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Abstract In this paper, we propose a survey concerning

the state of the art of the graph matching problem, con-

ceived as the most important element in the definition of

inductive inference engines in graph-based pattern recog-

nition applications. We review both methodological and

algorithmic results, focusing on inexact graph matching

procedures. We consider different classes of graphs that are

roughly differentiated considering the complexity of the

defined labels for both vertices and edges. Emphasis will be

given to the understanding of the underlying methodolog-

ical aspects of each identified research branch. A selection

of inexact graph matching algorithms is proposed and

synthetically described, aiming at explaining some signif-

icant instances of each graph matching methodology

mainly considered in the technical literature.

Keywords Graph-based pattern recognition � Inexact

graph matching � Graph edit distance � Graph kernels �
Graph embedding

1 Introduction

The graph matching problem is a research field character-

ized by both theoretical and practical issues. This problem

has received a great amount of research efforts in the last

30 years, mainly because many pattern recognition prob-

lems have been formulated through graphs that are com-

plex combinatorial objects able to model both relational

and semantic information in data. They are flexible mod-

eling structures with a vast scientific literature also in many

applied contexts, but they lack a strong and well-estab-

lished mathematical framework for some important oper-

ations. For example, the similarity of two (real) vectors can

be easily defined, but it is not so easy to say how similar

two given graphs are. Conversely, the whole set of pattern

recognition and machine learning methodologies are well

established and tested on standard domains, where basic

concepts, like distance between simple patterns, are well

defined. Thus, in the past few years, the research challenge

was to be able to import the whole set of learning and

recognition tools in the domain of graphs. This goal was

achieved in two ways: defining a measure of dissimilarity

directly in the graphs domain, and through a representation

of them in a suitable space. The numerous matching pro-

cedures proposed in the technical literature can be classi-

fied into two well-defined families, those of exact and

inexact matching. The first one relies on a boolean evalu-

ation of the (dis)similarity of the graphs, while the latter is

a more complex problem where the challenge is in com-

puting how much they differ. In this survey, our interest

will be focused on inexact graph matching related issues,

because they are of great interest in a vast range of modern

scientific disciplines and applied fields.

Our objective is to both describe the main methodo-

logical approaches identified by us in the literature and

some of the algorithms, providing a compact, yet clear,

taxonomy of these. Some algorithms are simply cited and

the related experimental results are not treated in this

survey, postponing to other references for a deeper analy-

sis. Of course, the list of presented algorithms does not

pretend to be exhaustive. Considering this aim, we will

show also some formal definitions and results, limiting

the exposition at the essentiality. We will see that for each

presented algorithm, it is possible to identify a set of

important parameters that by definition influence and, in
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the same time permit, the applicability of these methods to

different domains. The exposition of both methods and

algorithms aims at homogenizing as much as possible the

different notations and viewpoints that can be found in the

original contributions.

This article is structured as follows: the preliminary

definitions and a brief description of the context is given in

Sect. 1. The state of the art methodologies are exposed in

Sect. 2. In Sect. 3 some of the most important algorithms

are described, followed, in Sect. 3.5, by an analysis con-

cerning their peculiarities. In Sect. 4, we will draw our

conclusions together with some interesting new research

directions.

1.1 Preliminary definitions

In this section, we will give some basic preliminary defi-

nitions, mainly regarding labeled (or attributed) graphs,

which is the more general way to define a graph, without

assuming restrictions to both vertices and edges label

characterization. The definitions are extremely general and

can be found in many references [11, 31], or in some of the

reviews in [1, 24].

The set of real numbers R is assumed to be equipped

with the number zero, i.e., R ¼ R [ f0g: In general, the

calligraphic form X denotes a set, x a vector, A a matrix

and f ð�Þ a function (not its evaluation). The element (i, j) of

a matrix A can be referred to as Aij or ½A�ij:

Definition 1 (Labeled graph) A labeled graph is a tuple

G ¼ ðV; E; l; mÞ; where

• V is the (finite) set of vertices (also referred to as

nodes),

• E � V � V is the set of edges,

• l : V ! LV is the vertex labeling function with LV the

vertex-labels set, and

• m : E ! LE is the edge labeling function with LE the

edge-labels set.

Both lð�Þ and mð�Þ are assumed to be total functions. The

items of E can be denoted with eij = (vi, vj), meaning

an edge from vertex vi to vertex vj. We can also denote

edges with e = (v, u) or ei ¼ ðv; uÞ; i ¼ 1; . . .; jEj; with

v = u, without using any index on the vertices set. If E is a

symmetric relation, ðv; uÞ 2 E , ðu; vÞ 2 E; 8v; u 2 V;
then the graph G is called an undirected graph, conversely

it is referred to as a directed graph. If LV ¼ LE ¼ ; then G

is referred to as an unlabeled graph. In any case the vertices

set V is assumed to be indexed, i.e., {vi}i=1
n where jVj ¼ n;

so that we can distinguish them. The same is valid for E: If

LE � R; then G is usually called a weighted graph. An

unweighted graph can be seen as a weighted one with

mðeÞ ¼ 1; 8e 2 E: If LE 6¼ ; ^ LV ¼ ;; the graph G is

referred to as edge-labeled. If LE ¼ ; ^ LV 6¼ ;; the graph

G is referred to as vertex-labeled. Finally, if both sets are

non-empty we can refer to G as a fully labeled or simply

labeled graph. The notations VðGÞ and EðGÞ will refer to

the set of vertices and edges of the graph G. If it is not

explicitly defined, a graph is assumed to be labeled.

Definition 2 (Walks) A walk w of length k in a graph G

is a sequence of vertices w ¼ ðv1; . . .; vkþ1Þ with

ei;iþ1 ¼ ðvi; viþ1Þ 2 E; i ¼ 1! k:

A path in a graph G is a walk in which vi = vj, i = j.

A cycle in a directed graph G is a path with ðvkþ1; v1Þ 2 E:
A graph G is called connected if there is at least one walk

between any two vertices.

Definition 3 (Subgraph) Let G1 ¼ ðV1; E1; l1; m1Þ and

G2 ¼ ðV2; E2; l2; m2Þ be two labeled graphs. Graph G1 is a

subgraph of G2, written as G1 � G2; if these conditions

hold

• V1 � V2;

• E1 � E2;

• l1ðvÞ ¼ l2ðvÞ; 8v 2 V1; and

• m1ðeÞ ¼ m2ðeÞ; 8e 2 E1:

Conversely, graph G2 is called a supergraph of G1.

If the second condition is replaced by E1 ¼ E2 \ ðV1 �
V1Þ; then we refer to induced subgraph by the set of ver-

tices V1; denoted with G1 ¼ G2½V1�:

Definition 4 (Neighborhood subgraph) Given a graph

G ¼ ðV; E; l; mÞ and a vertex v 2 V; the neighborhood

subgraph G|v of v in G is defined as

Vv ¼ fvg [ fu : ðu; vÞ 2 E _ ðv; uÞ 2 Eg;
Ev ¼ E \ fVv � Vvg;
lv ¼ ljVv

;

mv ¼ mjEv
:

Sometimes, especially from the computational point of

view, it is useful to represent the edges labels as a matrix.

Definition 5 (Edge-labels matrix) Let G be a graph with

jVj ¼ n:The edge-labels matrix is a square matrix Ln�n
ðEÞ

with

½LðeÞ�ij ¼
mðeijÞ if eij 2 E;
f otherwise:

�

where the special label f means ‘‘no label’’.

The adjacency matrix of G is denoted with An�n; and if

G is weighted, we have the weighted adjacency matrix

Aij = m(eij), usually denoted as W; which can be thought of

as a special case (LE � R and f ¼ 0) of the edge-labels

matrix shown in Definition 5. For undirected graphs,
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matrices A;LðEÞ and W are symmetric. The transition

matrix of G is denoted with Tn�n; and is defined as T ¼
D�1A; where Dii = deg(vi) =

P
jAij is a diagonal matrix of

vertices degree.

Definition 6 (Random walks) A random walk on G is a

stochastic process generating sequences of vertices vi1 ; vi2 ;

. . . according to the conditional probability Pðikþ1ji1;

. . .; ikÞ ¼ Tik ;ikþ1
:

The k-th power of this matrix, Tk; describes k-length

random walks on G. The component Tij
k gives the proba-

bility of a transition from vertex vi to vertex vj via a random

walk of length k. Similarly, Aij
k gives the number of

k-length walks.

1.2 Graph representations and applications

Research on inductive modeling has defined many auto-

matic systems able to cope with patterns defined on R
n

[117]. However, many recognition problems coming from

interesting practical applications deal directly with struc-

tured patterns, such as images [29, 89], audio/video signals

[45, 101], chemical compounds [14] and metabolic net-

works [121], for instance. Usually, to take advantage of the

existing data driven modeling systems, each pattern of a

structured domain S is transformed to an R
m feature vector

by adopting a suitable preprocessing function / : S ! R
m:

The design of these functions is a challenging problem,

mainly due to the implicit semantic and informative gap

between S and R
m: A key element to design an automatic

system dealing with these recognition problems is the

information granulation of the input set S [78, 102].

Granular computing and modeling [5] is a novel paradigm

concerned with the analysis of complex data, usually

characterized by the need of different levels of represen-

tation. The key aspect, and founding concept, of the

granular modeling approach is the grouping of low-level

atomic elements into semantically relevant groups, called

information granules. Hence, granular computing consists

in finding the correct level of information granulation, i.e.,

a way to map a raw data level domain into a higher

semantic level, and in defining a proper inductive inference

directly into this symbolic domain. Labeled graphs enter

predominantly in this context, because they are general

enough to be able to model information granules and their

mutual spatio-temporal relations via vertices and edges,

respectively, together with their assigned labels. That is,

they are able to represent both topological and semantic

information of data in a single structure.

A variegated recent repository of labeled graphs is the

IAM graphs database [97]. It consists of different datasets,

from different real scientific contexts, such as recognition of

characters and molecules. The graph-based representation

can be very intuitive and effective when dealing with mol-

ecules. For example, in [64] the recognition of mutagenic

compounds is carried out employing graphs as patterns rep-

resenting the chemical dataset. The representation of mole-

cules as graphs is straightforward. Indeed, the atoms are the

vertices and the covalent bonds become the edges. Vertices

are labeled with the corresponding chemical symbol and

edges by the valence of the linkage. In [14] data on proteins

are considered for recognition. Labeled graphs are con-

structed considering the secondary structure elements of the

proteins and their spatial relations. Indeed, each vertex is

connected to the three nearest neighbors in the space. Both

vertices and edges are equipped with complex composite

type labels, describing both biological and spatial informa-

tion of data. Figure 1, taken from [14, Figure 2], shows a

simple illustration of the graphs’ elaboration process.

Another example of graph-based representation comes

from the recognition of letters, largely described in [89].

Graphs are employed to represent distorted letter drawings.

For example, Fig. 2 shows different levels of distortions

applied to the ‘‘A’’ letter. Labeled graphs are constructed

representing straight lines by undirected and unlabeled

edges and ending points of lines by vertices. Each vertex is

Fig. 1 Graphical representation

of data on proteins

Fig. 2 Letter example
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labeled with a two-dimensional attribute giving its position

relative to a reference coordinate system (usually the 2D

plane). Figure 3 shows a sample graph representation,

taken from a pattern of the IAM Letter dataset, of a dis-

torted ‘‘A’’ letter.

There are many other fields of application where labeled

graphs can be, and have been, applied as a powerful and

general representation tool. For example, just to mention a

few, we can cite applications to Web content-based infor-

mation retrieval [110], smart grids modeling [33] and

complex networks analysis [10, 21]. Obviously, from the

computational viewpoint, there are different interests, not

limited to the graph matching problem. Generally speak-

ing, it is of interest to represent data as labeled graphs when

both topological and semantic (i.e., labels) information are

relevant for the task at hand.

1.3 Exact matching

The exact matching between graphs is characterized by the

fact that the mapping between the vertices of the two

graphs must be edge-preserving, in the sense that if two

vertices in the first graph are adjacent, they are mapped to

two vertices in the second graph that are adjacent as well. If

we consider labeled graphs, we also need to match the

labels of both vertices and edges. When this relation is

bijective, we are talking about the well-known graph iso-

morphism problem.

1.3.1 Graph isomorphism

The strictest form of exact matching between graphs is the

graph isomorphism. Informally, it consists in deciding if

two given graphs are equivalent in terms of structure and

labels. The definition of the problem, considering labeled

graphs, is the following:

Definition 7 (Labeled Graph Isomorphism) Let G1 ¼
ðV1; E1; l1; m1Þ and G2 ¼ ðV2; E2; l2; m2Þ be two graphs.

A graph isomorphism between G1 and G2 is a bijection

f : V1 ! V2 satisfying

• l1ðvÞ ¼ l2ðf ðvÞÞ; 8v 2 V1;

• 8e1 ¼ ðu; vÞ 2 E1there exists an edge e2 ¼ ðf ðuÞ; f ðvÞÞ
2 E2 such that m1(e1) = m2(e2),

• 8e2 ¼ ðu; vÞ 2 E2 there exists an edge e1 ¼ ðf�1ðuÞ;
f�1ðvÞÞ 2 E1 such that m1(e1) = m2(e2).

Two graphs are called isomorphic if there exists an

isomorphism f(�) between them. Definition 7 is an exten-

sion of the classical formulation of the problem to the case

of labeled graphs. To establish an isomorphism, one has to

map each vertex from the first graph to a vertex of the

second graph such that the edge structure is preserved and

the vertex and edge labels are consistent to each other. This

problem is known to be in NP, neither known to be in P nor

NP-complete [42]. We will refer to the isomorphism rela-

tion with the notation G ’ G0:
There are well-known special cases where the graph iso-

morphism problem can be solved efficiently, i.e., polynomial

time. For example, checking for the isomorphism between

planar graphs is known to be solvable in linear time [55].

Another type of exact graph matching is the graph

homomorphism [54]. This is a weaker form of matching in

which adjacent vertices on the first graph must be mapped

to adjacent vertices in the second graph, but the corre-

spondence can be many to one.

1.4 Inexact and error-tolerant graph matching

In many real-world applications, especially in the fields of

machine learning and pattern recognition, it is more

interesting to take into account both structural and labels-

related differences between graphs. This need comes from

the motivation that graphs that represent patterns from the

same class may differ only in small parts, due, for example,

to external noises. Some of the state-of-the-art methodol-

ogies are general enough to be applied to a wide range of

graphs, but we think that it is operatively better to distin-

guish between two main categories: the ones that works

well on graphs with simple labels and the ones that are

better on (possibly) fully labeled graphs. This distinction,

also done in [41], is motivated by the fact that it is possible

to formulate very specific and more efficient algorithms

that rely on the particular domain of application and

structural definition of the graph. There are two other well-

done and interesting works with a general point of view

about the algorithmic problems concerning the graph

matching related issues [23, 89].

One intuitive way to deal with an imprecise graph

matching consists in evaluating how much two graphs

share. This issue can be addressed via the notion of sub-

graph isomorphism.

Definition 8 (Subgraph isomorphism) Let G1, G2 be two

graphs. An injective function f : V1 ! V2 is called a sub-

graph isomorphism from G1 to G2 if there exists a subgraph

G � G2 such that f(�) is a graph isomorphism between G1

and G.

A subgraph isomorphism exists between two graphs if

the larger, say G2, of the two can be reduced into a smaller

Fig. 3 Graphs representing a (distorted) ‘‘A’’ Letter
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graph by removing some vertices and/or edges, and this

reduced version is isomorphic to G1. The subgraph iso-

morphism problem is known to be NP-complete [24].

Another possibility for the computation of the matching

degree between graphs comes from the maximum common

subgraph (MCS) problem [73]. Unfortunately, also this

problem is known to be NP-hard [42].

Definition 9 (MCS) Let G1, G2 be two graphs. A graph

G ¼ ðV; E; l; mÞ is called a common subgraph of G1 and G2

if G ’ G1 and G ’ G2: A common subgraph G is called

maximum (MCS), denoted with GMCS, if there exists no

other common subgraph of G1 and G2 with more vertices

than G.

One naive method to establish a dissimilarity measure,

using the MCS, between two graphs is the well-known

MCS distance [19], defined as

dMCSðG1;G2Þ ¼ 1� jVMCSj
maxfjV1j; jV2jg

: ð1Þ

If two graphs are isomorphic, their MCS distance is

zero, and if they do not share anything, their MCS distance

is one [19]. The MCS distance between two graphs is

uniquely defined; conversely, the maximum common

subgraph is not unique.

2 Methodologies

Given two labeled graphs, G1 and G2, the general objective

is to be able to match these two structures considering both

structural and semantic information, i.e., the information

provided by the labels. As in [41], we will refer to the first

considered graph as data graph and to the second one as

the model graph. The challenge is in obtaining an esti-

mation of how much the data graph resembles the model

graph. This generic problem can be formulated in two

ways:

• compute the similarity or

• compute the dissimilarity of these two graphs.

The difference between these two approaches may seem

small, although there are theoretical and practical impli-

cations. The first approach is based on the representation of

graphs in a suitable implicitly induced vector space. The

second one has two incarnations. The first one aims to

estimate the amount of distortions needed to transform the

data graph into the model graph. This estimation is carried

out directly in the domain of the graphs. The second

incarnation is again built with the aim of representing the

graph in an explicit embedding space, where the com-

monalities between the input graphs should be reflected by

their mutual distance in this space. Of course, there are also

hybridized formulations. The establishment of a (dis)sim-

ilarity measure between graphs permits performing recog-

nition and learning tasks with standard tools, such as the k-

NN classifier, (fuzzy) neural networks or kernel machines

[117]. As in many graph-based problems, one of the main

limitation is the computational cost of these procedures. A

straightforward consequence is the adoption of some fea-

sible approximate solution for both time and space

requirements. The objective is to obtain a good trade-off

between what is left in the approximation and what is

gained in terms of resources. Unfortunately, it is not

so easy to achieve this trade-of only by theoretical analy-

sis, leaving the final judgment to the mandatory

experimentations.

In the actual scientific literature, we can clearly distin-

guish three mainstream approaches for the inexact graph

matching problem:

1. Graph edit distance [17, 40, 83, 84, 87, 88, 89, 90, 94,

98, 109, 129]: these methods match the graphs directly

in their domain and, in general, are applicable to a

wide class of graphs.

2. Graph kernels [14, 43, 50, 63, 66, 75, 79, 85, 86, 123]:

they are based on the notion of similarity between two

discrete objects that is evaluated on an implicitly

induced feature space. Being able to define a kernel

function for graphs permits importing the whole class

of kernel machines on this domain.

3. Graph embedding [28, 29, 34, 35, 59, 74, 92, 96, 99,

100, 101, 103, 104, 105, 115]: these methods are based

on the embedding of the graph to obtain a general (and

usually relative to the data) vector representation.

These methods can be seen as a generalization of the

graph kernels approach.

2.1 Graph edit distance

The first and very important concept to introduce here is

the graph edit distance (GED) measure [17,109], which can

be thought as a reformulation of the well-known edit dis-

tance for strings, such as the Levenshtein distance [72], in

the graphs domain. A GED is a measure of dissimilarity

between graphs, defined directly in their domain G as a

nonnegative function d : G � G ! R
þ: The problem of

defining such a dissimilarity measure can be formulated is

this way: given two graphs G1 and G2, we calculate the

amount of both structural and label’s distortions needed to

transform G1 into G2. To be able to talk about distortions in

graphs, we need to introduce the concept of edit path.

Definition 10 (Edit path) Let G1, G2 be two graphs. Any

bijection f : V̂1 ! V̂2; where V̂1 � V1 and V̂2 � V2; is

called an edit path between G1 and G2.
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To be able to construct an edit path between two graphs,

we need to define the basic edit operations that are valid for

both vertices and edges. For simplicity, in the following

list, we will refer to vertex operations only.

• Substitution: u! v; with u 2 V1 and v 2 V2: The

substitution is in fact a vertex label substitution.

• Deletion: u! e:
• Insertion: e! u:

Other types of basic edit operations can be defined for

application-specific purposes, such as vertex merge and

splitting [3]. Let o be a complete edit path, i.e., a path that

completely transform the data graph into the model graph.

We can denote it as a sequence of basic edit operations

o ¼ ðoi; . . .; okÞ ¼ ðu! v; . . .; e! wÞ: Each edit operation

oi has an associated edit cost, denoted with c(oi). For all pairs

of graphs there exist at least one edit path, i.e., by removing

all vertices from the data graph and inserting all vertices of

the model graph, but this approach is not much informative

about the structural dissimilarity of the two graphs.

Definition 11 (Edit cost function) The edit cost function

is a nonnegative function of the form

c : O ! R
þ

that also satisfies the following inequalities to avoid

unnecessary edit operations:

cðu! wÞ� cðu! vÞ þ cðv! wÞ
cðu! eÞ� cðu! vÞ þ cðv! eÞ
cðe! vÞ� cðe! uÞ þ cðu! vÞ

O is the set of all edit paths. It is intuitive to understand

that edit paths without unnecessary edit operations are to be

considered preferable in this edit model [89]. It is worth

stressing that the definition of such edit costs c(oi) is a crucial

task for the inexact graph matching based on GED. Now, we

are ready to define the graph edit distance [17, 36, 109].

Definition 12 (Graph edit distance) Let G1, G2 be two

graphs, and let c(o) denote the cost of an edit path o from

G1 to G2. Let O be the finite set of edit paths from G1 to G2,

then the edit distance between G1 and G2 is defined as

dGEDðG1;G2Þ ¼ min
o2O

X
i

cðoiÞ: ð2Þ

The set O in general is infinite, but with proper

observations of some of these given in Definition 11, the

number of allowable edit operations can be reduced. We

can consider only jV1j deletion of vertices from G1, jV2j
insertion of vertices from G2, the jV1j � jV2j vertices

substitutions from G1 to G2 and the corresponding jE1j þ
jE2j þ jE1j � jE2j operations on edges [89]. In general GED

is not symmetric, but if the cost function satisfies the

conditions of positive definiteness and symmetry as well as

the triangle inequality at the level of single edit operations

oi, the resulting edit distance is known to be a metric [17].

Figure 4, taken from [98, Figure 1], shows a possible

sequence of edit operations needed to transform the graph

G1 into the graph G2.

2.1.1 Exact computation of GED

Computing the exact edit distance between two graphs G1

and G2 is equal to finding the minimum of Eq. 2. The A�

algorithm [17] evaluates all edit paths traversing a search

tree in a greedy strategy, choosing, from the current set of

edit path candidates, the one with the minimum edit cost.

In general, this approach is known to be exponential both

in space and time in the number of involved vertices, and

thus is practically applicable only to very small graphs

[89]. All modern strategies are based on suboptimal solu-

tions of this problem. It was observed that the gain in

accuracy, when using the exact procedure, is not justified

with the big gap in terms of computation time and

resources demand [89]. Its usage is very limited in the

domains where the maximum accuracy is mandatory. The

A� algorithm is explained in Sect. 3.1.1.

2.2 Graph kernels

In this section, we introduce the concept of kernel function

and its application to the domain of graphs, namely the

graph kernels. Graphs are the most general example of

discrete structures, and thus these methodologies can be

applied, with proper observations, to any discrete structure,

such as strings and automata. Graph kernels rely on the

representation of a graph in an implicitly defined feature

space, where eventually they are analyzed. Therefore,

graph kernels are the key for the application of kernel

machines (e.g., Support Vector Machines [15, 25]) to the

domain of labeled graphs G:
The needed mathematical background is briefly intro-

duced here, starting from kernel functions and the repro-

ducing property in a Hilbert space.

Fig. 4 Example of edit path
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Definition 13 (Positive definite kernel function) Let X be

a generic input space and k : X � X ! R be a continuous

function on the product space X � X : The function kð�; �Þ
is called a positive definite kernel on X � X if it is sym-

metric, kðx; zÞ ¼ kðz; xÞ; 8x; z 2 X ; and positive definite,

that is 8n 2 N; x1; . . .; xn 2 X and c1; . . .; cn 2 R; it follows

thatX
i;j2f1;...;ng

cicjkðxi; xjÞ	 0:

Actually, if the C operator is used in Definition 13, the

kernel is called positive semi-definite. As many other

authors [6], we will avoid the specification. A kernel

function provides a way to express the similarity between

elements of a (generic) input set. When X coincides with

R
n there are many different types of kernel functions [111,

113], some of which are listed in Table 1.

We introduce now the definition of inner product

spaces, a powerful generalization of Euclidean spaces to

vector spaces geometry, where notions such as angles and

length of vectors (and functions) can be formally defined.

Definition 14 (Inner product space) An inner product

space ðX ; h�; �iÞ is a vector (or linear) space X along with a

function h�; �i : X � X ! R called the inner product, such

that

1. 8x; y 2 X holds hx; yi ¼ hy; xi (symmetry),

2. 8x; y; z 2 X and scalar a 2 R holds hax; yi ¼ ahx; yi
and hxþ z; yi ¼ hx; yi þ hz; yi(linearity),

3. 8x 2 X holds x 6¼ 0) hx; xi[ 0 (positiveness).

Every inner product space is a normed vector space

with the norm x2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
; and thus a metric space

with d2ðx; yÞ ¼ kx� yk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx� y; x� yi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xiþ

p
hy; yi � 2hx; yi: An Hilbert space H is an inner product

space that is also complete (i.e., each Cauchy sequence is

convergent in it) with respect to the induced metric by the

inner product.

Now, we introduce the important reproducing property

of kernel functions, being a fundamental pillar in pattern

recognition and machine learning contexts [111, 113].

Definition 15 (Reproducing kernels Hilbert space) Let H
be a set of functions of the form f : X ! R: A kernel

function k : X � X ! R is called a reproducing kernel if

• 8x 2 X the function kðx; �Þ 2 H; and

• 8x; z 2 X and 8f ð�Þ 2 H the reproducing property

holds, i.e., hkðx; �Þ; f ð�Þi ¼ f ðxÞ: In particular, hkðx; �Þ;
kðz; �Þi ¼ kðx; zÞ:

H is called the reproducing kernel Hilbert space (RKHS).

Let U : X ! H be a mapping function that assigns to

each pattern x 2 X a function on the domain X ; that is

UðxÞð�Þ ¼ kðx; �Þ: It is possible to construct a feature space,

i.e., an RKHS H; that contains the image of the input

patterns of X under Uð�Þ; and where an inner product

operator h�; �iH can be evaluated such that kðx; zÞ ¼
hUðxÞ;UðzÞiH; 8x; z 2 X ; holds [111, 113]. As a conse-

quence, we can state that every reproducing kernel is a

positive definite kernel, since:

X
i;j2f1;...;ng

cicjkðxi; xjÞ ¼
Xn

i¼1

cikðxi; �Þ;
Xn

i¼1

cikðxi; �Þ
* +

¼
Xn

i¼1

cikðxi; �Þ
�����

�����
2

	 0: ð3Þ

The RKHS H is a Hilbert space of functions. It is

possible to formulate what is called a Mercer kernel [111,

Section 2.2.4], with very similar properties to the ones of

reproducing kernels, but the associated Hilbert space,

denoted as Hk; is now a sequences space (e.g., an l2 space)

and not a functions space. To be a valid Mercer kernel,

kð�; �Þ must satisfy the well-known Mercer’s conditions [2,

80], i.e., it must be continuous, symmetric and positive

definite. It is possible to show that for each valid Mercer

kernel k : X � X ! R there is at least one mapping

function U : X ! Hk such that kðx; zÞ ¼ hUðxÞ;UðzÞiHk
;

8x; z 2 X : The inner product is evaluated in Hk; that is

dependent on kð�; �Þ and is most of the times unknown [111,

113]. In the remainder of the paper, we will omit the

subscript to the inner product operator.

A notable example of valid kernel is the Gaussian RBF

kernel, defined as kðx; zÞ ¼ expð�c � dðx; zÞ2Þ; where

dð�; �Þ is a metric distance, c ¼ 1=2r2 and x; z are assumed

to be real vectors. Of course, the Gaussian RBF kernel can

be applied to any generalized input set X : The only

requirement is that a suitable (symmetric) distance function

d : X � X ! R must be defined. Anyway, the associated

Hilbert space Hk is an infinite dimensional feature space in

this case. A larger class of kernel functions related to

positive definite kernels are the conditionally positive

definite kernels, where
P

i=1
n ci = 0 holds. Every positive

definite kernel is also a conditionally positive definite

Table 1 Some kernel functions

Kernel Formula

Linear hx; zi ¼ x � z
Polynomial ðhx; zi þ vÞd

RBF expð�c k x� z k2Þ; c[ 0

General Gaussian expð�ðx� zÞTCðx� zÞÞ
Normalized kðx;zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðx;xÞ�kðz;zÞ
p

Weighted sum
P

i wiki X;Zð Þ; wi	 0
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kernel. For the closure property under pointwise addition

and multiplication of kernel functions [6], it is possible to

derive other kernels that are useful in specific contexts.

Other examples of positive definite kernels are the linear,

polynomial and (for a restricted range of its parameters) the

hyperbolic tangent (also called sigmoid) kernel function.

For a more in-depth analysis on kernel functions, together

with their applications in kernel machines, see [111, 113].

Both reproducing and Mercer kernel functions are of

fundamental importance in machine learning and pattern

recognition applications with kernel machines, and the

relation kðx; zÞ ¼ hUðxÞ;UðzÞi; 8x; z 2 X ; is referred to as

the kernel trick in those contexts [2]. Indeed, the term

kernel trick is usually intended for the necessity to define

only a valid kernel function kð�; �Þ; tailored to the specific

nature of X ; without any necessity to define explicitly the

function Uð�Þ in closed form. In Sect. 3.2, we will show

many applications of this property on graph matching

related problems, i.e., when X ¼ G:
To help the reader understand the mechanism behind the

kernel trick, we report a simple example that shows explicitly

the embedding space Hk: Let X be R
2: Suppose that the

employed valid kernel function is the polynomial kernel with

v = 0 and d = 2, i.e., kðx; zÞ ¼ ðx � zÞ2;where the operator �
is the dot product. In this case, it is easy to find a Hilbert space

Hk; and a mapping function U : R2 ! Hk such that ðx �
zÞ2 ¼ hUðxÞ;UðzÞi: We define the inner product as the dot

product, i.e., as hUðxÞ;UðzÞi ¼ UðxÞ � UðzÞ: Expanding the

kernel function, we have ðx � zÞ2 ¼ ðx1z1 þ x2z2Þ2 ¼ x2
1z2

1 þ
2x1z1x2z2 þ x2

2z2
2; that can be also expressed as

ðx � zÞ2 ¼
x2

1ffiffiffi
2
p

x1x2

x2
2

2
4

3
5 z2

1

ffiffiffi
2
p

z1z2 z2
2

� �
: ð4Þ

Hence, by defining the mapping function as

UðxÞ ¼
x2

1ffiffiffi
2
p

x1x2

x2
2

2
4

3
5; ð5Þ

we obtain

ðx � zÞ2 ¼
x2

1ffiffiffi
2
p

x1x2

x2
2

2
4

3
5 z2

1

ffiffiffi
2
p

z1z2 z2
2

� �
¼ UðxÞ �UðzÞ: ð6Þ

Therefore, we have shown that kðx; zÞ ¼ UðxÞ � UðzÞ;
where the dot product is actually evaluated in Hk ¼ R

3:

For example, when the input patterns are confined in

[-1, 1]2, the image of Uð�Þ looks like the one shown in

Fig. 5 (the figure is taken from [20, Figure 8]).

Now, we introduce some other mathematical back-

ground necessary to be able to deal with the concept of

product of graphs.

Definition 16 (Kronecker product) Given two real

matrices An�m and Bp�q; the Kronecker product is denoted

A
 B 2 R
np�mq and defined as

A
 B ¼
A1;1B A1;2B � � � A1;mB

..

. ..
. ..

. ..
.

An;1B An;2B � � � An;mB

2
64

3
75:

Unlike matrix multiplication, the Kronecker product

A
 B does not entail a restriction on the size of the

involved matrices [8]. Another interesting and useful

property of the Kronecker product is

ðA
 BÞðC
 DÞ ¼ AC 
 BD: ð7Þ

Definition 17 (Schur product) Given two real matrices

An�m and Bn�m; the Schur (or Hadamard) product is denoted

A� B 2 R
n�m and is defined as the componentwise product

½A� B�ij ¼ AijBij:

Kronecker and Schur products are linked with relation

ðA
 BÞ � ðC
 DÞ ¼ ðA� BÞ 
 ðC� DÞ: ð8Þ

See [8, Chapter 7] for a more complete treatment of the

Kronecker and Schur algebras. It is possible to extend the

Kronecker algebra to graphs, introducing the Tensor Product

operator for graphs (also called Direct Product) [56].

Definition 18 (Tensor product of graphs) The tensor

productbetween two graphs G1, G2, denoted with G1 
 G2,

produces a graph G� ¼ ðV�; E�Þ defined as

V� ¼ fðvi; urÞ : vi 2 V1; ur 2 V2g;
E� ¼ fððvi; urÞ; ðvj; usÞÞ : ðvi; vjÞ 2 E1 ^ ður; usÞ 2 E2g:

Note that we have used the same symbol 
 for both

Kronecker and tensor products, because indeed the tensor

product of two graphs corresponds to the computation of

the Kronecker product of the two respective adjacency

matrices of G1 and G2. Figure 6 shows an illustrative

example of the tensor product between two simple graphs.

Fig. 5 Image of the mapping function Uð�Þ shown in Eq. 5

260 Pattern Anal Applic (2013) 16:253–283

123

https://www.researchgate.net/publication/239054666_Harmonic_Analysis_on_Semigroups_Theory_of_Positive_Definite_and_Related_Functions?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/203918300_Smola_A_Learning_with_Kernels_-_Support_Vector_Machines_Regularization_Optimization_and_Beyond_MIT_Press_Cambridge_MA?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/229439297_Matrix_Mathematics_Theory_Facts_and_Formulas_Second_Edition?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==
https://www.researchgate.net/publication/220694854_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-54ec521684168f9cd265f52d7dd1c44d-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ3MTk3NDtBUzoyOTkzNzczNDUyMjA2MjlAMTQ0ODM4ODUyOTgwMw==


The tensor product operator 
 is commutative, associa-

tive and has many other interesting and useful properties

[56, 95, 108]. For example, it is possible to show that per-

forming a (random) walk on the tensor product graph

G 9 = G1 
 G2 is equivalent to performing two simulta-

neous (random) walks on G1 and G2. Another important

property is that the neighborhood of a vertex ðv; uÞ 2
VðG�Þ;denoted with Nððv; uÞÞ; is given by the cartesian

product NðvÞ � N ðuÞ; and consequently the degree of

(v, u) is given by degððv; uÞÞ ¼ degðvÞ � degðuÞ: The tensor

product graph G 9 , in some sense, is able to encode the

commonalities between the two input graphs G1 and G2.

2.2.1 Convolution kernels

Convolution kernels, first described in [53] as R-convolu-

tion kernels, infer the similarity of composite discrete

objects from the similarity of their parts. It is intuitive to

understand that a similarity function can be more easily

defined for smaller parts rather than for the whole com-

posite object. Assuming to be able to calculate the simi-

larities between the simpler parts of the composite objects,

a convolution operation is applied in order to turn them into

a kernel function for the whole object. It is possible to

construct a new valid kernel function starting from differ-

ent distinct kernels, considering the closure property under

addition and multiplication by a positive constant of the

class of positive definite functions [6].

Definition 19 (R-convolution kernel) Let X be an input

space of discrete objects. Let the decomposition in D parts

of two elements x; x0 2 X be defined as x ¼ ðx1; . . .; xDÞ and

x0 ¼ ðx01; . . .; x0DÞ; respectively. Assume that for each d-th

part of the elements, we can calculate the similarity with the

kernel jdðxd; x
0
dÞ: Then the similarity between x and x0 as a

whole is defined as the generalized convolution operation

kðx; x0Þ ¼
X

ðx1 ;:::;xDÞ2R�1ðxÞ
ðx0

1
;:::;x
0
D
Þ2R�1ðx0 Þ

YD
i¼1

jiðxi; x
0
iÞ; ð9Þ

where R�1ðxÞ stands for the set of all possible decompo-

sitions of element x: The R-convolution of j1; . . .;jD is

denoted with j1H; . . .;HjDðx; x0Þ:

The ANOVA kernel [127], for instance, is a particular

convolution kernel, which uses a subset of the components

of a composite object for comparison. Another example is

to adopt the RBF kernel [113, 114], i.e., a kernel function

of the form

jðx; yÞ ¼ e
�ðf ðxÞ�f ðyÞÞ2

2r2 ; ð10Þ

where f ð�Þ is a function from the input space into R: The R-

convolution of these functions, assuming only one way to

decompose these objects |R-1(x)| = |R-1(y)| = 1, is

written as

j1ðx; yÞH; . . .;HjDðx; yÞ ¼ e
�
PD

d¼1

ðfd ðxÞ�fd ðyÞÞ2

2r2
d : ð11Þ

The R-convolution kernel has laid the groundwork for

many graph kernels. The decomposition of a graph G into d

parts ðG1; . . .;GdÞ; is then mathematically denoted by

R�1ðGÞ ¼ fðG1; . . .;GdÞ : RðG1; . . .;Gd;GÞg: The most

simple and immediate example of decomposition of a

graph is the one that assume the set of all decompositions

of a graph G 2 G as the set of its vertices, R�1ðGÞ ¼ V: A

general convolution kernel function for graphs G;G0 2 G
can then be written as

kðG;G0Þ ¼
X

ðG1 ;:::;Gd Þ2R�1ðGÞ
ðG0

1
;:::;G

0
d
Þ2R�1ðG0 Þ

Yd

i¼1

jiðGi;G
0
iÞ; ð12Þ

using a specialized kernel function jið�; �Þ for each vertex vi

(i.e., its associated label). It is easy to understand that when

dealing with graphs, the definition of R-1(G) becomes

critical, because of the computational hardness associated

with their combinatorial nature.

An interesting, and mathematically-grounded, way to

apply the convolution property to graphs is through the

tensor product operator explained in Definition 18. Indeed,

this operator can be seen as a rigorous way to merge two

labeled graphs, employing different specialized valid ker-

nel functions for vertices and edges labels. In Sect. 3.2, we

will see different examples of graph kernels using this

approach.

2.2.2 Complete graph kernel computation

A complete graph kernel [43, Section 5.3] is based on the

notion of isomorphism between two graphs and the relative

equivalence classes induced on the set of all graphs G: The

quotient set G=’ implies the relation G ’ G0 ) /ðGÞ ¼
/ðG0Þ; where /ðGÞ is the mapping of the graph in a high-

dimensional feature space. Hence, a complete graph kernel

is able to recognize all non-isomorphic graphs. This kernel is

useful when one wants to distinguish between graphs that

differ only in their vertices’ identifiers. Now, we introduce

the definition of complete graph kernel mainly to show an

example of an NP-hard formulation of a graph kernel.

Fig. 6 Example of tensor product between graphs
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Definition 20 (Complete graph kernel) Let / : G ! H be

a map from G into a Hilbert space H; and let

k : G � G ! R be a kernel such that h/ðGÞ;/ðG0Þi ¼
kðG;G0Þ: If /ðGÞ ¼ /ðG0Þ implies that G ’ G0 for all

graphs in G; then kð�; �Þ is called a complete graph kernel.

It is easy to understand that with such definitions, G ’
G0 , /ðGÞ ¼ /ðG0Þ holds for each pair of graphs in G: It

is possible to show that computing a complete kernel is as

hard as deciding if two graphs are isomorphic, and con-

sequently NP-hard. Similarly, if the graph kernel is based

on (all) their common subgraphs, it is possible to show that

there is no polynomial time algorithm for computing the

graph kernel [43, section 5.3].

2.3 Graph embedding

In the field of structural pattern recognition, the input

domain can be any generalized set X where the common

mathematical structure of metric, normed or inner product

spaces cannot be defined obviously. The notion of neigh-

borhood of objects of a generic input space X is extremely

linked to the notion of commonality between these. If two

objects share many common descriptive attributes, then

they must result close in the representation framework.

Generalizing the definition of a topological space, one

could be able to deal with this kind of very general rep-

resentation [92]. The primitive and intuitive notion of

dissimilarity between objects of a generic input space can

be used to build various pattern recognition and learning

systems. A dissimilarity is basically a generalization of a

metric distance that requires fewer constraints about its

definition. The dissimilarity is the dual concept of the

similarity, of which kernel functions are only an example.

The dissimilarity measures can be defined in various

domains, and not only in metric spaces. For example, a

measure of divergence between two distributions is the

well-known Kullback–Leibler divergence [69]. This is not

a metric because it is not symmetric, in general. The notion

of dissimilarity can be employed to produce a generalized

notion of topology over a generic set of objects. Another

good reference containing (but not limited to) this aspect

related to (dis)similarity functions on a generalized space

X can be found in [117, Section 11.2].

The embedding between spaces plays a crucial role in

this scenario, because it permits associating the generic

input space X to a known space, where classical and well-

tested recognition and learning algorithms can be applied

directly. We can cite two main applications regarding this

issue: dissimilarity space embedding [92] and metric space

embedding [77]. The first one has been already applied in

problems regarding graphs [100], i.e., where the input

space is a set of graphs, X ¼ G: We will proceed with

some definitions regarding generalized metric spaces,

Lipschitz functions, space embedding and related issues.

For a more in-depth treatment see, for example, [82, 92,

128].

Definition 21 (Generalized metric spaces) Given a set X
and a dissimilarity function q : X � X ! R

þ; the pair

ðX ; qÞ is said to be:

1. Hollow space: if qð�; �Þ is reflexive.

2. Premetric space: a hollow space obeying the symmetry

constraint.

3. Quasimetric space: a premetric space obeying the

definiteness constraint.

4. Semimetric space: a premetric space that satisfies the

triangle inequality.

5. Metric space: if qð�; �Þ is reflexive, positive definite,

symmetric and satisfies the triangle inequality.

As we have said before, the establishment of a dissim-

ilarity d : X � X ! R
þ is able to naturally induce a gen-

eralized topology over the same generic set X ; via the

notion of open ball neighborhood basis.

Definition 22 (Open ball neighborhood basis) Given a

set X and a generalized distance d : X � X ! R
þ; the

open ball neighborhood for x 2 X is defined as B�ðxÞ ¼
fy 2 X : dðx; yÞ\�g; for �[ 0: The open ball neighbor-

hood basis is defined as N BðxÞ ¼ fB�ðxÞ : �[ 0g:

The neighborhood basis can be used to entirely describe

the (pre-)topology of a set X [82, 92]; hence, also a gen-

eralized definition of the topology of this set can be given.

This kind of definition of topology automatically induces a

generalized neighborhood function m : X ! PðPðXÞÞ; that

establishes at each x 2 X its neighborhood NðxÞ (with

N BðxÞ � N ðxÞ), i.e., a collection of subsets over X con-

taining objects that are in some sense similar to each other.

Given the neighborhoods, one can conceive a dissimilarity

measure also between generalized sets using only topo-

logical information of the input data, employing, for

instance, extensions of the Hausdorff distance [92, Section

5.5]. These generalizations are well described and widely

contextualized in [92], where they are employed as some of

the founding concepts of the theory of the dissimilarity

representations.

When we basically deal with sets, it is possible to

observe that the generalization can be conceived also in a

more radical way, employing, for example, concepts from

the fuzzy sets theory [133] and the more recent develop-

ment of the field known as granular modeling of systems

and data [5]. However, a deep treatment of these topics is

out of the scope of this review.
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2.3.1 Embeddings

The following results are taken mostly from [92, 128]. We

start by introducing the concept of embedding between

finite spaces, considering the properties derived from the

dissimilarity measure adopted in the input space.

Definition 23 (Isometric embedding) Let ðX ; dÞ and

ðY; qÞ be two metric spaces. ðX ; dÞ is isometrically em-

beddable into ðY; qÞ if there exists a mapping function,

called isometry, / : X ! Y such that dðx; yÞ ¼ qð/ðxÞ;
/ðyÞÞ; 8x; y 2 X :

Two spaces are isometrically isomorphic if there exists a

bijective isometry between them. Every complete metric

space is isometrically isomorphic to a closed subset of

some Banach space. Every metric space is isometrically

isomorphic to a subset of some normed vector space. Two

Hilbert spaces are always isometrically isomorphic.

A Euclidean space ðRm; d2Þ is embeddable in a Hilbert

space, and every finite subset of m elements in a Hilbert

space can be embedded in ðRm�1; d2Þ: Not every metric

space can be embedded in a Hilbert space:

Theorem 1 (Schoenberg) Given p 2 ð0; 2�; and r 2 ð0; p
2
�

the space ðRm; lr
pÞ is isometrically embeddable in a Hilbert

space.

This theorem applies to both metric and non-metric

spaces, using a suitable power r of the adopted dissimi-

larity function lpð�; �Þ: However, not every metric space is

isometrically embeddable to l1ð�; �Þ; l2ð�; �Þ or l1ð�; �Þ
derived metric spaces. Note that when finite-dimensional

spaces (e.g., Euclidean spaces) are considered, l2ð�; �Þ
induced metric corresponds to the Euclidean metric dis-

tance d2ð�; �Þ:
Now, we show an important concept of continuity of a

mapping function between two metric spaces that finds

interesting applications also in pattern recognition contexts

employing explicit embedding strategies.

Definition 24 (Lipschitz mapping function) Let ðX ; dÞ
and ðY; qÞ be two metric spaces. A mapping function / :
X ! Y is said to be Lipschitz continuous if there exists a

constant k C 0 such that qð/ðxÞ;/ðyÞÞ� k � dðx; yÞ; 8
x; y 2 X :

The smallest k is called Lipschitz number or Lipschitz

constant of /ð�Þ and is usually denoted with Lð/Þ [128]. If

k \ 1 the mapping is a contraction of the original set.

Conversely, if k [ 1, it is called an expansive map. Finally,

if k = 1 the mapping is called non-expansive. A Lipschitz

mapping /ð�Þ can be seen as an explicit embedding method

able to preserve and bound, with a constant scaling factor

k, mutual distances of the elements of the original input set

into the embedding space. This fact is of practical impor-

tance for pattern recognition problems, since patterns dis-

tances in the representation space are the primary source of

information of any inductive modeling system. A function

/ð�Þ is called locally Lipschitz continuous if for every x 2
X there exists a neighborhood NðxÞ of x such that /ð�Þ;
restricted to NðxÞ; is Lipschitz continuous. Note that

Lipschitz continuity always implies uniform continuity,

and every uniform continuous function is continuous.

Conversely, not every continuous function is uniformly

continuous, and thus Lipschitz. For example, f(x) = x2 is

only locally Lipschitz.

Admitting distortions in the embedding procedure, it is

possible to make another kind of embedding, called bi-

Lipschitz embedding.

Definition 25 (bi-Lipschitz embedding) Given two metric

spaces, ðX ; dÞ and ðY; qÞ; and an embedding / : X ! Y;
we say that the embedding function is a distorted embed-

ding function, or bi-Lipschitz, if there exist r [ 0 and

c C 1 such that r � dðx; yÞ� qð/ðxÞ;/ðyÞÞ� c � r � dðx; yÞ;
8x; y 2 X : The real number c is the distortion of the

embedding.

A scalar-valued Lipschitz function is a function of the

form / : X ! F; where F is a generic field (such as the

reals R).

Definition 26 (Lipschitz space) Let ðX ; dÞ be a metric

space. Then LipðXÞ is the Lipschitz complete (Banach)

vector space of all bounded scalar-valued Lipschitz

functions /ð�Þ on X ; with (Lipschitz) norm /L ¼
max ð/1; Lð/ÞÞ:

A pseudo-Euclidean space [48] is a simple kind of

decomposable inner product space where an indefinite

inner product can be defined, forming an indefinite inner

product space. It is basically an inner product space that

satisfies only symmetry and linearity conditions (see Def-

inition 14). We will see that this concept plays an important

role in some topics concerning the linear embedding of

spaces. Formally,

Definition 27 (Pseudo-Euclidean space) A pseudo-

Euclidean space E ¼ R
ðn;mÞ is a real vector space equipped

with an indefinite inner product h�; �i
E

that admits a direct

orthogonal decomposition E ¼ Eþ � E�; where Eþ ¼ R
n

and E� ¼ R
m are the set of positive and negative vectors,

respectively.

Therefore, the indefinite inner product h�; �i
E

is definite

positive on R
n and negative definite on R

m: Note that a

vector x is said to be positive (negative) if hx; xi[ 0

(hx; xi\0) holds. Consequently, this definition extends

directly to subspaces [92, Section 2.7].
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2.3.2 Dissimilarity representations

Given a generalized finite metric space ðX ; dÞ; where X ¼
fx1; x2; . . .; xng and dð�; �Þ is a general dissimilarity measure

on the elements of X ; a dissimilarity matrix D is a (square)

matrix with Dij ¼ dðxi; xjÞ; 8xi; xj 2 X : Thus D is nonneg-

ative and has a zero diagonal. The dissimilarity represen-

tation [92] for an input space X is written as

DðX ;RÞ 2 R
n�r: This notation means that all the objects

in X are represented relatively to the objects in R �
X ; jRj ¼ r� n: This is the first and the most important

characteristic of this type of representation, as the objects

are described considering only local reference systems.

Conversely, the positive definite kernel functions implicitly

represent the objects (i.e., graphs, strings etc…) in a pre-

defined feature space. Figure 7 (a re-elaboration of [92,

Figure 3]) shows an intuitive explanation of the key

aspects introduced by the relative representation scheme

followed by the dissimilaritiescomputation, against the

standard feature-based, or absolute, representations.

A dissimilarity matrix D is called Euclidean, also

denoted with D�2; if Dij ¼ d2ðxi; xjÞ;8xi; xj 2 X :

Definition 28 (Metric for D) A dissimilarity matrix D is

metric if the triangle inequality dij B dik ? dkj holds for all

triplets (i, j, k).

If two objects, say the i-th and the j-th are equal, then

dij = 0 and we have that dik ¼ djk; 8k: If the dissimilarity

matrix D is not Euclidean, then it is possible to apply a

correction of the form D0 ¼ Dþ cð11T � IÞ; with

c [ maxp,q,r |dpq ? dpr - dqr|. If D is Euclidean, then any

concave and nondecreasing transformation Dij = f(dij) of

the dissimilarity values will preserve the Euclidean

properties.

Definition 29 (Euclidean behavior) A dissimilarity

matrix D 2 R
n�n is Euclidean if it can be embedded in a

Euclidean space ðRm; d2Þ; with m B n.

This means that an input space (feature vectors) X ¼
fxign

i¼1 is embeddable in R
m with d2ðxi; xjÞ ¼ xi � xj2 ¼

Dij; 8i; j: The Euclidean property is a favorable aspect of

D; that permits its embedding without loss of information

regarding the input dissimilarities of data. Refer to [92,

Section 3.4] for more details on how to test the Euclidean

behavior of dissimilarity matrices and for various correct-

ing techniques.

Generally speaking, considering a dissimilarity repre-

sentation of a training set T ; it is convenient to find a

subset of prototypes P � T that are able to approximately

describe the entire set considering some quality measure. In

this case, the representation can be generalized using a

relative representation DðT ;PÞ; that is, describing the

entire set as a function of a relatively small set of its ele-

ments, mostly due to computational speed-up purposes. An

embedding can be found directly for DðP;PÞ; projecting

the other T \P elements into the embedding space, or

defining an embedding that resembles a Lipschitz mapping

between the input space and the representation space. The

latter was first exploited in [100] considering graphs, and is

described in this paper in Sect. 3.3.1. In this case, proto-

types selection techniques play a crucial role.

Given an input set of generic non-represented objects

R ¼ fp1; . . .; png and the dissimilarity matrix DðR;RÞ;
three possibilities are outlined in [92] for the dissimilarity

representation of R : direct employment of the dissimilar-

ities, linear embedding [92, Section 3.5] and finally spatial

representation [92, Section 3.6] of DðR;RÞ:
Direct employment of dissimilarities A direct use of the

dissimilarity values Dij in, for example, a classifier using

the k-NN rule. Any monotone nondecreasing concave

transformation can be applied directly to the dissimilarities

Dij. This is a simple, but absolutely not trivial, example of

how to employ the dissimilarities directly in a recognition

system in order to define a proper inductive logic inference.

Linear embedding A linear embedding in a (pseudo-

)Euclidean space R
k; k� n; consists in finding a vector

configuration X ¼ fx1; . . .; xng with xi 2 R
k: The repre-

sentation matrix X 2 R
n�k; built with the vectors xi; i ¼

1! n; should be found preserving the dissimilarities of

DðR;RÞ: If the dissimilarity matrix D is Euclidean; a

linear mapping preserving this kind of information can be

Fig. 7 Absolute and relative representations of data
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found using projection techniques of the family of Clas-

sical Scaling [12, 57]. The main problem here is how to

find the right k such that the dissimilarities are preserved.

The embedding dimension k is found with a PCA-like

analysis [62], taking into account only the first k B n

dimensions corresponding to the first k eigenvectors with

the largest eigenvalues (in absolute value). The represen-

tation X is found as

X ¼ QkK
1=2
k ; ð13Þ

where Qk 2 R
n�k is the matrix of the first k eigenvectors

(as columns) and K1=2
k is the nonnegative diagonal matrix

of the first k largest eigenvalues of the gram matrix G ¼
QK1=2QT; obtained from the relation with the input

(Euclidean) dissimilarity matrix D: If the dissimilarity

matrix D is Euclidean, then the Gram matrix G ¼ � 1
2

JDJ

is positive (semi)definite, where J is referred as the

centering matrix. If D is not perfectly Euclidean, some

corrections should be applied. When these corrections are

not applicable or not sufficient, a pseudo-Euclidean

embedding of D can be applied in R
ðp;qÞ [48], obtaining

XJpqXT ¼ G ¼ QKQT ¼ QjKj1=2 Jpq

0

� �
jKj1=2QT;

ð14Þ

with k = p ? q and K a diagonal matrix containing, in

order, p positive and q negative eigenvalues both in

decreasing order, followed by zeros. Jpq is called the fun-

damental symmetry matrix. This matrix allows the com-

putation of the inner product (then the norm and distance)

in a standard Euclidean space R
pþq related to the pseudo-

Euclidean space R
ðp;qÞ [92, Section 3.5.3]. The configura-

tion X ¼ QkjKkj1=2
can be found in R

ðp;qÞ using only the

first k non-zero eigenvalues. Other linear embedding

techniques can be found in [92, Section 3.5].

Spatial representation Given an input set of generic

objects R and the relative dissimilarity matrix DðR;RÞ; a

spatial representation of D is a configuration of vectors

representing the objects in a space, directly derived

considering the rows of D as vectors, usually in a

(pseudo-)Euclidean space. Spatial representations are to

be considered approximate embeddings into suitable

low-dimensional vector spaces, mostly used for data

visualization purposes. The cited methodologies include

FastMap [37] and some nonlinear multidimensional

scaling techniques [12], such as the Sammon mapping

[107] with its variations, the least squares scaling (LSS)

[26, 67, 68]. These methods are based on a loss function

that estimates the stress Sð�Þ after the projection in a

vector configuration X (the row matrix with projected

vectors). For example, the simplest loss function is the

raw stress, defined as

SrawðXÞ ¼
Xn�1

i¼1

Xn

j¼iþ1

ðf ðDijÞ � dijðXÞÞ2; ð15Þ

where f ð�Þ is a continuous monotonic transformation for

the dissimilarities, and dijðXÞ stands for the distance cal-

culation between the i-th and j-th vector configuration. The

family of Sammon mappings [92, Section 3.6] are non-

linear projection techniques from a high-dimensional

Euclidean vector space to a low-dimensional space.

2.3.3 Embedding in structure spaces

In [59], a method to embed a graph into what is called the

T -space has been proposed. The basic idea is to look at the

graphs as equivalence classes of vectors via their weight

matrices W; where the elements of the same equivalence

class are different vector representations of the same graph.

Direct edge-labeled graphs are considered in [59]. To apply

this methodology, all input graphs are to be aligned to the

same bounded order, say n. Considering a graph G, two

weight matrices are said to be equivalent if one can be

obtained from the other with a permutation of the vertices

order. Formally,

WW0 , 9P 2 T : PTWP ¼W0; ð16Þ

where T denotes the set of all n 9 n permutation matrices.

It is possible to embed the matrix W into a Euclidean

vector space X ¼ R
n�n; as a consequence, each graph can

be represented with a vector x just concatenating the col-

umns of W: So, in what follows we can consider equivalent

the matrix and the respective vector representations, using,

for simplicity, the latter.

Given a Euclidean vector space X ¼ R
m; let T be the

set of permutation matrices; the orbit of x 2 X is defined as

½x�T ¼ fPx : P 2 T g; ð17Þ

i.e., the set of all the equivalent vector representations of x:

The quotient set over X is referred to as the T -space and X
is the representation space of XT :

Definition 30 (T -space) A T -space over a Euclidean

vector space X is the orbit space XT ¼ X=T of all orbits

of x 2 X under the action of T ;

XT ¼ X=T ¼
[
x2X
½x�T : ð18Þ

The embedding space XT aims at getting rid of the

different equivalent representations of a given graph.

Figure 8, taken from [59, Figure 5], shows an illustrative

example of this embedding method.
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2.3.4 Other embeddings

There are other kinds of embedding for graphs [34, 35, 96,

105]. For example we can cite the Spectral Embedding [94,

103, 104], that consists in finding a proper representation of

the graph analyzing the set of its eigenvectors. For this

purpose both adjacency, transition and Laplacian matrix

can be used. Another possibility comes from the embed-

ding of the graph into a Riemannian manifold, using metric

properties derived from differential geometry operators

[105].

3 Algorithms

The first macro-class of graphs taken in consideration can

be defined as the ones with simple type of labels for both

vertices and edges. A simple type is, for example, a scalar

number or string considered as an element in a finite

nominal set. For this kind of graph, a straightforward

approach is the one that firstly transforms the graph into a

sequence of its vertices, applying then a matching method

for sequences over them. Two particular types of graphs

are directed acyclic graph (DAG) and trees; in particular

when dealing with trees, the tree edit distance (TED) is

adopted [7, 9, 119, 120]. In this survey, we will describe

only some of the seriation-based methods [94, 103, 104,

115, 115, 132]. For a good treatment of TED techniques,

and other kind of matching between non-labeled graphs,

see [41, Section 4.2.1].

Considering complexly labeled input graphs, i.e., labels

in R
n or other kind of composite types, some issues arise.

The most interesting in this case is the capability of

inexact graph matching algorithms to manage the com-

monalities in terms of both topology and labels in a uni-

fied framework. The algorithms belonging to GED-based,

graph kernel-based and graph embedding-based families

are general enough to be applicable to a wide range of

types of graphs.

3.1 GED based

Those methods are focused on the estimation of the amount

of distortions needed to transform the data graph into the

model graph. An important factor is how they define the edit

costs. These costs can be known a priori or we will see that

they can be defined in such a way that edit operations that

are very likely to occur have in fact lower edit costs than the

infrequent ones. Moreover, the edit costs can be estimated

directly equipping each algorithm with specific low-level

dissimilarity function tailored to the particular labels defi-

nition. Indeed, most of the GED-based algorithms are

applicable to virtually any type of labeled graphs.

3.1.1 GED computation based on the A* algorithm

The A� algorithm [17] employs a search tree to model the

edit paths, referred to as OPEN in Algorithm 1, which is

constructed by considering each vertex of the first graph one

after the other ðu1; u2; . . .; ujV1jÞ: gðoÞ is the function eval-

uating the cost of the optimal path from the root node of the

search tree to the current node o found by the A�: hðoÞ
denotes the estimated costs from o to a leaf node. Finally,

g(o) ? h (o) gives the heuristic estimation of the current

node (edit operation) o. In each step, the next unprocessed

vertex of the data graph uk?1 is selected from OPEN and

tentatively substituted by all unprocessed vertices of the

model graph (line 11) as well as deleted (line 12). Edit

operations on edges are implied by edit operations on their

adjacent vertices and the costs of these are dynamically

added to the corresponding paths. The currently most

promising node o of the search tree is the one minimizing

the A� search costs g(o) ? h(o) (line 5). When a complete

edit path is obtained in this way, it is guaranteed to be an

optimal one [52]. In the simplest scenario, the estimated

lower bound h(o) of the costs from o to a leaf node is set to

zero for all o. This means that no heuristic information of

the potentially best search direction is used at all for actu-

ally performing a breadth-first search. On the other hand, it

Fig. 8 The embedding of two

sample graphs
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is possible to compute a complete edit distance for each

node of the search tree. In this case, the function h(o) is not a

lower bound, but the exact value of the optimal costs.

Whether or not heuristics hð�Þ are used to manage the search

tree traversal process, the cost is exponential in the number

of vertices of involved graphs [17].

A� Beamsearch The first approximation method of the

original A� algorithm is based on beam search [90]. Instead

of expanding all successor nodes in the search tree, only a

fixed number s of nodes to be processed are kept in the

OPEN set at all steps. Whenever a new partial edit path is

added to the OPEN set, only the first s partial edit paths

with the lowest costs, given by g(o) ? h(o), are kept, and

the remaining partial edit paths in OPEN are simply

removed. This means that only those vertices that belong to

the most promising partial matches are expanded. If only

the partial edit paths with the lowest costs are considered, a

suboptimal edit path will be obtained which yields a sub-

optimal distance, almost close to the exact edit distance.

A� Pathlength The second variant [90] of the original

A� algorithm follows the empirical observation that if we

are considering graphs with a rather large number of ver-

tices, it is likely that a considerable part of an optimal edit

path omin is constructed in the first few steps of the tree

traversal, because most substitutions between similar

graphs have small costs. Whenever the first significantly

more expensive edit operation occurs (in the optimal edit

path), this vertex will prevent the tree search algorithm

from quickly reaching a leaf node and unnecessarily make

it expand to a large part of the OPEN search tree. An

additional weighting factor t [ 1 is proposed, aiming to

favor longer partial edit paths. Practically, the evaluation of

the edit path (line 5 of Algorithm 1) is changed in
gðoÞþhðoÞ

tjoj
;

where |o| stands for the length of the current edit path o.

3.1.2 Neighborhood subgraph

In [89],a totally new and fast suboptimal algorithm based

on the inexact matching of neighborhood subgraphs has

been proposed . The main objective is to propose a poly-

nomial-time algorithm that uses only local information. We

can represent a neighborhood subgraph as a sequence of its

vertices [89]. The matching is then performed as a cyclic

strings matching algorithm [18, 93] based on standard

string edit distance that is known to be resolvable in qua-

dratic time. The proposed algorithm is a greedy iterative

algorithm that adds a sequence of edit operations calculated

on the neighborhood graph matching to the global edit

path. If the maximum degree of the considered graphs is

d, the alignment task has a complexity of O(d2) and the

approximate algorithm terminates after O(n) iterations,

with n ¼ jV1j þ jV2j: So the total complexity of this

algorithm is O(nd2). This simple method is suboptimal, but

it was shown that it is substantially faster than the exact

computation of GED [89]. The pseudo-code of the algo-

rithm can be found in [89, Algorithm 3.2]. The type of

graphs that can be analyzed with this method depends of

the capability of the employed string edit distance algo-

rithm of dealing with data from the set LV : However, the

edges labels are not considered in this scheme. This simple

heuristic method does not depends on parameters different

from the usual edit costs.

3.1.3 Quadratic programming approach

In [87], a strategy has been proposed that bypasses the

standard A�-based algorithms by addressing the graph edit

distance problem by means of quadratic programming [16,

91]. This approach is based on the definition of a fuzzy edit

path between two labeled graphs that allows vertices and

edges of one graph to be simultaneously assigned to several

vertices and edges of another graph. A fuzzy edit path is

defined by assigning a weight to each possible vertex

substitution. Let G;G0 be two labeled graphs with jVj ¼ n

and jV0j ¼ n0; then there exists n � n0 distinct substitutions

of a vertex u 2 V with a vertex v 2 V0: Formally, a fuzzy

edit path between G and G0 is a function w : V � V0 !
½0; 1� satisfying the conditionsX
v2V0

wðu; vÞ ¼ 1; 8u 2 V and
X
u2V

wðu; vÞ ¼ 1; 8v 2 V0:

ð19Þ

If two vertices, say u, v, have a large value of w(u, v),

then they are assumed to correspond to a good structural

match. As we will see, this value is determined in the

optimization process, assigning a high value to this

substitution if the involved edit costs, considering also

the edges costs, are relatively low.

The algorithm employs a cost matrix Q 2 R
nn0�nn0 to

encode vertex and edge edit costs and minimizes the

overall edit costs corresponding to a fuzzy edit path. The
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matrix Q is constructed such that the rows and columns are

indexed by the same substitutions u! v; with u 2 V and

v 2 V0: Diagonal entries hold the costs of vertex substitu-

tions, while off-diagonal entries correspond to edge edit

costs. For instance, the entry of Q at position ðu! v; u!
vÞ is set to the vertex substitution costs of u! v and the

entry at position ðu! v; p! qÞ is set to the edge edit costs

resulting from substituting u! v and p! q; if the edges

ei = (u, p) and ej = (v, q) exist. The n � n0-dimensional

vector of fuzzy weights x (the solution), satisfying the

conditions listed in Eq. 19, is determined as the one that

minimizes the expression x0Qx; considering every possible,

and valid, vector of weights x: Once the optimal vector x is

determined, it follows a defuzzification stage, where a

standard edit path is eventually obtained from x; and from

which is derived the edit distance from G to G0 [87].

The time complexity of this method depends on the

complexity of the particular quadratic programming algo-

rithm adopted in the optimization. This method is appli-

cable to virtually any kind of labeled graphs. For what

concerns the parameters, the edit costs must be defined or

learned.

3.1.4 Assignment problem approach

A recent method, proposed in [98], is based on a polyno-

mial time optimization procedure to solve the GED prob-

lem as an assignment problem, on the base of the Munkres’

algorithm [81]. In practice, it is an optimization problem

with the aim of finding the lowest cost assignment between

objects from two different sets. The Munkres’ algorithm is

known to solve optimally the assignment problem in cubic

time, but actually it provides a fast suboptimal solution to

the exact GED computation shown in Eq. 2.

Given two labeled graphs G1, G2, with jVðG1Þj ¼ n and

jVðG2Þj ¼ m; a square cost matrix C of order n ? m is

defined with the aim of encoding all the possible edit

operations costs, considering all the vertices of the two

graphs. The cost matrix C is defined as a square matrix of

the form

C ¼

c1;1 � � � � � � c1;m c1;e 1 � � � 1
c1;2 c2;2 � � � c2;m 1 c1;e � � � � � �
� � � � � � � � � � � � � � � � � � � � � 1
c1;n � � � � � � cn;m 1 � � � 1 cn;e

ce;1 1 � � � 1 0 0 0 0

1 ce;2 � � � � � � 0 0 0 0

� � � � � � � � � � � � 0 0 0 0

1 � � � 1 ce;m 0 0 0 0

2
66666666664

3
77777777775
;

where the symbols ci;j; ci;e; ce;j denote, respectively, sub-

stitution, deletion and insertion costs of vertices for G1.

The left upper corner of the cost matrix C represents the

costs of all possible vertex substitutions, the diagonal of the

right upper corner the costs of all possible vertex deletions,

and the diagonal of the bottom left corner the costs of all

possible vertex insertions. The edit operation costs of the

involved edges can be added directly inside the vertices

ones. That is, the information used by this algorithm is

properly local. The optimization algorithm, with the cost

matrix C; produces a permutation p ¼ p1; . . .; pnþm of the

integers 1; . . .; nþ m that minimizes
Pnþm

i¼1 C½ �ipi
; which is

equivalent to the minimum cost assignment of vertices of

G1 to the vertices of G2, represented, respectively, by the

rows and columns of the matrix C:

The computational complexity of this method is O(n3),

where n ¼ jVðG1Þj þ jVðG2Þj: This method is applicable to

virtually any kind of labeled graphs. As usual, edit cost

parameters must be determined.

3.1.5 Edit cost estimation strategies

One of the most important task in any GED-based algo-

rithm is the definition of the edit costs c(oi). These costs

can be known a priori in some application domain, but in

general their definition remains a problem. The first and

most intuitive way to define these costs is to directly esti-

mate the distance between labels. The standard Euclidean

distance could be employed for this purpose when

LV � R
n and LE � R

m: Given two graph G1, G2 and four

nonnegative weighting parameters avertex, aedge, bver-

tex, bedge, the edit costs for all vertices u 2 V1; v 2 V2 and

edges p 2 E1; q 2 E2 could be defined as [89]:

cðu! eÞ ¼ bvertex

cðe! vÞ ¼ bvertex

cðu! vÞ ¼ avertex� k l1ðuÞ � l2ðvÞ k2

cðp! eÞ ¼ bedge

cðe! qÞ ¼ bedge

cðp! qÞ ¼ aedge� k m1ðpÞ � m2ðqÞ k2

: ð20Þ

Note that the Euclidean distance in Eq. 20 can be

generalized to any dissimilarity measure defined over the

vertex and edge labels sets. Edit costs depend on weighting

parameters that can be defined as predefined values, based

on the application at hand. If a set of graphs G is available,

we can estimate the edit costs from the information

contained in G in a supervised or unsupervised manner. In

the first case, a cost function must be defined to guide the

estimation procedure. It is worth stressing that this cost

function is strictly application dependent. If, for example,

the GED is used in a classification system, this cost

function can be the generalization capability of the

classification model. Two unsupervised edit cost

estimation methods [83, 84] are briefly discussed in the

following two paragraphs.
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Probabilistic estimation In [83], it is proposed to auto-

matically derive edit costs from an estimation of the

(unknown) probability distribution of the edit operations in

a sample set of labeled graphs G: For each pair of graph,

say G1, G2 in G; two initially empty graphs are constructed

in a stochastic fashion. That is, each vertex or edge inser-

tion is interpreted as a random event, transforming the data

graph into the model graph through edit operations. For

instance, a simultaneous vertex or edge insertion in both

graphs is equivalent to a substitution operation, and an

insertion in one single graph is equivalent to an insertion or

deletion operation. Weighted Gaussian mixture densities

are used for the approximation of every type of edit event-

operation cost (normally three types for the vertices and

three for the edges). Given a multivariate Gaussian density

(MGD) f ð�jl;RÞ with mean l and covariance matrix R; the

probability of an edit path ðo1; . . .; olÞ is given by

pðo1; . . .; okÞ ¼
Yk

j¼1

btj

Xmtj

i¼1

ai
tj
f ðojjli

tj
;Ri

tj
Þ; ð21Þ

where btj
is a model weight for the type of edit operation

tj, and, for each component i 2 f1; . . .;mtjg; a mixture

weight ai
tj
, a mean vector li

tj
, and a covariance matrix Ri

tj
:

The estimation of the parameters U of the MGD is then

performed using the well-known EM algorithm [30].

Assuming WðG1;G2Þ as the set of all edit paths between

G1 and G2, the joint probability p(G1, G2) of two graphs is

defined as

pðG1;G2Þ ¼ max
ðo1;...;olÞ2WðG1;G2Þ

Pðo1; . . .; oljUÞ: ð22Þ

A dissimilarity measure dð�; �Þ is obtained as d(G1, G2) =

log(p(G1, G2)).

SOMs-based estimation In [84], a procedure based on

self-organizing maps (SOM) [65] is proposed to infer the

edit costs of graphs with labels in R
n: The idea is to rep-

resent the distribution of the vertex and edge labels

occurring in a set of fully labeled graphs through an SOM

model, where distances of mapped labels in the sampling

grid of neurons of the SOM correspond to the inferred edit

operation costs. The initial sampling grid is built with

equidistantly labeled neurons, with weights of the same

size as the ones of the labels. In practice, a mapping

between the labels space of the graphs and the grid of the

SOM is performed. Given two graphs, say G1 and G2, the

spatial distance in the sampling grid of two mapped ele-

ments (vertex or edge labels), say x 2 R
n and y 2 R

n;

whose edit operations x! y occur frequently in the GED

computation, is iteratively reduced during the learning

process of the SOM. Thus, the sampling grid is deformed

according to the labels distribution frequency in the input

set of graphs, with the aim of minimizing the resulting edit

cost of the GED. Actually, a set of SOMs, one for each edit

operation, is employed in this learning model, assigning to

each edit operation oi the respective SOM.

Once an SOM, one for each type of edit operation, has

been trained, the cost of a substitution of two labels is

defined to be proportional to the deformed distance

between the respective neurons in the trained grid. Simi-

larly, the cost of an insertion (deletion) operation is pro-

portional to the average deformed distance from the winner

grid neuron to its connected neighbors.

3.2 Graph kernels based

In this section, we will describe some polynomial time

algorithms concerning graph kernels. They are based on the

well known kernel tricks, that is, given a valid graph kernel

function kð�; �Þ; an implicitly defined high-dimensional

features space Hk exists, where graphs are represented and

the recognition task is (indirectly) performed.

3.2.1 Exact matching direct product kernel

The idea, described in [43, Section 5.4.2], is to define a

graph kernel on the basis of the number of exact matching

walks in the two involved graphs, taking into account the

label sequences of both vertices and edges.

This method employs a tensor product graph G9 that

considers also the labels, that is, two vertices are consid-

ered adjacent in G9 if the related labels are exactly the

same in the two input graphs. This is a seminal work

concerning this approach, and we will see that, regardless

the clear limitations implied by the exactness of the con-

straints imposed on the labels, it has spawn many other

similar approaches. Considering that the number of walks

in the product graph is equal to the product of the number

of walks in the two original input graphs [56], it is possible

to define the direct product kernel as follows:

Definition 31 (Direct product kernel) Let G1, G2 be two

graphs. For a given sequence of weighting parameters

k1; k2; . . .; ðkn 2 R; kn	 0 8n 2 NÞ; the direct product

kernel is defined as

kðG1;G2Þ ¼
XjV�j
i;j¼1

X1
n¼0

knAn
�

" #
ij

; ð23Þ

if the limit exists.

By definition, the power of the adjacency matrix A� of

G9 encodes the information of the number of walks

between the two input graphs. The computation of the

matrix power series shown in Eq. 23 is carried out via the

eigendecomposition of A�; that also binds the overall

computational complexity in the polynomial class [43,
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Section 5.2.4]. However, the precise time complexity cost

is dependent on the particular type of eigendecomposition

algorithm (that can be thought as roughly cubic in the order

of the matrix A�).

3.2.2 Similarity-based random walk kernel

The original random walk kernel is defined by means of the

transition matrix T� of the direct product graph [44]. The

kernel can be interpreted as a measure of the probability of

exact-matching labeled random walks in both graphs. Note

that A� and T� can be used independently in Eq. 23, but

inducing a different, yet valid, meaning for the matching.

The main limitation of this kind of kernel is certainly that it

is only applicable in contexts where the strict exact match

of the labels is meaningful.

To overcome this limitation, a new random walk kernel

has been proposed in [14], with good results to the problem

of protein function prediction. The idea is not to evaluate if

two walks are identical, but rather if they are similar. To

this aim, the adjacency matrix of the direct product graph

G9 is modified as follows:

A�½ � u;u0ð Þ; v;v0ð Þ¼
k u; u0ð Þ v; v0ð Þð Þ u; u0ð Þ; v; v0ð Þ 2 E�;
o otherwise:

�

ð24Þ

where the kernel kð�; �Þ measures the similarity of two pair

of vertices of G9, considering both vertex and edge labels

of the two input graphs. To this aim, it is possible to

convolute different specialized valid kernels kVð�; �Þ; kEð�; �Þ
as follows:

kððu; u0Þ; ðv; v0ÞÞ ¼ kVðu; u0Þ � k2E�ððu; vÞ; ðu0; v0ÞÞ
� kVðv; v0Þ: ð25Þ

Note that different convolution schemes can be adopted,

such as taking the minimum or the average. For example,

kVð�; �Þ and kEð�; �Þ can be evaluated as Gaussian RBF

kernels of the form:

kVðu; u0Þ ¼ exp � dðlðuÞ � lðu0ÞÞ2

2r2
V

 !
; ð26Þ

where dð�; �Þ is a suitable dissimilarity function for the

specific labels set (i.e., LV or LE). Note that the matrix A�
is by definition a weighted adjacency matrix. As usual, to

obtain a valid random walk kernel, we just need to use the

transition matrix T� instead.

When using the Gaussian RBF kernels in the product

scheme, as shown in Equations 26 and 25, respectively, the

matching algorithms become dependent on three parame-

ters, namely the two rV and the rE : These parameters must

be adapted for each specific dataset. With regard to the

computational complexity, it is easy to understand that,

asymptotically, it is equal to the one of the methods studied

in Sect. 3.2.1, with additional constant-time costs associ-

ated to the labels dissimilarity computations. However,

these costs associated with the labels dissimilarities are not

in general cost free. Indeed, this method can be applied

virtually to any kind of labeled graphs. Hence, the sets LV
and LE can be defined as sets of any complex composite

types, such as text excerpts and chemical formulas.

3.2.3 Random walk edit kernel

The aim of the method proposed in [86] is to use together

the GED and a graph kernel. The basic idea is to enhance

the random walk kernel shown in Sect. 3.2.2 with an edit

distance matching at the global level, reducing the size of

resulting direct product graph G9 . Assume that an optimal

edit path from G to G0 has been computed with a GED-

based method (see for example Sect. 3.1), and let S ¼
ðv1 ! v01; v2 ! v02; . . .Þ denote the set of vertex substitu-

tions in the optimal edit path. The adjacency matrix of the

direct product graph G9 is then defined as

½A��ðu;u0Þ;ðv;v0Þ ¼

k u; u0ð Þ; v; v0ð Þð Þ if holds ððu; u0Þ; ðv; v0ÞÞ 2 ex;

u! u0 2 S;

and v! v0 2 S;

0 otherwise:

8>>><
>>>:

ð27Þ

The walks are restricted to vertices that satisfy the

optimal vertex-to-vertex correspondences identified by the

edit distance computation by the GED. This adjacency

matrix is then used with the direct product kernel described

in Definition 31. It is possible to observe that this method is

actually a hybridized algorithm employing a GED-based

algorithm with the convolution scheme based on tensor

product operator. Consequently, the method as a whole

becomes dependent on the particular GED design and in

the convolution scheme adopted in the tensor product (i.e.,

the particular convolution scheme of kernel functions

shown in Eqs. 25 and 26, respectively). Moreover, also its

complexity is dependent on the particular GED algorithm.

As a whole, this algorithm is applicable to any kind of

labeled graphs, considering the same observations given in

Sect. 3.2.2.

3.2.4 Marginalized graph kernel

Another error-tolerant random walk graph kernel for

labeled graphs, based on the convolution operation briefly

introduced in Sect. 2.2.1, is described in [63]. Let

h ¼ ðh1; . . .; hkÞ; hi 2 LE ; be the labels sequence of a ran-

dom walk of length k over a given graph G. In a scenario

where both vertex and edge labels must be considered, the
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sequence of labels h of a random walk of length k is

defined as h ¼ ðh1; . . . ; h2k�1Þ; i.e., as a sequence of

alternating vertex and edge labels. Let the starting and

stopping probability vectors be p and q; respectively.

Assuming dealing only with the labels of the edges, it is

possible to compute the probability of the random walk

i1; . . .; itþ1 (sequences of vertex indices) of length t, with

the associated labels sequence h ¼ ðh1; . . .; htÞ as

pðhjGÞ ¼ qitþ1

Yt

j¼1

Tij;ijþ1
pi1 : ð28Þ

A valid kernel for the computation of the similarity of

two sequences of labels, belonging to two different graphs

G and G0; can be defined as

kzðh; h0Þ ¼
Yt

i¼1

jðhi; h
0
iÞ ¼

Yt

i¼1

h/ðhiÞ;/ðh0iÞi; ð29Þ

if h and h
0

have the same length, and otherwise zero. In

Eq. 29, jð�; �Þ is a valid kernel defined over the labels of the

edges (e.g., an RBF kernel). The marginalized kernel [63]

between graphs is then obtained as the expectation of

kzð�; �Þ over every possible labels sequences,

kðG;G0Þ ¼
X

h

X
h0

kzðh;h0ÞpðhjGÞpðh0jG0Þ: ð30Þ

The worst case time complexity for computing kðG;G0Þ;
when both G and G0 are DAG, is Oðc � c0 � jVðGÞj � jVðG0ÞjÞ
where c and c0 are the maximum out degree of G and G0;
respectively. This computational complexity can be

achieved because, in this case, it is possible to perform a

topological sort of the graphs, employing the one-pass

dynamic programming algorithm for DAGs. When G and

G0 are general direct graphs, the time complexity is given

by the inversion of a matrix of order jVðGÞj � jVðG0Þj [112,

Chapter 7].

3.2.5 Generalized random walk graph kernel

In [123], a generalized method for random walk graph

kernels computation is shown. For simplicity, only edge-

labeled graphs are considered. With this assumption, let L

and L be the edge-labels matrix and the set of edge labels,

respectively. Let Hj be an RKHS induced by the kernel

j : L � L ! R; and let the feature map / : L ! Hj that

also maps the element f to the zero element of the induced

Hilbert space Hj: An extension of tensor algebra to RKHS

is defined in [123, Appendix A] to deal with the definition

of features map for matrices as U : Ln�m ! Hn�m; with

½UðLÞ�ij ¼ /ðLijÞ:
Let G;G0 be two graphs. Let the initial distribution of

the product graph be p� ¼ p
 p0 and the relative stopping

probability vector q� ¼ q
 q0: One of the most important

concepts introduced in [123] is the weight matrix of the

direct product graph Wnn0�nn0

� ; that encodes edge-labels

similarity, and is defined, in the most general case, as:

W� ¼ UðLÞ 
 UðL0Þ: ð31Þ

Each entry of W� is non-zero iff the corresponding edge

exists in G 9. If H ¼ R; then UðLÞ ¼ T (or A) and

consequently

W� ¼ T�: ð32Þ

If L ¼ f1; . . .; dg is a finite set, then H ¼ R
d and we have

that

/¼ Lij

	 

¼

el

degðviÞ if the edge eij 2 E ^ label eij

	 

¼ l;

0 otherwise:

(

ð33Þ

where el is a d dimensional vector with only a one in the

position l. Practically, the weight matrix W� has a nonzero

entry iff there is an edge in G9 and the labels of the two

original graphs are the same.

In this case, we can redefine Eq. 31 as:

W� ¼
Xd

l¼1

TðlÞ 
 T0ðlÞ; ð34Þ

where TðlÞ is the filtered matrix defined as:

T lij

	 

¼ Tij if Lij ¼ l;

0 otherwise:

�
ð35Þ

Generally speaking, each entry of Wk
� represents the

similarity between simultaneous random walks of length k

on G and G0; using the kernel jð�; �Þ on the edge labels,

considering different possible scenarios about the graphs

definitions. Given the starting and stopping probability

vectors p� and q�; the generalized graph kernel is defined

as:

kðG;G0Þ ¼
X1
k¼1

lðkÞqT

�Wk
�p�; ð36Þ

where l(k) is a nonnegative function of k needed for

convergence assurance and for generalize the behavior of

the kernel.

The authors of [123] show different optimized methods

for the computation of graph kernel shown in Eq. 36, stating

that this formulation can be seen as a bridge between dif-

ferent seminal formulations, such as the ones shown in

Sects. 3.2.1, 3.2.2 and 3.2.4. However, these optimizations

are graph specific, that is they exploit particular character-

izations of the input graphs, such as the type of labels and if

they are fully vertex or edge labeled graphs [123].
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3.2.6 Convolution edit kernel

This algorithm is known as convolution edit kernel [85]

and can be seen as a hybrid method defined by a decom-

position of pairs of graphs into edit paths, based on the

convolution property discussed in Sect. 2.2.1. Given the

(arbitrarily ordered) sequence of all vertices and edges of a

graph, any non-empty subsequence can be considered as a

decomposition of the graph. If two sequences, representing

two different graph G and G0; have the same length and at

each position there are either vertices or edges in both

sequences, then the two sequences can be interpreted as a

partial valid edit path. It is possible to establish the validity

of each derived edit path checking the validity of the

substitutions (vertex–vertex, edge–edge) with a positive

definite function. Given two vertices u 2 VðGÞ and u0 2
VðG0Þ; the similarity of the (label) substitution u! u0 is

given by the Gaussian RBF kernel shown in Eq. 26. The

same function, with a different parameter rE ; is also used

to evaluate the similarity of edge labels. If R-1(G) is the set

of edit decompositions of G and kvalð�; �Þ is the function

evaluating whether or not two edit path decompositions are

equivalent to a valid edit path, it is possible to check the

structural similarity employing the convolution property.

For x 2 R�1ðGÞ and x0 2 R�1ðG0Þ we obtain

kval x; x0ð Þ ¼ 1 if they are valid edit paths;
0 otherwise:

�
ð37Þ

The convolution edit kernel as a whole is defined as

k G;G0ð Þ ¼
X

x2R�1 Gð Þ
x02R�1 G0ð Þ

kval x; x0ð Þ
Y

i

ksim xð Þi; x0ð Þi
	 


: ð38Þ

The kernel function assigns high values to similar

graphs and low values to dissimilar graphs in terms of the

similarity of the involved elements in the edit substitutions.

Unfortunately, the number of valid decomposition, |R-1|, is

exponential in the number of edges. Consequently, this

number must be carefully controlled limiting the number of

decompositions taken into account. For what concerns the

applicability, this method can deal with any kind of labeled

graph, provided, as usual, that suitable dissimilarity

functions (i.e., each specific dð�; �Þ in Eq. 26), tailored for

the specific nature of LV and LE ; are given.

3.3 Graph embedding-based

An embedding for a graph consists in explicitly define a

mapping function / : G ! D; such that a graph G is rep-

resented into a n-dimensional space, say D � R
n; bringing

back the problem to a space rich of established recognition

and learning methods. These methods are very interesting,

because the embedding space can be directly modeled and

explicitly analyzed. Indeed, once the embedding D is

computed, different post-processing techniques can be

applied to transform and analyze data, such as PCA-like

analysis.

3.3.1 GED embedding

The approach, broadly described in [100], consists in

producing a dissimilarity representation (see Sect. 2.3.2)

for the input graphs G using a GED as a basic dissimilarity

scheme. Consequently, the dissimilarity between two given

input graphs is defined as the (minimum) cost needed to

transform the data graph into the model graph. The dis-

similarity function dð�; �Þ is then employed as a key element

in the following embedding procedure.

Definition 32 (Graph embedding with GED) Given a set

of labeled graphs G ¼ fG1; . . .;Gtg; a GED-based dissim-

ilarity function d : G � G ! R
þ; a prototypes set P ¼

fP1; . . .;Png;P � G; the embedding vector is defined as

/PðGÞ ¼ ½dðG;P1Þ; . . .; dðG;PnÞ�T; 8G 2 G; ð39Þ

where the superscript P remarks that the embedding is

relative to the chosen set of prototypes P:

The first importantly derived property is that any two

graphs that have a relatively low GED in the input space

are mapped into close points in the embedding space. The

maximum distance between any pair of graphs is bounded

by a positive constant
ffiffiffi
n
p

; where n ¼ jPj [100]. That is,

this embedding can be seen as a Lipschitz continuous

mapping since /PðGÞ � /PðG0Þ �
ffiffiffi
n
p
� dðG;G0Þ holds

8G;G0 2 G: Note that the equality is easily obtained if the

components of the vectors in the embedding space are

scaled by a factor equal to
ffiffiffi
n
p

; that depends only on the

number of prototypes. However, in order to assert that

/Pð�Þ is a Lipschitz mapping function, the pair ðG; dÞ must

form a metric space.

The most critical issue is the selection of P: Assuming

to deal with classification and clustering problems over G;
the authors of [100] distinguish between two types of

selection: class-wise and class-independent. In the first

case we need to select li prototypes for k classes withP
i = 1
k li = n. In the latter case, we simply need to select n

prototypes from the set G: Different strategies are proposed

to deal with this issue. For example, the Random Prototype

Selector (RPS), that just randomly selects n prototypes.

The Spanning Prototype Selector (SPS) approach is aimed

to cover the set G with equally distanced prototypes,

starting from the set median graph [4, 61].

Being basically a hybrid algorithm, its behavior

depends also on the particular design of the GED algo-

rithm. That is, the optimization effort should be devoted to
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the determination of the optimal P and at the same time to

the learning of the GED-related parameters (i.e., the edit

costs). The applicability of this method depends, in turn, on

the kind of labeled graphs that the particular GED can deal

with. Usually, any kind of labeled graphs can be processed.

3.3.2 Symbolic histograms embedding

The methodology of the symbolic histograms, firstly pro-

posed in [28, 29, 101], consists in producing an embedding

through the identification of the frequent subgraphs (FS) of

the input dataset G [70]. Given a set of input graphs G ¼
fG1; . . .;Gng; the first (non-obvious) problem to solve is the

determination of the set of frequent subgraphs A ¼
fS1; . . .; Smg on G:Once obtainedA; the embedding consists

in a mapping function /A : G ! R
m; that assigns an integer

valued vector hi to each graph Gi, defined as follows,

/AðGiÞ ¼ ½occðS1Þ; . . .; occðSmÞ�T; 8Gi 2 G; ð40Þ

where the function occ : A ! N counts the occurrences of

each subgraphs Sj 2 A in each given input graph Gi. The

subgraphs Sj 2 A are called symbols, and the set A is

called the symbols alphabet. Each vector representation hi

is then called the symbolic histogram of the graph Gi. The

occurrence of a subgraph Sj into a graph Gi is evaluated

with a weighted GED-based inexact graph matching pro-

cedure dð�; �Þ [28]. If the matching score reaches a symbol-

dependent threshold sj, the occurrence is considered.

Hence, the developed embedding space can be thought as a

dissimilarity representation of G; using A as the represen-

tation set. The values of the components of hi can be

normalized or modified with some transformation function.

The first hard and crucial problem is certainly how to

determine the symbols alphabet A; assuming that G is a

generalized set of arbitrarily labeled graphs. Note that A; is

actually automatically determined by the following pro-

cedure. The proposed algorithm is based on an iterative

incremental strategy that builds the set A of all symbols of

order 1 B k B r, with r � q, where q is the minimum

order in G: A clustering ensemble procedure is employed to

identify the recurrent substructures relying on dð�; �Þ as the

inexact graph matching evaluation between subgraphs.

This is an important difference between various FS algo-

rithms [13, 70, 118, 125, 130, 131], because they are

usually based on some exact matching scheme (e.g., iso-

morphism based approaches). Practically, a set of partitions

P ¼ fP1; . . .;Plg; with Pu ¼ fC1; . . .; Cqu
g; u ¼ 1! l; is

constructed over the current set AðiÞ; i ¼ 1! r; for a given

instance of the weighting parameters of dð�; �Þ: The repre-

sentative subgraph Sh of a cluster Ch is defined as a symbol

if it satisfies a cluster-dependent quality measure sCh
: Such

a threshold relies on size and compactness descriptors of

Ch: Note that r is actually a parameter establishing a

compromise between the computational cost and the

accuracy of graph embedding procedure as a whole.

Also, this embedding method depends on a direct dis-

similarity algorithm from the GED family, and conse-

quently the behavior as a whole is influenced by its

definition (i.e., the edit costs). Moreover, as well as stated

for the method described in Sect. 3.3.1, also the applica-

bility is strongly induced by the peculiarities of the

employed GED algorithm.

3.3.3 Structure space embedding

The theory of the structure spaces [59] has been briefly

described in Sect. 2.3.3. This is an embedding-based

methodology that represents the graphs into the so-called

T -space, considering their equivalence in terms of

weighted adjacency matrices.

The embedding into this vector space permits to extend

concepts like inner product, norm and metric, called

respectively T -inner product (h�; �i�), T -norm (��) and T -

metric (D*) between vectors in the set XT : The first two

functions are not strictly an inner product and a norm, as

they satisfy weaker properties (symmetry is not necessarily

satisfied). For example, h�; �i� is a maximizer of the value

assumed by the standard inner product on X : The operators

k � k� and D* are minimizers of the norm and distance on X ;
respectively. The dissimilarity measure between two given

graphs G1 and G2 is obtained as the minimum one con-

sidering each possible vector representation of them:

dðG1;G2Þ ¼ min
x2G1;y2G2

kx� yk2; ð41Þ

where the notation x 2 G1 means a possible vector repre-

sentation x of the graph G1 into XT ; as defined in

Sect. 2.3.3. Unfortunately, the solution to Eq. 41 is an NP-

hard problem, since there are a factorial number of possible

representations of each involved graph.

For instance, to better understand this embedding

method, consider the two sample graphs X and Y shown

in Fig. 8. The T -inner product between the vector repre-

sentations of these graphs is equal to hX; Yi� ¼ hx; y0 i ¼
hx0 ; yi ¼ 16: With regard to the norm, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX;Xi�

p
¼ X� ¼ x ¼ x0 ¼

ffiffiffiffiffi
22
p

: The distance D�ð�; �Þ is a

metric and we have D�ðX; YÞ ¼ dðx; y0Þ ¼ dðx0; yÞ ¼
ffiffiffi
2
p

:

Once the graphs are embedded in XT ; different graph-

based problems have been considered in [59], such as the

computation of the sample mean and the central clustering

of k-structures [60]. These tasks are conceived as non-

smooth continuous optimization problems on the metric

space ðXT ;DÞ; where Dð�; �Þ is the metric distance D�ð�; �Þ
previously defined, or any other more appropriate distance
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function. For example, the sample mean of X1;X2; . . .; Xk 2
XT is the the element X̂ of the set XT that minimizes the

objective function FðX̂Þ ¼
Pk

i¼1 DðX̂;XiÞ2: In [59, Prop.

C1], it is shown that Dð�; �Þ being a locally Lipschitz

function, the objective function Fð�Þ is also locally Lips-

chitz. For instance, sub-gradient methods can be employed

to solve the optimization task. The determination of the

sample mean of a set of graphs is a well-known problem in

the context of graph-based pattern recognition, where it is

referred as the set median graph computation [4, 61].

However, from the applicability viewpoint, this method

can be used for a restricted type of labeled graphs. Indeed,

only graphs labeled with real-valued feature vectors (or

scalars) can be adopted to construct the structure space

XT :

3.4 Seriation based

The seriation of a graph consists in finding an ordering of

the vertices, to obtain a sequence-like representation. This

family of currently available algorithms is suited for graphs

where edge labels are real numbers and the vertex labels do

not affect the seriation. Considering our taxonomy given in

Sect. 2, we should see these as both embedding and GED-

based methods, where the embedding space is (mostly)

defined by the spectrum of the graph. Given two seriated

graphs, the matching is then performed using known

methods such as string edit distance [72] or string kernels

[71, 116, 124, 132]. In the first case, various edit cost

systems can be used to learn the cost of each edit operation.

Online methods derive these costs during the algorithm

execution, adapting the underlying edit scheme. The tem-

plate of a typical seriation-based algorithm follows a three-

stage process, where firstly the graphs are transformed into

sequences of vertices, then the edit operation costs are

learned, and eventually a matching strategy is applied to

the sequences using the learned edit costs.

3.4.1 Shortest edit path

The method explained in [104] seriates a graph G using the

leading eigenvector of its matrix representation (e.g., aja-

cency matrix or transition matrix). The leading eigenvector

of its adjacency matrix contains the information about the

structural connectivity of each vertex of the graph. Simi-

larly, analyzing the (symmetric) transition matrix Tn�n; it

is possible to obtain information about the a priori proba-

bility of a given vertex in a random walk scenario on G.

Following this fact, the vertices are seriated performing a

random walk-like traverse of the graph, using the leading

eigenvector of T: The edit costs are learned in an online

fashion estimating an elaborated combination of the

transition probabilities between involved vertices. The

minimum edit cost to transform the data graph into the

model graph is calculated using the Dijkstra algorithm [32]

over the edit lattice built considering the edit matrix.

Calculating the minimum edit cost using the Dijkstra’s

shortest path algorithm on the edit lattice or using the

Levenshtein distance [72] directly on the seriated graph

representations is equivalent in practice.

Firstly, a symmetric version of T is obtained as T ¼
D�1=2AD�1=2: Denoting with / the leading eigenvector of

T; the sequence of vertices is computed with the procedure

outlined in Algorithm 2.

In Algorithm 2, N jk�1
¼ fmjðjk�1;mÞ 2 E ^ m 62 Lkg

stands for the neighbors of the last selected vertex, indexed

by jk-1 that are not already in the list L (line 6). The

algorithm terminates when the size of the list Lk is equal to

jVj: At the end of the procedure, we have two sequences of

vertex labels, X ¼ ðx1; . . .; xnÞ for the data graph and Y ¼
ðy1; . . .; ymÞ for the model graph.

Given a generic edit path of h edit operations C ¼
ðc1; . . .; chÞ; the edit cost of this path is obtained as

cðCÞ ¼
X

k

gðck ! ckþ1Þ: ð42Þ

The edit costs of each gðck ! ckþ1Þ are calculated

evaluating the probability of a state transition from ck to

ck?1, considering that each ck ¼ ðVðG1Þ [ �;VðG2Þ [ �Þ is

a valid edit operation. If a state transition is highly

probable, the relative edit cost should be low, i.e., gðck !
ckþ1Þ ¼ � logðPðck ! ckþ1ÞÞ: The probability Pðck !
ckþ1Þ is defined as

Pðck ! ckþ1Þ ¼ ba;bbc;dRG1
ða; cÞRG2

ðb; dÞ; ð43Þ

where for simplicity, (a, c) and (b, d) are basic edit

operations of the form ðVðG1Þ [ �;VðG2Þ [ �Þ: In Eq. 43,

ba,b and bc,d are referred to as morphological affinity

parameters of the vertices and

RG1 a;cð Þ ¼
PG1 a;cð Þ if a;cð Þ 2 E G1ð Þ;
2�abs m G1ð Þj j� m G2ð Þj jð Þ

m G1ð Þj jþ m G2ð Þj j if a¼ �_ c¼ �
0 otherwise:

8<
: ð44Þ

The same holds for RG2
ðb;dÞ: So, the problem of

computing GED is posed as finding the shortest path
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through the lattice by Dijkstra’s algorithm and the GED

cðC�Þ between these two graphs is given by C� ¼
arg minCcðCÞ:

3.4.2 Maximum a posteriori

The Maximum a Posteriori (MaP) approach [103] is very

similar to the one shown in Sect. 3.4.1, but the graphs are

seriated using the leading eigenvector of the adjacency

matrix A and the least expensive edit path C� is obtained

using the Levenshtein algorithm [72] on the edit matrix. In

this method, edge density of the two graphs is used to

estimate the edit costs. The algorithm is very similar to the

one shown in Algorithm 2. The edit costs of a state tran-

sition gðck ! ckþ1Þ is obtained as

gðck ! ckþ1Þ ¼ � logðPðckj/G1
ðxiÞ;/G2

ðyjÞÞ
� logðPðckþ1j/G1

ðxiþ1Þ;/G2
ðyjþ1ÞÞ

� log Rk;kþ1;

ð45Þ

where Rk,k?1 = P(ck, ck?1)/(P(ck)P(ck?1)) is referred to as

the edge compatibility value and is obtained as

qG2qG1

if ck ! ckþ1 is a diagonal transition,

xi; xiþ1ð Þ 2 E G1ð Þ ^ yi; yiþ1ð Þ 2 E G2ð Þ

qG2

if ck ! ckþ1

	 

is a vertical transition,

xi; xiþ1ð Þ 2 E G1ð Þ ^ yj ¼ _yjþ1 ¼
	 


qG1

if ck ! ckþ1

	 

is a horizontal transition,

yj; yjþ1

	 

2 E G2ð Þ ^ xi ¼ _xiþ1 ¼ð Þ

1 if xi ¼ _xiþ1 ¼ð Þ ^ yj ¼ _yjþ1 ¼
	 


8>>>>>>>>>><
>>>>>>>>>>:

ð46Þ

where qG1
and qG2

are the edge densities.

In Eq. 45, the conditional probabilities P(ck|/G_1(xi),

/G_2(yj)) are calculated as

1ffiffiffiffi
2p
p

r
exp � 1

2r2 /G1 xið Þ � /G2 yj

	 
	 
2
� �

if xi 6¼ � ^ yj 6¼ �;
a if xi ¼ � _ yj ¼ �:

(

ð47Þ

where a and r are two parameters which need to be set

a priori.

3.4.3 String kernels

Given two seriated graphs X ¼ ðx1; . . .; xnÞ and Y ¼
ðy1; . . .; ymÞ; a kernel function for strings could be

employed to determine the similarity between these string

representations of the two graphs. For the sake of con-

ciseness, we can cite only a method based on semidefinite

programming [132] and a fast kernel techniques for strings

that employ suffix trees [116, 124].

3.5 Algorithms analysis

In this survey, three main families of algorithms have been

considered: graph edit distance based, graph kernels based,

and graph embedding based. In addition, we have consid-

ered also hybridized formulations based on graph seriation

techniques. In what follows, we summarize some of the

peculiarities associated with the algorithms we discussed in

this paper, together with a focused analysis on algorithms

comparison and parameters related issues.

Graph edit distance approaches Modern GED-based

algorithms search for a suboptimal edit path, usually

solving another task, such as the assignment (see

Sect. 3.1.4) and quadratic optimization (see Sect. 3.1.3)

problems. That is, they do not solve exactly the optimiza-

tion problem defined in Eq. 2. However, the loss, in terms

of recognition rate, is more than acceptable considering the

huge average achieved speed-up [90, 98]. The dissimilarity

is conceived as the amount of edit operations costs needed

to transform the data graph into the model graph. As a

result, these inexact graph matching functions are usually

not symmetric. Furthermore, usually algorithms of this

family focus on the vertices-related edit operations,

deriving automatically the ones on the edges. An interest-

ing characteristic of this family of algorithms is that edit

operations are intuitive and easily comprehensible, that is,

it is possible to visually understand the operations needed

to edit the data graph into the model graph. This feature can

be very helpful when domain-dependent knowledge is

required to understand the recognition problem at hand.

GED-based algorithms are usually polynomial. Indeed,

the bipartite graph matching algorithm [98], described in

this survey in Sect. 3.1.4, has a computational complexity

of O(n3). The computational complexity associated with

the quadratic optimization problem depends on the par-

ticular adopted algorithmic scheme [87], but it is always

bounded on the polynomial class. GED-based algorithms

are able to deal with virtually any kind of labels. Indeed,

usually the edit operation that corresponds to the substi-

tution is carried out just providing a suitable basic dis-

similarity function for the specific nature of the labels set.

Graph kernels approaches Graph kernels algorithms

are, in one way or another, founded on the convolution

property of valid kernel functions. These methods are able

to unify structural and semantic related analysis of the

input patterns in a single, and usually mathematically well-

founded, operation, such as the tensor product operator (see

Sect. 3.2.1). Standard computation of the tensor product

has a computational cost of O(n4), i.e., it is an expensive

operation. Moreover, once the tensor product is computed,

further operations are required to extract the similarity

value from the output adjacency matrix A�: For example,

computing its eigendecomposition requires an additional
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cost of O(n3) (in the general case). In order to face this

issue, in [123] (see also Sect. 3.2.5) a generalized approach

to the computation of the random walk graph kernel is

depicted, together with different optimized strategies for

faster computations, although dependent on the type of

labeled graphs. Tensor product-based graph kernels suffer

a (not so penalizing) limitation. Being based on the adja-

cencies (or, in a similar way, on the transition probabilities)

of the two input graphs, these methods cannot be applied to

graphs defined with only one vertex, or graphs without

edges. Another drawback is that, usually, the resulting

matrix A� (or T�) becomes very big extremely fast, lim-

iting the application from the memory usage viewpoint.

The use of graph kernels can be thought as an implicit

embedding method, as discussed in Sect. 2.2. Unfortu-

nately, usually the specific embedding space Hk; induced

by the valid graph kernel function kð�; �Þ; is unknown and

further post-processing analysis cannot be conducted on it.

Methods of this family are usually applicable to any kind of

labeled graphs. For example, considering the Gaussian

RBF (see Eq. 26), this kernel function can be applied to

any type of label, using a suitable dissimilarity function

dð�; �Þ; tailored to the specific labels set.

Graph embedding approaches Graphs embedding

methods are very interesting, mainly because of the con-

trollable embedding space. Indeed, it is possible to perform

further post-processing analysis on the explicit embedding,

and, in the same time, inspect with PCA-like techniques the

peculiarities of the data. Moreover, they can be thought as a

two-stage algorithms, where firstly the set of prototypes,

used for embedding purpose, is determined. This stage can

be defined as the synthesis of the embedding space D:
Subsequently, the matching of graphs is performed

explicitly on D: Therefore, the set of embedding prototypes

(both P and A defined in Sects. 3.3.1 and 3.3.2, respec-

tively), can be considered pre-computed in some pattern

recognition applications. These methods are, usually,

hybridized, since their overall behavior depends on a core

inexact graph matching algorithm, such as the GED-based

one. This fact introduces more parameter dependencies and

computational complexity in the method as a whole. It is

worth stressing that also a graph kernel algorithm can be

thought as a dissimilarity measure. Indeed, it is always

possible to define a dissimilarity value starting from a

similarity measure, even when this similarity is unbounded

[92]. Consequently, in both algorithms described in

Sects. 3.3.1 and 3.3.2, also a suitable graph kernel, used as

a dissimilarity, can be adopted. Note that when a graph

kernel is used as a dissimilarity, any kernel function can be

employed in the various convolution schemes, not limiting

the choice to valid kernel functions.

The symbolic histograms embedding, described in

Sect. 3.3.2, is founded on a clustering-based approach,

searching for a setA of FS (called the alphabet of symbols),

using an inexact graph matching algorithm as dissimilarity

measure, introducing a tolerance parameter in the FS

identification scheme. For what concerns the embedding

synthesis stage, assuming employing a simple sequential

clustering scheme, such as the one provided by the Basic

Sequential Algorithmic Scheme (BSAS) [117], this method

has a complexity of OðjAj � GC � ðQþ jCj2ÞÞ; where GC is

the cost associated with each graph matching computation,

Q is the maximum number of allowed clusters and C is the

set of clusters representatives, which is kept fixed in [28, 29,

101] using a constant-size cache replacement policy [27].

Hence, it consists of a linear, in the cardinality of the set of

symbols A; number of inexact graph matching computa-

tions. It is easy to understand that this approach, considering

the matching stage, has a cost that is greater than, for

example, a direct GED-based method. Indeed, once A is

determined, the embedding procedure of an input graph Gi

is performed issuing jAj � jexpandðGiÞj inexact graph

matching computations, where the function expandð�Þ
expands a graph into a (not complete) set of its subgraphs.

Given A; for what concerns the time complexity of the

matching stage, the number of inexact graph matching

evaluations for computing, say, d(G1, G2), is given by jAj �
ðjexpandðG1Þj þ jexpandðG2ÞjÞ; which is again linear in the

number of derived symbols.

Obviously, also the embedding method described in Sect.

3.3.1 is dependent on the cost associated with the direct

graph matching algorithm (i.e., to the particular GED-based

algorithm). The number of inexact graph matching evalua-

tions depends strictly on the size ofP: For what concerns the

matching stage, the matching of d(G1, G2) is carried out

executing exactly 2jPj inexact graph matching computa-

tions needed to produce the embedding vectors. Prototypes

selection strategies permits also to limit the number of

computations to jPj � jGj: However, the determination of

this set of prototypes P has an important cost, subjected to

the specific selection strategy adopted [100].

The algorithm based on the embedding into the structure

space, described in Sect. 3.3.3, is not a two-stages algo-

rithm and does not require any additional core graph

matching procedure, being based on a particular interpre-

tation of the (weighted) adjacency matrix of each graph.

Graph seriation approaches The algorithms based on

seriation, discussed in this survey in Sect. 3.4, are actually

hybrid methods that rely on both edit distance performed on

sequences and embedding approaches, and also for this

reason they have been discussed separately. The reviewed

algorithms use the information provided by the edges to

produce a sequence of the vertices identifiers, according to

their importance in the graph. As used in the literature, these

algorithms are applicable only to edge-labeled graphs, with
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LE � R
n: However, this characterization of the edges labels

is not mandatory, because the transition and adjacency

information on a graph can be always extracted, regardless

the specific definition of LE : However, we stress that the

information of the edges labels should be employed in the

seriation stage, especially considering that this information

is lost once the graph has been represented by a sequence of

its vertices labels. Indeed, string edit distance algorithms are

then employed to the seriated graphs, computing the simi-

larity of the sequence of vertices identifiers. With regard to

the computational complexity of the presented algorithms

(see Sect. 3.4), the seriation stage is dominated by the eig-

endecomposition cost, that is O(n3). If the alignment of the

sequences of vertices identifiers is carried out with the Le-

venshtein algorithm, we need to add a cost of O(n2). Con-

versely, if the Dijkstra algorithm is used to find the shortest

edit path on the edit lattice, the additional cost becomes

OðjEj þ jVj � logðjVjÞÞ; where E and V are the edges and

vertices sets of the edit lattice built for two input graphs.

To be able to apply the same inexact graph matching

scheme based on seriation to fully labeled graphs, it could

be interesting to employ a general sequence matching

procedure, such as the one provided by the Dynamic Time

Warping (DTW) [106] algorithm. In fact, the DTW can be

tailored to the specific nature of the sequence, virtually

opening the possibility to match any kind of complex labels

for the vertices. The DTW algorithm has the same scheme

of the Levenshtein distance, but its time complexity is

determined considering also the specific definition of LV :

3.5.1 Considerations on algorithms comparison

At least for the pattern recognition and soft computing

viewpoints, it is impossible to state a priori what matching

method is better than others. This kind of information can

be inferred only through a systematic experimentation over

a benchmarking dataset that is far beyond the scope of this

paper. For this purpose, the scientific community should

agree on more shared datasets as the briefly described IAM

(see Sect. 1.2), where different research groups are already

publishing their results [38, 46, 58, 75, 98]. In addition,

although the computational complexity of the algorithms

gives an important information concerning the limit costs,

also the real computing time performances should be

verified using shared ad hoc benchmarks, since each

algorithm is characterized by many factors that influence

the time performance outcome in a benchmarking analysis

on finite-size data. For this purpose, when using fully

labeled graphs, there are constant costs associated with

each single labels matching computation, that can become

a very important bottleneck if the type is non-trivial, such

as text excerpts, digital images or any complex composite

objects.

3.5.2 Graph matching parameters tuning

Each described algorithm for the inexact graph matching

computation depends on some parameters that are in some

sense critical and deeply specific to the problem instance.

For example, in the GED-based methods, at least the edit

costs of each edit operation play a crucial role, and should

be inferred from the specific context of application. Con-

sidering the graph kernel, many of the given formulations

are founded on the convolution property of different valid

kernel functions, defined over smaller parts of the whole

object (i.e., the graph). The number of parts taken into

consideration is certainly an important parameter of this

approach, as well as the parameter r in the widely adopted

RBF kernel. Note that different valid kernel functions, such

as the polynomial one, depend also on parameters (see

Table 1). As concerns the embedding of graphs consider-

ing a local reference framework, such as the one described

in Sect. 3.3.1, a critical task is the selection of the proto-

types set P; extremely relevant and specific to the domain

of application. Moreover, its cardinality is relevant to the

whole computational complexity, as indeed it determines

the number of inexact graph matching computations nee-

ded to perform the computation of the dissimilarity

between two given graphs. Not exempt from this depen-

dence is also the symbolic histogram method, described in

Sect. 3.3.2. Indeed, both the maximum subgraphs order and

the specific clustering procedure parameters (such as the

symbols alphabet set, and thus the maximum number of

allowed cluster Q in the BSAS case) influence the recog-

nition procedure as a whole.

This means that any inexact graph matching procedure,

regardless of the family it belongs, can be seen as a para-

metric (dis)similarity measure. Therefore, any inductive

modeling system, adopting such a graph matching proce-

dure as the basic dissimilarity scheme, should include a

suited meta-heuristic optimization procedure in order to

automatically determine these parameters on the basis of

the dataset at hand. Moreover, it is important to underline

that in general, besides the parameters set characterizing a

given graph matching procedure, it is needed also to con-

sider the possible parameters sets of the dissimilarity

measures adopted in the vertices and edges spaces. Each

parameter in this overall set should be optimized tailoring

their values on the application at hand, enabling adaptation

to the specific problem semantic.

Simple experiment on parameters tuning To show how

important is the learning of the inexact graph matching

algorithms parameters, we report a simple example in

which we describe a dataset of labeled graphs, together

with a relatively simple recognition system based on the k-

NN rule. We will see that the generalization capability,

with and without a parameters learning stage, drastically
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changes. Although the learning stage is fundamental in

these systems based on inexact graph matching, we will see

that there is a computational price to pay. We stress again

that the same claim holds for any inexact graph matching

algorithm, because this parameter dependence, in one way

or other, enables the wide-range applicability to different

contexts.

We have considered the Letter dataset, with the highest

level of distortions, taken from the IAM graphs database

[97]. The dataset is composed of a triplet of training, val-

idation and test sets, each of 750 patterns, equally distrib-

uted into 15 different classes. The recognition system is a

k-NN based on the inexact graph matching algorithm

known as the Graph Coverage [75]. It is a graph kernel

function based on the well-known format provided by the

tensor product computation, largely described in both the

methodological and algorithmic-related sections (see Sects.

2.2, 3.2.1, 3.2.2, 3.2.3 and 3.2.5). The graph coverage

algorithm is dependent on three parameters, i.e.,

rV1
; rV2

;rE ; of the respective RBF kernels (see Eq. 26).

Hence, in our simple experiments, we will show how the

determination of these three parameters influence consid-

erably, and reasonably, the recognition rate performance on

the test set. For simplicity, we have tested only the case for

k = 1 in the k-NN classifier. Using the default parameters,

that is setting rV1
¼ 1; rV2

¼ 1 and rE ¼ 1; we obtain a

recognition rate of 69.86 %, computed in 12 s. Repeating

the experiment with a parameters learning stage, based on a

genetic algorithm optimization scheme with (only) ten

evolutions and considering as the fitness function the

classification accuracy on the validation set, we achieve a

recognition rate on the test set of 74.66 %, but with a

computing time of 40 min. The learned parameters setup is

rV1
¼ 0:7908; rV2

¼ 0:4548 and rE ¼ 1:8684:

To stress that the same fact holds for any inexact graph

matching scheme, we repeated the same experiment

substituting only the core matching procedure with a

GED-based algorithm, called weighted Best-Matching

Vertex First (weighted BMF) [29]. It is a very fast algo-

rithm (its computational complexity is O(n2), where n is

the order of the data graph) founded on the well-known

approach provided by the graph edit distance (see

Sect. 2.1), performing a greedy assignment of pairs of

vertices (i.e., the ones with lowest labels-dissimilarity

value are assigned in each iteration, without the possibility

of modifying this decision). As usual in this scenario, the

edit operations of the edges are induced by the ones per-

formed on the vertices. The weighted BMF algorithm

parameters set is defined by three weights, the substitution,

insertion and deletion, for both vertices and edges, for a

total of six parameters, each assuming value in [0, 1].

These weighting parameters define the importance of each

kind of computed edit operation cost in the whole edit

path. For simplicity, we will denote these parameters as

sV ; iV ; dV (for the vertices) and sE ; iE ; dE (for the edges).

The achieved recognition rate on the test set, using the

default setting sV ¼ sE ¼ iV ¼ iE ¼ dV ¼ dE ¼ 1; is

72.4 %, with a computing time of about 2 s. Performing a

stage of parameters optimization, using the same genetic

algorithm-based scheme with again ten evolutions, we

improve the recognition rate at 89.60%. The learned

parameters setup is sV ¼ 0:4678; iV ¼ 0:7175; dV ¼ 0:9309;

sE ¼ 0:1306; iE ¼ 0:2189; dE ¼ 0:7380: The computing

time becomes about 8 min.

As it is easy to understand from this very simple

experiment that the learning stage of inexact graph

matching algorithms parameters is crucial from the pattern

recognition viewpoint. However, a computational price

must be paid, because the learning of the parameters must

be performed using some optimization scheme, such as the

one previously described. As a consequence, the matching

method employed in the recognition system becomes

adaptable, at least in theory, to many contexts.

4 Conclusions

Given a problem at hand, defining a suitable and flexible

graph matching procedure is a challenging problem, mainly

for two reasons: its intrinsic complexity and the heteroge-

neity of the graphs definitions. Graphs can be arbitrarily

labeled, i.e., these measures, to be fully meaningful, must

take into account both topological and labels related

information. In the fields of pattern recognition and

machine learning, everything is a matter of a compromise

between the computational cost and the quality of the

results of a given method. For this purpose, different

algorithms are conceived to focus on a particular aspect of

the data. We have classified the algorithms into three main

categories, namely graph edit distance based, graph kernels

based and graph embedding based. The first family of

algorithms relies on searching for a (suboptimal) edit path

between the data and the model graphs. As a whole, this

approach is highly adaptable to many labeled graphs types.

Graph kernels approaches are founded on the kernel trick

(see Sect. 2.2): to be able to use these kernel functions on

various kernel machines. Usually, these algorithms are

conceived using mathematically well-grounded operators,

such as the tensor product of graphs. Modern approaches of

this family are applicable to virtually any type of graph.

Finally, algorithms from the embedding-based family are

usually hybrid methods, based on some core inexact graph

matching algorithm, such as the ones from the other two

families. Consequently, they result in being more complex,
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yet providing, in general, the possibility of lookong into the

data, analyzing the produced embedding.

As discussed in Sect. 3.5, each described algorithm

depends on a set of parameters that are at the same time the

key to the adaptability to a specific dataset and a critical

problem from the learning viewpoint. Indeed, as briefly

shown in Sect. 3.5.2, the adaptation of these parameters for

the specific dataset results in a straightforward performance

improvement. The claim extends clearly to any parame-

trized inexact graph matching algorithm.

4.1 Future directions

Many approaches for the graph matching problem have

been formulated in the scientific literature. Although there

are yet a lot of possible developments in this context, we

think that a very important issue is the computational speed-

up of these methods, regardless of the specific algorithmic

scheme (i.e., GED, graph kernels or graph embedding). As a

basic building block of more complex pattern recognition

and soft computing systems, these methods should be very

efficient, to be able to effectively preserve the algorithm

adaptability to a specific dataset via parameters optimiza-

tion (see Sect. 3.5.2) in a reasonable computing time.

Moreover, the efficiency is required if we deal with very

large datasets or, even more, with very big labeled graphs.

Note that big graphs are encountered often in many fields of

high interest, such as social networks [126], biochemical

compounds and different kinds of interaction networks [47,

134], brain networks [51], smart grids [33] and so on.

Consequently, the extendability of these techniques to lar-

ger graphs is subjected critically to the capability of con-

ceiving faster matching algorithms.

One interesting possibility comes from the formulation of

parallel algorithms [76], conceived for some parallel

abstract model, such as the PRAM [39, 49] or the bulk

synchronous parallel (BSP) [122] model. The speed-up, in

this case, can be achieved also theoretically. Moreover, there

is the possibility of developing (or employ) specialized

devices such as graphic processing units (GPUs) [76] and

field programmable gate array (FPGA) [22], accelerating the

algorithms using modern parallel hardware capability.
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