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We propose a new and efficient algorithm for computing the sparse resultant of a system
of n + 1 polynomial equations in » unknowns. This algorithm produces a matrix whose
entries are coeflicients of the given polynomials and is typically smaller than the matrices
obtained by previous approaches. The matrix determinant is a nontrivial multiple of the
sparse resultant from which the sparse resultant itself can be recovered. The algorithm
is incremental in the sense that successively larger matrices are constructed until one
is found with the above properties. For multigraded systems, the new algorithm pro-
duces optimal matrices, i.e., expresses the sparse resultant as a single determinant. An
implementation of the algorithm is described and experimental results are presented.
In addition, we propose an efficient algorithm for computing the mixed volume of n
polynomials in n variables. This computation provides an upper bound on the num-
ber of common isolated roots. A publicly available implementation of the algorithm is
presented and empirical results are reported which suggest that it is the fastest mixed
volume code to date.

Keywords: Sparse resultant, mixed volume, Newton polytope, asymptotic complexity, experimental re-
sults.

1. Introduction

We are interested in computing the sparse resultant of a system of n+ 1 polynomial equations in n
unknowns. The sparse resultant provides a condition for the solvability of the system. It generalizes
the determinant of a linear system and the Sylvester resultant of two bivariate forms, as well as
the classical resultant for n homogeneous polynomials. Resultants essentially eliminate the input
variables, so they are also called eliminants. They also serve in solving systems of equations, for
instance by reducing root-finding to an eigenproblem (Auzinger and Stetter, 1988) or by means of
the u-resultant construction of Renegar (1992).

This article continues work by Canny and Emiris (1993) for constructing matrix formulae for
the sparse resultant. As in that article, we build resultant matrices whose entries are either zero
or coeflicients of the given polynomials, so the new algorithm can be considered as a generalization
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of Sylvester’s approach. However, we take a different tack in order to reduce the matrix size and
to obtain, for multigraded systems, optimal formulae. This class of systems includes all systems for
which an optimal formula provebly exists. For two polynomials the new algorithm returns Sylvester’s
matrix, whereas for a linear system it yields the coeflicient matrix. The original idea behind the
present approach first appeared in (Emiris and Canny, 1993). Under reasonable assumptions, the
total worst-case complexity is bounded, in theorem 7.5, by

P (deg R)® : e < 2.7183, deg R is the total degree of the sparse resultant.

We also report on experimental results for multihomogeneous systems and the cyclic n-roots bench-
mark. An important aspect of the algorithm is that it readily extends to systems of more than n+41
polynomials in n variables.

A subproblem in our approach is the computation of mixed volume which is also of independent
interest since it bounds the degree of a zero-dimensional variety. We present an algorithm with
worst-case complexity, under certain mild assumptions,

O(n . . .
mOm m < maximum number of monomials per polynomial.

This bound follows from theorem 6.4, where m bounds the number of extremal monomials or Newton
polytope vertices; these concepts are defined in section 3. We also sketch our publicly available
implementation of the mixed volume algorithm and report on experimental results; some of these
results first appeared in (Emiris and Rege, 1994).

Our motivation stems from the fact that resultant-based methods currently offer the most efficient
solution to certain problems in a variety of areas ranging from robotics (Canny, 1988) to modeling
(Bajaj, Garrity and Warren, 1988). To illustrate this claim, the remaining of this section discusses
some applications.

A concrete example from robot kinematics is the inverse kinematics problem for a robot with six
rotational joints (6R) and, therefore, six degrees of freedom. It is solved using a customized resultant
in 11 milliseconds on a 34 MIPS IBM Rrs /6000 (Manocha and Canny, 1992). This problem consists in
finding the angle at every joint in order to attain a given final position, while the link lengths are fixed.
Previous homotopy methods had running times unacceptable of real-time industrial manipulators.

Implicitization of parametric surfaces is a fundamental problem in geometric and solid modeling.
Given the parametric expression of a surface

(2,9, z,w) = (X(s,t),Y(s.t), Z(s,t), W(s,t)),

we wish to find its implicit description as the zero set of a single homogeneous polynomial in =, y, z, w.
This is achieved by eliminating the parameters s and ¢ from the system

wX (s,t) — 2W(s,t) = wY (s,t) —yW(s,t) = wZ(s,t) — z2W(s,t) =0,

which is equivalent to computing the system’s resultant by considering these equations as polyno-
mials in s, ¢. For a bicubic surface, methods based on custom-made resultants have been shown to
run faster by a factor of at least 10° compared to Grobner bases and the Ritt-Wu method (Manocha,
and Canny, 1992).

One limitation of the solutions referred to above is the lack of a general method to attack arbitrary
algebraic systems. Since several classes of scientific and engineering problems are expected to reduce
to algebraic systems with sparse structure, in a sense to be formalized below, we would like to have
a sparse resultant for every problem, and this calls for a general algorithm to construct them. This is
the main question studied in this article. To further motivate it, we list some concrete applications of
the algorithms and implementations described here to specific problems in vision, robot kinematics
and structural biology.
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An example of a vision problem is the computation of the camera displacement in a static envi-
ronment. We are given the coordinates of 5 points in the environment as seen by the two successive
positions of the camera. Using the general polynomial system solver described in (Emiris, 1995),
which includes the implementations of this article, this problem was solved to at least 5 accurate
digits, which is satisfactory for vision applications. The running time of the online solver was 0.2
seconds and 1 second, respectively, on the DEC ALPHA 3300 and the SUN SPARC 20/61 of table 1,
for two instances with input parameters of varying genericity.

Another problem solved by Emiris (1995) using the implementations of this article dealt with
the kinematics of molecules or, equivalently, of mechanisms. Given a ring with 6 rigid links and
prescribing the angle between successive links, each possible configuration is defined by the dihedral
angles around the links. Three different instances were solved with absolute error bounded by 1072,
in 0.2 to 0.4 seconds on the SUN SParRc 20/61 of table 1.

The article is organized as follows. The next section puts the new approach into perspective by
outlining previous work in the same area. Section 3 provides all definitions. Section 4 presents our
approach for the sparse resultant and section 5 defines the algorithm for building sparse resultant
matrices. Section 6 discusses our algorithm for computing mixed volumes, sketches its implemen-
tation and analyzes the worst-case and average-case complexities. The overall algorithm for the
sparse resultant, its implementation and its asymptotic complexity analysis are presented in sec-
tion 7. Section 8 shows that the algorithm constructs optimal sparse resultant matrices for a class of
multihomogeneous systems and lists experimental results for multihomogeneous systems in general.
Section 9 examines the practical complexity of our algorithms for the standard benchmark family
of cyclic n-roots, and compares them to Grobner bases and another mixed volume implementation.
The paper concludes with a summary and directions for future work.

2. Related Work

This section examines previous work in elimination theory. The classical resultant has been exam-
ined in the context of homogeneous polynomials. Since no a priori knowledge on the coefficients is
assumed these can be dense polynomials in the sense that potentially all terms of a given total degree
can appear. The simplest system is that of two homogeneous polynomials in two unknowns. This
case was studied by Sylvester (1853) who defined the resultant as the determinant of a matrix in the
polynomial coeflicients. The multivariate resultant for a system of n» homogeneous polynomials in n
variables can be defined in several alternative ways. Cayley (1848) defined it via a series of n divisions
of determinants, Macaulay (1902) as the quotient of a determinant divided by one of its minors,
while Hurwitz (1913) expressed it as the Greatest Common Divisor (GCD) of n inertia forms; see
also (van der Waerden, 1950). In all cases, the nonzero entries of the matrices are coefficients of the
given polynomials. Various more recent algorithms exist to construct this resultant (Lazard, 1981,
Canny, 1988, Renegar, 1992).

The sparse resultant was defined following the study of generalized hypergeometric functions and
A-discriminants (Gelfand, Kapranov and Zelevinsky, 1991 and 1994). The exact notion of sparseness
is formalized and compared to the dense case in the next section. The first constructive methods
for computing and evaluating the sparse resultant were proposed by Sturmfels (1993), the most
efficient having complexity super-polynomial in the degree of the resultant and exponential in n
with a quadratic exponent.

Canny and Emiris (1993) proposed a general algorithm for computing the sparse resultant of
n+1 non-homogeneous polynomials in n variables. The worst-case asymptotic cost of this algorithm,
under mild assumptions, is polynomial in the resultant’s degree and simply exponential in n (Emiris,
1994). This was the first efficient algorithm for the general case in the sense that the lower bound for
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computing the resultant is polynomial in its degree and exponential in n. The algorithm constructs a
square matrix whose entries are either zero or coefficients of the given polynomials. The determinant
of this matrix is not identically zero and is divisible by the sparse resultant.

The sparse resultant is defined through a generalization of Hurwitz’s inertia forms, as the GCD of
n + 1 determinants of matrices. It is computed for a particular coefficient specialization through a
series of n determinant divisions, though for polynomial system solving, knowing the resultant ma-
trix suffices. For two univariate polynomials the algorithm yields Sylvester’s matrix. The algorithm
constructs the multivariate resultant if the input is comprised of dense polynomials, while for lin-
ear systems it correctly computes the determinant of the coefficient matrix. A generalization of the
algorithm was presented by Sturmfels (1994). A greedy implementation has been written in MAPLE
by the second author and P. Pedersen (1993) and produces a matrix whose size is at most that given
by the original algorithm. The latter is publicly available by ftp on robotics.eecs.Berkeley.edu
in directory pub/SparseResultant.

An integral part of the theory of sparse elimination is Bernstein’s bound on the degree of the toric
variety of a square polynomial system. This bound has been extended to count isolated roots even
when the variety has positive dimension and also to count common affine roots. This is an active
area of research, briefly outlined in the following section (Bernstein, 1975, Fulton, 1993, Rojas, 1994,
Li and Wang, 1994, Huber and Sturmfels, 1995). A related question of great interest is to count
real roots (Sturmfels, 1992). The calculation of Bernstein’s bound requires the computation of the
mized volume of the given polynomials. For an overview of algorithms and implementations refer to
sections 6 and 9.

Finally we recall that alternative notions of sparseness exist, which may also lead to tight bounds
for polynomial systems. One example is the theory of fewnomials pioneered by Khovanskii (1991).

There exist other alternatives to elimination and the more particular problem of system solving
besides resultants. Grobner bases provide a general tool for studying arbitrary polynomial ideals,
eliminating variables as well as finding the common roots of a system (Buchberger, 1985). They
constitute a popular and very general approach and several implementations exist. The main lim-
itations of the method are the large coefficient size and the degree of the basis polynomials. For
zero-dimensional affine varieties a tight upper bound on the complexity is d®™ (Lakshman Y.N.,
1990), while the bit complexity is d°™") where d is an upper bound on the degree of the input
polynomials. Although Grébner bases in practice perform significantly better than the worst-case
bounds, there are no complexity bounds that depend on the Newton polytopes or the mixed volumes.

Another approach is the Ritt-Wu method, whose complexity has been recently shown to be expo-
nential in the number of variables and polynomial in the polynomial degrees (Mishra, 1993, ch. 5).

The principal numerical techniques are continuation methods, which are typically fast but offer
little control over the numerical error. Homotopies that follow the optimal number of paths have been
proposed for multihomogeneous systems (Morgan, Sommese and Wampler, 1993). A promising de-
velopment in solving very large polynomial systems comes from sparse homotopies which exploit the
structure of polynomials as modeled by Newton polytopes (Huber and Sturmfels, 1992, Verschelde,
Verlinden and Cools, 1994, Verschelde, Gatermann and Cools, 1995).

3. Preliminaries

This section provides a short introduction to sparse elimination theory. Suppose that we are
given n 4+ 1 non-homogeneous polynomials fy,..., f,+1 in variables zq,..., 2, with indeterminate
coefficients and that we seek a condition on the coefficients that indicates when the system has a
solution. We ignore solutions with some z; = 0 for all coefficient specializations, thus we can deal
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with the more general case of Laurent polynomials
fi € K[zy, 20t .. a2t = K[z, 27,

where K is the algebraic closure of Q({¢;|i € {1,...,n}}) and ¢; is the sequence of all nonzero
coeflicients in f;. We are interested in common toric roots & € (C*)™ where C* = C\ {0}.

We use 2° to denote the monomial 7" --- z%», where e = (eq,...,e,) € Z™ is an exponent vector.
Let A; = supp(f;) = {a1,...,a;s;,} C Z™ denote the set, with cardinality s;, of exponent vectors
corresponding to monomials in f; with nonzero coefficients. A; is called the support of f;. Then

fizzcijxaij, Cij;'éo, Vj6{1,2,...,8i}, Vi6{1,2,...,n—|—l}, (31)
j=1
so that A; is uniquely defined given f;. A polynomial system is unmized if the supports Ay, ..., A1
are identical, otherwise it is mized.

We now introduce certain concepts from combinatorial geometry, which can be found in (Griin-
baum, 1967, Schueider, 1993).

DEeFINITION 3.1. The Newton polytope of f; is the convex hull of the support A;, denoted Q; =
Conv(A;) C R™

For arbitrary sets there is a natural associative and commutative addition operation called Min-
kowski addition.

DEFINITION 3.2. The Minkowski sum A + B of point sets A and B in R™ is the point set
A+B={a+bla€ A be B} CR"™

In particular, if A and B are convex polytopes then A + B is a convex polytope.

We are mostly interested in the Minkowski sums of convex polytopes, for which A + B can be
computed as the convex hull of all sums a + b, where a and b are vertices of A and B respectively.
The commutativity of this operation implies that translating A or B is equivalent to translating

A+ B.

DEFINITION 3.3. The Minkowski difference A — B of convex polytopes A and B in R™ is convex
polytope
A-B={a€cAla+B C A} CR™

A — B lies in the interior of A but does not define an inverse of the addition operation, since it does
not equal A 4+ (—B) and, in general B + (A4 — B) ; A. However, when A is itself a Minkowski
sum B + C, then (B + C) — B = C, for any convex polytope C. We also state the identities
A—(B4+C)=(A—B)—C and (A+U)—B = (A— B)+U, where U is a one-dimensional polytope.

For any polytope A C R™, let Vol(A) denote the Lebesgue measure of A in n-dimensional Euclidean
space. This function assigns the unit volume to the unit cube.

DEFINITION 3.4. Given convex polytopes A1, ..., A, CR™, there is a real-valued function MV (A4, ...,
Ay), unique up to multiplication by a scalar, called the mixed volume of Ay, ..., Ay, which is multilin-
ear with respect to Minkowski addition and scalar multiplication, i.e., for any nonnegative p,p € R>q
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Figure 1. Newton polytopes for example 3.11.

and any convex polytope A) C R™,

MV (Ay,... Ay + pAls ..o Ap) = pMV (Ay, . Agyo o Ap) + pMV (Ay, .. A Ay).
To define mized volume exactly we require that
MV(A4,...,A,) =n! Vol(4y), when A; = -+ = A,
An equivalent definition is based on the fact that, for nonnegative A1,..., A, € R and convex

polytopes Ay, ..., A, the expression Vol(A; 41 +---+ A, A,,) expands to a homogeneous polynomial
in A,..., A, (Griilnbaum, 1967, sect. 15.1).

DEFINITION 3.5. For nonnegative A1,...,An € R>o and convex polytopes Aq,..., A, C R", the
mixed volume MV (A1,...,A,,) is the coefficient of AyAa -+ Ay, in Vol(A1 A1 + -+ + A, An).

Notice that this definition differs from the classic one (Griinbaum, 1967) by a factor of n!. These

and other basic properties of the mixed volume are demonstrated in (Griinbaum, 1967, Betke, 1992,

Schneider, 1993), whereas a more advanced treatment can be found in (Burago and Zalgaller, 1988).
We are now ready to state Bernstein’s theorem, the cornerstone of sparse elimination theory.

THEOREM 3.6. (Bernstein, 1975) For polynomials fi,...,f, € K[z,z71] with Newton polytopes
Q1,....Qn C R™ and generic coefficients, the number of common solutions in (C*)", counting
maultiplicities, equals MV (Q1,...,Q.). For a specific specialization of coefficients in C, the number
of roots in (C*)™ is either infinite or does not exceed MV (Q1,...,Qx).

This is also called the BKK bound, since it relies heavily on work by Kushnirenko (1975) and
has been alternatively proven by Khovanskii (1978) . The above bound is guaranteed to be exact
for generic polynomials. Since its statement the conditions for exactuness have been significantly
weakened (Canny and Rojas, 1991, Rojas, 1994).

Bernstein’s bound is at most as high as Bézout’s bound and usually significantly tighter for systems
encountered in engineering applications. The two bounds are equal when each Newton polytope is
a scaled copy of the n-dimensional unit simplex with vertex set

{(0,...,0),(1,0,...,0),....(0,...,0,1)}.

The scalar factor for every simplex equals the total degree of the respective polynomial. This is
depicted in figure 1. where the simplices are drawn with dashed lines for the three polynomials of
example 3.11.

The Bernstein bound holds for varieties with positive dimension over arbitrary fields. Consider the
intersection multiplicity of the hypersurfaces defined by the given polynomials at an isolated common
root. Recall that this is a positive integer and is equal to unity exactly when the hypersurfaces meet
transversally.
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THEOREM 3.7. (Fulton, 1993, sect. 5.5) Given are polynomials fi1,..., f, € K[z,z71] with Newton
polytopes Q1,...,Qn, where K is an arbitrary field and K is its algebraic closure. For any isolated
common zero o € (?*)"’, let i(a) denote the intersection multiplicity at this point. Then Y  i(a) <
MV (Q1,...,Qun), where the sum ranges over all isolated roots.

Moreover, the bound has recently been extended to count all isolated roots. By abuse of language
we refer to the same function when we speak of the mixed volume of a system of polynomials, the
mixed volume of the respective supports or the mixed volume of the respective Newton polytopes.

THEOREM 3.8. (Liand Wang, 1994) For polynomials f1,. ... fn € Clz,z 1] with supports Ay, ..., A,
the number of common isolated zeros in C™, counting multiplicities, is either infinite or bounded by

MV (A U{0},.... A, U {0}).

In the rest of this article we concentrate for simplicity on polynomials over C.

The sparse or Newton resultant provides a necessary and generically sufficient condition for the
existence of toric roots for a system of n + 1 polynomials in n variables; since it applies to mixed
systems, it is sometimes called the sparse mized resultant. We shall see below that the degree of the
sparse resultant depends on the mixed volume of the n-dimensional subsystems, whereas the degree
of the classical resultant depends on the Bézout bound.

To define the sparse resultant we regard a polynomial f; as a generic point ¢; = (¢i1,.. ., Cim,)
in the space of all possible polynomials with the given support A;. It is natural to identify scalar
multiples, so the space of all such polynomials can be identified with the projective space ]P’;Z"il or,

simply, P™"1. Then the input system (3.1) can be thought of as a point
c= (Cl-, s 7(771,—}-1) S Pm171 X - X P‘m’”+171_

Let Zy = Zo(As, ..., A,11) be the set of all points ¢ such that the system has a solution in (C*)”
and let Z = Z(Ay,...,Anr1) denote the Zariski closure of Zg in the above product of projective
spaces. It is proven in (Pedersen and Sturmfels, 1993) that Z is an irreducible algebraic variety of
positive codimension.

DEFINITION 3.9. The sparse resultant R = R(As,..., A,41) of system (3.1) is a polynomial in Z[c].
If codim(Z) =1 then R(Ai,..., Ant1) is the defining irreducible polynomial of the hypersurface Z.
If codim(Z) > 1 then R( Ay, ..., Apy1) = 1.

Although the sparse resultant is defined as a condition on the existence of toric roots, it can be used
to recover all roots of nontrivial systems, including those with zero coordinates, under certain mild
conditions on the variety (Emiris, 1994b).

Let degy, R denote the total degree of the resultant R in the coefficients of polynomial f; and let

MV _; =MV(Q1,....Qi—1,Qit1,--. ,Qn+1), Vi € {1. , N+ 1}
A consequence of Bernstein’s theorem is
THEOREM 3.10. (Pedersen and Sturmfels, 1993) The sparse resultant is separately homogeneous in

the coefficients c; of each f; and its degree in these coefficients equals the mized volume of the other
n Newton polytopes, i.e., degy, R= MV _;.

The sparse resultant generalizes the classical multivariate resultant; the two coincide when all
Newton polytopes are n-simplices scaled by the total degrees of the respective polynomials. However,
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the degree and, hence, the complexity of computing the classical multivariate resultant depends on
the Bézout bound as follows: the degree of the resultant in the coeflicients of f; is H#i d;, where
d; is the total degree of f;.

ExaMpPLE 3.11. Here is a system of 3 polynomials in 2 unknowns:

fi = e ooy + s’y + cue,
fo = Y+ s’y + ceaszly + ez, (3.2)
fs = c31+c32y + 33Ty + Caar,

with Newton polytopes shown in figure 1. For each subsystem of two polynomials we may compute
the mixed volume. The three twofold mixed volumes are

MV_i=4, MV_y=3  MV_5=4.

By theorem 3.10 the total degree of the sparse resultant is 4 + 3 4+ 4 = 11.

To motivate the present approach, we compare the various resultant algorithms on this example.
The matrix constructed by the algorithm of (Canny and Emiris, 1993) has size 15, whereas its greedy
version (Canny and Pedersen, 1993) and the algorithm in this paper respectively reduce the matrix
size to 14 and 12. The multivariate resultant has total degree 26 and can be obtained as the sparse
resultant when the Newton polytopes are the dashed triangles in figure 1.

4. Matrix Definition

In this section we describe how to obtain a matrix such that some maximal minor is a nontrivial
multiple of the sparse resultant. The entries of this resultant matrix are chosen among the inde-
terminate coefficients of the original polynomials. Our construction uses certain facts from ideal
theory and combinatorial geometry; the interested reader may consult, respectively, (Cox, Little and
O’Shea, 1992) and the previous section and the citations thereof.

To exploit sparseness and achieve the degree bounds of theorem 3.10 we must work on the sublat-
tice of Z™ generated by the union of all input supports UA;, i.e., on the coarsest common refinement
of the sublattices generated by each A; (Sturmfels, 1994). Suppose this sublattice has rank n and is
thus identified with Z™. In what follows, it is assumed that this has already been done by means of
the Smith normal form; for computing this form see (Hafner and McCurley, 1991).

Let P(A) C K[z,z7!], for A # (), be the set of all Laurent polynomials in n variables with
nonempty support A C Z™. Clearly, f; € P(A;). Now fix nonempty supports By,...,B,41 C Z"
and consider the following linear transformation:

n+1
M - P(Bl) NEEEE 4 ,P(B‘,H-l) — 'P(U B/ +AI) (41)
=1
n+1
M (91-,---797:,+1) — g:Zg/fu
=1

where addition between supports stands for Minkowski addition. The matrix we wish to build is
precisely the matrix of this transformation and to define it fully we specify supports B; at the end
of this section.

We shall abuse notation and denote by M the matrix representing the linear transformation.
Every row of M is indexed by an element of some B; and every column by an element of B; + A; for
some ¢. Equivalently, the rows and columns are indexed respectively by the monomials of the ¢g; and
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the monomials of g. We fill in the matrix entries 4 le Macaulay: The row corresponding to monomial
z? of ¢g; contains the coefficients of the polynomial z°f; so that the coefficient of the monomial z¢
appears in the column indexed by 29, where b € B, = supp(¢i). ¢ € supp(g). Columns indexed by
monomials which do not explicitly appear in z”f; have a zero entry.

LEMMA 4.1. If f1, fa,.... fut1 have a common solution & € (C*)" then M is rank deficient.

ProOF. If a common solution £ exists, then it is a solution for all ¢ in the image of the linear
transformation M. This implies that the image of M cannot contain any monomials, because the
monomial value at a toric ¢ cannot be zero. Therefore, the image of M is a proper subset of the
range. Since M is not a surjective transformation, it follows that matrix M does not have full rank.

|

The number of rows equals the sum of the cardinalities of the supports B;, while the number of
columns equals the cardinality of supp(g). Throughout this article we restrict ourselves to matrices
M with at least as many rows as columns.

THEOREM 4.2. Every mazimal minor D of M is a multiple of the sparse resultant R(Aq, ..., Apt1).

ProOOF. By lemma 4.1, the rank of M is strictly less than the number of columns on the set Z; of
coefficient specializations such that f;...., f,41 have a common solution. A maximal minor of M
is the determinant of a square submatrix of M with the same number of columns as M. Thus, any
maximal minor D is zero on Zy. Hence D is zero on the Zariski closure Z which is the zero set of
R(A,;,..., Ayt1). Since the latter is irreducible, it divides D in Z[cy, ..., cpt1] where ¢; is the vector
of coefficients of f;. O

It is possible that every maximal minor D vanishes, in which case the theorem still holds but the
constructed matrix is of little use. In our main algorithm, below, we shall explicitly enforce the
existence of a non-vanishing maximal minor D.

COROLLARY 4.3. Let degy, D denote the degree of D in the coefficients of polynomial f;. If R divides
D and D # 0 then degy, D > MV _; for all .

Proor. From theorems 3.10 and 4.2. O

We now specify the construction of the supports B;. Let
Q=01+ +Qn CR"
be the Minkowski sum of the input Newton polytopes. Consider all n-fold partial Minkowski sums
Qi=Q-Q;=Y Q; CR" andlet T,=Q ;NZ"=(Q—-Q;)NZL"
JFe
We shall restrict our choice of B; by requiring that it be a subset of T;; notice that this is the case
in (Canny and Emiris, 1993). One consequence is that the supports of all products g; f; lie within

the Minkowski sum @, therefore supp(g) C Q.
Given a direction vector

ve@\{0,...,0}
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we define a family of one-dimensional polytopes V' C R"™, each being the convex hull of the origin
and of a point fu € R", where 3 is a nonzero real variable. In other words,

|8] = length(V) € R\ {0}.

The sign of 3 determines the direction in which V lies and its magnitude determines the length of
V. For a fixed V' we define

B = (Q_;—V)NZ™ CT;.

As the length of V decreases the cardinality of B; tends to that of T;. So for fixed v and g or,
simply, for fixed V, the matrix M is well defined. In the next section we specify an algorithmic way
to compute B;.

An interesting aspect of this approach is that it readily extends to the case of simultaneously
eliminating n variables from more than » 4+ 1 polynomials. In this case the resultant is not defined
but some of its properties are still valid. In particular, the non-vanishing minor of the constructed
matrix provides a solvability condition for the system and reduces its solution to a linear algebra
problem, just as the resultant matrix does for the system of n 4+ 1 polynomials.

5. Matrix Construction

This section presents the algorithm for constructing the sets B; and the resultant matrix M
satisfying the requirements set in the previous section.

DEFINITION 5.1. Given a convex polytope A C R™ and a vector v € Q™ \ {(0,...,0}, we define the
v-distance of any point p € ANZ"™ to be the mazimum nonnegative s € R>q such that p 4+ sv € A.
In other words, it is the distance of p from the boundary of A in the direction v.

Integer points on the boundary of the polytope A which are extremal with respect to vector v have
zero v-distance. Figure 2 shows different subsets of T for system (3.2) with respect to v-distance, as
explained in the running example 3.11 at the end of this section. An equivalent definition of supports
B; is by ordering )_; N Z"™ by v-distance, then selecting the points whose v-distance exceeds some
bound. The vector v here and in the definition of V' at the end of the previous section is the same
and B can be used as the bound on wv-distance. This is formalized in the following proposition.

PROPOSITION 5.2. For a convex polytope A, one-dimensional polytope V. € R™ and vector v € Q™
such that v lies in the interior of V,

(A-V)NZ" = {a € ANZ" | v-distance(a) > B = length(V)}.

We now turn to the question of enumerating all integer lattice points T; in the n-fold Minkowski
sum @ _;, for ¢ € {1,...,n + 1}, together with their v-distances for some v € Q™. We propose a
recursive algorithm, called the Mayan Pyramid algorithm, which computes, at its k-th stage, the
range of values for the k-th coordinate in T3 when the first £ — 1 coordinates are fixed and denoted
by (k — 1)-dimensional vector p.

Input: The vertex sets of convex polytopes Q1,...,Q@n+1 € R™ and v € Q™.
Output: 7; C Z™, for i € {1,...,n+ 1}, together with the v-distance of each point.
Mayan Pyramid algorithm:

1 Forall s € {1,...,n 4 1} run the following steps:
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2 Initialize T; = 0, let &k = 1 and let the vector of known coordinates p = () be 0-dimensional.

3 Compute mn,mz € Z which are, respectively, the minimum and maximum k-th coordinates
in @_; when the first & — 1 coordinates are fixed to the coordinates in p = (p1, ..., Pr—1).

4 If k < n, for each py € [mn, mz]

append py, at the end of vector p which becomes p = (p1....,py), increment k and recurse at

step 3.

If k = n, for each py, € [rnn, ma]

append py, at the end of vector p which becomes p = (py,...,pr), compute the v-distance of

point p € Z™ and insert it, together with its v-distance, in T;.

(24

The recursion terminates, in general, when k& = n or if [mn,mz] is empty for any k. Notice that
it is possible to remove the recursion.

Linear programming is used to compute mn, mz. For a general introduction on the uses of linear
programming in combinatorial geometry the reader may consult (Grotschel, Lovdsz and Schrijver,
1993). Here is how we find mn, for some k > 1:

minimize s € R: (P1,- - Pr—1,8) = Z;':ll’t# Z;’;l )\tjvfj, (5.1)
2?21)\”:1, Aj >0, vie{l,....n+ 1} \{¢}, j€{l,...,m},

where v¢; are the vertices of @, ’Utkj is the k-vector consisting of the first k& coordinates of vy;, and
my is the cardinality of the vertex set of ;. Then mn is the ceiling of the optimal value of s. The
same setup, with s maximized instead, gives mz as the floor of the optimum.

Computing v-distances is accomplished by linear programming as well:

minimize s € R>g: (P1s---Pn) +su = 2;2_11,#7: E;":’l ALV,
2?21)\”:1, Aj >0, vie{l,....n+1}\{¢}, j€{1,....m}.

This last linear program can be used with £ < m coordinates for pruning the set of integer points
T;, since in practice we concentrate only on those points with a positive v-distance. To do this,
define the vF-distance as the analogue of v-distance for the projection of Q_; and of v into the first
k dimensions. The v*-distance of a point is a non-increasing function of k. We can now test the
point projections as they are enumerated by the Mayan Pyramid algorithm and eliminate all points
(p1s--.,pr) whose vF-distance is zero, for any k.

Incrementing the supports B; is done either by decreasing the length of V' or, equivalently, by
lowering the bound § on the v-distance. The maximal minor D in M must satisfy deg,; D > MV _;.
Hence we pick the initial sets B; to be of cardinality exactly equal to MV _;. In this case, if D is
a nonzero polynomial then it equals the sparse resultant and we have obtained a Sylvester-type
formula, i.e., one of optimal size equal to the resultant degree. Otherwise, points from T; are added
to B; and they correspond to additional rows which are appended to the existing matrix; in general,
more columuns will have to be added as well.

We now summarize the matrix construction algorithm, under the assumption that a direction v
has been chosen. The question of how to choose a vector v to produce a small matrix is addressed
in section 7.

Input: A;, MV _;, T; with the v-distance of every point, for ¢ € {1,...,n + 1}.

Output: A maximal minor D of the matrix M, such that D is a nontrivial multiple of the sparse
resultant or an indication that such a minor cannot be found for the given v after some random
specialization of the coefficients.

Incremental Matrix Construction algorithm:
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1 Specialize the polynomial coefficients to independently and identically distributed random
values.

2 Foralli € {1,...,n+1}, initialize the supports B; to include MV _; points from T; with largest
possible v-distance.

3 Construct the matrix M containing the specialized coefficients.

4 If M has at least as many rows as columns and is also of full rank then return a non-vanishing
maximal minor D of M.

5 Otherwise, if B; = T; fori =1,...,n 41, i.e., the supports cannot be incremented, then return
with an indication that the minor D cannot be found with the current choice of coeflicient
specialization and vector v.

6 Otherwise, let B; = {p € T; | v-distance(p) > B} where f € R is chosen so that the minimum
number of new points are added to the supports B; and at least one B; is incremented; go to
step 3.

The termination of the algorithm relies on the fact that M contains as a maximal submatrix the
resultant matrix of Canny and Emiris (1993). We need the following notion from the latter paper:
Vector v € Q" is sufficiently generic with respect to Q1,...,Qn11 if it does not lie on any (n — 1)-
dimensional face defined as the Minkowski sum Fy 4 -+ + Fj,11, where every F; is a face of Newton
polytope Q;, for ¢ € {1,...,n + 1}. The actual requirement on v is weaker: it asks that it does not
lie on the boundary of any maximal cell in some mixed decomposition of @1 + ... + Qpny1. These
notions are formalized in section 6 but will not be used here.

THEOREM 5.3. (TERMINATION) If vector v is sufficiently generic as defined in the preceding para-
graph, then the matric construction elways terminates with a matriz M that has ¢ mazimal minor
D which is a nontrivial multiple of the sparse resultant.

ProoF. The proof relies on the algorithm of Canny and Emiris (1993), which constructs a square
matrix whose determinant is a nontrivial multiple of the resultant. Let B; contain all lattice points in
T; with positive v-distance, for alls € {1,...,n+1}. Then the set of column monomials U (A;4B;)

=1
equals the set of column monomials in the matrix of Canny and Emiris (1993), if in the latter
construction § = —ev, where € is a positive infinitesimal that guarantees that the magnitude of §

is sufficiently small. Canny and Emiris have shown that when 6 is sufficiently generic, as in the
definition above, the constructed matrix is square, generically nonsingular and its determinant is
a multiple of the resultant. This matrix is a maximal submatrix of M constructed by the present
algorithm, hence there exists D corresponding to this submatrix satisfying the claim of the theorem.

O

The same argument shows that the matrix construction terminates with a valid matrix M also in
the case that a specific polynomial f; appears in the minimum number of rows. Then, the maximal
minor D has degree in the coefficients of f; equal to the respective degree of the sparse resultant.
If one such minor is computed for every f;, i € {1,...,n + 1}, then the sparse resultant can be
obtained as the GCD of the n + 1 minors.

For random v € Q", a rough bound on the probability that v is inadequate is given below.

LeMMA 5.4. (Emiris, 1994b, sect. 3.1.8) Assume that the numerators of the entries of v € Q" are
chosen uniformly and independently from a set of S integers and all denominators are identical and
equal to an integer relatively prime to the n numerators. Then the probability that v is not sufficiently
generic is bounded by (cnt)?/S where ¢ is the number of matriz columns.
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Figure 2. Q_2 and Ty subsets with different v-distance bounds and one-dimensional polytope V for Bs in
example 3.11.

This implies that if the final matrix has at most 10° columns, » < 10 and 64-bit integers are used,
then the probability that v is not sufficiently generic is bounded by 0.7%. In practice 32-bit integers
suffice since the algorithm typically terminates well before reaching its next to last step, where the
preceding analysis applies. In general, the algorithm produces valid matrices of small size even if v
is not sufficiently generic.

Step 4 can always find and return D because M has full rank. Overall, the algorithm may fail
to construct M either due to the coefficient specialization or due to the choice of v. Since the most
common reason is the latter, the algorithm does not try a different coefficient specialization but calls
for a different v.

The rank test should consider the matrix M whose nonzero entries are symbolic coeflicients.
Instead, we pick random values for the coeflicients from an integer interval. Checking the specialized
matrix will give the correct answer with high probability, as shown in the following lemma.

LEMMA 5.5. Suppose that M has r rows, at most that many columns, and has full rank when its
nonzero entries are generic polynomial coefficients. Assume that we specialize the polynomial co-
efficients to uniformly and independently distributed integers in an interval of size S. Then the
probability that the specialized matriz is rank-deficient is bounded by v/S.

PrOOF. Let ¢ < r be the number of columns and let us consider one maximal nonsingular submatrix
M’ of M. For each polynomial f;, we may specialize all coefficients except one and regard det M’ as

a polynomial in the n + 1 remaining generic coefficients. This polynomial has at least one nonzero
term, namely the power product of all generic coefficients, each raised to a power equal to the number

of rows corresponding to the respective polynomial. Hence, det M’ is nonzero and has total degree

of c.

The probability that det M’ vanishes when all coefficients are specialized is bounded by ¢/ S (Schwartz,

1980, lem. 1). Clearly, this bounds also the probability that M drops rank under the specialization.
We complete the proof by applying ¢ < 7. O

In most cases, the size of M is less than 10 so 32-bit integer coefficients lead to an upper bound of
10~° on the probability of error. Notice that even in the unlikely event of a bad choice of parameters,
the algorithm does not produce an erroneous result, but just yields larger matrices.

ExAMPLE 3.11 (CoNTINUED). The bold polygon in figure 2 is Q_s of system (3.2), whereas the
bold segment is the polytope V, with endpoints at the origin and (2,11/10). Equivalently, v =
(2,11/10) and g = 1.
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The Mayan Pyramid algorithm produces the following integer point sets with the respective ap-
proximate v-distances:

Ty = {(0,1;0.150), (1,0;0.100), (1,1;0.100), (1,2;0.091), (2. 1;0.050). (2, 2; 0.050),
(0.2;0),(0,3;0),(2.0;0),(2.3;0),(3,1;0),(3.2;0), (3. 3;0) },

T, = {(0,0;0.150), (1,0;0.100), (0,1;0.091), (1, 1;0.091), (2, 1;0.050),
(1,2:0),(2,2:0),(2,00), (3,2:0),(3,1;0)},

Ty = {(0,1;0.182), (1,1;0.150), (1,0;0.111),(2,1;0.100), (2. 2;0.091). (3,2; 0.050),

(1.2;0),(2.00),(3.1;0),(3.3;0), (4. 2; 0), (4,3;0) }.

Let us focus on the rows containing multiples of fs. The first matrix constructed contains 3 rows
with multiples of fy corresponding to the points

{(0,0;0.150), (1,0:0.100), (0,1;0.091)} C T,

which define the thin-line triangle at the origin, in figure 2. The second and final matrix has 4 rows
containing fo multiples:

B2 = {(0,0;0.150), (1, 0;0.100), (0,1;0.091), (1,1;0.091)} C T>.

These points define the thin-line square at the origin in the figure. This is the set of integer points
in Q_ whose v-distance is larger than or approximately equal to 0.091. The third thin-line polygon
in figure 2 defines an even larger subsets of T, C Z2, for a smaller cutoff value 8 on v-distance. This
set, though, is never needed.

This v leads to a 13 X 12 matrix M of full rank for system (3.2) with B; cardinalities 4,4 and 5,
from which a 12 x 12 generically nonsingular minor serves as D. Recall that the sparse resultant’s
total degree is 11 and the classical resultant’s degree is 26, whereas the algorithm in (Canny and
Emiris, 1993) and its greedy variant (Canny and Pedersen, 1993) yield, respectively, a 15 x 15 and
a 14 x 14 matrix.

Below, we show the 13 x 12 matrix and also the monomials indexing its columns (on top, denoted
by their integer exponent vector) as well as the polynomial multiples filling each row (to the right).

(07 1)(07 2)(17 0)(17 1)(1‘ 2)(2: 0)(27 1)(27 2)(2‘ 3)(3: 1)(37 2)(37 3)

C11 0 0 Ci14 C12 0 0 C13 0 0 0 0 yfl
0 0 C11 0 Ci14 C12 0 0 C13 0 0 fI)fl
0 0 0 C11 0 0 C14 C12 0 0 C13 0 %yfl
0 0 0 0 C11 0 0 C14 Ci12 0 0 C13 (L’yzfl
C21 0 C24 0 0 0 C23 C22 0 0 0 0 f2
0 0 0 Co1 0 Co4 0 0 0 Co3 Co9 0 Jffz
M = 0 C21 0 C24 0 0 0 C23 (€29 0 0 0 ny
0 0 0 0 C21 0 Coyq 0 0 0 Ca23 C29 ”E’ljfg
C31 C32 0 C34 C33 0 0 0 0 0 0 0 ’yfg
0 0 0 C31 C32 0 C34 C33 0 0 0 0 .T’yfg
0 0 C31 C32 0 C34 C33 0 0 0 0 0 .7?f3
0 0 0 0 0 0 C31 C32 0 C34 C33 0 (L’nyg
L 0 0 0 0 0 0 0 C31 C32 0 C34 C33 ] Tﬁzyzfg
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6. Mixed Volume Computation

Computing the mixed volume of n Newton polytopes in n dimensions is not only an important
subproblem for the sparse resultant matrix construction but also a fundamental question of inde-
pendent interest in sparse elimination. The main idea behind our method for computing the mixed
volume is the Lifting algorithm by B. Sturmfels (1994). Given convex polytopes Q1,...,Q, C R™ we
define a lifting by choosing n linear functions l; : Z™ — Q. Below we formalize certain requirements
on these functions. We define the lifted polytopes

Qi={(¢.li(@)lg € Q} CR™, i€ {l,....n},

We define the lifted Minkowsk:i sum as the Minkowski sum of the lifted polytopes (:j =3, Cj, C
R™HL,

The lower envelope of a convex polytope in R™! is the closure of the subset of all its n-dimensional
faces, or facets, whose outward normals have a negative x,y1-coordinate. The lifting must be suf-
ficiently generic in order for the lower envelope of @ to be in bijective correspondence with the
Minkowski sum @ of the original polytopes. This is equivalent to the requirement that every vertex
on the lower envelope be expressed uniquely as a Minkowski sum. A stronger and sufficient condition
is the following.

DEFINITION 6.1. Consider a pair of distinct vertex sets ({p1,...,Pn}ts {q1s---qn}), such that p;, q; €
Qi and Y pi =30 qi. The lifﬁng defined by functions ly, ..., 1, issufficiently generic if and only

if for every such pair Yo (i, li(pi)) # 2oy (qin Li(qi)) or. equivalently, > 1 Li(p;) # Yory Li(gs).

LEMMA 6.2. If all 2n? coordinates of I; are chosen independently and uniformly from an interval of
size 200 where Ly € Z~q, then the probability that the lifting is not sufficiently generic is bounded by

1
3T 5" "(m —1)"7L,

where m is the mazimum vertex cardinality of any Q; over all i € {1,...,n}.

Prob[ly,...,l, not sufficiently generic] <

ProoF. Fix two distinct sets of points {p1,...,pn} and {q1,...,q,} with p;,q; vertices of Q;, for
which Y7, p; = >, ¢i- We must bound the probability that the lifting fails to distinguish between
the lifted images of these two points, namely that >, l;(p;) = Y, li(¢;). Assume, without loss of
generality, that p; and ¢; differ in their first coordinate and fix all rational coefficients in the n lifting
forms, except for the numerator in the first coefficient of /5. In choosing the value of this numerator,
the probability of picking the single integer value that does not distinguish between the two lifted
points is < 1/2%1,

By multiplying this probability with the number of pairs ({p;}, {¢;}) the result is proven. In
counting the number of pairs the maximum number is found when, for every i, p; # q;, because
otherwise the possible pairs are constrained. If the p;’s are chosen at will, there are at most m — 1
choices for each ¢; and no choice for ¢, since the points must satisfy >, p; = >, ¢;. Hence the
number of pairs is at most 1/2m"(m — 1)*"1. O

For typical values n < 10, m; < 15 and L; = 64, the probability of failure is about 45%, while
for L; = 96, the probability becomes smaller than 107°. The above bound is pessimistic; moreover,
it is straightforward to check deterministically whether a particular choice of lifting functions is
sufficiently generic (Emiris, 1994b).

For a sufficiently generic lifting, the projection of the lower envelope of 6 induces a partition of )
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into cells, where each cell is the image of a lower envelope face of the same dimension. In particular,
facets give rise to mazimal cells of dimension n. It can be shown that the induced subdivision is a
mized subdivision of the Minkowski sum ). Mixed subdivisions are characterized by the fact that
every maximal cell either contributes its volume to the mixed volume or contributes zero. In the first
case, the cell is called mized and is the Minkowski sum of n edges from distinct Newton polytopes. In
the second case it is unmized. Demonstrations of these facts can be found in (Billera and Sturmfels,
1992, Sturmfels, 1994). The essential property

MV(Q1,...,Qn) = Z Vol(), over all mixed cells o of a mixed subdivision of @,

relies on the multilinearity of the mixed volume from Definition 3.4. Mixed cells are parallelepipeds in
n dimensions, hence their volume is the determinant of the matrix whose rows are the edge vectors
generating the cell. An important property of the mixed cells is that, generically, they define a
monomial basis of the coordinate ring of the ideal generated by n polynomials in n variables (Emiris
and Rege, 1994), and they specify the start system for a sparse homotopy.

Several algorithms exist for the calculation of mixed volumes. One of the first approaches (Emiris,
1993) computes the entire mixed subdivision and simultaneously all n-fold mixed volumes required
for a system of n+1 polynomials in 7 variables, but has to construct explicitly the lower envelope of
Q. The method of Huber and Sturmfels (1992) takes advantage of repeated polytopes, while that of
Verschelde and Gatermann (1994) exploits symmetry; a general implementation has been described
in (Verschelde, Verlinden and Cools, 1994). These algorithms have the same worst-case asymptotic
complexity as our own algorithm defined below. This complexity is analyzed below and turns out
to be simply exponential in n. However, based on experimental results, our algorithm appears to be
the fastest to date for the general problem.

The idea is to test, for every combination of n edges from the given polytopes, whether their
Minkowski sum lies on the lower envelope of Q. If so, its volume is computed and added to the
mixed volume. To prune the combinatorial search, we make use of the following obvious fact.

LEMMA 6.3. Fiz a lifting, let J C {1,...,n}, and suppose that e; is an edge of Q; for all j € J.
If the Minkowski sum of the lifted edges Zjejgj lies on the lower envelope of Zje] Q; then, for
any subset of T C .J. the Minkowski sum Y, €; lies on the lower envelope of the Minkowski sum

ZtET Qt'

Our algorithm constructs n-tuples of edges from @; by starting with a pair of edges and then
adding one edge from a new polytope at a time. As each edge is added, the k-tuple for 2 < k < n
is tested on whether it lies on the lower envelope of the corresponding lifted Minkowski sum or not;
the k-tuples that pass this test are called valid and are precisely those tuples that will continue to be
augmented. Further pruning is achieved by eliminating those edges that cannot extend the current
k-tuple from the edge sets of polytopes not yet considered. This means that for an index set J, we
let T'= J U {t}, where ¢ ranges over {1,....n} \ J and check the edge tuples corresponding to T
This process employs several “small” tests to decrease the number of “large” and expensive tests
that must be ultimately performed.

Every test for a k-tuple of edges e;,,...,¢;, is implemented as a linear programming problem.
Let §; € Q"*! be the midpoint of the lifted edge &; of Q; and let § = Pi, + -+ Di, € QU be
an interior point of the Minkowski sum €;, + --- 4+ €;,. The test of interest is equivalent to asking
whether p lies on the lower envelope or not, which is formulated as follows:

- . . /\_ — mt '/\ )
maximize s € R>q : p—sz= Ete{i—h...,ik} ijl Atjej, (6.1)
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E:”:tl )\fj = 1, AfJ 2 0, Vi € {ll ,7:]‘7}, ] S {1, ,m,t},

where z = (0,...,0,1) € Z™+1, Uy; is the j-th vertex of @t and m; the cardinality of Q); or, equiv-
alently, (;)\t, due to the linearity of the lifting. Then P lies on the lower envelope if and only if the
maximal value of s is 0, for s expresses the vertical distance of p from the lower envelope. Otherwise
s is positive.

Input: The vertex sets of convex polytopes Q1,...,Q, C R™ which are all subsets of the integer
lattice Z™.

Output: MV (Q1,...,Qn) € Zsy.

Lift-Prune algorithm:

Enumerate the edges of all polytopes Q1,...,Q, respectively into sets Fy,.... E,.

Compute random lifting vectors ly,...,1l, € Q".

Compute lifted edge ¢; for every edge e; € E;, 1 =1,...,n.

Initialize the mixed volume to 0.

If B = () then terminate.

Otherwise, pick any edge e; € Ey, remove it from FEy, create current tuple (ey), let sets

Ei,...,E! be copies of E,,...,E, and let k = 1.

6 Let ¢ range from &k + 1 to n: R R
For every e; € E., if Z§:1 ¢; + ¢; does not lie on the lower envelope of Z§:1 Q; + Q; then e;
is removed from E!.

7 Increment k.

8 If k& > n, then add the volume of the Minkowski sum of (eq,...,e,) to the mixed volume;
continue at step 5.

9 If kK <nand E’;v = () then continue at step 5. If £ < n and E,’c # ) then add some edge e € E;c

to the current tuple (e1,...,er_1), remove e from Ei and go to step 6.

Tk W N~

Our implementation of the Lift-Prune algorithm is publicly available from
ftp://robotics.eecs.Berkeley.edu/pub/MixedVolume.

Computation of the Newton polytope edges is accomplished by well-known techniques based on
linear programming; see (Grotschel et.al.) for details. Notice that the edges of every original and
lifted polytope are the same due to the linearity of the lifting.

The algorithm, as given above, does not exploit the fact that mixed volume is invariant under
permutation of the polytopes. In our implementation, we change the order of the polytopes, or rather
their edge sets, in a dynamic fashion so that when the algorithm at step 9 picks a new edge set, it
chooses the one with minimum cardinality.

In implementing the algorithm, we have used an existing implementation of the Simplex algo-
rithm from the Numerical Recipes in C package (Press, Flannery, Teukolsky and Vetterling, 1988).
Unfortunately, these sources are not free for distribution, although most sites today have access to
them. The ftp site of the Lift-Prune program contains our corrections to the Numerical Recipes
in C sources, along with our own code and the executables. It is easy to see that the bottleneck of
the mixed volume program is linear programming, therefore a more efficient implementation for this
problem would significantly speed up our algorithm.

As for the stability of the Simplex algorithm over double precision floating point arithmetic, it is
not a major issue because the inputs are usually 32-bit integers. The crucial point here is to ensure
that the lifting values, which are typically larger than the polynomial exponents, are not too large. In
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any case, we must be careful in choosing a threshold value to distinguish between zero and positive
optimal values for s in linear program (6.1).

The Lift-Prune algorithm is incremental in the sense that partial results are available at rather
regular intervals and well before termination. This successively tighter lower bound on mixed volume
is particularly useful in long runs of the program. Furthermore, we propose the following scheme for
either coarse-grain or fine-grain parallelization. An initial sequential phase examines the first few
polytopes. Then each valid edge combination is given to a different processor and the rest of the
algorithm proceeds as before on every processor. We would typically have the initial phase examine
enough polytopes in order to produce sufficiently many combinations so that each processor is given
at least one valid combination. Clearly, this scheme works in a distributed environment too. When
one processor completes its computation, it may examine some of the valid edge combinations that
wait to be examined at another processor.

Asymptotic complexity is analyzed below and empirical results for the benchmark of cyclic n-roots
are reported in section 9.

6.1. AsympTOoTIC COMPLEXITY

The worst-case asymptotic complexity of the Lift-Prune algorithm is analyzed in this section.
Motivated by the empirical observation that this bound is overly pessimistic (see experimental results
in section 9), we also attempt to model the algorithm’s average-case behavior. The computational
model used is the real RAM (Aho, Hopcroft and Ullman, 1974), on which two different cost functions
are employed. Namely, we consider the worst-case arithmetic (number of instructions) as well as the
worst-case bit complezity (number of bit operations) of the algorithm.

Let g denote the maximum number of Newton polytope edges, m the maximum number of Newton
polytope vertices, which is bounded by the number of nonzero monomials per polynomial, and d the
maximum coordinate of any vertex, assuming that the Newton polytopes have been translated to
lie in the first orthant and touch all the coordinate hyperplanes. Let L; be the maximum bit-size of
a coordinate in any lifting form I; and Lg = logd be the maximum bit-size of any Newton polytope
vertex coordinate.

The bottleneck is the combinatorial search for the valid edge tuples. Ignoring the pruning, the
algorithm has to test ¢” combinations, where ¢ is an upper bound on the number of edges in every
Newton polytope. Clearly, g < m? and the number of tests is not larger than m?2”.

Linear programming may be solved by any polynomial-time algorithm. In what immediately fol-
lows as well as in later sections we use Karmarkar’s (1984) polynomial-time algorithm in order to
derive our complexity bounds. For linear programs with V' variables, C' constraints and at most B
bits per coefficient, the bit complexity is

O*(C*V>°B?), (6.2)

where O*(+) indicates that we have ignored polylogarithmic factors in C,V, B. Every problem of the
form (5.1) has V' = O(nm) variables, C'= O(n) constraints and B = O(L;+ Lg) bits per coefficient.
Applying Karmarkar’s result we can bound the bit complexity of every linear programming test by
(9‘(n7'5m5'5(Ll + Ld)Z)-

THEOREM 6.4. Let m be the mazimum vertex cardinality per polytope, d be the mazimum degree in
any variable and € < 1 be the probability of failure of the lifting scheme. The worst-case bit complezity
of the Lift-Prune algorithm for computing MV (Q1,...,Qy) is

O*(m> 505 (log d — log €)?).
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For a constant probability € and systems with d bounded by a polynomial in m and n, the Lift- Prune
algorithm complexity is

Ox (7n/2n+5.5n7.5 ) .

ProOF. The first step identifies the edges of the Newton polytopes by applying linear programiming
to every pair of vertices. For the i-th polytope there are O(m?) pairs and the bit complexity for each is
O*(n*m?®L%), where Lq = [logd]. Hence the total bit complexity of this phase is O*(n®*m"* log® d)
and it is dominated as shown below.

27 edge tests, each reducing to a linear programming application with bit
complexity O*(n7'5m5'5(L1 + L,])z). The maximum coordinate is bounded by d hence L; < logd.
From lemma 6.2, e = m™(m — 1)"1/(2. 21} is the probability that the lifting fails, therefore L; =
O(nlogm —loge). Hence the total complexity is O*(m2"*°*n™-5(nlogm — log e + log d)?), and the
first claim follows. Under the additional hypotheses, the last factor is dominated and the second
claim follows. O

There are at most m

We put the analysis in the perspective of complexity classes; for definitions see (Garey and John-
son, 1979).

THEOREM 6.5. Computing the mized volume is in #P.

Proor. The Lift-Prune algorithm puts mixed volume in complexity class #P because a non-
deterministic machine could guess an edge combination that leads to a mixed cell with positive
volume, then spend polynomial time to check this guess. This process is repeated for every edge
tuple corresponding to a mixed cell. If we subdivide each edge to unit-length segments and restrict
ourselves to these unit-length edges, then each guess leads to a subcell of unit volume and the number
of distinct guesses equals the mixed volume. OJ

In terms of lower bounds, recall that the mixed volume problem is equivalent, for unmixed sys-
tems, to computing the volume of the convex hull of a point set. The latter is known to be #P-
hard (Khachiyan, 1993), hence computing mixed volumes is also #P-hard. Moreover, it has recently
been shown that mixed volume is #P-complete (Pedersen, 1994) by a reduction of computing the
permanent.

To model the average-case behavior and account for the effects of pruning we should estimate the
number of edge combinations that pass the test at the various stages. We define p;, to be the ratio
of wvalid edge tuples at step k of the Lift-Prune algorithm over the total number of edge tuples for
the partial Minkowski sum Q1 + - - - + Q. In other words, the number of valid tuples for this sum is
prm?®. This is a worst-case bound assuming that all polytopes have m vertices, therefore at most
m? edges.

HyPOTHESIS 6.6. Consider the k-th stage of the Lift-Prune algorithm, for k € {2,...,n}, namely
the stage at which Q\k s constdered for the first time. The fraction of edge tuples that pass the validity
test at this stage over the maximum possible number of edge tuples depends only on k and the number
of facets of C/Q\k and grows linearly with each.

To estimate the number of facets of Q\L we use the well-known bound on the number of facet of
the convex hull of m points in n + 1 dimensions, namely O(mL(”Jrl)/ZJ) (Griinbaum, 1967). By the
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above hypothesis,

2k

fom L(n+1)/2]
p,‘7:0<m—>, ke{2,...,n}

This assumption is supported by experimental evidence from the cyclic n-roots problem examined
in section 9.

COROLLARY 6.7. Assume that the probability of failure € for the lifting scheme is constant and that
the mazximum coordinate of any polytope vertex d is bounded by a polynomial in m and n. Then, under
hypothesis 6.6 on the number of valid edge combinations, the Lift-Prune algorithm has complexity

O* (m |'n/2'\+7.5n9.5).

PROOF. Since the number of edges per polytope is bounded by m?, the number of linear program-
ming problems is bounded by

m* + pom*m? + ... + pn,1m2("_1)m2 =

= ’]n4 4+ 2m|.(n+1)/2J+2 + -4 (’I’I; — 1)m’L(”+1)/2J+2
— O(,nz,,,nll_(n+1)/2j+2)-

As analyzed above, the cost of every linear programming run is at most O*(n”-*m?®®(log d —loge)?).
By the current hypothesis the last factor is at most polylogarithmic in m and n. The claim follows

by applying the identity |(n+ 1)/2| = [n/2]. O

7. Sparse Resultant Algorithm

This section presents the overall algorithm for constructing sparse resultant matrices given n + 1
supports A; C Z". As already explained, the determinant of the resultant matrix is, in general,
a multiple of the resultant. In several applications, including polynomial system solving. an exact
matrix formula for the resultant is not required (Emiris, 1994, 1994b and 1995), though efficiency
is optimized when the minor D equals the sparse resultant. In general D # R and there are two
alternative ways to proceed in order to obtain the resultant under a specific specialization of the
coeflicients (Canny and Emiris, 1993). For both methods we fix the cardinality of B; to MV _; so
that degy, D = degy, R. This enables us to define R as the GCD of at most n + 1 such minors.

A crucial question in our approach is the choice of vector ». In many situations, a deterministic
v which guarantees the construction of a compact matrix formula can be found. Such cases include
systems whose structure is or resembles a multigraded structure, as demonstrated in section 8. More-
over, the resultant matrix constructed by our algorithm generalizes the Sylvester matrix (Sylvester,
1853) and the coefficient matrix for linear systems.

THEOREM 7.1. Given a system of two univariate polynomials and one-dimensional vector v € R,
our Matriz Construction algorithm of section § produces the Sylvester matriz of this system. Given
a system of n + 1 linear polynomials in n variables and vector v = (1,...,1) € R™, the algorithm
produces the coefficient matriz of this system.

ProoF. For two univariate polynomials, the sets 77 and T3 are subsets of Z and, for positive v, the
points with positive v-distance are exactly the monomials that define the rows of the Sylvester matrix.
Since MV _y and MV _5 are equal to the degree of the second and the first polynomial, respectively,
the points with positive v-distance constitute B; and By in the first round of the algorithm and
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the constructed matrix is the Sylvester matrix. It is known that the Sylvester matrix is generically
nonsingular, therefore for specialized coefficients the constructed matrix is also nonsingular with
very high probability, as determined in lemma 5.5. Hence the algorithm returns the Sylvester matrix
and terminates.

For linear systems, each )_; is an n-dimensional unit simplex scaled by n and MV _; = 1 for all
i € {1,...,n + 1}. Furthermore, for v = (1,...,1), each B; contains exactly one point at the first
round, namely the origin. The corresponding matrix is the (n+ 1) X (n+ 1) coeflicient matrix and it
is generically nonsingular. For specialized coefficients the matrix is still nonsingular with very high
probability, as given by lemma 5.5. Hence, this matrix is output and the algorithm terminates. O

For arbitrary systems, a random vector v is chosen. From theoretical arguments and empirical
observations it follows that it is preferable to choose vectors v € (Q*)™ with all coordinates dis-
tinct. The goal is to have as few integer points as possible with the same v-distance in any set 7.
Theorem 5.3 establishes the fact that any sufficiently generic v will lead to a valid matrix.

In general, when no deterministic choice for v exists, the algorithm is of the Las Vegas type, in
the sense that any bad probabilistic choice for v which does not lead to a valid matrix M cannot
lead to wrong results but shall only increase execution time.

Input: Supports A, ..., A,+1 and direction vector v € Q™ \ (0,...,0).

Output: A maximal minor D of the matrix M, such that D is a nontrivial multiple of the sparse
resultant.

Main algorithm:

1 Compute the vertex sets of Newton polytopes Q1, ..., Qny1.

2 Use the Mayan Pyramid algorithm to compute sets T1,...,T,41 € Z" and the v-distance of
all points in them.

3 Use the Lift-Prune algorithm to compute mixed volumes MV _y, ..., MV _(,,14).

4 Use the Matrix Construction algorithm to construct matrix M whose maximal minor D is a
nontrivial multiple of R and return D if found. Otherwise, report that minor D cannot be
found with the current choice of v; then either a new v is supplied or one is chosen randomly,
and the algorithm restarts at step 2.

A preliminary implementation of this algorithm together with the back end of a system solver
using the resultant matrix is publicly available from

ftp://robotics.eecs.Berkeley.edu/pub/emiris/res_solver.

The first step is to compute the Newton polytope vertices. For this task we use linear programming
on every support point to decide whether it is a vertex or not. This is a well-known technique;
see (Grotschel et.al.) for details.

A useful feature is that, as the matrix construction is incremental, the nonsingularity test is also
incremental. We have implemented an incremental algorithm for LU decomposition of rectangular
matrices which, given a partially decomposed matrix, will attempt to continue and complete the
decomposition. It uses partial pivoting and stops when a pivot and the subcolumn below it are all
zero, thus calling for a larger matrix M. Arithmetic is carried out over a large finite field, which
allows for efficiency and exactness. The only disadvantage is that, with some very small probability,
the final matrix M may be larger than over the integers.

In computing the sets T;, we have implemented an option that allows the user to limit the maximum
number of points in these sets. Typically, these sets contain many more points than eventually needed.
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The user can guess an upper limit on the number of points in each B;, and hence in the respective
T;. and pass it to the program. Moreover, after computing each T}, the program updates the smallest
v-distance and delimits the search of subsequent point sets to points whose v-distance is at least as
large.

Parallelization of the matrix construction is straightforward. discussed in the previous section
Moreover, the integer point enumeration may be easily parallelized by assigning each set T; on a
different processor. Further parallelization may be achieved by having different “slices” of each Q_;
assigned to different processors. The most expensive phase is testing whether M has full rank. There
exists a rich literature on parallel LU decomposition; see for instance (Modi, 1990).

7.1. AsympTtoTIiICc COMPLEXITY

Here we analyze the worst-case asymptotic complexity of the algorithm, based on the real RAM
model of computation (Aho et.al.). Again, two complexity functions are used, namely the arithmetic
and the bit complexity. We make repeated use of the following theorem.

THEOREM 7.2. (Emiris, 1994) Given are convex polytopes Q1,...,Qy € R™, all of which have posi-
tive volume, and let Q),, be the polytope of minimum volume, for some p € {1,...,n}. Assume that
there is a constant ¢ > 1 such that, for every i € {1,...,n}, there exists vector b; € R™ such that

bi + Q; C cQ,. Then,

where e = 2.7183 denotes the exponential base.

Let s be the maximum number of points in any of the given supports A;, g the maximum number
of Newton polytope edges, m the maximum number of Newton polytope vertices and d the maximum
coordinate of any vertex, assuming that the Newton polytopes have been translated to lie in the first
orthant and touch all the coordinate hyperplanes. Let L; be the maximum bit-size of a coordinate
in any lifting form I; and Ly = [logd] be the maximum bit-size of any Newton polytope vertex
coordinate.

LEMMA 7.3. The complezity of the Mayan Pyramid algorithm to compute one integer point set 15,
for some i € {1,...,n + 1}, and the respective v-distances is O(Vol(Q_Z-)n7'5m5'5L§). If, further,
the hypothesis of theorem 7.2 holds, then the complexity is O(C”MV,m77n5'5L(21), where e denotes
the exponential base.

ProOF. Each linear programming problem in the enumeration of integer point sets 7; is expressed
as in (5.1). The number of variables and constraints is V' = O(nm) and C = O(n) respectively and
the bit size of the coeflicients is B = L4. Hence, by bound (6.2) (Karmarkar, 1984), the worst-case
bit complexity per linear program is O(n"-*m®*L3).

An asymptotic upper bound on the number of linear programming problems is the cardinality of
T;. By the famous result of Ehrart (1967) which bounds asymptotically the cardinality of an integer
point set by the volume of its convex hull, the number of linear programs is asymptotically bounded
by Vol(Q_;). The first bound is now obvious; to obtain the second bound we apply theorem 7.2. O

Now we turn to the complexity of step 4. Recall that arithmetic is carried out over a finite field,
hence the bit complexity per operation is constant.
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LEMMA 7.4. Assume that the hypothesis of theorem 7.2 holds for the given Newton polytopes. Then
the bit complexity of the incremental Matriz Construction algorithm of section 5 (i.c.step 4 of the
Main algorithm) is O(e*"(deg R)?), where e ~ 2.7183 denotes the exponential base and deg R denotes
the total degree of the sparse resultant.

PrOOF. The matrix construction is dominated by the LU decomposition which is at worst cubic in
the maximum number of rows. The final number of rows is bounded by the total number of points
in all the 7} sets. By Ehrart’s bound the complexity becomes O((3 Vol(Q_;))?). By theorems 7.2
and 3.10,

n+1 n n+1 n
e e
Vol(Q_;) =0 MV _, =0 deg R,
2 Vol (f) 2 <f) s 1t
and the claim follows. O

We can now sum up the complexities of the different stages. Our assumptions attempt to model to
some extent the average-case behavior of the algorithm and are justified by experimental evidence.

THEOREM 7.5. Let s,m and g be the mazimum number of support points, Newton polytope vertices
and Newton polytope edges respectively, let d be the mazimum coordinate of any vertexr and let €
denote the probability of failure for the Lift- Prune lifting; deg R denotes the total degree of the sparse
resultant. Suppose that the algorithm uses a constant number of vectors v and that the hypothesis
of theorem 7.2 holds for the given Newton polytopes. Also suppose that s* = O(me"degR), d is
bounded by a polynomial in m and n and € is constant. Then the total bit complexity of the sparse
resultant algorithm is

O*(¥"m>®)(deg R)® 4+ m°™,
If. moreover, m** = ¢°™ (deg R)?, then the total complexity is bounded by

O (deg R)*.

ProOF. The first step of the overall algorithm computes the vertex sets of the Newton polytopes
by applying linear programming to each point in the every support. Each linear program has at
most V = s variables, C = O(n) constraints and B = L4 bits per coefficients, hence the total bit
complexity of this step is O*(n®s5-°L2) by bound 6.2; see (Karmarkar, 1984, Grotschel et.al.) for
details. By the assumption on s this step is dominated by the cost of the Mayan Pyramid algorithm.

The total cost of the Mayan Pyramid algorithm is O(c”n7m5'5L3 deg R). By the hypothesis on d
the Ly factor is dominated. Therefore the bit complexity of this step and the matrix construction step
can be summed up to O*(e*"(deg R)*m®°). Under the current hypothesis the bound of theorem 6.4
on the bit complexity of the Lift-Prune algorithm is O*(m?"T**n"-%). The first bound now follows.

The second bound on total complexity models the fact that the complexity is largely dominated by
the matrix construction phase. Under the additional hypothesis the computation of mixed volumes
is dominated. O

8. Multihomogeneous Systems

We concentrate on unmixed homogeneous systems where the variables can be partitioned into
groups so that every polynomial is homogeneous in each group. Such polynomials, and the resulting
systems, are called multthomogeneous. We focus on a subclass of multihomogeneous systems called
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multigraded, which includes all systems for which exact sparse resultant matrices are known to
exist. Our algorithm produces these matrices for certain deterministic choices of vector v. Moreover,
it produces optimal matrices for systems approximating the multigraded structure, as exemplified
later. Hence the importance of multihomogeneous systems for sparse elimination.

We partition the variables into r groups so that each polynomial is homogeneous of degree dj, in
the k-th group, with & € {1,...,r}. For the k-th group, n; + 1 indicates the number of variables.
Such a system is said to be of type

(P1yeoosmpidy, ..., dy),

where the number of equations is n + 1 and n = Y7, ng. There should be no confusion from
the fact that the polynomials given may be multihomogeneous. To apply our algorithm we simply
dehomogenize each group of variables by setting the (nj + 1)-st variable to one.

An improved Bézout bound exists on the number of isolated roots for arbitrary systems of mul-
tihomogeneous polynomials (also called m-homogeneous). If the degree of polynomial ¢ is d;; in the
j-th variable subset, then the number of common isolated solutions for the system of n polynomials
is bounded by

T mn T

g . 4 . .

the coefficient of H z; in polynomial H E d;jx;
j=1 i=1 \ j=1

For a recent generalization see (Morgan et.al.).

The Newton polytope for every polynomial is the Minkowski sum of 7 nj-dimensional simplices,
each on a disjoint coordinate subspace. Every simplex is denoted by dy 5., and is the convex hull of
ny, segments of length dj, rooted at the origin and extending along each of the nj axes corresponding
to the variables in this group. Equivalently, Sy, is the convex hull of unit segments. Since we are in
the unmixed case, the n-fold Minkowski sum ) _; is the same for any 7 € {1,...,n + 1} and equal
to the integer polytope P C R™ which is simply the copy of the (unique) input Newton polytope
scaled by n, i.e.,

Q1= =Qni1 =Y diSp., P=) ndyS,, CR™
k=1 k=1
Both summations express Minkowski addition of lower-dimensional polytopes in complementary
subspaces, such that their sum is a full-dimensional polytope.

DEFINITION 8.1. Consider an unmized system of n+1 multihomogeneous polynomials in n variables
of type (n1,...,np;dy,...,d.), where ny + -+ + n,. = n. This system is called multigraded if, for
everyk e {1,...,r}, np =1 ordp=1.

Multigraded systems include all systems for which Sylvester-type formulae exist and, in partic-
ular, linear systems, systems of two univariate polynomials and bihomogeneous systems of three
polynomials whose resultant is, respectively, the coeflicient determinant, the Sylvester resultant and
the Dixon resultant (Dixon, 1908).

For the resultant matrix of a multigraded system, all supports B; are identical, of cardinality equal
to the unique n-fold mixed volume. Let B C R™ be the convex hull of B;. Matrix M is defined by
setting

B = kaSnk C R™, where my, = (dy — 1)ng + dy, Z 74, Ee{l,....r}. (8.1)
k=1 Jim(g)<m(k)
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Table 1. Hardware specifications

machine clock rate [MHz] memory [MB] Spec 92Int  Spec 92FP
DEC 5240 40 64 28 36
DEC ArpHA 3300 150 64 66 92
DEC ArLrHA 3600 175 320 114 162
SUN SPaRrc 10/40 40 32 50 60
SUN Sparc 10/51 50 32 65 83
SUN SParc 20/61 60 32 95 93

Moreover, for every multigraded system an optimal matrix formula can be constructed based on
the following result.

THEOREM 8.2. (Sturmfels and Zelevinsky, 1994) For a multigraded system there ewists a Sylvester-
type matriz formula for the sparse resultant for every permutation 7 of the indices {1,...,r}. The
matriz is defined by the multiindex (1, ..., m,) of expression (8.1).

We shall prove that, for a given permutation, the incremental algorithm constructs the corre-
sponding Sylvester-type matrix at the first round.

LEMMA 8.3. Partition the n coordinates of vector v € Q™ into v groups following the partition of
variables and set every coordinate in the k-th group equal to (ndy, —my)/ny € Q. Then P -V = B.

ProoF. By using the fact that >, _; n; = n and that, for every k, we have dj, = 1 or nj, = 1, it can
be shown that (nd; —my)/ni > 0, Vk. Consider any point p € P — V with coordinates grouped in
r groups, each of cardinality ny. For a specific group, all coordinates are equal to c¢. For any k such
that n; = 1 we have two conditions on c:

ndy —m
0<e< ndyg and 0<c+ k- TR < ndy,
ng
which is equivalent to 0 < ¢ < my. For any k such that nj > 1 and d; = 1, we have two conditions
on the sum s of the n; coordinates in the k-th group:

n—1m
0<s<n and Ogs—}—m,—k

ng

which is equivalent to 0 < s < my. Hence p € Bif andonlyif pe P - V. O

To see how this v was chosen, observe that B is a scaled-down copy of P, where the scaling has
occurred by a different factor for each group of n; coordinates. Given the sequence (ni,...,n.),
polytopes P and B are entirely defined by their unique vertex with no zero coordinate; v is the
vector between these two vertices.

THEOREM 8.4. Gliven a multihomogeneous system of type (ng,...,np3dy,. .., d,) such that ny =1
ordy=1fork=1,....7, define v € Q" with the k-th group of coordinates equal to

(ndy, — mp) [nr, where my, 1s defined by expression (8.1).
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Table 2. The performance of the sparse resultant algorithm on a SUN Sparc 10/40.

type vector v € 2™ deg R degD  #rowsin M greedy CPU time
(2,1,1;1,2,2) (2,2,3,1) 240 240 240 > 670 42s
(1,1,1,1;2,2,1,1) (7,5,2,1) 480 480 480 1m 0s = 60s
(1,1,1,1;3,3,1,1) (10,7,2,1) 1080 1080 1080 2m 11s = 131s
(1,1,1,1;3,3,2,1) (10,7,3,1) 2160 2160 2160 4m 3s = 243s
(1,1,1,1;3,3,3,1) (10,7,4,1) 3240 3240 3240 6m 29s = 389s
(2,1;2,1) (97,103,300) 48 52 52 103 Os
(2,1;2,2) (101,99,500) 96 104 104 206 6s
(2,1,1;2,1,1) (301,299,200,100) 240 295 340 2m 43s = 163s
(2,1,1;2,2,1) (301,299,304,100) 480 592 690 18m 56s = 1136s
(2,1,1;2,2,2) (300,310,290,100) 960 1120 1200 2h 58m = 10680s

Then the first matriz constructed by the resultant matric algorithm has determinant equal to the
sparse resultant of the system.

Proor. It follows from the lemma that the first set of supports B; constructed are all identical,
since the system is unmixed, and equal to BN Z™, hence they are exactly those required to define a
Sylvester-type formula for the resultant by theorem 8.2 and the results of (Sturmfels and Zelevinsky,
1994). Note that the formula obtained corresponds to the permutation 7 used in the definition of
my,. O

We now report on some experiments. Table 1 contains the hardware specifications of the machines
employed.

We have been able to produce all possible Sylvester-type formulae for various multihomogeneous
examples with ny = 1 or dj, = 1 for all k. Furthermore, for systems that do not fall within this class
we have used v defined similarly and obtained near-optimal resultant matrices. The input for the
experiments in table 2 is the n + 1 supports and the vector v shown in the table. The output is the
n+ 1 n-fold mixed volumes, the sum of which gives the total degree of the sparse resultant, the point
sets T; with their v-distance, for all4 € {1,...,n+1}, and a square resultant matrix with generically
nonzero determinant D. The symbols deg R and deg D respectively indicate the total degree of the
sparse resultant and of the maximal minor D that our algorithm constructs. Since deg D expresses
only the number of columns in the final matrix M and since the algorithm’s complexity also depends
on the final number of rows in M, we also report the latter.

Table 2 also reports preliminary running times on the SUN SPARC 10/40 of table 1, rounded
to the nearest integer number of seconds. For the first set of examples, which are all multigraded,
the algorithm uses the fact that these systems have Sylvester-type formulae to avoid testing for
singularity; this explains the fast execution times. However, for the second class of examples the
algorithm not only builds the matrix but also tests whether it has full rank and, typically, has to
increment it before it finds a generically nonsingular maximal submatrix.

For the systems for which there exists k such that nj, > 1 and dj, > 1. we used the same recipe
as above to calculate m; and v, and then have perturbed the latter v to obtain the results shown.
For types (2,1;2,1) and (2,1;2,2) the smallest matrix is obtained for 7 = (2,1) and v = (1,1, 3)
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and (1,1,5) respectively. For the last three types we used permutation (1,2,3), resulting in vectors
v=1(3,3,2,1), (3,3,3,1) and (3,3,3,1) respectively.

It is interesting to compare these resultant matrices to those computed by the greedy algorithm
in (Canny and Pedersen, 1993), with sizes shown in column “greedy”. There is a randomization
step in this algorithm that might lead to matrices of slightly smaller size. Nonetheless, the results
from a single run of the greedy algorithm suggest that the present approach yields more economical
formulae.

We have applied the results on multigraded systems and systems resembling the multigraded
structure in studying concrete problems in vision, robotics, structural biology as well as game theory
and computational economics (Emiris, 1994b).

9. Cyclic n-Roots

This section discusses the practical performance of our algorithms applied to the standard bench-
mark problem of cyclic n-roots, a family of systems encountered in Fourier analysis. First we examine
empirical results of the Lift-Prune implementation and then we look at the matrices constructed by
our resultant code. Table 3 displays the running times of the Lift-Prune program on the problem
of cyclic n-roots for the DEC ALPHA 3300 of table 1. The times have been rounded to the nearest
integer number of seconds.

The polynomial system is the following:

r1+ 2+ +x, = 07

T1wy + X2w3 + -+ Ty = 0,

Ty T+ T2 Tyt F Ty Ty = 0,
LiLy " Tn =

For small values of n the exact cardinalities of isolated roots, appearing in the first column of
table 3, were derived in a series of articles. For n = 4 the variety has unit dimension and no isolated
roots. Bjorck (1990) credits L. Lovdsz with settling the case n = 5. The same article states that
n = 6 was essentially solved in (Bjorck and Froberg, 1991) except for an error corrected by D. Lazard.
The problem for n = 7 was solved in (Backelin and Froberg, 1991) with the help of Grobuer bases
calculations on J. Backelin’s program BERGMAN. For n = 8 there are 1152 isolated roots in addition
to the one-dimensional variety (Bjorck and Froberg, 1994).

For n > 9 the precise number of isolated roots is unknown and for n» = 10 even finiteness is open.
Our bound for n = 11 verifies the conjecture by Froberg and Bjorck that the number of roots for
prime n is (2:’:12). This value was shown to be an upper bound for every n (Pottier, 1995).

Our experimental results support the following conjecture.

CONJECTURE 9.1. When the variety of the cyclic n-root system has zero dimension, then the mized
volume gives the exact number of affine solutions.

All running times should be solely viewed as rough indications of the problem’s intrinsic com-
plexity and the algorithms’ performances. In addition, it must always be remembered that different
algorithms compute different outputs. In particular, the mixed volume computation constructs a
monomial basis for the coordinate ring and the mixed cells computed define the start system of a
sparse homotopy. On the other hand, Grébner bases lead to a method for computing the system’s
roots and provide more information, in particular when the dimension of the variety is positive.
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Table 3. Lift-Prune algorithm performance for the cyclic n-roots problem; timings are on a DEC
Arpua 3300. Timings for GB are on a DEC ArprA 3600 and for the algorithm in (Verschelde,
Gatermann and Cools, 1995) on a DEC 5240.

#isolated mixed Lift-Prune (Verschelde et.al. 1995) DRL by GB

n roots  volume static  #isol. roots time
3 6 6 0s

4 0 16 0Os 16 0Os
5 70 70 0Os Os 70 0Os
6 156 156 2s 5s 156 1s
7 924 924 27s 2m 36s = 156s 924 2m 52s = 172s
8 1152 2560 4m 19s = 259s 1h 57m 37s = 7057s oo or 2560  56m 6s = 3366s
9 unknown 11016 40m 59s = 2459s

10 unknown 35940 4h 50m 14s = 17414s - -
11 unknown 184756  38h 26m 44s = 138404s

We first compare our algorithm with the lifting algorithm of Verschelde, Gatermann and Cools
(1995), namely their static technique, which is the fastest in their article. The mixed volumes com-
puted by this algorithm agree with the output of the Lift-Prune algorithm. The experiments were
conducted on a DEC 5240 with performance ratings shown in table 1.

We compare running times with the Grobner bases package GB by Faugere (1995), since it seems
to be the fastest available system; for a comparison with other systems see the (Faugere, 1995)
and the next paragraph for some concrete examples. GB was executed on a DEC ALpHA 3600 and
computed the ideal basis with respect to the degree reverse lexicographic (DRL) ordering over a finite
field. Of course, this computation has a small probability of error, but so does our mixed volume
algorithm. For n = 8 the computed basis implies that the associated variety is one-dimensional.
Substituting random coeflicients, GB computes a bound on the number of isolated roots equal to
the mixed volume. To solve the system, further computation is necessary to transform the DRL
basis to a lexicographic basis. For n = 6 and 7, for the same computation over the integers, GB
took 3 seconds and 6 hours, respectively, on a SUN Sparc 10/40.

We also used Macaulay (Stillman, Stillman and Bayer, 1992) to compute a reverse lexicographic
Grébner basis (mod 31991) for n = 6 and 7 on the SUN SPaRc 10/51 of table 1. The CPU timings
were, respectively, 4 seconds and 18 minutes and 48 seconds.

We have also applied our resultant implementation to this problem. To view the system as an
overconstrained one, we “hide” one of the variables in the coefficient field. In other words, we consider
the polynomials as functions on n — 1 variables with coefficients in R[z,]. Both the resultant and
the resultant matrix have entries in R[z,]. This method to system solving is formalized in (Emiris,
1995).

Experimental results are shown in table 4, with running times rounded to the nearest integer, on
the SUN SPARC 10/51 of table 1. The performance of our code is not optimized, because this is the
offline phase of the polynomial system solver and we have focused on the online part that takes the
resultant matrix and computes the common roots.

All v vectors are random perturbations of vector (1,...,1), since this works best for small dimen-
sions. We also compare the greedy algorithm of (Canny and Pedersen, 1993), which yields matrices
of comparable size. We must note that a thorough study of this family of systems goes beyond the
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Table 4. Sparse resultant algorithm performance on a SUN SPARC 10/51 for the cyclic n-roots.

n vector v € Z" deg R degD # rowsin M greedy CPU time
3 (82,71) 6 6 6 6 0s
4 (82,71,98) 20 25 29 26 Os
5 (91,59,211,5) 85 147 206 150 21s
6 (82,71,98,64,77) 290 887 1516 1h 30m 48s = 5448s

scope of this paper. In particular, it is possible that a change of variables may lead to more tractable
systems and, in particular, faster calculation of the number of roots and smaller resultant matrices.
Some ideas can be found in (Emiris, 1994b, Faugere, 1995).

10. Conclusion

We have proposed a new incremental algorithm for constructing sparse resultant matrices, namely
square matrices in the polynomial coefficients which are generically nonsingular and whose determi-
nant is a multiple of the sparse resultant. Under reasonable assumptions, the algorithm has asymp-
totic complexity simply exponential in  and polynomial in the total resultant degree. This behavior
is also observed in practice from a series of experiments.

The main limitation of the new algorithm is the existence of a randomized step in the choice of
direction v. In general, there is no guarantee that a vector v will produce smaller matrices than pre-
vious algorithms. However, in practice, we have never encountered this problem and the constructed
matrices are considerably smaller as the problem dimension increases. Moreover, there are several
classes of systems for which deterministic choices for v exist, leading to optimal matrices. These
systems include the multigraded systems which include, in turn, all algebraic systems for which
optimal matrix formulae provably exist. Our algorithm is able to construct these optimal matrices.

We also present an efficient algorithm for computing mixed volumes which is, to the best of our
knowledge, the fastest to date in terms of empirical complexity. Its worst-case asymptotic complexity
is simply exponential in n, which matches asymptotically the known lower bound, whereas its speed
in terms of empirical complexity is illustrated by a series of benchmarks.

To derive a priori bounds on the size of the resultant matrices we may study the incremental
method in relation to the theory of Koszul complexes. Another intriguing relationship is between our
approach to building multiplication tables and Grobuer bases. Specifically, the monomial sets that
we define resemble those specified by a Grobner basis, since they are concentrated near the origin
or, in Grobner bases terminology, “under the staircase”. Another feature in common with Grébner
bases is that our algorithm can treat systems with a number of polynomials larger than the number
of variables.

The results on multigraded systems have been generalized in (Weyman and Zelevinsky, 1994),
though a constructive approach that would exploit this generalization has yet to be found. An
important merit of the work on resultants is its practical application in solving algebraic systems in
kinematics, vision, modeling as well as game theory and computational economics; see e.g. (Emiris,
1994b). In this respect, an open question is the transformation of arbitrary systems to an equivalent
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form that is amenable to sparse elimination and, in particular, to the efficient computation of mixed
volumes and sparse resultants. Ultimately, it is desirable to have an algorithm that transforms the
given system to an equivalent one possessing the minimum possible mixed volume.
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