
E�cient Incremental Algorithms forthe Sparse Resultant and the Mixed VolumeIOANNIS Z. EMIRISzAND JOHN F. CANNYxzProjet SAFIR, I.N.R.I.A., B.P. 93, 06902 Sophia-Antipolis, France.emiris@sophia.inria.frxComputer Science Division, University of California, Berkeley CA 94720, USA.jfc@cs.Berkeley.edu(Received 27 July 1995)We propose a new and e�cient algorithm for computing the sparse resultant of a systemof n+1 polynomial equations in n unknowns. This algorithm produces a matrix whoseentries are coe�cients of the given polynomials and is typically smaller than the matricesobtained by previous approaches. The matrix determinant is a nontrivial multiple of thesparse resultant from which the sparse resultant itself can be recovered. The algorithmis incremental in the sense that successively larger matrices are constructed until oneis found with the above properties. For multigraded systems, the new algorithm pro-duces optimal matrices, i.e., expresses the sparse resultant as a single determinant. Animplementation of the algorithm is described and experimental results are presented.In addition, we propose an e�cient algorithm for computing the mixed volume of npolynomials in n variables. This computation provides an upper bound on the num-ber of common isolated roots. A publicly available implementation of the algorithm ispresented and empirical results are reported which suggest that it is the fastest mixedvolume code to date.Keywords: Sparse resultant, mixed volume, Newton polytope, asymptotic complexity, experimental re-sults. 1. IntroductionWe are interested in computing the sparse resultant of a system of n+1 polynomial equations in nunknowns. The sparse resultant provides a condition for the solvability of the system. It generalizesthe determinant of a linear system and the Sylvester resultant of two bivariate forms, as well asthe classical resultant for n homogeneous polynomials. Resultants essentially eliminate the inputvariables, so they are also called eliminants. They also serve in solving systems of equations, forinstance by reducing root-�nding to an eigenproblem (Auzinger and Stetter, 1988) or by means ofthe u-resultant construction of Renegar (1992).This article continues work by Canny and Emiris (1993) for constructing matrix formulae forthe sparse resultant. As in that article, we build resultant matrices whose entries are either zeroor coe�cients of the given polynomials, so the new algorithm can be considered as a generalizationz Work partially conducted while on visit in 1992 at the Mathematics Department of the University of Nice andProjet SAFIR at INRIA Sophia-Antipolis, France. Also supported, as a graduate student at U.C. Berkeley, by aPackard Foundation Fellowship and by NSF PYI Grant IRI-8958577.x Supported by a Packard Foundation Fellowship and by NSF PYI Grant IRI-8958577.



2 I.Z. Emiris and J.F. Cannyof Sylvester's approach. However, we take a di�erent tack in order to reduce the matrix size andto obtain, for multigraded systems, optimal formulae. This class of systems includes all systems forwhich an optimal formula provably exists. For two polynomials the new algorithm returns Sylvester'smatrix, whereas for a linear system it yields the coe�cient matrix. The original idea behind thepresent approach �rst appeared in (Emiris and Canny, 1993). Under reasonable assumptions, thetotal worst-case complexity is bounded, in theorem 7.5, byeO(n)(degR)3 : e < 2:7183; degR is the total degree of the sparse resultant:We also report on experimental results for multihomogeneous systems and the cyclic n-roots bench-mark. An important aspect of the algorithm is that it readily extends to systems of more than n+1polynomials in n variables.A subproblem in our approach is the computation of mixed volume which is also of independentinterest since it bounds the degree of a zero-dimensional variety. We present an algorithm withworst-case complexity, under certain mild assumptions,mO(n) : m � maximum number of monomials per polynomial:This bound follows from theorem 6.4, wherem bounds the number of extremal monomials or Newtonpolytope vertices; these concepts are de�ned in section 3. We also sketch our publicly availableimplementation of the mixed volume algorithm and report on experimental results; some of theseresults �rst appeared in (Emiris and Rege, 1994).Our motivation stems from the fact that resultant-based methods currently o�er the most e�cientsolution to certain problems in a variety of areas ranging from robotics (Canny, 1988) to modeling(Bajaj, Garrity and Warren, 1988). To illustrate this claim, the remaining of this section discussessome applications.A concrete example from robot kinematics is the inverse kinematics problem for a robot with sixrotational joints (6R) and, therefore, six degrees of freedom. It is solved using a customized resultantin 11 milliseconds on a 34 MIPS IBM rs/6000 (Manocha and Canny, 1992). This problem consists in�nding the angle at every joint in order to attain a given �nal position, while the link lengths are �xed.Previous homotopy methods had running times unacceptable of real-time industrial manipulators.Implicitization of parametric surfaces is a fundamental problem in geometric and solid modeling.Given the parametric expression of a surface(x; y; z; w) = (X(s; t); Y (s; t); Z(s; t);W (s; t));we wish to �nd its implicit description as the zero set of a single homogeneous polynomial in x; y; z; w.This is achieved by eliminating the parameters s and t from the systemwX(s; t)� xW (s; t) = wY (s; t)� yW (s; t) = wZ(s; t)� zW (s; t) = 0;which is equivalent to computing the system's resultant by considering these equations as polyno-mials in s; t. For a bicubic surface, methods based on custom-made resultants have been shown torun faster by a factor of at least 103 compared to Gr�obner bases and the Ritt-Wu method (Manochaand Canny, 1992).One limitation of the solutions referred to above is the lack of a general method to attack arbitraryalgebraic systems. Since several classes of scienti�c and engineering problems are expected to reduceto algebraic systems with sparse structure, in a sense to be formalized below, we would like to havea sparse resultant for every problem, and this calls for a general algorithm to construct them. This isthe main question studied in this article. To further motivate it, we list some concrete applications ofthe algorithms and implementations described here to speci�c problems in vision, robot kinematicsand structural biology.



Algorithms for the Sparse Resultant and the Mixed Volume 3An example of a vision problem is the computation of the camera displacement in a static envi-ronment. We are given the coordinates of 5 points in the environment as seen by the two successivepositions of the camera. Using the general polynomial system solver described in (Emiris, 1995),which includes the implementations of this article, this problem was solved to at least 5 accuratedigits, which is satisfactory for vision applications. The running time of the online solver was 0:2seconds and 1 second, respectively, on the DEC Alpha 3300 and the Sun Sparc 20/61 of table 1,for two instances with input parameters of varying genericity.Another problem solved by Emiris (1995) using the implementations of this article dealt withthe kinematics of molecules or, equivalently, of mechanisms. Given a ring with 6 rigid links andprescribing the angle between successive links, each possible con�guration is de�ned by the dihedralangles around the links. Three di�erent instances were solved with absolute error bounded by 10�5,in 0:2 to 0:4 seconds on the Sun Sparc 20/61 of table 1.The article is organized as follows. The next section puts the new approach into perspective byoutlining previous work in the same area. Section 3 provides all de�nitions. Section 4 presents ourapproach for the sparse resultant and section 5 de�nes the algorithm for building sparse resultantmatrices. Section 6 discusses our algorithm for computing mixed volumes, sketches its implemen-tation and analyzes the worst-case and average-case complexities. The overall algorithm for thesparse resultant, its implementation and its asymptotic complexity analysis are presented in sec-tion 7. Section 8 shows that the algorithm constructs optimal sparse resultant matrices for a class ofmultihomogeneous systems and lists experimental results for multihomogeneous systems in general.Section 9 examines the practical complexity of our algorithms for the standard benchmark familyof cyclic n-roots, and compares them to Gr�obner bases and another mixed volume implementation.The paper concludes with a summary and directions for future work.2. Related WorkThis section examines previous work in elimination theory. The classical resultant has been exam-ined in the context of homogeneous polynomials. Since no a priori knowledge on the coe�cients isassumed these can be dense polynomials in the sense that potentially all terms of a given total degreecan appear. The simplest system is that of two homogeneous polynomials in two unknowns. Thiscase was studied by Sylvester (1853) who de�ned the resultant as the determinant of a matrix in thepolynomial coe�cients. The multivariate resultant for a system of n homogeneous polynomials in nvariables can be de�ned in several alternative ways. Cayley (1848) de�ned it via a series of n divisionsof determinants, Macaulay (1902) as the quotient of a determinant divided by one of its minors,while Hurwitz (1913) expressed it as the Greatest Common Divisor (GCD) of n inertia forms; seealso (van der Waerden, 1950). In all cases, the nonzero entries of the matrices are coe�cients of thegiven polynomials. Various more recent algorithms exist to construct this resultant (Lazard, 1981,Canny, 1988, Renegar, 1992).The sparse resultant was de�ned following the study of generalized hypergeometric functions andA-discriminants (Gelfand, Kapranov and Zelevinsky, 1991 and 1994). The exact notion of sparsenessis formalized and compared to the dense case in the next section. The �rst constructive methodsfor computing and evaluating the sparse resultant were proposed by Sturmfels (1993), the moste�cient having complexity super-polynomial in the degree of the resultant and exponential in nwith a quadratic exponent.Canny and Emiris (1993) proposed a general algorithm for computing the sparse resultant ofn+1 non-homogeneous polynomials in n variables. The worst-case asymptotic cost of this algorithm,under mild assumptions, is polynomial in the resultant's degree and simply exponential in n (Emiris,1994). This was the �rst e�cient algorithm for the general case in the sense that the lower bound for



4 I.Z. Emiris and J.F. Cannycomputing the resultant is polynomial in its degree and exponential in n. The algorithm constructs asquare matrix whose entries are either zero or coe�cients of the given polynomials. The determinantof this matrix is not identically zero and is divisible by the sparse resultant.The sparse resultant is de�ned through a generalization of Hurwitz's inertia forms, as the GCD ofn + 1 determinants of matrices. It is computed for a particular coe�cient specialization through aseries of n determinant divisions, though for polynomial system solving, knowing the resultant ma-trix su�ces. For two univariate polynomials the algorithm yields Sylvester's matrix. The algorithmconstructs the multivariate resultant if the input is comprised of dense polynomials, while for lin-ear systems it correctly computes the determinant of the coe�cient matrix. A generalization of thealgorithm was presented by Sturmfels (1994). A greedy implementation has been written in Mapleby the second author and P. Pedersen (1993) and produces a matrix whose size is at most that givenby the original algorithm. The latter is publicly available by ftp on robotics.eecs.Berkeley.eduin directory pub/SparseResultant.An integral part of the theory of sparse elimination is Bernstein's bound on the degree of the toricvariety of a square polynomial system. This bound has been extended to count isolated roots evenwhen the variety has positive dimension and also to count common a�ne roots. This is an activearea of research, brie
y outlined in the following section (Bernstein, 1975, Fulton, 1993, Rojas, 1994,Li and Wang, 1994, Huber and Sturmfels, 1995). A related question of great interest is to countreal roots (Sturmfels, 1992). The calculation of Bernstein's bound requires the computation of themixed volume of the given polynomials. For an overview of algorithms and implementations refer tosections 6 and 9.Finally we recall that alternative notions of sparseness exist, which may also lead to tight boundsfor polynomial systems. One example is the theory of fewnomials pioneered by Khovanskii (1991).There exist other alternatives to elimination and the more particular problem of system solvingbesides resultants. Gr�obner bases provide a general tool for studying arbitrary polynomial ideals,eliminating variables as well as �nding the common roots of a system (Buchberger, 1985). Theyconstitute a popular and very general approach and several implementations exist. The main lim-itations of the method are the large coe�cient size and the degree of the basis polynomials. Forzero-dimensional a�ne varieties a tight upper bound on the complexity is dO(n) (Lakshman Y.N.,1990), while the bit complexity is dO(n2) where d is an upper bound on the degree of the inputpolynomials. Although Gr�obner bases in practice perform signi�cantly better than the worst-casebounds, there are no complexity bounds that depend on the Newton polytopes or the mixed volumes.Another approach is the Ritt-Wu method, whose complexity has been recently shown to be expo-nential in the number of variables and polynomial in the polynomial degrees (Mishra, 1993, ch. 5).The principal numerical techniques are continuation methods, which are typically fast but o�erlittle control over the numerical error. Homotopies that follow the optimal number of paths have beenproposed for multihomogeneous systems (Morgan, Sommese and Wampler, 1993). A promising de-velopment in solving very large polynomial systems comes from sparse homotopies which exploit thestructure of polynomials as modeled by Newton polytopes (Huber and Sturmfels, 1992, Verschelde,Verlinden and Cools, 1994, Verschelde, Gatermann and Cools, 1995).3. PreliminariesThis section provides a short introduction to sparse elimination theory. Suppose that we aregiven n + 1 non-homogeneous polynomials f1; : : : ; fn+1 in variables x1; : : : ; xn with indeterminatecoe�cients and that we seek a condition on the coe�cients that indicates when the system has asolution. We ignore solutions with some xi = 0 for all coe�cient specializations, thus we can deal



Algorithms for the Sparse Resultant and the Mixed Volume 5with the more general case of Laurent polynomialsfi 2 K[x1; x�11 ; : : : ; xn; x�1n ] = K[x; x�1];where K is the algebraic closure of Q(f ci j i 2 f1; : : : ; ng g) and ci is the sequence of all nonzerocoe�cients in fi. We are interested in common toric roots � 2 (C �)n where C � = C n f0g.We use xe to denote the monomial xe11 � � � xenn , where e = (e1; : : : ; en) 2 Zn is an exponent vector.Let Ai = supp(fi) = fai1; : : : ; aisig � Zn denote the set, with cardinality si, of exponent vectorscorresponding to monomials in fi with nonzero coe�cients. Ai is called the support of fi. Thenfi = siXj=1 cijxaij ; cij 6= 0; 8j 2 f1; 2; : : : ; sig; 8i 2 f1; 2; : : : ; n + 1g; (3.1)so thatAi is uniquely de�ned given fi. A polynomial system is unmixed if the supportsA1; : : : ;An+1are identical, otherwise it is mixed.We now introduce certain concepts from combinatorial geometry, which can be found in (Gr�un-baum, 1967, Schneider, 1993).Definition 3.1. The Newton polytope of fi is the convex hull of the support Ai, denoted Qi =Conv(Ai) � Rn.For arbitrary sets there is a natural associative and commutative addition operation called Min-kowski addition.Definition 3.2. The Minkowski sum A+ B of point sets A and B in Rn is the point setA+B = fa+ bj a 2 A; b 2 Bg � Rn:In particular, if A and B are convex polytopes then A+B is a convex polytope.We are mostly interested in the Minkowski sums of convex polytopes, for which A + B can becomputed as the convex hull of all sums a + b, where a and b are vertices of A and B respectively.The commutativity of this operation implies that translating A or B is equivalent to translatingA+B.Definition 3.3. The Minkowski di�erence A � B of convex polytopes A and B in Rn is convexpolytope A�B = fa 2 Aj a +B � Ag � Rn:A�B lies in the interior of A but does not de�ne an inverse of the addition operation, since it doesnot equal A + (�B) and, in general B + (A � B) �6= A. However, when A is itself a Minkowskisum B + C, then (B + C) � B = C, for any convex polytope C. We also state the identitiesA� (B+C) = (A�B)�C and (A+U)�B = (A�B)+U , where U is a one-dimensional polytope.For any polytopeA � Rn, let Vol(A) denote the Lebesguemeasure of A in n-dimensional Euclideanspace. This function assigns the unit volume to the unit cube.Definition 3.4. Given convex polytopes A1; : : : ; An � Rn, there is a real-valued functionMV (A1; : : : ;An), unique up to multiplication by a scalar, called the mixed volume of A1; : : : ; An, which is multilin-ear with respect to Minkowski addition and scalar multiplication, i.e., for any nonnegative �; � 2 R�0



6 I.Z. Emiris and J.F. Canny
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3431Figure 1. Newton polytopes for example 3.11.and any convex polytope A0k � Rn,MV (A1; : : : ; �Ak + �A0k; : : : ; An) = �MV (A1; : : : ; Ak; : : : ; An) + �MV (A1; : : : ; A0k; : : : ; An):To de�ne mixed volume exactly we require thatMV (A1; : : : ; An) = n! Vol(A1); when A1 = � � � = An:An equivalent de�nition is based on the fact that, for nonnegative �1; : : : ; �n 2 R and convexpolytopes A1; : : : ; An, the expression Vol(�1A1+ � � �+�nAn) expands to a homogeneous polynomialin �1; : : : ; �n (Gr�unbaum, 1967, sect. 15.1).Definition 3.5. For nonnegative �1; : : : ; �n 2 R�0 and convex polytopes A1; : : : ; An � Rn, themixed volume MV (A1; : : : ; An) is the coe�cient of �1�2 � � � �n in Vol(�1A1 + � � � + �nAn).Notice that this de�nition di�ers from the classic one (Gr�unbaum, 1967) by a factor of n!. Theseand other basic properties of the mixed volume are demonstrated in (Gr�unbaum, 1967, Betke, 1992,Schneider, 1993), whereas a more advanced treatment can be found in (Burago and Zalgaller, 1988).We are now ready to state Bernstein's theorem, the cornerstone of sparse elimination theory.Theorem 3.6. (Bernstein, 1975) For polynomials f1; : : : ; fn 2 K[x; x�1] with Newton polytopesQ1; : : : ; Qn � Rn and generic coe�cients, the number of common solutions in (C � )n, countingmultiplicities, equals MV (Q1; : : : ; Qn). For a speci�c specialization of coe�cients in C , the numberof roots in (C � )n is either in�nite or does not exceed MV (Q1; : : : ; Qn).This is also called the BKK bound, since it relies heavily on work by Kushnirenko (1975) andhas been alternatively proven by Khovanskii (1978) . The above bound is guaranteed to be exactfor generic polynomials. Since its statement the conditions for exactness have been signi�cantlyweakened (Canny and Rojas, 1991, Rojas, 1994).Bernstein's bound is at most as high as B�ezout's bound and usually signi�cantly tighter for systemsencountered in engineering applications. The two bounds are equal when each Newton polytope isa scaled copy of the n-dimensional unit simplex with vertex setf(0; : : : ; 0); (1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g:The scalar factor for every simplex equals the total degree of the respective polynomial. This isdepicted in �gure 1, where the simplices are drawn with dashed lines for the three polynomials ofexample 3.11.The Bernstein bound holds for varieties with positive dimension over arbitrary �elds. Consider theintersectionmultiplicity of the hypersurfaces de�ned by the given polynomials at an isolated commonroot. Recall that this is a positive integer and is equal to unity exactly when the hypersurfaces meettransversally.



Algorithms for the Sparse Resultant and the Mixed Volume 7Theorem 3.7. (Fulton, 1993, sect. 5.5) Given are polynomials f1; : : : ; fn 2 K[x; x�1] with Newtonpolytopes Q1; : : : ; Qn, where K is an arbitrary �eld and K is its algebraic closure. For any isolatedcommon zero � 2 (K�)n, let i(�) denote the intersection multiplicity at this point. Then P� i(�) �MV (Q1; : : : ; Qn), where the sum ranges over all isolated roots.Moreover, the bound has recently been extended to count all isolated roots. By abuse of languagewe refer to the same function when we speak of the mixed volume of a system of polynomials, themixed volume of the respective supports or the mixed volume of the respective Newton polytopes.Theorem 3.8. (Li andWang, 1994) For polynomials f1; : : : ; fn 2 C [x; x�1 ] with supports A1; : : : ;Anthe number of common isolated zeros in C n , counting multiplicities, is either in�nite or bounded byMV (A1 [ f0g; : : : ;An [ f0g).In the rest of this article we concentrate for simplicity on polynomials over C .The sparse or Newton resultant provides a necessary and generically su�cient condition for theexistence of toric roots for a system of n + 1 polynomials in n variables; since it applies to mixedsystems, it is sometimes called the sparse mixed resultant. We shall see below that the degree of thesparse resultant depends on the mixed volume of the n-dimensional subsystems, whereas the degreeof the classical resultant depends on the B�ezout bound.To de�ne the sparse resultant we regard a polynomial fi as a generic point ci = (ci1; : : : ; cimi)in the space of all possible polynomials with the given support Ai. It is natural to identify scalarmultiples, so the space of all such polynomials can be identi�ed with the projective space Pmi�1K or,simply, Pmi�1. Then the input system (3.1) can be thought of as a pointc = (c1; : : : ; cn+1) 2 Pm1�1 � � � � �Pmn+1�1:Let Z0 = Z0(A1; : : : ;An+1) be the set of all points c such that the system has a solution in (C �)nand let Z = Z(A1; : : : ;An+1) denote the Zariski closure of Z0 in the above product of projectivespaces. It is proven in (Pedersen and Sturmfels, 1993) that Z is an irreducible algebraic variety ofpositive codimension.Definition 3.9. The sparse resultant R = R(A1; : : : ;An+1) of system (3.1) is a polynomial in Z[c].If codim(Z) = 1 then R(A1; : : : ;An+1) is the de�ning irreducible polynomial of the hypersurface Z.If codim(Z) > 1 then R(A1; : : : ;An+1) = 1.Although the sparse resultant is de�ned as a condition on the existence of toric roots, it can be usedto recover all roots of nontrivial systems, including those with zero coordinates, under certain mildconditions on the variety (Emiris, 1994b).Let degfi R denote the total degree of the resultant R in the coe�cients of polynomial fi and letMV �i =MV (Q1; : : : ; Qi�1; Qi+1; : : : ; Qn+1); 8i 2 f1; : : : ; n + 1g:A consequence of Bernstein's theorem isTheorem 3.10. (Pedersen and Sturmfels, 1993) The sparse resultant is separately homogeneous inthe coe�cients ci of each fi and its degree in these coe�cients equals the mixed volume of the othern Newton polytopes, i.e., degfi R = MV �i.The sparse resultant generalizes the classical multivariate resultant; the two coincide when allNewton polytopes are n-simplices scaled by the total degrees of the respective polynomials. However,



8 I.Z. Emiris and J.F. Cannythe degree and, hence, the complexity of computing the classical multivariate resultant depends onthe B�ezout bound as follows: the degree of the resultant in the coe�cients of fi is Qj 6=i dj , wheredj is the total degree of fj .Example 3.11. Here is a system of 3 polynomials in 2 unknowns:f1 = c11 + c12xy + c13x2y + c14x;f2 = c21y + c22x2y2 + c23x2y + c24x; (3.2)f3 = c31 + c32y + c33xy + c34x;with Newton polytopes shown in �gure 1. For each subsystem of two polynomials we may computethe mixed volume. The three twofold mixed volumes areMV �1 = 4; MV �2 = 3; MV �3 = 4:By theorem 3.10 the total degree of the sparse resultant is 4 + 3 + 4 = 11.To motivate the present approach, we compare the various resultant algorithms on this example.The matrix constructed by the algorithm of (Canny and Emiris, 1993) has size 15, whereas its greedyversion (Canny and Pedersen, 1993) and the algorithm in this paper respectively reduce the matrixsize to 14 and 12. The multivariate resultant has total degree 26 and can be obtained as the sparseresultant when the Newton polytopes are the dashed triangles in �gure 1.4. Matrix De�nitionIn this section we describe how to obtain a matrix such that some maximal minor is a nontrivialmultiple of the sparse resultant. The entries of this resultant matrix are chosen among the inde-terminate coe�cients of the original polynomials. Our construction uses certain facts from idealtheory and combinatorial geometry; the interested reader may consult, respectively, (Cox, Little andO'Shea, 1992) and the previous section and the citations thereof.To exploit sparseness and achieve the degree bounds of theorem 3.10 we must work on the sublat-tice of Zn generated by the union of all input supports [Ai, i.e., on the coarsest common re�nementof the sublattices generated by each Ai (Sturmfels, 1994). Suppose this sublattice has rank n and isthus identi�ed with Zn. In what follows, it is assumed that this has already been done by means ofthe Smith normal form; for computing this form see (Hafner and McCurley, 1991).Let P(A) � K[x; x�1], for A 6= ;, be the set of all Laurent polynomials in n variables withnonempty support A � Zn. Clearly, fi 2 P(Ai). Now �x nonempty supports B1; : : : ;Bn+1 � Znand consider the following linear transformation:M : P(B1)� � � � � P(Bn+1) ! P(n+1[i=1 Bi +Ai); (4.1)M : (g1; : : : ; gn+1) 7! g = n+1Xi=1 gifi;where addition between supports stands for Minkowski addition. The matrix we wish to build isprecisely the matrix of this transformation and to de�ne it fully we specify supports Bi at the endof this section.We shall abuse notation and denote by M the matrix representing the linear transformation.Every row of M is indexed by an element of some Bi and every column by an element of Bi+Ai forsome i. Equivalently, the rows and columns are indexed respectively by the monomials of the gi and



Algorithms for the Sparse Resultant and the Mixed Volume 9the monomials of g. We �ll in the matrix entries �a la Macaulay: The row corresponding to monomialxb of gi contains the coe�cients of the polynomial xbfi so that the coe�cient of the monomial xqappears in the column indexed by xq, where b 2 Bi = supp(gi), q 2 supp(g). Columns indexed bymonomials which do not explicitly appear in xbfi have a zero entry.Lemma 4.1. If f1; f2; : : : ; fn+1 have a common solution � 2 (C � )n then M is rank de�cient.Proof. If a common solution � exists, then it is a solution for all g in the image of the lineartransformation M . This implies that the image of M cannot contain any monomials, because themonomial value at a toric � cannot be zero. Therefore, the image of M is a proper subset of therange. Since M is not a surjective transformation, it follows that matrix M does not have full rank.2The number of rows equals the sum of the cardinalities of the supports Bi, while the number ofcolumns equals the cardinality of supp(g). Throughout this article we restrict ourselves to matricesM with at least as many rows as columns.Theorem 4.2. Every maximal minor D of M is a multiple of the sparse resultant R(A1; : : : ;An+1).Proof. By lemma 4.1, the rank of M is strictly less than the number of columns on the set Z0 ofcoe�cient specializations such that f1; : : : ; fn+1 have a common solution. A maximal minor of Mis the determinant of a square submatrix of M with the same number of columns as M . Thus, anymaximal minor D is zero on Z0. Hence D is zero on the Zariski closure Z which is the zero set ofR(Ai; : : : ;An+1). Since the latter is irreducible, it divides D in Z[c1; : : : ; cn+1] where ci is the vectorof coe�cients of fi. 2It is possible that every maximal minor D vanishes, in which case the theorem still holds but theconstructed matrix is of little use. In our main algorithm, below, we shall explicitly enforce theexistence of a non-vanishing maximal minor D.Corollary 4.3. Let degfi D denote the degree of D in the coe�cients of polynomial fi. If R dividesD and D 6= 0 then degfi D �MV �i for all i.Proof. From theorems 3.10 and 4.2. 2We now specify the construction of the supports Bi. LetQ = Q1 + � � � +Qn+1 � Rnbe the Minkowski sum of the input Newton polytopes. Consider all n-fold partial Minkowski sumsQ�i = Q�Qi =Xj 6=i Qj � Rn and let Ti = Q�i \Zn = (Q�Qi) \Zn:We shall restrict our choice of Bi by requiring that it be a subset of Ti; notice that this is the casein (Canny and Emiris, 1993). One consequence is that the supports of all products gifi lie withinthe Minkowski sum Q, therefore supp(g) � Q.Given a direction vector v 2 Qn n f0; : : : ; 0g



10 I.Z. Emiris and J.F. Cannywe de�ne a family of one-dimensional polytopes V � Rn, each being the convex hull of the originand of a point �u 2 Rn, where � is a nonzero real variable. In other words,j�j = length(V ) 2 R n f0g:The sign of � determines the direction in which V lies and its magnitude determines the length ofV . For a �xed V we de�ne Bi = (Q�i � V ) \Zn � Ti:As the length of V decreases the cardinality of Bi tends to that of Ti. So for �xed v and � or,simply, for �xed V , the matrix M is well de�ned. In the next section we specify an algorithmic wayto compute Bi.An interesting aspect of this approach is that it readily extends to the case of simultaneouslyeliminating n variables from more than n + 1 polynomials. In this case the resultant is not de�nedbut some of its properties are still valid. In particular, the non-vanishing minor of the constructedmatrix provides a solvability condition for the system and reduces its solution to a linear algebraproblem, just as the resultant matrix does for the system of n + 1 polynomials.5. Matrix ConstructionThis section presents the algorithm for constructing the sets Bi and the resultant matrix Msatisfying the requirements set in the previous section.Definition 5.1. Given a convex polytope A � Rn and a vector v 2 Qn n f(0; : : : ; 0g, we de�ne thev-distance of any point p 2 A \Zn to be the maximum nonnegative s 2 R�0 such that p + sv 2 A.In other words, it is the distance of p from the boundary of A in the direction v.Integer points on the boundary of the polytope A which are extremal with respect to vector v havezero v-distance. Figure 2 shows di�erent subsets of T2 for system (3.2) with respect to v-distance, asexplained in the running example 3.11 at the end of this section. An equivalent de�nition of supportsBi is by ordering Q�i \Zn by v-distance, then selecting the points whose v-distance exceeds somebound. The vector v here and in the de�nition of V at the end of the previous section is the sameand � can be used as the bound on v-distance. This is formalized in the following proposition.Proposition 5.2. For a convex polytope A, one-dimensional polytope V 2 Rn and vector v 2 Qnsuch that v lies in the interior of V ,(A� V )\Zn = fa 2 A \Zn j v-distance(a) � � = length(V )g:We now turn to the question of enumerating all integer lattice points Ti in the n-fold Minkowskisum Q�i, for i 2 f1; : : : ; n + 1g, together with their v-distances for some v 2 Qn . We propose arecursive algorithm, called the Mayan Pyramid algorithm, which computes, at its k-th stage, therange of values for the k-th coordinate in Ti when the �rst k � 1 coordinates are �xed and denotedby (k � 1)-dimensional vector p.Input: The vertex sets of convex polytopes Q1; : : : ; Qn+1 2 Rn and v 2 Qn .Output: Ti �Zn, for i 2 f1; : : : ; n + 1g, together with the v-distance of each point.Mayan Pyramid algorithm:1 For all i 2 f1; : : : ; n + 1g run the following steps:



Algorithms for the Sparse Resultant and the Mixed Volume 112 Initialize Ti = ;, let k = 1 and let the vector of known coordinates p = () be 0-dimensional.3 Compute mn;mx 2 Zwhich are, respectively, the minimum and maximum k-th coordinatesin Q�i when the �rst k � 1 coordinates are �xed to the coordinates in p = (p1; : : : ; pk�1).4 If k < n, for each pk 2 [mn;mx]append pk at the end of vector p which becomes p = (p1; : : : ; pk), increment k and recurse atstep 3.5 If k = n, for each pk 2 [mn;mx]append pk at the end of vector p which becomes p = (p1; : : : ; pk), compute the v-distance ofpoint p 2 Zn and insert it, together with its v-distance, in Ti.The recursion terminates, in general, when k = n or if [mn;mx] is empty for any k. Notice thatit is possible to remove the recursion.Linear programming is used to compute mn;mx. For a general introduction on the uses of linearprogramming in combinatorial geometry the reader may consult (Gr�otschel, Lov�asz and Schrijver,1993). Here is how we �nd mn, for some k > 1:minimize s 2 R : (p1; : : : ; pk�1; s) =Pn+1t=1;t6=iPmij=1 �tjvktj ; (5.1)Pmtj=1 �tj = 1; �tj � 0; 8t 2 f1; : : : ; n + 1g n fig; j 2 f1; : : : ;mtg;where vtj are the vertices of Qt, vktj is the k-vector consisting of the �rst k coordinates of vtj , andmt is the cardinality of the vertex set of Qt. Then mn is the ceiling of the optimal value of s. Thesame setup, with s maximized instead, gives mx as the 
oor of the optimum.Computing v-distances is accomplished by linear programming as well:minimize s 2 R�0 : (p1; : : : ; pn) + su =Pn+1t=1;t6=iPmij=1 �tjvtj;Pmtj=1 �tj = 1; �tj � 0; 8t 2 f1; : : : ; n + 1g n fig; j 2 f1; : : : ;mtg:This last linear program can be used with k < n coordinates for pruning the set of integer pointsTi, since in practice we concentrate only on those points with a positive v-distance. To do this,de�ne the vk-distance as the analogue of v-distance for the projection of Q�i and of v into the �rstk dimensions. The vk-distance of a point is a non-increasing function of k. We can now test thepoint projections as they are enumerated by the Mayan Pyramid algorithm and eliminate all points(p1; : : : ; pk) whose vk-distance is zero, for any k.Incrementing the supports Bi is done either by decreasing the length of V or, equivalently, bylowering the bound � on the v-distance. The maximal minor D in M must satisfy degfi D �MV �i.Hence we pick the initial sets Bi to be of cardinality exactly equal to MV �i. In this case, if D isa nonzero polynomial then it equals the sparse resultant and we have obtained a Sylvester-typeformula, i.e., one of optimal size equal to the resultant degree. Otherwise, points from Ti are addedto Bi and they correspond to additional rows which are appended to the existing matrix; in general,more columns will have to be added as well.We now summarize the matrix construction algorithm, under the assumption that a direction vhas been chosen. The question of how to choose a vector v to produce a small matrix is addressedin section 7.Input: Ai;MV �i; Ti with the v-distance of every point, for i 2 f1; : : : ; n + 1g.Output: A maximal minor D of the matrix M , such that D is a nontrivial multiple of the sparseresultant or an indication that such a minor cannot be found for the given v after some randomspecialization of the coe�cients.Incremental Matrix Construction algorithm:



12 I.Z. Emiris and J.F. Canny1 Specialize the polynomial coe�cients to independently and identically distributed randomvalues.2 For all i 2 f1; : : : ; n+1g, initialize the supports Bi to includeMV �i points from Ti with largestpossible v-distance.3 Construct the matrix M containing the specialized coe�cients.4 If M has at least as many rows as columns and is also of full rank then return a non-vanishingmaximal minor D of M .5 Otherwise, if Bi = Ti for i = 1; : : : ; n+1, i.e., the supports cannot be incremented, then returnwith an indication that the minor D cannot be found with the current choice of coe�cientspecialization and vector v.6 Otherwise, let Bi = fp 2 Ti j v-distance(p) � �g where � 2 R�0 is chosen so that the minimumnumber of new points are added to the supports Bi and at least one Bi is incremented; go tostep 3.The termination of the algorithm relies on the fact that M contains as a maximal submatrix theresultant matrix of Canny and Emiris (1993). We need the following notion from the latter paper:Vector v 2 Qn is su�ciently generic with respect to Q1; : : : ; Qn+1 if it does not lie on any (n� 1)-dimensional face de�ned as the Minkowski sum F1 + � � �+ Fn+1, where every Fi is a face of Newtonpolytope Qi, for i 2 f1; : : : ; n + 1g. The actual requirement on v is weaker: it asks that it does notlie on the boundary of any maximal cell in some mixed decomposition of Q1 + : : : + Qn+1. Thesenotions are formalized in section 6 but will not be used here.Theorem 5.3. (Termination) If vector v is su�ciently generic as de�ned in the preceding para-graph, then the matrix construction always terminates with a matrix M that has a maximal minorD which is a nontrivial multiple of the sparse resultant.Proof. The proof relies on the algorithm of Canny and Emiris (1993), which constructs a squarematrix whose determinant is a nontrivial multiple of the resultant. Let Bi contain all lattice points inTi with positive v-distance, for all i 2 f1; : : : ; n+1g. Then the set of columnmonomials[n+1i=1 (Ai+Bi)equals the set of column monomials in the matrix of Canny and Emiris (1993), if in the latterconstruction � = ��v, where � is a positive in�nitesimal that guarantees that the magnitude of �is su�ciently small. Canny and Emiris have shown that when � is su�ciently generic, as in thede�nition above, the constructed matrix is square, generically nonsingular and its determinant isa multiple of the resultant. This matrix is a maximal submatrix of M constructed by the presentalgorithm, hence there exists D corresponding to this submatrix satisfying the claim of the theorem.2The same argument shows that the matrix construction terminates with a valid matrix M also inthe case that a speci�c polynomial fi appears in the minimum number of rows. Then, the maximalminor D has degree in the coe�cients of fi equal to the respective degree of the sparse resultant.If one such minor is computed for every fi, i 2 f1; : : : ; n + 1g, then the sparse resultant can beobtained as the GCD of the n + 1 minors.For random v 2 Qn , a rough bound on the probability that v is inadequate is given below.Lemma 5.4. (Emiris, 1994b, sect. 3.1.8) Assume that the numerators of the entries of v 2 Qn arechosen uniformly and independently from a set of S integers and all denominators are identical andequal to an integer relatively prime to the n numerators. Then the probability that v is not su�cientlygeneric is bounded by (cn!)2=S where c is the number of matrix columns.
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VFigure 2. Q�2 and T2 subsets with di�erent v-distance bounds and one-dimensional polytope V for B2 inexample 3.11.This implies that if the �nal matrix has at most 103 columns, n < 10 and 64-bit integers are used,then the probability that v is not su�ciently generic is bounded by 0:7%. In practice 32-bit integerssu�ce since the algorithm typically terminates well before reaching its next to last step, where thepreceding analysis applies. In general, the algorithm produces valid matrices of small size even if vis not su�ciently generic.Step 4 can always �nd and return D because M has full rank. Overall, the algorithm may failto constructM either due to the coe�cient specialization or due to the choice of v. Since the mostcommon reason is the latter, the algorithm does not try a di�erent coe�cient specialization but callsfor a di�erent v.The rank test should consider the matrix M whose nonzero entries are symbolic coe�cients.Instead, we pick random values for the coe�cients from an integer interval. Checking the specializedmatrix will give the correct answer with high probability, as shown in the following lemma.Lemma 5.5. Suppose that M has r rows, at most that many columns, and has full rank when itsnonzero entries are generic polynomial coe�cients. Assume that we specialize the polynomial co-e�cients to uniformly and independently distributed integers in an interval of size S. Then theprobability that the specialized matrix is rank-de�cient is bounded by r=S.Proof. Let c � r be the number of columns and let us consider one maximal nonsingular submatrixM 0 of M . For each polynomial fi, we may specialize all coe�cients except one and regard detM 0 asa polynomial in the n + 1 remaining generic coe�cients. This polynomial has at least one nonzeroterm, namely the power product of all generic coe�cients, each raised to a power equal to the numberof rows corresponding to the respective polynomial. Hence, detM 0 is nonzero and has total degreeof c.The probability that detM 0 vanishes when all coe�cients are specialized is boundedby c=S (Schwartz,1980, lem. 1). Clearly, this bounds also the probability that M drops rank under the specialization.We complete the proof by applying c � r. 2In most cases, the size ofM is less than 104 so 32-bit integer coe�cients lead to an upper bound of10�5 on the probability of error. Notice that even in the unlikely event of a bad choice of parameters,the algorithm does not produce an erroneous result, but just yields larger matrices.Example 3.11 (Continued). The bold polygon in �gure 2 is Q�2 of system (3.2), whereas thebold segment is the polytope V , with endpoints at the origin and (2; 11=10). Equivalently, v =(2; 11=10) and � = 1.



14 I.Z. Emiris and J.F. CannyThe Mayan Pyramid algorithm produces the following integer point sets with the respective ap-proximate v-distances:T1 = f(0; 1; 0:150); (1; 0; 0:100); (1; 1; 0:100); (1; 2; 0:091); (2; 1; 0:050); (2; 2; 0:050);(0; 2; 0); (0; 3; 0); (2; 0; 0); (2; 3; 0); (3; 1; 0); (3; 2; 0); (3; 3; 0)g;T2 = f(0; 0; 0:150); (1; 0; 0:100); (0; 1; 0:091); (1; 1; 0:091); (2; 1; 0:050);(1; 2; 0); (2; 2; 0); (2; 0; 0); (3; 2; 0); (3; 1; 0)g;T3 = f(0; 1; 0:182); (1; 1; 0:150); (1; 0; 0:111); (2; 1; 0:100); (2; 2; 0:091); (3; 2; 0:050);(1; 2; 0); (2; 0; 0); (3; 1; 0); (3; 3; 0); (4; 2; 0); (4; 3; 0)g:Let us focus on the rows containing multiples of f2. The �rst matrix constructed contains 3 rowswith multiples of f2 corresponding to the pointsf(0; 0; 0:150); (1; 0; 0:100); (0; 1; 0:091)g � T2;which de�ne the thin-line triangle at the origin, in �gure 2. The second and �nal matrix has 4 rowscontaining f2 multiples:B2 = f(0; 0; 0:150); (1; 0; 0:100); (0; 1; 0:091); (1; 1; 0:091)g � T2:These points de�ne the thin-line square at the origin in the �gure. This is the set of integer pointsin Q�2 whose v-distance is larger than or approximately equal to 0:091. The third thin-line polygonin �gure 2 de�nes an even larger subsets of T2 �Z2, for a smaller cuto� value � on v-distance. Thisset, though, is never needed.This v leads to a 13� 12 matrix M of full rank for system (3.2) with Bi cardinalities 4; 4 and 5,from which a 12� 12 generically nonsingular minor serves as D. Recall that the sparse resultant'stotal degree is 11 and the classical resultant's degree is 26, whereas the algorithm in (Canny andEmiris, 1993) and its greedy variant (Canny and Pedersen, 1993) yield, respectively, a 15� 15 anda 14� 14 matrix.Below, we show the 13� 12 matrix and also the monomials indexing its columns (on top, denotedby their integer exponent vector) as well as the polynomial multiples �lling each row (to the right).(0; 1)(0; 2)(1; 0)(1; 1)(1; 2)(2; 0)(2; 1)(2; 2)(2; 3)(3; 1)(3; 2)(3; 3)
M = 2666666666666666666664

c11 0 0 c14 c12 0 0 c13 0 0 0 00 0 c11 0 0 c14 c12 0 0 c13 0 00 0 0 c11 0 0 c14 c12 0 0 c13 00 0 0 0 c11 0 0 c14 c12 0 0 c13c21 0 c24 0 0 0 c23 c22 0 0 0 00 0 0 c21 0 c24 0 0 0 c23 c22 00 c21 0 c24 0 0 0 c23 c22 0 0 00 0 0 0 c21 0 c24 0 0 0 c23 c22c31 c32 0 c34 c33 0 0 0 0 0 0 00 0 0 c31 c32 0 c34 c33 0 0 0 00 0 c31 c32 0 c34 c33 0 0 0 0 00 0 0 0 0 0 c31 c32 0 c34 c33 00 0 0 0 0 0 0 c31 c32 0 c34 c33
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yf1xf1xyf1xy2f1f2xf2yf2xyf2yf3xyf3xf3x2yf3x2y2f3



Algorithms for the Sparse Resultant and the Mixed Volume 156. Mixed Volume ComputationComputing the mixed volume of n Newton polytopes in n dimensions is not only an importantsubproblem for the sparse resultant matrix construction but also a fundamental question of inde-pendent interest in sparse elimination. The main idea behind our method for computing the mixedvolume is the Lifting algorithm by B. Sturmfels (1994). Given convex polytopesQ1; : : : ; Qn � Rn, wede�ne a lifting by choosing n linear functions li : Zn! Q. Below we formalize certain requirementson these functions. We de�ne the lifted polytopesbQi = f(q; li(q))j q 2 Qig � Rn+1; i 2 f1; : : : ; ng:We de�ne the lifted Minkowski sum as the Minkowski sum of the lifted polytopes bQ = Pni=1 bQi �Rn+1.The lower envelope of a convex polytope in Rn+1 is the closure of the subset of all its n-dimensionalfaces, or facets, whose outward normals have a negative xn+1-coordinate. The lifting must be suf-�ciently generic in order for the lower envelope of bQ to be in bijective correspondence with theMinkowski sum Q of the original polytopes. This is equivalent to the requirement that every vertexon the lower envelope be expressed uniquely as a Minkowski sum. A stronger and su�cient conditionis the following.Definition 6.1. Consider a pair of distinct vertex sets (fp1; : : : ; png; fq1; : : : ; qng), such that pi; qi 2Qi andPni=1 pi =Pni=1 qi. The lifting de�ned by functions l1; : : : ; ln is su�ciently generic if and onlyif for every such pair Pni=1(pi; li(pi)) 6=Pni=1(qi; li(qi)) or, equivalently, Pni=1 li(pi) 6=Pni=1 li(qi).Lemma 6.2. If all 2n2 coordinates of li are chosen independently and uniformly from an interval ofsize 2Ll , where Ll 2 Z>0, then the probability that the lifting is not su�ciently generic is bounded byProb[ l1; : : : ; ln not su�ciently generic] � 12Ll 12mn(m� 1)n�1;where m is the maximum vertex cardinality of any Qi over all i 2 f1; : : : ; ng.Proof. Fix two distinct sets of points fp1; : : : ; png and fq1; : : : ; qng with pi; qi vertices of Qi, forwhich Pi pi = Pi qi. We must bound the probability that the lifting fails to distinguish betweenthe lifted images of these two points, namely that Pi li(pi) = Pi li(qi). Assume, without loss ofgenerality, that p1 and q1 di�er in their �rst coordinate and �x all rational coe�cients in the n liftingforms, except for the numerator in the �rst coe�cient of l1. In choosing the value of this numerator,the probability of picking the single integer value that does not distinguish between the two liftedpoints is � 1=2Ll .By multiplying this probability with the number of pairs (fpig, fqig) the result is proven. Incounting the number of pairs the maximum number is found when, for every i, pi 6= qi, becauseotherwise the possible pairs are constrained. If the pi's are chosen at will, there are at most m � 1choices for each qi and no choice for qn since the points must satisfy Pi pi = Pi qi. Hence thenumber of pairs is at most 1=2mn(m� 1)n�1. 2For typical values n < 10, mi < 15 and Ll = 64, the probability of failure is about 45%, whilefor Ll = 96, the probability becomes smaller than 10�9. The above bound is pessimistic; moreover,it is straightforward to check deterministically whether a particular choice of lifting functions issu�ciently generic (Emiris, 1994b).For a su�ciently generic lifting, the projection of the lower envelope of bQ induces a partition of Q



16 I.Z. Emiris and J.F. Cannyinto cells, where each cell is the image of a lower envelope face of the same dimension. In particular,facets give rise to maximal cells of dimension n. It can be shown that the induced subdivision is amixed subdivision of the Minkowski sum Q. Mixed subdivisions are characterized by the fact thatevery maximal cell either contributes its volume to the mixed volume or contributes zero. In the �rstcase, the cell is called mixed and is the Minkowski sum of n edges from distinct Newton polytopes. Inthe second case it is unmixed. Demonstrations of these facts can be found in (Billera and Sturmfels,1992, Sturmfels, 1994). The essential propertyMV (Q1; : : : ; Qn) =XVol(�); over all mixed cells � of a mixed subdivision of Q;relies on the multilinearity of the mixed volume from De�nition 3.4. Mixed cells are parallelepipeds inn dimensions, hence their volume is the determinant of the matrix whose rows are the edge vectorsgenerating the cell. An important property of the mixed cells is that, generically, they de�ne amonomial basis of the coordinate ring of the ideal generated by n polynomials in n variables (Emirisand Rege, 1994), and they specify the start system for a sparse homotopy.Several algorithms exist for the calculation of mixed volumes. One of the �rst approaches (Emiris,1993) computes the entire mixed subdivision and simultaneously all n-fold mixed volumes requiredfor a system of n+1 polynomials in n variables, but has to construct explicitly the lower envelope ofbQ. The method of Huber and Sturmfels (1992) takes advantage of repeated polytopes, while that ofVerschelde and Gatermann (1994) exploits symmetry; a general implementation has been describedin (Verschelde, Verlinden and Cools, 1994). These algorithms have the same worst-case asymptoticcomplexity as our own algorithm de�ned below. This complexity is analyzed below and turns outto be simply exponential in n. However, based on experimental results, our algorithm appears to bethe fastest to date for the general problem.The idea is to test, for every combination of n edges from the given polytopes, whether theirMinkowski sum lies on the lower envelope of bQ. If so, its volume is computed and added to themixed volume. To prune the combinatorial search, we make use of the following obvious fact.Lemma 6.3. Fix a lifting, let J � f1; : : : ; ng, and suppose that ej is an edge of Qj for all j 2 J.If the Minkowski sum of the lifted edges Pj2J bej lies on the lower envelope of Pj2J bQj then, forany subset of T � J, the Minkowski sum Pt2T bet lies on the lower envelope of the Minkowski sumPt2T bQt.Our algorithm constructs n-tuples of edges from Qi by starting with a pair of edges and thenadding one edge from a new polytope at a time. As each edge is added, the k-tuple for 2 � k � nis tested on whether it lies on the lower envelope of the corresponding lifted Minkowski sum or not;the k-tuples that pass this test are called valid and are precisely those tuples that will continue to beaugmented. Further pruning is achieved by eliminating those edges that cannot extend the currentk-tuple from the edge sets of polytopes not yet considered. This means that for an index set J , welet T = J [ ftg, where t ranges over f1; : : : ; ng n J and check the edge tuples corresponding to T .This process employs several \small" tests to decrease the number of \large" and expensive teststhat must be ultimately performed.Every test for a k-tuple of edges ei1 ; : : : ; eik is implemented as a linear programming problem.Let bpi 2 Qn+1 be the midpoint of the lifted edge bei of bQi and let bp = bpi1 + � � � + bpik 2 Qn+1 bean interior point of the Minkowski sum bei1 + � � � + beik . The test of interest is equivalent to askingwhether bp lies on the lower envelope or not, which is formulated as follows:maximize s 2 R�0 : bp� sz =Pt2fi1;:::;ikgPmtj=1 �tjbvtj ; (6.1)



Algorithms for the Sparse Resultant and the Mixed Volume 17Pmtj=1 �tj = 1; �tj � 0; 8 t 2 fi1; : : : ; ikg; j 2 f1; : : : ;mtg;where z = (0; : : : ; 0; 1) 2 Zn+1, bvtj is the j-th vertex of bQt and mt the cardinality of Qt or, equiv-alently, bQt, due to the linearity of the lifting. Then bp lies on the lower envelope if and only if themaximal value of s is 0, for s expresses the vertical distance of bp from the lower envelope. Otherwises is positive.Input: The vertex sets of convex polytopes Q1; : : : ; Qn � Rn, which are all subsets of the integerlattice Zn.Output: MV (Q1; : : : ; Qn) 2 Z>0.Lift-Prune algorithm:1 Enumerate the edges of all polytopes Q1; : : : ; Qn respectively into sets E1; : : : ; En.2 Compute random lifting vectors l1; : : : ; ln 2 Qn .3 Compute lifted edge bei for every edge ei 2 Ei, i = 1; : : : ; n.4 Initialize the mixed volume to 0.5 If E1 = ; then terminate.Otherwise, pick any edge e1 2 E1, remove it from E1, create current tuple (e1), let setsE02; : : : ; E0n be copies of E2; : : : ; En and let k = 1.6 Let i range from k + 1 to n:For every ei 2 E0i, if Pkj=1 bej + bei does not lie on the lower envelope of Pkj=1 bQj + bQi then eiis removed from E0i.7 Increment k.8 If k > n, then add the volume of the Minkowski sum of (e1; : : : ; en) to the mixed volume;continue at step 5.9 If k � n and E0k = ; then continue at step 5. If k � n and E0k 6= ; then add some edge ek 2 E0kto the current tuple (e1; : : : ; ek�1), remove ek from E0k and go to step 6.Our implementation of the Lift-Prune algorithm is publicly available fromftp://robotics.eecs.Berkeley.edu/pub/MixedVolume:Computation of the Newton polytope edges is accomplished by well-known techniques based onlinear programming; see (Gr�otschel et.al.) for details. Notice that the edges of every original andlifted polytope are the same due to the linearity of the lifting.The algorithm, as given above, does not exploit the fact that mixed volume is invariant underpermutation of the polytopes. In our implementation, we change the order of the polytopes, or rathertheir edge sets, in a dynamic fashion so that when the algorithm at step 9 picks a new edge set, itchooses the one with minimum cardinality.In implementing the algorithm, we have used an existing implementation of the Simplex algo-rithm from the Numerical Recipes in C package (Press, Flannery, Teukolsky and Vetterling, 1988).Unfortunately, these sources are not free for distribution, although most sites today have access tothem. The ftp site of the Lift-Prune program contains our corrections to the Numerical Recipesin C sources, along with our own code and the executables. It is easy to see that the bottleneck ofthe mixed volume program is linear programming, therefore a more e�cient implementation for thisproblem would signi�cantly speed up our algorithm.As for the stability of the Simplex algorithm over double precision 
oating point arithmetic, it isnot a major issue because the inputs are usually 32-bit integers. The crucial point here is to ensurethat the lifting values, which are typically larger than the polynomial exponents, are not too large. In



18 I.Z. Emiris and J.F. Cannyany case, we must be careful in choosing a threshold value to distinguish between zero and positiveoptimal values for s in linear program (6.1).The Lift-Prune algorithm is incremental in the sense that partial results are available at ratherregular intervals and well before termination. This successively tighter lower bound on mixed volumeis particularly useful in long runs of the program. Furthermore, we propose the following scheme foreither coarse-grain or �ne-grain parallelization. An initial sequential phase examines the �rst fewpolytopes. Then each valid edge combination is given to a di�erent processor and the rest of thealgorithm proceeds as before on every processor. We would typically have the initial phase examineenough polytopes in order to produce su�ciently many combinations so that each processor is givenat least one valid combination. Clearly, this scheme works in a distributed environment too. Whenone processor completes its computation, it may examine some of the valid edge combinations thatwait to be examined at another processor.Asymptotic complexity is analyzed below and empirical results for the benchmark of cyclic n-rootsare reported in section 9. 6.1. Asymptotic ComplexityThe worst-case asymptotic complexity of the Lift-Prune algorithm is analyzed in this section.Motivated by the empirical observation that this bound is overly pessimistic (see experimental resultsin section 9), we also attempt to model the algorithm's average-case behavior. The computationalmodel used is the real RAM (Aho, Hopcroft and Ullman, 1974), on which two di�erent cost functionsare employed. Namely, we consider the worst-case arithmetic (number of instructions) as well as theworst-case bit complexity (number of bit operations) of the algorithm.Let g denote the maximum number of Newton polytope edges,m the maximum number of Newtonpolytope vertices, which is bounded by the number of nonzero monomials per polynomial, and d themaximum coordinate of any vertex, assuming that the Newton polytopes have been translated tolie in the �rst orthant and touch all the coordinate hyperplanes. Let Ll be the maximum bit-size ofa coordinate in any lifting form li and Ld = log d be the maximum bit-size of any Newton polytopevertex coordinate.The bottleneck is the combinatorial search for the valid edge tuples. Ignoring the pruning, thealgorithm has to test gn combinations, where g is an upper bound on the number of edges in everyNewton polytope. Clearly, g � m2 and the number of tests is not larger than m2n.Linear programming may be solved by any polynomial-time algorithm. In what immediately fol-lows as well as in later sections we use Karmarkar's (1984) polynomial-time algorithm in order toderive our complexity bounds. For linear programs with V variables, C constraints and at most Bbits per coe�cient, the bit complexity is O�(C2V 5:5B2); (6.2)where O�(�) indicates that we have ignored polylogarithmic factors in C; V;B. Every problem of theform (5.1) has V = O(nm) variables, C = O(n) constraints and B = O(Ll+Ld) bits per coe�cient.Applying Karmarkar's result we can bound the bit complexity of every linear programming test byO�(n7:5m5:5(Ll + Ld)2).Theorem 6.4. Let m be the maximum vertex cardinality per polytope, d be the maximum degree inany variable and � < 1 be the probability of failure of the lifting scheme. The worst-case bit complexityof the Lift-Prune algorithm for computing MV (Q1; : : : ; Qn) isO�(m2n+5:5n7:5(log d � log �)2):



Algorithms for the Sparse Resultant and the Mixed Volume 19For a constant probability � and systems with d bounded by a polynomial in m and n, the Lift-Prunealgorithm complexity is O�(m2n+5:5n7:5):Proof. The �rst step identi�es the edges of the Newton polytopes by applying linear programmingto every pair of vertices. For the i-th polytope there areO(m2i ) pairs and the bit complexity for each isO�(n2m5:5i L2d), where Ld = dlog de. Hence the total bit complexity of this phase is O�(n3m7:5 log2 d)and it is dominated as shown below.There are at most m2n edge tests, each reducing to a linear programming application with bitcomplexity O�(n7:5m5:5(Ll + Ld)2). The maximum coordinate is bounded by d hence Ld � log d.From lemma 6.2, � = mn(m� 1)n�1=(2 � 2Ll) is the probability that the lifting fails, therefore Ll =O(n logm� log �). Hence the total complexity is O�(m2n+5:5n7:5(n logm� log � + log d)2), and the�rst claim follows. Under the additional hypotheses, the last factor is dominated and the secondclaim follows. 2We put the analysis in the perspective of complexity classes; for de�nitions see (Garey and John-son, 1979).Theorem 6.5. Computing the mixed volume is in #P.Proof. The Lift-Prune algorithm puts mixed volume in complexity class #P because a non-deterministic machine could guess an edge combination that leads to a mixed cell with positivevolume, then spend polynomial time to check this guess. This process is repeated for every edgetuple corresponding to a mixed cell. If we subdivide each edge to unit-length segments and restrictourselves to these unit-length edges, then each guess leads to a subcell of unit volume and the numberof distinct guesses equals the mixed volume. 2In terms of lower bounds, recall that the mixed volume problem is equivalent, for unmixed sys-tems, to computing the volume of the convex hull of a point set. The latter is known to be #P-hard (Khachiyan, 1993), hence computing mixed volumes is also #P-hard. Moreover, it has recentlybeen shown that mixed volume is #P-complete (Pedersen, 1994) by a reduction of computing thepermanent.To model the average-case behavior and account for the e�ects of pruning we should estimate thenumber of edge combinations that pass the test at the various stages. We de�ne �k to be the ratioof valid edge tuples at step k of the Lift-Prune algorithm over the total number of edge tuples forthe partial Minkowski sum bQ1+ � � �+ bQk. In other words, the number of valid tuples for this sum is�km2k. This is a worst-case bound assuming that all polytopes have m vertices, therefore at mostm2 edges.Hypothesis 6.6. Consider the k-th stage of the Lift-Prune algorithm, for k 2 f2; : : : ; ng, namelythe stage at which bQk is considered for the �rst time. The fraction of edge tuples that pass the validitytest at this stage over the maximum possible number of edge tuples depends only on k and the numberof facets of bQk and grows linearly with each.To estimate the number of facets of bQk we use the well-known bound on the number of facet ofthe convex hull of m points in n + 1 dimensions, namely O(mb(n+1)=2c) (Gr�unbaum, 1967). By the



20 I.Z. Emiris and J.F. Cannyabove hypothesis, �k = O�kmb(n+1)=2cm2k � ; k 2 f2; : : : ; ng:This assumption is supported by experimental evidence from the cyclic n-roots problem examinedin section 9.Corollary 6.7. Assume that the probability of failure � for the lifting scheme is constant and thatthe maximum coordinate of any polytope vertex d is bounded by a polynomial in m and n. Then, underhypothesis 6.6 on the number of valid edge combinations, the Lift-Prune algorithm has complexityO�(mdn=2e+7:5n9:5):Proof. Since the number of edges per polytope is bounded by m2, the number of linear program-ming problems is bounded bym4 + �2m4m2 + � � � + �n�1m2(n�1)m2 == m4 + 2mb(n+1)=2c+2 + � � � + (n� 1)mb(n+1)=2c+2= O(n2mb(n+1)=2c+2):As analyzed above, the cost of every linear programming run is at most O�(n7:5m5:5(log d� log �)2).By the current hypothesis the last factor is at most polylogarithmic in m and n. The claim followsby applying the identity b(n+ 1)=2c = dn=2e. 27. Sparse Resultant AlgorithmThis section presents the overall algorithm for constructing sparse resultant matrices given n+ 1supports Ai � Zn. As already explained, the determinant of the resultant matrix is, in general,a multiple of the resultant. In several applications, including polynomial system solving, an exactmatrix formula for the resultant is not required (Emiris, 1994, 1994b and 1995), though e�ciencyis optimized when the minor D equals the sparse resultant. In general D 6= R and there are twoalternative ways to proceed in order to obtain the resultant under a speci�c specialization of thecoe�cients (Canny and Emiris, 1993). For both methods we �x the cardinality of B1 to MV �1 sothat degf1 D = degf1 R. This enables us to de�ne R as the GCD of at most n+ 1 such minors.A crucial question in our approach is the choice of vector v. In many situations, a deterministicv which guarantees the construction of a compact matrix formula can be found. Such cases includesystems whose structure is or resembles a multigraded structure, as demonstrated in section 8. More-over, the resultant matrix constructed by our algorithm generalizes the Sylvester matrix (Sylvester,1853) and the coe�cient matrix for linear systems.Theorem 7.1. Given a system of two univariate polynomials and one-dimensional vector v 2 R>0,our Matrix Construction algorithm of section 5 produces the Sylvester matrix of this system. Givena system of n + 1 linear polynomials in n variables and vector v = (1; : : : ; 1) 2 Rn, the algorithmproduces the coe�cient matrix of this system.Proof. For two univariate polynomials, the sets T1 and T2 are subsets of Zand, for positive v, thepoints with positive v-distance are exactly the monomials that de�ne the rows of the Sylvester matrix.Since MV �1 and MV �2 are equal to the degree of the second and the �rst polynomial, respectively,the points with positive v-distance constitute B1 and B2 in the �rst round of the algorithm and



Algorithms for the Sparse Resultant and the Mixed Volume 21the constructed matrix is the Sylvester matrix. It is known that the Sylvester matrix is genericallynonsingular, therefore for specialized coe�cients the constructed matrix is also nonsingular withvery high probability, as determined in lemma 5.5. Hence the algorithm returns the Sylvester matrixand terminates.For linear systems, each Q�i is an n-dimensional unit simplex scaled by n and MV �i = 1 for alli 2 f1; : : : ; n + 1g. Furthermore, for v = (1; : : : ; 1), each Bi contains exactly one point at the �rstround, namely the origin. The corresponding matrix is the (n+1)� (n+1) coe�cient matrix and itis generically nonsingular. For specialized coe�cients the matrix is still nonsingular with very highprobability, as given by lemma 5.5. Hence, this matrix is output and the algorithm terminates. 2For arbitrary systems, a random vector v is chosen. From theoretical arguments and empiricalobservations it follows that it is preferable to choose vectors v 2 (Q�)n with all coordinates dis-tinct. The goal is to have as few integer points as possible with the same v-distance in any set Ti.Theorem 5.3 establishes the fact that any su�ciently generic v will lead to a valid matrix.In general, when no deterministic choice for v exists, the algorithm is of the Las Vegas type, inthe sense that any bad probabilistic choice for v which does not lead to a valid matrix M cannotlead to wrong results but shall only increase execution time.Input: Supports A1; : : : ;An+1 and direction vector v 2 Qn n (0; : : : ; 0).Output: A maximal minor D of the matrix M , such that D is a nontrivial multiple of the sparseresultant.Main algorithm:1 Compute the vertex sets of Newton polytopes Q1; : : : ; Qn+1.2 Use the Mayan Pyramid algorithm to compute sets T1; : : : ; Tn+1 2 Zn and the v-distance ofall points in them.3 Use the Lift-Prune algorithm to compute mixed volumes MV �1; : : : ; MV �(n+1).4 Use the Matrix Construction algorithm to construct matrix M whose maximal minor D is anontrivial multiple of R and return D if found. Otherwise, report that minor D cannot befound with the current choice of v; then either a new v is supplied or one is chosen randomly,and the algorithm restarts at step 2.A preliminary implementation of this algorithm together with the back end of a system solverusing the resultant matrix is publicly available fromftp://robotics.eecs.Berkeley.edu/pub/emiris/res solver:The �rst step is to compute the Newton polytope vertices. For this task we use linear programmingon every support point to decide whether it is a vertex or not. This is a well-known technique;see (Gr�otschel et.al.) for details.A useful feature is that, as the matrix construction is incremental, the nonsingularity test is alsoincremental. We have implemented an incremental algorithm for LU decomposition of rectangularmatrices which, given a partially decomposed matrix, will attempt to continue and complete thedecomposition. It uses partial pivoting and stops when a pivot and the subcolumn below it are allzero, thus calling for a larger matrix M . Arithmetic is carried out over a large �nite �eld, whichallows for e�ciency and exactness. The only disadvantage is that, with some very small probability,the �nal matrix M may be larger than over the integers.In computing the sets Ti, we have implemented an option that allows the user to limit the maximumnumber of points in these sets. Typically, these sets contain manymore points than eventually needed.



22 I.Z. Emiris and J.F. CannyThe user can guess an upper limit on the number of points in each Bi, and hence in the respectiveTi, and pass it to the program. Moreover, after computing each Ti, the program updates the smallestv-distance and delimits the search of subsequent point sets to points whose v-distance is at least aslarge.Parallelization of the matrix construction is straightforward. discussed in the previous sectionMoreover, the integer point enumeration may be easily parallelized by assigning each set Ti on adi�erent processor. Further parallelization may be achieved by having di�erent \slices" of each Q�iassigned to di�erent processors. The most expensive phase is testing whetherM has full rank. Thereexists a rich literature on parallel LU decomposition; see for instance (Modi, 1990).7.1. Asymptotic ComplexityHere we analyze the worst-case asymptotic complexity of the algorithm, based on the real RAMmodel of computation (Aho et.al.). Again, two complexity functions are used, namely the arithmeticand the bit complexity. We make repeated use of the following theorem.Theorem 7.2. (Emiris, 1994) Given are convex polytopes Q1; : : : ; Qn 2 Rn, all of which have posi-tive volume, and let Q� be the polytope of minimum volume, for some � 2 f1; : : : ; ng. Assume thatthere is a constant c � 1 such that, for every i 2 f1; : : : ; ng, there exists vector bi 2 Rn such thatbi +Qi � cQ�. Then, Vol(Q1 + � � � +Qn) = O� enpn�MV (Q1; : : : ; Qn);where e � 2:7183 denotes the exponential base.Let s be the maximum number of points in any of the given supports Ai, g the maximum numberof Newton polytope edges,m the maximum number of Newton polytope vertices and d the maximumcoordinate of any vertex, assuming that the Newton polytopes have been translated to lie in the �rstorthant and touch all the coordinate hyperplanes. Let Ll be the maximum bit-size of a coordinatein any lifting form li and Ld = dlog de be the maximum bit-size of any Newton polytope vertexcoordinate.Lemma 7.3. The complexity of the Mayan Pyramid algorithm to compute one integer point set Ti,for some i 2 f1; : : : ; n + 1g, and the respective v-distances is O(Vol(Q�i)n7:5m5:5L2d). If, further,the hypothesis of theorem 7.2 holds, then the complexity is O(enMV �in7m5:5L2d), where e denotesthe exponential base.Proof. Each linear programming problem in the enumeration of integer point sets Ti is expressedas in (5.1). The number of variables and constraints is V = O(nm) and C = O(n) respectively andthe bit size of the coe�cients is B = Ld. Hence, by bound (6.2) (Karmarkar, 1984), the worst-casebit complexity per linear program is O(n7:5m5:5L2d).An asymptotic upper bound on the number of linear programming problems is the cardinality ofTi. By the famous result of Ehrart (1967) which bounds asymptotically the cardinality of an integerpoint set by the volume of its convex hull, the number of linear programs is asymptotically boundedby Vol(Q�i). The �rst bound is now obvious; to obtain the second bound we apply theorem 7.2. 2Now we turn to the complexity of step 4. Recall that arithmetic is carried out over a �nite �eld,hence the bit complexity per operation is constant.



Algorithms for the Sparse Resultant and the Mixed Volume 23Lemma 7.4. Assume that the hypothesis of theorem 7.2 holds for the given Newton polytopes. Thenthe bit complexity of the incremental Matrix Construction algorithm of section 5 (i.e.step 4 of theMain algorithm) is O(e3n(degR)3), where e � 2:7183 denotes the exponential base and degR denotesthe total degree of the sparse resultant.Proof. The matrix construction is dominated by the LU decomposition which is at worst cubic inthe maximum number of rows. The �nal number of rows is bounded by the total number of pointsin all the Ti sets. By Ehrart's bound the complexity becomes O((PVol(Q�i))3). By theorems 7.2and 3.10, n+1Xi=1 Vol(Q�i) = O� enpn� n+1Xi=1 MV �i = O� enpn�degR;and the claim follows. 2We can now sum up the complexities of the di�erent stages. Our assumptions attempt to model tosome extent the average-case behavior of the algorithm and are justi�ed by experimental evidence.Theorem 7.5. Let s;m and g be the maximum number of support points, Newton polytope verticesand Newton polytope edges respectively, let d be the maximum coordinate of any vertex and let �denote the probability of failure for the Lift-Prune lifting; degR denotes the total degree of the sparseresultant. Suppose that the algorithm uses a constant number of vectors v and that the hypothesisof theorem 7.2 holds for the given Newton polytopes. Also suppose that s2 = O(men degR), d isbounded by a polynomial in m and n and � is constant. Then the total bit complexity of the sparseresultant algorithm is O�(e3nm5:5)(degR)3 +mO(n):If, moreover, m2n = eO(n)(degR)3, then the total complexity is bounded byeO(n)(degR)3:Proof. The �rst step of the overall algorithm computes the vertex sets of the Newton polytopesby applying linear programming to each point in the every support. Each linear program has atmost V = s variables, C = O(n) constraints and B = Ld bits per coe�cients, hence the total bitcomplexity of this step is O�(n3s6:5L2d) by bound 6.2; see (Karmarkar, 1984, Gr�otschel et.al.) fordetails. By the assumption on s this step is dominated by the cost of the Mayan Pyramid algorithm.The total cost of the Mayan Pyramid algorithm is O(enn7m5:5L2d degR). By the hypothesis on dthe Ld factor is dominated. Therefore the bit complexity of this step and the matrix construction stepcan be summed up to O�(e3n(degR)3m5:5). Under the current hypothesis the bound of theorem 6.4on the bit complexity of the Lift-Prune algorithm is O�(m2n+5:5n7:5). The �rst bound now follows.The second bound on total complexity models the fact that the complexity is largely dominated bythe matrix construction phase. Under the additional hypothesis the computation of mixed volumesis dominated. 2 8. Multihomogeneous SystemsWe concentrate on unmixed homogeneous systems where the variables can be partitioned intogroups so that every polynomial is homogeneous in each group. Such polynomials, and the resultingsystems, are called multihomogeneous. We focus on a subclass of multihomogeneous systems called



24 I.Z. Emiris and J.F. Cannymultigraded, which includes all systems for which exact sparse resultant matrices are known toexist. Our algorithm produces these matrices for certain deterministic choices of vector v. Moreover,it produces optimal matrices for systems approximating the multigraded structure, as exempli�edlater. Hence the importance of multihomogeneous systems for sparse elimination.We partition the variables into r groups so that each polynomial is homogeneous of degree dk inthe k-th group, with k 2 f1; : : : ; rg. For the k-th group, nk + 1 indicates the number of variables.Such a system is said to be of type (n1; : : : ; nr; d1; : : : ; dr);where the number of equations is n + 1 and n = Prk=1 nk. There should be no confusion fromthe fact that the polynomials given may be multihomogeneous. To apply our algorithm we simplydehomogenize each group of variables by setting the (nk + 1)-st variable to one.An improved B�ezout bound exists on the number of isolated roots for arbitrary systems of mul-tihomogeneous polynomials (also called m-homogeneous). If the degree of polynomial i is dij in thej-th variable subset, then the number of common isolated solutions for the system of n polynomialsis bounded by the coe�cient of rYj=1 xnjj in polynomial nYi=10@ rXj=1 dijxj1A :For a recent generalization see (Morgan et.al.).The Newton polytope for every polynomial is the Minkowski sum of r nk-dimensional simplices,each on a disjoint coordinate subspace. Every simplex is denoted by dkSnk and is the convex hull ofnk segments of length dk rooted at the origin and extending along each of the nk axes correspondingto the variables in this group. Equivalently, Snk is the convex hull of unit segments. Since we are inthe unmixed case, the n-fold Minkowski sum Q�i is the same for any i 2 f1; : : : ; n + 1g and equalto the integer polytope P � Rn which is simply the copy of the (unique) input Newton polytopescaled by n, i.e., Q1 = � � � = Qn+1 = rXk=1 dkSnk ; P = rXk=1ndkSnk � Rn:Both summations express Minkowski addition of lower-dimensional polytopes in complementarysubspaces, such that their sum is a full-dimensional polytope.Definition 8.1. Consider an unmixed system of n+1 multihomogeneous polynomials in n variablesof type (n1; : : : ; nr; d1; : : : ; dr), where n1 + � � � + nr = n. This system is called multigraded if, forevery k 2 f1; : : : ; rg, nk = 1 or dk = 1.Multigraded systems include all systems for which Sylvester-type formulae exist and, in partic-ular, linear systems, systems of two univariate polynomials and bihomogeneous systems of threepolynomials whose resultant is, respectively, the coe�cient determinant, the Sylvester resultant andthe Dixon resultant (Dixon, 1908).For the resultant matrix of a multigraded system, all supports Bi are identical, of cardinality equalto the unique n-fold mixed volume. Let B � Rn be the convex hull of Bi. Matrix M is de�ned bysettingB = rXk=1mkSnk � Rn; where mk = (dk � 1)nk + dk Xj:�(j)<�(k) nj ; k 2 f1; : : : ; rg: (8.1)



Algorithms for the Sparse Resultant and the Mixed Volume 25Table 1. Hardware speci�cationsmachine clock rate [MHz] memory [MB] Spec 92Int Spec 92FPDEC 5240 40 64 28 36DEC Alpha 3300 150 64 66 92DEC Alpha 3600 175 320 114 162Sun Sparc 10/40 40 32 50 60Sun Sparc 10/51 50 32 65 83Sun Sparc 20/61 60 32 95 93Moreover, for every multigraded system an optimal matrix formula can be constructed based onthe following result.Theorem 8.2. (Sturmfels and Zelevinsky, 1994) For a multigraded system there exists a Sylvester-type matrix formula for the sparse resultant for every permutation � of the indices f1; : : : ; rg. Thematrix is de�ned by the multiindex (m1; : : : ;mr) of expression (8.1).We shall prove that, for a given permutation, the incremental algorithm constructs the corre-sponding Sylvester-type matrix at the �rst round.Lemma 8.3. Partition the n coordinates of vector v 2 Qn into r groups following the partition ofvariables and set every coordinate in the k-th group equal to (ndk�mk)=nk 2 Q. Then P � V = B.Proof. By using the fact thatPrk=1 nk = n and that, for every k, we have dk = 1 or nk = 1, it canbe shown that (ndk �mk)=nk > 0, 8k. Consider any point p 2 P � V with coordinates grouped inr groups, each of cardinality nk. For a speci�c group, all coordinates are equal to c. For any k suchthat nk = 1 we have two conditions on c:0 � c � ndk and 0 � c+ ndk �mknk � ndk;which is equivalent to 0 � c � mk. For any k such that nk > 1 and dk = 1, we have two conditionson the sum s of the nk coordinates in the k-th group:0 � s � n and 0 � s + nk n �mknk � n;which is equivalent to 0 � s � mk. Hence p 2 B if and only if p 2 P � V . 2To see how this v was chosen, observe that B is a scaled-down copy of P , where the scaling hasoccurred by a di�erent factor for each group of nk coordinates. Given the sequence (n1; : : : ; nr),polytopes P and B are entirely de�ned by their unique vertex with no zero coordinate; v is thevector between these two vertices.Theorem 8.4. Given a multihomogeneous system of type (nk; : : : ; nr ; d1; : : : ; dr) such that nk = 1or dk = 1 for k = 1; : : : ; r, de�ne v 2 Qn with the k-th group of coordinates equal to(ndk �mk)=nk; where mk is de�ned by expression (8.1):



26 I.Z. Emiris and J.F. CannyTable 2. The performance of the sparse resultant algorithm on a Sun Sparc 10/40.type vector v 2Zn degR degD #rows in M greedy CPU time(2; 1;1; 1; 2;2) (2; 2;3; 1) 240 240 240 > 670 42s(1; 1; 1;1; 2; 2;1; 1) (7; 5;2; 1) 480 480 480 1m 0s = 60s(1; 1; 1;1; 3; 3;1; 1) (10;7; 2;1) 1080 1080 1080 2m 11s = 131s(1; 1; 1;1; 3; 3;2; 1) (10;7; 3;1) 2160 2160 2160 4m 3s = 243s(1; 1; 1;1; 3; 3;3; 1) (10;7; 4;1) 3240 3240 3240 6m 29s = 389s(2; 1; 2; 1) (97; 103;300) 48 52 52 103 0s(2; 1; 2; 2) (101;99;500) 96 104 104 206 6s(2; 1;1; 2; 1;1) (301;299;200;100) 240 295 340 2m 43s = 163s(2; 1;1; 2; 2;1) (301;299;304;100) 480 592 690 18m 56s = 1136s(2; 1;1; 2; 2;2) (300;310;290;100) 960 1120 1200 2h 58m = 10680sThen the �rst matrix constructed by the resultant matrix algorithm has determinant equal to thesparse resultant of the system.Proof. It follows from the lemma that the �rst set of supports Bi constructed are all identical,since the system is unmixed, and equal to B \Zn, hence they are exactly those required to de�ne aSylvester-type formula for the resultant by theorem 8.2 and the results of (Sturmfels and Zelevinsky,1994). Note that the formula obtained corresponds to the permutation � used in the de�nition ofmk. 2We now report on some experiments. Table 1 contains the hardware speci�cations of the machinesemployed.We have been able to produce all possible Sylvester-type formulae for various multihomogeneousexamples with nk = 1 or dk = 1 for all k. Furthermore, for systems that do not fall within this classwe have used v de�ned similarly and obtained near-optimal resultant matrices. The input for theexperiments in table 2 is the n+ 1 supports and the vector v shown in the table. The output is then+1 n-fold mixed volumes, the sum of which gives the total degree of the sparse resultant, the pointsets Ti with their v-distance, for all i 2 f1; : : : ; n+1g, and a square resultant matrix with genericallynonzero determinant D. The symbols degR and degD respectively indicate the total degree of thesparse resultant and of the maximal minor D that our algorithm constructs. Since degD expressesonly the number of columns in the �nal matrixM and since the algorithm's complexity also dependson the �nal number of rows in M , we also report the latter.Table 2 also reports preliminary running times on the Sun Sparc 10/40 of table 1, roundedto the nearest integer number of seconds. For the �rst set of examples, which are all multigraded,the algorithm uses the fact that these systems have Sylvester-type formulae to avoid testing forsingularity; this explains the fast execution times. However, for the second class of examples thealgorithm not only builds the matrix but also tests whether it has full rank and, typically, has toincrement it before it �nds a generically nonsingular maximal submatrix.For the systems for which there exists k such that nk > 1 and dk > 1, we used the same recipeas above to calculate mi and v, and then have perturbed the latter v to obtain the results shown.For types (2; 1; 2; 1) and (2; 1; 2; 2) the smallest matrix is obtained for � = (2; 1) and v = (1; 1; 3)



Algorithms for the Sparse Resultant and the Mixed Volume 27and (1; 1; 5) respectively. For the last three types we used permutation (1; 2; 3), resulting in vectorsv = (3; 3; 2; 1), (3; 3; 3; 1) and (3; 3; 3; 1) respectively.It is interesting to compare these resultant matrices to those computed by the greedy algorithmin (Canny and Pedersen, 1993), with sizes shown in column \greedy". There is a randomizationstep in this algorithm that might lead to matrices of slightly smaller size. Nonetheless, the resultsfrom a single run of the greedy algorithm suggest that the present approach yields more economicalformulae.We have applied the results on multigraded systems and systems resembling the multigradedstructure in studying concrete problems in vision, robotics, structural biology as well as game theoryand computational economics (Emiris, 1994b).9. Cyclic n-RootsThis section discusses the practical performance of our algorithms applied to the standard bench-mark problem of cyclic n-roots, a family of systems encountered in Fourier analysis. First we examineempirical results of the Lift-Prune implementation and then we look at the matrices constructed byour resultant code. Table 3 displays the running times of the Lift-Prune program on the problemof cyclic n-roots for the DEC Alpha 3300 of table 1. The times have been rounded to the nearestinteger number of seconds.The polynomial system is the following: x1 + x2 + � � � + xn = 0;x1x2 + x2x3 + � � � + xnx1 = 0;...x1 � � � xn�1 + x2 � � � xn + � � � + xnx1 � � � xn�2 = 0;x1x2 � � � xn = 1:For small values of n the exact cardinalities of isolated roots, appearing in the �rst column oftable 3, were derived in a series of articles. For n = 4 the variety has unit dimension and no isolatedroots. Bj�orck (1990) credits L. Lov�asz with settling the case n = 5. The same article states thatn = 6 was essentially solved in (Bj�orck and Fr�oberg, 1991) except for an error corrected by D. Lazard.The problem for n = 7 was solved in (Backelin and Fr�oberg, 1991) with the help of Gr�obner basescalculations on J. Backelin's program Bergman. For n = 8 there are 1152 isolated roots in additionto the one-dimensional variety (Bj�orck and Fr�oberg, 1994).For n � 9 the precise number of isolated roots is unknown and for n = 10 even �niteness is open.Our bound for n = 11 veri�es the conjecture by Fr�oberg and Bj�orck that the number of roots forprime n is �2n�2n�1 �. This value was shown to be an upper bound for every n (Pottier, 1995).Our experimental results support the following conjecture.Conjecture 9.1. When the variety of the cyclic n-root system has zero dimension, then the mixedvolume gives the exact number of a�ne solutions.All running times should be solely viewed as rough indications of the problem's intrinsic com-plexity and the algorithms' performances. In addition, it must always be remembered that di�erentalgorithms compute di�erent outputs. In particular, the mixed volume computation constructs amonomial basis for the coordinate ring and the mixed cells computed de�ne the start system of asparse homotopy. On the other hand, Gr�obner bases lead to a method for computing the system'sroots and provide more information, in particular when the dimension of the variety is positive.



28 I.Z. Emiris and J.F. CannyTable 3. Lift-Prune algorithm performance for the cyclic n-roots problem; timings are on a DECAlpha 3300. Timings for GB are on a DEC Alpha 3600 and for the algorithm in (Verschelde,Gatermann and Cools, 1995) on a DEC 5240.#isolated mixed Lift-Prune (Verschelde et.al. 1995) DRL by GBn roots volume static #isol. roots time3 6 6 0s4 0 16 0s 16 0s5 70 70 0s 0s 70 0s6 156 156 2s 5s 156 1s7 924 924 27s 2m 36s = 156s 924 2m 52s = 172s8 1152 2560 4m 19s = 259s 1h 57m 37s = 7057s 1 or 2560 56m 6s = 3366s9 unknown 11016 40m 59s = 2459s { { {10 unknown 35940 4h 50m 14s = 17414s { { {11 unknown 184756 38h 26m 44s = 138404s { { {We �rst compare our algorithm with the lifting algorithm of Verschelde, Gatermann and Cools(1995), namely their static technique, which is the fastest in their article. The mixed volumes com-puted by this algorithm agree with the output of the Lift-Prune algorithm. The experiments wereconducted on a DEC 5240 with performance ratings shown in table 1.We compare running times with the Gr�obner bases package GB by Faug�ere (1995), since it seemsto be the fastest available system; for a comparison with other systems see the (Faug�ere, 1995)and the next paragraph for some concrete examples. GB was executed on a DEC Alpha 3600 andcomputed the ideal basis with respect to the degree reverse lexicographic (DRL) ordering over a �nite�eld. Of course, this computation has a small probability of error, but so does our mixed volumealgorithm. For n = 8 the computed basis implies that the associated variety is one-dimensional.Substituting random coe�cients, GB computes a bound on the number of isolated roots equal tothe mixed volume. To solve the system, further computation is necessary to transform the DRLbasis to a lexicographic basis. For n = 6 and 7, for the same computation over the integers, GBtook 3 seconds and 6 hours, respectively, on a Sun Sparc 10/40.We also used Macaulay (Stillman, Stillman and Bayer, 1992) to compute a reverse lexicographicGr�obner basis (mod 31991) for n = 6 and 7 on the Sun Sparc 10/51 of table 1. The CPU timingswere, respectively, 4 seconds and 18 minutes and 48 seconds.We have also applied our resultant implementation to this problem. To view the system as anoverconstrained one, we \hide" one of the variables in the coe�cient �eld. In other words, we considerthe polynomials as functions on n � 1 variables with coe�cients in R[xn]. Both the resultant andthe resultant matrix have entries in R[xn]. This method to system solving is formalized in (Emiris,1995).Experimental results are shown in table 4, with running times rounded to the nearest integer, onthe Sun Sparc 10/51 of table 1. The performance of our code is not optimized, because this is theo�ine phase of the polynomial system solver and we have focused on the online part that takes theresultant matrix and computes the common roots.All v vectors are random perturbations of vector (1; : : : ; 1), since this works best for small dimen-sions. We also compare the greedy algorithm of (Canny and Pedersen, 1993), which yields matricesof comparable size. We must note that a thorough study of this family of systems goes beyond the



Algorithms for the Sparse Resultant and the Mixed Volume 29Table 4. Sparse resultant algorithm performance on a Sun Sparc 10/51 for the cyclic n-roots.n vector v 2Zn degR degD # rows in M greedy CPU time3 (82;71) 6 6 6 6 0s4 (82;71;98) 20 25 29 26 0s5 (91;59;211;5) 85 147 206 150 21s6 (82;71;98;64;77) 290 887 1516 1h 30m 48s = 5448sscope of this paper. In particular, it is possible that a change of variables may lead to more tractablesystems and, in particular, faster calculation of the number of roots and smaller resultant matrices.Some ideas can be found in (Emiris, 1994b, Faug�ere, 1995).10. ConclusionWe have proposed a new incremental algorithm for constructing sparse resultant matrices, namelysquare matrices in the polynomial coe�cients which are generically nonsingular and whose determi-nant is a multiple of the sparse resultant. Under reasonable assumptions, the algorithm has asymp-totic complexity simply exponential in n and polynomial in the total resultant degree. This behavioris also observed in practice from a series of experiments.The main limitation of the new algorithm is the existence of a randomized step in the choice ofdirection v. In general, there is no guarantee that a vector v will produce smaller matrices than pre-vious algorithms. However, in practice, we have never encountered this problem and the constructedmatrices are considerably smaller as the problem dimension increases. Moreover, there are severalclasses of systems for which deterministic choices for v exist, leading to optimal matrices. Thesesystems include the multigraded systems which include, in turn, all algebraic systems for whichoptimal matrix formulae provably exist. Our algorithm is able to construct these optimal matrices.We also present an e�cient algorithm for computing mixed volumes which is, to the best of ourknowledge, the fastest to date in terms of empirical complexity. Its worst-case asymptotic complexityis simply exponential in n, which matches asymptotically the known lower bound, whereas its speedin terms of empirical complexity is illustrated by a series of benchmarks.To derive a priori bounds on the size of the resultant matrices we may study the incrementalmethod in relation to the theory of Koszul complexes. Another intriguing relationship is between ourapproach to building multiplication tables and Gr�obner bases. Speci�cally, the monomial sets thatwe de�ne resemble those speci�ed by a Gr�obner basis, since they are concentrated near the originor, in Gr�obner bases terminology, \under the staircase". Another feature in common with Gr�obnerbases is that our algorithm can treat systems with a number of polynomials larger than the numberof variables.The results on multigraded systems have been generalized in (Weyman and Zelevinsky, 1994),though a constructive approach that would exploit this generalization has yet to be found. Animportant merit of the work on resultants is its practical application in solving algebraic systems inkinematics, vision, modeling as well as game theory and computational economics; see e.g. (Emiris,1994b). In this respect, an open question is the transformation of arbitrary systems to an equivalent
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