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MACAULAY STYLE FORMULAS FOR SPARSE RESULTANTS

CARLOS D’ANDREA

Abstract. We present formulas for computing the resultant of sparse polyno-
mials as a quotient of two determinants, the denominator being a minor of the
numerator. These formulas extend the original formulation given by Macaulay
for homogeneous polynomials.

1. Introduction

Let A0, . . . ,An be finite subsets of Zn and consider n+ 1 polynomials f0, . . . , fn
in n variables such that supp(fi) = Ai, i = 0, . . . , n. The sparse resultant is an
irreducible polynomial in the coefficients of f0, . . . , fn, which vanishes if the system
fi = 0, i = 0, . . . , n, has a solution in an algebraically closed field. It will be denoted
by ResA(f0, . . . , fn), where A := (A0, . . . ,An).

Resultants eliminate the input variables, so they are also called eliminants. They
have been used in the last decade as a computational tool for elimination of variables
and for the study of complexity aspects of polynomial system solving. This has
renewed the interest in finding explicit formulas for their computation (see [AS,
Can1, Can2, CE1, CE2, CDS, CLO, DD, Emi1, EM, KPS, Laz, Ren, Roj, Stu1,
Stu2, Stu3, ZCG]).

The study of resultants goes back to the classical work of Sylvester, Bezout,
Cayley, Macaulay and Dixon in the context of homogeneous polynomials ([Syl,
Bez, Cay, Mac, Dix]). The sparse resultant, a generalization of the classical one,
first appeared in the study of hypergeometric functions and A-discriminants done
by Gelfand, Kapranov and Zelevinski a few decades ago ([GKZ1, GKZ2]).

The first effective method for computing the sparse resultant was proposed by
Sturmfels in [Stu1]. In [CE1, CE2], Canny and Emiris gave algorithms for comput-
ing square Sylvester style matrices with determinants equal to nonzero multiples
of the resultant. By a Sylvester style matrix we mean the matrix in the monomial
bases of a linear map given by a formula as follows:

SE0 ⊕ SE1 ⊕ . . .⊕ SEn → SE ,
(g0, g1, . . . , gn) 7→

∑
gi fi.

Here, E0, . . . En, E are finite sets of monomials in a ring of Laurent polynomials
K
[
x1, x

−1
1 , . . . xn, x

−1
n

]
, and SB denotes the K−vector space generated by B. This

construction was generalized by Sturmfels in [Stu2], and it was pointed out in
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2596 CARLOS D’ANDREA

[Emi1, CE2] that the extended formulas, when applied to the classical case, give
Macaulay’s original formulation (see [Mac]).

However, Macaulay succeeded in giving an explicit formula for the extraneous
factor appearing in his own formulation, i.e. he showed that, in the classical case,
the ratio

det(Sylvester matrix)
ResA(f0, . . . , fn)

(1)

is a minor of the Sylvester matrix (see [Mac]). This was conjectured to happen in
the sparse case, but no proof of it was available (see [CE1, CE2, CLO, Emi1, EM,
GKZ2, Stu2]). For instance, in [CLO, Chapter 7], we may read:

One of the major unsolved problems concerning sparse resultants is
whether they can be represented as a quotient of two determinants. In
the multipolynomial case, this is true by Theorem (4.9) of Chapter 3.
Does this have a sparse analog? Nobody knows!

In [GKZ2, Introduction], the following is written:
Macaulay made another intriguing contribution to the theory by giving
an ingenious refinement of the Cayley method [Mac]. It would be inter-
esting to put his approach in the general framework of this book.

In [Stu2, Corollary 3.1], we also find:
It is an important open problem to find a more explicit formula for Pω,δ1

in the general case. Does there exist such a formula in terms of some
smaller resultants?

The main contribution of this paper is a positive answer to this question, i.e. a
generalization of Macaulay’s classical formulas to the sparse case by means of an
explicit algorithm which produces square Sylvester style matrices. The determinant
of each of these matrices is a nontrivial multiple of ResA(f0, . . . , fn). Moreover, we
succeed in describing the extraneous factor of our formulation (i.e. the ratio which
appears in (1)), which again happens to be the determinant of a submatrix of the
Sylvester matrix.

The paper is organized as follows: In Section 2, some notation and preliminaries
are introduced. In Section 3, we explicitly construct Sylvester style matrices for
generalized unmixed families of polynomials and prove that our algorithm produces
formulas “à la Macaulay” for computing the sparse resultant in this case.

Section 4 deals with the general case, and may be regarded as an extension of
the previous section. The algorithms are illustrated with examples at the end of
both sections.

Acknowledgements. I am grateful to Alicia Dickenstein, who brought my atten-
tion to this problem, and to Ioannis Emiris, for helpful comments. I also wish to
express my deep gratitude to David Cox for his thorough reading of preliminary
drafts of this paper and very thoughtful suggestions for improvement.

This research began during the Long Semester Program in Symbolic Computa-
tion in Geometry and Analysis held at MSRI in the Fall Semester of 1998. I am
grateful to the organizers for their help and support. I am especially grateful to
Bernd Sturmfels for helpful conversations during those days.

1Pω,δ is the extraneous factor
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2. Preliminaries

We review here some definitions and properties of convex polytopes and sparse
resultants. More details and proofs can be found in [CLO, EM, GKZ2, Stu1, Stu2].

Let A0, . . . ,An be finite subsets of the lattice Zn. Set mi := #(Ai), m :=∑n
i=0 mi and Qi := conv(Ai), i = 0, . . . , n. Here, conv(.) denote the convex hull

in LR := L⊗ R, where L is the affine lattice generated by
∑n

i=0Ai.
For any subset J ⊂ {0, 1, . . ., n}, consider the affine lattice generated by

∑
j∈J Aj ,

and let rk(J) be the rank of this lattice. For every a ∈ Ai, we shall introduce a
parameter ci,a. Consider the family of generic polynomials:

fi (x1, . . . , xn) =
∑
a∈Ai

ci,a x
a (i = 0, . . . , n) .(2)

Let K be an algebraically closed field. The vector of coefficients (ci,a)a∈Ai of such a
family defines a point in the product of K−projective spaces Pm0−1

K × . . .× Pmn−1
K .

Let Z denote the subset of those families (2) which have a solution in (K∗)n . Here,
K∗ denotes the torus K \ {0}. Finally, denote by Z the Zariski closure of Z in
Pm0−1
K × . . .× Pmn−1

K .

Theorem 2.1 ([GKZ2, Stu2]). The projective variety Z is irreducible and defined
over Q. Its codimension in Pm0−1

K ×. . .×Pmn−1
K equals the maximum of #(I)−rk(I),

where I runs over all subsets of {0, 1, . . . , n}. The variety Z has codimension 1 if
and only if there exists a unique family {Ai}i∈I such that

1. rk(I) = #(I)− 1,
2. rk(J) ≥ #(J), for each proper subset J of I.

Definition 2.2 ([Stu2]). If I satisfies conditions 1 and 2 in the previous theorem,
then the family {Ai}i∈I is said to be essential.

Note that if each Qi is n-dimensional, it is easy to check that the unique set
satisfying both conditions is I = {0, 1, . . . , n}, so in this case Z has codimension 1.

The sparse mixed resultant ResA(f0, . . . , fn) is defined as follows: if codim(Z) =
1, then ResA(f0, . . . , fn) is the unique (up to sign) irreducible polynomial in Z[ci,a]
which vanishes on Z. If codim(Z) ≥ 2, then ResA(f0, . . . , fn) is defined to be the
constant 1.

Theorem 2.3 ([PS, Stu2]). If the family of supports {A0, . . . ,An} is essential,
then for i = 0, . . . , n, the degree of ResA(f0, . . . , fn) in the coefficients of fi is
equal to the normalized mixed volume

MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn)

:=

∑
J⊂{0,... ,i−1,i+1,... ,n}(−1)n−#(J)vol

(∑
j∈J Qj

)
vol(P)

,

where vol(.) stands for the euclidean volume in the real vector space LR, and P is a
fundamental lattice parallelotope in L. In general, if there exists a (unique) subset
{Ai}i∈i which is essential, the sparse mixed resultant coincides with the resultant
of the family {fi : i ∈ I}, considered with respect to the lattice

∑
i∈I Ai.
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Example 2.4. Set A0 = A1 = A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and consider the
family

f0 = c0,(0,0) + c0,(1,0)x1 + c0,(0,1)x2 + c0,(1,1)x1 x2,
f1 = c1,(0,0) + c1,(1,0)x1 + c1,(0,1)x2 + c1,(1,1)x1 x2,
f2 = c2,(0,0) + c2,(1,0)x1 + c2,(0,1)x2 + c2,(1,1)x1 x2.

Here, the Newton polytopes Q0, Q1, Q2 are equal to the unit square C := [0, 1]×
[0, 1] whose vertices are precisely the points in the common support; and we have
that

degcoeff fi (ResA(f0, f1, f2)) =MV (C,C) = 2, i = 0, 1, 2.

A nice formula due to Dixon ([Dix]) allows us to computate the resultant as follows:

ResA(f0, f1, f2) = det


c0,(0,0) c0,(1,0) c0,(0,1) c0,(1,1) 0 0
c1,(0,0) c1,(1,0) c1,(0,1) c1,(1,1) 0 0
c2,(0,0) c2,(1,0) c2,(0,1) c2,(1,1) 0 0

0 c0,(0,0) 0 c0,(0,1) c0,(1,0) c0,(1,1)

0 c1,(0,0) 0 c1,(0,1) c1,(1,0) c1,(1,1)

0 c2,(0,0) 0 c2,(0,1) c2,(1,0) c2,(1,1)

 .

Example 2.5. Let

A0 = {(0, 0), (2, 2), (1, 3)},
A1 = {(0, 0), (2, 0), (1, 2)},
A2 = {(3, 0), (1, 1)}.

Consider the family

f0 = α1 + α2x
2
1 x

2
2 + α3x1 x

3
2,

f1 = β1 + β2x
2
1 + β3x1 x

2
2,

f2 = γ1x
3
1 + γ2x1 x2.

A straightforward computation shows that

MV (Q0, Q1) = 7,MV (Q0, Q2) = 7, MV (Q1, Q2) = 5,

and the sparse resultant equals

α5
1β

7
3γ

6
1γ2 + 3α4

1α2β
2
2β

5
3γ

4
1γ

3
2 + 3α3

1α
2
2β

4
2β

3
3γ

2
zγ

5
2

−13α3
1α2α3β

2
1β2β

4
3γ

5
1γ

2
2 − 7α3

1α
2
3β1β

3
2β

3
3γ

4
1γ

3
2 + 6α2

1α
3
2β

3
1β2β

3
3γ

4
1γ

3
2

+α2
1α

3
2β

6
2β3γ

7
2 − α2

1α
2
2α3β

2
1β

3
2γ

3
1γ

4
2 + 5α2

1α2α
2
3β

4
1β

3
3γ

6
1γ2

−α2
1α2α

2
3β1β

5
2β3γ

2
1γ

5
2 + 14α2

1α
3
3β

3
1β

2
2β

2
3γ

5
1γ

2
2 + α2

1α
3
3β

7
2γ1γ

6
2

−2α1α
4
2β

3
1β

3
2β3γ

2
1γ

5
2 − 5α1α

3
2α3β

5
1β

2
3γ

5
1γ

2
2 + α5

2β
6
1β3γ

4
1γ

3
2

+2α1α
2
2α

2
3β

4
1β

2
2β3γ

4
1γ

3
2 − 2α1α2α

3
3β

3
1β

4
2γ

3
1γ

4
2 − 7α1α

4
3β

5
1β2β3γ

6
1γ2

+α2
2α

3
3β

6
1β2γ

5
1γ

2
2 + α5

3β
7
1γ

7
1

For an explicit computation of this resultant, see [Stu2].

As usual, to define a face of a polytope Q ⊂ LR ⊂ Rn, let v be a vector in Rn.
Set

mQ(v) := min
q∈Q
{〈q, v〉},

and call

Qv := Q ∩ {m ∈ Rn : 〈m, v〉 = mQ(v)}
the face of Q determined by v. The vector v will be called an inward normal vector
of Qv. If dim(Qv) = n− 1, then Qv will be called a facet.
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3. Macaulay style formulas

for generalized unmixed families of polynomials

In this section, we will construct square Sylvester style matrices in the case when
all Qi are integer multiples of a fixed polytope P, i.e. there exist positive integers
k0, k1, . . . , kn such that

Qi = conv(Ai) = ki P, i = 0, . . . , n.

This case is treated in [CDS] in a toric setting. These families may be identified
with homogeneous polynomials in the coordinate ring of a projective toric variety
(in the sense of [Cox]), with “degrees” α0, . . . , αn, where every αi is Q-ample (see
[Ful]). We shall call them generalized unmixed polynomials because they contain
the well-known unmixed family of polynomials, which is the case when all input
supports Ai coincide.

The matrices to be constructed here also generalize the formulas given by Mac-
aulay in [Mac] in the homogeneous case, where all the supports are multiples of the
standard simplex

Sn := {(q1, . . . , qn) ∈ Rn : 0 ≤ qi ≤ 1,
n∑
i=1

qi ≤ 1}.

Warning: Some care must be taken with taking convex hulls, because the sparse
resultant depends strongly on the finite data (A0,A1, . . . ,An) and different families
of input supports may give the same polytopes Q0, . . . , Qn (see [Stu2]).

Remark 3.1. It is easy to see that, in the generalized unmixed case, because of
Theorem 2.1, in order to have a nontrivial resultant, P must be n-dimensional. It
is also clear that, in this case, LR = Rn.

Given λ ∈ Q≥0 and a generic δ ∈ L ⊗Q as in [CE1, CE2, Stu2], our algorithm
will produce a Sylvester style matrix M whose rows and columns will be indexed
by the integer points in

E := ((k0 + k1 + . . .+ kn + λ)P + δ) ∩ L,(3)

and whose determinant will be a nonzero multiple of the sparse resultant. Moreover,
we shall be able to identify the extraneous factor det(M)/ResA(f0, . . . , fn) as a
minor of this determinant.

The algorithm is recursive in the dimension of the polytope P, and, in its in-
termediate steps, uses the mixed-subdivision algorithm of Canny and Emiris (see,
[CE1, CE2, Stu2]) in order to refine the subdivision (see the comments in Remark
3.15).

Remark 3.2. It was stated in the introduction that E should be a set of monomials.
Indeed this is true provided that we identify an integer point α ∈ E with the Laurent
monomial xα.

3.1. Constructing the Matrix M. Given λ and δ as before, set Q := λP. Let
V (Q) ⊂ L ⊗ Q be the set of vertices of Q. Observe that they are not necessarily
integer points.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Choose a vertex b0 ∈ A0, and consider the following lifting functions:

ω0 : A0 → R,
b0 7→ 1,
b 7→ 0 if b 6= b0,

ωi : Ai → R,
b 7→ 0 ∀b ∈ Ai, i = 1, . . . , n,

ω : V (Q) → R,
b 7→ 0 ∀b ∈ V (Q).

(4)

Set

Ω :=
(
ωi(b)b∈Ai, i=0,1,... ,n, ω(b)b∈V (Q)

)
∈ Rm+#V (Q)

and consider the lifted polytopes in Rn+1 :

Qi,Ω := conv{(a, ωi(a)) : a ∈ Ai},
QΩ := conv{(b, ω(b)) : b ∈ V (Q)}.

By projecting the upper envelope of Qi,Ω (resp. QΩ) we get a coherent mixed
decomposition ∆i,Ω (resp. ∆Ω) of the polytopes Qi (resp. Q). The cells in this
decomposition are the projections of precisely those faces of Qi,Ω and QΩ on which
a linear functional with negative last coordinate is minimized (see [Stu2]).

Similarly, by projecting the upper envelope of the Minkowski sum

Q0,Ω +Q1,Ω + . . .+Qn,Ω +QΩ,

we get a coherent mixed decomposition of

Q := Q0 +Q1 + . . .+Qn +Q.(5)

Each cell in this decomposition is of the form

F = F0 + F1 + . . .+ Fn + F,

where Fi (resp. F ) is a cell in ∆i,Ω, (resp. ∆Ω).
Because most of the lifting functions we have used in (4) are trivial, we can

characterize all the proper cells in ∆1,Ω, . . . ,∆n,Ω,∆Ω :
• the whole polytopes Q1, . . . , Qn, Q corresponding to the linear functional as-

sociated to the vector (0,−1) ∈ Rn × R;
• for every v ∈ Rn \ {0}, the faces Q1v, . . . , Qnv, Qv associated to the vector

(v, α), where α is any negative number.
On the other hand, on ∆0,Ω, the cell corresponding to (0,−1) is the singleton {b0},
and it is easy to check that every cell of dimension n in its decomposition is the
convex hull of b0 and a facet of Q0 not containing this point. We shall call it F0,v,
where v denotes the integer primitive inward normal of the facet.

So, we can characterize all maximal (i.e. of dimension n) cells in the polyhedral
decomposition of Q as follows:
• {b0} + Q1 + . . . + Qn + Q. This shall be called the primary cell.
• F0,v + Q1v + . . .+ Qnv + Qv, for some v ∈ Rn. These will be called secondary

cells, and are associated to a nonzero vector v ∈ Rn.
The following lemma will be useful in the sequel:
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Lemma 3.3. Suppose that dim(F0,v) = n. Then, for every q ∈ Q, if F0,v ∩ {m ∈
LR : 〈m, v〉 = q} 6= ∅, there is λq ∈ Q≥0 such that the intersection is a polytope
congruent to λqPv.

Proof. Suppose w.l.o.g. that b0 = 0; then F0,v is the convex hull of the origin in
LR and a finite set of points {v1, . . . , vM} all of them satisfying 〈vi, v〉 = λv < 0,
hence lying in a hyperplane Hv not passing through the origin.

The intersection of F0,v with a hyperplane parallel to Hv will be nonempty if
and only if λv ≤ q ≤ 0. If this happens, the intersection will be the convex hull of

{ q
λv

v1, . . . ,
q

λv
vM},

which is equal to q
λv
Q0v = q

λv
k0Pv.

In order to construct the Sylvester style matrix, we will take into account whether
the points lie in a translation of the primary cell or not. The first requirement we
impose on δ is that every point in (Q+ δ) ∩ L must belong to the interior of a
shifted maximal cell (primary or secondary).

3.1.1. Points in the shifted primary cell. Proceed as in [CE1, CE2, Emi1, Stu2]:
choose generic lifting functions ω̃1, . . . , ω̃n, ω̃, defined over A1, . . . ,An, V (Q), in
such a way that they produce a tight mixed coherent decomposition of the Minkowski
sum

Q1 + . . .+Qn +Q.

This implies that each n-dimensional cell F in this decomposition equals

F1 + F2 + . . .+ Fn + F,

where Fi is a cell in ∆i,ω̃, F is a cell in ∆ω̃ and

n = dim(F1) + . . .+ dim(Fn) + dim(F ).

As a consequence, at least one of these dimensions is equal to 0. The row content
of p ∈ ({b0}+Q1 + . . .+Qn +Q + δ) ∩ L is a pair (i, a) defined as follows:

• If p− δ − b0 lies in the cell F = F1 + . . .+ Fn + F, and the set {j : 1 ≤ j ≤
n, dim(Fj) = 0} is not empty, let i be the largest index such that dim(Fi) = 0,
and let Fi = {a}.
• If dim(Fj) > 0 for all j (because of the genericity of the lifting functions ω̃j,

this implies that dim(F ) = 0), then i := 0, and a := b0.

We shall say that F is mixed of type 0 if the last item holds; otherwise, the cell
shall be called non-mixed.

Remark 3.4. The concepts of row content, mixed and non-mixed cells defined pre-
viously, appear with a slightly different meaning in [CE1, CE2, Stu2]. We shall
discuss some relations between the definitions in example 3.3.3.

We can now fill the rows of the matrix M indexed by those points p lying in
({b0}+Q1 + . . .+Qn +Q+ δ) ∩L as follows: for every p′ ∈ E , the entry indexed
by (p, p′) equals the coefficient of xp

′
in the expansion of the polynomial xp−a fi(x).

Here, (i, a) is the row content of p.
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3.1.2. Points in the shifted secondary cells. Let v ∈ Rn be such that

Fv = F0,v + Q1v + . . .+ Qnv + Qv(6)

is a maximal cell in the polyhedral decomposition of Q. This implies that
• dim(Pv) = n− 1, Qv = λPv, and Qiv = ki Pv, i = 0, 1, . . . , n.
• dim(F0,v) = n.

Intersecting the shifted cell F0,v with hyperplanes parallel to Pv and using Lemma
3.3, it is easy to see that (Fv + δ) ∩ L can be written as a disjoint union of sets of
the type (

(λ̃Pv + δ′ + k1Pv + . . .+ knPv + λPv + δ
)
∩ L, λ̃ ∈ Q≥0,

which may be rearranged as follows:

(k1Pv + . . .+ knPv + λvPv + δλ) ∩ L, λv ∈ Q≥0,(7)

where δλ := δ + δ′. Here is where the recursion step comes: consider the v-facet
family

fiv (x1, . . . , xn) =
∑

a∈Qiv∩Ai

ci,a x
a (i = 1, . . . , n).(8)

Due to the fact that Qiv = ki Pv, has dimension exactly n− 1, it is straightforward
to check that the family {Qiv∩Ai}i=1,... ,n is essential. This implies that the sparse
resultant of the polynomials (8) is not constantly equal to one. We shall denote
this sparse resultant as

Resv(f1v, . . . , fnv).(9)

In order to use the inductive hypothesis, we must decrease the dimension of the
supports with some care: let Lv ⊂ L be the lattice which is orthogonal to v, and
denote by LA1v+···+Anv the affine lattice generated by A1v + · · ·+Anv.

After a translation, we may suppose w.l.o.g. that 0 ∈ Rn is a vertex of Pv. This
implies that LA1v+···+Anv is a sublattice of Lv, both having dimension n− 1, and
we may consider the index [Lv : LA1v+···+Anv ], which will be denoted by indv. Let
q1, · · · , qindv be coset representatives for LA1v+···+Anv in Lv.

For every p ∈ L, there exists a unique j ∈ {1, . . . , indv} such that

p ∈ (qj + LA1v+···+Anv )⊕ Zv,
so p may be written as pv + pv, the latter being an integer multiple of v, and
pv ∈ qj + LA1v+···+Anv . Also, δλ ∈ L ⊗ Q = (LA1v+···+Anv ⊕ Zv) ⊗ Q may be
decomposed as δvλ + δλv, where δvλ (resp. δλv) lies in Qv (resp. LA1v+···+Anv ⊗Q).

If, in addition, p belongs to (7), we must have pv = δvλ. This is due to the fact
that k1Pv + . . .+ knPv + λvPv + δλv ⊂ LA1v+···+Anv ⊗R. So, p− pv = p− δλv lies
in

(k1Pv + . . .+ knPv + λvPv + δλv) ∩ (qj + LA1v+···+Anv ) .

Finally, set δjv := δλv − qj ∈ LA1v+···+Anv ⊗Q. Now it is straightforward to check
that a point p belongs to (7) if and only if there exists j = 1, . . . , indv such that
p := p− δvλ − qj lies in

(k1Pv + . . .+ knPv + λvPv + δjv) ∩ LA1v+···+Anv .(10)

We have decreased dimension, and may use the inductive hypothesis in order to
compute the resultant (9) using LA1v+···+Anv instead of L and δjv instead of δ.
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It turns out that, for every λv ≥ 0, there will be indv square matrices of the
form Mv,λv indexed by the points p lying in (10). Using the monomial bijection
p = p + δvλ + qj, we can relabel rows and columns of these matrices with the points
of (7). The determinant of each Mv,λv will be a nontrivial multiple of (9), and
each of these determinants will have the same degree as Resv(f1v, . . . , fnv) in the
coefficients of f1v (f1v will play here the role of f0 in the previous step).

Again, as in the primary cell, each of these matrices has, in the row corresponding
to a point p, the coordinates of the monomial expansion of xp−a fiv(x) for some
a and i. In order to fill the row of M corresponding to p, we proceed as before:
the entry indexed by (p, p′) equals the coefficient of xp

′
in the expansion of the

polynomial xp−a fi(x).
In order to finish the algorithm properly, the reader should check that, in the case

n = 1, this procedure constructs a classical “Sylvester style matrix” ([Syl, Mac], see
also Example 3.3.1) for two polynomials in one variable. If the supports generate
the affine lattice Z, the matrix will be indexed by a set of monomials of the type

{xa1 , xa+1
1 , . . . , xa+s

1 }, a ∈ Z, s ∈ N.

Remark 3.5. Observe that, at each step of the recursion, we need to impose some
conditions on the different δ’s in order to guarantee that all integer points are in
the interior of a cell in each intermediate step. This happens for δ generic.

Remark 3.6. Let dv be the v−lattice diameter of the cell Fv, which is defined as
follows:

dv := max
m∈Fv

〈m, v〉 − min
m∈Fv

〈m, v〉.(11)

It is straightforward to check that the number of matrices of the type Mv,λv is
exactly dv := dv indv. Besides, due to the fact that F1, F2, . . . , Fn, F are facets
associated to v, the difference (11) may be actually computed as

max
m∈F0,v

〈m, v〉 − min
m∈F0,v

〈m, v〉.(12)

Remark 3.7. At each step of the recursion, the shifted secondary cells of the previ-
ous step are partitioned in such a way that their integer points are distributed into
new primary and secondary cells. The new primary is again subdivided into mixed
and unmixed cells. We shall keep track of this information, so a point will be said
to be in a mixed cell of type i, if it belongs to a mixed cell which appeared at step
i + 1. It is easy to see that, if a point is in a mixed cell of type i, then the row it
indicates contains some coefficients of the expansion of a multiple of fi.

It is also clear that, at the end of the recursion, each point in E has associated
a row content.

3.2. Generalized Macaulay Formula. Now we are ready to state and prove the
central result of this section. Before doing that, note that det(M) is well defined
up to sign, because we have not given any order among the elements of E . Also,
ResA(f0, . . . , fn) is well defined up to sign. So, the following statement will be true
up to sign.

Theorem 3.8. M is a generically nonsingular Sylvester style matrix. Moreover,
we have the following formula “à la Macaulay”:

det (M) = ResA(f0, . . . , fn) det (E) ,
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where E is the square submatrix of M formed by omitting all rows and columns
indexed by points lying in mixed cells.

Remark 3.9. It is easy to see that E does not contain coefficients of f0, so as an
inmediate corollary of Theorem 3.8 we get that det (M) has the same degree as
ResA(f0, . . . , fn) in the coefficients of f0. Replacing the role played by f0 with any
fi, i = 1, . . . , n, we also have a formula for computing ResA(f0, . . . , fn) as the gcd
of n+ 1 determinants (see also [CE1, CE2, EM]).

Proof. First of all, we will prove that, for a given point p ∈ E , if p′ belongs to the
support of xp−a fi, then p′ must also be a point of E . Here, the pair (i, a) is the row
content of the point p. This will imply that M is a Sylvester style matrix.

Two different scenarios must be considered:
• If the point belongs to the shifted primary cell, proceeding as in [CE1, CE2],

it is easy to see that this happens.
• If the point belongs to a shifted secondary cell, let us say Fv, because of (6),
xp−a fiv has its support contained in

F0,v + Q1v + . . .+ Qnv + Qv + δ.

This, combined with the fact that, in secondary cells, i is always bigger than
0, implies that the support of xp−afi is contained in

F0,v +Q1v + . . .+Qi−1v +Qi +Qi+1v + . . .+Qnv +Qv + δ,

the latter set being a subset of Q + δ. From here, the claim follows straight-
forwardly.

Once we know M is a Sylvester style matrix, it is easy to see that ResA(f0, . . . , fn)
divides det (M) using the standard argumentation given in [CE1, CE2, Stu2].

We shall regard det (M) as a polynomial in Z[ci,a] and will prove that it is not
identically zero by showing that its highest term with respect to some monomial
order is nonzero. Explicitly, we shall prove that, for the vector

ω := (ω0, ω1, . . . , ωn) ∈ Rm,(13)

where the ωi were defined in (4),

initω (det (M)) 6= 0.(14)

It is easy to see that, writing det (M) as a polynomial in c0,b0 with coefficients in
Z[ci,a \ {c0,b0}], the leading term of this polynomial is (14).

Due to the special role that f0 has played in the construction of the matrix,
the number of integer points lying in shifted 0-mixed cells is equal to M0 :=
MV (Q1, . . . , Qn), i.e. the degree of ResA(f0, . . . , fn) in the coefficients of f0

([HS, CE1, CE2, Stu2]). So, it is straightforward to check that

degcoeff(f0) (ResA(f0, . . . , fn)) = degcoeff(f0) (det(M)) .

This, combined with the special way in which we have lifted the polytopes (i.e. just
lifting the point b0), implies that

det (M)
ResA(f0, . . . , fn)

=
initω (det(M))

initω (ResA(f0, . . . , fn))

=
coefficient of cM0

0,b0
in det(M)

coefficient of cM0
0,b0

in ResA(f0, . . . , fn)
.
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In order to prove the theorem, we shall proceed as in [Mac], by showing that the
numerator of this fraction is nonzero, and that the extraneous factor, i.e. the ratio,
is det(E). The proof will be again by recurrence on n.

The basic case (n = 1) is completely contained in the classical formulas given
by Macaulay in [Mac]. In the general case, in order to compute initω (det(M)) ,
we proceed as in [CE1, CE2, Stu2]: replace the polynomials (2) by the following
deformed family:

fi,ω :=
∑
a∈Ai

ci,a t
ωi(a)xa, i = 0, 1, . . . , n,(15)

and consider the deformed matrix M
(
ci,a t

ωi(a)
)
.

Remark 3.10. Actually,

f0,ω = c0,b0 t x
b0 +

∑
a∈Ai\{b0} ci,ax

a,

fi,ω = fi, i ≥ 1.

It is easy to see that initω (det(M)) is the leading coefficient of the determinant of
the matrix M(ci,a tωi(a)) regarded as a polynomial in t.

For every p ∈ E , let h(p) be the biggest rational number such that

(p− δ, h(p)) ∈ QΩ = Q0,Ω +Q1,Ω + . . .+Qn,Ω +QΩ.

The following observations will be useful later:

Lemma 3.11. The function h satisfies the following conditions:
1. 0 < h(p) ≤ 1, for all p ∈ E .
2. h(p) = 1 if and only if p− δ lies in the primary cell.
3. If p− δ and q − δ are in the same secondary cell, say Fv, then

h(p) = h(q) ⇐⇒ 〈p, v〉 = 〈q, v〉.
4. If p ∈ (Fv + δ)∩L, the row content of p is the pair (i, a), and v′ 6= µ v, µ > 0,

then

((p− δ − a, h(p)) +Qi,Ω) ∩ QΩ(v′,l′) = ∅, ∀l′ ∈ R<0;

here, QΩ(v′,l′) ⊂ Rn+1 is the face of QΩ determined by (v′, l′).

Proof of the lemma. The first two statements are obvious. The third assertion
holds straightforwardly just noting that Fv is the projection of QΩ(v,l), where l is
a negative real number, and

p− δ, q − δ ∈ Fv ⇐⇒ (p− δ, h(p)) , (q − δ, h(q)) ∈ QΩ(v,l).

Hence

〈(p− δ, h(p)), (v, l)〉 = 〈(q − δ, h(q)), (v, l)〉.
Finally, let l ∈ R<0 be such that QΩ(v,l) projects bijectively onto Fv. Due to the
generic conditions imposed on δ, it turns out that the point pΩ := (p − δ, h(p))
belongs to the relative interior of QΩ(v,l). If v′ = µ v and l′ = µ l, with µ ≤ 0, this
would imply l′ ∈ R≥0, which is not of interest for us, so we can suppose w.l.o.g. that
(v′, l′) is not parallel to (v, l). Then, one can slightly displace the point pΩ inside
QΩ(v,l), in the direction of the orthogonal projection of −(v′, l′) over the hyperplane
{〈x, (v, l)〉 = 0} ⊂ Rn+1. After this displacement, all the points in the shifted Qi
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will still lie in QΩ. This is due to the convexity argument given in [CE1, CE2],
which states that for every point qΩ lying in QΩ(v,l),

qΩ − (a, 0) +Qi,Ω ⊂ QΩ.

So, if the statement of the lemma were not true, the common points in the in-
tersection with QΩ(v′,l′) would not belong to QΩ after the displacement, which is
impossible.

We shall use the convexity argument given in [CE1, CE2, Stu2] as follows: for
each p ∈ E , we multiply every element in the row indexed by p by th(p)−ωi(a), where
the row content of p is (i, a). Let us call the matrix obtained in this way M′(t).
It is easy to see that the leading coefficient of det(M′(t)) (as a polynomial in t) is
initω(det(M)).

Proposition 3.12. Let 0 < γ1 < γ2 < . . . < γN = 1 be the different values for
h(p) as p ranges in E . Then, the leading coefficient of det(M′(t)) (as a polynomial
in t) factors as

N∏
j=1

det (Mj) ,(16)

where Mj is the square submatrix of M made by choosing all rows and columns
indexed by points p such that h(p) = γj .

Moreover, the product (16) can be reorganised as follows:

det(MN )
∏
Fv

(
det(M1

v) . . . det(Mdv
v )
)
,(17)

where the product is taken over all secondary cells Fv and Mi
v is one of the matrices

Mv,λv defined in Section 3.1.2, i.e. a Sylvester style matrix for the sparse resultant
associated to the family (8).

Proof of the proposition. We will compute the leading term of det(M′(t)) by search-
ing, in each column, for the highest power of t appearing in that column, replacing
by 0 all the entries which have not this highest power, and computing the determi-
nant of the modified matrix. We shall call this matrix mod(M′(t)).

It is straightforward to check that, in M′(t), the highest power appearing in the
column indexed by p′ is exactly h(p′). So, in mod(M′(t)), in the columns indexed by
those p′ such that h(p′) = γ1 there cannot be nonzero entries in the rows indexed
by those p such that h(p) 6= γ1; otherwise h(p) > γ1, and this will imply that the
power of t appearing in the (p, p′) place of the matrix will be strictly bigger than
γ1, which is impossible.

This implies that mod(M′(t)), after division by some power of t, and ordering its
rows and columns by putting the points p′ such that h(p′) = γ1 at the beginning,
has the following structure: (

M1 A
0 B

)
.(18)
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Repeating the argument recursively, it turns out that the structure of mod(M′(t))
is triangular as follows: 

M1 ∗ . . . ∗
0 M2 . . . ∗
...

...
. . . ∗

0 0 . . . MN

 ,

and the first part of the proposition holds straightforwardly.
In order to prove (17), we fix j < N. Then, the points p such that h(p) = γj < 1

lie in shifted secondary cells, let’s say Fv1 + δ, . . .FvM + δ, and one can arrange the
rows and columns of the matrix Mj so that all the points in Fv1 + δ appear at the
beginning, the points in Fv2 + δ immediately after, and so on.

First of all, we will show that

Mj =


M(j,v1) 0 . . . 0

0 M(j,v2) . . . 0
...

...
. . .

...
0 0 . . . M(j,vM )

 ,

where M(j,vk) denotes the submatrix of Mj whose rows and columns are indexed
by points in the cell Fvk + δ.

In order to do this, consider the deformed family (15). It is straightforward to
check that

supp
(
th(p)−ωi(a)xp−afi,ω

)
= (p− a, h(p)− ωi(a)) +Qi,Ω ⊂ QΩ + (δ, 0),

where, as usual, (i, a) is the row content of p. Moreover, the point

(p− a, h(p)− ωi(a)) = (p− a, h(p))

belongs to the facet of the shifted polytope QΩ + (δ, 0) determined by an inward
normal vector of the type (vk, l), l ∈ R<0.

Because of the last item of Lemma 3.11, there cannot be nonzero coefficients
corresponding to the expansion of the polynomial

th(p)−ωi(a)xp−afi,ω(19)

whose multidegree in (x, t) lies on the boundary of QΩ + (δ, 0) other than those in
the facet determined by (vk, l). This implies that, if the point (q, s) is an exponent
arising in the expansion of (19) and q does not belong to the shifted secondary cell
Fvk + δ, then (q, s) must be an interior point of QΩ + (δ, 0), and this implies that
s < h(q). Due to the remark made at the beginning of this proof, it turns out that
the element indexed by (p, q) in mod(M′(t)) is zero. This gives the stated structure
for Mj .

Now, recalling Remark 3.6, and using the third item of Lemma 3.11, it turns
out that M(j,vk) is actually a matrix of type Mvk,λvk

. Moreover, all matrices of this
type appear in this way, so the proposition holds straightforwardly.

Let us return to the proof of the theorem. By the inductive hypothesis, det(Mi
v)

6= 0, ∀v, i, and using the special lifting ω̃1, . . . , ω̃n, ω̃ in the primary cell (see Sub-
section 3.1.1), it is easy to see that det(MN ) 6= 0. Moreover,

det(MN ) = cM0
0,b0

det(EN ) 6= 0,(20)
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where EN is the submatrix of MN formed by all the rows and columns indexed by
points in non-mixed cells (see [CE1, CE2]). This proves that det(M) 6= 0.

Again by the inductive hypothesis, det(Mi
v) equals Resv(f1v, . . . , fnv) times a

minor det(Eiv) made by choosing all rows and columns non-mixed in Mi
v. This

implies that

initω det(M) = cM0
0,b0

det(EN )
∏
Fv

(Res(f1v, . . . , fnv))dv
∏
Fv

dv∏
i

det(Eiv).(21)

By selecting all rows and columns indexed by non-mixed points in M, a modified
version of Proposition 3.12 holds for the matrix E, which also has a block structure,
and we get

det(E) = det(EN )
∏
Fv

∏
i

det(Eiv).(22)

The proof of the theorem will be complete if we show that

initω(ResA(f0, . . . , fn)) = cM0
0,b0

∏
Fv

(Resv(f1v, . . . , fnv))
dv .

Using Theorem 4.1 in [Stu2], we have that

initω(ResA(f0, . . . , fn)) = ±
∏
F̃

(ResF̃(f0|F0 , . . . , fn|Fn))dF̃ ,

where F̃ runs over all facets of the coherent mixed decomposition given by ω in the
Minkowski sum

Q̃ := Q0 +Q1 + . . .+Qn.

Explicitly we have that

F̃ = F0 + . . .+ Fn

with Fi = conv(A′i), A′i ⊂ Ai,

fi|Fi :=
∑
a∈A′i

ci,a x
a;

ResF̃ is the sparse resultant associated to the data (A′0, . . . ,A′n), and dF̃ equals
the unique integer such that (ResF̃ (f0|F0 , . . . , fn|Fn))dF̃ has total degree

n∑
l=0

MV (F0, . . . , Fl−1, Fl+1, . . . , Fn).

It is easy to see that the coherent mixed decomposition induced by ω̃ over Q̃
is similar to the one induced over Q. More precisely, we get a big primary cell of
the form b0 + Q1 + . . . + Qn, and for each v such that Fv is a secondary cell of
Q, there is a secondary cell F̃v in Q̃. Moreover, the same analysis made in 3.1 says
that these are all the cells of maximal dimension in Q̃.

For the primary cell, we get that

f0|F0 = c0,b0 x
b0 ,

fi|Fi = fi, i = 1, . . . , n.
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This implies that the unique essential set in the data (A′0, . . . ,A′n) is just the
singleton {b0}, so ResF̃ (f0|F0 , . . . , fn|Fn) = c0,b0 and dF̃ = MV (Q1, . . . , Qn) =
M0.

Now, take a vector v such that F̃v is a cell of maximal dimension. This implies
that f0|F0 has an n-dimensional support and

fi|Fi = fiv, i = 1, . . . , n.

This implies that, in this case, the unique essential set is {Ai ∩ Qiv}i=1,... ,n, and
ResF̃v (f0|F0 , . . . , fn|Fn) = Resv(f1v, . . . , fnv).

It remains to prove that dF̃v = dv. To begin with, observe that

MV (F1, . . . , Fn) =MV (Q1v, . . . , Qnv) = 0,

due to the fact that the supports lie in a hyperplane, so the Minkowski sum of any
subfamily of {F1, . . . , Fn} does not have positive n-volume.

In order to compute the other numbers involved in the computation of dF̃v , we
shall use the recursive relation satisfied by the mixed volume ([Ber, CLO]):

MV n (F0, F1, . . . , Fl−1, Fl+1, . . . , Fn)

=
∑
v′

aF0(v′)MV ′n−1 ((F1)v′ , (Fl−1)v′ , (Fl+1)v′ , . . . , (Fn)v′) ,

the summation being taken over all v′ such that Pv′ is a facet. Here,MV ′n−1 ((Fi)v′)
denotes the normalized mixed volume with respect to the hyperplane v′

⊥ ⊂ L
orthogonal to v′, and

aF0(v′) := − min
m∈F0

〈m, v′〉.

Using the fact that Fi = Qiv, it turns out that

MV ′n−1 ((F1)v′ , (Fl−1)v′ , (Fl+1)v′ , . . . , (Fn)v′) = 0,

unless v′ = v or v′ = −v. Hence, we have that

MV n (F0, F1, . . . , Fl−1, Fl, . . . , Fn)

= (aF0(v) + aF0(−v))MV ′n−1 ((F1)v, (Fl−1)v, (Fl+1)v . . . , (Fn)v)

and therefore, due to the fact that

deg(Resv) =
1

indv

n∑
l=1

MV ′n−1 ((F1)v, (Fl−1)v, (Fl+1)v . . . , (Fn)v),

we get that

dF̃v = (aF0(v) + aF0(−v)) indv = dv

as claimed.

Corollary 3.13. For every i = 0, 1, . . . , n, the number of points lying in a shifted
mixed cell of type i is exactly MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn).

Proof. It is straightforward to check the following equalities:

degcoeff fi(det(E)) = #{non-mixed points of type i},
degcoeff fi(det(M)) = #{non-mixed points of type i}

+#{mixed points of type i}.
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Remark 3.14. We required b0 to be a vertex of A0 just in order to decrease the
number of secondary cells in the algorithm, but this condition is not used in the
proof. As an easy consequence, we get that

If the family {fi}i=0,...,n is essential, then every generic coefficient ci,a of the
input support appears in ResA(f0, . . . , fn) with highest power

MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn).

Remark 3.15. We have used the lifting algorithm of Canny and Emiris in primary
cells in order to break ties, but the theorem holds just provided that one can
recursively construct Sylvester style matrices having nonzero determinant and the
same degree as the resultant in the coefficients of any fi. This has been already
noted by Macaulay in the classical case (see [Mac, Section 6a]).

3.3. Examples.

3.3.1. The one-dimensional case. Set

A0 := {0, 2, 4}, A1 := {4, 8}.

Here, the affine lattice L equals 2Z, and the polytope P is the unit segment [0, 1].
Set λ := 5

2 , δ := 1
3 , and b0 := 0. Then, it is straightforward to check that:

• E = [4 + 1
3 , 14 + 5

6 ] ∩ 2Z = {6, 8, 10, 12, 14}.
• The points lying in the shifted primary cell are 6, 8 and 10; the other points

belong to the (unique) shifted secondary cell.
• There is a unique rule for filling the rows of the matrix M corresponding to

the points lying in the shifted secondary cell. We have that

x12 7→ x4 f1 (mixed),
x14 7→ x6 f1 (mixed).

• Although there are infinitely many different lifting functions ω̃1, ω̃ overA1 and
V (Q) = {0, 5

2}, they cannot produce more than two different tight coherent
mixed decomposition of the segment

[4, 8 +
5
2

] = Q1 +Q.

Explicitly, we get the following cases:
1.

x6 7→ x6 f0 (mixed),
x8 7→ x8 f0 (mixed),
x10 7→ x2 f1 (non-mixed),

which corresponds to liftings which give the same partition as

ω̃1(4, 8) = (0, 1),
ω̃(0, 5

2 ) = (0, 0);

2.

x6 7→ x2 f1 (non-mixed),
x8 7→ x6 f0 (mixed),
x10 7→ x8 f0 (mixed),
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corresponding to

ω̃1(4, 8) = (0, 0),
ω̃(0, 5

2 ) = (0, 1).

Observe that both cases give essentially the same matrix; the only difference is that
the rows are indexed differently. Setting

f0 = a+ bx2
1 + cx4

1,
f1 = dx4

1 + ex8
1,

(23)

we get the following matrix:

M :=


a b c 0 0
0 a b c 0
d 0 e 0 0
0 d 0 e 0
0 0 d 0 e

 .

The matrix E here consists of the element e which appears in the third row and
column of M. Expanding the determinant by the last column, we have that

det(M) = e


a b c 0
0 a b c
d 0 e 0
0 d 0 e

 ,

and we can easily see that the determinant of the matrix on the right hand side
corresponds to the Sylvester resultant for the bivariate family given by (23).

Remark 3.16. It is not hard to see that, for every bivariate family, every λ, b0 and
generic δ, we get a scenario similar to this example. More precisely, the algorithm
given in the previous section produces the same Sylvester style matrix given by
Macaulay in [Mac].

3.3.2. Let us compute the resultant of Example 2.4. Take λ = 1, so Q will be the
unit square. Set also b0 = (0, 0). In this case, L = Z2, the primary cell is equal to 3
times [0, 1]× [0, 1], and there are two secondary cells, corresponding to the inward
vectors (−1, 0) and (0,−1).

Setting δ = (2
3 ,

1
2 ), we get that E consists of sixteen points, nine of them lying

in the shifted primary cell. Explicitly, we have that

E = {(a, b) ∈ Z2 : 1 ≤ a, b ≤ 4}.

In this case, the facet polynomials {f1v, f2v} can be regarded as two polynomials in
one variable. So, the rows indexed by points lying in shifted secondary cells may be
filled in the classical Sylvester style as in the previous example. In order to fill the
rows corresponding to points lying in the shifted primary cell, we will use the follow-
ing lifting functions on the ordered sets Ai = V (Q) = {(0, 0), (1, 0) (0, 1) (1, 1)} :

ω̃1 = (0, 1, 1, 2) ;
ω̃2 = (0, 0, 7, 7) ;
ω̃ = (0, 14, 0, 14) .

Observe that the lifting functions are actually the restriction of a linear function on
R2. Using any algorithm for computing convex hulls like the one given by Emiris
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in [Emi2], we obtain the following description for M :

row coefficients of cell type

x1x2 x1x2 f1 primary non-mixed
x2

1x2 x2
1x2 f0 primary mixed

x3
1x2 x2

1x2 f1 primary non-mixed
x1x

2
2 x1x2 f2 primary non-mixed

x2
1x

2
2 x2

1x2 f2 primary non-mixed
x3

1x
2
2 x3

1x
2
2 f0 primary mixed

x1x
3
2 x1x

2
2 f2 primary non-mixed

x2
1x

3
2 x1x

2
2 f2 primary non-mixed

x3
1x

3
2 x2

1x
2
2 f1 primary non-mixed

x4
1x

3
2 x3

1x
2
2 f1 (−1, 0)− secondary mixed

x4
1x

2
2 x3

1x
2
2 f2 (−1, 0)− secondary non-mixed

x4
1x2 x3

1x2 f2 (−1, 0)− secondary mixed
x1x

4
2 x1x

3
2 f2 (0,−1)− secondary mixed

x2
1x

4
2 x2

1x
3
2 f2 (0,−1)− secondary non-mixed

x3
1x

4
2 x3

1x
3
2 f2 (0,−1)− secondary non-mixed

x4
1x

4
2 x3

1x
3
2 f1 (0,−1)− secondary mixed

.

Writing fi = ai + bix1 + cix2 + dix1x2 and ordering the monomials as in the table,
we get that

M =



a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0 0
0 a0 b0 0 c0 d0 0 0 0 0 0 0 0 0 0 0
0 a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0
a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0 0
0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a0 0 0 c0 d0 b0 0 0 0 0 0
0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0
0 0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0
0 0 0 0 a1 b1 0 c1 d1 0 0 0 0 0 0 0
0 0 0 0 0 a1 0 0 c1 d1 b1 0 0 0 0 0
0 0 0 0 0 a2 0 0 c2 d2 b2 0 0 0 0 0
0 0 a2 0 0 c2 0 0 0 0 d2 b2 0 0 0 0
0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2 0 0
0 0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2 0
0 0 0 0 0 0 0 0 a2 b2 0 0 0 0 c2 d2

0 0 0 0 0 0 0 0 a1 b1 0 0 0 0 c1 d1


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and

E =



a1 0 c1 d1 0 0 0 0 0 0
0 b1 0 c1 0 0 0 0 0 0
a2 0 c2 d2 0 0 0 0 0 0
0 b2 0 c2 0 0 0 0 0 0
0 0 a2 b2 c2 d2 0 0 0 0
0 0 0 a2 0 c2 d2 0 0 0
0 0 0 a1 0 c1 d1 0 0 0
0 0 0 0 0 0 c2 b2 0 0
0 0 0 0 0 a2 b2 0 c2 d2

0 0 0 0 0 0 a2 0 0 c2


.

With the aid of Maple, we can check that

det(M) = ±ResA(f0, f1, fn) det(E),

and that det(E) factors as

−c32(−c1a2 + a1c2)b2(c1d2 − d1c2)(−b2c1 + b1c2).

In this easy example, one can also check that the leading term of det(M) as a
polynomial in a0 is the determinant of the following matrix:

a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0 0
0 a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a1 b1 0 c1 d1 0 0 0 0 0 0 0 0 0 0
a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0 0
0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a0 0 0 0 0 0 0 0 0 0 0
0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0
0 0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0
0 0 0 0 a1 b1 0 c1 d1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d1 b1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d2 b2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d2 b2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c2 d2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c2 d2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 d2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 d1



(24)

and we can recognize in this matrix the block structure stated in Proposition 3.12.
Explicitly, we have a 9× 9 big block coming from the primary cell, and two blocks
arising from the secondary cells, of sizes 3 × 3 and 4 × 4 respectively. Computing
the determinant of (24), we get

−a2
0c

3
2(−c1a2 + a1c2)b2(−c2d1 + d2c1)2(b1d2 − b2d1)(c2b1 − c1b2),

and we can check that

det(E) = c32(−c1a2 + a1c2)b2(−c2d1 + d2c1)(c2b1 − c1b2),

and
Res(0,−1)(c1x2 + d1x1x2, c2x2 + d2x1x2) = (−c2d1 + d2c1),
Res(−1,0)(b1x1 + d1x1x2, b2x2 + d2x1x2) = (b1d2 − b2d1),

as expected.
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3.3.3. We want to compute the sparse resultant of the family

f0 = a1 + a2x1 + a3x2,
f1 = b1 + b2x1 + b3x2 + b4x

2
1 + b5x1x2 + b6x

2
2,

f2 = c1 + c2x1 + c3x2 + c4x
2
1 + c5x1x2 + c6x

2
2

+c7x3
1 + c8x

2
1x2 + c9x1x

2
2 + c10x

3
2.

(25)

Here, Ai = {(a, b) ∈ N2
0 : a+ b ≤ i+ 1}, i = 0, 1, 2, the lattice E coincides with Z2

and the polytopes Qi are integer multiples of the standard simplex S2. The sparse
resultant coincides with the classical resultant of three homogeneous polynomials
of degrees 1, 2 and 3 respectively, whose affinizations are the fi (see [CLO, Mac]).

In order to compute this resultant, we set Q := 0 and b0 := (0, 0). The primary
cell equals 5S2, and there is a unique secondary cell, corresponding to the vector
(−1,−1).

Setting δ := (ε, ε), with 1 � ε > 0, we have that E has 15 monomials, ten of
them lying in the shifted primary cell. We use the following lifting function, defined
on the vertices of each Qi, i = 1, 2, ordered as follows: {(0, 0), (k, 0), (0, k)}, where
k = 2, 3, and extended to the rest of the points of the input support by linearity:

ω̃1 = (1, 0, 1),
ω̃2 = (1, 1, 0).

In this case, the subdivision does not depend on the value of ω̃, the lifting function
over the unique vertex of Q. As in the previous examples, the secondary cell will be
filled in such a way that the facet resultants will be computed using the classical
Sylvester formula for bivariate polynomials.

Explicitly, we get

row coefficients of cell type

x1x
3
2 x1x2 f1 primary non-mixed

x1x
4
2 x1x

2
2 f1 primary non-mixed

x2
1x

3
2 x2

1x2 f1 primary non-mixed
x4

1x2 x1x2 f2 primary non-mixed
x5

1x2 x2
1x2 f2 (−1,−1)− secondary mixed

x1x
5
2 x1x

3
2 f1 (−1,−1)− secondary mixed

x2
1x

4
2 x2

1x
2
2 f1 (−1,−1)− secondary mixed

x3
1x

3
2 x3

1x2 f1 (−1,−1)− secondary mixed
x4

1x
2
2 x1x

2
2 f2 (−1,−1)− secondary mixed

x1x2 x1x2 f0 primary mixed
x1x

2
2 x1x

2
2 f0 primary mixed

x2
1x2 x2

1x2 f0 primary mixed
x3

1x2 x3
1x2 f0 primary mixed

x3
1x

2
2 x3

1x
2
2 f0 primary mixed

x2
1x

2
2 x2

1x
2
2 f0 primary mixed
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and, indexing the matrix M using this order, we get

b6 0 0 0 0 0 0 0 0 b1 b3 b2 b5 b4 0
b3 b6 b5 0 0 0 0 0 0 0 b1 0 b2 0 b4
0 0 b6 b4 0 0 0 0 0 0 0 b1 b3 b2 b5
c6 c10 c9 c7 0 0 0 0 0 c1 c3 c2 c5 c4 c8
0 0 c6 c4 c7 0 c10 c9 c8 0 0 c1 c3 c2 c5
b1 b3 b2 0 0 b6 b5 b4 0 0 0 0 0 0 0
0 0 b3 0 0 0 b6 b5 b4 0 0 0 b1 0 b2
0 0 0 b2 b4 0 0 b6 b5 0 0 0 0 b1 b3
c3 c6 c5 0 0 c10 c9 c8 c7 0 c1 0 c2 0 c4
0 0 0 0 0 0 0 0 0 a1 a3 a2 0 0 0
a3 0 0 0 0 0 0 0 0 0 a1 0 a2 0 0
0 0 0 0 0 0 0 0 0 0 0 a1 a3 a2 0
0 0 0 a2 0 0 0 0 0 0 0 0 0 a1 a3

0 0 0 0 0 0 0 a3 a2 0 0 0 0 0 a1

0 0 a3 0 0 0 0 0 0 0 0 0 a1 0 a2



.

In this case, the extraneous factor E is the submatrix made by choosing the first
four rows and columns of M, and its determinant equals

b6 (c7 b26 − b4 b6 c9 + b4 b5 c10).

Observe that all points lying in shifted non-mixed cells are actually in the shifted
primary cell, so there is a priori no significant block structure in this matrix.
Curiosity: The matrix constructed here is exactly the one given by Canny and
Emiris in the last section of [CE2] (see also section 3.1.4 of [Emi1]) in order to show
that, in their construction, the extraneous factor is not always the determinant of
the minor formed by choosing all rows and columns indexed by non-mixed points.
Of course, they work with another definition of non-mixed cells!

To be more precise, their algorithm is not recursive. They produce this matrix
by applying a lifting algorithm to the polytopes Q0, Q1 and Q2 using the linear
functions l0 := 104x1 + 103x2, l1 := 105x1, l2 := 102x1 + 10x2. By taking the lower
hull of the lifted polytopes (Qi, li(Qi)), a tight coherent mixed decomposition of
the Newton polytope Q0 + Q1 + Q2 is seen to hold. Using δ as before, the same
matrix is constructed but the points lying in the shifted non-mixed cells are in
correspondence with the monomials

{x1x
3
2, x1x

4
2, x

2
1x

3
2, x

5
1x2}.

By taking the determinant of the submatrix of M made choosing the rows and
columns indexed by these monomials, we get b36 c7.

3.4. An Overview of Macaulay’s Classical Formulas. In this section, we will
see how the formulas given by Macaulay in [Mac] can be recovered with our meth-
ods. In order to have a notation similar to Macaulay’s original paper, we shall deal
with n generic polynomials in n− 1 variables x1, . . . , xn−1 of total degree less than
or equal to m1, . . . ,mn respectively. In our terminology, the input supports are
integer multiples of the standard simplex Sn−1. More precisely, the polynomials
will be denoted as C1, C2, . . . , Cn, and

supp(Ci) = mi Sn−1.

Actually, Macaulay worked with n homogeneous polynomials in n variables, but it
turns out that the homogeneous resultant of these polynomials coincides with the
sparse resultant associated to the supports Ci as in Section 2.
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Remark 3.17. Setting tn :=
∑n

i=1(mi−1), and using the algorithm given by Canny
and Emiris, it is also possible to recover Macaulay’s classical formula in degree
t = tn + 1. Moreover, the extraneous factor in Macaulay’s original formulation is
exactly the minor formed by using all rows and columns indexed by points lying in
shifted non-mixed cells which they get with their methods (see [CE2] and [Emi1]).

In section 3 of [Mac], Macaulay constructed a Sylvester style matrix whose de-
terminant is denoted by D(n, t), for every t ∈ N≥0. The matrix has its rows and
columns indexed by all monomials of total degree less than or equal to t. For every
t > tn, it turns out that D(n, t) is a nonzero multiple of ResA(C1, . . . , Cn), denoted
in that paper as R(n, t). 2

His construction is recursive in the following sense: let ν be the inward normal
vector (−1,−1, . . . ,−1); it is easy to see that

C1ν , C2ν , . . . , Cn−1ν(26)

is a family of n−1 homogeneous polynomials in the variables x1, . . . , xn−1, so after
setting xn−1 equal to one, it may be regarded as a sparse family with support in

m1 Sn−2,m2 Sn−2, . . . , mn−1 Sn−2,

so D(n − 1, j) will be the determinant of a Sylvester matrix made with the same
rules as D(n, j) but with n− 2 variables, using the polynomials (26).

In section 5 of [Mac], he established the following theorem:

D(n, t)
R(n, t)

=
mn−1∏
j=0

D(n− 1, t− j)
R(n− 1, t− j)

t−mn∏
k=1

D(n− 1, k),(27)

which is the cornerstone of the main result given in section 6, namely, that R(n, t)
can be recovered as the quotient of D(n, t) by the minor obtained by omitting all
rows and columns corresponding to monomials reduced in all the variables.

Here, a monomial xα = xα1
1 . . . , x

αn−1
n−1 is said to be reduced if there exists a

unique i ∈ {1, . . . , n} such that xmii divides xα xj−|α|n .
Macaulay gave also a recursive structure of the extraneous factor (in his notation,

∆(n, t)) as follows:

∆(n, t) =
mn−1∏
j=0

∆(n− 1, t− j)
t−mn∏
k=1

D(n− 1, k)(28)

(see section 6 of [Mac]).
In order to see this construction in light of the results presented in the previous

section, extra care must be taken, because Macaulay’s construction produces a
determinant which has the same degree as the resultant in the coefficients of Cn,
so we shall modify our algorithm in such a way that the role of f0 is played by Cn;
similarly, the role of f1 will be played by Cn−1, and so on.

The polytope P will be the standard simplex Sn−1. Given t > tn, in order to
define Q, set

λ := t− tn − 1,

2For lower values of t, Macaulay also proposed a matrix with similar properties, but not of
Sylvester type.
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so Q will be equal to

(m1 + . . .+mn + λ)Sn−1 = {(m1, . . . ,mn−1) ∈ Rn−1 : 0 ≤ mi ≤ t+ n− 1},
and L = Zn−1. By taking δ = (ε, . . . , ε), with 1� ε > 0, we get that

E = {(α1, . . . , αn−1) ∈ Zn−1 : 1 ≤ αi,
∑
i

αi ≤ t+ n− 1}.

Setting

E → {β ∈ Nn−1
0 :

∑
βi ≤ t},

(α1, . . . , αn−1) 7→ (α1 − 1, . . . , αn−1 − 1),(29)

we get a bijection between our support and the one used by Macaulay for computing
the matrix whose determinant is D(n, t). By choosing b0 = (0, . . . , 0), we can check
that there is only one secondary cell, associated to the vector ν, whose ν-diameter
is exactly mn.

Using lifting functions ω̃1, . . . , ω̃n−1, ω̃ as in section 8 of [CE2], it is possible
to get a subdivision of the primary cell such that the points lying in the 0-mixed
cells are bijectively associated (with the bijection given in (29)) with those reduced
monomials which are divisible by xmnn . Lifting functions with the same properties
should be used in the recursive steps.

Now, comparing equations (28) and (22), it is not hard to check that
mn−1∏
j=0

∆(n− 1, t− j) =
∏
Fv

∏
i

det(Eiv).

Hence,

det(EN ) =
t−mn∏
k=1

D(n− 1, k).

4. The general case

We will extend here the results of the previous section by assuming only that
the family {Ai}0≤i≤n is essential, without any other condition on the supports.
Observe that this hypothesis ensures that ResA(f0, . . . , fn) is nontrivial.

As before, set

Qi = conv(Ai), i = 0, . . . , n,

and consider the Minkowski sum Q0+. . .+Qn. As the family of supports is essential,
this polytope must be n-dimensional. So, LR = Rn.

In order to give more generality to our algorithm, let us consider a “generic”
polytope Q (in a sense which will be determined later, see for instance Remark
4.4), with vertices in L ⊗ Q. The algorithm will produce a Sylvester style matrix
whose rows and columns will be indexed by the elements of

E := (Q0 +Q1 + . . .+Qn +Q) ∩ L,(30)

and whose determinant will be a nonzero multiple of the sparse resultant. The
extraneous factor will be a minor of this matrix.

As before, the algorithm will be recursive on the dimension of the polytope

Q := Q0 +Q1 + . . .+Qn +Q,
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and in its intermediate steps will use the subdivision technique of Canny and Emiris
(see [CE1, CE2, Stu2]).

4.1. Construction of the Sylvester Matrix. Let Q be a polytope as before,
and let V (Q) ⊂ L⊗Q be the set of vertices of Q.

Let us pick a vertex b0 ∈ A0, and consider the same lifting functions ωi, ω,
defined in (4). Consider also

Qi,Ω := conv{(a, ωi(a)) : a ∈ Ai},
QΩ := conv{(b, ω(b)) : b ∈ V (Q)},

and the coherent mixed decomposition ∆i,Ω (resp. ∆Ω) of the polytopes Qi (resp.
Q) given by projecting the upper envelope of Qi,Ω (resp. QΩ).

In the decomposition of Q, each cell is of the form

F = F0 + F1 + . . .+ Fn + F,

where Fi (resp. F ) is a cell in ∆i,Ω (resp. ∆Ω).
Our lifting functions are again mostly trivial. So, we can compute the cells which

will appear in the subdivision: in ∆1,Ω, . . . ,∆n,Ω,∆Ω we may have two types of
cells, as in the previous section.

The decomposition ∆0,Ω has the following cells: the face determined by (0,−1)
is just the singleton {b0}, and it is straightforward to check that, for every k ≥ 0,
every k-dimensional cell in the decomposition is a k-dimensional face of Q0 which
contains {b0}, or the convex hull of b0 and a (k− 1)-dimensional face of Q0 which
does not contain this point. We shall denote it by F0,v, where v is some interior
primitive normal vector of that face.

So, all cells in the decomposition of Q are as follows:
• the primary cell: {b0} + Q1 + . . . + Qn + Q. Observe that it always has

dimension n, due to the fact that the family {Ai}i=0,1,··· ,n is essential.
• F0,v + Q1v + . . .+ Qnv + Qv for some v ∈ Rn. Those that are n-dimensional

will be called secondary, and they will be uniquely determined by their prim-
itive inward vector v ∈ Rn.

As in the previous section, the Sylvester matrix will take into account of whether
the points lie in the primary cell or not. The first assumption we will make on Q
is that all points in Q ∩ L must belong to the interior of a maximal cell (primary
or secondary).

4.1.1. Points in the primary cell. Proceed exactly as in 3.1.1: choose generic lifting
functions ω̃1, . . . , ω̃n, ω̃ over A1, . . . ,An, V (Q) respectively, in such a way that
they produce a tight coherent mixed decomposition of the Minkowski sum

Q1 + . . .+Qn +Q

by taking the upper envelope. Every n-dimensional cell F in the decomposition
may be obtained as

F1 + F2 + . . .+ Fn + F,

where Fi is a cell of ∆i,ω̃ , F is a cell of ∆ω̃,

n = dim(F1) + . . .+ dim(Fn) + dim(F )

and at least one of these dimensions is zero.
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The concepts of row content, mixed cells of type 0, and the entries of M whose
row coordinates are indexed by

p ∈ ({b0}+ Q1 + . . .+Qn +Q) ∩ L,
are defined in the same way as in 3.1.1.

4.1.2. Points in the secondary cell. Here, we cannot use the recursive step given
in 3.1.2, so we must proceed with some care. Let v ∈ Rn be the primitive inward
normal vector of the n-dimensional cell

Fv = F0,v + Q1v + . . .+ Qnv + Qv.(31)

Consider the family of polynomials associated to the v-facet

fiv (x1, . . . , xn) =
∑

a∈Qiv∩Ai

ci,a x
a (i = 1, . . . , n).(32)

We cannot claim now that the family

{Qiv ∩ Ai}1≤i≤n(33)

is essential, but certainly there always exists a subfamily of indices 1 ≤ i1 < i2 <
· · · < ik ≤ n such that

{Qij v ∩ Aij}(34)

is essential. It is not always true that (34) is the unique essential subfamily of (33),
but that there exists at least one. Moreover, we may suppose that this subfamily
is indexed as follows:

{Qiv ∩Ai}1≤i≤k.(35)

This means that the sparse resultant of the polynomials f1v, f2v, · · · , fkv with re-
spect to the supports (35) is nontrivial. We shall denote it as

Resv(f1v, . . . , fkv).(36)

In order to mimic the inductive step of the previous section, suppose w.l.o.g. that
0 ∈ Aiv, i = 1, · · · , n. Then, we can consider the chain of lattices

LA1v+···+Akv ⊂ LA1v+···+Anv ⊂ Lv,
and we know that LA1v+···+Akv has dimension equal to k− 1. Hence, we have that

Q1v +Q2v + · · ·+Qkv ⊂ LA1v+···+Akv ⊗ R.(37)

Set Q̃v := F0,v +Qk+1v + . . .+Qnv +Qv. We have that

(F0,v +Q1v + . . .+Qnv +Qv) ∩ L =
(
Q1v + . . .+Qkv + Q̃v

)
∩ L.(38)

For a sublattice G ⊂ L, its saturation will be denoted by s(G). Consider the orthog-
onal decomposition L = s(LA1v+···+Akv ) ⊕ L′. Every point p ∈ L may be written
as p = qj + pkv + pv, where q1, . . . , qindv are coset representatives for LA1v+···+Akv
in s(LA1v+···+Akv ), the number of such cosets is indv, pkv ∈ LA1v+···+Akv , and
pv ∈ L′.

As (38) is finite, we can intersect Q̃v with finitely many rational translates of
LA1v+···+Akv ⊗ R, and get polytopes

Q̃mv := (q̃mv + LA1v+...+Akv ⊗ R) ∩ Q̃v, m = 1, ...,M,
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such that (38) is equal to the disjoint union of the sets(
Q1v + . . .+Qkv + Q̃mv

)
∩
(
q̃mv + qj + LA1v+···+Akv

)
,

where m = 1, . . . ,M and j = 1, . . . , indv. Now, it is easy to see that Q̃m
v :=

−qj − q̃mv + Q̃mv is a polytope with vertices in LA1v+···+Akv ⊗ Q. So, as in the
previous section, for every p in (38), there exists a unique m ∈ {1, . . . ,M} such
that p := p− q̃mv − qj belongs to(

Q1v + . . .+Qkv + Q̃m
v

)
∩ LA1v+···+Akv .(39)

Consider also the family

{fiv (x1, . . . , xn)}1≤i≤k.(40)

We may now apply the inductive hypothesis to (39) and construct, as in the previous
section, square matrices Mv,Q̃m

v
indexed by the points in (38), whose determinants

are nonzero multiples of Resv(f1v, . . . , fkv), each of them with the same degree in
the coefficients of f1v as the resultant.

As in the primary cell, each of these matrices will have, in the row indexed by
the point p, the coordinates, in the monomial basis, of the expansion of xp−a fiv(x)
for some pair (a, i). In order to define the entries of the matrix M, we shall proceed
as before: the entry indexed by (p, p′) wil be the coefficient of xp

′
in the expansion

of xp−a fi(x).
Now that we have the matrix well defined, it remains to decide which points

lying in secondary cells will be mixed and which not. In order to do this, we shall
begin with the following definition.

Definition 4.1. We shall say that the vector v is admissible if there exists a unique
essential subfamily of (33).

Recall that Theorem 4.1 in [Stu2] applied to the weight ω defined in (13) gives

initω(ResA(f0, . . . , fn)) = ±
∏
F̃

(ResF̃(f0|F0 , . . . , fn|Fn))dF̃ ,

where F̃ ranges over all facets of the coherent mixed decomposition given by ω on
Q̃ := Q0 +Q1 + . . .+Qn,

F̃ = F0 + . . .+ Fn,
Fi = conv(A′i), A′i ⊂ Ai,
fi|Fi :=

∑
a∈A′i

ci,a x
a,

ResF̃ being the sparse resultant associated with the family of supports (A′0, . . . ,A′n),
and dF̃ being the unique integer such that

(ResF̃ (f0|F0 , . . . , fn|Fn))dF̃

has total degree
∑n
l=0MV (F0, . . . , Fl−1, Fl+1, . . . , Fn).

Remark 4.2. Observe that ResF̃ 6= 1 if and only if F̃ is associated with an admis-
sible vector v.

The integer dF̃ will allow us to “choose” the mixed points as follows:
• If v is not admissible, then all points lying in Fv ∩ L will be non-mixed.
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• If v is admissible, then we may choose dF̃v of the matrices Mv,Q̃ made by
subdividing Fv ∩ L into sets of the form (39). We will see in Proposition 4.3
that there are at least this many such matrices.

– If a point indexes one of the dF̃v matrices Mv,Q̃ and is “mixed” for that
matrix, then it will be mixed for the matrix M.

– All the other points lying in Fv ∩ L will be non-mixed.
Again, it is easy to see that, in the case n = 1, we get the classical Sylvester style
matrices ([Syl, Mac]).

Proposition 4.3. If v is admissible, then the number of sets of the form (39) is
greater than or equal to dF̃v .

Proof of the proposition. It is easy to see that initω(ResA(f0, . . . , fn)) is actually
the sparse resultant ResA specialized in the family

c0,b0x
b0 , f1, · · · , fn.

In order to have a nice interpretation of dF̃v1 , we will use Minimair’s formula given
in [Min, Theorem 1] for computing ResA(c0,b0x

b0 , f1, · · · , fn). First of all, observe
that the hypothesis of Minimair’s theorem is satisfied, due to the fact that the
family A0, · · · ,An is essential. This implies that the unique essential subfamily of
{b0},A1, · · · ,An is {b0}.

Using this formula, we have that

ResA(c0,b0x
b0 , f1, · · · , fn) = cM0

0,b0

∏
v

Resv(fi1v, · · · , fikv)
ev ,

where the product ranges over all primitive inward normal vectors of the facets of
the Newton polytope of A1 + · · ·+An, and

ev = (aF0(v) + aF0(−v)) [Lv : LA1v+···+Anv ] e′v.(41)

• F0 is the convex hull of {b0} ∪ A0v.
• If {Ai1v, · · ·Aikv} is the unique essential subfamily of {A1v, · · · ,Anv}, then

e′v is defined as follows:
1. Let LA1v+···+Anv = s(LAi1v+···+Aik v) ⊕ L◦ be the orthogonal decompo-

sition, and denote by π the projection over the second factor.
2. Define e′v :=MV (π(Qiv))i/∈{i1,··· ,ik} , whereMV (.) denotes the normal-

ized mixed volume with respect to L◦.
Now we will prove the proposition. We can suppose w.l.o.g. that Q = 0, because

adding a polytope to the Minkowski sum cannot decrease the number of sets of the
form (39). Moreover, we may suppose w.l.o.g. that the unique essential family is
A1v, · · · ,Akv.

If v is an admissible vector, then ev and dFv coincide. Following the construction
of the Sylvester style matrix for the generalized unmixed case (Section 3.1), it turns
out that Fv ∩ L may be decomposed as a disjoint union of

(aF0(v) + aF0(−v)) [Lv : LA1v+···+Anv ]

sets parallel to Q1v + · · ·+Qnv.
From each of these partitions we may have at least as many subsets of the form

(39) as there are integer points in

π(Qk+1v) + · · ·+ π(Qnv).(42)
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It is well-known that the mixed volume of these polytopes may be computed as
the number of integer points lying in a subset of a displacement of (42) (see for
instance [Emi1, HS]), so e′v will be less than or equal to the number of integer points
in (42).

Remark 4.4. The reader can check that the role played by δ in the previous section
is played here by the additional polytope Q: at each step of the recursion, we need
to impose some conditions on the different additional polytopes of lower dimensions
in order to guarantee that all integer points are in the interior of a cell. It is easy
to see that this happens for a “generic” polytope. One can set, for instance,

Q = fixed polytope + δ,

with δ generic as in the previous section.

4.2. Generalized Macaulay Style Formula. What follows may be regarded as
the main result of this paper, and an extension of Theorem 3.8:

Theorem 4.5. M is a Sylvester style matrix and det(M) 6= 0. Moreover, we have
the following formula à la Macaulay:

det (M) = ResA(f0, . . . , fn) det (E) ,

where E is the square submatrix of M made by omitting all rows and columns
indexed by non-mixed points.

As E does not contain coefficients of f0, we get again that det (M) has the
same degree as ResA(f0, . . . , fn) in the coefficients of f0. Replacing f0 with fi, i =
1, · · · , n, we have a formula for computing ResA(f0, . . . , fn) as the gcd of n + 1
determinants.

Proof. The same argument given in the proof of Theorem 3.8 may be applied to
this situation in order to see that M is a Sylvester style matrix. So, we have that
ResA(f0, . . . , fn) divides det (M) .

As before, we shall prove that det(M) is not identically zero by showing that its
initial term with respect to ω is nonzero. Again we have

degcoeff(f0) (ResA(f0, . . . , fn)) = degcoeff(f0) (det(M)) .

Then,
det (M)

ResA(f0, . . . , fn)
=

initω (det(M))
initω (ResA(f0, . . . , fn))

=
coeffficient of cM0

0,b0
in det(M)

coefficient of cM0
0,b0

in ResA(f0, . . . , fn)
.

We will see that the numerator of this fraction is nonzero and that the ratio is
det(E) by induction on n. The initial case was already covered in the previous
section. Suppose n > 1, and let us introduce again a parameter of deformation t :

f0,ω = c0,b0 t x
b0 +

∑
a∈Ai\{b0} ci,ax

a,

fi,ω = fi, i ≥ 1.

Consider the modified matrix M
(
ci,a t

ωi(a)
)
. For p ∈ E , let h(p) be the largest

rational number such that

(p, h(p)) ∈ QΩ = Q0,Ω +Q1,Ω + . . .+Qn,Ω +QΩ.
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For every p ∈ E , we shall multiply all the entries in the row indexed by p by
th(p)−ωi(a), where, as usual, (i, a) denotes the row content of p. We shall denote this
matrix by M′(t). It is not hard to see that the leading coefficient of det(M′(t)) is
initω(det(M)).

The following assertions may be proven mutatis mutandis as the results given in
the previous section:

Lemma 4.6. It turns out that
1. 0 < h(p) ≤ 1, for every p ∈ E .
2. h(p) = 1 if and only if p belongs to the primary cell.
3. If p and q both belong to the same secondary cell, say Fv, then

h(p) = h(q) ⇐⇒ 〈p, v〉 = 〈q, v〉.

4. If p ∈ Fv ∩ L has row content (i, a) and v′ 6= µ v, µ > 0, then

((p− a, h(p)) +Qi,Ω) ∩QΩ(v′,l′) = ∅, ∀ l′ ∈ R<0.(43)

Proposition 4.7. Let 0 < γ1 < γ2 < . . . < γN = 1 be the different values of h(p)
for p ∈ E. Then, the leading coefficient of det(M′(t)) (regarded as a polynomial in
t) factors as follows:

N∏
j=1

det (Mj) ,(44)

where Mj is the square submatrix of M made by choosing all rows and columns
indexed by those points p such that h(p) = γj .

This product may be also factored as follows:

det(MN )
∏
Fv

(
det(M1

v) . . . det(Mdv
v )
)
,(45)

where
• the product ranges over all secondary cells Fv,
• for every v, dv is the number of sets of the form (39) obtained by subdividing
Fv, and
• Mi

v is a matrix of the type Mv,Q̃, the latter being defined just after (40).

By the inductive hypothesis, it turns out that det(Mi
v) 6= 0, ∀v, i. Using the

same argument given in the proof of Theorem 3.8, we also get that

det(MN ) = cM0
0,b0

det(EN ) 6= 0.

Here, EN is the square submatrix of MN made by all those rows and columns
indexed by non-mixed points. This implies that det(M) 6= 0. Moreover,

initω det(M)

= cM0
0,b0

det(EN )
∏
Fv1

(
det(M1

v1
) . . .det(Mdv1

v1 )
)

×
∏
Fv2

(
det(M1

v2
) . . . det(Mdv2

v2 )
)
,

(46)

where Fv1 ranges over all secondary cells associated to admissible vectors v1, and
Fv2 over all cells indexed by nonadmissible vectors v2.
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Choosing all rows and columns of M indexed by non-mixed points, a similar
version of Proposition 3.12 holds for the matrix E instead ofM, and it turns out that
E will also have a block structure which will allow us to compute its determinant
as follows:

det(E) = det(EN )
∏
Fv1

dF̃v1∏
i=1

det(Eiv1
)
∏

i>dF̃v1

det(Mi
v1

)
∏
Fv2

∏
i

det(Mi
v2

).(47)

From here, the proof of the theorem follows easily, just using Proposition 4.3.

Corollary 4.8. For every i = 0, 1, . . . , n, the number of i-mixed points is exactly
MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn).

If the family {Ai}i=0,...,n is essential, then every coefficient ci,a appears in

ResA(f0, . . . , fn)

with highest power MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn).

Remark 4.9. The same observation given in Remark 3.15 holds also here.

4.3. Examples.

Example 4.10. Let us compute the resultant given in Example 2.5. In order to
do this, we will take b0 = (0, 0) and Q = {(0, 1

3 )}. Here, L = Z2.
The primary cell is Q1 +Q2, and we will have four secondary cells:

v type
(2,−1) 2-mixed

(−1,−2) 1-mixed
(−1,−1) non-mixed
(−3,−1) 2-mixed

(48)

In order to subdivide the primary cell, we take ω̃1 = (0, 0, 0) and ω̃2 = (1, 1).
This lifting produces two cells: a copy of Q1, and the unique 0-mixed cell of the
subdivision. The set E has 23 points, and we will associate the unique non-mixed
cell of (48) with f2. With the aid of Maple, we have computedM, and obtained the
result shown in Figure 1. Its determinant equals c41 ResA(f0, f1, f2). The extraneous
factor here is the first principal minor of size 4× 4.

Example 4.11. Let us compute the resultant of the same system given in the
previous example, but now we will take Q as the unit square [0, 1]× [0, 1] translated
by the vector (ε, 1

3 ), with 1
3 � ε > 0. The initial point b0 will again be (0, 0). The

primary cell will now be equal to Q1 +Q2 +Q, and now we will have 6 secondary
cells:

v type
(2,−1) 2-mixed
(0,−1) non-mixed
(−1,−2) 1-mixed
(−1,−1) non-mixed
(−3,−1) 2-mixed
(−1, 0) non-mixed
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

c1 0 0 0 0 0 c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0 c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0 0
0 0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0
0 0 0 0 a1 0 0 0 0 0 0 0 0 0 0 0 a3 0 0 a2 0 0 0
0 0 0 0 0 a1 0 0 0 0 0 a2 0 0 0 0 0 0 0 0 a3 0 0
0 0 0 0 0 0 a1 0 0 0 0 0 0 0 0 0 0 a3 0 0 a2 0 0
0 0 a2 0 0 0 0 a1 0 0 0 0 0 0 0 0 0 0 0 0 0 a3 0
0 0 0 0 0 0 0 0 a1 0 0 0 0 0 0 0 0 0 a3 0 0 a2 0
0 0 0 0 0 0 0 c2 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 c2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 c2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 c2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 c2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 c2 0
b2 0 0 0 b1 0 0 0 0 0 0 0 0 0 0 b3 0 0 0 0 0 0 0
0 b2 0 0 0 0 b1 0 0 0 0 0 0 0 0 0 b3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b1 0 0 0 0 0 0 0 0 b3 0 b2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 b2 0 b1
0 0 0 0 0 b1 0 0 0 b2 0 0 0 0 0 0 0 0 0 b3 0 0 0
0 0 0 0 0 0 0 b1 0 0 b2 0 0 0 0 0 0 0 0 0 b3 0 0
0 0 0 0 0 0 0 0 0 0 0 b2 0 0 0 b1 0 0 0 0 0 b3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 c2


Figure 1.
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Observe now that there are secondary cells associated to normal vectors of Q which
do not define any facet in Q0 +Q1 +Q2. We subdivide the primary cell by taking

ω̃1(0, 0) = 1, ω̃1(1, 2) = 1, ω̃1(2, 0) = 0,
ω̃2(1, 1) = 1, ω̃2(3, 0) = 0,
ω̃(0, 0) = 8, ω̃(1, 0) = 4, ω̃(0, 1) = 4, ω̃(1, 1) = 0.

If we associate the points lying in the non-mixed secondary cells with f1, the
matrix M obtained has size 36× 36 and its determinant equals c31 b

9
3 c

3
2 b

2
2 times the

resultant. The submatrix E is the following:



b2 0 0 b1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c1 0 0 0 0 c2 0 0 0 0 0 0 0 0
0 0 0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 b2 b3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b3 0 0 0 0 b1 0 0 0 0 0
0 0 b2 0 0 0 0 b3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c1 0 c2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 b3 0 0 0 0
0 0 0 0 0 0 0 0 0 b1 0 0 0 b3 0 0 0
0 0 0 0 0 0 0 b2 0 0 b1 0 0 0 b3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0
0 0 0 0 0 b1 0 0 0 0 0 0 0 0 0 0 b3


Example 4.12. We shall see in this example that the inequality established in
Proposition 4.3 may be strict. Consider the following essential family:

A0 = {(0, 0); (1, 0); (0, 1); (1, 1)},
A1 = {(0, 0); (1, 1)},
A2 = {((1, 0); (0, 1)}.

Denote the generic polynomials having those supports as follows:

f0 = a1 + a2x+ a3y + a4xy,
f1 = b1x+ b2y,
f2 = c1 + c2xy.

Taking b0 = (0, 0), with 1
3 � ε > 0, and Q as the triangle with vertices (0, 0),

(1, 0), (1, 1) shifted by (ε, 1
3 ), we get:

• The primary cell is Q1 +Q2 +Q.
• There are five secondary cells, associated with the following inward vectors:

(1,−1), (0,−1), (−1,−1), (−1, 0) and (−1, 1).
•
(
F(1,−1)

)
∩ Z2 has two points, while an explicit computation reveals that

dF̃(1,−1)
= 1.

In this case,
(
F(1,−1)

)
∩Z2 is subdivided into two smaller cells, each of them contains

exactly one point, and either or both of the two points may be chosen as mixed. If
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we take ω̃i, i = 1, 2, always equal to 2, ω̃ always equal to 0, and apply the algorithm
given in §4.1, we will get the following 13× 13 matrix:

M =



c2 0 0 0 0 0 0 0 0 0 0 c1 0
0 c2 0 0 0 0 0 0 0 0 0 0 c1
b2 0 b1 0 0 0 0 0 0 0 0 0 0
0 0 0 b1 0 0 0 0 0 0 0 b2 0
0 0 0 0 b1 0 0 0 b2 0 0 0 0
0 0 0 0 0 b1 0 0 0 b2 0 0 0
0 b1 0 0 0 0 b2 0 0 0 0 0 0
0 0 0 0 0 0 0 b2 0 b1 0 0 0
c1 0 0 0 0 0 0 0 c2 0 0 0 0
0 c1 0 0 0 0 0 0 0 c2 0 0 0
0 b2 0 0 0 0 0 0 0 0 b1 0 0
a4 a2 0 0 0 0 a3 0 0 0 0 a1 0
0 a4 0 a2 0 0 0 0 0 0 0 a3 a1



.

We have ordered the rows and columns of M in such a way that the monomials
lying in

(
F(1,−1)

)
∩ Z2 index rows and columns 7 and 8. All the other non-mixed

points index the first six rows and columns of M. An explicit computation reveals
that

det(M) = b2 c
2
2 b

4
1 ResA(f0, f1, f2),

and it is straightforward to check that, in this case, b2c22b
4
1 may be obtained by

taking the principal minor of size 7 × 7, or computing the minor indexed by the
monomials lying in the first six rows and monomial number eight.
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1988. MR 91g:65112
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