. In
each round, processes broadcast and relay their proposed values. Then, each
process p waits until it receives a round r message from every process that is
not in Dp, before proceeding to round r+1. While p is waiting for a message
from a process q in round r, it is possible that q is added to Dp. If this is the
case, p does not wait for q’s message before it proceeds to round r+1. All
messages recieved by p in round rp are stored in msgsp�rp�. If p’s estimate
of some process k’s proposed value is null and it has recieved a message of
the form �rp�0q� q� such that q’s estimate of process k’s proposed value is
not null, then p updates its estimate of k’s proposed value to q’s estimate of
process k’s proposed value.

580 Failure detectors

In the second phase, a process p broadcasts its estimate of the proposed
values of the processes and waits until it receives the estimate from every
process that is not in Dp. While p is waiting for an estimate from q, it
is possible that q is added to Dp. If this occurs, p stops waiting for q’s
estimate. By the end of the second phase, correct processes agree on a vector
based on the proposed values of all processes. The ith element of this vector
either contains the proposed value of process pi or ⊥. If any of the correct
processes does not agree with the proposed value of a process, say pi, then
the ith element in the vector is set to null and consensus is not reached on
the proposed value. It has been shown that this vector contains the proposed
value of at least one process.

In the third phase, all correct processes decide the first non-trivial compo-
nent of this vector.

This solution for the consensus problem using strong failure detectors, even
one having weak accuracy property, has an excellent fault tolerance capacity;
the solution tolerates any number of process failures.

Also, since a weak failure detectorW is reducible to a strong failure detector
S using the algorithm given above, this algorithm also solves the consensus
using a weak failure detector W .

15.3.3 A solution using eventually strong failure detector ♦S

The previous solution to the consensus problem used failure detectors with
weak accuracy: some correct process is never suspected. We now present a
solution to the consensus problem using a failure detector that satisfies the
eventual weak accuracy: all processes may be erroneously added to the lists
of suspects at one time or another, but there is a time after which a correct
process p is permanently removed from the list of suspects. However, at any
given time t, processes cannot determine if a particular process is correct, or
whether a correct process will never be suspected after time t.

Algorithm 15.4 presents a solution to the consensus using an eventually strong
failure detector D ∈ ♦S. Such failure detectors satisfy strong completeness

Every process p executes the following:
estimatep← ip 	p’s estimate of the decision value�
statep← undecided
rp← 0 	rp denotes the current round number�
tsp← 0 	the round in which estimatep was last updated, initially 0�
cobegin
��Task 1: 	Rotate through coordinators until a decision is reached�
while statep = undecided
rp← rp + l
cp← (rp mod n) + 1 	cp is the current coordinator�

581 15.3 The consensus problem

Phase 1: 	All processes p send estimatep to the current coordinator�
p sends (p, rp, estimatep, tsp) to cp

Phase 2: 	The current coordinator gathers *�n+1�/2, estimates and
proposes a new estimate�
if p= cp then

wait until �for *�n+1�/2, processes q: received(q, rp, estimateq, tsq)
from q�

msgsp[rp]← 	(q, rp, estimateq, tsq)� p received(q, rp, estimateq, tsq)
from q�

t← largest tsq such that (q, rp, estimateq, tsq) ∈msgsp[rp]
estimatep← select one estimateq such that (q, rp, estimateq, t)
∈msgsp[rp]

p sends (p, rp, estimatep) to all processes

Phase 3: 	All processes wait for the new estimate proposed by
the current coordinator�

wait until �received(cp, rp, estimatecp) from cp or cp ∈ Dp� 	Query
the failure detector�

if �received(cp, rp, estimatecp) from cp� then 	p received estimatecp
from cp�

estimatep← estimatecp
tsp← rp
p sends (p, rp, ack) to cp

else
p sends (p, rp, nack) to cp 	p suspects that cp crashed�

Phase 4: 	The current coordinator waits for *�n+1�/2, replies.
If these replies indicate that *�n+1�/2, processes adopted

its estimate, the coordinator broadcatss a request to decide.�
if p= cp then

wait until �for *�n+1�/2, processes q: received(q, rp, ack) or (q, rp,
nack)�

if �for *�n+1�/2, processes q: received(q, rp, ack)�
then p R-broadcasts (p, rp, estimatep, decide)

��Task 2: 	When p receives a decide message, it decides�
when p R-delivers (q, rq, estimateq, decide) for some q
if statep = undecided then
decide on estimateq
statep← decided

coend

Algorithm 15.4 An algorithm to solve the consensus problem using an eventually strong failure
detector D ∈ ♦S [3].

582 Failure detectors

and eventual weak accuracy. The algorithm requires that a majority of the
processes are always up. If f is the maximum number of processes that may
crash at any time, this algorithm requires that f < *n/2,, that is, at least
�n+1�/2 processes are correct at all times.

An explanation of the algorithm
This algorithm proceeds in asynchronous rounds and makes use of the rotating
coordinator paradigm until a decision is reached. All processes know that
during round r, the coordinator is process c = �r mod n�+1. All messages
are either to or from the “current” coordinator. The “current” coordinator tries
to determine a consistent decision value. If the current coordinator is correct
and is not suspected by any surviving process, then it succeeds and broadcasts
the decision value.

The algorithm goes through three asynchronous stages where each stage
can contain several asynchronous rounds. In the first stage, several decision
values are proposed. In second stage, a value gets locked: no other decision
value is possible. In the third and final stage, the processes decide on the
locked value and consensus is reached.

Initially, the state of a process p is “undecided” and its estimate of the
decision value is ip. A timestamp tsp is associated with every process p that
contains the round number when its estimate was last updated.

Each round of task 1 consists of four asynchronous phases. In phase 1,
every process p sends its current estimate of the decision value to the current
coordinator cp. It also sends the round number (tsp) in which it adopted this
estimate.

In phase 2, the coordinator cp gathers *�n+1�/2, such estimates and pro-
poses a new estimate. The current coordinator waits until it receives estimates
from *�n+1�/2, processes. It stores all these estimates in the array msgsp�rp�,
selects one with the largest timestamp, and sends it to all the processes as the
new estimate, estimatep.

In phase 3, all processes wait for the new estimate proposed by the current
coordinator. For each process p, there are two possibilities:

• Process p receives estimatecp from the coordinator cp: in this case, p
updates its timestamp to the current round number and sends an ack to cp
to indicate that it adopted estimatecp as its own estimate.

• Process p does not receive an estimatecp from the coordinator cp and, upon
consulting its failure detector module Dp, suspects that the coordinator cp
has crashed: in this case, p sends a nack to cp.

In phase 4, the coordinator cp waits for *�n+1�/2, replies (acks or nacks).
If all replies are acks, then cp knows that a majority of processes changed

583 15.4 Atomic broadcast

their estimates to estimatecp and thus estimatep is locked and cp broadcasts
a request to decide value estimatep.

In task 2, at any time, if a process receives such a request, it decides
accordingly, i.e., when a process p receives a message of the form (q, rq,
estimateq, decide) from a process q, then p decides on the estimate of q
provided it has not already decided. In this case, process p changes its state
to "decided.”

For correctness of the algorithm, we have to show that the algorithm satis-
fies termination, uniform validity, agreement, and uniform integrity properties.
The readers are referred to the original source for a correctness proof.

This algorithm requires that f < *n/2,, i.e., at least *n/2, processes are
correct, and assumes that processes have a priori knowledge of the list of
potential coordinators.

15.4 Atomic broadcast

Atomic broadcast is one of the fundamental problems in fault-tolerant dis-
tributed computing. It is a powerful paradigm in the design of fault-tolerant
distributed computing systems. Chandra and Toueg [3] showed that the
results of consensus can be applied to solve the problem of atomic broadcast.
Informally, atomic broadcast requires that all correct processes deliver the
same set of messages in the same order (i.e., deliver the same sequence of
messages). Formally, atomic broadcast can be defined as a reliable broadcast
with the total order property.

The total order property If two correct processes p and q deliver two
messages m and m′, then p delivers m before m′ if and only if q delivers m
before m′.

The total order and agreement properties of atomic broadcast ensure that
all correct processes deliver the same sequence of messages.

In asyncronous sytems with crash failures, consensus and atomic broad-
cast are equivalent and this can be shown by reducing one to the another.
Consensus can be reduced to atomic broadcast as follows: In the consensus
problem, to propose a value, a process atomically broadcasts it. To decide
a value, a process picks the value of the first message that it atomically
delivers. The total order property of atomic broadcast ensures that all cor-
rect processes deliver the same first message. Hence, all correct processes
choose the same value and the agreement property of the consensus is sat-
isfied. In the next section, we show how to reduce atomic broadcast to
consensus.

A consequence of this equivalence is that a solution for one can be used
to solve the other. In addition, it implies the following for solving atomic
broadcast in asynchronous systems:

584 Failure detectors

• Since consensus has no deterministic solution in aynchronous systems,
even if we assume that at most one process may fail by crashing, atomic
broadcast cannot be solved by a deterministic algorithm even if at most
one process may fail by crashing.

• As consensus is solvable using randomization or unreliable failure detec-
tors in asynchronous systems, atomic broadcast can be solved using these
techniques.

15.5 A solution to atomic broadcast

Algorithm 15.5 presents a solution (due to Chandra and Toueg [3]) to
atomic broadcast problem using the consensus in asynchronous systems.

This algorithm shows how to transform any consensus algorithm into an
atomic broadcast algorithm in asynchronous systems. This atomic broadcast
algorithm tolerates as many faulty processes as the consensus algorithm does.

This atomic broadcast algorithm uses repeated executions of consensus.
The kth execution of consensus is used to decide on the kth batch of messages
to be atomically delivered. Processes distinguish between these executions by
tagging all the messages pertaining to the kth execution of consensus with
the counter k.

The atomic broadcast algorithm uses R_broadcast(m) and R_deliver(m)
primitives of reliable broadcast. To avoid any confusion, note that the prim-
itives A_broadcast(m) and A_deliver(m) respectively refer to a broadcast
and a delivery in atomic broadcast, while primitives R_broadcast(m) and
R_deliver(m) respectively refer to a broadcast and a delivery associated with
reliable broadcast. propose(k,−) and decide(k,−) are the propose and decide
primitives corresponding to the kth execution of consensus.

An explanation of the algorithm
The algorithm consists of three tasks such that: (i) a task that is enabled is
eventually executed and (ii) a task i can execute concurrently with another
task j provided i �= j.

In task 1, when a process p wants to A-broadcast a message m, it
R_broadcasts m. In task 2, a message m is added to set R_deliveredp when
process p R_delivers it.

In task 3, when a process p A_delivers a message m, it adds m to set
A_deliveredp. A_undeliveredp (defined as R_deliveredp−A_deliveredp)
is the set of messages that p has R_delivered but has not A_delivered yet.
Process p periodically checks whether A_undeliveredp contains messages. If
A_undeliveredp contains messages, p enters its next execution of consensus,
say the kth one, and proposes A_undeliveredp as the next batch of messages
to be A_delivered. Process p then waits for the kth consensus decision, which
is denoted bymsgSetk.msgSetk contains messages that are R_delivered but are

585 15.6 The weakest failure detectors to solve fundamental agreement problems

Every process p executes the following:

Initialization:

R_delivered←∅
A_delivered←∅
k← 0

To execute A_broadcast(m): 	Task 1�
R_broadcast(m)

A_deliver(–) occurs as follows:
when R_deliver(m) 	Task 2�
R_delivered← R_delivered

⋃
{m}

when R_delivered−A_delivered �= ∅ 	Task 3�
k← k+1
A_undelivered← R_delivered−A_delivered
propose(k, A_undelivered)
wait until decide(k, msgSetk)
A_deliverk←msgSetk−A_delivered
atomically deliver all messages in A_deliverk in some determinisic order
A_delivered← A_delivered

⋃
A_deliverk

Algorithm 15.5 A Solution to atomic broadcast using consensus [3].

yet to be A_delivered. Finally, p A_delivers all the messages inmsgSetk except
those already A_delivered by it (i.e, all the messages in the set A_deliverkp =
msgSetk−A_deliveredp) in some deterministic order that was agreed a priori
by all processes.

For a correctness proof of the algorithm, the readers should refer to the
original source.

15.6 The weakest failure detectors to solve fundamental agreement problems

Delporte-Gallet et al. [5] showed that, if we exclude unrealistic failure detec-
tors,1 then in an environment where we do not bound the number of faulty
processes, the class of perfect failure detectors P is the weakest to solve
fundamental agreement problems like uniform consensus, atomic broadcast,
and terminating reliable broadcast (also called the Byzantine Generals).

1 Unrealistic failure detectors are failure detectors that can guess the future and thus cannot be
implemented even in a perfectly synchronous systems.

586 Failure detectors

Delporte-Gallet et al. [5] collapsed the Chandra–Toueg failure detector
hierarchy in this environment, and showed that P is the only useful class
to solve these agreement problems. This explains why most known reliable
distributed systems rely on a group membership service that precisely aims
at emulating a perfect failure detector P, that is, when a process is suspected
due to a timeout, it is excluded from the group. Thus, every suspicion is taken
as being accurate.

Uniform consensus
In consensus, the agreement property allows the bad processes to decide
differently from good processes. This fact can be sometimes undesirable as
it does not prevent a bad process from propagating a different decision in
the system before crashing. In the uniform consensus, the uniform-agreement
property allows no two processes (good or bad) to decide differently, which
enforces the same decision on any process that decides.

Terminating reliable broadcast
Solving the consensus problem is equivalent to solving the atomic broadcast
problem, in any system with reliable channels (i.e., where only a finite num-
ber of messages can be lost). Atomic broadcast entails delivering messages
to processes in a reliable and totally ordered manner. Terminating reliable
broadcast is a stronger form of atomic broadcast. In terminating reliable
broadcast, the processes deliver messages in the same sequence as atomic
broadcast does, but, in addition, processes should deliver a specific nil value
for every message that was broadcast by a faulty process but was not delivered
by any correct process. This problem is a rephrasing of the famous Byzantine
Generals problem in the fail-stop model.

Delporte-Gallet et al. [5] showed that, in environments where the number
of faulty processes is not bounded, uniform consensus is strictly harder than
consensus, and uniform consensus and atomic broadcast are strictly weaker
than terminating reliable broadcast.

In environments where the number of faulty processes is not bounded, the
exact information about failures needed to solve consensus (hence atomic
broadcast) and terminating reliable broadcast, is captured by P. Thus, in the
failure detector hierarchy, P is the only useful class to solve the agreement
problems.

15.6.1 Realistic failure detectors

Note that a failure detector has been defined as any function of the failure
pattern and this function may be able to provide information about the future
failures. Such a failure detector does not factor out synchrony assumptions
of the system and cannot be implemented even in a perfectly synchronous
system.

587 15.6 The weakest failure detectors to solve fundamental agreement problems

Delporte-Gallet et al. [5] restricted the scope of failure detectors as func-
tions of the “past” failure patterns and defined the class of realistic failure
detectors R, which cannot guess the future.

A failure detector is realistic if it cannot guess the future, i.e., there is no
time t and no failure pattern F at which the failure detector can provide exact
information about crashes that will hold after t in F .

Formally, the class of realistic failure detector R is the set of failure
detectors D that satisfy the following property:

∀�F�F ′� ∈ E�∀t ∈ such that ∀t1 ≤ t�F�t1�= F ′�t1��

We have:

∀H ∈D�F�, ∃H ′ ∈ D�F ′� such that ∀t1 ≤ t; ∀pi ∈�: H(pi, t1) = H ′(pi, t1).

That is, a failure detector D is realistic if for any pair of failure patterns F and
F ′ that are similar up to a given time t, whenever D outputs some information
at a time t− k in F , D could output the very same information at t− k in
F ′. Thus, a realistic failure detector cannot distinguish two failure patterns
according to what will happen in the future. In other words, the output of a
realistic failure detector depends only upon the past. For a realistic failure
detector D, for any failure pattern F , the output of D at time t is a function
of F up to time t.

Example We now present two failure detector examples to illustrate the
concept. The first failure detector is realistic and the second is non-realistic.

1. Scribe (C) A scribe, “C,” is a failure detector that sees what is happening
at all processes in real time and outputs a list of processes based on what it
sees. For any failure pattern F , failure detector C outputs, at any time t, the
list of values of F up to time t, denoted by F [t]. For each failure pattern
F , C(F) is the singleton set that contains the failure detector history H ,
such that:

∀t ∈ � ∀pi ∈��H�pi� t�= F�t��

Therefore, C is an example of a realistic failure detector.

2. The Marabout (M) Failure detector M (Marabout) outputs a list of
processes. For any failure pattern F and at any process pi, the output of
the failure detector M is constant and is the list of faulty processes in F .
Thus, M outputs the list of processes that have crashed or will crash in F .
This is an example of an unrealistic failure detector.

To better understand why M is an unrealistic failure detector, consider
the failure patterns F and F ′ such that (i) all processes are correct in F

except p1, which crashes at time t = 10, (ii) all processes are correct in
F ′, and (iii) F and F ′ are same up to time t = 9.

588 Failure detectors

Consider any history H of M(F) and any history H ′ of M(F ′). By the
definition of M:

• the output at any process and at any time of H ′ is , and
• for any history H ∈ M(F), for any process pi, and any time t ∈ �, the

output, H(pi, t), is {p1}.

However, if M was realistic, its failure detector histories H in M(F) and
H ′ in M(F ′) should be such that H ′ and H are identical up to time t = 9.
Thus, M is unrealistic because it is accurate about the future.

15.6.2 The weakest failure detector for consensus

Recall that, in the consensus problem, every process proposes an initial value
and all processes must agree on one of these values such that termination,
agreement, and validity properties are satisfied. Delporte-Gallet et al. [5]
showed that, if the number of faulty processes is not restricted, then P is the
weakest “realistic” failure detector class to solve consensus. Precisely, they
showed that if the number of faulty processes is not restricted, any realistic
failure detector that solves consensus can be tranformed into a failure detector
of class P. We next give an intuitive proof of this lower bound, which includes
the following two parts:

• First, we show that “any consensus algorithm is total,” that is, the causal
chain of any decision event contains a message from every process that
has not crashed at the time of the decision.

We argue that a consensus decision cannot be reached by any process
without having consulted every other correct process. If this is not true, a
situation is possible where, after the decision, all the consulted processes
crash except the one that is not consulted and this process later decides
differently. If all the processes are consulted before every decision, we
call such an algorithm “total”.

• Second part of the proof entails showing that “if a realistic failure detector
D implements a total consensus algorithm, then D can be transformed into
a perfect failure detector P.”

This proof uses the fact that D is realistic and the algorithm is total.
Therefore, for accurate tracking of process failures, no decision is taken
without consulting every correct process. A process is suspected to have
crashed in a sequence of consensus instances, if and only if a decision is
reached and the process was not consulted in the decision.

589 15.7 An implementation of a failure detector

15.6.3 The weakest failure detector for terminating reliable broadcast

Terminating reliable broadcast is a strong form of reliable broadcast in which
processes must deliver a specific value nil if the sender process has crashed;
else, the processes must deliver the message m, broadcast by sender(m).

A general variant of the problem is considered where every process is a
potential initiator of the broadcast. The kth instance of the broadcast initiated
by process pi is denoted by (i, k). Instance (i, *) is defined by the following
properties:

• Validity If a correct process pi broadcasts a message m, then pi eventu-
ally delivers m.

• Agreement If a process delivers a message m, then every correct process
delivers m.

• Integrity If a process delivers a message m and pi is correct, then
sender(m) = pi.

If we do not bound the number of processes that can crash, then among realis-
tic failure detectors, the weakest class to solve terminating reliable broadcast
is P. A sketch of the proof is as follows.

Sufficient condition
Terminating reliable broadcast problem can be solved by any perfect failure
detector, including realistic failure detectors. When instance (k, k′) of the
terminating reliable broadcast is executed, each process waits until it receives
the value from pk or it suspects pk. In the former case, it proposes the received
value to consensus, and in the latter case, it proposes value nil. The value
delivered is the consensus value.

Necessary condition
Suppose A is any terminating reliable broadcast algorithm using a failure
detector D. We can emulate the output of D, a failure detector of class P,
using terminating reliable broadcast algorithm A in a distributed variable
output(P) in the following way: whenever a process pj delivers nil for an
instnace (i, *) of the algorithm, pj adds pi to output(P)j . Any process that
crashes will eventually be permanently added to output(P) at every correct
process. Thus, strong completeness will be ensured. A process pi is added
to output(P)j at some time t only if pi is faulty. Since D is assumed to be
realistic, pi must have crashed by time t.

15.7 An implementation of a failure detector

Now we present an algorithm to implement a failure fetector. The algorithm is
a timeout-based implementation of eventually perfect failure detector D∈♦P

590 Failure detectors

in partially synchronous models. The concept of partial synchrony in a
distributed system lies between the cases of a synchronous system and an
asynchronous system. In partial synchrony, the system is asynchronous ini-
tially but after an unknown time t, the system becomes synchronous. This
assumption captures the fact that the system does not always behave as syn-
chronous. Generally distributed systems are synchronous most of the time,
and then they experience bounded asynchrony periods. We expect from par-
tial synchrony a period of synchrony long enough to terminate the distributed
algorithm.

Each process p maintains a default timeout interval for every other process
in the system. A process sets a timeout based on the worst-case round trip of
a message exchange. To measure the elapsed time, each process p maintains
a local clock, say, by counting the number of steps that it takes.

The following variables are used in the algorithm:

• Outputp (called the suspect list of p) is a set to hold all the suspected
processes by process p. This set is initially empty. This set is local to
process p, which is executing the algorithm.

• q is the loop variable used to identify each process in the system.
• � is a set of all processes in the system.
• �p(q) is the duration of p’s timeout interval for q.

The algorithm is presented in Algorithm 15.6.

Every process p executes the following:
Outputp ← ∅ {Initializes output set to empty}
for all q ∈∏
�p(q)← default time-out interval {Set the timeout interval}
cobegin

��Task 1: repeat periodically
send “p-is-alive” to all

��Task 2: repeat periodically
for all q∈∏
if q �= Outputp and
p did not receive “q-is-alive” during the last �p(q) ticks of p’s clock
Outputp←Outputp ∪ {q} {p times-out on q and starts suspecting

that q has crashed}

��Task 3: when receive “q-is-alive” for some q
If q ∈ Outputp {p knows that it prematurely timed-out on q}
Outputp← Outputp− 	q� {p repents on q}
�p(q)← �p(q) + 1 {p increases its time-out period for q}

coend

Algorithm 15.6 A timeout-based implementation of D ∈ ♦P in the partial synchrony model [3].

591 15.8 An adaptive failure detection protocol

Explanation of the algorithm
• Task 1 Each process p periodically sends a “p-is-alive” message to

all other processes. This is like a heart-beat message that informs other
processes that process p is alive.

• Task 2 If a process p does not receive a “q-is-alive” message from a
process q within �p(q) time units on its clock, then p adds q to its set of
suspects if q is not already in the suspect list of p.

• Task 3 When a process delivers a message from a suspected process,
it corrects its error about the suspected process and increases its timeout
for that process. If process p receives “q-is-alive” message from a process
q that it currently suspects, p knows that its previous timeout on q was
premature – p removes q from its set of suspects and increases its timeout
period for process q, �p(q).

Correctness of the algorithm
The algorithm insures the properties of an eventually perfect failure detector
as discussed below:

• Strong completeness If a process p crashes, it will stop sending “p-
is-alive” messages. Eventually every process that crashes is permanently
detected by every correct process. Therefore, a crashed process will be
suspected by any correct process and no process will revise the judgement.

• Eventual strong accuracy After time t, the system becomes syn-
chronous, i.e., after time t, a message sent by a correct process p to another
process q will be delivered within a bounded time. If p was wrongly
suspected by q, then q will revise its suspicious. Eventually, no correct
process is ever suspected.

15.8 An adaptive failure detection protocol

In this section, we discuss an adaptive failure detection protocol that allows a
process to monitor other processes and eventually detects its crash [8]. The
protocol relies as much as possible on application messages to do this moni-
toring and uses control messages only when no application message is sent by
the monitoring process to the observed process. More precisely, the proposed
protocol allows a process to monitor another process using the application
messages it is exchanging to communicate with the other process, saving fail-
ure detection messages. A failure detector (thus, failure detection messages)
are used when the processes are not communicating. The cost associated with
the implementation of a failure detector incurs only when the failure detec-
tor is used (hence, it is called a lazy failure detector). When the underlying
system satisfies the partial synchrony assumption, the protocol implements
an eventually perfect failure detector D ∈ ♦P. Recall that an eventually

592 Failure detectors

perfect failure detector makes no mistake (i.e., the list of suspects at a pro-
cess includes all crashed processes, but no correct process) after a finite, but
unknown time.

For any failure detector in ♦P, after it becomes perfect, if the average
observed transmission delay is finite and the upper layer application terminates
within a bounded number of steps, then it terminates correctly when run with
the proposed protocol. These properties make the protocol attractive: it is
inexpensive, implementable, and powerful.

The basic failure detection protocol (denoted by FDL) ensures that if a
process queries another process that has crashed, then it will definitely suspect
it. Thus, completeness of the detection is satisfied. The failure detection
protocol is plugged into two particular contexts. The first context is defined
by the properties to be satisfied by the lower layer, namely, partial synchrony.
When the failure detection protocol is plugged in such a system, the protocol
provides a failure detector of the class ♦P. The second context is defined by
a property assumed to be satisfied by the upper layer, i.e., the application and
some weaker properties to be satisfied by the lower level. The first context is
defined by partial synchrony.

The second context defines a property (called ♦P-terminating) that the
application has to satisfy. A failure detector-based application (the failure
detector it uses belongs to ♦P) is ♦P-terminating if it terminates correctly
within at most some l steps after the failure detector becomes perfect. When
run with a ♦P-terminating application, the protocol provides the applica-
tion with the same properties as ♦P if the average observed transmission
delay is finite. Interestingly, unlike the first context, the second context does
not require an upper bound on message transfer delays. These two contexts
show that this failure detection protocol is inexpensive, implementable, and
powerful.

15.8.1 Lazy failure detection protocol (FDL)

Assumptions
The basic system consists of a finite set of processes P = {p1� p2� ���pn}.
Each process pi has a local hardware clock hci that strictly monotonically
increases. The local clocks are not required to be synchronized, and there
is no assumption on their possible drift. The behavior of a process can be
modeled by a finite state automaton. Each step of a process is triggered by a
message. An event is the execution of communication statement by a process.
The history hi of a process pi is the sequence of communication events it
produces.

Every pair of processes is connected by a channel and they com-
municate by sending and receiving messages through channels. Channels
are not required to be FIFO. They are only assumed to be reliable in

593 15.8 An adaptive failure detection protocol

the following sense: they do not create, duplicate, alter or loose messages,
i.e., if a process pj is correct, message sent by a process pi to pj is eventually
received by pj .

Primitives provided
The protocol provides the following primitives to each upper layer application
process pi:

• SEND M to pj: used by pi to send an application message M to pj .
• RECEIVE M: used by pi to receive an application message M .
• QUERY (j): used to know whether pj is suspected to have crashed. This

primitive returns an answer, namely, the value suspect or no_suspect.

At an operational level, the protocol uses three types of messages: “appl,”
“ack,” and “ping.” To send an application message M to pj , a process
pi invokes “sendappl(m) to pj” where the protocol message m includes
M plus some control information. When it receives such a message, pj
systematically acknowledges it by sending back ack(m). When it receives
ack(m), pi computes the round trip delay of the pair appl(m) + ack(m). For
each destination process pj , pi aditionally computes the maximum round trip
delay for the messages that have been acknowledged by pj .

The answer provided by QUERY (j) when it is invoked by the upper layer
depends on the existence of a “pending” message, i.e., a message m such that
appl(m) has been sent to pj but the corresponding ack(m) has not yet been
received by pi: (i) if there is no such message, the answer is no_suspect, but
pi sends a ping message to pj in order to verify its answer, (ii) if there are
such “pending” messages, the answer depends on the maximum round trip
delay already experienced.

The protocol FDL

The protocol manages two arrays of local variables for each process pi: (i)
pending_msg_sti[j] – this set is initially empty and it contains the sending
times of the messages sent by pi to pj , whose acknowledgements have not
yet been received by pi; (ii) max_rtdi[j] – this contains the biggest round
trip time of the messages that pi sent to pj and that have been acknowledged.
Initially, this variable has the value zero. If the value of max_rtdi[j] from
the previous execution is known, then max_rtdi[j] can be initialized to this
value.

A call to SEND M is interpreted as a message reception from the upper
layer. Similarly, RECEIVE M is interpreted as a message sent to the upper
layer. A protocol message m has a type (appl/ack/ping). In addition to a
content (m�content), a message m also carries the local send time (m�st).

594 Failure detectors

More precisely, appl(m) and ping(m) carry their local send time and ack(m)
carries the send time of the appl(m) or ping(m) message it is associated with.

The protocol is described for process pi in Algorithm 15.7 and works as
follows:

when SEND M to pj is invoked:
m�content←M; m�st← hci;
pending_msg_sti[j]← pending_msg_sti[j]

⋃
{m�st}

send appl(m) to pj

when type(m) is recieved from pj:
case
type= appl then transmit M =m�content to upper layer,

{* RECEIVE M *} send ack(m) to pj {* m�st keeps its value *}
type= ack then rt← hci;
max_rtdi[j]←max(max_rtdi[j], rt-m�st);
pending_msg_sti[j]← pending_msg_sti[j] - {m�st}

type= ping then send ack(m) to pj {* m�st keeps its value *}
endcase

when QUERY (j) is invoked:
if pending_msg_sti[j] = ∅ then create a control message m;
m�content← null; m�st← hci
send ping(m) to pj;
pending_msg_sti[j]← {m�st};
return(no_suspect)

else
rt← hci;
if rt-min(pending_msg_sti[j]) > max_rtdi[j]

then return (suspect)
else return (no_suspect)

endif
endif

Algorithm 15.7 Lazy failure detection protocol for process pi [8].

when SEND M to pj is invoked by pi, m�content is initialized to the
application message M and m�st is initialized to the local hardware clock
time. Since the acknowledgement of this message is not yet received by pi,
m�st is added to the set pending_msg_sti[j]. Now, pi sends the application
message appl(m) to pj .

When pi receives a message from pj , it acts as follows: if the message
received by process pi is of type appl, then the message content(m�content)
is transmitted to the upper layer and an acknowledgement message, ack(m)

595 15.8 An adaptive failure detection protocol

is sent to pj . If the message is an acknowledgement, ack, then the maximum
round trip delay time of the messages sent to pj by process pi is updated
to the maximum of the previous and current round trip delay times. Since
this is an acknowledgement message, its sending time is deleted from the
pending time set. When the message of type ping is received by pi, it sends
an acknowledgement message ack(m) to pj .

When QUERY (j) is invoked by the process pi, the following two condi-
tions arise: (i) if pending_msg_sti[j] is empty, then a control message m is
created and is used to ping process pj . A control message is used as there
is no communication between the processes. The ping message send time is
added to the pending time set and a value no_suspect is returned. (ii) When
pending_msg_sti[j] is non-empty, if the time taken to receive an acknowl-
edgement from process pj is greater than the max_rtdi[j], then the process pj
is suspected to be crashed and a value suspect is returned, else no_suspect
is returned.

Properties of FDL

If from some time t, a process pi obtains the answer suspect each time it
invokes QUERY (j), we say that from that time it “permanently suspects pj”
from t.

Completeness property
Let us assume that pi is correct, while pj is faulty (i.e., it has crashed). Then,
FDL ensures that eventually pi permanently suspects pj to have crashed.

The protocol in partially synchronous systems2

If the underlying system is partially synchronous, there is a time t after which
FDL ensures that no correct process is suspected by a correct process.

♦P terminating protocol
If the upper layer protocol is ♦P-terminating, then it terminates with proba-
bility 1 when, instead of using a failure detector of ♦P, it uses FDL.

Message cost
Each appl() or ping() message generates atmost one ack() message. Both
appl() and ping() are due to the application layer: appl() when it sends an
application message and ping() when it invokes QUERY ().

The cost of invocation of QUERY (j) by a process pi after pj has crashed:
According to the current state of pending_msg_sti[j], pi can be forced to send
ping(m) message to pj . But from now, the condition pending_msg_sti[j] �= �
remains permanently true. Consequently, the next invocations of QUERY(j)
do not send messages, and their communication cost is zero.

2 This means that there is a time after which there are upper bounds on messages transfer
delays and associated processing times.

596 Failure detectors

15.9 Exercises

Exercise 15.1 It is well known fact that consensus and atomic broadcast problems
cannot be solved deterministically in asynchronous distributed systems even for a
single process failure. Then how do failure detectors solve these problems?

15.10 Notes on references

The area of failure detectors was initiated by Chandra and Toueg [3] and a large
number of researchers followed it. An excellent short review paper on the topic is by
Raynal [22]. Delporte-Gallet et al. [5] present a realistic failure detector. An adaptive
failure detector can be found in Fetzer et al. [8].

Implementations of failure detectors can be found in [17]– [20]. Garg and
Mitchell [11] describe implementable failure detectors. Gupta et al. [14] discuss scal-
able failure detectors. Hurfin et al. [15, 16] present a family of consensus protocols
based on failure detectors. Schiper [23] discusses early consensus using weak failure
detectors. Chandra et al. [4] discuss the weakest failure detector to solve the con-
sensus. Guerraoui [12] present non-blocking atomic commit using failure detectors.
Delporte-Gallet et al. [6] discuss how to achieve mutual exclusion in asynchronous dis-
tributed systems with failure detectors. Other work on failure detectors can be found in
[1, 2, 7, 10, 12, 13, 21, 24].

References

[1] M. Aguilera, W. Chen, and S. Toueg, Heartbeat: a timeout-free failure detec-
tor for quiescent reliable communication, Workshop on Distributed Algorithms,
1997, 126–140.

[2] M. Aguilera, W. Chen, and S. Toueg, Using the heartbeat failure detector
for quiescent reliable communication and consensus in partitionable networks,
Theoretical Computer Science, 220(1), 1999, 3–30.

[3] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed
systems, Journal of the ACM, 43(2), 1996, 225–267. (First version published in
Proceedings of the 10th ACM Symposium on Principles of Distributed Comput-
ing, 1991.)

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg, The weakest failure detector for
solving consensus, Journal of the ACM, 43(4), 1996, 685–722.

[5] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, A realistic look at failure
detectors, Proceedings IEEE International Conference on Dependable Systems
and Networks (DSN’02), Washington DC, 2002, 345–352.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and P. Kouznetsov, Mutual
exclusion in asynchronous systems with failure detectors, Journal of Parallel
and Distributed Computing, 65(4), 2005, 492–505.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, Failure detection lower
bounds on registers and consensus, Proceedings of the 16th Symposium on
Distributed Computing (DISC’02), 2002, 237–251.

597 References

[8] C. Fetzer, M. Raynal, and F. Tronel, An adaptive failure detection protocol,
Proceedings of the 8th IEEE Pacific Rim International Symposium on Depend-
able Computing (PRDC’01), Seoul, Korea, 2001, 146–153.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed con-
sensus with one faulty process, Journal of the ACM, 32(3), 1985, 374–382.

[10] R. Friedman, A. Mostefaoui, and M. Raynal, A weakest failure detector based
asynchronous consensus protocol for f < n, Information Processing Letters,
90(1), 2004, 39–46.

[11] V. K. Garg and J. R. Mitchell, Implementable Failure Detectors in Asynchronous
Systems, Berlin/Heidelberg, Springer, 1998, 158–170.

[12] R. Guerraoui, Nonblocking atomic commit in asynchronous distributed systems
with failure detectors, Distributed Computing, 15, 2002, 17–25.

[13] R. Guerraoui, Indulgent algorithms, Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing, (PODC’00), Portland, OR, 2000, 289–298.

[14] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, On scalable and efficient dis-
tributed failure detectors, Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing, Newport, RI, August 2001, 170–179.

[15] M. Hurfin, A. Mostefaoui, and M. Raynal, A versatile family of consensus proto-
cols based on Chandra–Toueg’s unreliable failure detectors, IEEE Transactions
on Computers, 51(4), 2002, 395–408.

[16] M. Hurfin and M. Raynal, A simple and fast asynchronous consensus protocol
based on a weak failure detector, Distributed Computing, 12(4), 1999, 209–223.

[17] M. Larrea, S. Arevalo, and A. Fernandez, Efficient algorithms to implement
unreliable failure detectors in partially synchronous systems, Proceedings of
the 13th International Symposium on Distributed Computing, September 27–29,
1999, 34–48.

[18] M. Larrea, A. Fernandez, and S. Arevalo, Optimal implementation of the weakest
failure detector for solving consensus, Proceedings of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS’00), October 16–18, 2000, 52.

[19] G. Le Lann and U. Schmid, How to Implement a Time-Free Perfect Failure
Detector in Partially Synchronous Systems, Technical University of Vienna,
Institute for Technische Informatik, Research Report, Number 28/2005, 2005.

[20] A. Mostefaoui, E. Mourgaya, and M. Raynal, Asynchronous implementation of
failure detectors, Proceedings of the International IEEE Conference on Depend-
able Systems and Networks (DSN’03), San Francisco, CA, 2003, 351–360.

[21] A. Mostefaoui, E. Mourgaya, and M. Raynal, An introduction to oracles for
asynchronous distributed systems, Future Generation Computer Systems, 18(6),
2002, 757–767.

[22] M. Raynal, A short introduction to failure detectors for asynchronous distributed
systems, ACM SIGACT News, 36(1), 2005, 53–70.

[23] A. Schiper, Early consensus in an asynchronous system with a weak failure
detector, Distributed Computing, 10(3), 1997, 149–157.

[24] L. Temal and D. Conan, Failure, connectivity and disconnection detectors,
Proceedings of the 1st French-speaking Conference on Mobility and Ubiquity
Computing, Nice, France, June 1–3, 2004.

C H A P T E R

16 Authentication in distributed
systems

16.1 Introduction

A fundamental concern in building a secure distributed system is the
authentication of local and remote entities in the system [41]. In a distributed
system, the hosts communicate by sending and receiving messages over the
network. Various resources (such as files and printers) distributed among the
hosts are shared across the network in the form of network services provided
by servers. The entities in a distributed system, such as users, clients, servers,
and processes, are collectively referred to as principals. A distributed system
is susceptible to a variety of threats mounted by intruders as well as legitimate
users of the system.

In an environment where a principal can impersonate another principal,
principals must adopt a mutually suspicious attitude toward one another and
authentication becomes an important requirement. Authentication is a process
by which one principal verifies the identity of another principal. For example,
in a client–server system, the server may need to authenticate the client. Like-
wise, the client may want to authenticate the server so that it is assured that it
is talking to the right entity. Authentication is needed for both authorization
and accounting functions. In one-way authentication, only one principal ver-
ifies the identity of the other principal, while in mutual authentication both
communicating principals verify each other’s identity. A user gains access to
a distributed system by logging on to a host in the system. In an open access
environment where hosts are scattered across unrestricted areas, a host can be
arbitrarily compromised, necessitating mutual authentication between the user
and host. In a distributed system, authentication is carried out using a protocol
involving message exchanges and these protocols are termed authentication
protocols [41].

598

599 16.2 Background and definitions

16.2 Background and definitions

In simple terms, authentication is identification plus verification. Identifi-
cation [41] is the procedure whereby an entity claims a certain identity,
while verification is the procedure whereby that claim is checked. Authen-
tication is a process of verifying that the principal’s identity is as claimed.
The correctness of authentication relies heavily on the verification procedure
employed.

A successful identity authentication results in a belief held by the authen-
ticating principal (the verifier) that the authenticated principal (the claimant)
possesses the claimed identity. The other types of authentication include mes-
sage origin authentication and message content authentication. In this chapter,
we restrict our attention to identity authentication only.

Authentication in distributed systems is carried out using protocols. A
protocol is a precisely defined sequence of communication and computa-
tion steps. A communication step transfers messages from one principal
(the sender) to another (the receiver), while a computation step updates a
principal’s internal state. Two distinct states can be identified upon the termi-
nation of the protocol: one signifying successful authentication and the other
failure.

Although the goal of any authentication is to verify the claimed identity of a
principal, specific success and failure states are highly protocol dependent. For
example, the success of an authentication during the connection establishment
phase of a communication protocol is usually indicated by the distribution of
a fresh session key between two mutually authenticated peer processes. On
the other hand, in a user login authentication, success usually results in the
creation of a login process on behalf of the user.

16.2.1 Basis of authentication

Authentication generally is based on the possession of some secret informa-
tion, like password, known only to the entities participating in the authen-
tication. When an entity wants to authenticate another entity, the former
will verify if the latter possesses the knowledge of the secret. If the entity
demonstrates the knowledge of the right secret information, the authentica-
tion succeeds, else authentication fails. Examples of secret information for
the purpose of authentication include the following: something known (e.g.,
a shared key), something possessed (e.g., a smartcard), or something inher-
ent (e.g., biometrics). However, the verification process should not allow an
attacker to reuse an authentication exchange to impersonate an entity. The
verification process must provide the verifier with enough confidence that an
attacker is not trying to impersonate an entity.

600 Authentication in distributed systems

16.2.2 Types of principals

In a distributed system, the entities that require identification are hosts, users,
and processes [26]. They thus are the principals involved in an authentication.

• Hosts These are addressable entities at the network level. A host is
usually identified by its name (for example, a fully qualified domain name)
or its network address (for example, an IP address).

• Users These entities are ultimately responsible for all system activities.
Users initiate and are accountable for all system activities. Most access
control and accounting functions are based on users. Typical users include
humans, as well as accounts maintained in the user database. Users are
considered to be outside the system boundary.

• Processes The system creates processes within the system boundary to
represent users. A process requests and consumes resources on the behalf
of its user.

Processes fall into two classes: client and server. Client processes are con-
sumers who obtain services from server processes, who are service providers.
A particular process can act as both a client and a server.

16.2.3 A simple classification of authentication protocols

Authentication protocols can be categorized based on the following crite-
ria [28]: type of cryptography (symmetric vs. asymmetric), reciprocity of
authentication (mutual vs. one-way), key exchange, real-time involvement of
a third party (on-line vs. off-line), nature of trust required from a third party,
nature of security guarantees, and storage of secrets.

In this chapter, we classify authentication protocols [41] primarily based on
the cryptographic technique used. There are two basic types of cryptographic
techniques: symmetric (“private key”) and asymmetric (“public key”). Sym-
metric cryptography uses a single private key to both encrypt and decrypt data.
Any party that has the key can use it to encrypt and decrypt data. Symmet-
ric cryptography algorithms are typically fast and are suitable for processing
large streams of data. Asymmetric cryptography, also called public-key cryp-
tography, uses a secret key that must be kept from unauthorized users and a
public key that is made public. Both the public key and the private key are
mathematically linked: data encrypted with the public key can be decrypted
only by the corresponding private key, and data signed with the private key
can only be verified with the corresponding public key. Both keys are unique
to a communication session.

16.2.4 Notation

We specify authentication protocols [39] with precise syntax and semantics
and define a system model that characterizes protocol executions. We assume

601 16.2 Background and definitions

a given set of constant symbols, which denote the names of principals, nonces,
and keys. In symmetric key cryptography, let 	X�k denote the encryption of
X using a symmetric key k and 	Y�k−1 denote the decryption of Y using a
symmetric key k. In asymmetric key cryptography, for a principal x, Kx and
K−1
x denote its public and private keys, respectively.
We present authentication protocols using the following format. A commu-

nication step whereby P sends a message M to Q is represented as P→ Q:
M , whereas a computation step of P is written as P: …, where “…” is a
specification of the computation step.

For example, a typical login protocol between a host H and a user U is
given in Algorithm 16.1 (f denotes a one-way function, that is, given y, it is
computationally infeasible to find an x such that f�x�= y).

U →H : U

H→ U : “Please enter password”
U →H : p

H : compute y = f�p�
: Retrieve user record (U , f (passwordU)) from the database
: If y = f (passwordU), then accept; otherwise reject

Algorithm 16.1 A login protocol.

Since authentication protocols for distributed systems directly use cryp-
tosystems, their basic design principles also follow the type of cryptosystem
used. Specifically, we identify two basic categories of authentication: one
based on symmetric cryptosystems and other on asymmetric cryptosystems.
Protocols presented in this chapter are intended to illustrate basic design
principles and a realistic protocol is certainly a refinement of these basic
protocols.

16.2.5 Design principles for cryptographic protocols

Abadi and Needham set out a set of principles [2] to denote prudent
engineering practices for cryptographic protocols design [2,4]. They are not
meant to apply to every protocol in every instance, but they do provide rules
of thumb that should be considered when designing a cryptographic protocol.

We next present these principles and briefly comment on them [2, 4].

• Principle 1 Every message should say what it means: the interpretation
of the message should depend only on its content. It should be possible
to write down a straightforward English sentence describing the content –
though if there is a suitable formalism available, which is good, too.

• Principle 2 The conditions for a message to be acted upon should be
clearly set out so that someone reviewing the design may see whether they
are acceptable or not.

602 Authentication in distributed systems

• Principle 3 If the identity of a principal is essential to the meaning of
a message, it is prudent to mention the principal’s name explicitly in the
message.

• Principle 4 Be clear as to why encryption is being done. Encryption is
not wholly cheap, and not asking precisely why it is being done can lead to
redundancy. Encryption is not synonymous with security, and its improper
use can lead to errors.

• Principle 5 When a principal signs material that has already been
encrypted, it should not be inferred that the principal knows the content
of the message. On the other hand, it is proper to infer that the principal
that signs a message and then encrypts it for privacy knows the content of
the message.

• Principle 6 Be clear about what properties you are assuming about
nonces. What may do for ensuring temporal succession may not do for
ensuring association – and perhaps association is best established by other
means.

• Principle 7 The use of a predictable quantity (such as the value of a
counter) can serve in guaranteeing newness, through a challenge–response
exchange. But if a predictable quantity is to be effective, it should be
protected so that an intruder cannot simulate a challenge and later replay
a response.

• Principle 8 If timestamps are used as freshness guarantees by refer-
ence to absolute time, then the difference between local clocks at various
machines must be much less than the allowable age of a message deemed
to be valid. Furthermore, the time maintenance mechanism everywhere
becomes part of the trusted computing base.

• Principle 9 A key may have been used recently, for example, to encrypt
a nonce, yet be quite old, and possibly compromised. Recent use does not
make the key look any better than it would otherwise.

• Principle 10 If an encoding is used to present the meaning of a message,
then it should be possible to tell which encoding is being used. In the
common case where the encoding is protocol dependent, it should be
possible to deduce that the message belongs to this protocol, and in fact
to a particular run of the protocol, and to know its number in the protocol.

• Principle 11 The protocol designer should know which trust relations his
protocol depends on, and why the dependence is necessary. The reasons
for particular trust relations being acceptable should be explicit though
they will be founded on judgment and policy rather than on logic.

16.3 Protocols based on symmetric cryptosystems

In a symmetric cryptosystem, knowing the shared key lets a principal encrypt
and decrypt arbitrary messages [41]. Without such knowledge, a principal

603 16.3 Protocols based on symmetric cryptosystems

cannot create the encrypted version of a message, or decrypt an encrypted
message. Hence, authentication protocols can be designed using the following
principle:

If a principal can correctly encrypt a message using a key that the verifier
believes is known only to a principal with the claimed identity (outside of the
verifier), this act constitutes sufficient proof of identity.

Thus, the principle embodies the fact that a principal’s knowledge is indirectly
demonstrated through its ability to encrypt or decrypt.

16.3.1 Basic protocol

Using the above principle, we immediately obtain the basic protocol (shown
in Algorithm 16.2) where principal P is authenticating itself to principal Q.
“k” denotes a secret key that is shared between only P and Q [41].

P : Create a message m = “I am P.”
: Compute m′ = {m, Q}k

P→Q : m, m′

Q : verify 	m�Q�k =m′
: if equal then accept; otherwise the authentication fails

Algorithm 16.2 Basic protocol.

In this protocol, the principal P prepares a message m, and encrypts the
message and identity of Q using the symmetric key k and sends to Q both
the plain text and encrypted messages. Principal Q, on receiving the message,
encrypts the plain text message and its identity to get the encrypted message.
If it is equal to the encrypted message sent by P, then Q has authenticated P,
else the authentication fails.

Weaknesses
Clearly, this method is sound only if the underlying cryptosystem is strong
(one cannot create the encrypted version of a message without knowing the
key) and the key is secret (it is shared only between the real principal and
the verifier). Note that this protocol performs only one-way authentication;
mutual authentication can be achieved by reversing the roles of P and Q.

One major weakness of the protocol is its vulnerability to replays. More
precisely, an adversary could masquerade as P by recording the message m,
m′ and later replaying it to Q. As mentioned, replay attacks can be countered
by using nonces or timestamps. Since both plain text message m and its
encrypted version m′ are sent together by P to Q, this method is vulnerable
to known plain text attacks. Thus the cryptosystem must be able to withstand
known plain text attacks.

604 Authentication in distributed systems

16.3.2 Modified protocol with nonce

To prevent replay attacks, we modify the protocol by adding a challenge-and-
response step using a nonce (shown in Algorithm 16.3). A nonce is a large
random or pseudo-random number that is drawn from a large space so that it
is difficult to guess by an intruder. This property of a nonce helps ensure that
old communications cannot be reused in replay attacks.

P→Q : “I am P.”
Q : generate nonce n

Q→ P : n

P : compute m′ = 	P�Q�n�k
P→Q : m′

Q : verify 	P�Q�n�k =m′
: if equal then accept; otherwise the authentication fails

Algorithm 16.3 Challenge-and-response protocol using a nonce.

In the modified version of the protocol [41], the principal P wants to
authenticate itself to Q. Q generates a nonce and sends this nonce to P. P
then encrypts Q, the nonce, and its own identity with the secret key and sends
this encrypted message to Q. Q verifies this encrypted message by encrypting
its identity, P’s identity, and the nonce with the key k. Q authenticates P
if the encrypted information equals that sent by P, else the authentication
fails.

Replay is foiled by the freshness of nonce n and because n is drawn from
a large space. Therefore, it is highly unlikely that the nonce n generated
by Q in the current session is the same as one used in a previous session.
Thus an attacker cannot use a message of type m′ from a previous session
to mount a replay attack. In addition, even if an eavesdropper has monitored
all previous authentication conversations between P and Q, it is impossible
to produce the message m because it does not know the secret key k. The
challenge-and-response step can be repeated any number of times until the
desired level of confidence is reached by Q.

Weaknesses
This protocol has scalability problems because each principal must store the
secret key for every other principal it would ever want to authenticate [41].
This presents major initialization (the predistribution of secret keys) and
storage problems. Moreover, the compromise of one principal can potentially
compromise the entire system. Note that this protocol is also vulnerable to
known plain text attacks.

605 16.3 Protocols based on symmetric cryptosystems

16.3.3 Wide-mouth frog protocol

The above raised problems can be significantly reduced by postulating a
centralized server S. The wide-mouth frog protocol [28] uses a similar
approach where a principal A authenticates itself to principal B using a Server
S. The protocol works as follows:

A→ S � A� 	TA�KAB�B�KAS

S→ B � 	TS�KAB�A�KBS

A decides that it wants to set up communication with B. A sends to S its
identity and a packet encrypted with the key, KAS , it shares with S. The
packet contains the current timestamp, A’s desired communication partner,
and a randomly generated key KAB, for communication between A and B.
S decrypts the packet to obtain KAB and then forwards this key to B in an
encrypted packet that also contains the current timestamp and A’s identity. B
decrypts this message with the key it shares with S and retrieves the identity
of the other party and the key, KAB. Any principal receiving a message with
an out-of-date timestamp during this protocol discards it to prevent replay
attacks. This protocol achieve two objectives: first, it securely establishes a
secret key between two principals A and B; and second, A authenticates itself
to B with the help of the server S. This is because only the server S could
have constructed the message 	TS�KAB�A�KBS in step 2 only after receiving a
message from A in step 1.

A weakness of the protocol is that a global clock is required and the
protocol will fail if the server S is compromised.

16.3.4 A protocol based on an authentication server

Another approach to solve the problem is by using a centralized authentication
server S that shares a secret key KXS with every principal X in the system [41].
The basic authentication protocol is shown in Algorithm 16.4.

In the protocol using an authentication server, the principal P sends its
identity to Q. Q generates a nonce and sends this nonce to P. P then
encrypts P, Q and n with the key KPS and sends this encrypted value x to Q.
Q then encrypts P, Q and x with KQS and sends this encrypted value y to
authentication server S. Since S knows both the secret keys, it decrypts y with
KQS , recovers x, decrypts x with KPS and recovers P, Q and n. Server S then
encrypts P, Q and n with key KQS and sends the encrypted value m to Q.
Q then computes P, Q and nKQS and verifies if this value is equal to the value
received from S. If both values are equal, then authentication succeeds, else
it fails.

Thus Q’s verification step is preceded by a key-translation step by S. Since
P and Q do not share a secret key, the authentication server S does the

606 Authentication in distributed systems

P→Q : “I am P.”
Q : generate nonce n

Q→ P : n

P : compute x = 	P�Q�n�KPS
P→Q : x

Q : compute y = 	P�Q�x�KQS
Q→ A : y

A : recover P, Q, x from y by decrypting y with KQS

: recover P, Q, n from y by decrypting x with KPS

: compute m= 	P�Q�n�KQS
A→Q : m

Q : independently compute 	P�Q�n�KQS and verify 	P�Q�n�KQS =m
: if equal, then accept; otherwise, the authentication fails

Algorithm 16.4 A protocol using an authentication server.

key translation because it shares a secret key with both principals P and Q.
Q sends the message (encrypted with KPS that it received from P) to S. S
does the key translation by decrypting it with KPS , encrypting P, Q and n

with KQS and sending the message encrypted with KQS to Q. This is termed
as the key-translation step [41].

The basis of this protocol is a challenge for Q to P if P can encrypt
the nonce n with the secret key that it shares with server S. The protocol
correctness rests on S’s trustworthiness – that S will properly decrypt using
P’s key and reencrypt using Q’s key. The initialization and storage problems
are greatly alleviated because each principal needs to keep only one key. The
risk of compromise is mostly shifted to S, whose security can be guaranteed
by various measures, such as encrypting stored keys using a master key and
putting S in a physically secure room.

16.3.5 One-time password scheme

In the one-time password scheme [24], a password can only be used once.
A one-time password system generates a list of passwords and secretly com-
municates this list to the client and the server. The client uses the passwords
in the list to log on to a server. Once a password has been used, it cannot
be used again. To log on again, the client must use the next password in
the list. The server always expects the next password in the list at the next
logon. Therefore, even if a password is disclosed, the possibility of replay
attacks is eliminated because the system expects the next password in the
subsequent logon. This protocol is best suited for distributed systems where
authentication mainly takes place between client and server.

607 16.3 Protocols based on symmetric cryptosystems

Protocol description
The protocol consists of two steps:

1. The Registration stage, where the client registers with the server and gets
a list of passwords.

2. The Login and authentication stage, where the server authenticates the
client.

Step 1: registration
1. Every client shares a pre-shared secret key, represented as SEED with the

server. It is a large random number secretly communicated by the server
to the client.

2. The server generates a session key (SK) with the help of a random num-
ber D and a timestamp T , i.e., SK = D��T . The server computes and
sends SEED⊕SK to the client. When the client receives SEED⊕SK, it
computes the value of SK as follows:

SK �= SEED⊕ �SEED⊕SK��

The client then generates an initial key IK with the help of a randomly
generated secret key K,

IK �= K⊕SEED�

The client then decides the number of times (N) it wants to login to the
server and sends the generated initial key (IK) to the server. To do this,
the client performs IK⊕ SK and N ⊕ SK and sends these values to the
server.

3. When the server receives IK⊕SK and N⊕SK, it retrieves IK and N from
the received values and computes

p0 �=HN�IK� for the user, where H is a hash function�

and performs p0 �= p0⊕SK, stores p0 and N in its database, and sends
p0⊕SK back to the client as a response. It also computes p1 and p2 as
follows:

p1 �=HN−1�IK�� and

p2 �=HN−2�IK��

The server then sends p0⊕SK, p1⊕SK, and p2⊕SK to the client
4. On receiving p0⊕SK, p1⊕SK, and p2⊕SK from the server, the client

performs the XOR operation on SK and p0⊕SK, p1⊕SK, and p2⊕SK
separately, to obtain p0, p1, and p2, respectively. The client hashes IK for
N times and then compares it with p0. If both values are equal, the client

608 Authentication in distributed systems

is sure of the authenticity of the server and that it is not communicating
with an intruder.

It then saves the values of p0, p1, p2, and N for future communication
with the server. This marks the end of the registration stage.

The above steps are described in 16.5.
If N is 50, the user can log in to the server 50 times and p0 = H50(IK).

After 50 logins, the user must repeat the steps in the registration.

Server→ Client : SEED

Server→ Client : SEED⊕SK
Client→ Server : IK⊕SK and N ⊕SK
Server→ Client : p0⊕SK, p1⊕SK, p2⊕SK
Algorithm 16.5 The registration stage.

Step 2: Login and authentication
Once the client is registered, every time it needs to access a service provided
by the server, the client needs to get authenticated. Authentication requires
the following steps:

1. If the client is logging in for the tth time, the server generates a new
session key (SK):

SK �=D��T� where T is the timestamp and D is a random number�

The server also computes pt−1 = HC+1�IK� where C = N − t. It then
performs pt−1⊕SK and SK⊕SEED (SEED is stored in the database) and
sends these values to the client.

2. On the receipt of the values from the server, the client computes SK as
follows:

SK �= pt−1⊕ �pt−1⊕SK��

Then the client checks the timestamp T of the session key SK. If the
timestamp is valid, the client computes SEED �= SK⊕ �SK⊕SEED� and
checks the value of SEED with the one saved to make sure of the server’s
identity. If they match, the server’s authenticity is verified.

3. Now the client proves its identity to the server as follows: it sends SK⊕pt
to the server. The client uses the pt saved in the previous login in this
EX-OR operation.

The server calculates pt from SK⊕pt received from the client as follows:

pt �= SK⊕ �SK⊕pt��

609 16.3 Protocols based on symmetric cryptosystems

From the received pt value, it calculates pt−1 �= H�pt� and compares it
with pt−1 obtained in step 1. If both match, the identity of the client is
verified.

Finally, the server updates N with C, where C = N − t, and computes
pt+1 using p0 and sends pt+1⊕SK to the client.

4. The client computes value of pt+1 as pt+1=SK⊕ �SK⊕pt+1� and stores it
for its next login.
For example, if t= 10 and N �= 100, then pt−1 �=H91�IK��pt �=H90�IK�,
and pt+1 �=H89�IK�.

The above steps are described in Algorithm 16.6.

Server→ Client : pt−1⊕SK�SEED⊕SK
Client→ Server : pt⊕SK
Server→ Client : pt+1⊕SK
Algorithm 16.6 The login and authentication stage.

In this protocol, the client and the server communicate with each other by
passing parameters that are encrypted, i.e., exclusive ORed with either SK
or SEED. SK is the session key of a particular session and SEED is the
pre-shared secret key. Since these two values are known only to the client
and server, eavesdropping of the connection does not have any effect. Since
SK is obtained by using the timestamp, replay of previous session does not
work and thus the scheme is robust against replay attacks. The use of the
hash function makes dictionary attacks impossible.

Weaknesses
One-time passwords that are not time-synchronized are vulnerable to phishing.
Phishing usually occurs when a fraudster sends an email that contains a
link to a fraudulent website where the users are asked to provide personal
account information. The email and website are usually disguised to appear
to recipients as though they are from a bank or another well-known brand.
In late 2005, customers of a Swedish bank were tricked into giving up their
passwords.

16.3.6 Otway–Rees protocol

The Otway–Rees protocol [28] is a server-based protocol that provides
authenticated key transport only in four messages without requiring times-
tamps. It provides key authentication and key freshness assurances. It does
not, however, provide entity authentication or key confirmation.

The notations used in the protocol are as follows: KAB is a session key that
the sever S generates for users A and B to share. NA and NB are nonces chosen

610 Authentication in distributed systems

by A and B, respectively, to allow verification of key freshness (thereby
detecting replay attacks). M is another nonce chosen by A which serves as a
transaction identifier. S shares symmetric keys KAS and KBS with A and B,
respectively. This protocol is shown in Algorithm 16.7.

(1) A→ B : M , A, B, �NA�M�A�B�KAS
(2) B→ S : M , A, B, �NA�M�A�B�KAS , �NB�M�A�B�KBS
(3) S→ B : �NA�KAB�KAS , �NB�KAB�KBS
(4) B→ A : M , �NA�KAB�KAS

Algorithm 16.7 Otway–Rees protocol.

In step 1, user A encrypts two nonces, NA and M , and the identities of itself
and the identity of the party B to whom it wishes to communicate, with the key
KAS and sends this to B along with M , A, and B in plain text. On the receipt
of this message, user B creates its own nonce NB and an analogous encrypted
message, �NB�M�A�B�KBS , in step 2 and sends this along with A’s message
to server S. When the server S receives this message, it uses the clear (plain)
text identifiers in the message to retrieve KAS and KBS , then verifies if the
clear text �M�A�B� matches that recovered upon decrypting both parts of the
message in step 2. Verifying M in particular confirms that the encrypted parts
are linked. If so, S decides on a new key KAB for communication between A
and B, prepares two distinct messages �NA�M�A�B�KAS and �NB�M�A�B�KBS
for A and B, respectively, and sends both to B in step 3. When B receives
this message, it decrypts the second part of the message received in step 3
and checks if NB matches that sent in step 2. If so, it sends the first part to
A in step 4. When A receives this message, it decrypts message received in
step 4 and checks if NA matches that sent in step 1.

If all checks pass, A and B are assured that KAB is fresh (due to their
respective nonces), and trust that �NA�KAB�KAS and �NB�KAB�KBS have been
constructed by the server S. A knows that B is active as verification of step
4 implies that B sent the message in step 2 recently; B, however, has no
assurance that A is active until subsequent use of KAB by A, since B cannot
determine if the message in step 1 is fresh.

Weaknesses
One problem with this protocol is that a malicious intruder can arrange for A
and B to end up with different keys as follows: A and B execute the first three
messages; at this point, B has received the key KAB. The intruder intercepts
the fourth message. He/she replays step 2, which results in S generating a new
key K′AB and sending it to B in step 3. The intruder intercepts this message,
too, but sends to A the part of it that B would have sent to A. So A has finally
received the expected fourth message, but with K′AB instead of KAB. Another

611 16.3 Protocols based on symmetric cryptosystems

problem is that, although the server tells B that A used a nonce, B doesn’t
know if this was a replay of an old message.

16.3.7 Kerberos authentication service

Kerberos [20, 30, 32] primarily addresses client–server authentication using
a symmetric cryptosystem. Kerberos is an authentication system designed
for MIT’s Project Athena [1]. The goal of Project Athena was to create an
educational computing environment based on high-performance workstations,
high-speed networking, and servers of various types. Researchers envisioned
a large-scale (10 000 workstations to 1000 servers) open network computing
environment in which individual workstations could be privately owned and
operated. Therefore, a workstation cannot be trusted to identify its users cor-
rectly to network services. Kerberos is not a complete authentication service
required for secure distributed computing in general; it only addresses issues
of client–server interactions.

In this section, we describe the Kerberos authentication protocol. Kerberos’
design is based on the use of a symmetric cryptosystem together with trusted
third-party authentication servers. The basic components include authentica-
tion servers (Kerberos servers) and ticket-granting servers (TGSs).

Initial registration
Every client/user registers with the Kerberos server by providing its user
i.d., U , and a password, passwordu. The Kerberos server computes a key
ku = f�passwordu� using a one-way function f and stores this key in a
database. Note that ku is a secret key that depends on the password of the
user and is shared by client U and the Kerberos server only.

The authentication protocol
Authentication in Kerberos proceeds in three steps:

1. Initial authentication at login The Kerberos server authenticates user
login at a host and installs a ticket for the ticket-granting server, TGS, at
the login host.

2. Obtain a ticket for the server Using the ticket for the ticket-granting
server, the client requests the ticket-granting server, TGS, for a ticket for
the server.

3. Requesting service from the server The client uses the server ticket
obtained from the TGS to request services from the server.

These steps are shown in Figure 16.1. Next, we explain these steps in detail.

Step 1: Initial authentication at login
Initial authentication at login uses a Kerberos server and is shown in
Algorithm 16.8. Let U be a user who is attempting to log into a host H .

612 Authentication in distributed systems

Request a ticket

for the server

Provide server

authenticator

Ticket granting
server (TGS)

Authentication
system (AS)

Ticket and sessio
n key

Ticket and session key

Request service

Request f
or

ticket-granting tic
ket

User/workstation

Database

Kerberos

Server

Figure 16.1 Steps in
authentication in Kerberos.

(1) U →H : U

(2) H→ Kerberos : U , TGS
(3) Kerberos : retrieve kU and kTGS from database

: generate new session key k
: create a ticket-granting ticket
: tickTGS = 	U�TGS�k�T�L�KTGS

(4) Kerberos→H : 	TGS�k�T�L� tickTGS�kU
(5) H→ U : “Password?”
(6) U →H : password
(7) H : compute k′U = f�password�

: recover k, tickTGS by decrypting
	TGS�k�T�L� tickTGS�kU with k′U

: if decryption fails, abort login, otherwise,
retain tickTGS and k

: erase password from the memory

Algorithm 16.8 Initial Authentication at Login.

In step 1, user U initiates login by entering his/her username. In step 2,
the login host H forwards the login request and the i.d. of the TGS to a
Kerberos server. In step 3, the Kerberos server retrieves kU and kTGS from
the database, generates a new session key k and creates a ticket-granting

613 16.3 Protocols based on symmetric cryptosystems

ticket tickTGS = 	U�TGS�k�T�L�KTGS , where U is the identity of the user
who wishes to communicate with the server, TGS is the identity of the ticket-
granting server, k is the session key, T is a timestamp, L is the ticket’s lifetime
and kTGS is the key shared between the TGS and the Kerberos server. In step
4, the Kerberos server encrypts the ticket tickTGS , the identity of the TGS,
the session key, the timestamp, and lifetime with kU and sends it to host H .

In step 5, on receiving this message from the Kerberos server, host H
prompts the user for his/her password, which the user supplies in step 6. In
step 7, host H computes the key, K′U , corresponding to the password using
the one-way function f . The host recovers the session key k by decrypting
	TGS�k�T�L� tickTGS�kU with k′U . If the password supplied by the user is not
the valid password of U�k′U would not be identical to kU , and the authenti-
cation will fail. Thus, the user is authenticated if the host is able to decrypt
the message for the Kerberos server. Upon successful authentication, the host
saves the new session key k and the ticket-granting ticket, tickTGS , for further
use and erases the user password from the memory. The ticket-granting ticket
is used to request server tickets from the TGS. Note that tickTGS is encrypted
with kTGS , the key shared between the TGS and the Kerberos server.

Step 2: Obtain a ticket for the server
The client executes the steps shown in Algorithm 16.9 to request a ticket for
the server from the TGS. Basically, the client sends the ticket tickTGS to the
TGS, requesting a ticket for the server S. (T1 and T2 are timestamps.)

Because a ticket is susceptible to interception and replay, it does not by
itself constitute sufficient proof of identity. For authentication, a principal
presenting a ticket must also demonstrate the knowledge of the session key k
named in the ticket. An authenticator, 	C�T�k, where C is the client identity, T
is the timestamp, and k is the session key, provides the demonstration. Unlike
the ticket, which is reusable, an authenticator can be used only once and has a
very short lifetime. The ticket proves the client’s identity and also distributes
the key; however, it is susceptible to replay attacks. The authenticator is used
to counter this attack. Because an authenticator can be used only once and
has a very short lifetime, the threat of an opponent stealing the ticket for a
replay attack is countered.

(1) C→ TGS : S� tickTGS� 	C�T1�k
(2) TGS : recover k from tickTGS by decrypting with kTGS ,

: recover T1 from 	C�T1�k by decrypting with k
: check timelines of T1 with respect to local clock
: generate new session key k
: Create server ticket tickS = 	C�S� k�T�L�kS

(3) TGS→ C : 	S� k�T�L� tickS�k
(4) C : recover k, tickS by decrypting the message with k

Algorithm 16.9 Obtain a ticket for the server.

614 Authentication in distributed systems

In step 1, to request a ticket for server S, client C presents its ticket-granting
ticket tickTGS along with the authenticator to the TGS. C’s knowledge of k
is demonstrated using the authenticator 	C�T1�k. In step 2, the TGS decrypts
tickTGS with kTGS to recover k, verifies the authenticity of the authenticator by
decrypting 	C�T1�k with k, and checks the timeliness of T1 in the authenticator
and T in tickTGS . If both decryptions in step 2 are successful and T1 is timely,
the TGS is convinced of the authenticity of the ticket, and creates a ticket
tickS = 	C�S� k�T�LkS � for server S, where C is the identity of the client, S is
the server identity, k is the new session key, T is the timestamp of the TGS,
L is the lifetime of the ticket, and kS is the key shared between the TGS and
server S. This ticket is returned to C in step 3. In step 4, C recovers k and
tickS from 	S� k�T�L� tickS�k by decrypting it with k.

Step 3: requesting service from the server
Client C sends the ticket and the authenticator to server. The server decrypts
tickS and recovers k. It then uses k to decrypt the authenticator 	C�T2�k and
checks if the timestamp is current and the client identifier matches with that
in the tickS before granting service to the client. If mutual authentication is
required, the server returns an authenticator (Algorithm 16.10).

(1) C→ S : tickS� 	C�T2�k
(2) S : recover k from tickS by decrypting it with kS

: recover T2 from 	C�T2�k by decrypting with k
: check timeliness of T2 with respect to the local clock

(3) S→ C : 	T2+1�k

Algorithm 16.10 Requesting service from the server.

In step 1, C presents S with tickS and a new authenticator. In step 2, S
recovers k from tickS by decrypting it with kS and uses k obtained to decrypt
	C�T2�k. If both decryptions are successful and T2 is timely, then S is assured
of the authenticity of the Client. Finally, step 3 assures C of the server’s
identity.

Weaknesses
Kerberos [5, 21] makes no provisions for host security; it assumes that it is
running on trusted hosts with an untrusted network. If host security is com-
promised, then Kerberos is compromised as well. Kerberos uses a principal’s
password (encryption key) as the fundamental proof of identity. If a user’s
Kerberos password is stolen by an attacker, then the attacker can impersonate
that user with impunity. Since the Kerberos’ password database holds all the
passwords for all of the principals in a realm, if the host security on the

615 16.4 Protocols based on asymmetric cryptosystems

database is compromised, then the entire realm is compromised. In Kerberos
version 4, authenticators are valid for a particular time. If an attacker sniffs
the network for authenticators, they have a small time window in which they
can re-use it and gain access to the same service. Kerberos version 5 intro-
duced a replay cache that prevents any authenticator from being used more
than once. Since anybody can request a ticket-granting ticket for any user,
and that ticket is encrypted with the user’s secret key (password), it is simple
to perform an offline attack on this ticket by trying to decrypt it, say using the
dictionary attack. Kerberos version 5 introduced pre-authentication to solve
this problem.

16.4 Protocols based on asymmetric cryptosystems

In an asymmetric cryptosystem [41], each principal P publishes its public
key kp and keeps secret its private key k−1

p . Thus only P can generate 	m�k−1
p

for any message m by signing it using k−1
p . The signed message 	m�k−1

p
can

be verified by any principal with the knowledge of kp (assuming a commuta-
tive asymmetric cryptosystem). Asymmetric authentication protocols can be
constructed using a design principle called ASYM, which is as follows:

If a principal can correctly sign a message using the private key of the claimed
identity, this act constitutes a sufficient proof of identity.

This ASYM principle follows the proof-by-knowledge principle for authen-
tication, in that a principal’s knowledge is indirectly demonstrated through
its signing capability.

16.4.1 The basic protocol

Using ASYM, we obtain a basic protocol as shown in Algorithm 16.11 [41].

P→Q : “I am P.”
Q : generate nonce n

Q→ P : n

P : compute m= 	P�Q�n�k−1
p

P→Q : m

Q : verify �P�Q�n�= 	m�kp
: if equal, then accept; otherwise, the authentication fails

Algorithm 16.11 Basic protocol.

In this protocol, Q sends a random number n to P and challenges it to
encrypt with its private key. P encrypts �P�Q�n� with its private key k−1

p

and sends it to Q. Q verifies the received message by decrypting it with P’s

616 Authentication in distributed systems

public key kp and checking with the identity of P, Q, and n. This protocol
depends on the guarantee that 	P�Q�n�k−1

p
cannot be produced without the

knowledge of k−1
p and the correctness of kp as published by P and kept by Q.

16.4.2 A modified protocol with a certification authority

The basic protocol requires that Q has the knowledge of P’s public key.
A problem arises ifQ does not know P’s public key. This problem is alleviated
by postulating a centralized certification authority �CA� that maintains a
database of all published public keys [41]. If a user A does not have the
public key of another user B, A can request B’s public key from the CA.

The basic protocol can be modified as shown in Algorithm 16.12 to address
this issue.

P→Q : “I am P.”
Q : generate nonce n

Q→ P : n

P : compute m= 	P�Q�n�k−1
p

P→Q : m

Q→ CA : “I need P’s public key.”
CA : retrieve public key kP of P from key database

Create certificate c = 	P�kP�k−1
CA

CA→Q : P, c
Q : recover P�kP from c by decrypting with kCA

verify �P�Q�n�= 	m�kP
: if equal, then accept; otherwise, the authentication fails

Algorithm 16.12 A modified protocol with a certification authority, CA.

This protocol is similar to the basic protocol described above but a certifi-
cation authority, CA, is involved. When Q receives a message encrypted with
P’s private key from P, it requests the authentication server for P’s public
key. CA retrieves the public key of P from the key database and provides Q
with a certificate for P’s public key. The certificate, 	P�kP�k−1

CA
contains P’s

identity and its public key, encrypted with the private key of the certification
authority. Q retrieves the public key of P by decrypting the certificate with
the public key of CA. Then it decrypts the message m, it received from P

using the public key kP and checks if 	m�kP equals 	P�Q�n�. If both are
equal, authentication succeeds, else it fails.

Note that c, called a public key certificate, represents a certified statement
by CA that P’s public key is kp. Other information such as an expiration date
and the classification of principal P can also be included in the certificate.
However, each principal in the system must know the public key kCA of CA.

617 16.4 Protocols based on asymmetric cryptosystems

In this protocol, CA is an example of an on-line certification author-
ity. It supports interactive queries and is actively involved in authentication
exchanges. A certification authority can also operate off-line. In this case,
a public key certificate is issued to a principal when it first registered. The
certificate is kept by the principal and is forwarded during an authentication
exchange, thus eliminating the need to make a separate query to a CA. Forgery
is impossible, since a certificate is signed by the certification authority.

16.4.3 Needham and Schroeder protocol

The Needham–Schroeder public key protocol [29] uses a trusted key server
that issues certificates containing the public key of a user. The protocol is
described in Algorithm 16.13. In this protocol, the initiator A seeks to establish
a session with responder B with the help of trusted key server S. (Recall that,
for a principal x, Kx and K−1

x denote its public and private keys, respectively.)

(1) A→ S : A�B

(2) S→ A : 	Kb�B�K−1
s

(3) A→ B : 	Na�A�Kb
(4) B→ S : B�A

(5) S→ B : 	Ka�A�K−1
s

(6) B→ A : 	Na, Nb�Ka
(7) A→ B : 	Nb�Kb

Algorithm 16.13 The Needham–Schroeder protocol.

In step 1, A sends a message to the server S, requesting B’s public key. S
responds by returning B’s public key Kb along with B’s identity (to prevent
attacks based upon diverting key deliveries), encrypted using S’s secret key
(to assure A that this message originated from S). A then seeks to establish
a connection with B by selecting a nonce Na, and sending it along with its
identity to B (message 3) encrypted using B’s public key. When B receives
this message, it decrypts the message to obtain the nonce Na and to learn
that user A is trying to communicate with it. It then requests the public key
of A from server S (message 4), which the server sends to B in message 5.
B then returns nonce Na, along with a new nonce Nb, to A, encrypted with
A’s public key (message 6). When A receives this message, it decrypts it
with its private key and is assured that it is talking to B, since only B could
have decrypted the message in step 3 to obtain Na. A then returns nonce Nb
to B, encrypted with B’s key. When B receives this message, it is assured
that it is talking to A, since only A could have decrypted the message in
step 6 to obtain Nb. Thus, after step 7, A and B have mutually authenticated
themselves.

618 Authentication in distributed systems

This protocol can be considered as the interleaving of two logically disjoint
protocols: messages 1, 2, 4, and 5 are concerned with obtaining public keys,
whereas messages 3, 6, and 7 are concerned with the authentication of A
and B.

Weaknesses
This protocol provides no guarantee that the public keys obtained are current
and not replays of old, possibly compromised keys. This problem can be
overcome in various ways. For example, one way is that the server S includes
timestamps in messages 2 and 5; however, this requires synchronized clocks
at processes. Another method is that A sends a nonce in message 1 and S

returns the same nonce in message 2.

An impersonation attack on the protocol
We now show how an intruder can mount an impersonation attack on this
protocol [25]. We assume that the intruder I is a user of the computer network,
and so is able to set up standard sessions with other users, and other users
may try to set up sessions with I . We assume that the intruder can intercept
any messages in the system and introduce new messages. However, we make
some assumptions about what sort of messages the intruder may introduce.
We assume that the intruder cannot guess the value of nonces being passed
in encrypted messages, unless those messages are encrypted with his own
key. Thus the intruder can only produce new messages using nonces that it
invented itself, or that it has previously seen and understood. It can also replay
complete encrypted messages, even if it is unable to understand the contents.

The attack shown in Algorithm 16.14, starts with a user A trying to establish
a session with I .

The attack on the protocol allows an intruder I to impersonate the user A
to set up a false session with a user B. The attack involves two simultaneous
runs of the protocol: in run 1, A establishes a valid session with I; in run 2, I
impersonates A to establish a fake session with B. In Algorithm 16.14, 1.3 rep-
resents message 3 in run 1 and I(A) represents the intruder I impersonating A.

(1.3) A→ I : 	Na�A�Ki
(2.3) I�A�→ B : 	Na�A�Kb
(2.6) B→ I�A� : 	Na�Nb�Ka
(1.6) I→ A : 	Na�Nb�Ka
(1.7) A→ I : 	Nb�Ki
(2.7) I�A�→ B : 	Nb�Kb

Algorithm 16.14 An impersonation attack on the Needham–Schroeder protocol.

In step 1.3, A starts to establish a session with I , sending it a nonce Na.
In step 2.3, the intruder impersonates A to try to establish a false session

619 16.4 Protocols based on asymmetric cryptosystems

with B sending it the nonce Na obtained in the previous message from A.
B responds in step 2.6 by selecting a new nonce Nb and returning it, along
with Na, to A. The intruder intercepts this message, but cannot decrypt it
because it is encrypted with A’s public key. The intruder uses A as an oracle,
by forwarding the message to A in step 1.6; note that this message is of the
form expected by A in run 1 of the protocol. A decrypts the message to obtain
Nb and returns this to I in step 1.7. I decrypts this message to obtain Nb
and returns it to B in step 2.7, thus completing run 2 of the protocol. After
B receives the message in step 2.7, B is led to believe that A has correctly
established a session with it.

A solution to the attack
The main cause of this attack is that step 6 does not contain the identity of
the responder. If we include the responder’s identity in step 6 of the protocol:

(6) B→ A : 	B�Na�Nb�ka ,

then step 2.6 of the attack would become:

(2.6) B→ I�A� : 	B�Na�Nb�ka ,

and the intruder I cannot successfully replay this message in step 1.6 because
A is expecting a message containing I’s identity.

16.4.4 SSL protocol

The secure sockets layer (SSL) protocol [37] was developed by Netscape
and is the standard Internet protocol for secure communications. The secure
hypertext transfer protocol (HTTPS) is a communications protocol designed to
transfer encrypted information between computers over the World Wide Web.
HTTPS is http using a secure socket layer (SSL). SSL resides between TCP/IP
and upper-layer applications, requiring no changes to the application layer.
SSL is used typically between server and client to secure the connection. One
advantage of SSL is that it is application protocol independent. A higher-level
protocol can layer on top of the SSL protocol transparently.

SSL protocol allows client–server applications to communicate in a way so
that eavesdropping, tampering, and message forgery are prevented. The SSL
protocol, in general, provides the following features:

• End point authentication The server is the “real” party that a client
wants to talk to, not someone faking the identity.

• Message integrity If the data exchanged with the server has been mod-
ified along the way, it can be easily detected.

• Confidentiality Data is encrypted. A hacker cannot read your informa-
tion by simply looking at the packets on the network.

620 Authentication in distributed systems

SSL Client SSL Server

(1) "client hello"

Cryptographic information

(2) "server hello"

CipherSuite
Server certificate

"client certificate request" (optional)

(4) Client key exchange

Send secret key information
(encrypted with server public key)

(7) Client "finished"

(5) Send client certificate

(9) Exchange messages

(8) Server "finished"

(encrypted with the shared secret key)

(3) Verify server
certificate

Check
cryptographic

parameters

(6) Verify client
certificate

(if required)

Figure 16.2 SSL handshake
protocol and data exchange.

SSL record protocol
The record protocol takes an application message to be transmitted, fragments
the data into manageable blocks, optionally compresses the data, applies
MAC, encrypts, adds a header, and transmits the resulting unit into a TCP seg-
ment. Received data are decrypted, verified, decompressed, and reassembled,
and then delivered to high-level users.

SSL handshake protocol
The SSL handshake protocol [37] allows the server and client to authenticate
each other and to negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits or receives its first byte of data.

The following steps, shown in Figure 16.2, are involved in the SSL hand-
shake:

1. The SSL client sends a “client hello” message that lists cryptographic
information such as the SSL version and, in the client’s order of preference,
the CipherSuites supported by the client. The message also contains a
random byte string that is used in subsequent computations.

621 16.4 Protocols based on asymmetric cryptosystems

2. The SSL server responds with a “server hello” message that contains the
CipherSuite chosen by the server from the list provided by the SSL client,
the session ID, and another random byte string. The SSL server also sends
its digital certificate. If the server requires a digital certificate for client
authentication, the server sends a “client certificate request” that includes
a list of the types of certificates supported and the distinguished names of
acceptable certification authorities (CAs).

3. The SSL client verifies the digital signature on the SSL server’s digi-
tal certificate and checks that the CipherSuite chosen by the server is
acceptable.

4. The SSL client, using all data generated in the handshake so far, creates
a premaster secret for the session that enables both the client and the
server to compute the secret key to be used for encrypting subsequent
message data. The premaster secret itself is encrypted with the server’s
public key.

5. If the SSL server sent a “client certificate request,” the SSL client sends
another signed piece of data which is unique to this handshake and known
only to the client and server, along with the encrypted premaster secret
and the client’s digital certificate, or a “no digital certificate alert.” This
alert is only a warning, but with some implementations the handshake fails
if client authentication is mandatory.

6. The SSL server verifies the signature on the client certificate.
7. The SSL client sends the SSL server a “finished” message, which is

encrypted with the secret key, indicating that the client part of the hand-
shake is complete.

8. The SSL server sends the SSL client a “finished” message, which is
encrypted with the secret key, indicating that the server part of the hand-
shake is complete.

9. For the duration of the SSL session, the SSL server and SSL client can
now exchange messages that are encrypted with the shared symmetric
secret key.

How SSL provides authentication
During both client and server authentication, there is a step that requires
data to be encrypted with one of the keys in an asymmetric key pair and is
decrypted with the other key of the pair [37].

For server authentication, the client uses the server’s public key to encrypt
the data that is used to compute the secret key. The server can generate the
secret key only if it can decrypt that data with the correct private key.

For client authentication, the server uses the public key in the client certifi-
cate to decrypt the data the client sends during step 5 of the handshake. The
exchange of finished messages that are encrypted with the secret key (steps
7 and 8 in the overview) confirms that authentication is complete.

622 Authentication in distributed systems

If any of the authentication steps fails, the handshake fails and the session
terminates.

The exchange of digital certificates during the SSL handshake is a part of
the authentication process. The certificates required are as follows, where CA
X issues the certificate to the SSL client, and CA Y issues the certificate to
the SSL server:

For server authentication only, the SSL server needs the following:

• The personal certificate issued to the server by CA Y .
• The server’s private key.

The SSL client needs:

• The CA certificate for CA Y or the personal certificate issued to the server
by CA Y .

If the SSL server requires client authentication, the server verifies the
client’s identity by verifying the client’s digital certificate with the public key
for the CA that issued the personal certificate to the client, in this case CA
X. For both server and client authentication, the SSL server needs:

• The personal certificate issued to the server by CA Y .
• The server’s private key.
• The CA certificate for CA X or the personal certificate issued to the client

by CA X.

The SSL client needs:

• The personal certificate issued to the client by CA X.
• The client’s private key.
• The CA certificate for CA Y or the personal certificate issued to the server

by CA Y .

Both the SSL server and the SSL client might need other CA certificates to
form a certificate chain to the root CA certificate.

16.5 Password-based authentication

The use of passwords is a highly popular technique to achieve authentica-
tion because of low cost and convenience. This section is concerned with
authentication techniques that are based on passwords.

A problem with passwords is that people tend to pick a password that is
convenient, i.e., short and easy to remember. Such passwords are vulnerable
to a password-guessing attack, which works as follows: an adversary builds
a database of possible passwords, called a dictionary. The adversary picks a
password from the dictionary and checks if it works. This may amount to
generating a response to a challenge or decrypting a message using the pass-
word or a function of the password. After every failed attempt, the adversary

623 16.5 Password-based authentication

picks a different password from the dictionary and repeats the process. This
non-interactive form of attack is known as the off-line dictionary attack.

Preventing off-line dictionary attacks
Thus, a major problem is that users tend to choose weak passwords, which are
chosen from a sample space small enough to be enumerated by an adversary.
Hence, protocols that are stronger than simple challenge–response protocols
are needed to use these cryptographically weak passwords to securely authen-
ticate entities. A password-based authentication protocol aims at preventing
off-line dictionary attacks by producing a cryptographically strong shared
secret key, called the session key, after a successful run of the protocol. This
session key can be used by both entities to encrypt subsequest messages for
a seceret session.

In this section, we focus on protocols designed to prevent off-line dictionary
attacks on password-based authentication. Next, we present two password-
based authentication protocols.

16.5.1 Encrypted key exchange (EKE) protocol

The first attempt to protect a password protocol against off-line dictionary
attacks was made by Bellovin and Merritt [6] who developed a password-
based encrypted key exchange (EKE) protocol using a combination of sym-
metric and asymmetric cryptography. Algorithm 16.15 describes the EKE
protocol that works as follows: suppose users A and B are participating in
a run of the protocol. (Recall that 	X�k denotes the encryption of X using a
symmetric key k and 	Y�k−1 denotes the decryption of Y using a symmetric
key k.)

In step 1, user A generates a public/private key pair �EA�DA� and also
derives a secret key Kpwd from his/her password pwd. In step 2, A encrypts
his/her public key EA with Kpwd and sends it to B. In steps 3 and 4, B decrypts
the message and uses EA together with Kpwd to encrypt a session key KAB and
sends it to A. In steps 5 and 6, A uses this session key to encrypt a unique
challenge CA and sends the encrypted challenge to B. In step 7, B decrypts
the message to obtain the challenge and generates a unique challenge CB. In
step 8, B then encrypts {CA, CB} with the session key KAB and sends it to A.
In step 9, A decrypts this message to obtain CA and CB and compares the
former with the challenge it had sent to B. If they match, the correctness of
B’s response is verified (i.e., B is authenticated). In step 10, A encrypts B’s
challenge CB with the session key KAB and sends it to B. When B receives
this message, it decrypts the message to obtain CB and uses it verify the
correctness of A’s response and to authenticate A. Note that the protocol
results in a session key (stronger than the shared password) which the users
can later use to encrypt sensitive data.

624 Authentication in distributed systems

(1) A � �EA�DA�, Kpwd = f �pwd�. {* f is a function. *}
(2) A→ B � A� 	Kpwd�EA .
(3) B � Compute EA = 		EA�Kpwd�K−1

pwd
and generate a random secret keyKAB.

(4) B→ A � 		KAB�EA�Kpwd .
(5) A � KAB = 				KAB�EA�	Kpwd��K−1

pwd
�DA . Generate a unique challenge CA.

(6) A→ B � 	CA�KAB .
(7) B � Compute CA = 		CA�KAB�K−1

AB
and generate a unique challenge CB.

(8) B→ A � 	CA�CB�KAB .
(9) A � Decrypt message sent by B to obtain CA and CB. Compare the for-

mer with own challenge. If they match, go to the next step, else abort.
(10) A→ B � 	CB�KAB .

Algorithm 16.15 Encrypted key exchange protocol.

The EKE protocol suffers from the plain-text equivalence, which means
that the user and the host have access to the same secret password or hash of
the password.

16.5.2 Secure remote password (SRP) protocol

Wu [44] combined the technique of zero-knowledge proof with asymmetric
key exchange protocols to develop a verifier-based protocol, called the secure
remote password (SRP) protocol. The SRP protocol eliminates plain-text
equivalence.

All computations in SRP are carried out on the finite field �n, where n is
a large prime. Let g be a generator of �n. Let A be a user and B be a server.
Before initiating the SRP protocol, A and B do the following:

1. A and B agree on the underlying field.
2. A picks a password pwd, a random salt s and computes the verifier v= gx,

where x=H�s�pwd� is the long-term private-key and H is a cryptographic
hash function.

3. B stores the verifier v and the salt s.

Now, A and B can engage in the SRP protocol (shown in Algorithm 16.16).
The SRP protocol works as follows. In step 1, A sends its username “A” to
server B. In step 2, B looks-up A’s verifier v and salt s and sends A the
salt. In steps 3 and 4, A computes its long-term private-key x = H�s�pwd�,
generates an ephemeral public-key KA = ga, where a is randomly chosen
from the interval 1< a< n, and sends KA to B. In steps 5 and 6, B computes
ephemeral public-key KB = v+ gb, where b is randomly chosen from the
interval 1 < a < n, and sends KB and a random number r to A. In step 7, A
computes S = �KB−gx�a+rx = gab+brx and B computes S = �KAv

r�b = gab+brx.
The values of S computed by A and B will match if the password A entered

625 16.6 Authentication protocol failures

in step 3 matches the one that A used to calculate the verifier v which is
stored at B. In step 8, both A and B use a cryptographically strong hash
function to compute a session key KAB =H�S�. In step 9, A computes CA =
H�KA�KB�KAB� and sends it to B as an evidence that it has the session key.
CA also serves as a challenge. In step 10, B computes CA itself and matches
it with A’s message. B also computes CB = H�KA�CA�KAB�. In step 11, B
sends CB to A as an evidence that it has the same session key as A. In step
12, A verifies CB, accepts if the verification passes and aborts otherwise.

(1) A→ B � A.
(2) B→ A � s.
(3) A � x �=H�s�pwd��KA �= ga.
(4) A→ B � KA.
(5) B � KB �= v+gb.
(6) B→ A � KB� r.
(7) A � S �= �KB−gx�a+rx and B � S �= �KAv

r�b.
(8) A�B � KAB �=H�S�.
(9) A→ B � CA �=H�KA�KB�KAB�.
(10) B verifies CA and computes CB �=H�KA�CA�KAB�.
(11) B→ A � CB.
(12) A verifies CB. Accept if verification passes; abort otherwise.

Algorithm 16.16 Secure remote password (SRP) protocol.

Note that unlike EKE, none of the protocol are messages encrypted in
the SRP protocol. Since neither the user nor the server has access to the
same secret password or hash of the password, SRP eliminates plain-text
equivalence. SRP was unique in its swapped-secret approach in building a
verifier-based, zero-knowledge protocol, resisting off-line dictionary attacks.

16.6 Authentication protocol failures

Despite the apparent simplicity of the basic design principles, realistic
authentication protocols [11, 29] are notoriously difficult to design [39].
There are several reasons for this:

• First, most realistic cryptosystems satisfy algebraic additional identities.
These extra properties may generate undesirable effects when combined
with a protocol logic.

• Second, even assuming that the underlying cryptosystem is perfect, unex-
pected interactions among the protocol steps can lead to subtle logical
flaws.

626 Authentication in distributed systems

• Third, assumptions regarding the environment and the capabilities of an
adversary are not explicitly specified, making it extremely difficult to
determine when a protocol is applicable and what final states are achieved.

We illustrate the difficulty by showing an authentication protocol pro-
posed, with a subtle weakness. Consider the authentication protocol shown
in Algorithm 16.17 (kp and kq are symmetric keys shared between P and A,
and Q and A, respectively, where A is an authentication server and k is a
session key).

(1) P→ A : P, Q, np
(2) A→ P : 	np, Q, k , 	k�P�kQ�kp
(3) P→Q : 	k�P�kQ
(4) Q→ P : 	nQ�K
(5) P→Q : 	nQ+1�K

Algorithm 16.17 Authentication protocol with a subtle weakness.

The message 	k�P�kQ in step 3 can only be decrypted by Q and hence can
only be understood by Q. Step 4 reflects Q’s knowledge of k, while step 5
assures Q of P’s knowledge of k; hence the authentication handshake is based
entirely on the knowledge of k.

The subtle weakness in the protocol arises from the fact that the message
	k�P�kQ sent in step 3 contains no information for Q to verify its freshness.
This is the first message sent to Q about P’s intention to establish a secure
connection. An adversary who has compromised an old session key k′ can
impersonate P by replaying the recorded message 	k′�P�kQ in step 3 and
subsequently executing steps 4 and 5 using k′.

To avoid protocol failures, formal methods may be employed in the design
and verification of authentication protocols. A formal design method should
embody the basic design principles. For example, informal reasoning such as
“if you believe that only you and Bob know k, then you should believe any
message you receive encrypted with k was originally sent by Bob” should be
formalized by a verification method.

16.7 Chapter summary

Authentication is a process by which one principal verifies the identity of
other principal. For example, in a client–server system, the client and the
server may need to verify each other’s identity to assure that each is talking to
the right entity. Generally, authentication is based on the possession of a secret
information, like password, that is known only to the entities participating in
the authentication. For a successful authentication, the entity must demonstrate
the knowledge of the right secret information.

627 16.9 Notes on references

In this chapter, we described several user authentication protocols based on
symmetric and asymmetric cryptosystems. We also discussed authentication
techniques that are based on passwords and which mitigate dictionary attacks.
Authentication protocols are vulnerable to several attacks.

16.8 Exercises

Exercise 16.1 List three attacks/threats that are associated with user authentication
on the Internet.

Exercise 16.2 What is a nonce? What security problem does it solve?

Exercise 16.3 Consider the following simple method to handle attacks on the pass-
word based authentication. If a user fails to login in three successive attempts, the
system locks his account suspecting an attack/intrusion. What major problem do you
see with this method?

Exercise 16.4 Choose two principles given by Needham and Abadi for designing
cryptographic protocols. For each, give an example where their principle applies and
results in an improved protocol.

Exercise 16.5 Consider the following protocol for authentication/key distribution
(X and Y are two principals, A is a certificate authority or a key distribution center,
RX is a randon number, and EX means encrypted with the secret key of X).

(1) X→ A : X�Y�RX
(2) A→ X : EX�RX�Y�K�EY �K�X��

(3) X→ Y : EY �K�X�

(4) Y → X : EK�RY �

(5) X→ Y : EK�RY −1�

1. What does the presence of RX in message 2 assure?
2. What problem will be created if an attacker were to break an old K (and the attacker

has also copied messages for that session)? Explain your answer.
3. Suggest a method to solve this problem?

Exercise 16.6 Discuss two biometric based methods for authentication. What are pros
and cons of biometric based methods for authentication?

16.9 Notes on references

Authentication in distributed systems is a well studied topic and a large number of
authentication protocols exist. An excellent survey on the topic is by Woo and Lam
[39]. Burrows et al. discuss the logic of authentication [7]. A classical paper on the

topic is by Needham and Schroeier [29]. Syverson and Cervesato [36] discuss the
logic of authentication protocols. Two relevant books on the topic are by Schneier
[33] and Stallings [35]. Lampson et al. [23] discuss the theory and practice of

authentication.

628 Authentication in distributed systems

A review paper on password based authentication is by Chakrabarti and Sing-
hal [8]. Conklin et al. [10] give a system’s perspective of password-based
authentication. Biometric authentication has been very popular recently. Infor-
mation on this topic can be found in [15–17, 31, 34]. King and Dos San-
tos [22] discuss AI-based methods for human authentication. Kaminsky et al.
[18] discuss user authentication in a global file system. A list of papers on
authentication can be found at: www.passwordresearch.com/papers/pubindex.
html. Other relevant work on authentication in distributed systems can be found in
[3,9,12]– [14,19,27,38,40,42,43].

References

[1] J. M. Arfman and P. Roden, Project Athena: Supporting distributed computing
at MIT, IBM Systems Journal, 31(3), 1992, 550–563.

[2] M. Abadi and R. Needham, Prudent engineering practices for cryptographic
protocols, Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy, May 1994, 122–136.

[3] M. Abadi, M. Burrows, C. Kaufman, and B.W. Lampson, Authentication and
delegation with smart-cards, Science of Computer Programming, 21(2), 1993,
93–113.

[4] R. Anderson and R. Needham, Robustness principles for public key protocols,
in D. Coppersmith (ed.), Advances in Cryptology – CRYPTO’95, New York,
Springer-Verlag, 1995, 236–247.

[5] S. M. Bellovin and M. Merritt, Limitations of the Kerberos authentication system,
Proceedings of USENIX Winter Conference, Dallas, TX, January 1991, 253–267.

[6] S. M. Bellovin and M. Merritt, Encrypted key exchange: password-based pro-
tocol secure against dictionary attacks, Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, 1992, 72–84.

[7] M. Burrows, M. Abadi, and R. M. Needham, A logic of authentication, ACM
Transactions on Computer Systems, 8(1), 1990, 18–36.

[8] S. Chakrabarti and M. Singhal, Password-based authentication: preventing dic-
tionary attacks, IEEE Computer, 40(6), 2007, 68–74.

[9] CCITT Recommendation X.509, The Directory – Authentication Framework,
1988. See also ISO/IEC 9594-8, 1989.

[10] A. Conklin, G. Dietrich, and D. Walz, Password-based authentication: a system
perspective, Proceedings of the 37th Hawaii International Conference on System
Sciences, January 2004.

[11] D. E. Denning, Cryptography and Data Security, Addison-Wesley, 1982.
[12] D. Dolev and A. C. Yao, On the security of public key protocols, IEEE Trans-

actions on Information Theory, IT-29(2), 1983, 198–208.
[13] M. Gasser, A. Goldstein, C. Kaufman, and B. W. Lampson, The Digital dis-

tributed system security architecture, Proceedings of the 12th National Computer
Security Conference, Baltimore, MD, October 1989, 305–319.

[14] M. Gasser and E. McDermott, An architecture for practical delegation in a
distributed system, Proceedings of the 11th IEEE Symposium on Research in
Security and Privacy, Oakland, CA, May 7–9, 1990, 20–30.

[15] L. O’Gorman, Practical systems for personal fingerprint authentication, IEEE
Computer, 33(2), 2000, 58–60.

629 References

[16] A. Jain, L. Hong, and S. Pankanti, Biometrics identification, Communications of
the ACM, 43(2), 2000, 91–98.

[17] M. Indovina, U. Uludag, R. Snelick, A. Mink, and A. Jain, Multimodal biometric
authentication methods: a COTS approach, Proceedings of MMUA 2003, Work-
shop on Multimodal User Authentication, Santa Barbara, CA, December 11–12,
2003, 99–106.

[18] M. Kaminsky, G. Saviddes, D. Mazieres, and M. F. Kaashoek, Decentralized
user authentication in a global file system, Symposium on Operating System
Principles, 2003, 60–73.

[19] C. Kaufman, DASS Distributed Authentication Security Service, September 1993,
RFC 1507.

[20] J. T. Kohl, B. C. Neuman, and T. Y. Tso, The evolution of the Kerberos authen-
tication system, in F. Brazier and D. Johansen (eds), Distributed Open Systems,
New York, IEEE Computer Society Press, 1994, 78–94.

[21] Kerberos Frequently Asked Questions, available online at: www.nrl.navy.
mil/CCS/people/kenh/kerberos-faq.html.

[22] J. King and A. dos Santos, A user-friendly approach to human authentication
of messages, Proceedings of the 9th International Conference on Financial
Cryptography and Data Security, Roseau, Dominica, 2005, 225–239.

[23] B. Lampson, M. Abadi, and M. Burrows, Authentication in distributed systems:
theory and practice, ACM Transactions on Computer Systems, 1992.

[24] M.-H. Lin and C.-C. Chang, A secure one-time password authentication scheme
with low-computation for mobile communications, ACM SIGOPS Operating
Systems Review, 38(2), 2004, 76–84.

[25] G. Lowe, An attack on the Needham–Schroeder public-key authentication pro-
tocol, Information Processing Letters, 56(3) 1995, 131–133.

[26] J. Linn, Practical authentication for distributed computing, Proceedings of the
11th IEEE Symposium on Research in Security and Privacy, Oakland, CA, May
7–9 1990, 31–40.

[27] C.-C. Lee, M.-S. Hwang, and L.-H. Li, A new key authentication scheme
based on discrete logarithms, Applied Mathematics and Computation, 139(2–3),
2003.

[28] A. Menezes, P. van Oorschot, and S. Vanstone, Key establishment protocols,
Chapter 12 in Handbook of Applied Crytography, New York, CRC Press,
1996.

[29] R. M. Needham and M. D. Schroeder, Using encryption for authentication in large
networks of computers, Communications of the ACM, 21(12), 1978, 993–999.

[30] B. C. Neuman and T. Y. Ts’o, An authentication service for computer networks,
IEEE Communications Magazine, 32(9), 1994, 33–38.

[31] N. K. Ratha, J. H. Connell, and R. M. Bolle, Enhancing security and privacy
in biometrics-based authentication systems, IBM Systems Journal, 40(3), 2001,
614–634.

[32] J. G. Steiner, C. Neuman, and J. I. Schiller, Kerberos: an authentication service
for open network systems, Proceedings of USENIX Winter Conference, Dallas,
TX, February 1988, 191–202.

[33] B. Schneier, Applied Cryptography, New York, John Wiley & Sons, Inc., 1996.
[34] B. Schneier, The uses and abuses of biometrics, Communications of the ACM,

42(8), 1999, 136.
[35] W. Stallings, Cryptography and Network Security: Principles and Practice, 4th

edn., Englewood Cliffs, NJ, Prentice-Hall, 2005.
[36] P. Syverson and I. Cervesato, The Logic of Authentication Protocols, New York,

Springer-Velag, 2001.

630 Authentication in distributed systems

[37] The Secure Socket Layer, available online at: http://publib.boulder.ibm.
com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzas.doc/
cssauthentication.htm.

[38] J. J. Tardo and K. Alagappan, SPX: global authentication using public key cer-
tificates, in Proceedings of the 12th IEEE Symposium on Research in Security
and Privacy, Oakland, CA, May 20–22, 1991, 232–244.

[39] T. Y. C. Woo and S. S. Lam, Authentication for distributed systems, Computer,
25(1), 1992, 39–52. See also: Authentication revisited, Computer, 25(3),
1992, 10.

[40] T. Y. C. Woo and S. S. Lam, A lesson on authentication protocol design, ACM
Operating Systems Review, 28(3), 1994, 24–37.

[41] T. Y. C. Woo and S. Lam, Authentication for distributed systems, D. Denning
and P. Denning (eds), in Internet Besieged: Countering Cyberspace Scofflaws,
Addison–Wesley and ACM Press, 1998.

[42] T. Y. C.Woo and S. S. Lam, Design, verification, and implementation of an
authentication protocol, Proceedings of International Conference on Network
Protocols, Boston, MA, October 25–28, 1994. (Also available online at:
www.cs.utexas.edu/users/lam/NRL/.)

[43] T. Y. C. Woo, R. Bindignavle, S. Su, and S. S. Lam, SNP: an interface
for secure network programming, Proceedings of USENIX Summer Techni-
cal Conference, Boston, MA, June 6–10, 1994. (Also available online at:
www.cs.utexas.edu/users/lam/NRL/.)

[44] T. D. Wu, The secure remote password protocol, Proceedings of the Network
and Distributed Systems Security, NDSS 1998, San Diego, CA, 1998, 97–111.

C H A P T E R

17 Self-stabilization

17.1 Introduction

The idea of self-stabilization in distributed computing was first proposed by
Dijkstra in 1974 [34]. The concept of self-stabilization is that, regardless of
its initial state, the system is guaranteed to converge to a legitimate state
in a bounded amount of time by itself without any outside intervention. A
non-self-stabilizing system may never reach a legitimate state or it may reach
a legitimate state only temporarily. The main complication in designing a
self-stabilizing distributed system is that nodes do not have a global memory
that they can access instantaneoulsy. Each node must make decisions based
on the local knowledge available to it and actions of all nodes must achieve
a global ojective.

The definition of legitimate and illegitimate states depends on the particular
application. Generally, all illegitimate states are defined to be those states
which are not legitimate states. Dijkstra also gave an example of the concept
of self-stabilization using a self-stabilizing token ring system. For any given
token ring when there are multiple tokens or there is no token, then such global
states are known as illegitimate states. When we consider a distributed system
where a large number of systems are widely distributed and communicate
with each other using message passing or shared memory approach, there is
a possibility for these systems to go into an illegitimate state, for example, if
a message is lost. The concept of self-stabilization can help us recover from
such situations in distributed system.

Let us explain the concept of self-stabilization using an example. Let us
take a group of children and ask them to stand in a circle. After few minutes,
you will get an almost perfect circle without having to take any further action.
In addition, you will discover that the shape of this circle is stable, at least
until you ask the children to disperse. If you force one of the children out of
position, the others will move accordingly, moving the entire circle in another
position, but keeping its shape unchanged.

631

632 Self-stabilization

In this example, the group of children build a self-stabilizing circle: if
some thing goes wrong with the circle, they are able to rebuild the circle by
themselves, without any external intervention. The time required for stabiliza-
tion varies from experiment to experiment, depending on the (random) initial
position. However, if the field size is limited, this time will be bounded. The
algorithm does not define the position of the circle in the field and so it will
not always be the same. The position of each child relative to each other
will also vary.

The self-stabilization principle applies to any system built on a significant
number of components which are evolving independently from one another,
but which are cooperating or competing to achieve common goals. This
applies, in particular, to large distributed systems which tend to result from
the integration of many subsystems and components developed separately at
earlier times or by different people.

In this chapter, we first present the system model of a distributed system and
present definitions of self-stabilization. Next, we discuss Dijkstra’s seminal
work and use it to motivate the topic. We discuss the issues arising from the
Dijkstra’s original presentation as well as several related issues in the design of
self-stabilizing algorithms and systems. After that, we discuss three important
themes that have recently emerged. In particular, we discuss the methods that
have been used to design complex self-stabilizing systems, we discuss the
role of compilers in designing self-stabilization, and we enumerate factors
that have been found to interfere with self-stabilization. We also discuss
self-stabilizing protocols for construction of spanning trees and present a self-
stabilizing algorithm for 1-maximal independent set. We conclude the chapter
with limitations of self-stabilization.

17.2 System model

The term distributed system is used to describe set of computers that commu-
nicate over network. Variants of distributed systems have similar fundamental
coordination requirements among the communicating entries, whether they
are computers, processors or processes. Thus an abstract model that ignores
the specific settings and captures the important characteristics of a distributed
system is usually used.

In a distributed system, each computer runs a program composed of exe-
cutable statements. Each execution changes the content of the computer’s
logical memory. An abstract way to model a computer that executes a pro-
gram is to use the state machine model. A distributed system model comprises
of a set of n state machines called processors that communicate with each
other. We usually denote the ith processor in the system by Pi. Neighbors
of a processor are processors that are directly connected to it. A processor
can directly communicate with its neighbors. A distributed system can be

633 17.2 System model

conveniently represented by a graph in which each processor is represented
by a node and every pair of neighboring nodes are connected by a link.

The communication between neighboring processors can be carried out
either by message passing or shared memory. Communication by writing in
and reading from the shared memory usually fits systems with processors
that are geographically close together, such as multiprocessor computer. A
message-passing distributed model fits both processors that are located close
to each other as well as that are widely distributed over a network.

In the message-passing model, neighbors communicate by sending and
receiving messages. In asynchronous distributed systems, the speed of pro-
cessors and message transmission can vary. First-in first-out (FIFO) queues
are used to model asynchronous delivery of messages. A communication link
is either unidirectional or bidirectional. A unidirectional communication link
from processor Pi to Pj transfers messages only from Pi to Pj . The abstraction
used for such a unidirectional link is a first-in first-out (FIFO) queue Qi�j that
contains all messages sent by a processor Pi to its neighbor Pj that have not
yet been received. Whenever Pi sends a message m to Pj , the message is
enqueued (added to the tail of the queue). The bidirectional communication
link between processors Pi and Pj is modeled by two FIFO queues, one from
Pi to Pj and the other from Pj to Pi.

It is convenient to identify the state of a computer or a distributed system
at a given time, so that no additional information about the past of the com-
putation is needed in order to predict the future behavior (state transitions)
of the computer or the distributed system. A full description of a message
passing distributed system at a particular time consists of the state of every
processor and the content of every queue (messages traveling in the commu-
nication links). The term system configuration (or configuration) is used for
such a description. A configuration is denoted by c = �s1, s2�

 � sn, q1�2,
q1�3�

 � qi�j�

 � qn�n−1), where si, 1 ≤ i ≤ n is the state of Pi and qi�j , i �= j
is the state of queueQi�j , that is, messages sent by Pi to Pj but not yet received.
The behavior of a system consists of a set of states, a transition relation between
those states, and a set of fairness criteria on the transition relation [79].

The system is usually modeled as a graph of processing elements (modeled
as state machines), where edges between these elements model unidirectional
or bidirectional communication links. Let N be an upper bound on n (the
number of nodes in the system). The communication network is usually
restricted to the neighbors of a particular node. Let � denote the diameter of
the network (i.e., the length of the longest unique path between two nodes) and
let � denote the upper bound on �. A network is static if the communication
topology remains fixed. It is dynamic if links and network nodes can go down
and recover later. In the context of dynamic systems, self-stabilization refers
to the time after the “final” link or node failure. The term “final failure”
is typical in the literature on self-stabilization. Since stabilization is only
guaranteed eventually, the assumption that faults eventually stop to occur

634 Self-stabilization

implies that there are no faults in the system for “sufficiently long period” for
the system to stabilize. In any case, it is assumed that the topology remains
connected, i.e., there exists a path between any two nodes.

In the shared memory model, processors communicate using shared com-
munication registers (hereafter, called registers). Processors may write in a
set of registers and may read from a possibly different set of registers. Two
neighboring nodes have access to a common data structure, variable or reg-
ister which can store a certain amount of information. These variables can
be distinguished between input and output variables (depending on which
process can modify them). When executing a step, a process may read all its
input variables, perform a state transition and write all its output variables
in a single atomic operation. This is called composite atomicity. A weaker
notion of a step (called read/write atomicity) also exists where a process can
only either read or write its communication variables in one atomic step.

The configuration of a system with n processors and m communication reg-
isters is denoted by c= �s1, s2, s3�

 � sn, r1, r2�

 � rm), where si, 1≤ i≤ n,
is the state of Pi and rj , 1≤ j ≤m, is the contents of a communication register.

Algorithms are modeled as state machines performing a sequence of steps.
A step consists of reading input and the local state, then performing a state
transition and writing output. Communication can be by exchanging messages
over the communication channels. An algorithm may be randomized, i.e., have
access to a source of randomness (a random number generator or a random
coin flip). If an algorithm is not randomized, we will call it deterministic.
A related characteristic of a system model is its execution semantics. In
self-stabilization, this has been encapsulated within the notion of a scheduler
or daemon (also demon). Under a central daemon, at most one processing
element is allowed to take a step at the same time.

17.3 Definition of self-stabilization

We have seen an informal definition of self-stabilization at the beginning.
Formally, we define self-stabilization for a system S with respect to a predicate
P over its set of global states, where P is intended to identify its correct
execution [79]. States satisfying P are called legitimate states and those not
satisfying P are called illegitimate states. We use the terms safe and unsafe
interchangeably with legitimate and illegitimate, respectively.

A system S is self-stabilizing with respect to predicate P if it satisfies the
following two properties:

• Closure P is closed under the execution of S. That is, once P is estab-
lished in S, it cannot be falsified.

• Convergence Starting from an arbitrary global state, S is guaranteed to
reach a global state satisfying P within a finite number of state transitions.

635 17.3 Definition of self-stabilization

Arora and Gouda [12] introduced a more generalized definition of self-
stabilization, called stabilization, which is defined as follows. We define
stabilization for a system S with respect to two predicates P and Q, over its
set of global states. Predicate Q denotes a restricted start condition. S satisfies
Q→ P (read as Q stabilizes to P) if it satisfies the following two properties:

• Closure P is closed under the execution of S. That is, once P is estab-
lished in S, it cannot be falsified.

• Convergence If S starts from any global state that satisfies Q, then S is
guaranteed to reach a global state satisfying P within a finite number of
state transitions.

Note that self-stabilization is a special case of stabilization where Q is always
true, that is, if S is self-stabilizing with respect to P, then this may be restated
as TRUE→ P in S.

Next, we define two terms that relevant to the discussion of self-stabilization.

Reachable Set
Often when a programmer writes a program, he/she does not have a particu-
lar definition of safe and unsafe states in mind but develops the program to
function from a particular set of start states. In such situations, it is reason-
able to define as safe those states that are reachable under normal program
execution from the set of legitimate start states. These states are referred to as
the reachable set. So, when we say that a program is self-stabilizing without
mentioning a predicate, we mean with respect to the reachable set. By defini-
tion, the reachable set is closed under program execution, and it corresponds
to a predicate over the set of states [79].

We use the transient failure model in the discussion.

Transient failure
A transient failure is temporary (short lived) and it does not persist. A transient
failure may be caused by corruption of local state of processes or by corruption
of chennels or shared memory. A transient failure may change the state of
the system, but not its behavior.

17.3.1 Randomized and probabilistic self-stabilization

Randomized methods for self-stabilization are useful in achieving self-
stabilization under process symmetry (i.e., all processes are identical).
Depending on the stabilization time, self-stabilization can be classified as
randomized and probabilistic self-stabilization:

• Randomized self-stabilization A system is said to be randomized
self-stabilizing system, if and only if it is self-stabilizing and the expected
number of rounds needed to reach a correct state (legal state) is bounded
by some constant k.

636 Self-stabilization

• Probabilistic self-stabilization A system S is said to be probabilistically
self stabilizing with respect to a predicate P if it satisfies the following
two properties:

• Closure P is closed under the execution of S. That is, once P is
established in S, it cannot be falsified.
• Convergence There exists a function f from natural numbers to [0,1]

satisfying lim k→�f (k) = 0, such that the probability of reaching a
state satisfying P, starting from an arbitrary global state within k state
transitions, is 1−f (k).

A pseudo-stabilizing system is one that, if started in an arbitrary state, is
guaranteed to reach a state after which it does not deviate from its intended
specification. A stabilizing system is one that, if started at an arbitrary state,
is guaranteed to reach a state after which it cannot deviate from its intended
specification. Thus, the difference between the two notions comes down to
the difference between cannot and does not – a difference that hardly matters
in many practical situations. The stronger requirement of self-stabilization
is advantageous over pseudo-stabilization in finite-state systems, since self-
stabilization property implies a bounded convergence span while the pseudo
stabilization does not. Algorithms have been proposed for probabilistic ori-
entation of an asynchronous bi-directional ring, as well as for a synchronous
ring with odd number of processes and one token.

In the next section, we discuss the issues in the design of self-stabilization
algorithms.

17.4 Issues in the design of self-stabilization algorithms

A distributed system comprises of many individual units and many issues
arise in the design of self-stabilization algorithms in distributed system. Some
of the main issues are as follows:

• Number of states in each of the individual units in a distributed system.
• Uniform and non-uniform algorithms in distributed systems.
• Central and distributed demon.
• Reducing the number of states in a token ring.
• Shared memory models.
• Mutual exclusion.
• Costs of self-stabilization.

Dijkstra’s self-stabilizing token ring system
We explain the above issues with the help of Dijkstra’s landmark self-
stabilizing token ring system [34]. His system consisted of a set of n finite-
state machines connected in the form a ring. He defines a privilege of a
machine to be the ability to change its current state. This ability is based

637 17.4 Issues in the design of self-stabilization algorithms

on a Boolean predicate that consists of its current state and the states of its
neighbors. When a machine has a privilege, it is able to change its current
state, which is referred to as a move. Furthermore, when multiple machines
enjoy a privilege at the same time, the choice of the machine that is entitled
to make a move is made by a central demon, which arbitrarily decides which
privileged machine will make the next move.

A legitimate state must satisfy the following constraints:

• There must be at least one privilege in the system (liveness or no deadlock).
• Every move from a legal state must again put the system into a legal state

(closure).
• During an infinite execution, each machine should enjoy a privilege an

infinite number of times (no starvation).
• Given any two legal states, there is a series of moves that change one legal

state to the other (reachability).

Dijkstra [34] considered a legitimate (or legal) state as one in which
exactly one machine enjoys the privilege. This corresponds to a form of
mutual exclusion, because the privileged process is the only process that is
allowed in its critical section. Once the process leaves the critical section, it
passes the privilege to one of its neighbors.

With this background, let us see how the above issues affect the design of
a self-stabilization algorithm.

17.4.1 The number of states in each of the individual units

The number of states that each machine must have for the self-stabilization
is an important issue. Dijkstra offered three solutions for a directed ring with
n machines, 0, 1, ………, n−1, each having K states, (i) K ≥ n, (ii) K = 4,
(iii) K = 3. It was later proven by Ghosh [49] that a minimum of three states
is required in a self-stabilizing ring. In all three algorithms, Dijkstra assumed
the existence of at least one exceptional machine that behaved differently
from the others.

The first solution (K ≥ n) is described below.

First solution
For any machine, we use the symbols S, L, and R to denote its own state,
the state of the left neighbor and the state of the right neighbor on the ring,
respectively.

The exceptional machine:
If L= S then
S �= �S+1) mod K
End If;

638 Self-stabilization

The other machines:
If L �= S then
S �= L
End If;

In this algorithm, except the exceptional machine (machine 0), all other
machines follow the same algorithm. In the ring topology, each machine
compares its state with the state of the anti-clockwise neighbor and if they
are not same, it updates its state to be the same as that of its anti-clockwise
neighbor.

So, if there are n machines and each of them is initially at a random state
r $ K, then all the machines (except the exceptional machine, machine 0)
whose states are not the same as their anti-clockwise neighbor are said to be
privileged and there is a central demon that decides which of these privileged
machines will make the move.

Suppose machine 6 (assume n1 6) makes the first move. It is obvious
that its state is not the same as that of machine 5 and hence it had the
privilege to make the move and finally sets its state to be the same as that
of machine 5. Now machine 6 loses its privilege as its state is same as
that of its anti-clockwise neighbor (machine 5). Next, suppose machine 7,
whose state is different from the state of machine 6, is given the privilege. It
results in making the state of machine 7 the same as that of machine 6. Now
machines 5, 6, and 7 are in the same state. Eventually, all the machines will
be in the same state in the similar manner. At this point, only the exceptional
machine (machine 0) will be privileged as its condition L = S is satisfied,
i.e., its state is the same as that of its anti-clockwise neighbor. Now there
exists only one privilege or token in the system (at machine 0). Machine 0
makes a move and changes its state from S to (S+1) mod K. This will make
the next machine, machine 1, privileged as its state is not the same as its
anti-clockwise neighbor, i.e., machine 0. Thus, it can be interpreted as the
token is currently with machine 1. Machine 1, as per the algorithm, changes
its state to the same state as that of machine 0. This will move the token to
machine 2 as its state is now not same as that of machine 1. Likewise, the
token keeps circulating around the ring and the system is stable.

This is a simple algorithm, but it requires a number of states, which depends
on the size of the ring, which may be awkward for some applications.

Second solution
The second solution uses only three-state machines and is presented in Algo-
rithm 17.1. The state of each machine is in {0, 1, 2}.

In the first algorithm, there is only one exceptional machine, machine 0. In
the second solution, there are two such machines, machine 0, referred to as
the bottom machine, and machine n−1, referred to as the top machine.

639 17.4 Issues in the design of self-stabilization algorithms

The bottom machine, machine 0:
If (S+1) mod 3= R then

S �= (S−1) mod 3

The top machine, machine n−1:
If L= R and (L+1) mod 3 �= S then

S �= �L+1) mod 3

The other machines:
If (S+1) mod 3= L then

S �= L
If (S+1) mod 3= R then

S �= R
Algorithm 17.1 The second solution.

In this algorithm, the bottom machine, machine 0, behaves as follows:

If (S+1) mod 3= R then
S �= �S−1� mod 3

Thus, the state of the bottom machine depends upon its current state and the
state of its right neighbor.

The condition (s+ 1) mod 3 covers the three possible states; for s = 0,
1, 2, we have (s+ 1) mod 3 = 1, 2, 0. These result in the following three
possibilities:

1. If s = 0 and r = 1, then the state of s is changed to 2.
2. If s = 1 and r = 2, then the state of s is changed to 0.
3. If s = 2 and r = 0, then the state of s is changed to 1.

The top machine, machine n−1, behaves as follows:

if L= R and (L+1) mod 3 �= S then
S := (L+1) mod 3

The state of the top machine depends upon both its left and right neighbors
(the bottom machine). The condition specifies that the left neighbor (L) and
the right neighbor (R) should be in the same state and (L+1) mod 3 should
not be equal to S. (Note that (L+ 1) mod 3 is 1, 2, 0 when L is 0, 1, 2,
respectively) Thus, the state of the top machine is as follows:

1. 1, when its left neighbor is 0.
2. 2, when its left neighbor is 1.
3. 0 when its left neighbor is 2.

640 Self-stabilization

Table 17.1 An example execution of Dijkstra’s three-state algorithm [42].

State of
machine 0

State of
machine 1

State of
machine 2

State of
machine 3

Privileged
machines

Machine to
make move

0 1 0 2 0, 2, 3 0
2 1 0 2 1, 2 1
2 2 0 2 1 1
2 0 0 2 0 0
1 0 0 2 1 1
1 1 0 2 2 2
1 1 1 2 2 2
1 1 2 2 1 1
1 2 2 2 0 0
0 2 2 2 1 1
0 0 2 2 2 2
0 0 0 2 3 3
0 0 0 1 2 2

All other machines behave as follows:

If (S+1) mod 3= L then
S �= L

If (S+1) mod 3= R then
S �= R

While finding out the state of the other machines (machines 1 and 2 in
the example below), we first compare the state of a machine with its left
neighbor:

1. If s = 0 and L= 1, then s = 0.
2. If s = 1 and L= 2, then s = 2.
3. If s = 2 and L= 0, then s = 1.

If the above conditions are not satisfied, then the machine compares its
state with its right neighbor.

A sample execution of Dijkstra’s three-state algorithm for a ring of four
processes (0, 1, 2, 3) is shown in Table 17.1 [42]. Machine 0 is the bottom
machine and machine 3 is the top machine. The last column in the table gives
the number of the machine chosen to make the next move. Initially, three
privileges exist in the system. The number of privileges decreases until only
one privilege is left in the system.

We make the following observations:

• There are no deadlocks in any state (at least one privilege is present).
• The closure property is satisfied (the system moves from a legal state to a

legal state).

641 17.4 Issues in the design of self-stabilization algorithms

• No starvation (each machine has a chance of making more than 1 move).
• Reachability (there are always a series of moves to reach from one legal

state to other).

All four constraints for a legitimate state (given at the start of Section 17.4)
are satisfied. So the system is stabilized.

Special networks
In the above two algorithms, each processor needs K states and three states,
respectively. Ghosh [47] found that there are special networks, where the
number of states required by each processor is two.

Ghosh’s solution
All nodes (machines) in the network shown in Figure 17.1 require only
two states [47]. However, a node needs to use information from all of its
neighbors. Let s[i] denote the state of machine i. There are two possible states
for each machine, 0 and 1. In the algorithm [47], let b denote an arbitrary
state (0 or 1) and b̃ denote the complementary state of b.

For machine 0:
If (s[0], s[1]) = (b̃, b) then s�0� �= b

For machine 2n−1:
If (s[2n−1], s[2n−2]) = (b, b) then s[2n−1]: = b̃

For even numbered machines:
If (s[2i−2], s[2i−1], s[2i], s[2i+1]) = (b, b, b̃, b) then
s[2i]: = b

For odd numbered machines:
If (s[2i−2], s[2i−1], s[2i], s[2i+1]) = (b, b, b, b̃) then
s[2i−1]:= b̃

Each machine must examine the states of all its neighbors. In this algorithm,
a large atomicity is assumed because each machine must be able to examine
the states of all its neighbors in one atomic step. In addition, the algorithm
requires that the number of machines in the network must be even and at least
six. However, the algorithm shows that self-stabilizing algorithms requiring
two states are possible.

1

2

3

4

5

6

7

8

2n − 3

2n − 1

2n − 2

0

Figure 17.1 A special network needing only binary state machines [47].

642 Self-stabilization

Dolev et al.’s solution
For a system with an odd number of machines in a ring, the solution for
self-stabilization described by Dolev et al. [40] is as follows: each node has
two states, 0 and 1. Given a global state, the nodes make moves according to
the following rules:

• If the local state is different from its left neighbor’s state, then the state is
changed to be the same as its left neighbor.

• If the local state is the same as its left neighbor’s state, the state is chosen
randomly from 0 and 1.

Nodes make moves in synchronization in each step. A node has a privilege if
its state is the same as that of its left neighbor. Using a probabilistic argument,
it has been shown that eventually only one privilege exists in the system.
This algorithm shows that the number of states required for each node may
be reduced using a probabilistic algorithm if nodes operate synchronously.

17.4.2 Uniform vs. non-uniform networks

Whether processes (or machines) are uniform or not is an important issue in
self-stabilization. In a distributed system, it is desirable and also possible to
have each machine use the same algorithm. To design self-stabilizing systems,
however, it is often necessary to have non-uniformity among machines. From
the examples of the preceding section, we notice that at least one of the
machines (known as the exceptional machines) had a privilege and executed
steps that were different from other machines.

The individual processes can be anonymous, meaning they are indistin-
guishable and all run the same algorithm. Often, anonymous networks are
called uniform networks. A network is semi-uniform if there is one process
(the root) which executes a different algorithm. While there is no way to
distinguish nodes, in uniform or semi-uniform algorithms nodes usually have
a means of distinguishing their neighbors by ordering the incoming commu-
nication links. In the most general case it is assumed that processes have
globally unique identifiers.

Self-stabilization algorithms for distributed systems should be uniform, but
this is not always possible. As a simple example, consider the ring of four
processors shown in Figure 17.2 [47].

Figure 17.2 A ring of four
processors [47].

2 310

643 17.4 Issues in the design of self-stabilization algorithms

Assume there is a uniform self-stabilizing algorithm for this ring. In a
distributed system, the state of a machine/process is changed depending on
the state of its neighbors. In this example, if all processors have the same
state when started, all must have privileges because there must be at least one
privilege in the system (property 1 of a legal state).

Note that 0 and 2 make a move (because if one makes a move, it does not
affect the neighbors of the other), and change their states. In this example, 0
and 2 make an independent set. After the transition, 0 and 2 are in the same
state and so are 1 and 3.

The system is partitioned into two sets: {0,2} and {1,3}. At least two
machines must have a privilege because 0 and 2 have the same states and
also their neighbors 1 and 3 have the same states. Thus once again, machines
0 and 2 can make moves and leave the network in a similar situation. The
scenario with 1 and 3 is also the same, they both are in the same state and
their neighbors 0 and 2 are in the same state. So, if 1 has privilege, then 3
will also have privilege and both machines can make moves and leave the
network in a similar situation. So, in either case, there will be two privileged
machines at any time in the network.

Even though uniformity is a desirable property, most self-stabilizing algo-
rithms are non-uniform (i.e., they use at least one exceptional machine). How-
ever, uniformity is sometimes attainable. For example, Burns and Pachl [21]
developed a uniform self-stabilizing algorithm for a ring of n processors,
where n is prime. However, it was observed that for a ring of composite size,
the algorithm failed only because it could deadlock. Thus if deadlocks can be
tolerated or can be corrected easily, then the algorithm may be useful. Thus
the uniformity may be achieved if we are willing to sacrifice the property of
self-stabilization.

17.4.3 Central and distributed demons

Generally, the presence of a central demon is assumed in self-stabilizing
algorithms. For example, Dijkstra assumed a central demon to decide which
machine with a privilege will make the next move. However, the presence of
a central demon is an undesirable constraint. In a self-stabilizing algorithm
with a distributed demon, each privileged machine makes its own decision
whether to make a move. Clearly, a distributed demon is more desirable in
distributed systems. In a self-stabilizing system without a central demon, each
machine makes a decision unilaterally and decisions of machines eventually
take the system towards a global goal. When this global goal is achieved, the
system is self-stabilized.

Interestingly, many early algorithms (e.g., Dijkstra’s three-, four-, and K-
state algorithms) were developed assuming the presence of a central demon
and they did not deal with the possibility of having a distributed demon, yet
these algorithms also work with distributed demons.

644 Self-stabilization

Even though a central demon is not a desirable feature to have, the presence
of a central demon considerably simplifies the verification of a weak correct-
ness criterion of a self-stabilizing algorithm. Consequently, self-stabilizing
systems are often developed and verified for the weak correctness assuming
the presence of a central demon and after the weak correctness is verified, the
system is examined to see if it is still self-stabilizing when the assumption of
a central demon is removed.

Burns et al. [22, 24] examine the extensibility of some algorithms. They
showed that letting all machines operate simultaneously will not affect the
correctness of some algorithms. Such interleaving assumption is very useful
in the verification of self-stabilizing systems. As an example, Burns et al.
[24] verified that Dijkstra’s algorithms are correct even in the presence of a

distributed demon. Dijkstra’s algorithms were originally proven to be correct
in the presence of a central demon. Burns et al. [24] showed that the central
demon assumption is not necessary for the three and the four state algorithms.
The K-state solution is valid for a distributed demon only is K > n (n is
the number of machines), because a cycle of illegal global states occurs
if K = n.

Burns et al. [24] also developed results, which can be used to show that an
algorithm that is correct in the presence of a central demon is also correct when
the central demon assumption is removed. This is useful in the verification
process because once the algorithm is verified in the presence of a central
demon, the algorithm may be correct even when the central demon assumption
is lifted without any modification to the algorithm. This of course may not
be the case for all algorithms, but these results can be helpful in the process
of verification.

17.4.4 Reducing the number of states in a token ring

A natural question is: what is the number of states of a machine to achieve self-
stabilization in various configurations? Clearly, the objective is to minimize
the number of states of a machine for efficient implementation.

It has been shown that if self-stabilization is not a requirement, then there
exists an asymmetric token ring with two states per machine. In a self-
stabilizing token ring with a central demon and deterministic execution, Ghosh
[49] showed that a minimum of three states per machine is required. However,
for a non-ring topology, the number of states can be reduced to two per
machine. There exists a non-trivial self-stabilizing system with two states per
machine [47]. It requires a high degree of atomicity in each action. Each
non-exceptional process reads from three of its neighbors. Thus, obviously,
the topology is non-ring.

Herman [59] presented a unidirectional and symmetric solution, with only
two states, which showed that, for a “probabilistically” self-stabilizing syn-
chronous token ring with randomized actions, a solution requiring two states

645 17.4 Issues in the design of self-stabilization algorithms

per machine exists. Flatebo and Datta [41] developed a two-state, unidirec-
tional and asymmetric solution for a “probabilistically” self-stabilizing token
ring with randomized actions under the assumption of a randomized cen-
tral demon. With a randomized central demon, a demon is chosen randomly
among privileged machines, and this minimizes the problem of malicious
scheduling on the part of the demon.

Thus, it appears that to obtain self-stabilizing systems with two states per
machine, we must either relax the objective to “probabilistic self-stabilization”
using randomized actions, or use a non-ring topology with higher atomicity
in the actions.

17.4.5 Shared memory models

Self-stabilizing algorithms have also been developed for distributed systems
with shared memory where processes communicate with each other by reading
and writing to shared registers. In this type of model, no processor has direct
access to the state of its neighbors, and the only way to determine the state is
by passing information through shared registers. If two processors, Pi and Pj ,
are neighbors, then there are two registers, i and j, between the two nodes. To
communicate, Pi writes to i and reads from j and Pj writes to j and reads from
i. It is convenient to represent a distributed system by a graph in which each
processor is represented by a node and the neighboring nodes are connected
by a link that shows the communication between a node and its neighbors.

The self-stabilizing algorithms work for an arbitrarily connected graph.
They also work if the system is dynamic and the graph changes during execu-
tion (due to a node failure, etc.). In a self-stabilization algorithm, eventually
only one process can change a register at any instance, and this happens when
the system is stabilized. It is assumed that all read/write operations on the
registers are atomic. Later in this chapter, we study a dynamic self-stabilizing
algorithm.

Dolev et al. [40] present a dynamic self-stabilizing algorithm for mutual
exclusion. The algorithm only requires that all nodes be connected (that is, the
network should not be partitioned). Node failures may cause an illegal global
state, but the system again converges to a legal state. Thus, the protocol is
dynamic and self-stabilizing. If a node is restarted, an illegal global state may
again occur, but the system will automatically correct itself. The size of the
registers are on the order of log (n), where n is the number of processors.
The only assumption made is that the read/write operations on the registers
are atomic, which is a weak assumption but makes the implementation of the
algorithm feasible.

17.4.6 Mutual exclusion

In previous sections, we discussed self-stabilizing systems where there is only
one action (e.g., changing a state or the contents of a register) being done after

646 Self-stabilization

a finite amount of time. In a mutual exclusion algorithm, each process has a
critical section of code, and only one process can enter its critical section at
any time, and every process that wants to enter its critical section, must be
able to enter its critical section in finite time. If a process has a privilege, it can
enter its critical section, and once it is finished (execuing the critical section),
it passes the privilege to the neighbor. If the process does not want to enter
its critical section, it simply passes the privilege to its neighbor. Since the
self-stabilizing algorithms mentioned adhere to the four properties discussed
previously, mutual exclusion is also satisfied. Since eventually, there is only
one privilege in the system and each process enjoys a privilege an infinite
number of times, a process is guaranteed to enter its critical section in finite
time.

A self-stabilizing mutual exclusion system can also be described in terms of
a token system [42], which has the processes circulating tokens. If a process
has one of these tokens, it is allowed to enter its critical section. Brown
et al. [20] used this system to develop self-stabilizing mutual exclusion
systems. Initially, there may be more than one token in the system, but after
a finite time, only one token exists in the system which is circulated among
the processes. Such systems are easier to implement in circuits, and Brown
et al. showed how the implementation is done using flip-fops. All of the
models, token systems, privileges, and shared memory are forms of mutual
exclusion, and the algorithms also tolerate node failures and restarts or a
bad initialization. So these algorithms are more tolerant of errors than other
mutual exclusion algorithms [42].

17.4.7 Costs of self-stabilization

The definition of self-stabilization does not put any upper bound on the num-
ber of transitions required by the system to reach a safe state starting from an
unsafe one. Thus, the system might remain in an unsafe state for a consider-
able amount of time before reaching a safe state. A study and assessment of
these cost factor is very important in any practical implementation.

Gouda and Evangelist [53] introduced the following two concepts related
to the cost of self-stabilization:

• Convergence span The maximum number of transitions that can be
executed in a system, starting from an arbitrary state, before it reaches a
safe state.

• Response span The maximum number of transitions that can be executed
in a system to reach a specified target state, starting from some initial state.
The choice of initial state and target state depends upon the application.

Clearly, the aim of the designer of a self-stabilizing algorithm is to reduce
the convergence span and response span.

Time-complexity measure for self-stabilizing algorithms is the number of
rounds. In synchronous models, algorithms execute in rounds, i.e., processors

647 17.5 Methodologies for designing self-stabilizing systems

execute steps at the same time and at a constant rate. Rounds can be defined in
asynchronous models too, where the first round ends in a computation when
every processor has executed at least one step. In general, the ith round ends
when every processor has executed at least i steps. Generally, communication
between any two processors in a particular system takes at least – d rounds.
This is because it normally takes at least one round to propagate information
between two adjacent processors.

17.5 Methodologies for designing self-stabilizing systems

Having seen the issues in the design of self-stabilizing system, let us now
discuss the methodologies for designing self-stabilizing systems.

Self-stabilization is characterized in terms of a “malicious adversary” whose
objective is to disrupt the normal operation of the system. This adversary (e.g.,
a virus or a hardware problem) may destroy some portions of the system,
or disrupt the operation of one or more portions. Furthermore, it might not
be possible for a system to detect that it has been “attacked,” as soon as the
attack appears. To be called self-stabilizing, a system must have the capability
to recover normal operation when exposed to such attacks. If the system (or
parts of it) is destroyed completely, so that it is no longer possible for the
system to operate, then no self-stabilizing system can work. The adversary
succeeds in achieving his goals. However, if enough components are left
for the system to operate, then a self-stabilizing system will slowly resume
normal operation after the attack. It is up to the designer to decide under what
conditions the system may be termed “completely destroyed” or “still capable
of operating.”

17.5.1 Layering and modularization

The most commonly used techniques for building self-stabilizing systems
are layering and modularization. The basic idea is to divide the system into
smaller component, make each component self-stabilizing independently, and
then integrate them to compose the system.

Self-stabilization is amenable to layering because the self-stabilization rela-
tion is transitive, i.e. if P→Q (P stabilizesQ) andQ→R, then P→R. Thus,
different layers of self-stabilizing programs (each by itself self-stabilizing)
can be composed. First step is to build a self-stabilizing “platform” and any
program written on that platform automatically becomes self-stabilizing. The
basic idea behind a self-stabilizing platform is to provide primitives that can
be used to write other programs.

To develop self-stabilizing systems using the technique of layering, we
require primitives to provide structures on which algorithms may be built.

648 Self-stabilization

There are two basic structuring mechanism primitives: common clock primi-
tives and topology-based primitives.

Common clock primitives
Unison is the process of maintaining time through the use of local clocks in
shared memory systems. The properties required here are the safety property
and the progress property. For a synchronous shared memory system, the
safety and progress properties for unison are as follows:

• Safety All clocks have the same value.
• Progress At each step, each clock is incremented by the same amount.

For asynchronous systems with shared memory, the safety and progress prop-
erties for unison are as follows:

• Safety Clocks of two neighboring nodes can differ by at most 1.
• Progress A clock is incremented to i+1 when clocks at all neighboring

nodes have value i or i+1.

Topology-based primitives
Leader election is perhaps the most basic primitive with respect to an arbitrary
dynamic topology. Once a leader has been found, a spanning tree might
be constructed. Algorithms for mutual exclusion and reset can be easily
developed on top of self-stabilizing spanning-tree algorithms for arbitrarily
connected graphs.

We now discuss two examples of self-stabilizing programs, namely, mutual
exclusion and reset, developed using the concept of layering.

Example A two-layered self-stabilizing algorithm for mutual exclusion [40].
The first layer creates a spanning tree from an arbitrarily connected graph,
whose topology might change dynamically with the exception of a distin-
guished process (the root). The self-stabilizing spanning tree protocol is based
on a breadth-first search of the graph, rooted at the distinguished node. The
distinguished node is needed to break symmetry and all other nodes execute
an identical program.

The second layer achieves mutual exclusion on a dynamic tree structured
system. It is a token-based system. When a node receives the token/privilege,
it executes its critical section (if it wants to) and then it passes to the token
to its children in left-to-right order. Thus, the token traverses the tree in a
depth-first manner.

Finally, the two protocols are superposed to obtain a single self-stabilizing
protocol for mutual exclusion on an arbitrarily connected graph.

Example A self-stabilizing reset algorithm for an asynchronous shared
memory system [12].
Arora and Gouda [12] used a layering technique to develop a self-stabilizing
reset algorithm for asynchronous shared-memory systems. The algorithms

649 17.6 Communication protocols

allows dynamic topology as long as the underlying graph remains connected.
There is no distinguished process, however, each process has a unique
identifier.

The algorithm consists of three layers. In the first layer, a root is elected
forming a spanning tree. In the second layer, the root initiates a diffusing
computation in which reset requests are propagated to the leaf nodes and are
reflected back to the root node. The reset request passes through every node,
detecting any anomaly in the global state. When the reset returns to the root,
the reset is complete.

A self-stabilizing “platform” resets the system upon encountering an ille-
gitimate state. The platform writes to variables of the original program only
if an illegitimate state is detected. The platform does not affect the original
program under normal execution.

17.6 Communication protocols

A communication protocol is a collection of processes that exchange messages
over communication links in a network. A protocol may be adversely affected
for several reasons:

• Initialization to an illegal state.
• A change in the mode of operation. Not all processes get the request for

the change at the same time, so an illegal global state may occur.
• Transmission errors because of message loss or corruption.
• Process failure and recovery.
• A local memory crash which changes the local state of a process.

Previously, these five types of errors have been treated separately. However,
if a protocol is self-stabilizing, they will all be corrected in a finite number
of steps, regardless of the reason for the loss of coordination.

A communication protocol is stabilizing if and only if starting from any
unsafe state (i.e., one that violates the intended invariant of the protocol), the
protocol is guaranteed to converge to a safe state within a finite number of
state transitions. Stabilization allows the processes in a protocol to reestablish
coordination between one another whenever coordination is lost due to some
failure.

Gouda and Multari [55] showed that a communication protocol must
satisfy the following three properties to be self-stabilizing:

• It must be non-terminating.
• There are an infinite number of safe states.
• There are timeout actions in a non-empty subset of processes.

Self-stabilizing systems can automatically recover from arbitrary state
perturbations in finite time. They are therefore well-suited for dynamic,

650 Self-stabilization

failure-prone environments. The spanning-tree construction in distributed sys-
tems is a fundamental operation that forms the basis for many other network
algorithms (like token circulation or routing). Next, we discuss some self-
stabilizing algorithms that construct a spanning tree within a network of
processing entities.

Let us consider an arbitrary distributed algorithm, e.g., for termination
detection, and start it in a state where one of its variables has been set to a
random value from its domain. Usually, the behavior is not predictable: either
the algorithm will output garbage (e.g., declare a computation as finished
although it is still running), or (most probably) it will deadlock (e.g., it will
fail to output anything at all). It may be argued that changing the value
of a variable is unfair: no algorithm can tolerate such manipulations since
algorithms have to rely on proper initialization. This argument, however, is
not true.

Self-stabilizing algorithms are guaranteed to recover from an arbitrary
perturbation of their local state in a finite number of execution steps. This
means that the variables of such algorithms do not need to be initialized
properly. If we assign each variable an arbitrary value from its domain,
the algorithm will eventually start to behave as expected. Arbitrary state
perturbations can also happen without curious users playing around with
their algorithm: cosmic rays in spacecraft, for example, can arbitrarily change
the contents of memory cells in random access memory. Self-stabilizing
algorithms have the desirable property of being able to recover from such
faults automatically.

17.7 Self-stabilizing distributed spanning trees

In distributed systems, a spanning tree is the basis for many complex dis-
tributed protocols. To define a spanning tree, the network is modeled as a
graph G=(V , E), where V is the set of network nodes (vertices) and E is the
set of communication links (edges) between network nodes (formally, it is a
subset of E×E). A spanning tree T = �V , E′) of G is a graph consisting of
the same set of nodes V , but only a subset E′ of edges E such that there exists
exactly one path between every pair of network nodes. Basically, this means
that the graph is connected and does not contain cycles. A basic theorem of
spanning trees states that, in a network of n nodes, the tree contains exactly
n−1 communication links. A spanning tree of a graph is in general not unique
(even if the root node is fixed). Figure 17.3 shows an example of a network
of five nodes and a spanning tree of the network [43].

A spanning tree in a network is often a prerequisite for more involved
network protocols like routing or token circulation. It generally increases the
efficiency of network protocols. For example, consider the problem of broad-
casting messages in the network. There are algorithms that flood the network,

651 17.7 Self-stabilizing distributed spanning trees

P1 P1P3 P3

P5 P5

P2

P4

P2

P4

Figure 17.3 A network and its
spanning tree [43].

i.e., the broadcast message is recursively sent to all neighbors. Consequently,
the message crosses all communication links before the protocol terminates.
However, if a spanning tree of the network is available, the message only
needs to be sent along all the edges of the spanning tree. Instead of crossing
all E links, the message just crosses n−1 links. Since |E| is usually signifi-
cantly larger than n−1, a spanning tree can considerably reduce the message
complexity of the broadcast algorithm.

Two kinds of spanning trees may be distinguished: breadth-first search
(BFS) trees result from a breadth-first traversal of the underlying network
topology. Similarly, depth-first search (DFS) trees are obtained from a depth-
first traversal. A notion underlying both DFS and BFS trees is that of a
rooted tree. A rooted spanning tree is a spanning tree of the network where
the tree edges are consistently directed with respect to a particular node
(the root). Edges can be directed towards the root or “away from” the root.
Rooted spanning trees have a notion of “parent” and naturally result from
the execution of semi-uniform algorithms. In fact, since almost all algo-
rithms use a single pointer (to a neighbor or the parent) to store the struc-
tures of the tree, all these algorithms implicitly construct a rooted spanning
tree.

In spanning-tree construction, it is impossible to deterministically construct
a spanning tree in uniform networks. Intuitively, this is caused by problems
of symmetry, and so at least a semi-uniform setting (e.g., a distinguished root
processor) or a source of randomization is needed.

The time-complexity of self-stabilizing algorithms is often measured by the
number of rounds. In self-stabilizing spanning-tree construction, an arbitrary
initial state may make it necessary to propagate information through the entire
network. Therefore, a general lower bound of d rounds can be assumed for
self-stabilizing spanning-tree algorithms. By combining the algorithm with
a hierarchical structure and sacrificing true distribution, this bound can be
lowered.

Space complexity measures the the amount of state necessary to perform
self-stabilizing spanning-tree construction. Dolev et al. [38] derived the fol-
lowing result on lower bounds regarding the space complexity: self-stabilizing
spanning-tree construction needs at least log n bits per processor if the algo-
rithm is silent (i.e., if the contents of the communication registers eventually

652 Self-stabilization

stop changing). If the algorithm is not required to be silent, Johnen [66]
showed that it is possible to construct an algorithm using only O(1) bits per
edge in a uniform rooted network with a central demon.

17.8 Self-stabilizing algorithms for spanning-tree construction

In this section, we discuss a set of representative self-stabilizing algorithms
for constructing spanning trees [43].

17.8.1 Dolev, Israeli, and Moran algorithm

Dolev et al. [40] developed a self-stabilizing BFS spanning-tree construction
algorithm for semi-uniform systems with a central demon under read/write
atomicity. In the algorithm, every node maintains two variables: (i) a pointer
to one if its incoming edges (this information is kept in a bit associated with
each communication register), and (ii) an integer measuring the distance in
hops to the root of the tree. The distinguished node in the network acts as
the root.

The algorithm works as follows: the network nodes periodically exchange
their distance value (current distance from the root node) with each other.
After reading the distance values of all neighbors, a network node chooses
the neighbor with minimum distance dist as its new parent. It then writes its
own distance into its output registers, which is dist + 1. The distinguished
root node does not read the distance values of its neighbors and always sends
a value of 0.

The algorithm stabilizes starting from the root process. After sufficient
activations of the root, it has written 0 values into all of its output variables.
These values will not change anymore. Note that without a distinguished root
process the distance values in all nodes would grow without bound. More
specifically, after reading all neighbors values for k times, the distance value
of a process is at least k+ 1. This means that, after the root has written its
output registers, the direct neighbors of the root – after inspecting their input
variables – will see that the root node has the minimum distance of all other
nodes (the other nodes have distance at least 1). Hence, all direct neighbors of
the root will select the root as their parent and update their distance correctly
to 1. This line of reasoning can be continued incrementally for all other
distances from the root. That is, after all nodes at distance d from the root
have computed their distance from the root correctly and written it in their
registers, their registers no longer change and nodes at distance d+ 1 from
the root are ready to compute their distance from the root. After O(�) update
cycles, the entire tree will have stabilized.

653 17.8 Self-stabilizing algorithms for spanning-tree construction

Variables:

no_neighbors =Number of processor’s neighbors
i= the writing processor
m = for whom the data is written
lrji (local register rji) the last value of rji read by Pi

Root Node:
{do forever}
while TRUE do

for m �= 1 to no_neighbors do
write lrim �=< 0�0 >

end
end

Other Nodes:
{do forever}
while TRUE do

for m �= 1 to no_neighbors do
lrmi �= read(lrmi)
FirstFound �= false
dist �= 1 + min(lrmi.dist) ∀ m: 1≤ m≤ no_neighbors

for m �= 1 to no_neighbors do
if not FirstFound and lr mi.dis = dist−1 then
write rim �= <1, dist>
FirstFound �= true
else write rim �= <0�dist>

end
end

end

Algorithm 17.2 Dolev et al.’s spanning-tree construction algorithm for Pi [40].

Dolev et al.’s self-stabilizing algorithm for constructing spanning trees is
shown in Algorithm 17.2. Two neighbors Pi and Pj communicate with each
other by reading from and writing to two shared registers, rij and rji. To
communicate, Pi writes to rij and reads from rji and Pj writes to rji and
reads from rij .

The root node repeatedly writes values < 0�0> in the registers of all of its
neighbors. All other processors repeatedly perform the following steps: in each
iteration, the processor reads the registers of all of its neighbors and computes
the a value for variable dist as follows: it chooses the minimum distance of
their neighbors, sets its dist variable to the minimum distance plus 1, and

654 Self-stabilization

Figure 17.4 An example of
Dolev et al.’s algorithm.

(a) The distributed system − computation step

P1 writes P2 reads

r12 : x r12 : m1 r12
:

m1

7

4

r21:
 parent = 1
 dist = 1

r73:
 parent = 2
 dist = 3

r58:
 parent = 8
 dist = 3

(b) Spanning-tree, system and code

P1 P2P1 P2m1
P1 P2 m1

1

2

6

3
8

5

updates the registers of its neighbors. The internal variable corresponding
to register rij is denoted by lrij . It stores the last value of rji that is read
by Pi.

A snapshot of the system state in Dolev et al.’s self-stabilizing algorithm
is given in Figure 17.4. This algorithm has been used as the basis for a
topology update algorithm in dynamic networks. Based on a similar idea,
Collin and Dolev [31] present a semi-uniform spanning-tree algorithm under
a central demon and read/write atomicity that constructs a DFS tree (instead
of a BFS tree). A similar algorithm, which also constructs a DFS tree but
uses composite atomicity, was developed by Herman. In this algorithm, the
outgoing links at every process are ordered, and the DFS tree is defined as
the tree resulting from a DFS graph traversal always selecting the smallest
outgoing edge. Instead of writing its current level into the output registers,
it writes a representation of its current estimate of the path (the sequence of
outgoing link identifiers) to the root. The root repeatedly writes the “empty
path” (⊥) to its output registers. If a node has k neighbors, there are k

alternative paths to choose from. From these, the node chooses the path
that is minimal according to a lexicographic order that prefers smaller link
identifiers. For example, (⊥) < (⊥, 1) < (⊥, 1, 1) < (⊥, 2) < (1). Thus,
a node does not choose the shortest path to the root but a path along the
smallest link identifiers.

The memory requirement for the DFS algorithm is O(n log K) bits, where
K is an upper bound on the maximum degree of a node. The time complexity
is O(�nK) rounds.

655 17.8 Self-stabilizing algorithms for spanning-tree construction

17.8.2 Afek, Kutten, and Yung algorithm for spanning-tree construction

The algorithm by Afek et al. [3] constructs a BFS spanning-tree in the
read/write atomicity model. However, this algorithm does not make the
assumption of a distinguished root process. Instead, it assumes that all nodes
have globally unique identifiers that can be totally ordered. The node with
the largest identifier will eventually become the root of the tree.

The idea of the algorithm is as follows: every node maintains a parent
pointer and a distance variable as in the algorithm by Dolev et al. Israeli, and
Moran algorithm. In addition, it stores the identifier of the root of the tree in
which it thinks it is present. Periodically, nodes exchange this information.
If a node notices that it has the maximum identifier in its neighborhood, it
makes itself the root of its own tree. If a node learns that there is a tree with
a larger root identifier nearby, it joins this tree by sending a “join request”
to the root of that tree and receiving a “grant” back from the root. Local
consistency checks ensure that cycles and fake root identifiers are eventually
detected and removed.

The algorithm stabilizes in O(n2) asynchronous rounds and needs O(log n)
space per edge to store the process identifier. Afek et al. argued that this
is optimal since message communication buffers need to communicate “at
least” the identifier.

17.8.3 Arora and Gouda algorithm for spanning-tree construction

Arora and Gouda [12] developed a self-stabilizing BFS spanning-tree algo-
rithm for the composite atomicity model under the assumption of a central
daemon. Like Afek et al., they also assume unique identifiers and the node
with maximum identifier eventually becomes the root of the system. How-
ever, the algorithm needs a bound N on the number n of nodes in the network
to work correctly. The bound on the number of nodes is necessary because
the algorithm uses a different technique to detect and remove cycles.

Every node maintains variables for distance, parent, and root identifier.
Periodically, every node compares its own distance and root identifier values
with the values stores in the node pointed to by the parent variable. In the final
spanning tree, the root identifiers should be identical and the distance should
be the distance of the parent plus one. If this is not the case, the root identifier
is copied from the parent and the distance is set to the parent’s distance
plus one. A node also continuously monitors the root identifier and distance
settings of its neighbors. If a neighbor has a larger root identifier or the same
identifier with smaller distance, the node adjusts its values accordingly.

Cycles are detected in the following manner: if there is a cycle in the tree
(or the graph to be precise), say, due to improper initialization, the distance
values are incremented along this cycle without bound. Hence, a cycle is

656 Self-stabilization

detected when the distance value exceedes the bound N . The first node to
detect this makes itself the root of a new tree.

A bound on the number of nodes in the network, N , allows the Arora and
Gouda algorithm to be simpler than the one by Afek et al.. However, the
stabilization time in Arora and Gouda algorithm is O(N 2), which can be much
larger than that of Afek et al., O(n2). In dynamic networks where network
nodes may go down, a stabilization time in the order of the actual number of
nodes is preferable.

17.8.4 Huang et al. algorithms for spanning-tree construction

Chen et al. [29] developed a self-stabilizing spanning tree algorithm for semi-
uniform systems with composite atomicity. It is based on the same idea of
cycle breaking (bumping up the distance counter). The fact that there is a
distinguished root makes the algorithm even simpler than the one by Arora
and Gouda [12]. However, the algorithm does not necessarily stabilize to
a BFS tree since the choice of a new parent after a cycle is broken is non-
deterministic and is governed by the scheduler.

This algorithm was later improved by Huang and Chen [63] to yield an
algorithm which constructs a BFS tree using knowledge of the size n of the
network.

17.8.5 Afek and Bremler algorithm for spanning-tree construction

Afek and Bremler [6] gave a self-stabilizing algorithm for constructing span-
ning trees for systems with unidirectional, bounded capacity communication
links. They assumed node have unique identifiers and adopted the algorithm
for the synchronous and the asynchronous networks. The network node with
the smallest identifier eventually becomes the root of the spanning tree.

The algorithm is based on a new idea called “power supply.” The power
supply method exploits the fact that self-stabilizing algorithms must continu-
ously check their own state. Nodes that are part of a spanning tree expect to
receive “power” from the root of the tree. Power, like electric current, means
a continuous flow of certain messages, one per round. The basic idea is that
only legal roots may be the source of power and nodes attached to fake roots
eventually fail to receive power and subsequently make themselves the root
of a new tree.

Whenever a node receives power from a neighbor with a smaller identifier,
it attaches itself to its tree. In the asynchronous case, the power supply
idea is implemented using different types of messages: weak messages are
exchanged periodically between the nodes to synchronize their states, while
strong messages carry power.

The idea of called power supply imparts the algorithm several interest-
ing features. For example, the algorithm stabilizes in O(n) rounds without

657 17.9 An anonymous self-stabilizing algorithm for 1-maximal independent set in trees

processes to have the knowledge of n. Afek and Bremler gave a generic power
supply algorithm which can be instantiated to a leader election algorithm, or
an algorithm to construct DFS or BFS spanning trees.

The spanning-tree algorithms discussed in this section have been applied in
many different settings in practice. For example, a variant of the algorithm by
Dolev et al. [40] was used to implement a reliable data storage subsystem for
the self-stabilizing file system developed at the Ben Gurion University [68].

As another example [43], consider the protocol to eliminate redundant
paths in switched Ethernets [30]. If a network segment becomes unreachable
or network parameters are changed, the protocol automatically reconfigures
the spanning-tree topology by activating a standby path. The protocol can
be briefly described as follows: initially, switches believe they are the root
of the spanning tree but they do not forward any packets. Based by a timer,
they regularly exchange status information. The status information contains
(i) the identifier of the transmitting switch (usually a MAC address), (ii) the
identifier of the switch which is believed to be the root of the tree, and
(iii) the “cost” of the path towards the root. A switch uses this information to
choose the shortest path towards the root. If there are multiple possible roots,
it selects the root with the smallest identifier (lowest MAC address). Links
that are not included in the spanning tree are placed in blocking mode and do
not forward packets, but still transport status information.

17.9 An anonymous self-stabilizing algorithm for 1-maximal independent set
in trees

In a distributed system, an independent set is defined as a large subset of nodes
that are pair-wise non-adjacent. A maximal independent set is a set of nodes
such that every node not in the set is adjacent to a node in the set. Maximal
independent sets are important in several distributed network applications
and several parallel or distributed algorithms have been developed for this
task [73].

In this section, we discuss Shi et al.’s [81] self-stabilizing algorithm for
finding a 1-maximal independent set in a tree. The algorithm uses a constant
space at each node. The algorithm is somewhat unusual in that it stabilizes
on all graphs, but it is only guaranteed to be correct on some graphs.

A distributed system is modeled as a connected, undirected graph G with
node set V and edge set E. Two nodes joined by an edge are said to be
neighbors and N (i) is used to denote the set of neighbors of node i. A
self-stabilizing algorithm is presented as a set of rules, each with a Boolean
predicate and an action. A node is said to be privileged if the predicate is
true. If a node becomes privileged, it may execute the corresponding action
called a move. The assumption is that there exists a central demon, which
at each time-step selects one of the privileged nodes to move (and thus two

658 Self-stabilization

nodes never move at the same time). When no further move is possible, the
system is said to be in a stable configuration. While the definition of self-
stabilizing is normally more general, since this is a graph algorithm we say
that an algorithm is self-stabilizing if from any initial configuration it always
terminates in a legitimate stable configuration after a finite number of moves
no matter the selections of the daemon.

Description of algorithm
In Shi et al.’s algorithm [81] for finding a 1-maximal independent set in a
tree, each node is in one of a finite number of distinct states. Those nodes in
the state called 0 will end up being in the desired set: let us call this set M.
A node with no neighbor in state 0 will change to state 0 and a node in state
0 with a neighbor in state 0 will change to something else. This idea readily
produces a maximal independent set.

To achieve 1-maximality, however, a node must be able to leave set M when
that would allow two of its neighbors to enter M. Available neighbors are
those which have no other neighbor in state 0: these will be in the state called
1. In order to allow this interchange, we implement a hand-shaking process:
the node offers to leave M by changing to state 0′, the relevant neighbors
agree to enter M by changing to state 1′, the node leaves by changing to state
2′, and then the relevant neighbors go in by changing to state 0.

Specifically, the set of states is 0, 0′, 1, 1′, 2, 2′. The states with a prime
are transition states, used in the hand-shaking process described above. These
transition states will be absent when the algorithm terminates if the network
satisfies certain properties.

For the purpose of the algorithm, the nodes with state 0′ are also considered
to be in M. The states 0, 1, and 2 are used to indicate that a node has zero,
one, or at least two neighbors in M, respectively.

Actions of a node in the algorithm can be summarized as follows:

1. If not involved in a transition process, then set state to the number of
neighbors in state 0 or state 0′. (The value 2 is used to indicate two or
more such neighbors.)

2. If in state 0 and adjacent to at least two 1s, change state to 0′.
3. If in state 1 and adjacent to a 0′, change state to 1′.
4. If in state 0′ and adjacent to at least two 1′s, change state to 2′.
5. If in state 1′ and adjacent to no 0′, change state to 0.
6. If in state 2′ and adjacent to no 1′, change state to 2.

The complexity of the actual algorithm arises from invalid initial states and
from two interchanges affecting one another.

For a state y, we use the notation S(y) to represent the set of nodes in
state y. Furthermore, we use the notation S(y1/y2/y3/

) to denote S(y1)∪
S(y2)∪ S(y3)

 .

659 17.9 An anonymous self-stabilizing algorithm for 1-maximal independent set in trees

For example, the notation S(0) denotes the nodes in state 0. The state of a
node is stored in a local variable denoted by x. The states with a prime are
transition states. We will also identify the prime with a virtual flag – we will
say the flag is set when the node is in a transition state, and clearing the flag
will mean changing from state i′ to state i.

To define the rules of the algorithm, we define the following function f.
Let i be a node and t a state. Then we define fi�t�=min{2, |N (i) ∩ S(t)|}.

The function fi gives the number of neighbors of node i in a specified
state. We further use the notation: fi(x/y/z/

 � = min{2, fi(x) + fi(y) +
fi�z�+

 } When the node i is clear from the context, we will drop the
subscript from fi. We also utilize the concept of bad edge, which is defined
next. The rules will be such that a bad edge can only occur as a result of faulty
initialization. A bad edge is an edge connecting two nodes in the following
list of pairs of states: 0–0, 0–0′, 0′–0′, 0′–2′, 1′–1′, and 2′–2′.

The complete algorithm for finding a 1-maximal independent set is given
in Algorithm 17.3.

{* All moves are tried in the listed order *}

V1: if flag is set and node is incident on bad edge
and after clearing flag node would not be incident on any bad edge
then clear flag

V2: if flag is clear and x ′ = f (0/ 0′) and (f (0/ 0′) ≥ 1 or f (1′/ 2′�= 0)
then set x = f (0/ 0′)

C1: if x = 0 and f (1) = 2 and f (0/ 0′/ 2′) = 0
then set x = 0′

C2: if x = 0′ and (f (1/ 1′) ≤ 1 or f (0/ 0′) ≥ 1)
then set x = f (0/ 0′)

C3: if x = 0′ and f (1′) = 2 and f (0′/ 2′) = 0
then set x = 2′

C4: if x = 2′ and f (1′) = 0
then set x = f (0/ 0′)

C5: if x = 1 and f (0′) = 1 and f (0/ 1′/ 2′) = 0
then set x = 1′

C6: if x = 1′ and (f (0′) �= 1 or f (0/ 1′/ 2′) ≥ 1)
then set x = f (0/ 0′)

Algorithm 17.3 Shi et al.’s algorithm for finding a 1-maximal independent set [81].

The algorithm converges in O(mn) time, where m is the number of edges
and n is the number of nodes in the network. The algorithm stabilizes to a
1-maximal independent set in O(n2) steps in an arbitrary tree.

660 Self-stabilization

Having seen two regular self-stabilizing algorithms, let us now discuss a
probabilistic self-stabilizing algorithm.

17.10 A probabilistic self-stabilizing leader election algorithm

We now discuss a probabilistic self-stabilizing leader election algorithm by
Dolev et al. [35]. The distributed system consist of n stations (sites) and
they need to choose a leader among themselves by using a leader election
algorithm. The following three possibilities arise: during a time unit, stations
can detect either silence, success, or collision.

Silence in the system implies that no station tried to transmit a message.
Success implies that only one station used the channel to transmit a message,
and finally, a collision implies that at least two stations attempted to transmit
messages.

The leader election algorithm is shown in Algorithm 17.4.

{Termination condition}
If n= 1 then Stop.

{Randomized selection process}
If n≥ 2 then randomly divide n into (n1, n−n1).
If n1 �= 0 then Apply d (n1).
Else Apply d(n).

Algorithm 17.4 Dolev et al.’s leader election algorithm d(n).

If the number of stations is greater than or equal to two, then, in the first
time unit, all the stations send their messages via the channel and, as a result,
a collision occurs. The first time unit is nothing but the first instance of a
time unit.

If we take a station S into consideration, in the next time unit, there are
two possibilities:

Case 1 S tries to send the message again, or
Case 2 S does not try to send the message again.

There are two possibilities for the first case (S tries to send the message
again): success or collision. If result is a success, then S is the leader, else (a
collision occurs) S flips a coin (send/not send).

For the second case (S does not participate), there are three possibilities:
silence, success, or collision. If silence occurs, then the station S flips the
coin (send/not send) again, if success occurs, then station S detects the leader,
and if a collision occurs, S is eliminated.

661 17.10 A probabilistic self-stabilizing leader election algorithm

Thus, the algorithm can be written as shown in Algorithm 17.5.

n stations, n≥ 2
First time unit: All stations send their messages via the channel;

Collision→ Each station flips a coin (send or not send) again.
Next time unit:

Case 1: Station S tries again
Success: S is the leader
Collision: S flips a coin again

Case 2: Station S isn’t participating
Silence: S flips again the coin
Success: S detects the leader
Collision: S is eliminated

Algorithm 17.5 Modified leader election algorithm.

Example We now illustrate the algorithm using the example shown in
Figure 17.5. In Figure 17.5 initially (in the first time unit), ABCD try to send
messages and a collision occurs. In the next time unit, A and B send message
again, while C and D do not participate. Since both A and B try to send their
messages, there is a collision again. As a result, C and D are eliminated. Now
in the next time unit, both A and B do not participate and the result is a
Silence. So both of them flip a coin and B decides to send a message again
and A decides not to participate. Since B is the only one sending a message,
the result is Success and B is the Leader and the algorithm terminates.

Figure 17.5 An example of
the leader election algorithm. Collision

Collision

Success

Φ

ABCD

CD

Silence

AB

AB

B AA

CD

Φ

662 Self-stabilization

17.11 The role of compilers in self-stabilization

A compiler converts a program written in a language into an equivalent
program in another language. Typically, the latter is an object program that is
to be run on a particular architecture. Formally, a compiler is a homomorphism
f : A→B, where A and B are two classes of architecture or systems. Then, for
each m EA, f�M) mimics the actions of M in some well-defined fashion [79].

When a source program is self-stabilizing, we expect the compiler to pro-
duce an object program that is self-stabilizing on the target architecture. It
would be highly desirable to have a “self-stabilizing compiler” that will con-
vert a non-self-stabilizing source program into self-stabilizing object code.

It is very important for the compiler to preserve the properties of the source
program that are important to the designers:

• In a sequential paradigm under termination it’s important that both the
programs compute the same results (quantitative).

• In a distributed or parallel paradigm, preservation of qualitative proper-
ties due to the need for control and coordination among the processes is
important.

Dijkstra [34], in his seminal work, implied that there doesn’t exist a com-
piler from asymmetric rings to symmetric rings that forces or preserves self-
stabilization. However, if self-stabilization is not required, we can compile
an asymmetric ring into a symmetric ring [79].

Gouda et al. [53] showed that self-stabilization across architectures is in
principle unstable. They also demonstrated that the ability to force or preserve
self-stabilization is very much dependent on how certain properties, such as
termination, fairness, and concurrency, are required to be preserved when
compiling from one system to other.

Next we discuss compilers that force self-stabilization in sequesntial pro-
grams, asynchronous distributed systems, and shared memory systems [79].

17.11.1 Compilers for sequential programs

The main focus of research on self-stabilization has been in the domains
of concurrent and distributed systems, where the goals of algorithms are
both qualitative and quantitative. Achieving self-stabilization in sequential
programs becomes much more difficult due to the termination requirement.

Browne et al. [19] and Schneider [77] suggested a rule-based program
model. A rule-based program consists of an initialization section and a finite
set of rules. A rule is a multiple assignment statement with an enabling
condition, called a guard, which is a predicate over the variables of the
program. If the guard of a rule is true for a state, then the rule is said to
be enabled. A computation is a sequence of rule firings, where at each step
an enabled rule is non-deterministically selected for execution. A program is

663 17.11 The role of compilers in self-stabilization

said to have terminated when a fixed point is reached. A fixed point is a state
in which the values of the variables can no longer change. A partial fixed
point is defined as a state from which the values of a subset of variables do
not change.

For a terminating program to be self-stabilizing, the relation it computes
should be verifiable in one step, else it might terminate in an unsafe state.
Browne et al. [19] showed that a class of programs exists for which there is
a compiler that forces self-stabilization while preserving termination. Object
programs have runtime and size within a constant factor of the source program.
However, it is assumed that inputs are incorruptible. These programs must
satisfy the following properties [79]:

• The data dependency graphs of these programs are acyclic.
• Each rule in the program assigns only one variable.
• For any pair of enabled rules with the same target variable, both rules will

assign the same value to the variable.

For arbitrary programs, one cannot obtain the same result as for acyclic pro-
grams. Consider the class of programs restricted to boolean variables. Schnei-
der [77] showed that if there exists a compiler that forces self-stabilization
onto boolean programs, while preserving termination, then PSPACE = NP,
which is not a very likely result. Further, if we require that the source and
target to have the same set of variables, then PSPACE = P, which is even
less likely result.

However, if we waive the requirement that the object program reach a fixed
point (i.e., the condition of termination), life becomes simpler. Schneider
[77, 78] introduced the notion of partial fixed-points (where termination not

required) and showed that one can produce, in quadratic time, an equivalent
self-stabilizing program with time complexity and size within a constant factor
of the original.

17.11.2 Compilers for asynchronous message passing systems

Such a compiler should convert a non-self-stabilizing program into a self-
stabilizing version in an asynchronous message passing system [69]. This
is accomplished through a self-stabilizing platform, which when interleaved
with a non-self-stabilizing program, yields a self-stabilizing program. The
resulting program is called an extension of the original program.

The algorithm consists of three components [69]:

• A self-stabilizing version of Chandy–Lamport’s global snapshot algo-
rithm [28].

• A self-stabilizing reset algorithm that is superposed on it.
• A non-self-stabilizing program on which the former two are superposed

to obtain a self-stabilizing program.

664 Self-stabilization

The algorithm works as follows: a distinguished initiator repeatedly takes
global snapshots. After the distinguished initiator has obtained a snapshot, it
evaluates a predicate.1 on the collected state. If an illegitimate global state is
detected, then the initiator initiates the execution of the reset algorithm, which
resets the global state of the source program to an initial state. In this method-
ology, the compiler takes the program and the predicate (specifying the set
of safe states) as input and produces a self-stabilizing version of the program.

An extension
Informally, a program Q is an extension of program P if the subset of Q
corresponding to P behaves exactly like P, except that the same state may
repeat. If P terminates, its extension Q needs to repeat the final state of P
forever, changing only the variables not present in P, in order to achieve
self-stabilization. If Q terminates, it cannot be a self-stabilizing extension of
P because it could terminate in an illegal state.

The Katz and Perry methodology [69] has the following two drawbacks:
first, it might not be always possible to find a predicate that can distinguish
between legitimate and illegitimate states. Legitimate states could be defined
in terms of the reachable states. However, computing the reachable set might
become intractable. Second, a global snapshot algorithm does not produce the
current state. It captures a possible successor to the state it was initited in. If
the original program stabilizes by itself, we might end up doing a reset from
a legitimate state.

17.11.3 Compilers for asynchronous shared memory systems

In shared-memory systems, we can write the snapshot and reset algorithms
in a way very similar to message-passing systems. A self-stabilizing syn-
chronous shared memory system might be compiled into an asynchronous
self-stabilizing shared memory system as follows [79]: assume that a process
can read and write in one atomic action and that each shared variable is
written by only one process (called the owner of the variable). The steps of
the synchronous system are simulated using a self-stabilizing asynchronous
unison algorithm. One step of the synchronous algorithm is executed each
time the clock is incremented. For each shared variable, two copies are main-
tained: one to store the current value and another to store the previous value.
This allows a process to access the previous value of a shared variable even
if it has been updated by another process. When the local clock of a process
ticks from i to i+ 1, it concurrently executes one step of the synchronous
system and updates current and previous values of all variables that it owns.

1 It is assumed that there exists a decidable predicate that can detect whether a global state is
legitimate

665 17.12 Self-stabilization as a solution to fault tolerance

17.12 Self-stabilization as a solution to fault tolerance

Self-stabilization is the property of a system, component, process, or object
to correct itself no matter how severely its state variables, including memory,
message buffers, and registers, are corrupted. Self-stabilization is most inter-
esting for distributed and concurrent systems because local detection of a
faulty condition is difficult.

Self stabilization has risen beyond the theory and has served as a guiding
principle in many network protocols (in fact, a number of Internet and LAN
protocols are self-stabilizing or very close to it). Recent applied research has
succeeded in demonstrated self-stabilizing file systems and in implementing
protocols for routing, reprogramming, and synchronizing nodes in sensor
networks. These examples show that the principles of self-stabilization can
be used to implement lightweight solutions to the problems of fault tolerance
in real-life systems.

Fault tolerance
Fault tolerance is defined as tolerance to transient failures, in which the state
of a component changes spontaneously, but the component remains correct.

Fault-tolerance or graceful degradation is the property that enables a system
to continue operating properly in the event of the failure of some of its
components. The quality of operation may decrease in proportion to the
severity of the failure, while in a naively designed system, even a small failure
can cause the total system breakdown.

In a system, fault tolerance is generally achieved by anticipating exceptional
conditions and designing the system to cope with them. The concept of self-
stabilization has emerged as a complementary paradigm to fault tolerance in
distributed computing. A system is said to be self-stabilizing if, starting from
any state, it automatically recovers to a specified set of legal states in finite
time. The arbitrary state from which the system starts may be a faulty state due
to a transient failure within the system. Such a fault could be the corruption
of local memory, loss of a message, or reception of a corrupted message.
During the recovery process, the user may experience a partial loss of services
and performance, but guarantee is given that correct system operation will
eventually resume.

Self-stabilizing systems meet a stronger notion of correctness under failures.
If a transient error pushes the system into an inconsistent or incorrect state,
then regardless of the origin and type of the failure, the system eventually
coverges to a correct state without any outside assistance. The fact that the type
of fault is not specified further contains the striking power of the paradigm:
the ability to mask the effect of faults is traded for the ability to tolerate any
kind and any number of faults. Thus, self-stabilizing systems offer a degree
of fault tolerance that goes beyond the shortcomings of traditional approaches
for designing fault-tolerant systems.

666 Self-stabilization

Robustness is one of the most important requirements of modern distributed
systems and a practical distributed system should be able to recover from
any transient faults of the processors and communication links. Ideally, the
recovery process should automatically start as soon as a fault is detected and
must not rely on the assumption that it is possible to start the system from a
well-defined state. It is not reasonable to assume that the code executed by
every processor is not altered by transient faults. This code may be stored in
a read-only memory or may be reloaded from a non-volatile memory after a
transient fault. A distributed self-stabilizing system is a system that can start
from any possible initial state and reach a legitimate state in finite time.

Self-stabilization is a different way of looking at distributed system fault
tolerance; it provides a “built-in-safeguard” against “transient failures” that
might corrupt the data in a distributed system; self-stabilization enables sys-
tems to recover from failures automatically without any intervention by any
external agency. Stabilizing algorithms are optimistic in the sense that the
distributed system may temporarily behave inconsistently but a return to cor-
rect system behavior is guaranteed in a finite time, while traditional robust
distributed algorithms follow a pessimistic approach in that it protects against
the worst possible scenario which demands an assumption of the upper bound
on the number of faults.

Self-stabilization provides a unified approach to transient failures by for-
mally incorporating them into the design model. The following transient faults
can be handled by a self-stabilizing system [79]:

• Inconsistent initialization Different processes in the program may be
initialized to local states that are inconsistent with one another.

• Mode of change There can be different modes of execution of a system.
In changing the mode of operation, it is impossible for all of the processes
to effect the change at the same time. The program is bound to reach a
global state in which some processes have changed while others have not.

• Transmission errors These errors include loss, corruption, or reordering
of messages and can cause inconsistency between the states of the sender
and receiver.

• Process failure and recovery If a process goes down and recovers later,
its local state may be inconsistent with the rest of the system/program.

• Memory crash A memory crash may cause the loss of local state, mak-
ing it inconsistent with the rest of the system/program.

Traditional approaches to fault tolerance have addressed each of these issues
separately. Self-stabilization provides a unified approach to fault tolerance by
handling all these issues single-handedly.

Global initialization is not necessary; each component can be started sepa-
rately in an arbitrary state. Self-stabilization does not rely on particular initial
state as other distributed algorithms do. There is no need for proper and con-
sistent initialization. A self-stabilizing distributed system eventually reaches a

667 17.13 Factors preventing self-stabilization

legitimate system state, regardless of its initial state. Because of this property,
a self-stabilizing distributed system is extremely robust against failures; it
tolerates any finite number of transient failures.

Self-stabilization can be applied to topology preservation/control. After a
topological change the system converges to a new feasible configuration. The
self-stabilization principle applies to any system built on significant number
of components which are evolving independently from one another, but which
are cooperating or competing to achieve some common goals. This applies, in
particular to large distributed systems which tend to result from the integration
of many subsystems and components developed separately earlier by different
people.

The investigation and use of self-stabilization as an approach to fault-
tolerance has been undergoing a renaissance. Dijkstra’s notion of self-
stabilization, which originally had a very narrow scope of application, is
proving to encompass a formal and unified approach to fault tolerance under
a model of transient failures for distributed systems. Self-stabilization has
most obvious application to the network protocols area since communication
protocols should be especially tolerant to temporary faults.

17.13 Factors preventing self-stabilization

In this section, we discuss some of the factors that prevent self-stabilization.
The factors preventing self-stabilization include the following:

• Symmetry
• Termination
• Isolation
• Look-alike configuration.

Symmetry
Self-stabilization requires that all processes should not be identical/symmetric
because a self-stabilization solution generally relies on a distiguished process.
Asymmetry must be maintained in systems where processes may synchronize
with one another such as mutual exclusion, dining philosophers, drinking
philosophers, and resource allocation systems under deterministic rules.

A system can be asymmetric by state or asymmetric by identity. A system
is asymmetric by state when all processes are identical; however, they start
from different initial local states. A system is asymmetric by identity when
not all of the processes are identical. In general, a system asymmetric only
by state cannot be self-stabilizing, while a system asymmetric by identity can
be self-stabilizing.

668 Self-stabilization

Termination
Self-stabilization is generally incompatible with termination. If any unsafe
global state is a final state, then a system will not be able to stabilize.
Though self-stabilization is generally incompatible with termination, there is
one exceptional case where self-stabilization can be achieved in the presence
of termination. That is, in the case of finite-state sequential programs, since
the number of states is finite, a compiler can remove all the unsafe states [79].

While the property of termination is very natural when dealing with algo-
rithms whose goal is to compute a function (i.e., quantitative), it is unnatural
in the domain of distributed systems, where computations are non-terminating
by design and have qualitative goals such as coordination and control.

One form of termination that occurs within distributed systems is deadlock
where one or more processes wait for an event that will never occur [69].
In a distributed message-passing system, processes will be waiting for mes-
sages to come from other processes. A process sends a message and then waits
for a response. By way of a malicious adversary, control of a local process
could be placed at a point just after a send instruction without a message
actually having been sent. Thus at any local process state that follows the
sending of a message, it is impossible for that process to know whether a
message has in fact been sent.

This situation can lead to deadlock where one or more processes wait for
messages that will never come. The problem of deadlock is not seen in a
shared memory system. Because a process can test the value of shared memory
when required, there is no waiting for messages and thus no deadlock.

Isolation
Isolation occurs within a system when the local state and computation of
each process is consistent with some safe global state and computation;
however, the resulting global state and computation is not safe. In such a
situation, the system is unable to stabilize due to inadequate communication
and coordination between its processes [53, 79].

Look-alike configurations
Look-alike configurations result when the same computation (sequence of
actions) is enabled in two different states with no way to differentiate between
them [53, 79]. If one of the two states is unsafe, then the system cannot
guarantee convergence from the unsafe state.

17.14 Limitations of self-stabilization

The problem in self-stabilizing systems is the time it takes for a system to
correct itself when started in an illegal state or there is an error causing it to go
in an illegal state. If a system cannot tolerate this initial unknown period, then

669 17.14 Limitations of self-stabilization

self-stabilization does not help. Even if the initial unknown can be tolerated
for a brief period of time, the system may not converge to a legal state quickly
enough.

Need for an exceptional machine
Almost all self-stabilization algorithms rely on the fact that there is at least
one exceptional machine in the system. This may be difficult to achieve in
some systems, but it is not a major drawback in most distributed systems.

Convergence–response tradeoffs
The convergence span denotes the maximum number of critical transitions
made before the system reaches a legal state and the response span denotes
the maximum number of transitions to get from some starting state to some
goal state. Critical transitions are similar to errors occurring in the system
due to a move. For example, in a mutual exclusion system, if one process
is in its critical section and another process makes a move and enters its
critical section, an error has occurred because more than one process has been
allowed to enter its critical section.

Several self-stabilizing termination detection algorithms, each having dif-
ferent properties, have been developed. For a ring of n processes, if one has
comparative convergence and response spans, one has a fast convergent span
and a slow response span, and another shows the relationship between the
two spans. If the convergence span is decreased by a factor of k (1≤ k≤ n),
the response span is increased by the same factor. So, the convergence span
is of the order of n/k while the response span is n*k. This relationship exists
in all the other classes of self-stabilizing systems.

This relationship is reasonable because the more checks that are made, the
longer it will take to converge, while there will be a fewer number of errors
made. This relationship is very useful in the design of self-stabilizing systems
because the system can be modified according to the goal of the system.
Depending on the requirements of the system, one can have fast convergence
with many errors or slower convergence with fewer errors or something in
between.

Pseudo-stabilization
It is sometimes expensive to design self-stabilizing systems. Lessening the
requirements of the system can reduce some of the cost. A system is said to
stabilize if and only if every computation has some state in it such that any
computation starting from this state will be in the set of legal computations.
On the other hand, in order for a system to pseudo-stabilize, every compu-
tation only needs to have some state such that the suffix of the computation
beginning at this state is in the set of legal computations [23]. The property of
pseudo-stabilization is obviously weaker than the requirement of stabilization,
although, it is less expensive to implement.

670 Self-stabilization

Verification of self-stabilizing systems
When designing self-stabilizing systems, verifying the correctness of these
algorithms may be difficult, but there has been some work in this area.
A convergence stair method has been developed where the legal states are
built up step by step. Proof that the algorithm stabilizes in each step, verifies
the correctness of the entire algorithm. The interleaving assumptions can be
relaxed to make it easier to verify the correctness of the algorithm. Algorithms
that are pseudo-stabilizing [23] are usually good enough for many systems,
and these are easier to implement, easier to verify, and more efficient to run.

17.15 Chapter summary

Self-stabilization has been used in many areas and the areas of study continue
to grow. Algorithms have been developed using central or distributed demons
and uniform and non-uniform networks. The algorithms that assume a central
demon can usually be easily extended to support distributed demon, so these
algorithms are still useful when applied to distributed systems.

Extensions of communication protocols that are self-stabilizing have also
been developed, such as the sliding window protocol, the two-way handshake,
and the alternating-bit protocol [2]. The major drawback of self-stabilizing
systems is the initial illegal configurations. The system must converge quickly
in order to make the illegal configurations less serious. Verification of the
systems can be difficult, but there are ways to make it easier. Relaxing
interleaving assumptions and usage of a convergence stair are two of the
ways. Some of the assumptions made while designing the systems make it
nearly impossible to implement the systems. For example, self-stabilizing
protocols require a timeout action that needs to examine the contents of the
communication link and also needs to know the values of some non-local
variables. Global timeout actions are usually avoided, which makes these
algorithms not easy to implement.

These requirements may not be necessary in some cases. The alternating-bit
protocol [2], for example, does not need unbounded sequence numbers, nor
does it need expensive global timeout actions. Therefore, this protocol can
be implemented relatively easily, and even though the algorithm is pseudo-
stabilizing and not exactly stabilizing, this does not affect the usefulness of
the algorithm in most situations.

17.16 Exercises

Exercise 17.1 When self-stabilization claims to solve so many problems in fault
tolerance in a unified manner, why are people still studying and investigating each of
those problems individually?

671 References

Exercise 17.2 Describe the self-stabilizing alternating-bit protocol.

Exercise 17.3 Give a psuedo-stabilization algorithm. Discuss how it reduces the cost
compared to stabilization.

Exercise 17.4 What is “superstabilization”? What type of guarantees do superstabi-
lization provide?

Exercise 17.5 What are the trade-offs in a self-stabilizing system/algorithm?

Exercise 17.6 Fault containment is a problem with self-stablizing algorithms. What
are fault-containing self-stablizing algorithms [48]? Describe how they solve the
problem.

Exercise 17.7 Describe a self-stabilizing mutual exclusion algorithm.

Exercise 17.8 One weakness of self-stabilization is that it is a global property. A
failure that is local to a machine may spread and lead to corrective actions across
the entire system. Discuss how this problem can be addressed by local detection and
correction of failures [4, 15].

17.17 Notes on references

The idea of self-stabilization was first proposed by Dijkstra in a seminal paper in 1974
[34]. Since then considerable volume of work has been done on this topic. The most

extensive work in self-stabilization has been done in the area of mutual exclusion
[24,64,67,74]. The reason for this is mainly due to Dijkstra’s original self-stabilizing

model, where a legal state is defined as a state in which only one privilege exists in
the system.

An excellent survey on the topic is due to Schneider [79]. An excellent review article
on the topic is due to Flatebo et al. [42]. An excellent monograph on the topic is Dolev
[37]. Gartner [43] presents a survey of algorithms for construction of self-stabilizing
spanning trees. Aggarwal [6, 7] presents a time optimal self-stabilizing algorithm for
spanning trees. Antonioiv and Srimani [8]– [10] discuss self-stabilizing algorithms to
construct minimum spanning trees. More details on distributed reset can be found in
[12]. Chang et al. [27] discuss the cost of self-stabilization. Self-stabilization has been
used to design more robust distributed mechanisms, such a synchronization [13]. Other
interesting papers on the topic include [1, 11, 14, 16–18, 26, 32, 33, 36, 38, 39, 42, 44–
46, 50–52, 56–58, 60–62, 65, 70–72, 75, 78, 82, 83].

References

[1] M. S. Abadir and M. G. Gouda The stabilizing computer, Proceedings of the 1992
International Conference on Parallel and Distributed Systems, December, 1992.

[2] Y. Afek and G. Brown, Self-stabilization of the alternating-bit protocol, Pro-
ceedings of the 8th Symposium on Reliable Distributed Systems, 1989, 80–83.

[3] Y. Afek, S. Kutten, and M. Yung, Memory efficient self-stabilizing protocols for
general networks, Proceedings of the 4th International Workshop on Distributed
Algorithms, 1991, 15–28.

672 Self-stabilization

[4] Y. Afek, S. Kutten, and M. Yung, The local detection paradigm and its appli-
cations to self-stabilization, Theoretical Computer Science, 186(1–2), 1997,
199–229.

[5] Y. Afek and A. Bremler, Self-stabilizing unidirectional network algorithms by
power supply, Chicago Journal of Theoretical Computer Science, 1998(3), 1998.

[6] S. Aggarwal, Time Optimal Self-stabilizing Spanning Tree Algorithms, Techni-
cal Report MIT-LCS/MIT/LCS/TR-632, Massachusetts Institute of Technology,
Laboratory for Computer Science, August 1994.

[7] S. Aggarwal and S. Kutten, Time optimal self-stabilizing spanning tree algo-
rithms, in R. K. Shyamasundar (ed.). Proceedings of Foundations of Software
Technology and Theoretical Computer Science, Berlin, Germany, December
1993, 400–410.

[8] G. Antonoiu and P. K. Srimani, A self-stabilizing distributed algorithm to con-
struct an arbitrary spanning tree of a connected graph, Computers and Mathe-
matics with Applications, 30, 1995, 1–7.

[9] G. Antonoiu and P. K. Srimani, Distributed self-stabilizing algorithm for mini-
mum spanning tree construction, Proceedings of Euro-Par ’97 Parallel Process-
ing, 1997, 480–487.

[10] G. Antonoiu and P. K. Srimani, A self-stabilizing distributed algorithm for min-
imal spanning tree problem in a symmetric graph, Computers and Mathematics
with Applications, 35(10), 1998, 15–23.

[11] A. Arora and M. G. Gouda, Closure and convergence: a foundation for fault-
tolerant computing, Proceedings of the 22nd International Conference on Fault-
Tolerant Computing Systems, 1992, 396–403.

[12] A. Arora and M. G. Gouda, Distributed reset, IEEE Transactions on Computers,
43(9), 1994, 1026–1038.

[13] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, Time
optimal self-stabilizing synchronization, Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, San Diego, CA, May 16–18, 1993,
652–661.

[14] B. Awerbuch and R. Ostrovsky, Memory-efficient and self-stabilizing network
reset, Symposium on Principles of Distributed Computing (PODC ’94), New
York, August 1994, 254–263.

[15] B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilization by local check-
ing and correction, Proceedings of the 31st Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS91, 1991, 268–277.

[16] B. Awerbuch and G. Varghese, Distributed program checking: a paradigm for
building self-stabilizing distributed protocols, Proceedings of the 32nd IEEE
Symposium on Foundations of Computer Science, October 1991, 268–277.

[17] P. Awerbuch and G. Varghese, Self-stabilization by local checking and correc-
tion, Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science, October 1991.

[18] Y. Bastani and Y. Zhao, On self-stabilization, non-determinism, and inherent
fault tolerance, Proceedings of the MCC Workshop on Self-Stabilizing Systems,
MCC Technical Report STP-379-89, 1989.

[19] J. C. Browne, A. Emerson, M. Gouda, D. Miranker, A. Mok, and L. Rosier,
Bounded time fault-tolerant rule-based systems, Telematics Information, 7(3/4),
1990, 441–454.

[20] G. M. Brown, M. G. Gouda, and C.-L. Wu, Token systems that self stabilize,
IEEE Transactions on Computers, 38(6), 1989, 845–852.

[21] J. E. Burns and J. K. Pachl, Uniform self-stabilizing rings, ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(2), 1989, 330–344.

673 References

[22] J. E. Burns, Self-stabilizing Rings Without Demons, Technical Report GITICS-
87/36, Georgia Institute of Technology, 1987.

[23] J. E. Burns, M. G. Gouda, and R. E. Miller, Stabilization and pseudo-stabilization,
Distributed Computing archive, 7(1), 1993.

[24] J. E. Burns, M. G. Gouda, and R. E. Miller, On relaxing interleaving assumptions,
Proceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical
Report STP-379-89, 1989.

[25] R. W. Buskens and R. P. Bianchini, Jr., Self-stabilizing mutual exclusion in the
presence of faulty nodes, Proceedings of the 25th International Symposium on
Fault Tolerant Computing 1995, 144–153.

[26] F. Butelle, C. Lavault, and M. Bui, A uniform self-stabilizing minimum diam-
eter tree algorithm (extended abstract), in J.-M. H́elary and M. Raynal, (eds),
Distributed Algorithms, 9th International Workshop, WDAG ’95, Le Mont-Saint-
Michel, France, September 13–15, 1995, 25–272.

[27] E. J. H. Chang, G. H. Gonnet, and D. Rotem, On the costs of self-stabilization,
Information Processing Letters, 24(5), 1987, 311–316.

[28] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states
of distributed systems, ACM Transactions on Computer Systems, 1985, 63–75.

[29] N. S. Chen, H.-P. Yu, and S.-T. Huang, A self-stabilizing algorithm for con-
structing spanning trees, Information Processing Letters, 39, 1991, 147–151.

[30] Cisco Systems Inc, Using Vlan Director, system documentation, 1998, avail-
able online at: www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/swntman/
cwsimain/cwsi2/cwsiug2/vlan2/index.htm.

[31] Z. Collin and S. Dolev, Self-stabilizing depth first search, Information Processing
Letters, 49, 1994, 297–301.

[32] N. F. Couvreur and M. G. Gouda, Asynchronous unison, Proceedings of the 12th
International Conference on Distributed Computing Systems, Yokohama, Japan,
June 1992.

[33] E. W. Dijkstra, A belated proof of self-stabilization, Distributed Computing, 1,
1986, 5–6.

[34] E. W. Dijkstra, Self stabilizing systems in spite of distributed control, Commu-
nications of the ACM, 17(11), 1974, 643–644.

[35] S. Dolev, A. Israeli, and S. Moran, Uniform dynamic self-stabilizing leader
election, IEEE Transactions on Parallel and Distributed Systems, 8(4), 1997,
424–440.

[36] S. Dolev, Optimal time self-stabilization in dynamic systems (preliminary ver-
sion), in André Schiper (ed.), Proceedings of the 7th International Workshop on
Distributed Algorithms (WDAG93), Lausanne, Switzerland, September 27–29,
1993, 160–173.

[37] S. Dolev, Self-Stabilization, MIT Press, 2000.
[38] S. Dolev, M. G. Gouda, and M. Schneider, Memory requirements for silent

stabilization, Acta Informatica, 36(6), 1999, 447–462.
[39] S. Dolev, A. Israeli, and S. Moran, Self stabilization of dynamic systems, Pro-

ceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical
Report STP-379-89, 1989.

[40] S. Dolev, A. Israeli, and S. Moran, Self-stabilization of dynamic systems assum-
ing only read/write atomicity, Proceedings of the 9th Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Canada, August 22–24,
1990, 103–117.

[41] M. Flatebo and A. Datta, Two-state self-stabilizing algorithms, Proceedings of
the 6th International Parallel Processing Symposium, Beverly Hills, CA, March
1992, 198–203.

674 Self-stabilization

[42] M. Flatebo, A. K. Datta, and S. Ghosh, Self-stabilization in distributed systems, in
T. L. Casavant and M. Singhal (eds), Readings in Distributed Computer Systems,
New York, IEEE Computer Society Press, 1994, 100–114.

[43] F. C. Gartner, A Survey of Self-Stabilizing Spanning-Tree Construction Algo-
rithms, EPFL Technical Report, 2003. Available online at: icwww.epfl.ch/
publications/documents/IC_TECH_REPORT_200338.pdf.

[44] F. C. Gartner and H. Pagnia, Time-efficient self-stabilizing algorithms through
hierarchical structures, Proceedings of the 6th Symposium on Self-Stabilizing
Systems, San Francisco, June 2003, Springer-Verlag.

[45] C. Genolini and S. Tixeuil, A lower bound on dynamic k-stabilization in asyn-
chronous systems, SRDS 2002 21st Symposium on Reliable Distributed Systems,
2002, 211–221.

[46] S. Ghosh, Binary self-stabilization in distributed systems, Information Processing
Letters, 40(3), 1991, 153–159.

[47] S. Ghosh, Self-stabilizing distributed systems with binary machines, Proceedings
of the 28th Annual Allerton Conference, 1990, 988–997.

[48] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju, Fault-containing self-
stabilizing algorithms, Proceedings of the 15th Annual ACM Symposium on
Principles of distributed computing, Philadelphia, 1996, 45–54.

[49] S. Ghosh, Understanding Self-stabilization in Distributed Systems, Techni-
cal Report TR-90-02, Department of Computer Science, University of Iowa,
1990.

[50] S. Ghosh, A. Gupta, and S. Pemmaraju, A fault-containing self-stabilizing algo-
rithm for spanning trees, Journal of Computing and Information, 2, 1996,
322–338.

[51] S. Ghosh, A. Gupta, M. Karaata, and S. Pemmaraju, Self-stabilizing dynamic
programming algorithms on trees, Proceedings of the 2nd Workshop on Self-
Stabilizing Systems, 1995, 11.1–11.15.

[52] M. G. Gouda, The Stabilizing Philosopher: Asymmetry by Memory and by Action,
Technical Report TR-87-12, Department of Computer Sciences, University of
Texas at Austin, 1987.

[53] M. G. Gouda and M. Evangelist, Convergence/response tradeoffs in concurrent
systems, Proceedings of the 2nd IEEE Symposium on Parallel and Distributed
Processing, December 1990, 288–292.

[54] M. G. Gouda and T. Herman, Stabilizing unison, Information Processing Letters,
35, 1990, 171–175.

[55] M. G. Gouda and N. Multari, Stabilizing communication protocols, IEEE Trans-
actions on Computers, 40(4), 1991, 448–458.

[56] M. G. Gouda, R. R. Howell, and L. E. Rosier, The instability of self-stabilization,
Acta Informatica, 27, 1990, 697–724.

[57] F. F. Haddix, Stabilization of Bounded Token Rings, Technical Report ARL-TR-
91-31, Applied Research Laboratory, University of Texas at Austin, 1991.

[58] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, Self-
stabilizing algorithms for minimal dominating sets and maximal independent
sets, Computers, Mathematics and Applications, 46(5–6), 2003, 805–811.

[59] T. Herman, Probabilistic self-stabilization, Information Processing Letters, 35(2),
1990, 63–67.

[60] T. Herman, Self-stabilization: randomness to reduce space, Distributed Comput-
ing, 6, 1992, 95–98.

[61] L. Higham and Z. Liang, Self-stabilizing minimum spanning tree construction
on message-passing networks, Proceedings of the 15th International Symposium
on Distributed Computing (DISC), Lisbon, Portugal, October 2001.

675 References

[62] S.-C. Hsu and S.-T. Huang, A self-stabilizing algorithm for maximal matching,
Information Processing Letters, 43(2), 1992, 77–81.

[63] S. Huang and N. Chen, A self-stabilizing algorithm for constructing breadth-first
trees, Information Processing Letters, 41, 1992, 109–117.

[64] A. Israeli and M. Jaflon, Token management schemes and random walks yield
self-stabilizing mutual exclusion, Proceedings of the 9th Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, August,
22–24, 1990, 119–131.

[65] G. Itkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols,
Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, November 20–22, 1994, 226–239.

[66] C. Johnen, Memory efficient, self-stabilizing algorithm to construct BFS span-
ning trees, Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’97), August 1997, 288.

[67] H. Kakugawa and M. Yamashita, A Universal Self-Stabilizing Mutual Exclu-
sion Algorithm, Dagstuhl Seminor 00431: SelfStabilization, Dagstuhl, Germany,
2000. Available online at http://citeseer.ist.psu.edu/yamashita00universal.html.

[68] R. Kat, Self-stabilizing replication file system, September 2002 available online
at: www.cs.bgu.ac.il/srfs/.

[69] S. Katz and K. J. Perry, Self-stabilizing extensions for message-passing systems,
Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, Quebec City, Canada, August 1990, 22–24, 91–101.

[70] H. S. M. Kruijer, Self-stabilization (in spite of distributed control) in tree-
structured systems, Information Processing Letters, 8(2), 1979, 2–79.

[71] D. Lehman and M. Rabin, On the advantages of free choice: a symmetric and
fully distributed solution of the dining philosopher’s problem, Proceedings of the
8th Annual ACM Symposium on Principles of Programming Languages, 1981.

[72] X. Lin and S. Ghosh, Self-stabilizing maxima finding, Proceedings of the 28th
Annual Allerton Conference, 1991, 662–671.

[73] M. Luby, A simple parallel algorithm for the maximal independent set problem,
SIAM Journal on Computing, 15(4), 1986, 1036–1055.

[74] M. Mizuno, M. Nesterenko, and H. Kakugawa, Lock based self-stabilizing dis-
tributed mutual exclusion algorithms, International Conference on Distributed
Computing Systems, 1996, 708–716.

[75] R.-C. Pan, J.-Z. Wang, and L. R. Chow. A self-stabilizing distributed spanning
tree construction algorithm with a distributed demon, Tamsui Oxford Journal of
Mathematical Sciences, 15, 1999, 23–32.

[76] M. Schneider, Self-Stabilization – A Unified Approach to Fault Tolerance in the
Face Transient Errors, TechReport TR-91-18, Department of Computer Science,
University of Texas at Austin, TX, 1991.

[77] M. Schneider, Compiling Self-Stabilization into Sequential Programs, Depart-
ment of Computer Science, University of Texas at Austin, TX, 1992.

[78] M. Schneider, Lecture notes on Self-Stabilization, The University of
Texas at Austin, available online at: www.cs.utexas.edu/users/plaxton/c/395t/
slides/Schneider.pdf.

[79] M. Schneider, Self stabilization, ACM Computing Surveys, 25(1), 1993.
[80] S. Shukla, D. Rosenkrantz, and S. Ravi, Observations on self-stabilizing graph

algorithms for anonymous networks, Proceedings of the Second Workshop on
Self-Stabilizing Systems, 1995, 7.1–7.15.

[81] Z. Shi, W. Goddard, and S. T. Hedetniemi, An anonymous self-stabilizing
algorithm for 1-maximal independent set in trees, Information Processing Letters,
91(2), 2004, 77–83.

676 Self-stabilization

[82] S. Sur and P. K. Srimani, A self-stabilizing distributed algorithm to construct
BFS spanning trees of a symmetric graph, Parallel Processing Letters, 2(2–3),
1992, 171–179.

[83] M.-S. Tsai and S.-T. Huang, A self-stabilizing algorithm for the shortest paths
problem with a fully distributed demon, Parallel Processing Letters, 4(1–2),
1994, 65–72.

C H A P T E R

18 Peer-to-peer computing and
overlay graphs

18.1 Introduction

Peer-to-peer (P2P) network systems use an application-level organization of
the network overlay for flexibly sharing resources (e.g., files and multimedia
documents) stored across network-wide computers. In contrast to the client–
server model, any node in a P2P network can act as a server to others
and, at the same time, act as a client. Communication and exchange of
information is performed directly between the participating peers and the
relationships between the nodes in the network are equal. Thus, P2P networks
differ from other Internet applications in that they tend to share data from a
large number of end users rather than from the more central machines and
Web servers. Several well known P2P networks that allow P2P file-sharing
include Napster [25], Gnutella [16,17], Freenet [10], Pastry [30], Chord [32],
and CAN [27].

Traditional distributed systems used DNS (domain name service) to provide
a lookup from host names (logical names) to IP addresses. Special DNS
servers are required, and manual configuration of the routing information is
necessary to allow requesting client nodes to navigate the DNS hierarchy.
Further, DNS is confined to locating hosts or services (not data objects that
have to be a priori associated with specific computers), and host names need
to be structured as per administrative boundary regulations. P2P networks
overcome these drawbacks, and, more importantly, allow the location of
arbitrary data objects.

An important characteristic of P2P networks is their ability to provide a
large combined storage, CPU power, and other resources while imposing a
low cost for scalability, and for entry into and exit from the network. The
ongoing entry and exit of various nodes, as well as dynamic insertion and
deletion of objects is termed as churn. The impact of churn should be as
transparent as possible. P2P networks exhibit a high level of self-organization
and are able to operate efficiently despite the lack of any prior infrastructure
or authority. The philosophy of this model requires that if a node wants to

677

678 Peer-to-peer computing and overlay graphs

Table 18.1 Desirable characteristics and performance features of P2P systems.

Features Performance

Self-organizing Large combined storage, CPU power, and resources
Distributed control Fast search for machines and data objects
Role symmetry for nodes Scalable
Anonymity Efficient management of churn
Naming mechanism Selection of geographically close servers
Security, authentication, trust Redundancy in storage and paths

enjoy the services which other nodes provide, that node should provide service
to other nodes. Some desirable features of P2P systems are summarized in
Table 18.1.

18.1.1 Napster

One of the earliest popular P2P systems, Napster [25], used a server-mediated
central index architecture organized around clusters of servers that store direct
indices of the files in the system. The central server maintains a table with the
following information of each registered client: (i) the client’s address (IP) and
port, and offered bandwidth, and (ii) information about the files that the client
can allow to share. The basic steps of operation to search for content and to
determine a node from which to download the content are the following:

1. A client connects to a meta-server that assigns a lightly loaded server from
one of the close-by clusters of servers to process the client’s query.

2. The client connects to the assigned server and forwards its query along
with its own identity.

3. The server responds to the client with information about the users con-
nected to it and the files they are sharing.

4. On receiving the response from the server, the client chooses one of the
users from whom to download a desired file. The address to enable the
P2P connection between the client and the selected user is provided by
the server to the client.

Users are generally anonymous to each other. The directory serves to provide
the mapping from a particular host that contains the required content, to the
IP address needed to download from it.

18.1.2 Application layer overlays

A core mechanism in P2P networks is searching for data, and this mechanism
depends on how (i) the data, and (ii) the network, are organized. Search algo-
rithms for P2P networks tend to be data-centric, as opposed to the host-centric
algorithms for traditional networks. P2P search uses the P2P overlay, which

679 18.2 Data indexing and overlays

is a logical graph among the peers that is used for the object search and
object storage and management algorithms. Note that above the P2P over-
lay is the application layer overlay, where communication between peers is
point-to-pont (representing a logical all-to-all connectivity) once a connection
is established.

The P2P overlay can be structured (e.g., hypercubes, meshes, butterfly
networks, de Bruijn graphs) or unstructured, i.e., no particular graph structure
is used. Structured overlays use some rigid organizational principles based
on the properties of the P2P overlay graph structure, for the object storage
algorithms and the object search algorithms. Unstructured overlays use very
loose guidelines for object storage. As there is no definite structure to the
overlay graph, the search mechanisms are more “ad-hoc,” and typicaly use
some forms of flooding or random walk strategies. Thus, object storage and
search strategies are intricately linked to the overlay structure as well as to
the data organization mechanisms.

18.2 Data indexing and overlays

The data in a P2P network is identified by using indexing. Data indexing
allows the physical data independence from the applications. Indexing mech-
anisms can be classified as being centralized, local, or distributed:

• Centralized indexing entails the use of one or a few central servers to
store references (indexes) to the data on many peers. The DNS lookup as
well as the lookup by some early P2P networks such as Napster used a
central directory lookup.

• Distributed indexing involves the indexes to the objects at various peers
being scattered across other peers throughout the P2P network. In order
to access the indexes, a structure is used in the P2P overlay to access
the indexes. Distributed indexing is the most challenging of the indexing
schemes, and many novel mechanisms have been proposed, most notably
the distributed hash table (DHT). Various DHT schemes differ in the
hash mapping, search algorithms, diameter for lookup, search diameter,
fault-tolerance, and resilience to churn.

A typical DHT uses a flat key space to associate the mapping between
network nodes and data objects/files/values. Specifically, the node address
is mapped to a logical identifier in the key space using a consistent hash
function. The data object/file/value is also mapped to the same key space
using hashing. These mappings are illustrated in Figure 18.1.

• Local indexing requires each peer to index only the local data objects
and remote objects need to be searched for. This form of indexing is
typically used in unstructured overlays in conjunction with flooding search
or random walk search. Gnutella uses local indexing.

680 Peer-to-peer computing and overlay graphs

Figure 18.1 The mappings
from node address space and
object space in a typical DHT
scheme, e.g., Chord, CAN,
Tapestry.

Object/file
value space

Native node identifier
(address) space

Common key (identifier)
space

An alternate way to classify indexing mechanisms is as being a semantic
index mechanism or a semantic-free index mechanism. A semantic index is
human readable, for example, a document name, a keyword, or a database
key. A semantic-free index is not human readable and typically corresponds
to the index obtained by a hash mechanism, e.g., the DHT schemes. A
semantic index mechanism supports keyword searches, range searches, and
approximate searches, whereas these searches are not supported by semantic-
free index mechanisms.

18.2.1 Distributed indexing

Structured overlays
The P2P network topology has a definite structure, and the placement of
files or data in this network is highly deterministic as per some algorithmic
mapping. (The placement of files can sometimes be “loose,” as in some earlier
P2P systems like Freenet, where “hints” are used.) The objective of such
a deterministic mapping is to allow a very fast and deterministic lookup to
satisfy queries for the data. These systems are termed as lookup systems and
typically use a hash table interface for the mapping. The hash function, which
efficiently maps keys to values, in conjunction with the regular structure of
the overlay, allows fast search for the location of the file.

An implicit characteristic of such a deterministic mapping of a file to a
location is that the mapping can be based on a single characteristic of the file
(such as its name, its length, or more generally some predetermined function
computed on the file). A disadvantage of such a mapping is that arbitrary
queries, such as range queries, attribute queries and exact keyword queries
cannot be handled directly.

Another implicit effect of the tight coupling of the regular overlay structure
and the rigid mapping function to enable fast access is that file insertions and
deletions incur some overhead which may be nontrivial under churn.

681 18.3 Unstructured overlays

Unstructured overlays
The P2P network topology does not have any particular controlled structure,
nor is there any control over where files/data is placed. Each peer typically
indexes only its local data objects, hence, local indexing is used. Node joins
and departures are easy – the local overlay is simply adjusted. File placement
is not governed by the topology. Search for a file may entail high message
overhead and high delays. However, complex queries are supported because
the search criteria can be arbitrary.

Although the P2P network topology does not have any controlled structure,
some topologies naturally emerge. The following topologies are common and
will be studied in later sections:

• Power law random graph (PLRG) This is a random graph where the
node degrees follow the power law. Here, if the nodes are ranked in terms
of their degree, then the ith node has c/i� neighbors, where c is a constant.

• Normal random graph This is a normal random graph where the nodes
typically have a uniform degree.

We study search in unstructured overlay networks in the next section.

18.3 Unstructured overlays

18.3.1 Unstructured overlays: properties

Unstructured overlays have the serious disadvantage that queries may take
a long time to find a file or may be unsuccessful even if the queried object
exists. The message overhead of a query search may also be high.

The following are the main advantages of unstructured overlays such as
the one used by Gnutella:

• Exact keyword queries, range queries, attribute-based queries, and other
complex queries can be supported because the search query can capture
the semantics of the data being sought; and the indexing of the files and
data is not bound to any non-semantic structure.

• Unstructured overlays can accommodate high churn, i.e., the rapid joining
and departure of many nodes without affecting performance.

The following are advantages of unstructured overlays if certain conditions
are satisfied:

• Unstructured overlays are efficient when there is some degree of data
replication in the network.

• Users are satisfied with a best-effort search.
• The network is not so large as to lead to scalability problems during the

search process.

682 Peer-to-peer computing and overlay graphs

18.3.2 Gnutella

Gnutella uses a fully decentralized architecture [16, 17]. In Gnutella logical
overlays, nodes index only their local content. The acutal overlay topology
can be arbitrary as nodes join and leave randomly. A node joins the Gnutella
network by forming a connection to some nodes found in standard Gnutella
directory-like databases. (Note that the function of joining the network cannot
be said to be fully decentralized.) Users communicate with each other, per-
forming the role of both server and client, termed as servent. The following
are the main message types used by Gnutella:

• Ping messages are used to discover hosts, and allow a new host to announce
itself.

• Pong messages are the responses to Pings. The Pong messages indicate
the port and (IP) address of the responder, and some information about the
amount of data (the number and size of files) that node can make available.

• Query messages. The search strategy used is flooding. Query messages
contain a search string and the minimum download speed required of the
potential responder, and are flooded in the network.

• QueryHit messages are sent as responses if a node receiving a Query
detects a local match in response to a query. A QueryHit contains the port
and address (IP), speed, the number of files found, and related information.
The path traced by a Query is recorded in the message, so the QueryHit
follows the same path in reverse.

18.3.3 Search in Gnutella and unstructured overlays

Consider a system with n nodes and m objects. Let qi be the popularity of
object i, as measured by the fraction of all queries that are queries for object
i. All objects may be equally popular, or more realistically, a Zipf-like power
law distribution of popularity exists. Thus [23],

m∑
i=1

qi = 1� (18.1)

uniform: qi = 1/m� Zipf-like: qi ∝ i−�� (18.2)

Let ri be the number of replicas of object i, and let pi be the fraction of all
objects that are replicas of i. Three static replication strategies are: uniform,
proportional, and square root. Thus,

m∑
i=1

ri = R� pi = ri/R� (18.3)

uniform: ri = R/m� proportional: ri ∝ qi� square-root: ri ∝√qi� (18.4)

683 18.3 Unstructured overlays

Under uniform replication, all objects have an equal number of replicas and
hence the performance for all query rates is the same. With a uniform query
rate, proportional and square-root replication schemes reduce to the uniform
replication scheme.

For an object search, some of the more popular metrics of efficiency are:

• the probability of success of finding the queried object;
• delay or the number of hops in finding an object;
• the number of messages processed by each node in a search;
• node coverage, the fraction of (distinct) nodes visited;
• message duplication, which is (#messages − #nodes visited)/#messages;
• maximum number of messages at a node;
• recall, the number of objects found satisfying the desired search criteria.

This metric is useful for keyword, inexact, and range queries;
• message efficiency, which is the recall per message used.

Guided versus unguided search
In unguided or blind search, there is no history of earlier searches, and
hence, each search is inherently independent. In guided search, nodes store
some history of past searches to aid future searches. Various mechanisms
for caching hints to guide and narrow down future searches are used. In
this chapter, we focus on unguided searches in the context of unstructured
overlays.

Search strategies
Flooding [23]
• In order to curtail the high message overhead that flooding introduces,

the initial strategy was to use checking. Here, a node checks back with
the query originator before forwarding a query. Unfortunately, this cause
heavy load on the originator, in addition to excessive delays, and hence is
not practical.

• The next approach is to use the time to live (TTL) field or the hop count.
However, this does not guarantee that a match can be found for the query
even if the object exists in the network, and requires a high value of TTL
to have a high degree of success.

• A refinement that allows more control is the expanding ring strategy.
A node first floods with a small TTL. If the search is not successful, it
starts another flood with a larger TTL, and so on. This strategy is more
successful when objects are replicated.
The expanding ring approach is significantly more successful than the TTL
approach, for all replication strategies, and all query distributions, and the
cost is only a relatively small increase in delay.

Although the expanding ring is superior to TTL, both are flooding-based
strategies and suffer from message duplication.

684 Peer-to-peer computing and overlay graphs

Random walk
Another strategy to use is that of random walking. Here, a query is randomly
forwarded by a node when it is received. Random walk greatly reduces
the message overhead but it increases the search latency. Hence, k random
walkers can be used. To terminate the k random walkers, a “checking-cum-
TTL” strategy is effective. Here, each walker periodically (after a certain
number of hops) checks with the query originator whether to terminate; the
TTL is used to prevent looping, and is usually set to a large value.

Performance
The performance of searches in unstructured overlays has been studied via
simulations and by experiments. The following are some of the relationships
of interest, for both flooding and for k-random walk (for various values of k)
for various graph topologies such as the random graph and the PLRG:

• The success rate as a function of the number of message hops, or TTL.
• The number of messages as a function of the number of message hops, or

TTL.
• The above metrics as the replication ratio and the replication strategy

changes.
• The node coverage, recall, and message efficiency, as a function of the

number of hops, or TTL; and as a function of various replication ratios
and replication strategies.

Guidelines
• Adaptively determining the termination condition is important. Checking

is adaptive whereas TTL is not.
• Message duplication must be minimized, as it represents wasted resources.
• At each step in the search, the number of messages (or number of nodes

visited) should not increase by a large amount.

Overall, k-random walk performs much better than flooding and is more
scalable, for various replication and query distributions, and various graph
topologies.

18.3.4 Replication strategies

Cohen and Shenker [12] studied the degree of replication for blind or unguided
search in random overlay graphs. The various parameters used to study repli-
cation are defined in Table 18.2. Random search is modeled by the following
process. A node is repeatedly drawn at random from a bin, examined for a
match with the copy of the object, and replaced in the bin, until the object
is found. The metric then is the number of nodes drawn (or equivalently, the

685 18.3 Unstructured overlays

Table 18.2 Parameters to study replication.

n number of nodes in the system
m number of objects in the system
qi normalized query rate, where

∑m
i=1 qi = 1

ri number of replicas of object i
� capacity (measured as number of objects) per node
R n� =

∑m
i=1 ri, the total capacity in the system

pi ri/R, the population fraction of object i replicas

number of hops of a random walker) until success. The probability that the
object is found on the kth drawing is:

Pri�k�=
ri
n
�1− ri

n
�k−1�

The average search size for i, denoted as Ai, is:

Ai = Eover all k�Pri�k��=
n∑
k=1

[
k
ri
n

(
1− ri

n

)k−1
]
∼ n

ri
� for large n� (18.5)

Across the system, the average search size A is:

average search size A=
m∑
i=1

qiAi = n
∑
i

qi
ri
� (18.6)

Setting ri to n maximizes A, but requires full replication. As resources are
constrained, assume that average number of replicas per node is �=R/n<m.
(It is easy to see that R≥m≥ �.) Substituting for n with R/� in the equation
above, we have:

average search size A= R

�

∑
i

qi
ri
= 1
�

∑
i

qi
pi
� (18.7)

The utilization rate ui of a replica of object i is the average rate of requests
serviced by a replica of i. With random search, ui = qi/pi = R�qi/ri�. Over
all replicas of object i, the utilization is simply =Rqi. The average utilization
rate over (all copies of) all objects is u=∑m

i=1 ri�ui/R� =
∑m

i=1 pi�qi/pi� = 1.
This average is a constant, and independent of the replication scheme. It is
desirable to have a low maximum utilization rate in order to distribute the
load more uniformly.

The replication problem is formulated as the optimization solution for
Eq. (18.7). We assume that all objects are of uniform size. To simplify
analysis, we also assume that each object that is queried exists in the system
and a search continues until the object is found, i.e., all searches are eventually
successful. (In practice, there is a parameter L – such as TTL – that controls

686 Peer-to-peer computing and overlay graphs

the maximum search size. Search on insoluble queries continues until this
parameter is exceeded. The cost of such queries is fsA+ �1−fs�L, where fs
is the fraction of queries that are soluble.)

Two natural replication strategies are uniform and proportional:

• Uniform ri = R/m, which implies pi = ri/R= 1/m.
The average search size for object i is Ai = n/ri. This equals R/��ri�=

R/��R/mi�=m/� and is the same for all objects.
From Eq. (18.7), the average search size Auniform = �1/��

∑
i�qi/pi� =

1
�

∑
i mqi = �m/��.

The utilization of a replica of i is ui = qi/pi, which is proportional to
the query rate as pi is the same for all objects.

The maximum utilization of a replica of i is maxiui = maxi�qi/pi� =
R�qi/ri�, which can vary significantly.

• Proportional ri = Rqi, which implies pi = qi.
The average search size for object i is Ai = n/ri = n/Rpi = n/�Rqi�=

1/��qi�, which is inversely proportional to the query rate.
From Eq. (18.7), the average search size Aproportional= �1/��

∑
i�qi/pi�=

�1/��
∑m

i=1 1=m/�.
The utilization of a replica of i is ui = qi/pi = 1, a constant for all

replicas of all objects.
The maximum utilization of a replica of i is maxiui = maxi�qi/pi� =

maxi�qi/qi� = 1 for all i.

Both uniform and proportional replication have the same average search size,
which is independent of the query distribution. However, objects whose query
rates are below the average have lower overhead with uniform replication,
while those with query rates larger than the average have lower overhead
with proportional replication.

• Square root The optimal replication strategy that minimizes the average
search size is the square-root replication, which is defined as having pi =
ri/R∝√qi/

∑
j
√
qj , assuming that 1/R≤√qi/

∑
j
√
qj ≤ n/R for all i.

The optimality of square-root replication can be seen as follows. Sub-
stituting 1−∑m−1

i=1 pi for pm in the cost function of Eq. (18.7), we have:

search size Asq−rt =
1
�

∑
i

qi/pi =
1
�

[
m−1∑
i=1

qi/pi+qm
/(

1−
m−1∑
i=1

pi

)]
�

By solving ds/dpi = 0, the value of pi that minimizes Asq−rt is seen to be
pm
√
qi/qm.

Analogous to uniform and proportional replications, the values of A, Ai,
and ui for square-root replication can be dervied. Exercise 18.1 asks you to
show the derivations. The results are summarized in Table 18.3. It can be
seen that to minimize A, ri = R√qi/

∑
j
√
qj .

687 18.3 Unstructured overlays

Table 18.3 Comparison of uniform, proportional, and square-root replication [23].

ri A Ai = n/ri ui = Rqi/ri
Uniform constant, R/m m/� m/� qim
Proportional qiR m/� 1/��qi� 1

Square-root R
√
qi/
∑

j
√
qj �

∑
i

√
qi�

2/�
∑
j
√
qj/
√
qi

�

√
qi
∑

j
√
qj

The square-root replication rate (∝√qi) is more than that of uniform (∝ 1),
but less than that of proportional (∝ qi). It has been shown that:

• any allocation rate “in between” that of uniform and of proportional has a
lower average search size A than that of uniform and proportional;

• any allocation rate either less than that of uniform, or greater than that of
proportional has a higher average search size A than that of uniform and
proportional.

18.3.5 Implementing replication strategies

Proportional and uniform can be trivally implemented. For proportional, each
query creates a copy; for uniform, a fixed number of copies are made when
an object is created [12].

The simple “path replication” scheme, wherein the number of copies made
is proportional to the length of the (successful) search path, implements
square-root replication. Here object i is replicated c�n/ri� times per query,
where c is some constant. Then ri can be captured by the following equation:
dri/dt = qic�n/ri�. Let a= ln�ri/rj�, then:

da

dt
= cn

(
qj

r2
j

− qi
r2
i

)
= 1
rj

drj

dt
− 1
ri

dri
dt
�

Square-root replication, wherein ri = �R/
∑√

qi�
√
qi, is a fixed-point solu-

tion of this equation. Therefore, path replication implements square-root
replication.

The analysis implicitly assumes that replicas also get deleted, in a way
that is independent of their object identity or query rate, and the lifetime of a
replica is a non-decreasing function of its age. (Policies such as random and
FIFO satisfy this condition, but LRU and LFU do not.) Then, during steady
state, the creation rate can equal the deletion rate.

An alternate way of analyzing replication schemes is as follows. Let C be
the number of replicas created on a successful query; C is its average. Then,
in steady state,

pi
pj
= qiCi

qjCj
� (18.8)

688 Peer-to-peer computing and overlay graphs

To implement distributed algorithms for various replication policies, it is
necessary to determine Ci locally without knowing pi or qi:

• For proportional replication, C is the same for all objects.
• For square-root replication, if Ci ∝ 1/

√
qi then pi/pj =

√
qi/qj , by substi-

tuting in Eq. (18.8).
As Ai ∝ nR/pi and pi ∝ qiCi, therefore Ai ∝ 1/�qiCi�.
With path replication, Ci ∝ Ai, hence Ci ∝ Ai ∝ 1/�qiCi�.
In steady state, Ai and Ci are equal. Solving Ci ∝ 1/�qiCi� for the fixed

point, Ci ∝ 1/
√
qi. As pi ∝ qiCi when Ci is steady, this gives pi ∝√qi. In

a practical implementation, it needs to be ensured that convergence occurs
once steady state sets in.

18.4 Chord distributed hash table

18.4.1 Overview

The Chord protocol, proposed by Stoica et al. [32], uses a flat key space to
associate the mapping between network nodes and data objects/files/values.
The node address as well as the data object/file/value is mapped to a logical
identifier in the common key space using a consistent hash function. These
mappings are illustrated in Figure 18.1. Both these mappings should ensure
that the keys are distributed roughly equally among the nodes. This also
insures that with high probability, the overhead of key management when
nodes join or leave the P2P network is low. Specifically, when a node joins
or leaves the network having n nodes, only O�1/n� keys need to be moved
from one location to another.

The Chord key space is flat, thus giving applications flexibility in map-
ping their files/data to keys. Chord supports a single operation, lookup�x�,
which maps a given key x to a network node. Specifically, Chord stores a
file/object/value at the node to which the file/object/value’s key maps. Two
steps are involved:

1. Map the object/file/value to its key in the common address space.
2. Map the key to the node in its native address space using lookup. The

design of lookup is the main challenge.

In Chord, a node’s IP address is hashed to an m-bit identifier that serves
as the node identifier in the common key (identifier) space. Similarly, the
file/data key is hashed to an m-bit identifier that serves as the key identifier.
m is sufficiently large so that the probability of collisions during the hash is
negligible. The Chord overlay uses a logical ring of size 2m. The identifier
space is ordered on the logical ring modulo 2m. Henceforth in this section,
we will assume modulo 2m arithmetic. A key k gets assigned to the first node
such that its node identifier equals or follows the key identifier of k in the

689 18.4 Chord distributed hash table

Figure 18.2 An example
Chord ring with m = 7,
showing mappings to the
Chord address space, and a
query lookup using a simple
scheme [32].

K87

N5

N18

N23

N28 K28

K8 K15

K121

N99

N104

N115
N119

N73

K53

N63

lookup (K8)

common identifier space. The node is the successor of k, denoted succ�k�.
A Chord ring for m = 7 is depicted in Figure 18.2. Nodes N5, N18, N23,
N28, N63, N73, N99, N104, N115, and N119 are shown. Six keys, K8,
K15, K28, K53, K87, and K121, are stored among these nodes as follows:
succ�8�= 18, succ�15�= 18, succ�28�= 28, succ�53�= 63, succ�87�= 99,
and succ�121�= 5.

18.4.2 Simple lookup

A simple key lookup algorithm that requires each node to store only 1 entry in
its routing table works as follows. Each node tracks its successor on the ring,
in the variable successor; a query for key x is forwarded to the successors
of nodes until it reaches the first node such that that node’s identifier y is
greater than the key x, modulo 2m. The result, which includes the IP address
of the node with key y, is returned to the querying node along the reverse of
the path that was followed by the query. This mechanism requires O�1� local
space but O�n� hops, where n is the number of nodes in the P2P network. The
pseudo-code for this simple lookup is given in Algorithm 18.1. The following
convention is assumed. Notation �x� y� represents the left-open right-closed
segment of the Chord logical ring modulo m. Notation x�Proc�·� is a RPC
to execute Proc on node x while x�var is a RPC to read the variable var at
process x.

Example The steps for the query: lookup(K8) initiated at node 28, are
shown in Figure 18.2 using arrows.

690 Peer-to-peer computing and overlay graphs

(variables)
integer: successor←− initial value;

(1) i�Locate_Successor�key�, where key �= i:
(1a) if key ∈ �i� successor� then
(1b) return(successor)
(1c) else return (successor�Locate_Successor�key�).

Algorithm 18.1 A simple object location algorithm in Chord at node i [32].

18.4.3 Scalable lookup

A scalable lookup algorithm that usesO�log n�message hops at the cost ofO�m�
space in the local routing tables, uses the following idea. Each node imaintains a
routing table, called the finger table, with at mostO�log n� distinct entries, such
that the xth entry (1 ≤ x ≤ m) is the node identifier of the node succ�i+2x−1�.
This is denoted by i�finger�x�= succ�i+2x−1�. This is the first node whose key
is greater than the key of node i by at least 2x−1mod 2m. Note that each finger
table entry would have to contain the IP address and port number in addition to
the node identifier, in order that i can communicate with i�finger�x�; henceforth
we will assume this implicitly without showing these entries.

The size of the finger table is bounded by m entries. Due to the logarithmic
structure, the finger table has more information about nodes closer ahead
of it in the Chord overlay, than about nodes further away. Given any key
whose node is to be located, the highly scalable logarithmic search shown in
Algorithm 18.2 is used. For a query on key key at node i, if key lies between

(variables)
integer: successor←− initial value;
integer: predecessor←− initial value;
integer finger�1

m�;

(1) i�Locate_Successor�key�, where key �= i:
(1a) if key ∈ �i� successor� then
(1b) return(successor)
(1c) else
(1d) j←− Closest_Preceding_Node�key�;
(1e) return (j�Locate_Successor�key�).

(2) i�Closest_Preceding_Node�key�, where key �= i:
(2a) for count =m down to 1 do
(2b) if finger�count� ∈ �i� key� then
(2c) break();
(2d) return(finger�count�).

Algorithm 18.2 A scalable object location algorithm in Chord at node i [32].

691 18.4 Chord distributed hash table

5 + 1

N99
N63
N63
N63
N63

5 + 2

Finger table for N5:

Finger table for N28:
Finger table for N99:

N73
N63
N23
N18
N18
N18
N18

5 + 64
5 + 32
5 + 16
5 + 8
5 + 4

N63

N18

N5

N23

28 + 64
28 + 32
28 + 16
28 + 8
28 + 4
28 + 2

N6328 + 1

lookup (K8)

N104
N104
N104
N115
N115
N5

99+1
99+2
99+4
99+8
99+16
99+32

N6399+64 N63
N73

N119

N115

N104

N99

K8

N28

Figure 18.3 An example
showing a query lookup using
the logarithmically-structured
finger tables [32].

i and its successor, the key would reside at the successor and the successor’s
address is returned. If key lies beyond the successor, then node i searches
through the m entries in its finger table to identify the node j such that j most
immediately precedes key, among all the entries in the finger table. As j is
the closest known node that precedes key, j is most likely to have the most
information on locating key, i.e., locating the immediate successor node to
which key has been mapped.

Example The use of the finger tables in answering the query lookup(K8)
at node N28 is illustrated in Figure 18.3. The finger tables of N28, N99, and
N5 that are used are shown.

18.4.4 Managing Churn

The code to manage dynamic node joins, departures, and failures is given in
Algorithm 18.3.

Node joins
To create a new ring, a node i executes Create_New_Ring which creates a
ring with the singleton node. To join a ring that contains some node j, node
i invokes Join_Ring�j�. Node j locates i’s successor on the logical ring and
informs i of its successor. Before i can participate in the P2P exchanges,
several actions need to happen: i’s successor needs to update its predecessor

692 Peer-to-peer computing and overlay graphs

(variables)
integer: successor←− initial value;
integer: predecessor←− initial value;
integer finger�1

 m�;
integer: next_finger←− 1;

(1) i�Create_New_Ring��:
(1a) predecessor←−⊥;
(1b) successor←− i.
(2) i�Join_Ring�j�, where j is any node on the ring to be joined:
(2a) predecessor←−⊥;
(2b) successor←− j�Locate_Successor�i�.
(3) i�Stabilize��: // executed periodically to verify and inform successor
(3a) x←− successor�predecessor;
(3b) if x ∈ �i� successor� then
(3c) successor←− x;
(3d) successor�Notify�i�.

(4) i�Notify�j�: // j believes it is predecessor of i
(4a) if predecessor =⊥ or j ∈ �predecessor� i�� then
(4b) transfer keys in the range �j� i� to j;
(4c) predecessor←− j.
(5) i�Fix_Fingers��: // executed periodically to update the finger table
(5a) next_finger←− next_finger+1;
(5b) if next_finger > m then
(5c) next_finger←− 1;
(5d) finger�next_finger�←− Locate_Successor�i+2next_finger−1�.

(6) i�Check_Predecessor��: // executed periodically to verify whether
// predecessor still exists

(6a) if predecessor has failed then
(6b) predecessor←−⊥.

Algorithm 18.3 Managing churn in Chord. Code shown is for node i [32].

entry to i, i’s predecessor needs to revise its successor field to i, i needs to iden-
tify its predecessor, the finger table at i needs to be built, and the finger tables
of all nodes need to be updated to account for i’s presence. This is achieved
by procedures Stabilize��, Fix_Fingers��, and Check_Predecessor�� that are
periodically invoked by each node.

Figure 18.4 illustrates the main steps of the joining process. A recent joiner
node i that has executed Join_Ring�·� gets integrated into the ring by the
following sequence:

693 18.4 Chord distributed hash table

successor = j

predecessor = i predecessor = i

predecessor = i

j

i

j

ii

j

j

i

successor = isuccessor = i

k

successor = j

predecessor

successor

Step 3: After k executes Stabilize(), which
 triggers step 4

Step 1: After i executes Join_Ring(.)

Step 4: After i executes Notify (k)

Step 2: After i executes Stabilize() and
 j executes Notify (i)

predecessor = ksuccessor = j successor = j

successor = jsuccessor = j

k

k

predecessor = k

k

predecessor = T

predecessor = T

predecessor = T

Figure 18.4 Steps in the
integration of node i in the
ring, where j > i > k [32].

1. The configuration after a recent joiner node i has executed Join_Ring�·�.
2. Node i executes Stabilize��, which allows its successor j to adjust j’s

variable predecessor to i. Specifically, when node i invokes Stabilize��,
it identifies the successor’s predecessor k. If k ∈ �i� successor�, then i

updates its successor to k. In either case, i notifies its successor of
itself via successor�Notify�i�, so the successor has a chance to adjust its
predecessor variable to i.

3. The earlier predecessor k of j (i.e., the predecessor in Step 1) executes
Stabilize�� and adjusts its successor pointer from j to i.

4. Node i executes Fix_Fingers�� to build its finger table, and other nodes
also execute the procedure to update their finger tables if necessary.

Once all the successor variables and finger tables have stabilized, a call by
any node to Locate_Successor�·� will reflect the new joiner i. Until then,
a call to Locate_Successor�·� may result in the Locate_Successor�·� call
performing a conservative scan. The loop in Closest_Preceding_Node that
scans the finger table will result in a search traversal using smaller hops rather
than truly logarithmic hops, resulting in some inefficiency. Still, the node i
will be located although via more hops.

Showing the correctness of the Chord protocol in the face of concurrent
join operations and stablize operations in which pointers are being rewired is
non-trivial. It can be shown that for any set of concurrent join operations, at
some point after the last join operation completes, all the pointers and finger
tables will be correct. However, in the transient period before the Chord ring
stabilizes, an object search can result in three outcomes:

• The finger tables used in a search are up to date and the correct successor
of the key is sought in O�log n� hops.

694 Peer-to-peer computing and overlay graphs

• The finger tables are not up to date but the successor pointers are correct.
The sought key will be located but may take more steps as the full advan-
tage of a logarithmic search space pruning cannot be used.

• If the successor pointers are incorrect, or the key transfer to the new joiners
in procedure Notify has not completed, the search may fail. This is during
a transient duration, and the source has the choice of reissuing the query.

Node failures and departures
When a node j fails abruptly, its successor i on the ring will discover the
failure when the successor i executes Check_Predecessor�� periodically.
Process i gets a chance to update its predecessor field when another node
k causes i to execute Notify�k�. But that can happen only if k’s successor
variable is i. This requires the predecessor of the failed node to recognize
that its successor has failed, and get a new functioning successor. In fact, the
successor pointers are required for object search; the predecessor variables
are required only to accommodate new joiners. Note from Algorithm 18.2
that knowing that the successor is functional, and that the nodes pointed to
by the finger pointers are functional, is essential.

Example In Figure 18.3, assume that node N63 fails. The closest successor
that node N28 can find via the finger table is N99. N73 cannot be detected,
and keys K64 through K73 will effectively be lost.

A solution such as introducing a Check_Successor�� procedure analogous
to Check_Predecessor procedure will not solve the problem because it does
not help to identify the functional successor. The Chord protocol proposes
that, rather than maintain a single successor, each node maintains a list of �
successors, which are the node’s first � successors. If the first successor does
not respond, the node can try the next successor from the list, and so on. Only
the simultaneous failure of all the � successors can then cause the protocol
to fail. Maintaining a list of successors requires some changes to the code
in Algorithm 18.3. Exercise 18.2 asks you to adapt this code to the changes
required for maintaining successor lists.

The provision for a successor list at each node provides a natural mechanism
for the application to manage replicated objects. The replicas get placed at the
node corresponding to the object key, as well as at the nodes in the successor
list of that node. As Chord is able to update its successor list as the successor
list changes, Chord can also interface with the application to let it track the
locations of the replicas.

A voluntary departure from the ring can be treated as a failure. However,
a failed node causes all the data (keys) stored at that node to be lost until
corrective action is taken. When a node departs voluntarily, it should first
transfer all the keys it is responsible for to its successor. The departing
node should also inform its successor and predecessor. This will enable the
successor to update its predecessor to the predecessor of the departing node.

695 18.5 Content addressible networks (CAN)

The predecessor will also be able to update its successor list by deleting the
departing node and adding the last successor of the departing node’s successor
list to its own successor list.

18.4.5 Complexity

The following results on the complexity have a non-trivial correctness proof
and interested readers should consult the Chord papers for the proofs.

1. For a Chord network with n nodes, each node is responsible for at most
�1+ !�K/n keys, with “high probability,” where K is the total number of
keys.

Using consistent hashing, ! can be shown to be bounded by O�log n�.
The “high probability” clause is required because the validity of the result
depends on the randomness and conflict-free mappings of the hash function
used.

2. The search for a successor in Locate_Successor in a Chord network with
n nodes requires time complexity O�log n� with high probability.

This result is based on the observation that assuming completely random
distributions of the key mappings and node mappings, after 2 log n hops,
the distance between the key being searched for and the present node that
the query has reached is at most 1/n.

3. The size of the finger table is log�n�≤m.
4. The average lookup time is 1/2 log�n�.

Exercises 18.2 and 18.3, based on the Chord papers, ask you to prove further
results about the complexity under churn conditions.

18.5 Content addressible networks (CAN)

18.5.1 Overview

A content-addressible network (CAN) is essentially an indexing mechanism
that maps objects to their locations in the network. The CAN project originated
from the observation that the bottleneck to designing a scalable P2P network
is this indexing mechanism. An efficient and scalable CAN is useful not
only for object location in P2P networks, but also for large-scale storage
management systems and wide-area name resolution services that decouple
name resolution and the naming scheme. All these applications inherently
require efficient and scalable addition of and location of objects using arbitrary
location-independent names or keys for the objects.

A CAN supports three basic operations: insertion, search, and deletion
of (key, value) tuples. (A “value” is an object in the context of a CAN.)
A good CAN design is distributed, fault-tolerant, scalable, independent of the

696 Peer-to-peer computing and overlay graphs

naming structure, implementable at the application layer, and autonomic, i.e.,
self-organizing and self-healing. Although CAN is a generic phrase, it also
specifically denotes the particular design of a CAN proposed by Ratnasamy
et al. [27]. We now study this particular CAN design.

CAN is a logical d-dimensional Cartesian coordinate space organized as
a d-torus logical topology, i.e., a virtual overlay d-dimensional mesh with
wrap-around. A two-dimensional torus was shown in Figure 1.5(a) in Chapter
1. The entire space is partitioned dynamically among all the nodes present,
so that each node i is assigned a disjoint region r�i� of the space. As nodes
arrive, depart, or fail, the set of participating nodes, as well as the assignment
of regions to nodes, change.

For any object v, its key k�v� is mapped using a deterministic hash function
to a point -p in the Cartesian coordinate space. The �k� v� pair is stored at the
node that is presently assigned the region that contains the point -p. In other
words, the �k� v� pair is stored at node i if presently the point -p corresponding
to �k� v� lies in region r�i�. Analogously, to retrieve object v, the same hash
function is used to map its key k to the same point -p. The node that is
presently assigned the region that contains -p is accessed (using a CAN routing
algorithm) to retrieve v. The three core components of a CAN design are the
following:

1. Setting up the CAN virtual coordinate space, and partitioning it among the
nodes as they join the CAN.

2. Routing in the virtual coordinate space to locate the node that is assigned
the region containing -p.

3. Maintaining the CAN due to node departures and failures.

18.5.2 CAN initialization

1. Each CAN is assumed to have a unique DNS name that maps to the IP
address of one or a few bootstrap nodes of that CAN. A bootstrap node
is responsible for tracking a partial list of the nodes that it believes are
currently participating in the CAN. These are reasonable assumptions, and
perhaps the most “non-distributed” portions of the CAN design.

2. To join a CAN, the joiner node queries a bootstrap node via a DNS lookup,
and the bootstrap node replies with the IP addresses of some randomly
chosen nodes that it believes are participating in the CAN.

3. The joiner chooses a random point -p in the coordinate space. The joiner
sends a request to one of the nodes in the CAN, of which it learnt in step 2,
asking to be assigned a region containing -p. The recipient of the request
routes the request to the owner old_owner�-p� of the region containing -p,
using the CAN routing algorithm.

4. The old_owner�-p� node splits its region in half and assigns one half to
the joiner. The region splitting is done using an a priori ordering of all

697 18.5 Content addressible networks (CAN)

the dimensions, so as to decide which dimension to split along. This also
helps to methodically merge regions, if necessary. The �k� v� tuples for
which the key k now maps to the zone to be transferred to the joiner, are
also transferred to the joiner.

5. The joiner learns the IP addresses of its neighbors from old_owner�-p�.
The neighbors are old_owner�-p� and a subset of the neighbors of
old_owner�-p�. old_owner�-p� also updates its set of neighbors. The new
joiner as well as old_owner�-p� inform their neighbors of the changes
to the space allocation, so that they have correct information about their
neighborhood and can route correctly. In fact, each node has to send an
immediate update of its assigned region, followed by periodic HEART-
BEAT refresh messages, to all its neighbors.

When a node joins a CAN, only the neighboring nodes in the coordinate
space are required to participate in the joining process. The overhead is thus
of the order of the number of neighbors, which is O�d� and independent of
n, the number of nodes in the CAN.

18.5.3 CAN routing

CAN routing uses the straight-line path from the source to the destination
in the logical Euclidean space. This routing is realized as follows. Each
node maintains a routing table that tracks its neighbor nodes in the log-
ical coordinate space. In d-dimensional space, nodes x and y are neigh-
bors if the coordinate ranges of their regions overlap in d− 1 dimensions,
and abut in one dimension. All the regions are convex and can be char-
acterized as follows. Let region�x� = ��x1

min� x
1
max��

 � �x

d
min� x

d
max��. Let

region�y� = ��y1
min� y

1
max��

 � �y

d
min� y

d
max��. Nodes x and y are neighbors if

there is some dimension j such that xjmax = yjmin and for all other dimensions
i, �ximin� x

i
max� and �yimin� y

i
max� overlap. An example of neighbouring nodes in

two-dimensional space is shown in Figure 18.5.

Figure 18.5 Two-dimensional
CAN space. Seven regions are
shown. The dashed arrows
show the routing from node 2
to the coordinate p shown by
the shaded circle [27].

[[75,100],
[25,50]]

6

[[75,100],
[0,25]]

7

[[50,75],
[0,50]]

[[0,50],[0,50]]

[[0,25],
[50,100]]

[[25,50],
[50,100]]

3 4

1 2

5

(100,100)(0,100)

(0,0) (100,0)

[[50,100],[50,100]]

698 Peer-to-peer computing and overlay graphs

The routing table at each node tracks the IP address and the virtual coor-
dinate region of each neighbor. To locate value v, its key k�v� is mapped to
a point -p whose coordinates are used in the message header. Knowing the
neighbors’ region coordinates, each node follows simple greedy routing by
forwarding the message to that neighbor having coordinates that are closest
to the destination’s coordinates. To implement greedy routing to a destina-
tion node x, the present node routes a message to that neighbor among the
neighbors k ∈ Neighbors, given by

argmink∈Neighbors�min �-x−-k���

Here, -x and -k are the coordinates of nodes x and k.
Assuming equal-sized zones in d-dimensional space, the average number

of neighbors for a node is O�d�. The average path length is �d/4� · n1/d.
The implication on scaling is that each node has about the same number of
neighbors and needs to maintain about the same amount of state information,
irrespective of the total number of nodes participating in the CAN. In this
respect, the CAN structure is superior to that of Chord. Also note that unlike
in Chord, there are typically many paths for any given source-destination pair.
This greatly helps for fault-tolerance. Average path length in CAN scales as
O�n1/d� as opposed to log n for Chord.

18.5.4 CAN maintainence

When a node voluntarily departs from CAN, it hands over its region and
the associated database of �key� value� tuples to one of its neighbors. The
neighbor is chosen as follows. If the node’s region can be merged with that
of one of its neighbors to form a valid convex region, then such a neighbor
is chosen. Otherwise the node’s region is handed over to the neighbor whose
region has the smallest volume or load – the regions are not merged and
the neighbor handles both zones temporarily until a periodic background
region reassignment process runs to integrate the regions and prevent further
fragmentation.

CAN requires each node to periodically send a HEARTBEAT update mes-
sage to each neighbor, giving its assigned region coordinates, the list of its
neighbors, and their assigned region coordinates. When a node dies, the neigh-
bors suspect its death and initiate a TAKEOVER protocol to decide who will
take over the crashed node’s region. Despite this TAKEOVER protocol, the
�key� value� tuples in the crashed node’s database remain lost until the pri-
mary sources of those tuples refresh the tuples. Requiring the primary sources
to periodically issue such refreshes also serves the dual purpose of updating
stale (dirty) objects in the CAN.

The TAKEOVER protocol is as follows. When a node suspects that a
neighbor has died, it starts a timer in proportion to its region’s volume.

699 18.5 Content addressible networks (CAN)

On timeout, it sends a TAKEOVER message, with its region volume pig-
gybacked on the message, to all the neighbors of the suspected failed node.
When a TAKEOVER message is received, a node cancels its bid to take
over the failed node’s region if the received TAKEOVER message contains a
smaller region volume than that of the recipient’s region. This protocol thus
helps in load balancing by choosing the neighbor whose region volume is
the smallest, to take over the failed node’s region. As all nodes initiate the
TAKEOVER protocol, the node taking over also discovers its neighbors and
vica versa. In the case of multiple concurrent node failures in one vicinity of
the Cartesian space (this is rare), a more complex protocol using a expanding
ring search for the TAKEOVER messages can be used.

A graceful departure as well as a failure can result in a neighbor holding
more than one region if its region cannot be merged with that of the departed
or failed node. To prevent the resulting fragmentation and restore the 1→ 1
node to region assignment, there is a background reassignment algorithm that
is run periodically. Conceptually, consider a binary tree whose root represents
the entire space. An internal node represents a region that existed earlier but
is now split into regions represented by its children nodes. A leaf represents
a currently existing region, and (overloading the semantics and the notation),
also the node that represents that region.

When a leaf node x fails or departs, there are two cases:

1. If its sibling node y is also a leaf, then the regions of x and y are merged
and assigned to y. The region corresponding to the parent of x and y

becomes a leaf and it is assigned to node y.
2. If the sibling node y is not a leaf, run a depth-first search in the subtree

rooted at y until a pair of sibling leaves (say, z1 and z2) is found. Merge
the regions of z1 and z2, making their parent z a leaf node, assign the
merged region to node z2, and the region of x is assigned to node z1.

Figure 18.6 illustrates this reassignment. If node 2 fails, its region is assigned
to node 3. If node 7 fails, regions 5 and 6 get merged and assigned to node
5 whereas node 6 is assigned the region of the failed node 7.

A distributed version of the above depth-first centralized tree traversal can
be performed by the neighbors of a departed node. The distributed traversal
leverages the fact that when a region is split, it is done in accordance to a

Figure 18.6 Example showing
region reassignment in a
CAN [27]. 1

2

5

3

4

6

7

1

2 3 4

6

7

5

(entire coordinate space) root

700 Peer-to-peer computing and overlay graphs

particular ordering on the dimensions. Node i performs its part of the depth-
first traversal (initiated by the node to which the region of the departed node
x is assigned in the TAKEOVER protocol) as follows:

1. Identify the highest ordered dimension dima that has the shortest coordinate
range �idima

min � i
dima
max �. Node i’s region was last halved along dimension dima.

2. Identify neighbor j such that j is assigned the region that was split off
from i’s region in the last partition along dimension dima. Node j’s region
abuts i’s region along dimension dima.

3. If j’s region volume equals i’s region volume, the two nodes are siblings
and the regions can be combined. This is the terminating case of the depth-
first tree search for siblings. Node j is assigned the combined region, and
node i takes over the region of the departed node x. This takeover by node
i is done by returning the recursive search request to the originator node,
and communicating i’s identity on the replies.

4. Otherwise, j’s region volume must be smaller than i’s region volume.
Node i forwards a recursive depth-first search request to j.

18.5.5 CAN optimizations

The following design techniques aim to improve one or more of the perfor-
mance factors: the per-hop latency, the path length, fault tolerance, availabil-
ity, and load balancing. These techniques typically demonstrate a trade-off.

• Multiple dimensions As the path length is O�d · n1/d�, increasing the
number of dimensions decreases the path length and increases routing fault
tolerance at the expense of larger state space per node.

• Multiple realities A coordinate space is termed as a reality. The use
of multiple independent realities assigns to each node a different region
in each different reality. This implies that in each reality, the same node
will store different �k� v� tuples belonging to the region assigned to it in
that reality, and will also have a different neighbor set. The data contents
�k� v� get replicated in each reality, leading to higher data availability.
Furthermore, the multiple copies of each �k� v� tuple, one in each reality,
offer a choice – the closest copy can be accessed. Routing fault tolerance
also improves because each reality offers a set of different paths to the
same �k� v� tuple. All these advantages come at the cost of more storage –
for state information for the neighbors in each reality, as well as for the
�k� v� tuples mapped to the region allocated to a node in each reality.

• Delay latency Rather than using just the Cartesian distance as a metric to
make routing decisions, the delay latency (measured using the round-trip
time (RTT)) on each of the candidate logical links can also be used in
making the routing decision.

• Overloading coordinate regions Each region can be shared by multiple
nodes, up to some upper limit. This offers several advantages. First, the

701 18.6 Tapestry

path length and path latency get reduced because overloading is equivalent
to having fewer nodes in the CAN. Second, the fault tolerance improves
because a region becomes empty only if all the nodes assigned to it depart
or fail concurrently. Third, the per-hop latency decreases because a node
can select the closest node from the neighboring region to forward a
message towards the destination. The cost of gaining these advantages is
that many of the aspects of the basic CAN protocol need to be reengineered
to accommodate overloading of coordinate regions (see Exercise 18.5).

• Multiple hash functions The use of multiple hash functions maps each
key to different points in the coordinate space. This replicates each �k� v�
pair for each hash function used. The effect is similar to that of using
multiple realities.

• Topologically sensitive overlay The CAN overlay described so far has
no correlation to the physical proximity or to the IP addresses of domains.
Logical neighbors in the overlay may be geographically far apart, and log-
ically distant nodes may be physical neighbors. By constructing an overlay
that accounts for physical proximity in determining logical neighbors, the
average query latency can be significantly reduced.

18.5.6 CAN complexity

The time overhead for a new joiner is O�d� for updating the new neighbors
in the CAN, and O�d/4 · log�n�� for routing to the appropriate location in
the coordinate space. This is also the overhead in terms of the number of
messages. The time overhead and the overhead in terms of the number of
messages for a node departure is O�d2�, because the TAKEOVER protocol
uses a message exchange between each pair of neighbors of the departed
node. Exercise 18.4 asks you to compute the complexity of the distributed
region reassignment protocol.

18.6 Tapestry

18.6.1 Overview

The Tapestry P2P overlay network provides efficient scalable location-
independent routing to locate objects distributed across the Tapestry nodes
[20,21,30,36]. Much of the design is adapted from an earlier design of Plaxton
trees [26]. The notable enhancements of Tapestry include dealing with node
churn as well as dynamic addition and deletion of objects. As in Chord, nodes
as well as objects are assigned identifiers obtained by mapping from their
native name spaces to a common large identifier space using a uniformly dis-
tributed hash function such as SHA-1. The hashed node identifiers are termed
VIDs (the acronym for virtual i.d.s) and the hashed object identifiers are
termed as GUIDs (acronym for globally unique i.d.s). For brevity, a specific

702 Peer-to-peer computing and overlay graphs

node v’s virtual identifier is denoted vid and a specific object O’s GUID is
denoted OG.

18.6.2 Overlay and routing

Root and surrogate root
Tapestry uses a common identifier space specified using m bit values. This
identifier is typically expressed in hexadecimal notation, i.e., base b = 16,
and presently Tapestry recommends m = 160. Each identifier OG in this
common overlay space is mapped to a set of unique nodes that exists in the
network, termed as the identifier’s root set denoted �GR

. Typically, ��GR
� is

a small constant, and the main purpose of having ��GR
� > 1 is to increase

fault-tolerance. In our discussion, we assume ��GR
� = 1, and refer to a root

node of OG as OGR
.

If there exists a node v such that vid = OGR
, then v is the root of identifier

OG. If such a node does not exist, then a globally known deterministic rule
is used to identify another unique node sharing the largest common prefix
with OG, that acts as the surrogate root. To access object O, the goal is to
reach the root OGR

(whether real or surrogate). Routing to OGR
is done using

distributed routing tables that are constructed using prefix routing information.
Prefix routing in Tapestry is somewhat analogous to prefix routing within
the telephone network, or to address allocation in the Internet using classless
interdomain routing (CIDR). Unlike the telephone numbers or CIDR-assigned
IP addresses, Tapestry’s VIDs are in a virtual space without correlation to
topology, however, topological information can be used to select nodes that
are “close” as per some metric.

Prefix routing
Prefix routing at any node to select the next hop is done by increasing the
prefix match of the next hop’s VID with the destination OGR

. Thus, a message
destined for OGR

= 62C35 could be routed along nodes with VIDs 6****,
then 62***, then 62C**, then 62C3*, and then to 62C35. Let M = 2m. The
routing table at node vid contains b · logb M entries, organized in logbM levels
i = 1�

 � logbM . Each entry is of the form �wid� IP address�. In level i,
there are b entries with the following property:

• Each entry denotes some “neighbor” node VIDs with an �i−1�-digit prefix
match with vid – thus, the entry’s wid matches vid in the �i−1�-digit prefix.
Further, in level i, for each digit j in the chosen base (e.g., 0�1�

 �E�F
when b = 16), there is an entry for which the ith digit position is j.
Specifically, the jth entry (counting from 0) in level i has value j for digit
position i. Let an i digit prefix of vid be denoted as prefix�vid� i�. Then
the jth entry (counting from 0) in level i begins with an i-digit prefix
prefix�vid� i−1�' j. For example, the fifth entry in level 2 at node 9F248
will be 94***, thus having a two-digit prefix “94.”

703 18.6 Tapestry

Figure 18.7 Some example
links of the Tapestry routing
mesh at node with identifier
“7C25”[35]. Three links from
each level 1 through 4 are
labeled by the level.

7C27

7C21

7C2B

4

4

1

122

2
3

3

3

1

4
0672

9833

AA21

7114

7DD0

7C4A

7C13

7CFF

7B28

7C25

Router Table
The nodes in the router table at vid are the neighbors in the overlay, and these
are exactly the nodes with which vid communicates. A part of the routing
mesh at one node is shown in Figure 18.7. For each forward pointer from
node v to v′, there is a backward pointer from v′ to v. Observe the following
regarding the router table construction:

• There is a choice of which entry to add in the router table. For example,
the jth entry in level i can be the VID of any node whose i-digit prefix is
determined; the �m− i�-digit suffix can vary. The flexibility is useful to
select a node that is “close”, as defined by some metric space (e.g., round-
trip time). In fact, this choice also allows a more fault-tolerant strategy for
routing. Multiple VIDs can be stored in the routing table, as follows. For
each prefix � of a node v’s identifier and for each digit j ∈ 	0�

 � b−1�
in the alphabet, define the neighbor set � v

��j as the set of all nodes whose
identifiers share prefix �'j. The nodes in this neighbor set are also referred
to as ��� j� neighbors of v. The b sets, one for each value of j, form the
routing table of level ���+1. �� v

��j� grows exponentially as ��� decreases,
so the size of this set can be limited by a predetermined parameter c.
The closest node in each set is the primary neighbor. Thus the size of the
routing table is: c ·b · logbM .

The route from v0
id (source) to destination j1 ' j2 · · · ' jlogM , is via nodes

v1� v2�

 � vlogM , where v1 ∈ � v0

⊥�j1 (first hop), v2 ∈ � v1

j1�j2
(second hop),

v1 ∈ � v2

j1'j2�j3 (third hop), and so on. The primary neighbor is chosen at
each hop. Observe that this provides location-independent routing, i.e.,
irrespective of the source, the same unique root node is reached.

• The jth entry in level i may not exist because no node meets the criterion.
This is a hole in the routing table. Stated more generally, �� v

��j� may be 0,
signifying a hole for digit j at level ���+1.

Surrogate routing can be used to route around holes. If the jth entry
in level i should be chosen but is missing, route to the next non-empty
entry in level i, using wraparound if needed. All the levels from 1 to
logb 2m need to be considered in routing, thus requiring logb 2m hops. The
code for determining the next hop using NEXT_HOP�i�OG� is shown
in Algorithm 18.4. This is invoked as NEXT_HOP�1�OG� at the source
node. To determine hop i of the route, the node v that executes the function
has a prefix at least i−1 digits in common with OG.

704 Peer-to-peer computing and overlay graphs

(variables)
integer Table�1

 logb 2m�1

 b�; // routing table

(1) NEXT_HOP�i�OG = d1 'd2

 'dlogbM� executed at node vid to route
to OG:
// i is (1 + length of longest common prefix), also level of the table

(1a) while Table�i� di�=⊥ do // dj is ith digit of destination
(1b) di←− �di+1� mod b;
(1c) if Table�i� di�= v then // node v also acts as next hop

// (special case)
(1d) return �NEXT_HOP�i+1�OG�� // locally examine next digit of

// destination
(1e) else return(Table�i� di�). // node Table�i� di� is next hop

Algorithm 18.4 Routing in Tapestry [35]. The logic for determining the next hop at a node with node
identifier v , 1 ≤ v ≤ n, based on the i th digit of OG , i.e., based on the digit in the i th most significant
position in OG .

Example An example of routing is shown in Figure 18.8.

Property 1 Surrogate routing leads to a unique root. If the routing were to
lead to different nodes A and B, let the most significant position in which
the digits of A and B differ be i. This implies level i routing caused the
routing at some nodes X and Y along different digits. However, the first
i digits do not change henceforth, and, assuming synchronized routing
tables, the holes would be consistent in the tables at X and Y . Hence
both should route to the same ith digit, which is a contradiction. It can
now be seen that:

Property 2 For each identifier vid, the routing algorithm identifies a
unique spanning tree rooted at vid.

Figure 18.8 An example of
routing from FAB11 to
62C35 [35]. The numbers on
the arrows show the level of
the routing table used. The
dashed arrows show some
unused links.

62C3A

64000FAB11

62C3A

6C144

62409

62C11
62C35

62C24

4

4 4

5
5

5

4

3

4

3
2

4

3

1
2

2

65011 62006

62CAB

62C7962CFF

62C01

62C31

62655

705 18.6 Tapestry

18.6.3 Object publication and object search

The unique spanning tree used to route to vid is used to publish and locate an
object whose unique root identifier OGR

is vid. A server S that stores object O
having GUID OG and root OGR

periodically publishes the object by routing
a publish message from S towards OGR

. At each hop and including the root
node OGR

, the publish message creates a pointer to the object. Ideally, “each
node between O and OGR

must maintain a pointer to O despite churn.” (Note
that the publishing is done by each server at which a replica of the object
resides, as well as for each GUID of the object. Recall that an object can be
assigned multiple GUIDs, each mapping to a different root node, and giving
rise to the set of root nodes �GR

.) If a node lies on the path from two or
more servers storing replicas, that node will store a pointer to each replica,
sorted in terms of a distance metric (such as latency from itself). This is the
directory information for objects, and is maintained as a soft-state, i.e., it
requires periodic updates from the server, to deal with changes and to provide
fault-tolerance.

Example An example showing publishing of an object with OG = 72EA1
by two replicas, at 1F329 and C2B40 is shown in Figure 18.9.

To search for an object O with GUID OG, a client sends a query destined
for the root OGR

. Along the logb 2m hops, if a node finds a pointer to the object
residing on server S, the node redirects the query directly to S. Otherwise,
it forwards the query towards the root OGR

which is guaranteed to have the
pointer for the location mapping. A query gets redirected directly to the object
as soon as the query path overlaps the publish path towards the same root.
Each hop towards the root reduces the choice of the selection of its next node
by a factor of b; hence, the more likely by a factor of b that a query path

Figure 18.9 An example
showing publishing of object
with identifier 72EA1 at two
replicas 1F329 and C2B40 [35].

72EA8

72EA1

Object pointer

72F11

72E34
7826C

1F32925011

Routing pointerPublish path

BCF35
ServerServer

094ED

C2B40 17202

75BB1 7D4FF

729CC720B4

72E33

70666

7FAB1

706 Peer-to-peer computing and overlay graphs

and a publish path will meet. Furthermore, as the next hop is chosen based
on the network distance metric whenever there is a choice, we also observe
that the closer the client is to the server in terms of the distance metric, the
more likely that their paths to the object root will meet sooner, and the faster
the query will be redirected to the object.

Example Consider the object OG which has identifier 72EA1 and two
replicas at 1F329 and C2B40, as shown in Figure 18.9. A query for the object
from 094ED will find the object pointer at 7FAB1. A query from 7826C will
find the object pointer at 72F11. A query from BCF35 will find the object
pointer at 729CC.

18.6.4 Node insertion

When nodes join the network, the result should be the same as though the
network and the routing tables had been initialized with the nodes as part of
the network. The procedure for the insertion of node X should maintain the
following property of Tapestry:

Property 3 For any node Y on the path between a publisher of object O
and the root GOR

, node Y should have a pointer to O.

More generally, the insertion should satisfy the following properties:

• Nodes that have a hole in their routing table should be notified if the
insertion of node X can fill that hole.

• If X becomes the new root of existing objects, references to those objects
should now lead to X.

• The routing table for node X must be constructed.
• The nodes near X should include X in their routing tables to perform more

efficient routing.

The main steps in node insertion are as follows:

1. Node X uses some gateway node into the Tapestry network to route a
message to itself. This leads to its “surrogate,” i.e., the root node with
identifier closest to that of itself (which is Xid). The surrogate Z identifies
the length � of the longest common prefix that Zid shares with Xid.

2. Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by
essentially creating a logical spanning tree as follows. Acting as a root,
Z contacts all the ��� j� nodes, for all j ∈ 	0�1�

 � b− 1� (tree level
1). These are the nodes with prefix � followed by digit j. Each such
(level 1) node Z1 contacts all the �prefix�Z1� ���+ 1�� j� nodes, for all
j ∈ 	0�1�

 � b−1� (tree level 2). This continues up to level logb2

m−���
and completes the MULTICAST. The nodes at this level are the leaves

707 18.6 Tapestry

of the tree, and initiate the CONVERGECAST, which also helps to detect
the termination of this phase.

All the nodes contacted fill in any holes in their routing table and, if
necessary, transfer any references of pointers that are rooted locally. All
these nodes also contact X with their information, so that X can build its
routing table from level ���+1 up to logb2

m. All these nodes that contact
X have a common prefix of �.

To construct the rest of its routing table from levels 1 through ���,
node X procures similar lists for successively smaller prefixes until it gets
closest b nodes matching the empty prefix. Node X begins with the list of
nodes for level �, corresponding to the level l of its routing table which
is already filled. To construct the level l−1 list, node X contacts all the
nodes in the level l list to find out all the level l−1 nodes they know about
by asking for both forward pointers and backward pointers. Level l−1 of
the routing table is filled in using the k closest nodes from the level l−1
list, for each of the digits 0�

 � b− 1. In this manner, X completes its
routing table, and all the nodes contacted in the process can optimize their
routing tables by using X if it helps.

The insertion protocols are fairly complex and deal with concurrent insertions.

18.6.5 Node deletion

When a node A leaves the Tapestry overlay, the following actions are per-
formed:

1. Node A informs the nodes to which it has (routing) backpointers. It also
provides them with replacement entries for each level from its routing table.
This is to prevent holes in their routing tables. (The notified neighbors can
periodically run the nearest neighbor algorithm to fine-tune their tables.)

2. The servers to which A has object pointers are also notified. The notified
servers send object republish messages.

3. During the above steps, node A routes messages to objects rooted at itself
to their new roots. On completion of the above steps, node A informs the
nodes reachable via its backpointers and forward pointers that it is leaving,
and then leaves.

Node failures are handled by using the redundancy that is built in to the
routing tables and object location pointers. For example, each routing table
entry has up to c neighbors in the neighbor set � v

��j . A node X detects a
failure of another node A by using soft-state beacons or when a node sends
a message but does not get a response. Node X updates its routing table
entry for A with a suitable substitute node, running the nearest neighbor
algorithm if necessary. If A’s failure leaves a hole in the routing table of
X, then X contacts the suggorate of A in an effort to identify a node to fill
the hole. The details of the protocol can be found in the Tapestry papers.

708 Peer-to-peer computing and overlay graphs

In addition to repairing the routing mesh, the object location pointers also
have to be adjusted. Objects rooted at the failed node may be inaccessible
until the object is republished. The protocols for doing so essentially have
to (i) maintain path availability, and (ii) optionally collect garbage/dangling
pointers that would otherwise persist until the next soft-state refresh and
timeout.

Overall, experiments have shown that Tapestry continues to perform well
with high probability, despite dynamic node insertions and failures.

Complexity
• A search for an object is expected to take �logb2

m� hops. However, the
routing tables are optimized to identify nearest neighbor hops (as per the
space metric). Thus, the latency for each hop is expected to be small,
compared to that for CAN and Chord protocols.

• The size of the routing table at each node is c · b · logb2m, where c is
the constant that limits the size of the neighbor set that is maintained for
fault-tolerance.

The larger the Tapestry network, the more efficient is the performance. Hence,
it is better that different applications share the same overlay.

18.7 Some other challenges in P2P system design

18.7.1 Fairness: a game theory application

P2P systems depend on all the nodes cooperating to store objects and allowing
other nodes to download from them. However, nodes tend to be selfish in
nature; thus there is a tendancy to download files without reciprocating by
allowing others to download the locally available files. This behavior, termed
as leaching or free-riding, leads to a degradation of the overall P2P system
performance. Hence, penalties and incentives should be built in the system to
encourage sharing and maximize the benefit to all nodes.

We now examine the classical problem, termed the prisoners’ dilemma,
from game theory, that has some useful lessons on how selfish agents might
cooperate. This problem is an example of a non-zero-sum-game.

In the prisoners’ dilemma, two suspects, A and B, are arrested by the police.
There is not enough evidence for a conviction. The police separate the two
prisoners, and, separately, offer each the same deal: if the prisoner testifies
against (betrays) the other prisoner and the other prsioner remains silent, the
betrayer gets freed and the silent accomplice gets a 10-year sentence. If both
testify against the other (betray), they each receive a 2-year sentence. If both
remain silent, the police can only sentence both to a small 6-month term on
a minor offence.

709 18.7 Some other challenges in P2P system design

Rational selfish behavior dictates that both A and B would betray the
other. This is not a Pareto-optimal solution, where a Pareto-optimal solution
is one in which the overall good of all the participants is maximized. In
the above example, both A and B staying silent results in a Pareto-optimal
solution. The dilemma is that this is not considered the rational behavior of
choice.

In the iterative prisoners’ dilemma, the game is played multiple times, until
an “equilibrium” is reached. Each player retains memory of the last move of
both players (in more general versions, the memory extends to several past
moves). After trying out various strategies, both players should converge to
the ideal optimal solution of staying silent. This is Pareto-optimal.

The commonly accepted view is that the tit-for-tat strategy, described next,
is the best for winning such a game. In the first step, a prisoner cooperates,
and in each subsequent step, he reciprocates the action taken by the other
party in the immediately preceding step.

The BitTorrent P2P system [11] has adopted the tit-for-tat strategy in
deciding whether to allow a download of a file in solving the leaching
problem. Here, cooperation is analogous to allowing others to upload local
files, and betrayal is analogous to not allowing others to upload. The term
choking refers to the refusal to allow uploads. As the interactions in a P2P
system are long-lived, as opposed to a one-time decision to cooperate or
not, optimistic unchoking is periodically done to unchoke peers that have
been choked. This optimistic action roughly corresponds to the re-initiation
of the game with the previously choked peer after some time epoch has
elapsed.

18.7.2 Trust or reputation management

Various incentive-based economic mechanisms to ensure maximum cooper-
ation among the selfish peers inherently depend on the notion of trust. In
a P2P environment where the peer population is highly transient, there is
also a need to have trust in the quality of data being downloaded. These
requirements have lead to the area of trust and trust management in P2P
systems [1, 18, 19]. As no node has a complete view of the other down-
loads in the P2P system, it may have to contact other nodes to evaluate the
trust in particular offerers from which it could download some file. These
communication protocol messages for trust management may be susceptible
to various forms of malicious attack (such as man-in-the-middle attacks and
Sybil attacks), thereby requiring strong security guarantees. The many chal-
lenges to tracking trust in a distributed setting include: quantifying trust and
using different metrics for trust, how to maintain trust about other peers in
the face of collusion, and how to minimize the cost of the trust management
protocols.

710 Peer-to-peer computing and overlay graphs

18.8 Tradeoffs between table storage and route lengths

18.8.1 Unifying DHT protocols

Chord, CAN, and Tapestry are three well-known representative protocols
for managing structured P2P overlays. Despite their seeming differences, Xu
et al. [34] showed that the routing function they perform can be expressed in
a uniform way by generalizing the function of classless interdomain domain
routing (CIDR) used by the IP protocol. We assume that all identifiers are in
the common address space. We also assume modulo arithmetic.

Routing rule
The next-hop routing to node with identifier dest from the current node with
identifier id is as follows.

Let the k entries in a routing table at a node with identifier id be the
tuples �Sid�i� Jid�i�, for 1 ≤ i ≤ k. If �dest− id� ∈ the range Sid�i then route to
R�id+ Jid�i�, where R�x� is the node responsible for key R�x�.

Clearly, we must have that for distinct i and j, Sid�i∩Sid�j = ∅ and Jid�i �=
Jid�j . Further, ∪1≤i≤sSid�i contains all the keys not stored by node id. When
Sid�i and Jid�i are independent of id, as is the case for CAN, Chord, and
Tapestry, the subscript id can be deleted.

• Chord if dest− id ∈ Si = �2i−1�2i� then node id routes to node id+Ji,
where Ji = 2i−1.

This corresponds to looking up the ith entry in the finger table, as
described in Section 18.4.3.

• CAN The greedy routing function for CAN was given in Section 18.5.3.
Here we assume a simple uniform distribution of nodes in the address
space, xd = n, and that nodes are numbered by an integer in base x, where
x is the number of nodes in each dimension. Routing is assumed to be done
dimension by dimension (rather than using greedy routing). Wraparound
routing is assumed in each dimension. Then, for each dimension i, the
following holds: if dest and id differ in dimension i, route to i’s neighbor
in that dimension. Formally,

If dest− id ∈ �Si =��xi−1� xi� then route to id+ Ji, where Ji+ id is a
neighbor node in dimension in i−1 and Ji = kxi−1 for some k≤ x.

• Tapestry Let x= logbn, lvl= 1�

 � x and j ∈ 0�

 � b−1. After delet-
ing the longest common prefix between id and dest, prefix�dest� lvl−1�,
from dest, we have suffix�dest� x− lvl+ 1�. The routing function was
described in Section 18.6.2.

If suffix�dest� x− lvl+ 1� ∈ S�lvl−1�·b+j = �j ·bx−lvl+1� �j+ 1� ·bx−lvl+1�

then node id routes to node prefix�id� lvl− 1� ' suffix�J�lvl−1�·b+j� x−
lvl+1�, where J�lvl−1�·b+j ∈ �j ·bx−lvl+1� �j+1� ·bx−lvl+1�.

These routing relationships are summarized in Table 18.4.

711 18.8 Tradeoffs between table storage and route lengths

Table 18.4 Comparison of representative P2P overlays. d is the number of
dimensions in CAN. b is the base in Tapestry [34].

Protocol Chord CAN Tapestry

Routing table size k= O�log2n� k= O�d� k= O�logbn�
Worst case distance O�log2n� O�n1/d� O��b−1� · logbn�
n, common name space 2k xd bx

Si �2i−1�2i� �xi−1� xi� �j ·bx−lvl+1� �j+1� ·bx−lvl+1�
Ji 2i−1 kxi−1 suffix�J�lvl−1�·b+j� x− lvl+1�

Figure 18.10 Fundamental
asymptotic tradeoffs between
router table size and network
diameter [34].

Maintain full state

Asymptotic tradeoff curve

Chord, Tapestry

Maintain no state

CAN

O(n1/d) O(log n)

n

log n

<= d

0

O(1) O(n)

Routing table size

Worst-case
distance

18.8.2 Bounds on DHT storage and routing distance

Based on Table 18.4, the router table size and network diameter are repre-
sented in Figure 18.10. A fundamental question is whether the asymptotic
bounds on (routing table size, network diameter as determined by the max-
imum number of hops) are �log2 n���log2 n�� as for Chord and Tapestry,
and �d���n1/d�� as for CAN. Xu et al. [34] used the following definitions to
answer this:

• A routing algorithm is weakly uniform if for any nodes id and id′, the
jump sizes Jid�i = Jid′�i. Thus, a weakly uniform algorithm requires the
corresponding “jump sizes” for any index i to be the same for all nodes,
irrespective of the node identifier.

• A routing algorithm is strongly uniform if it is weakly uniform and if for
any nodes id and id′, Sid�i = Sid′�i. A strongly uniform algorithm requires
all routing tables to also have the same corresponding sizes of the index
ranges.

• A network is node-congestion-free (resp., edge-congestion-free) if all
nodes (resp., edges) are handling the same average traffic. A network
is congestion-free it it is node-congestion-free and edge-congestion-free.

712 Peer-to-peer computing and overlay graphs

Chord, CAN, and Tapestry are all congestion-free algorithms. A strongly
uniform algorithm is node-congestion-free.

The following result has been shown by Xu et al. [34]:

• When the routing algorithms are weakly uniform, ��log2 n� and ��n1/d�

are the lower bounds on the diameter in networks with routing tables
of sizes O�log n� and d, respectively. As Chord, CAN, and Tapestry
are strongly uniform, they achieve the asymptotic lower bounds in the
tradeoff.

18.9 Graph structures of complex networks

P2P overlay graphs can have different structures. An intriguing question is to
characterize the structure of overlay graphs. This question is a small part of
a much wider challenge of how to characterize large networks that grow in a
distributed manner without any coordination [4]. Such networks exist in the
following:

• Computer science: the WWW graph (WWW), the Internet graph that
models individual routers and interconnecting links (INTNET), and the
autonomous systems (AS) graph in the Internet.

• Social networks (SOC), the phonecall graph (PHON), the movie actor
collaboration graph (ACT), the author collaboration graph (AUTH), and
citation networks (CITE).

• Linguistics: the word co-occurrence graph (WORDOCC), and the word
synonym graph (WORDSYN).

• The power distribution grid (POWER).
• Nature: in protein folding (PROT), where nodes are proteins and an edge

represents that the two proteins bind together, and in substrate graphs for
various bacteria and micro-organisms (SUBSTRATE), where nodes are
substrates and edges are chemical reactions in which substrates participate.

It is widely intuited that such complex graphs must display some organiza-
tional principles that are encoded in their topology in some subtle ways. This
has driven research on a unification theory to determine a suitable model in
which all such uncontrolled graphs are instantiations.

The first logical attempt to model large networks without any known
design principles is to use random graphs. The random graph model, also
known as the Erdos–Renyi (ER) model [14], assumes n nodes and a link
between each pair of nodes with probability p, leading to n�n− 1�p/2
edges. Many interesting mathematical properties have been shown for ran-
dom graphs. However, the complex networks encountered in practice are
not entirely random, and show some, somewhat intangible, organizational
principles.

713 18.9 Graph structures of complex networks

Three ideas have received much investigative attention in recent times [4]:

• Small world networks Even in very large networks, the path length
between any pair of nodes is relatively small. This principle of a “small
world” was popularized by sociologist Stanley Milgram by the “six degrees
of separation” uncovered between any two people [24].

As the average distance between any pair of nodes in the ER model
grows logarithmically with n, the ER graphs are small worlds.

• Clustering Social networks are characterized by cliques. The degree
of cliques in a graph can be measured by various clustering coefficients,
such as the following. Consider a node i having ki out-edges. Let li be
the actual number of edges among the ki nearest neighbors of i. If these
ki nearest neighbors were in a clique, they would have ki��ki−1�/2 edges
among them. The clustering coefficient for node i is Ci = 2li/�ki�ki−1��.
The network-wide clustering coefficient is the average of all Cis, for all
nodes i in the network.

The random graph model has a clustering coefficient of exactly p. As
most real networks have a much larger clustering coefficient, this random
graph model (ER) is unsatisfactory.

• Degree distributions Let P�k� be the probability that a randomly
selected node has k incident edges. In many networks – such as INTER,
AS, WWW, SUBST – P�k�∼ k−� , i.e., P�k� is distributed with a power-
law tail. Such networks that are free of any characteristic scale, i.e., whose
degree characterization is independent of n, are called scale-free networks.

In a random graph, the degree distribution is Poisson-distributed with a
peak of P��k��, where �k�, which is a function of n, is the average degree
in the graph. Thus, random graphs are not scale-free. While some real
networks have an exponential tail, the actual form of P�k� is still very
different from that for a Poisson distribution.

Current empirical measurements show the following properties of some
commonly occuring graphs:

WWW In-degree and out-degree distributions both follow power laws; it
is a small world; and is a directed graph, but does show a high clustering
coefficient.

INTNET Degree distributions follow power law; small world; shows
clustering.

AS Degree distributions follow power law; small world; shows
clustering.

ACT Degree distributions follow power law tail; small world (similar
path length as ER); shows high clustering.

AUTH Degree distributions follow power law; small world; shows high
clustering.

SUBSTRATE In-degree and out-degree distributions both follow power
laws; small world; large clustering coefficient.

714 Peer-to-peer computing and overlay graphs

PROT Degree distribution has a power law with exponential cutoff.
PHON In-degree and out-degree distributions both follow power laws.
CITE In-degree follows power law, out-degree has an exponential tail.
WORDOCC Two-regime power-law degree distribution; small world;

high clustering coefficient.
WORDSYN Power-law degree distribution; small world; high clustering

coefficient.
POWER Degree distribution is exponential.

Efforts on developing models focus on random graphs to model random
phenomena, small worlds to interpolate between random graphs and struc-
tured clustered lattices, and scale-free graphs to study network dynamics and
network evolutions.

18.10 Internet graphs

18.10.1 Basic laws and their definitions

In this section, we consider some properties of the Internet, that demonstrate
a power-law behavior as measured empirically. The power law informally
implies that large occurrences are very rare, and the frequency of the occur-
rence increases as the size decreases. Examples pertaining to the Web are: the
number of links to a page, the number of pages within a Web location, and
the number of accesses to a Web page. We begin by taking the example of the
popularity of Websites to illustrate the definitions of three related observed
laws [2]: Zipf’s law, the Pareto law, and the Power law:

• Power law P�X = x�∼ x−a
This law is stated as a probability distribution function (PDF). It says that
the number of occurrences of events that equal x is an inverse power of x.
Figure 18.11(a) and (b) show the typical Power law PDF plots on both

visitors

slope b = a − 1

(c) Pareto law
 (log–log scale)

P(site has
 > x visitors)

CDF

Log

Log

slope a

(b) Power Law
 (log–log scale)

PDF

sites

Log

Log# visitors

(a) Power law
 (linear scale)

PDF

sites

visitors Rank of site

slope c = 1 / b

 (log–log scale)
(d) Zipf’s law

PDF

(i.t.o. > y visitors)
Log

Log
visitors

Figure 18.11 The popularity of Websites. (a) Power law showing the PDF using a linear scale. (b)
Power law showing the PDF using a log–log scale. (c) Pareto law showing the CDF using a log–log
scale. (d) Zipf’s law using a log–log scale [2].

715 18.10 Internet graphs

linear and log–log scales, respectively. In the log–log plot, the slope is a.
In our example, this corresponds to the number of sites that have exactly

x visitors.
• Pareto law P�X ≥ x�∼ x−b = x−�a−1�

This law is stated as a cumulative distribution function (CDF). The number
of occurrences larger than x is an inverse power of x. The CDF can be
obtained by integrating the PDF. The exponents a and b of the Pareto
(CDF) and Power laws (PDF) are related as b+ 1 = a. Figure 18.11(c)
shows the Pareto law CDF plot on a log–log scale. In the log–log plot, the
slope is b = a−1.

In our example, this corresponds to the number of sites that have at least
x visitors.

• Zipf’s law n∼ r−c
This law states the count n (i.e., the number) of the occurrences of an
event, as a function of the event’s rank r. It says that the count of the
rth largest occurrence is an inverse power of the rank r. Figure 18.11(d)
shows the Zipf plot on a log–log scale. In the log–log plot, the slope is c,
which, as we see below, is 1/b = 1/�a−1�.

The context initally used by Zipf was the frequency of occurrence of
words in English, where the most frequently occurring word had rank 1.
The Zipf law is widely occurring, e.g., both the magnitude of earthquakes
and the populations of cities also follow this law. In our example, this
corresponds to the number of visits to the rth most popular site.

Clearly, the Pareto law (CDF) and Power law (PDF) are related. Zipf’s
law n ∼ r−c, states that “the r-ranked object has n = r−c occurrences,” and
can be equivalently expressed as: “r objects (x-axis) have n = r−c (y-axis)
or more occurrences.” This becomes the same as the Pareto law’s CDF after
transposing the x and y axes, i.e., by restating as: “the number of occurrences
larger than n= r−c (x-axis) happens for r objects (y-axis).”

From Zipf’s law, n = r−c, hence, r = n−1/c. Hence, the Pareto exponent
b is 1/c. As b = �a− 1�, where a is the Power law exponent, we see that
a = 1+ �1/c�. Hence, the Zipf’s law distribution also satisfies a Power law
PDF.

18.10.2 Properties of the Internet

The Internet is a prime example of a complex entity that exhibits power-law
behavior. Based on extensive empirical measurements, Siganos et al. [31]
showed the following results:

• Rank exponent/Zipf law The nodes in the Internet graph are ranked in
decreasing order of their degree. When the degree di is plotted as a function
of the rank ri on a log–log scale, the graph is like Figure 18.11(d). The
slope is termed the rank exponent �, and di ∝ r�i . If the minimum degree

716 Peer-to-peer computing and overlay graphs

dn = m is known, then m = dn = Cn�, implying that the proportionality
constant C is m/n�. Exercise 18.6 asks you to estimate the number of
edges as a function of the rank exponent and the number of nodes.

• Degree exponent/ PDF and CDF Let the CDF fd of the node degree d
be the fraction of nodes with degree greater than d. Then fd ∝ d� , where
� is the degree exponent that is the slope of the log–log plot of fd as a
function of d.

Analogously, let the PDF be gd. Then gd ∝ d�′ , where �′ is the degree
exponent that is the slope of the log-log plot of gd as a function of d.

Empirically, D′ ∼D+1, as theoretically predicted. Further, �∼ �1/��,
also as theoretically predicted. The imperfect match is attributed to imper-
fect measurements and approximations in curve-fitting. In practice, the
CDF is preferred as it can be estimated with greater accuracy.

• Eigen exponent � For the adjacency matrix A of a graph, its eigen-
value � is the solution to AX = �X, where X is a vector of real num-
bers. The eigenvalues are related to the graph’s number of edges, number
of connected components, the number of spanning trees, the diameter,
and other important topological properties. Let the various eigenvalues
be �i, where i is the order and between 1 and n. Then the graph of
�i as a function of i is a straight line, with a slope of �, the eigen-
exponent. Thus, �i ∝ i� . More intriguingly, when the eigenvalues and the
degree are sorted in descending order, it is found that �i =

√
di, implying

that � =�/2.

The following additional hypotheses have not been very vigorously tested
and verified. Nevertheless, they offer insightful looks into the prevalance and
use of power laws in complex uncontrolled entities such as the Internet. Two
definitions are useful at this stage:

– PN�h� is the number of pairs of nodes within h hops, counting self-pairs,
and counting all other pairs twice due to the dual edge incidence.

– NN�h�, the neighborhood, is the expected number of nodes within h hops.

• Hop-plot exponent, � Experimental measurements have shown that
PN�h� follows a power law regime more closely, rather than the expo-
nential regime as previously estimated. Thus, PN�h� ∝ h� , where � is
the slope of the log-log plot of PN�h� as a function of h for h� dia.
From the definition of PN�h�, observe that PN�1�= n+2l, where l is the
number of edges. Hence,

PN�h�=
{
�n+2l�h� � if h� dia�

n2� if h≥ dia� (18.9)

The hop-plot exponent is useful to estimate the effective diameter diaeff
of the network. Informally, any two nodes in the network are within diaeff

717 18.10 Internet graphs

hops of each other, with “high probability.” When some destination node
whose location is unknown needs to be reached, the use of hop-constrained
broadcast is the standard solution. A large hop count takes too long,
whereas a small hop count may not reach the entire network. If the hop
count is set to diaeff , then with high probability, the destination can be
reached with just the right amount of overhead. Using n, � , and the
number of edges l, the effective diameter is defined as:

diaeff =
(

n2

n+2l

)1/�

�

This effective diameter is estimated as the abscissa of the intersection of
the log–log hop-plot with slope � and the n2 coverage that is expected
within diameter hops.

Observe that the average size of the neighbourhood NN�h� =
�PN�h�/n�− 1. Hence NN�h� = ��n+ 2l�h�/n�− 1. The NN�h� is seen
to be a more accurate estimate of the neighborhood than the traditional
average-degree estimate, NN ′d�h� = d�d− 1�h−1. The NN ′d�h� estimate
assumes that the degree distribution is more uniform, and that each hop
adds d−1 new nodes per node at the boundary of the examined neighbor-
hood. As the degree distribution is highly skewed, the traditional NN ′�h�
metric is not accurate.

For all the cases above, the power law regime has so far been empirically
validated. The exponent itself has been observed to change gradually over
time as the networks evolve. The power law regime provides a good handle
on predicting the future growth of the Internet, and building accurate graphs
for simulations.

Classification of scale-free networks
Scale-free networks of different types – WWW, INTNET, AS, ACT, AUTH,
SUBSTRATE, PROT, PHON, in-degree for CITE, and WORDSYN – have
different degree exponents, typically ranging from 2 to 3. The quest to seek a
more universal and common factor resulted in the analysis of another metric,
called the “betweenness centrality” [15]. For any graph, let its geodesics, i.e.,
set of shortest paths, between any pair of nodes i and j, be denoted S�i� j�.
Let Sk�i� j� be a subset of S�i� j� such that all the geodesics in Sk�i� j� pass
through node k. The betweeness centrality BC of node k, bk, is

∑
i �=j gk�i� j�=∑

i �=j �Sk�i� j��/�S�i� j��. The bk denotes the importance of node k in shortest-
path connections between all pairs of nodes in the network.

The metric BC follows the power law PBC�g� ∼ g−�, where � is the BC-
exponent. Unlike the degree exponent which varies across different network
types, the BC-exponent has been empirically found to take on values of only
2 or 2.2 for these varied network types. This interesting observation is under
further study.

718 Peer-to-peer computing and overlay graphs

Figure 18.12 Impact of attacks
and failures on the diameter of
exponential networks and
scale-free networks, from
Albert et al. [5].

Network
diameter

Exponential (attack & errors)

0.10.05

f, the fraction of nodes removed

0

Scale−free (under attack)

Scale−free (under errors)

18.10.3 Error and attack tolerance of complex networks

Based on the node degree distribution P�k�, two broad classes of small
world networks are the exponential networks and the scale-free networks. In
exponential networks, such as the ER random graph model and the Watts–
Strogatz small world model [33], P�k� reaches a maximum at a k value and
then P�k� decreases exponentially per a Poisson distribution as k increases.
In scale-free networks, such as the Web and the Internet, P�k� decreases as
per a power law, P�k�∼ k−� .

The following are two key differences that leads to different behavior of
exponential networks and of scale-free networks, under errors and attacks:
(i) nodes with a very high degree are statistically significant in scale-free
networks, whereas they are close to an impossibility in exponential networks;
(ii) in an exponential network, all nodes have about the same number of
links, whereas in a scale-free network, some nodes have many links and the
majority of the nodes have a small number of links.

Errors are simulated by removing nodes at random. Attacks are simulated
by removing the nodes with highest degree. Their impact is measured on
network diameter and network partitioning [5].

Impact on network diameter
Figure 18.12 is used to descibe the impact on the diameter. The graph shows
only the relative trends, as empirically verified by simulations for many large
networks, including the Web and Internet. Any numbers simply in the graph
convey an approximate order of magnitude for the particular networks studied
by Albert et al. [5].

• Errors In an exponential network, as all nodes have about the same
degree, the removal of any node has approximately the same amount of
small impact in terms of decrease in connectivity. The network diameter
increases gradually. The diameter of scale-free networks remains almost
same under errors, as nodes that are removed have small degree with very
high probability and are very unlikely to alter the lengths of the paths
among other nodes.

719 18.10 Internet graphs

• Attacks As nodes in an exponential network have about the same degree,
the network behaves similarly under attack as under errors. Under attack,
the diameter of scale-free networks increases dramatically, as the few
nodes with highest connectivity are removed, thereby greatly reducing the
connectivity of the entire network.

Impact on network partitioning
The impact of removal of nodes on partitioning is measured using two metrics:
Smax, the ratio of the size of the largest cluster to the system size, and Sothers,
the average size of all clusters except the largest.

• Exponential networks In Figure 18.13, as f , the fraction of nodes
removed is increased, Sothers increases from 1 to around 2 for some threshold
fraction fthreshold. This implies that for very small f , where Sothers ∼ 1, sin-
gle nodes break off. As f increases, several small but larger partitions set in,
leading to a peak of Sothers at fthreshold. For f > fthreshold, Sothers reduces back
to 1, as the isolated clusters (fragments) in the network further disintegrate.
In terms of Smax, as f is varied from 0 to fthreshold, Smax decreases from 1 to
a low value as small (mostly single-node) partitions break off. As fthreshold is
approached, the main cluster disintegrates, leading to Smax tending to 0. As f
is increased beyond fthreshold, Smax remains near 0.

The impact of attacks on network partitioning is the same as the impact
of errors, for the same reasoning given for the analysis on the diameter.

• Scale-free networks In Figure 18.14, when nodes are randomly
removed, Smax decreases from 1 very gradually. Also, Sothers remains steady
at 1, indicating that singleton nodes get removed from the main network.
There is no threshold fthreshold observed, even for high values of f , such
as 0.5 error rate.

0 0.5

S m
ax

an

d
S o

th
er

s 2

1

Sothers

Partitions at
f > fthreshold

Partitions at
 fthreshold

Partitions at
very low f f. the fraction of nodes removed

under attack and
under errors

under attack and
under errors

Smax

fthreshold

(a) (b) (c) (d)

Figure 18.13 Impact of errors and attacks on cluster size of exponential networks, from Albert
et al. [5]. (a) Graphical trend. (b) Pictoral cluster sizes for low f , i.e., f � fthreshold . (c) Pictoral cluster
sizes for f ∼ fthreshold . (d) Pictoral cluster sizes for f > fthreshold . The pictoral trend in (b)–(d) is also
exhibited by scale-free networks under attack, but for a lower value of fthreshold .

720 Peer-to-peer computing and overlay graphs

Smax

under attackSmax

0.4
f. the fraction of nodes removed

fthreshold0

S m
ax

an

d
S o

th
er

s

2

1 under errors

Sothers

Sothers

under attack

under errors

(a)

Partitions
under errors
(very low f)

(b)

Partitions
under errors
(moderate f)

(c)

Partitions
under errors
(higher f)

(d)

Figure 18.14 Impact of errors on cluster size of scale-free networks, from Albert et al. [5]. The pictoral
impact of attacks on cluster sizes are similar to those in Figure 18.13. (a) Graphical trend. (b) Pictoral
cluster sizes for low f under failure. (c) Pictoral cluster sizes for moderate f under failure. (d) Pictoral
cluster sizes for high f under failure.

However, under attack, when the most connected nodes are removed, the
behavior is similar to (but more acute than) that of the exponential network;
see Figure 18.13. Thus, the threshold fthreshold sets in at a lower value.
This is because the impact of removing the highly connected nodes first
causes disintegration to set in quickly.

18.11 Generalized random graph networks

Random graphs cannot capture the scale-free nature of real networks, which
states that the node degree distribution follows a power law. The generalized
random graph model uses the degree distribution as an input, but is random in
all other respects. Thus, the constraint that the degree distribution must obey
a power law is superimposed on an otherwise random selection of nodes to be
connected by edges. These semi-random graphs can be analyzed for various
properties of interest. Although a simple formal model for the clustering
coefficient is not known, it has been observed that generalized random graphs
have a random distribution of edges similar to the ER model, and hence the
clustering coefficient will likely tend to zero as N increases.

18.12 Small-world networks

Real-world networks are small worlds, having small diameter, like random
graphs, but they have relatively large clustering coefficients that tend to be
independent of the network size.

Ordered lattices tend to satisfy this property that clustering coefficients are
independent of the network size. Figure 18.15(a) shows a one-dimensional

721 18.13 Scale-free networks

lattice in which each node is connected to k= 4 closest nodes. The clustering
coefficient is C = 3�k−2�

4�k−1� .

(a)

(b)

(c)

Figure 18.15. The
Watts–Strogatz random rewiring
procedure [4,33]. (a) Regular.
(b) Small-world. (c) Random.
The rewiring shown maintains
the degree of each node.

The first model for small world graphs with high clustering coefficients
and low path length is the Watts–Strogatz (WS) model [33]:

1. Define a ring lattice with n nodes and each node connected to k closest
neighbors (k/2 on either side). Let n1 k1 ln�n�1 1.

2. Rewire each edge randomly with probability p. When p = 0, there is a
perfect structure, as in Figure 18.15(a). When p= 1, complete randomness,
as in Figure 18.15(c).

A characteristic of small-world graphs is the small average path length.
When p is small, len scales linearly with n, but when p is large, len scales
logarithmically. Through analytical arguments and simulations, it is now
believed that the characteristic path length varies as:

len�n�p�∼ n1/d

k
f�pkn�� (18.10)

where the function f behaves as follows:

f�u�=
{

constant� if u� 1�
ln�u�/u� if u1 1�

(18.11)

The variable u has the intuitive interpretation that it depends on the average
number of random links that provide “jumps” across the graph, and f�u� is
the average factor by which the distance between a pair of nodes gets reduced
by the “jumps.”

18.13 Scale-free networks

Many real networks are scale-free, and even for those that are not scale-
free, the degree distribution follows an exponential tail that is significantly
different from that of the Poisson distribution. Semi-random graphs that are
constrained to obey a power law for the degree distributions and constrained
to have large clustering coefficients yield scale-free networks, but do not
shed any insight into the mechanisms that give birth to scale-free networks.
Rather than modeling the network topology, it is better to model the network
assembly and evolution process. Specifically:

722 Peer-to-peer computing and overlay graphs

Figure 18.16 The simple
Barabasi–Albert model [7].

Initially, there are m0 isolated nodes. At each sequential step, perform one of the
following operations:

Growth Add a new node with m edges, (where m ≤ m0), that link the new node to
m different nodes already in the system.

Preferential attachment The probability
∏

that the new node will be connected
to node i depends on the degree ki, such that:∏

�ki�=
ki∑
j�kj�

� (18.12)

• Rather than begin with a constant number of nodes n that are then randomly
connected or rewired, real networks (e.g., WWW, INTERNET) exhibit
growth by the addition of nodes and edges.

• Rather than assume that the probability of adding (or rewiring) an edge
between two nodes is a constant, real networks exhibit the property of
preferential attachment, where the probability of connecting to a node
depends on the node degree.

The simple Barabasi–Albert model [7], which captures growth and pref-
erential attachment, is described in Figure 18.16. After t time steps, there
are t+m0 nodes and mt edges. Numerically, it is verified that the degree
distribution follows a power law with degree=3, that is independent of the
parameter m.

Two techniques to analyze the degree distribution of models are now
described in the context of the BA model. The master-equation approach
was introduced by Dogorotsev et al. [13] and the rate-equation approach was
introduced by Krapivsky et al. [22].

18.13.1 Master-equation approach

Let p�k� ti� t� denote the probability that, at time t, a node i that was added at
time ti has degree k. When a new node with m edges is added to the graph, the
degree of node i increases by one with probability m ·∏�k� = k/2t. Hence,
we have [4, 13]:

p�k� ti� t+1�= k−1
2t
·p�k−1� ti� t�−

[
1− k

2t

]
·p�k� ti� t�� (18.13)

The first term is the probability that a node with k− 1 degree gets a new
edge; the second term is the probability that a node with degree k does not
get a new edge. Based on this formulation, the degree distribution can be
expressed as:

P�k�= limitt→�
∑
ti

p�k� ti� t�/t� (18.14)

723 18.14 Evolving networks

From Eq. (18.13), it can be shown that:

P�k�=
{

k−1
k+2P�k−1�� if k≥m+1�

2
m+2 � if k=m�

(18.15)

This solves as:

P�k�= 2m�m+1�
k�k+1��k+2�

� (18.16)

18.13.2 Rate-equation approach

Let nk�t� be the average number of nodes having k edges at time t. When a
new node is added, nk�t� changes as follows. New edges are added to some
nodes with degree k−1, new edges are added to some nodes with degree k,
and new nodes with m edges are added. These three changes affect nk�t� in
the following manner:

dnk
dt
=m ·

[
�k−1� ·nk−1�t�∑

k knk�t�
− k ·nk�t�∑

k knk�t�

]
+�k�m� (18.17)

By taking the asymptotic limit, nk�t� = t ·P�k�, and
∑

k knk�t� = 2mt. This
yields the same recursive Eq. (18.15) obtained using the master-equation
approach.

18.14 Evolving networks

The BA algorithm in Figure 18.16 represents a basic model that cannot fully
capture real network properties. For example, the BA model has a fixed
exponent of 3 for the power law, independent of the parameter m. Real
networks have an exponent that varies, typically between 1 and 3. Some
real networks sometimes have exponential cutoffs that are not within the
power law regime. The study of more general and flexible models that can
accurately capture real networks has lead to several notable directions of
investigation:

• Preferential attachment The BA model assumed that the probability∏
�k� that a new node connects to a node i is proportional to the degree

ki. This implied that
∏
�k� is linearly proportional to k.

It has been shown analytically that for sublinear preferential attachment
as well as for superlinear preferential attachment, the scale-free nature of
the network cannot be preserved.

In real networks, there is a finite probability that a new node attaches to an
isolated node, i.e.,

∏
�0� �= 0 and

∏
�k�= C+k�, whereC denotes the intial

724 Peer-to-peer computing and overlay graphs

attractiveness. It can be seen that initial attractiveness changes the degree
exponent but preserves the scale-free nature of the degree distribution.

• Growth The BA model assumed that the rate of addition of nodes and
edges was uniform. Many real networks, such as INTNET, AS, WEB,
SUBSTRATE, and WORDOCC, have the property that the number of
edges increases faster than the number of nodes, implying an increase in
the average degree as the number of nodes increases. It has been shown
analytically that accelerated growth does not affect the power law nature
although the exponent degree is altered.

• Local events Real networks undergo local (microscopic) changes to the
topology, such as node addition and node deletion, edge addition and edge
deletion. A popular model that explores the properties of such local events
is the extended Barabasi–Albert model [3], shown in Figure 18.17.

• Growth constraints Real networks often have bounded capacity for the
number of edges (e.g., connections at a router) or a finite lifetime for the
nodes (as in social networks). In the electrical power distribution network
which exhibits an exponential distribution, there are practical reasons why
the node degree is bounded. In the actors network, which exhibits a power
law with an exponential cutoff for large k, ageing limits the accrual of
new edges. Thus, ageing and finite capacity need to explicitly captured in
a good model for such networks.

• Competition Real-world networks exhibit competition, wherein some
nodes can attract more edges (e.g., via advertising) at the cost of other
nodes. This feature can be modeled by a fitness parameter. Similarly, a
new node may inherit edges belonging to some other node or nodes (e.g.,
modifying a replica of a Web page). This needs to be explicitly modeled.

• Induced preferential attachment Various local-level mechanisms,
such as the copying mechanism (copy edges of another node as in Web

Figure 18.17 The extended
Barabasi–Albert model [3].

Initially, there are m0 isolated nodes. At each sequential step, perform one of
the following operations:

With probability p, add m, where m≤m0, new edges For each new edge,
one end is randomly selected, the other end with probability

∏
�ki�=

ki+1∑
j�kj+1�

� (18.18)

With probability q, rewire m edges To rewire an edge, randomly select
node i, delete some edge �i�w�, add edge �i� x� to node x that is chosen with
probability

∏
�kx� as per Eq. (18.18).

With probability 1−p−q, insert a new node Add m new edges to the new
node, such that with probability

∏
�ki�, an edge connects to a node i already

present before this step.

725 18.14 Evolving networks

pages), and tracing selected walks (as in recursively following the citation
trail in a citation network), need to be modeled because they implicitly
introduce preferential attachment.

18.14.1 Extended Barabasi–Albert model

The extended BA model [3] is an example model for evolving networks.

Continuum theory analysis
In continuum theory, it is assumed that ki changes continuously and the prob-
ability

∏
�ki� then represents the rate at which ki changes. Each of the three

possible events in a sequential step can affect the rate at which ki changes as
follows [3]:

1. With probability p, m new links are added. For each link, one end is
randomly chosen, leading to a change in ki of pm/n. For each link, the
second end attaches preferentially, leading to a change in ki of pm · �ki+1�∑

j �kj+1� .
Hence,

dki
dt
= pm1

n
+pm ki+1∑

j�kj+1�
� (18.19)

2. With probability q, m existing links are rewired. For each rewired link,
a randomly chosen node loses one incident edge, which then attaches
preferentially. Thus, the impact on ki is:

dki
dt
=−qm1

n
+qm ki+1∑

j�kj+1�
� (18.20)

3. With probability �1−p−q�, a new node is added with m links. Each of
the m links connects preferentially, thus:

dki
dt
= �1−p−q�m ki+1∑

j�kj+1�
� (18.21)

Summing the three effects, we have:

dki
dt
= �p−q�m1

n
+m ki+1∑

j�kj+1�
� (18.22)

As the system size and topology varies with time, we have:

n�t�=m0+ �1−p−q�t�
∑
j

kj = 2mt�1−q�−m� (18.23)

726 Peer-to-peer computing and overlay graphs

As t increases, the constants m and m0 can be deleted. Further, for a node
added at ti, we have that ki�ti� = m (the initialization step). Exercise 18.8
asks you to show that the solution to Eq. (18.22) has the form

ki�t�= �A�p�q�m�+m+1�
(
t

ti

)1/B�p�q�m�

−A�p�q�m�−1� (18.24)

A�p�q�m�= �p−q�
(

2m�1−q�
1−p−q +1

)
� B�p�q�m�= 2m�1−q�+1−p−q

m
�

(18.25)

Based on further algebraic derivations, Albert and Barabasi [3] showed
that:

P�k� � �k+%�p�q�m��−��p�q�m�� where %�p�q�m�= A�p�q�m�+1 and

��p�q�m�= B�p�q�m�+1� (18.26)

Equation (18.26) is valid if, for a fixed p and m,

q < qmax =min�1−p� �1−p+m�/�1+2m���

There are now two cases:

q < qmax: Eq. (18.26) is valid and the degree distribution is a power law
and is scale-free.

q > qmax: Eq. (18.26) is invalid, and P�k� can be shown to behave like an
exponential distribution. The model now behaves like the ER and WS
models.

This is similar to the behavior seen in real networks – some networks show
a power law while others show an exponential tail – and a single model
can capture both behaviors by tuning the parameter q. The scale-free regime

SF

q

0
p0 1.0

1.0

E

Figure 18.18 Phase diagram for the extended Barabasi–Albert model [3]. SF denotes the scale-free
regime, which is enclosed by the thick border. E denotes the exponential regime that exists in the
remainder of the lower diagonal region of the graph. The plain line shows the boundary for m = 1,
having a y-axis intercept at 0.67.

727 18.16 Exercises

and the exponential regime are marked in the graph in Figure 18.18. The
boundary between the two regimes depends on the value of m and has slope
−m/�1+2m�. The area enclosed by thick lines shows the scale-free regime;
the dashed line is its boundary whenm→� and the dotted line is its boundary
when m→ 0.

18.15 Chapter summary

Peer-to-peer (P2P) networks allow equal participation and resource sharing
among the users. This chapter first analyzed the different types of P2P net-
works. Unstructured P2P networks are like Gnutella and BitTorrent. We stud-
ied different search mechanisms – flooding, constrained flooding, and blind
search – for such unstructured networks. We also examined some data replica-
tion strategies, and their impact on the search performance. The chapter then
studied three classical structured P2P networks – Chord, CAN, Tapestry –
all of which use the distributed hash table concept in their implementations.
Although all the three mechanisms differ, they are similar in that they repre-
sent different tradeoffs in search efficiency, i.e., path length, and the amount
of local storage for implementing the hash tables. The spectrum of P2P net-
works from unstructured to structured offer a wide range of tradeoffs for user
requirements. The chapter also examined issues such as fairness and trust
management. These issues are important because, in the P2P environment
where there is no control authority, the system must be able to autonomously
alllow for fairness.

The Internet, AS-AS level internets, and Web (WWW) overlays exhibit
some interesting properties about how they grow and evolve. Many network
overlays outside of computer science also exhibit the same properties. The
chapter studied several properties of the Internet and Web graphs. Then, in
a more general setting, the chapter examined random networks, small-world
networks, node degree distributions, scale-free networks, and the impact of
error and attack tolerance on such networks. Networks grow in an uncontrolled
fashion, yet there seems to be some underlying basis for such growth. Of the
several proposals to model the growth of networks, we studied the Barabasi–
Albert model, which appears to be promising in its applicability to not just
computer science networks, but also to networks in other disciplines and
natural phenomena.

18.16 Exercises

Exercise 18.1 (Replication) Derive the values of average search size A, Ai, and
utilization ui for square-root replication. The derived answers should match the entries
in Table 18.3.

728 Peer-to-peer computing and overlay graphs

Exercise 18.2 (Fault-tolerance in Chord) Adapt the code in Algorithm 18.3 so that
the nodes manage a successor list of � successors, rather than a single successor.

Exercise 18.3 (Chord) In the Chord protocol, assume that the successor list at each
node has �=��log n� nodes. Show the following:

1. If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, then Locate_Successor returns the closest functional successor node to
the key being searched with high probability.

2. If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, it takes O�log n� average-case time for Locate_Successor to complete.

Exercise 18.4 (CAN) Compute the time and message complexity of the distributed
region reassignment protocol that is run periodically by the CAN protocol.

Exercise 18.5 (CAN) Identify all the changes to the base CAN protocol to accommo-
date the optimization of overloading coordinate regions, discussed in Section 18.5.5.

Exercise 18.6 (Power law in the Internet [31]) Show that the number of edges l in
the Internet graph that obeys the power law for the rank exponent is given as follows.
Let the graph have n nodes and rank exponent �. Then:

l∼ 1
2��+1�

�1− 1
n�+1

�n�

Exercise 18.7 Show that Eq. (18.15) using the master-equation approach for the
degree distribution in the extended BA model can be solved as Eq. (18.16).

Exercise 18.8 Show that the solution to Eq. (18.22) for the degree distribution in the
extended BA model using continuum theory analysis is given by Eq. (18.25).

18.17 Notes on references

The introduction is based on the survey by Risson and Moors [29] and Androutsellis-
Theotokis and Spinellis [6]. The discussion on replication and search in unstructured
networks is based on Cohen and Shenker [12], and on Lv et al. [23], respectively.
Gnutella [16,17], Napster [25], and Freenet [10] are widely implemented commercial
P2P protocols. The Chord protocol was proposed by Stoica et al. [32]. The content
addressible network (CAN) was proposed by Ratnasamy et al. [27]. The design of
Tapestry [20, 21, 35, 36] and the related Pastry [30] overlay was based on the ideas
of Plaxton trees proposed by Plaxton et al. [26]. Tapestry built on the Plaxton trees by
providing better fault-tolerance and resilience in the face of node joins and departures.
The discussion on fundamental tradeoffs between routing table size and network
diameter is based on Xu et al. [34] and Ratnasamy et al. [28]. The BitTorrent system
was initially proposed by Cohen [11]. The discussion of trust management is based
on Gupta et al. [18, 19] and Aberer and Despotovic [1].

The discussion on the graph structures of complex networks is structured and based
on the excellent survey by Albert and Barabasi [4]. The discussion on power laws and
Zipf’s law is taken from the tutorial by Adamic [2]. The power laws for the Internet

729 References

were discovered by Siganos and the Faloutsos brothers [31]. The discussion on the
betweenness centrality metric for graphs is based on the work by Goh et al. [15].
The random graphs model was proposed and analyzed by Erdos and Renyi [14].
Further results on the properties on random graphs were given by Bollobas [8, 9].
The small worlds model was proposed by Watts and Strogatz [33]. The extended
Barabasi–Albert model for graph evolution was given by Albert and Barabasi [3].
The analysis of error and attack tolerance on exponential networks and on scale-free
networks was done by Albert et al. [5].

References

[1] K. Aberer and Z. Despotovic, Managing trust in a peer-to-peer information
system, Proceedings of the 10th International Conference on Information and
Knowledge Management, Atlanta, Georgia, USA, November 2001, 310–317.

[2] L. Adamic, Zipf, Power-Laws, and Pareto – A Ranking Tutorial, available online
at: www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

[3] R. Albert and A.-L. Barabasi, Topology of evolving networks: local events and
universality, Physical Review Letters, 85(24), 2000, 5234–5237.

[4] R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks, Review
of Modern Physics, 74(1), 2002, 47–97.

[5] R. Albert, H. Jeong, and A. Barabasi, Error and attack tolerance of complex
networks, Nature, 406, 2000, 378–381.

[6] S. Androutsellis-Theotokis and D. Spinellis, A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys, 36(4), 2004, 335–371.

[7] A.-L. Barabasi and R. Albert, Emergence of scaling in random networks, Science,
286, 1999, 509–512.

[8] B. Bollobas, Degree sequences of random graphs, Discrete Math, 33, 1981, 1–9.
[9] B. Bollobas, Random Graphs, London, Academic Press, 1985.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, Freenet: a distributed anony-
mous information storage and retrieval system, Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, July 2000, 46–66.

[11] B. Cohen, Incentives Build Robustness in BitTorrent, available online at:
www.bittorrent.com/bittorrentecon.pdf.

[12] E. Cohen and S. Shenker, Replication strategies in unstructured peer-to-peer
networks, ACM SIGCOMM, 2002, 177–190.

[13] S. Dogorotsev, J. Mendes, and A. Samukhin, Structure of growing networks:
exact solution of the Barabasi–Albert model, Physical Review Letters, 85, 2000,
4633–4636.

[14] P. Erdos and A. Renyi, Random graphs. 6, 1959, 290–.
[15] K. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim, Classification of scale-free

networks, Proceedings of the National Academy of Sciences, 2002.
[16] Gnutella, www.gnutella.com/.
[17] The Gnutella protocol specification, available online at: www9.limewire.

com/developer/gnutella_protocol_0.4.pdf.
[18] M. Gupta, P. Judge, and M. Ammar, A reputation system for peer-to-peer net-

works, Proceedings of the 13th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video, Monterey, CA, June 2003,
144–152.

730 Peer-to-peer computing and overlay graphs

[19] M. Gupta, M. H. Ammar, and M. Ahamad, Trade-offs between reliability and
overheads in peer-to-peer reputation tracking, Computer Networks, 50(4), 2006,
501–522.

[20] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao, Distributed object location
in a dynamic network, Proceedings of ACM SPAA 2002, 41–52.

[21] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao, Distributed object location
in a dynamic network, Theory of Computing Systems, 37, 2004, 405–440.

[22] P. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random
networks, Physical Review Letters, 85, 2000, 4629–4632.

[23] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstruc-
tured peer-to-peer networks, International Conference on Supercomputing, 2002,
84–95.

[24] S. Milgram, The small world problem, Psychology Today, 1(2), 1967, 60–67.
[25] Napster, www.napster.com/.
[26] C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing nearby copies of

replicated objects in a distributed environment, Proceedings of ACM SPAA 1997,
311–320.

[27] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker, A scalable
content-addressable network, Proceedings of ACM SIGCOMM 2001, 161–172.

[28] S. Ratnasamy, I. Stoica, and S. Shenker, Routing algorithms for DHTs: some
open questions, Proceedings of IPTPS 2002, 45–52.

[29] J. Risson and T. Moors, Survey of research towards robust peer-to-peer networks:
search methods, Computer Networks, 50(17), 2006, 3485–3521.

[30] A. Rowstron and P. Druschel, Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems, Proceedings of the IFIP/ACM Mid-
dleware 2001, Heidelberg, Germany, November 2001, 329–350.

[31] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, Power laws and the AS-
level internet topology, IEEE/ACM Transactions on Networking, 11(4), 2003,
514–524.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.F. Kaashoek, F. Dabek,
and H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet
applications, IEEE Transactions on Networking, 11(1), 2003, 17–31.

[33] D. J. Watts and S. H. Strogatz, Collective dynamics of “Small World” networks,
Nature, No. 393, 1998, 440–442.

[34] J. Xu, A. Kumar, and X. Yu, On the fundamental tradeoffs between routing table
size and network diameter in peer-to-peer networks, IEEE Journal on Selected
Areas in Communications, 22(1), 2004, 151–163.

[35] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
Tapestry: a resilient global-scale overlay for service deployment, IEEE Journal
on Selected Areas in Communications, 22(1), 2004, 41–53.

[36] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, Tapestry: An Infrastructure for
Fault-Resilient Wide-Area Location and Routing, Technical Report UC Berkeley,
CSD-01-1141, University of California at Berkeley, Berkeley, CA, 2001.

Index

Compare&Swap, 548
Fetch&Increment, 548
Swap, 432
Test&Set, 432
Definitely, 383
Possibly, 383
Read-Modify-Write, 551

Abadi, M, 601, 627
accuracy properties, 571
Acharya, 107
adaptive algorithms, 130
Afek, Y, 655, 656
Agarwal, D, 331
Agrawala, AK, 312
agreement

failure-free system, 515
Alagar, 108
Alvisi, L, 507
anonymous algorithms, 130
antimessages, 73
Arora, A, 635, 648, 655
asynchronous execution, 19
asynchronous system, 132
atomic broadcast, 583
atomic registers, 436
authentication, 599
authentication protocol failures, 625
authentication protocols

with asymmetric cryptosystem, 615
with symmetric cryptosystem, 602

authentication server, 605

Badrinath, 107
Baldoni, R, 507

Barabasi-Albert model
extended Barabasi-Albert model, 725

Bellovin, SM, 623
Bhargava, B, 506
Bremler, A, 656
Briatico, D, 470
broadcast, 148
Burrows, M, 627
Byzantine agreement, 512

exponential tree algorithm, 519
upper bound, 517

Cao, G, 467
causal delivery, 106
causal order, 206

optimal algorithm, 208
Raynal-Sciper-Toueg algorithm, 207

causal ordering, 43
causal path, 112
causal precedence relation, 41
Chakrabarti, S, 628
Chandra, TD, 568, 570, 573, 578, 583, 584
Chandrasekaran, S, 253
Chandy, 93, 362, 364
Chandy, KM, 375
channel state recording, 107
checkpoint, 110, 458

global, 459
local, 458

checkpointing
communication-induced, 468
coordinated, 465
uncoordinated, 464

checkpointing algorithm
Helary-Mostefaoui-Netzer-Raynal

protocol, 499

731

732 Index

checkpointing algorithm (cont.)
Juang and Venkatesan algorithm, 478
Koo-Toueg, 476
Manivannan-Singhal algorithm, 483
Peterson-Kearns algorithm, 492

Chord, 688
churn, 691

clock inaccuracies, 80
clock offset, 79
clock skew, 79
clocks

matrix, 68
physical, 78
scalar, 53
vector, 55

closure, 634
clustering, 713
common clock primitives, 648
common knowledge, 292

concurrent common knowledge, 293
Epsilon common knowledge, 292
eventual common knowledge, 292
protocols for concurrent common

knowledge, 295
timestamped common knowledge, 293

communication
asynchronous, 47
synchronous, 47

communication primitives, 14
asynchronous, 15
blocking, 15
non-blocking, 15
synchronous, 15

Compare&Swap, 550
completeness properties, 570
complex networks

Barabasi-Albert model, 722
error and attack tolerance, 718
graph structures, 712
Internet, 715
Internet graph, 714

complexity metrics, 135
concurrency, 12
concurrency measure, 51
consistent cut, 91
conjunctive predicate detection

interval-based piggybacking
algorithm, 401

interval based algorithm, 389
interval-based token algorithm, 397
state-based token algorithm, 395

conjunctive predicate detetion
state-based algorithm, 392

consensus, 513
k-set consensus, 532
approximate agreement, 533
impossibility in shared memory

asynchronous systems, 544
impossibility result for asynchronous

systems, 529
phase king algorithm, 526
reliable broadcast, 544
renaming problem, 538
shared memory k-set consensus, 556
terminating reliable broadcast, 531
transaction commit, 532
wait-free renaming using splitters, 560
wait-free shared memory renaming, 557

consensus hierarchy, 547
consensus problem, 577

solution using eventually strong FD, 580
solution using strong FD, 578

consensus under crash failures, 517
Consistent global snapshots, 113
consistent global snapshots

necessary and sufficient conditions, 110
consistent global state, 91
consistent global states, 44
content-addressible networks (CAN), 695
convergecast, 148
convergence, 634
crown, 197
cryptographic protocols

design principles, 601
cut, 91
cut in a ditributed computation, 45

data indexing, 679
deadlock

avoidance, 354
Chandy-Misra-Haas algorithm, 362, 364
detection, 354
Kshemkalyani-Singhal algorithm, 365
Mitchell-Merritt algorithm, 360
phantom, 355
prevention, 353
resolution, 355

deadlock detection, 354
deadlocks, 330

diffusing computations based algorithms,
359

edge-chasing algorithm, 359

733 Index

global state detection based
algorithms, 359

path-pushing algorithms, 358
degree distributions, 713
delayed messages, 461
Delporte-Gallet, C, 586
deterministic execution, 131
dictionary attack, 623
diffusion computation, 359
Dijkstra, E, 631, 636, 662
distributed deadlock, 352
distributed discrete event simulations, 77
Distributed Program, 39
distributed reset, 648
distributed systems

characteristics, 1
design issues, 22

Dolev, S, 652, 660
duplicate messages, 461
dynamic termination detection, 261

El Abbadi, A, 331
Elnozahy, EN, 507
emulations, 21

message-passing, 14
shared memory, 14
synchronous system, 21

Encrypted Key Exchange (EKE)
protocol, 623

enumerating consistent snapshots, 118
event counting, 54
eventual accuracy properties, 571
evolving networks, 723
executions realizable with synchronous

communication, 196
timestamps, 198

failure detector
adaptive, 591
implementation, 589
realistic, 586
weakest, 588, 589

failure detectors, 569
reducibility, 572
types, 572

failure pattern, 569
failure recovery, 462
Fowler, 62
free-riding, 708
Fuchs, WK, 469
future cone of an event, 46

Garg, V, 596
Gartner, F, 652
generalized deadlocks, 365
generalized random graph networks, 720
Gligor, V, 375
global state, 43, 92

consistent, 91
global virtual time, 75
Gnutella, 682
Gouda, M, 635, 648, 649, 655, 662
graph algorithms, 138

maximal independent set (MIS), 169
all sources shortest paths, 151
compact routing tables, 172
connected dominating set (CDS), 171
constrained flooding, 155
delay bounded Steiner trees, 233
distance vector rouitng, 150
leader election, 174
minimum weight spanning tree, 157, 162
reverse path forwarding, 230
single source shortest path, 149, 151
spanning tree, 138, 140, 143, 146
Steiner trees, 231

group communication, 205
fault-tolerant, 228
multicast, 220

Guerraoui, R, 596

Haas, L, 362, 364
Helary, 100
Helary, JM, 499
Herman, T, 375
Huang, ST, 656

illegitimate state, 634
impersonation attack, 618
incarnation number, 486
incremental snapshot, 99
inhibition, 131
interactive consistency, 513
interconnection networks, 6, 679
Israeli, A, 652

Jard, 65
Johnson, D, 507
Jourdan, 65
Juang, 478

Kaminsky, M, 628
Kasami, 336
Katz, S, 664
Kearns, 97, 109

734 Index

Kearns, P, 492
Kerberos

authentication service, 611
authenticator, 613

Kerberos authentication service,
611, 613

Kim, KH, 507
Knapp, E, 358, 375
knowledge

agreement, 291
asynchronous system, 290
logic, 283
multi-dimensional clocks, 300
operators, 283
properties, 288
transfer, 298

Koo, R, 476
Kripke structures, 285
Kshemkalyani, AD, 60, 321, 365, 375
Kutten, S, 655

Lai, 102
Lam, S, 627
Lamport, 93, 309
Lamport’s happens before relation, 41
layering, 647
lazy failure detection protocol, 592
legitimate state, 634
Lodha, 321
log-based rollback recovery, 470
logging

causal, 474
optimistic, 473
pessimistic, 472

logical clocks, 52
lost messages, 461

Maekawa, M, 328
Manivannan, 118, 483
Marzullo, K, 506
matrix clocks, 68
matrix time, 68
Mattern, F, 105, 263
memory consistency, 413

atomic consistency, 414
causal consistency, 420
hierarchy, 424
linearizability, 414
pipelined RAM (PRAM), 422
processor consistency, 422
sequential consistency, 417
slow memory, 423

Menasce, D, 360, 375
Merritt, M, 360, 623
message ordering, 190

asynchronous executions, 190
hierarchy, 199
synchronous executions, 194

message ordering paradigms
causal order, 191
FIFO executions, 191

Misra, 362, 364
Mitchell, 360
modularization, 647
monitoring global state, 109
Moran, S, 652
Mostefaoui, 499
muddy children puzzle, 282
multicast, 220

core-based trees, 235
destination agreement based, 227
fixed sequencer based, 227
history based, 226
moving sequencer based, 227
privilege based, 226
propagation trees, 221

Muntz, R, 375
mutual exclusion

Agarwal-El Abbadi algorithm, 331
fast mutual exclusion, 429
hardware-assisted, 432
Lamport’s algorithm, 309
Lamport’s bakery algorithm, 427
Lodha-Kshemkalyani algorithm, 321
Maekawa’s algorithm, 328
quorum-based algorithms, 327
Raymond’s algorithm, 339
Ricart-Agrawala algorithm, 312
Singhal’s dynamic algorithm, 315
Suzuki-Kasami algorithm, 336
token-based algorithms, 336

Napster, 678
Needham and Schroeder protocol, 617
Needham, R, 601, 617, 627
Network Time Protocol (NTP), 80
Netzer, R, 113, 118, 499
non-blocking universal algorithm, 553
nonce, 604
non-deterministic execution, 131

object replication, 176
one-time password, 606

735 Index

orphan messages, 461
Otway-Rees protocol, 609
overlays, 126, 679

structured, 680
unstructured, 681

parallel system, 5
coupling, 11
Flynn’s taxonomy, 10
interconnection networks, 6
multiprocessor, 5
parallelism, 12

Pareto law, 715
partial synchrony, 590
partially synchronous models, 590
past cone of an event, 46
path

causal, 112
zigzag, 112

peer-to-peer
flooding, 683
proportional replication, 686
random walk, 684
replication, 686
square-root replication, 686
uniform replication, 686

Peterson, SL, 492
physical clock synchronization, 78
physical clocks, 78
power law, 714
Prakash, R, 507
predicates, 380

conjunctive, 388
disjunctive, 404
modalities, 382
observer-independent, 405
relational, 384
stable, 380
unstable, 382

Prisoners’ dilemma, 708
probabilistic self-stabilization, 636
probe message, 363
program structure, 137
progress, 355
pseudo stabilization, 669
pseudo-stabilizing system, 636
public key certificate, 616

R-graph, 119
Ramamoorthy, CV, 375
randomized self-stabilization, 635
Raymond, K, 339

Raynal, M, 499, 596
Reducing Weak FD to a Strong FD,

573
register hierarchy, 434
regular registers, 436
relational predicate detection, 384
rendezvous, 201
reputation management, 709
Ricart, 312
Richard, G, 506

safe registers, 435
safety, 355
scalar time, 53
scale-free networks, 717, 719, 721
Schiper, A, 596
Schneider, M, 662
Schroeder, MD, 617
Secure Remote Password (SRP) protocol,

624
secure sockets layer, 619
self-stabilization, 634

cost, 646
for fault folerance, 665
role of compilers, 662

self-stabilizing algorithm for 1-maximal
independent set, 657

self-stabilizing distributed spanning trees,
650

self-stabilizing token ring, 636
shared memory, 410, 456
shared memory mutual exclusion, 427
simultaneous regions, 109
Singhal, 60, 118, 315, 365, 375,

467, 483
Sistla, P, 506
small-world networks, 713, 720
snapshots, 274
solution to atomic broadcast, 584
spanning tree, 247
Spezialetti, 97, 109
splitters, 560
SSL Protocol, 619
stable property, 97
stable storage, 456–458
starvation, 345
state lattice, 384
static termination detection, 259
Strom, 506
surface of the future cone, 47
surface of the past cone, 47
Suzuki, 336

736 Index

symmetry, 667
synchronizers, 163
� synchronizer, 165
� synchronizer, 166
� synchronizer, 166
simple synchronizer, 164

synchronous execution, 19
synchronous order, 202
synchronous system, 132

Tapestry, 701
termination detection, 243, 368

atomic computation model, 263
channel counting method, 270
distributed snapshots, 243
faulty distributed system, 272
four counter method, 265
message-optimal, 253
spanning-tree based, 247
vector counters method, 268
very general model, 257
weight throwing, 245

time
matrix, 68
physical, 78
scalar, 53
vector, 55
virtual, 69

time warp mechanism, 72
time-space diagram, 40
topology based primitives, 648
total order, 215

centralized algorithm, 216
three-phase distributed algorithm, 216

total order property, 583
total ordering, 54
Toueg, S, 476, 568, 570, 573, 578, 583, 584
transient failure, 635
tree-structured quorum, 331
Tseng, 273

uniform algorithms, 130
uniform consensus, 586
universality of consensus objects, 552
useless checkpoints, 464, 469

vector clocks, 55
efficient implementations, 59
size, 57

vector clocks size, 57
vector time, 55, 492
Venkatesan, S, 99, 108, 253, 478
virtual time, 69

wait-for-graph (WFG), 353
wait-free algorithms, 134
wait-free atomic snapshot, 447
wait-free consensus

Compare&Swap, 550
wait-free register simulations, 437–440, 442,

444, 445
wait-free simulations, 434
wait-free universal algorithm, 556
wait-freedom, 434
Wang,Y-M, 115
Watts Strogatz model, 721
weight-throwing scheme, 273
Welch, J, 506
wide-mouth frog protocol, 605
Woo, T, 627
Wu, TD, 624

Xu, 113

Yang, 102
Yemini, 506
Yung, M, 655

zigzag cycle, 112
zigzag path, 112
Zipf’s law, 715
Zwaenepoel, 62

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Background
	Description, approach, and features
	Readership
	Acknowledgements
	Access to resources

	CHAPTER 1 Introduction
	1.1 Definition
	1.2 Relation to computer system components
	1.3 Motivation
	1.4 Relation to parallel multiprocessor/multicomputer systems
	1.4.1 Characteristics of parallel systems
	1.4.2 Flynn’s taxonomy
	1.4.3 Coupling, parallelism, concurrency, and granularity
	Coupling
	Parallelism or speedup of a program on a specific system
	Parallelism within a parallel/distributed program
	Concurrency of a program
	Granularity of a program

	1.5 Message-passing systems versus shared memory systems
	1.5.1 Emulating message-passing on a shared memory system (MP → SM)
	1.5.2 Emulating shared memory on a message-passing system (SM→ MP)

	1.6 Primitives for distributed communication
	1.6.1 Blocking/non-blocking, synchronous/asynchronous primitives
	1.6.2 Processor synchrony
	1.6.3 Libraries and standards

	1.7 Synchronous versus asynchronous executions
	1.7.1 Emulating an asynchronous system by a synchronous system (A→ S)
	1.7.2 Emulating a synchronous system by an asynchronous system (S→ A)
	1.7.3 Emulations

	1.8 Design issues and challenges
	1.8.1 Distributed systems challenges from a system perspective
	1.8.2 Algorithmic challenges in distributed computing
	Designing useful execution models and frameworks
	Dynamic distributed graph algorithms and distributed routing algorithms
	Time and global state in a distributed system
	Synchronization/coordination mechanisms
	Group communication, multicast, and ordered message delivery
	Monitoring distributed events and predicates
	Distributed program design and verification tools
	Debugging distributed programs
	Data replication, consistency models, and caching
	World Wide Web design – caching, searching, scheduling
	Distributed shared memory abstraction
	Reliable and fault-tolerant distributed systems
	Load balancing
	Real-time scheduling
	Performance

	1.8.3 Applications of distributed computing and newer challenges
	Mobile systems
	Sensor networks
	Ubiquitous or pervasive computing
	Peer-to-peer computing
	Publish-subscribe, content distribution, and multimedia
	Distributed agents
	Distributed data mining
	Grid computing
	Security in distributed systems

	1.9 Selection and coverage of topics
	1.10 Chapter summary
	1.11 Exercises
	1.12 Notes on references
	References

	CHAPTER 2 A model of distributed computations
	2.1 A distributed program
	2.2 A model of distributed executions
	Causal precedence relation
	Logical vs. physical concurrency

	2.3 Models of communication networks
	2.4 Global state of a distributed system
	2.4.1 Global state

	2.5 Cuts of a distributed computation
	2.6 Past and future cones of an event
	2.7 Models of process communications
	2.8 Chapter summary
	2.9 Exercises
	2.10 Notes on references
	References

	CHAPTER 3 Logical time
	3.1 Introduction
	3.2 A framework for a system of logical clocks
	3.2.1 Definition
	3.2.2 Implementing logical clocks

	3.3 Scalar time
	3.3.1 Definition
	3.3.2 Basic properties
	Consistency property
	Total Ordering
	Event counting
	No strong consistency

	3.4 Vector time
	3.4.1 definition
	3.4.2 Basic properties
	Isomorphism
	Strong consistency
	Event counting
	Applications
	A brief historical perspective of vector clocks

	3.4.3 On the size of vector clocks

	3.5 Efficient implementations of vector clocks
	3.5.1 Singhal–Kshemkalyani’s differential technique
	3.5.2 Fowler–Zwaenepoel’s direct-dependency technique

	3.6 Jard–Jourdan’s adaptive technique
	3.7 Matrix time
	3.7.1 Definition
	3.7.2 Basic properties

	3.8 Virtual time
	3.8.1 Virtual time definition
	Characteristics of virtual time

	3.8.2 Comparison with Lamport’s logical clocks
	3.8.3 Time warp mechanism
	3.8.4 The local control mechanism
	Antimessages and the rollback mechanism

	3.8.5 Global control mechanism
	Global virtual time
	Applications of GVT
	Memory management and flow control
	Normal termination detection
	Error handling
	Input and output
	Snapshots and crash recovery

	3.9 Physical clock synchronization: NTP
	3.9.1 Motivation
	3.9.2 Definitions and terminology
	3.9.3 Clock inaccuracies
	Offset delay estimation method
	Clock offset and delay estimation

	3.10 Chapter summary
	3.11 Exercises
	3.12 Notes on references
	References

	CHAPTER 4 Global state and snapshot recording algorithms
	4.1 Introduction
	4.2 System model and definitions
	4.2.1 System model
	4.2.2 A consistent global state
	4.2.3 Interpretation in terms of cuts
	4.2.4 Issues in recording a global state

	4.3 Snapshot algorithms for FIFO channels
	4.3.1 Chandy–Lamport algorithm
	The algorithm
	Correctness
	Complexity

	4.3.2 Properties of the recorded global state

	4.4 Variations of the Chandy–Lamport algorithm
	4.4.1 Spezialetti–Kearns algorithm
	Efficient snapshot recording
	Efficient dissemination of the recorded snapshot

	4.4.2 Venkatesan’s incremental snapshot algorithm
	4.4.3 Helary’s wave synchronization method

	4.5 Snapshot algorithms for non-FIFO channels
	4.5.1 Lai–Yang algorithm
	4.5.2 Li et al.’s algorithm
	4.5.3 Mattern’s algorithm

	4.6 Snapshots in a causal delivery system
	4.6.1 Process state recording
	4.6.2 Channel state recording in Acharya–Badrinath algorithm
	4.6.3 Channel state recording in Alagar–Venkatesan algorithm

	4.7 Monitoring global state
	4.8 Necessary and sufficient conditions for consistent global snapshots
	4.8.1 Zigzag paths and consistent global snapshots
	A zigzag path
	Difference between a zigzag path and a causal path
	Consistent global snapshots

	4.9 Finding consistent global snapshots in a distributed computation
	4.9.1 Finding consistent global snapshots
	Extending to a consistent snapshot
	First observation
	Second observation
	Third observation

	4.9.2 Manivannan–Netzer–Singhal algorithm for enumerating consistent snapshots
	4.9.3 Finding Z-paths in a distributed computation
	Construction of an R-graph

	4.10 Chapter summary
	4.11 Exercises
	4.12 Notes on references
	References

	CHAPTER 5 Terminology and basic algorithms
	5.1 Topology abstraction and overlays
	5.2 Classifications and basic concepts
	5.2.1 Application executions and control algorithm executions
	5.2.2 Centralized and distributed algorithms
	5.2.3 Symmetric and asymmetric algorithms
	5.2.4 Anonymous algorithms
	5.2.5 Uniform algorithms
	5.2.6 Adaptive algorithms
	5.2.7 Deterministic versus non-deterministic executions
	5.2.8 Execution inhibition
	5.2.9 Synchronous and asynchronous systems
	5.2.10 Online versus offline algorithms
	5.2.11 Failure models
	Process failure models [26]
	Communication failure models

	5.2.12 Wait-free algorithms
	5.2.13 Communication channels

	5.3 Complexity measures and metrics
	5.4 Program structure
	5.5 Elementary graph algorithms
	5.5.1 Synchronous single-initiator spanning tree algorithm using flooding
	5.5.2 Asynchronous single-initiator spanning tree algorithm using flooding
	5.5.3 Asynchronous concurrent-initiator spanning tree algorithm using flooding
	Design 1
	Design 2

	5.5.4 Asynchronous concurrent-initiator depth first search spanning tree algorithm
	5.5.5 Broadcast and convergecast on a tree
	5.5.6 Single source shortest path algorithm: synchronous Bellman–Ford
	5.5.7 Distance vector routing
	5.5.8 Single source shortest path algorithm: asynchronous Bellman–Ford
	5.5.9 All sources shortest paths: asynchronous distributed Floyd–Warshall
	5.5.10 Asynchronous and synchronous constrained flooding (w/o a spanning tree)
	Asynchronous algorithm (Algorithm 5.9)
	Synchronous algorithm (Algorithm 5.10)

	5.5.11 Minimum-weight spanning tree (MST) algorithm in a synchronous system
	5.5.12 Minimum-weight spanning tree (MST) in an asynchronous system

	5.6 Synchronizers
	General observations on synchronous and asynchronous algorithms
	A simple synchronizer
	The synchronizer
	The synchronizer
	The synchronizer

	5.7 Maximal independent set (MIS)
	5.8 Connected dominating set
	5.9 Compact routing tables
	5.10 Leader election
	5.11 Challenges in designing distributed graph algorithms
	5.12 Object replication problems
	5.12.1 Problem definition
	5.12.2 Algorithm outline
	5.12.3 Reads and writes
	Read
	Write
	Implementation

	5.12.4 Converging to an replication scheme

	5.13 Chapter summary
	5.14 Exercises
	5.15 Notes on references
	References

	CHAPTER 6 Message ordering and group communication
	Notation
	6.1 Message ordering paradigms
	6.1.1 Asynchronous executions
	6.1.2 FIFO executions
	6.1.3 Causally ordered (CO) executions
	6.1.4 Synchronous execution (SYNC)

	6.2 Asynchronous execution with synchronous communication
	6.2.1 Executions realizable with synchronous communication (RSC)
	6.2.2 Hierarchy of ordering paradigms
	6.2.3 Simulations
	Asynchronous programs on synchronous systems
	Synchronous programs on asynchronous systems

	6.3 Synchronous program order on an asynchronous system
	Non-determinism
	6.3.1 Rendezvous
	6.3.2 Algorithm for binary rendezvous

	6.4 Group communication
	6.5 Causal order (CO)
	6.5.1 The Raynal–Schiper–Toueg algorithm [22]

	6.5 Causal order (CO)
	Multicasts M5�1 and M4�2
	Multicast M4�3
	Learning implicit information at P2 and P3
	Processing at P6
	Processing at P1

	6.6 Total order
	6.6.1 Centralized algorithm for total order
	6.6.2 Three-phase distributed algorithm
	Sender
	Receivers
	Complexity

	6.7 A nomenclature for multicast
	6.8 Propagation trees for multicast
	6.9 Classification of application-level multicast algorithms
	Communication history-based algorithms
	Privilege-based algorithms
	Moving sequencer algorithms
	Fixed sequencer algorithms
	Destination agreement algorithms

	6.10 Semantics of fault-tolerant group communication
	6.11 Distributed multicast algorithms at the network layer
	6.11.1 Reverse path forwarding (RPF) for constrained flooding
	6.11.2 Steiner trees
	Steiner tree problem

	6.11.3 Multicast cost functions
	6.11.4 Delay-bounded Steiner trees
	Delay-bounded minimal Steiner tree problem

	6.11.5 Core-based trees

	6.12 Chapter summary
	6.13 Exercises
	6.14 Notes on references
	References

	CHAPTER 7 Termination detection
	7.1 Introduction
	7.2 System model of a distributed computation
	Definition of termination detection

	7.3 Termination detection using distributed snapshots
	7.3.1 Informal description
	7.3.2 Formal description
	7.3.3 Discussion

	7.4 Termination detection by weight throwing
	Basic idea
	Notation
	7.4.1 Formal description
	7.4.2 Correctness of the algorithm

	7.5 A spanning-tree-based termination detection algorithm
	7.5.1 Definitions
	7.5.2 A simple algorithm
	A problem with the algorithm

	7.5.3 The correct algorithm
	The basic idea
	The algorithm description

	7.5.4 An example
	7.5.5 Performance

	7.6 Message-optimal termination detection
	7.6.1 The main idea
	7.6.2 Formal description of the algorithm
	7.6.3 Performance

	7.7 Termination detection in a very general distributed computing model
	7.7.1 Model definition and assumptions
	AND, OR, and AND-OR models
	The k out of n model
	Predicate fulfilled

	7.7.2 Notation
	7.7.3 Termination definitions
	7.7.4 A static termination detection algorithm
	Informal description
	Formal description
	Performance

	7.7.5 A dynamic termination detection algorithm
	Informal description
	Formal description
	Performance

	7.8 Termination detection in the atomic computation model
	Assumptions
	7.8.1 The atomic model of execution
	7.8.2 A naive counting method
	7.8.3 The four counter method
	7.8.4 The sceptic algorithm
	7.8.5 The time algorithm
	Formal description

	7.8.6 Vector counters method
	Performance

	7.8.7 A channel counting method
	Formal description
	Performance

	7.9 Termination detection in a faulty distributed system
	Assumptions
	7.9.1 Flow detecting scheme
	The concept of flow invariant

	7.9.2 Taking snapshots
	7.9.3 Description of the algorithm
	Data structures

	7.9.2 Taking snapshots
	7.9.4 Performance analysis

	7.10 Chapter summary
	7.11 Exercises
	7.12 Notes on references
	References

	CHAPTER 8 Reasoning with knowledge
	8.1 The muddy children puzzle
	8.2 Logic of knowledge
	8.2.1 Knowledge operators
	8.2.2 The muddy children puzzle again
	8.2.3 Kripke structures
	8.2.4 Muddy children puzzle using Kripke structures
	Scenario A
	Scenario B

	8.2.5 Properties of knowledge

	8.3 Knowledge in synchronous systems
	8.4 Knowledge in asynchronous systems
	8.4.1 Logic and definitions
	8.4.2 Agreement in asynchronous systems
	8.4.3 Variants of common knowledge
	Epsilon common knowledge
	Eventual common knowledge
	Timestamped common knowledge
	Concurrent common knowledge

	8.4.4 Concurrent common knowledge
	Snapshot-based algorithm
	Complexity

	Three-phase send-inhibitory algorithm
	The three-phase send-inhibitory tree algorithm
	Complexity

	Inhibitory ring algorithm
	Complexity

	8.5 Knowledge transfer
	8.6 Knowledge and clocks
	8.7 Chapter summary
	8.8 Exercises
	8.9 Notes on references
	References

	CHAPTER 9 Distributed mutual exclusion algorithms
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 System model
	9.2.2 Requirements of mutual exclusion algorithms
	9.2.3 Performance metrics
	Low and high load performance
	Best and worst case performance

	9.3 Lamport’s algorithm
	Correctness
	Performance
	An optimization

	9.4 Ricart–Agrawala algorithm
	Correctness
	Performance

	9.5 Singhal’s dynamic information-structure algorithm
	System model
	Data structures
	Initialization
	9.5.1 Description of the algorithm
	An explanation of the algorithm

	9.5.2 Correctness
	Achieving mutual exclusion
	Freedom from deadlocks

	9.5.3 Performance analysis
	Low load condition
	Heavy load condition

	9.5.4 Adaptivity in heterogeneous traffic patterns

	9.6 Lodha and Kshemkalyani’s fair mutual exclusion algorithm
	9.6.1 System model
	9.6.2 Description of the algorithm
	9.6.3 Safety, fairness and liveness
	9.6.4 Message complexity

	9.7 Quorum-based mutual exclusion algorithms
	9.8 Maekawa’s algorithm
	Correctness
	Performance
	9.8.1 Problem of deadlocks
	Handling deadlocks

	9.9 Agarwal–El Abbadi quorum-based algorithm
	9.9.1 Constructing a tree-structured quorum
	9.9.2 Analysis of the algorithm for constructing tree-structured quorums
	9.9.3 Validation
	9.9.4 Examples of tree-structured quorums
	9.9.5 The algorithm for distributed mutual exclusion
	9.9.6 Correctness proof

	9.10 Token-based algorithms
	9.11 Suzuki–Kasami’s broadcast algorithm
	Correctness
	Performance

	9.12 Raymond’s tree-based algorithm
	9.12.1 The HOLDER variables
	9.12.2 The operation of the algorithm
	Data structures

	9.12.3 Description of the algorithm
	ASSIGN_PRIVILEGE
	MAKE_REQUEST
	Events
	Message overtaking

	9.12.4 Correctness
	Mutual exclusion is guaranteed
	Deadlock is impossible
	Starvation is impossible

	9.12.5 Cost and performance analysis
	9.12.6 Algorithm initialization
	9.12.7 Node failures and recovery

	9.13 Chapter summary
	9.14 Exercises
	9.15 Notes on references
	References

	CHAPTER 10 Deadlock detection in distributed systems
	10.1 Introduction
	10.2 System model
	10.2.1 Wait-for graph (WFG)

	10.3 Preliminaries
	10.3.1 Deadlock handling strategies
	10.3.2 Issues in deadlock detection
	Detection of deadlocks
	Correctness criteria

	Resolution of a detected deadlock

	10.4 Models of deadlocks
	10.4.1 The single-resource model
	10.4.2 The AND model
	10.4.3 The OR model
	10.4.4 The AND-OR model
	10.4.5 The p model��
	10.4.6 Unrestricted model

	10.5 Knapp’s classification of distributed deadlock detection algorithms
	10.5.1 Path-pushing algorithms
	10.5.2 Edge-chasing algorithms
	10.5.3 Diffusing computation-based algorithms
	10.5.4 Global state detection-based algorithms

	10.6 Mitchell and Merritt’s algorithm for the single-resource model
	Message complexity

	10.7 Chandy–Misra–Haas algorithm for the AND model
	Data structures
	The algorithm
	Performance analysis

	10.8 Chandy–Misra–Haas algorithm for the OR model
	Basic idea
	The algorithm
	Performance analysis

	10.9 Kshemkalyani–Singhal algorithm for the P-out-of- model
	System model
	10.9.1 Informal description of the algorithm
	The problem of termination detection

	10.9.2 The algorithm
	Correctness
	Complexity analysis

	10.10 Chapter summary
	10.11 Exercises
	10.12 Notes on references
	References

	CHAPTER 11 Global predicate detection
	11.1 Stable and unstable predicates
	11.1.1 Stable predicates
	Deadlock [13, 17]
	Termination [20]

	11.1.2 Unstable predicates

	11.2 Modalities on predicates
	11.2.1 Complexity of predicate detection

	11.3 Centralized algorithm for relational predicates
	11.4 Conjunctive predicates
	11.4.1 Interval-based centralized algorithm for conjunctive predicates
	Termination
	Complexity

	11.4.2 Global state-based centralized algorithm for , where is conjunctive

	11.5 Distributed algorithms for conjunctive predicates
	11.5.1 Distributed state-based token algorithm for, Possibly (Phi) where Phi is conjunctive
	11.5.2 Distributed interval-based token algorithm for Definitely (Phi), where is conjunctive
	11.5.3 Distributed interval-based piggybacking algorithm for Possibly (Phi), where Phi is conjuctive

	11.6 Further classification of predicates
	11.7 Chapter summary
	11.8 Exercises
	11.9 Notes on references
	References

	CHAPTER 12 Distributed shared memory
	12.1 Abstraction and advantages
	12.2 Memory consistency models
	12.2.1 Strict consistency/atomic consistency/linearizability
	Implementations

	12.2.2 Sequential consistency
	Implementations
	Local-read algorithm
	Local-write algorithm

	12.2.3 Causal consistency
	Implementation

	12.2.4 PRAM (pipelined RAM) or processor consistency
	Implementations

	12.2.5 Slow memory
	Implementations

	12.2.6 Hierarchy of consistency models
	12.2.7 Other models based on synchronization instructions
	Weak consistency [11]
	Release consistency [12]
	Entry consistency [9]

	12.3 Shared memory mutual exclusion
	12.3.1 Lamport’s bakery algorithm
	12.3.2 Lamport’s WRWR mechanism and fast mutual exclusion
	12.3.3 Hardware support for mutual exclusion

	12.4 Wait-freedom
	12.5 Register hierarchy and wait-free simulations
	12.5.1 Construction 1: SRSW safe to MRSW safe
	12.5.2 Construction 2: SRSW regular to MRSW regular
	12.5.3 Construction 3: boolean MRSW safe to integer-valued MRSW safe
	12.5.4 Construction 4: boolean MRSW safe to boolean MRSW regular
	12.5.5 Construction 5: boolean MRSW regular to integer-valued MRSW regular
	12.5.6 Construction 6: boolean MRSW regular to integer-valued MRSW atomic
	12.5.7 Construction 7: integer MRSW atomic to integer MRMW atomic
	12.5.8 Construction 8: integer SRSW atomic to integer MRSW atomic
	Achieving linearizability

	12.6 Wait-free atomic snapshots of shared objects
	Complexity

	12.7 Chapter summary
	12.8 Exercises
	12.9 Notes on references
	References

	CHAPTER 13 Checkpointing and rollback recovery
	13.1 Introduction
	13.2 Background and definitions
	13.2.1 System model
	13.2.2 A local checkpoint
	13.2.3 Consistent system states
	13.2.4 Interactions with the outside world
	13.2.5 Different types of messages
	In-transit messages
	Lost messages
	Delayed messages
	Orphan messages
	Duplicate messages

	13.3 Issues in failure recovery
	13.4 Checkpoint-based recovery
	13.4.1 Uncoordinated checkpointing
	13.4.2 Coordinated checkpointing
	Blocking coordinated checkpointing
	Non-blocking checkpoint coordination

	13.4.3 Impossibility of min-process non-blocking checkpointing
	13.4.4 Communication-induced checkpointing
	Model-based checkpointing
	Index-based checkpointing

	13.5 Log-based rollback recovery
	13.5.1 Deterministic and non-deterministic events
	The no-orphans consistency condition

	13.5.2 Pessimistic logging
	13.5.3 Optimistic logging
	13.5.4 Causal logging

	13.6 Koo–Toueg coordinated checkpointing algorithm
	13.6.1 The checkpointing algorithm
	First phase
	Second phase
	Correctness
	An optimization

	13.6.2 The rollback recovery algorithm
	First phase
	Second phase
	Correctness
	An optimization

	13.7 Juang–Venkatesan algorithm for asynchronous checkpointing and recovery
	13.7.1 System model and assumptions
	13.7.2 Asynchronous checkpointing
	13.7.3 The recovery algorithm
	Notation and data structure
	Basic idea
	Description of the algorithm

	13.8 Manivannan–Singhal quasi-synchronous checkpointing algorithm
	13.8.1 Checkpointing algorithm
	Properties

	13.8.2 Recovery algorithm
	An explanation

	13.8.3 Comprehensive message handling
	Handling the replay of messages
	Handling of received messages
	Case 1: is a delayed message
	Case 2: was sent in the current incarnation
	Case 3: Message was sent in a future incarnation
	Features

	13.9 Peterson–Kearns algorithm based on vector time
	13.9.1 System model
	Notation

	13.9.2 Informal description of the algorithm
	Handling in-transit orphan messages

	13.9.3 Formal description of the rollback protocol
	The rollback protocol

	13.9.4 Correctness proof

	13.10 Helary–Mostefaoui–Netzer–Raynal communication-induced protocol
	13.10.1 Design principles
	To checkpoint or not to checkpoint?
	Reducing the number of forced checkpoints

	13.10.2 The checkpointing protocol

	13.11 Chapter summary
	13.12 Exercises
	13.13 Notes on references
	References

	CHAPTER 14 Consensus and agreement algorithms
	14.1 Problem definition
	14.1.1 The Byzantine agreement and other problems
	The Byzantine agreement problem
	The consensus problem
	The interactive consistency problem

	14.1.2 Equivalence of the problems and notation

	14.2 Overview of results
	14.3 Agreement in a failure-free system (synchronous or asynchronous)
	14.4 Agreement in (message-passing) synchronous systems with failures
	14.4.1 Consensus algorithm for crash failures (synchronous system)
	14.4.2 Consensus algorithms for Byzantine failures (synchronous system)
	14.4.3 Upper bound on Byzantine processes
	Byzantine agreement tree algorithm: exponential (synchronous system)
	Phase-king algorithm for consensus: polynomial (synchronous system)

	14.5 Agreement in asynchronous message-passing systems with failures
	14.5.1 Impossibility result for the consensus problem
	14.5.2 Terminating reliable broadcast
	14.5.3 Distributed transaction commit
	14.5.4 k-set consensus
	14.5.5 Approximate agreement
	Algorithm outline
	Notation
	Convergence rate of approximation
	Correctness
	Complexity

	14.5.6 Renaming problem
	Problem definition
	Algorithm
	Correctness

	14.5.7 Reliable broadcast

	14.6 Wait-free shared memory consensus in asynchronous systems
	14.6.1 Impossibility result
	14.6.2 Consensus numbers and consensus hierarchy [14]
	FIFO queue
	Compare&Swap
	Read–modify–write abstraction

	14.6.3 Universality of consensus objects [14]
	A non-blocking universal algorithm
	A wait-free universal algorithm

	14.6.4 Shared memory k-set consensus
	14.6.5 Shared memory renaming
	14.6.6 Shared memory renaming using splitters

	14.7 Chapter summary
	14.8 Exercises
	14.9 Notes on references
	References

	CHAPTER 15 Failure detectors
	15.1 Introduction
	15.2 Unreliable failure detectors
	15.2.1 The system model
	Failure patterns and environments

	15.2.2 Failure detectors
	15.2.3 Completeness and accuracy properties
	Completeness
	Accuracy
	Eventual accuracy

	15.2.4 Types of failure detectors
	15.2.5 Reducibility of failure detectors
	15.2.6 Reducing weak failure detector W to a strong failure detector S
	A correctness argument

	15.2.7 Reducing an eventually weak failure detector . to an eventually strong failure detector…
	An explanation of the algorithm
	Correctness argument

	15.3 The consensus problem
	15.3.1 Solutions to the consensus problem
	15.3.2 A solution using strong failure detector S
	An explanation of the algorithm

	15.3.3 A solution using eventually strong failure detector…
	An explanation of the algorithm

	15.4 Atomic broadcast
	15.5 A solution to atomic broadcast
	An explanation of the algorithm

	15.6 The weakest failure detectors to solve fundamental agreement problems
	Uniform consensus
	Terminating reliable broadcast
	15.6.1 Realistic failure detectors
	15.6.2 The weakest failure detector for consensus
	15.6.3 The weakest failure detector for terminating reliable broadcast

	15.7 An implementation of a failure detector
	Explanation of the algorithm
	Correctness of the algorithm

	15.8 An adaptive failure detection protocol
	15.8.1 Lazy failure detection protocol (FDL)
	Assumptions
	Primitives provided
	The protocol FDL
	Properties of FDL

	15.9 Exercises
	15.10 Notes on references
	References

	CHAPTER 16 Authentication in distributed systems
	16.1 Introduction
	16.2 Background and definitions
	16.2.1 Basis of authentication
	16.2.2 Types of principals
	16.2.3 A simple classification of authentication protocols
	16.2.4 Notation
	16.2.5 Design principles for cryptographic protocols

	16.3 Protocols based on symmetric cryptosystems
	16.3.1 Basic protocol
	Weaknesses

	16.3.2 Modified protocol with nonce
	Weaknesses

	16.3.3 Wide-mouth frog protocol
	16.3.4 A protocol based on an authentication server
	16.3.5 One-time password scheme
	Protocol description
	Weaknesses

	16.3.6 Otway–Rees protocol
	Weaknesses

	16.3.7 Kerberos authentication service
	Initial registration
	The authentication protocol
	Weaknesses

	16.4 Protocols based on asymmetric cryptosystems
	16.4.1 The basic protocol
	16.4.2 A modified protocol with a certification authority
	16.4.3 Needham and Schroeder protocol
	Weaknesses
	An impersonation attack on the protocol

	16.4.4 SSL protocol
	SSL record protocol
	SSL handshake protocol
	How SSL provides authentication

	16.5 Password-based authentication
	Preventing off-line dictionary attacks
	16.5.1 Encrypted key exchange (EKE) protocol
	16.5.2 Secure remote password (SRP) protocol

	16.6 Authentication protocol failures
	16.7 Chapter summary
	16.8 Exercises
	16.9 Notes on references
	References

	CHAPTER 17 Self-stabilization
	17.1 Introduction
	17.2 System model
	17.3 Definition of self-stabilization
	17.3.1 Randomized and probabilistic self-stabilization

	17.4 Issues in the design of self-stabilization algorithms
	Dijkstra’s self-stabilizing token ring system
	17.4.1 The number of states in each of the individual units
	First solution
	Second solution
	Special networks
	Ghosh’s solution

	17.4.2 Uniform vs. non-uniform networks
	17.4.3 Central and distributed demons
	17.4.4 Reducing the number of states in a token ring
	17.4.5 Shared memory models
	17.4.6 Mutual exclusion
	17.4.7 Costs of self-stabilization

	17.5 Methodologies for designing self-stabilizing systems
	17.5.1 Layering and modularization
	Common clock primitives
	Topology-based primitives

	17.6 Communication protocols
	17.7 Self-stabilizing distributed spanning trees
	17.8 Self-stabilizing algorithms for spanning-tree construction
	17.8.1 Dolev, Israeli, and Moran algorithm
	17.8.2 Afek, Kutten, and Yung algorithm for spanning-tree construction
	17.8.3 Arora and Gouda algorithm for spanning-tree construction
	17.8.4 Huang et al. algorithms for spanning-tree construction
	17.8.5 Afek and Bremler algorithm for spanning-tree construction

	17.9 An anonymous self-stabilizing algorithm for 1-maximal independent set in trees
	Description of algorithm

	17.10 A probabilistic self-stabilizing leader election algorithm
	17.11 The role of compilers in self-stabilization
	17.11.1 Compilers for sequential programs
	17.11.2 Compilers for asynchronous message passing systems
	17.11.3 Compilers for asynchronous shared memory systems

	17.12 Self-stabilization as a solution to fault tolerance
	Fault tolerance

	17.13 Factors preventing self-stabilization
	Symmetry
	Termination
	Isolation
	Look-alike configurations

	17.14 Limitations of self-stabilization
	Need for an exceptional machine
	Convergence–response tradeoffs
	Pseudo-stabilization
	Verification of self-stabilizing systems

	17.15 Chapter summary
	17.16 Exercises
	17.17 Notes on references
	References

	CHAPTER 18 Peer-to-peer computing and overlay graphs
	18.1 Introduction
	18.1.1 Napster
	18.1.2 Application layer overlays

	18.2 Data indexing and overlays
	18.2.1 Distributed indexing
	Structured overlays
	Unstructured overlays

	18.3 Unstructured overlays
	18.3.1 Unstructured overlays: properties
	18.3.2 Gnutella
	18.3.3 Search in Gnutella and unstructured overlays
	Guided versus unguided search
	Search strategies

	18.3.4 Replication strategies
	18.3.5 Implementing replication strategies

	18.4 Chord distributed hash table
	18.4.1 Overview
	18.4.2 Simple lookup
	18.4.3 Scalable lookup
	18.4.4 Managing Churn
	Node joins
	Node failures and departures

	18.4.5 Complexity

	18.5 Content addressible networks (CAN)
	18.5.1 Overview
	18.5.2 CAN initialization
	18.5.3 CAN routing
	18.5.4 CAN maintainence
	18.5.5 CAN optimizations
	18.5.6 CAN complexity

	18.6 Tapestry
	18.6.1 Overview
	18.6.2 Overlay and routing
	Root and surrogate root
	Prefix routing
	Router Table

	18.6.3 Object publication and object search
	18.6.4 Node insertion
	18.6.5 Node deletion
	Complexity

	18.7 Some other challenges in P2P system design
	18.7.1 Fairness: a game theory application
	18.7.2 Trust or reputation management

	18.8 Tradeoffs between table storage and route lengths
	18.8.1 Unifying DHT protocols
	Routing rule

	18.8.2 Bounds on DHT storage and routing distance

	18.9 Graph structures of complex networks
	18.10 Internet graphs
	18.10.1 Basic laws and their definitions
	18.10.2 Properties of the Internet
	Classification of scale-free networks

	18.10.3 Error and attack tolerance of complex networks
	Impact on network diameter
	Impact on network partitioning

	18.11 Generalized random graph networks
	18.12 Small-world networks
	18.13 Scale-free networks
	18.13.1 Master-equation approach
	18.13.2 Rate-equation approach

	18.14 Evolving networks
	18.14.1 Extended Barabasi–Albert model
	Continuum theory analysis

	18.15 Chapter summary
	18.16 Exercises
	18.17 Notes on references
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

