

Web Services Business Process
Execution Language Version 2.0
Primer

9 May 2007

Document identifier:

wsbpel-primer

Location:

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.doc

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

 http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.htm

Editors and Contributors:

Charlton Barreto, Adobe Systems, Inc. <cbarreto@adobe.com>
Vaughn Bullard, Amberpoint <vbullard@amberpoint.com>
Thomas Erl, SOA Systems <thomas.erl@soasystems.com>
John Evdemon, Microsoft <John.Evdemon@microsoft.com>
Diane Jordan, IBM <drj@us.ibm.com>
Khanderao Kand, Oracle, <khanderao.kand@oracle.com>
Dieter König, IBM <dieterkoenig@de.ibm.com>
Simon Moser, IBM <smoser@de.ibm.com>
Ralph Stout, iWay Software <ralph_stout@ibi.com>
Ron Ten-Hove, Sun <Ronald.Ten-Hove@sun.com>
Ivana Trickovic, SAP <ivana.trickovic@sap.com>
Danny van der Rijn, TIBCO Software <dannyv@tibco.com>
Alex Yiu, Oracle <alex.yiu@oracle.com>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 1 of 66

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.doc
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.xxx
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.htm
mailto:cbarreto@adobe.com
mailto:vbullard@amberpoint.com
mailto:thomas.erl@soasystems.com
mailto:John.Evdemon@microsoft.com
mailto:drj@us.ibm.com
mailto:khanderao.kand@oracle.com
mailto:dieterkoenig@de.ibm.com
mailto:smoser@de.ibm.com
mailto:ralph_stout@ibi.com
mailto:ivana.trickovic@sap.com
mailto:dannyv@tibco.com
mailto:alex.yiu@oracle.com

Abstract:

The WS-BPEL 2.0 specification [WS-BPEL 2.0] provides a language for formally
describing business processes and business interaction protocols. WS-BPEL was
designed to extend the Web Services interaction model to support business transactions.

The WS-BPEL Primer is a non-normative document intended to provide an easy to read
explanation of the WS-BPEL 2.0 specification. The goal of this document is to help
readers understand the concepts and major components of the WS-BPEL language. This
document will also assist readers in recognizing appropriate scenarios for using WS-
BPEL. This document describes several features of WS-BPEL using examples and
extensive references to the normative specification.

Status:

This is the approved version of the WS-BPEL 2.0 Primer.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 2 of 66

Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2007. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 3 of 66

Table of Contents

1. Introduction... 6
1.1. Terminology... 6
1.2. Objective .. 6
1.3. Non-Normative Status ... 6
1.4. Relationship to the WS-BPEL Specification ... 6
1.5. Outline of this Document... 6

2. History of WS-BPEL .. 8
2.1. Design Goals.. 8
2.2. XLANG and WSFL ... 8

3. Basic Concepts.. 9
3.1. The Structure of BPEL Processes .. 9
3.2. Relationship to Business Partners.. 9
3.3. State of a BPEL Process .. 10
3.4. Behavior of a BPEL Process.. 11

3.4.1. Providing and Consuming Web Services ... 11
3.4.2. Structuring the Process Logic ... 13
3.4.3. Repetitive Activities.. 14
3.4.4. Parallel Processing.. 15
3.4.5. Data Manipulation .. 18
3.4.6. Exception Handling .. 19

4. Advanced Concepts I .. 21
4.1. Refining the Process Structure... 21

4.1.1. Lifecycle of a Scope.. 21
4.1.2. Scoped Fault Handling.. 22
4.1.3. Terminating Running Work.. 22
4.1.4. Undoing Completed Work.. 23
4.1.5. Event Handling ... 24

4.2. Advanced Web Service Interactions.. 24
4.2.1. Selective Event Processing ... 24
4.2.2. Multiple Event Processing .. 25
4.2.3. Concurrent Event Processing.. 26
4.2.4. Message Correlation ... 27
4.2.5. Concurrent Message Exchanges ... 29

4.3. More Parallel Processing ... 30
4.4. Delayed Execution ... 32
4.5. Immediately Ending a Process... 32
4.6. Doing Nothing ... 33
4.7. Data Validation .. 33
4.8. Concurrent Data Manipulation .. 34
4.9. Dynamic Business Partner Resolution... 35

5. Advanced Concepts II... 38
5.1. Language Extensibility .. 38

5.1.1. Expression Languages and Query Languages .. 38
5.1.2. Elements and Attributes of Other Namespaces .. 38

5.2. Abstract Processes ... 40

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 4 of 66

5.2.1. The Common Base.. 40
5.2.2. Abstract Process Profile for Observable Behavior ... 41
5.2.3. Abstract Process Profile for Templates... 43

6. Using WS-BPEL... 44
6.1. Applying WS-BPEL to our scenario.. 44

6.1.1. Introduction... 44
6.1.2. The TimesheetSubmission Process... 45
6.1.3. Getting Started: Defining the process element ... 48
6.1.4. Defining partnerLinks... 48
6.1.5. Defining partnerLinkTypes... 49
6.1.6. Defining variables... 49
6.1.7. Using getVariableProperty function ... 50
6.1.8. Defining Process Logic... 50
6.1.9. Defining a sequence activity... 50
6.1.10. Defining an if activity ... 51
6.1.11. Defining a while activity... 51
6.1.12. Defining a repeatUntil activity.. 52
6.1.13. Defining a forEach activity... 52
6.1.14. Defining assign activities.. 54
6.1.15. Interacting with Partners ... 54
6.1.16. Defining an invoke activity... 55
6.1.17. Defining a receive activity .. 55
6.1.18. Defining a reply activity ... 55
6.1.19. Elaborating and Refining Process Logic... 55
6.1.20. Defining a pick activity... 56
6.1.21. Defining a flow activity .. 56
6.1.22. Defining a wait activity... 58
6.1.23. Defining faultHandlers - catch, and catchAll ... 59
6.1.24. Defining a validate activity... 59
6.1.25. Defining a compensationHandler ... 59

7. What’s new in WS-BPEL 2.0 ... 61
8. Summary ... 63

8.1. Benefits of WS-BPEL.. 63
Appendices.. 64
A. References.. 64
B. Acknowledgements .. 66

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 5 of 66

1. Introduction
1.1. Terminology
WS-BPEL is an acronym for Web Services Business Process Execution Language. WS-BPEL
2.0 is a revision of the original acronym BPEL4WS (Business Process Execution Language for
Web Services) 1.0 and 1.1.

1.2. Objective
WS-BPEL 2.0 specification [WS-BPEL 2.0] defines a language for business process
orchestration based on web services. This document, WS-BPEL primer, is a supplementary
document to WS-BPEL 2.0 specifications. The primer provides a brief explanation of all the key
features of WS-BPEL with the help of a practical use case and numerous examples. The primer
is intended towards business process analysts, software developers/architects and system
integrators who want to know the basics features of WS-BPEL. A basic knowledge of XML,
WSDL and any programming language is essential for a better understanding of this document.

1.3. Non-Normative Status
The primer is a non-normative document and not a definitive specification of WS-BPEL. The
primer contains examples and other information for a better understanding of WS-BPEL.
However, these examples and information would not cover all possible scenarios that are
syntactically expressed and covered in WS-BPEL specifications. For any specific information,
one is advised to refer to the WS-BPEL specification.

1.4. Relationship to the WS-BPEL Specification
WS-BPEL 2.0 specification [WS-BPEL 2.0] provides a complete normative description to
business process execution language. This Primer provides an overview of developing business
processes using WS-BPEL2.0 specifications. This document should be considered as
supplementary and in terms of its scope and completeness, it is not a replacement to the original
specifications.

1.5. Outline of this Document
The primer begins with the background of WS-BPEL, progressively unfolds the language
features from basic to advanced concepts, and finally provides a complete picture with an
example of a business process for a use case.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 6 of 66

The second chapter covers a history of WS-BPEL, and its design goals. Since WS-BPEL is a
result of OASIS standardization process for BPEL4WS, this chapter also covers key feature
additions and changes in WS-BPEL.

The third chapter covers basic language concepts of WS-BPEL and their usages.

The fourth and fifth chapters cover more advanced features related to compensation, parallel
flows, events, concurrency, correlations, and life cycle managements.

The sixth chapter covers the use case and the use of many key features to explain a business
process handling Timesheet Submission.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 7 of 66

2. History of WS-BPEL
2.1. Design Goals
The WS-BPEL 2.0 effort began with a set of design goals in mind, that helped serve as an initial
scope to the specification work. Goals included the definition of Web service orchestration
concepts and enabling limited data manipulation.

These initial design goals may be found at http://www.oasis-
open.org/committees/download.php/3249/Original%20Design%20Goals%20for%20the%20BPE
L4WS%20Specification.doc).

2.2. XLANG and WSFL
The Business Process Execution Language for Web Services (BPEL4WS) was first conceived in
July, 2002 with the release of the BPEL4WS 1.0 specification, a joint effort by IBM, Microsoft,
and BEA. This document proposed an orchestration language inspired by previous variations,
such as IBM’s Web Services Flow Language (WSFL) and Microsoft’s XLANG specification.

Joined by other contributors from SAP and Siebel Systems, version 1.1 of the BPEL4WS
specification was released less than a year later, in May of 2003. This version received more
attention and vendor support, leading to a number of commercially available BPEL4WS-
compliant orchestration engines. Just prior to this release, the BPEL4WS specification was
submitted to an OASIS technical committee so that the specification could be developed into an
official, open standard.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 8 of 66

http://www.oasis-open.org/committees/download.php/3249/Original Design Goals for the BPEL4WS Specification.doc%29
http://www.oasis-open.org/committees/download.php/3249/Original Design Goals for the BPEL4WS Specification.doc%29
http://www.oasis-open.org/committees/download.php/3249/Original Design Goals for the BPEL4WS Specification.doc%29

3. Basic Concepts
3.1. The Structure of BPEL Processes
First of all, a BPEL Process is a container where you can declare relationships to external
partners, declarations for process data, handlers for various purposes and, most importantly, the
activities to be executed. On top, the process container has a couple of attributes, i.e. a
(mandatory) name and a (also mandatory) declaration of a namespace – as shown in the example
below. You should note that not all possible attributes of the process element are shown in this
example.

<process name="PrimerProcess"
 targetNamespace="http://oasis-open.org/WSBPEL/Primer/"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" />
Example 3-1: A process.

The namespace declaration “http://docs.oasis-open.org/wsbpel/2.0/process/executable” specifies
that this is an Executable Process. An additional namespace is available for Abstract Processes.
Abstract processes describe process behavior partially without covering every detail of
execution. That behavior typically encompasses a process template or the externally visible
behavior of a process towards business partners without exposing the internal business logic.
Executable Processes, by contrast, define the complete business behavior both the externally
visible part and internal processing part.

The process element is the outermost container. Therefore, any partners, process data or
handlers that are declared on the process container can be considered as global. BPEL also
supports the concept of declaring all these things in a local way. The syntactic element to do this
is called a scope.

<scope name="Scope" />
Example 3-2: A scope.

With the help of scopes, you can divide up your business process, each holding a portion of the
overall business logic. For example, process data that is declared local to a scope is not visible to
anything outside of that scope, i.e. it is only valid within such a specific part of the process.

3.2. Relationship to Business Partners
BPEL Business Processes offer the possibility to aggregate web services and define the business
logic between each of these service interactions. It is also said that BPEL orchestrates such web
service interactions. Each service interaction can be regarded as a communication with a
business partner. The interaction is described with the help of partner links. Partner links are
instances of typed connectors which specify the WSDL port types the process offers to and
requires from a partner at the other end of the partner link.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 9 of 66

Note that for one partner, there can be a set of partner links. You can regard one partner link as
one particular communication channel. Such an interaction is potentially two sided: the process
invokes the partner and the partner invokes the process. Therefore, each partnerLink is
characterized by a partner link type and a role name. This information identifies the functionality
that must be provided by the business process and by the partner service.

<partnerLinks>
 <partnerLink name="ClientStartUpLink"
 partnerLinkType="wsdl:ClientStartUpPLT" myRole="Client" />
</partnerLinks>
Example 3-3: Partner links.

Partner link declarations can take place directly under the process element, which means that
they are accessible by all BPEL constructs within the BPEL process, or under a scope element,
which means they are only accessible from the children of that scope.

3.3. State of a BPEL Process
In Section 3.1, the term process data was introduced. Technically, process data are variables that
are declared on a process or on a scope within that process. Variables hold the data that
constitute the state of a BPEL business process during runtime. Data in BPEL is written to and
read from typed variables. The values contained in such variables can be of two sources: either
they come from messages exchanged with a partner, or it is intermediate data that is private to
the process. In order to fulfill type-contracts with the partner, all variables in BPEL must either
be WSDL message types, XML schema simple types, XML schema complex types or XML
schema elements. In order to change the state of a process by changing the content of its
WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 10 of 66

variables, an expression language for manipulating and querying variables is required. In BPEL,
the default language for that is XPath 1.0.

You can declare a variable by specifying a name and one of the three types mentioned above,
written down as one of the three attributes type, messageType or element.

<variables>
 <variable name="myVar1" messageType="myNS:myWSDLMessageDataType" />
 <variable name="myVar1" element="myNS:myXMLElement" />
 <variable name="myVar2" type="xsd:string" />
 <variable name="myVar2" type="myNS:myComplexType" />
</variables>
Example 3-4: Variables.

Variable declarations can appear directly under the process element, which means that they
are visible to all BPEL constructs within the BPEL process, or under a scope element, which
means it is only visible to the children of that scope.

3.4. Behavior of a BPEL Process
The major building blocks of BPEL processes are activities. There are two types: structured
activities can contain other activities and define the business logic between them. In contrast,
basic activities only perform their intended purpose (like receiving a message from a partner, or
manipulating data) and have no means to define any other logic by containing other activities.

3.4.1. Providing and Consuming Web Services

In BPEL, there exist a couple of simple activities with the purpose of consuming messages from
and providing messages to web service partners. These activities are the receive activity, the
reply activity and the invoke activity. All these activities allow exchanging messages with
external partners (services).

The purpose of the receive activity is receiving messages from an external partner. Therefore,
a receive activity always specifies the partner link and operation of the partners the web service.
You need also to specify a variable (or a set of variables) that holds the requested data that will
be received from the partner. A receive activity may have an associated reply activity if it is
used to provide a WSDL request-response operation.

<receive name="ReceiveRequestFromPartner"
 createInstance="yes"
 partnerLink="ClientStartUpPLT"
 operation="StartProcess" ... />
Example 3-5: Receive activity.

The attribute called createInstance on the receive activity means that you can use a receive
activity with createInstance="yes" to create a new process instance, whereas
createInstance="no" means that the incoming message will be consumed by the (already
running) process instance.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 11 of 66

As already mentioned, one receive activity can have an associated reply activity. You might
think of a client that wants to order a book from a book selling process. The client would send a
request to the receive activity of the book selling process, the process then would do some
internal logic (like determining whether the book is available, checking if the delivery address
and the provided credit card number are correct etc.). After that logic is done, it would be natural
for the process to respond to the client to let him know whether the order was successful or not.

You should be aware that a reply activity can come in two flavors: It can reply normal data
(which would yield to a normal reply), or it can reply faulted data (like a “the book is out of
Stock” exception in the example above), which would then yield to a “faulted reply”. If so, you
should specify an additional faultName attribute on the reply activity.

As you see, the reply activity is typically used in conjunction with the receive activity to
implement a WSDL request-response operation on a particular communication channel (partner
link). It provides means to return data to the caller by specifying a partnerLink and operation
for the Web service. The specified variable holds the response data or fault data returned to the
caller of the Web service. If fault data is returned, the faultName identifies the corresponding
WSDL fault.

<reply name="ReplyResponseToPartner"
 partnerLink="ClientStartUpPLT"
 operation="StartProcess" ... />
Example 3-6: Reply activity.

The third web-service related activity is the invoke activity. The invoke activity is used to
call a web service provided by a partner. A partnerLink and operation of the web service to
be called must be specified.

<invoke name="InvokePartnerWebService"
 partnerLink="BusinessPartnerServiceLink"
 operation="partnerOperation" ... />
Example 3-7: Invoke activity.

In WSDL 1.1 there exist multiple types of operations. Two of them are supported by BPEL: one-
way operations and request-response operations. An invoke activity can therefore either call a
one-way operation (and would then continue with the process logic without waiting for the
partner to reply), or a request-response operation (which would block the process (or a part of it)
until it receives a response from the partner service. If the operation that is invoked is of type
request-response operation, you must provide both an input and output variable.

<invoke name="RequestResponseInvoke"
 partnerLink="BusinessPartnerServiceLink"
 operation="RequestResponseOperation"
 inputVariable="Input"
 outputVariable="Output" />
Example 3-8: Invoke activity for a WSDL request-response operation.

In case it is a one-way operation, you only have to specify an input variable.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 12 of 66

<invoke name="OneWayInvoke"

 partnerLink="BusinessPartnerServiceLink"
 operation="OneWayOperation"
 inputVariable="Input" />
Example 3-9: Invoke activity for a WSDL one-way operation.

Besides, you can specify various handlers on an invoke activity. This is because an invoke
activity can be regarded as a shorthand notation of a scope activity that contains the handlers
allowed as well as the invoke activity itself. The handlers allowed within an invoke activity
are fault handlers and a compensation handler. For more information on the various types of
handlers, see section 4.1.

For the sake of completeness, it should be mentioned that there are more web-service related
constructs like the Pick Activity and a handler called Event Handler which will be described in
sections 4.2.1 and 4.2.3, respectively.

3.4.2. Structuring the Process Logic

BPEL provides means to structure the business logic according to your needs. If you need a
number or activities executed in a sequential order (e.g. first receive the order, then check the
payment, then ship the goods, then send a confirmation) you can do so by using BPEL’s
sequence activity. In other words, the sequence activity is used to define a collection of
activities which are executed sequentially in lexical order.

<sequence name="InvertMessageOrder">
 <receive name="receiveOrder" ... />
 <invoke name="checkPayment" ... />
 <invoke name="shippingService" ... />
 <reply name="sendConfirmation" ... />
</sequence>
Example 3-10: Sequence activity.

Another activity used for structuring the business logic is the if-else activity. The construct
might be known from traditional programming languages. The if-else activity allows you to
select exactly one branch of the activity from a given set of choices. For each choice, the
behavior is to check a condition and if that condition evaluates to true, the associated branch is
executed, otherwise an alternative path is taken. As with all expressions in BPEL, you can use
XPath expressions to formulate your condition. Note that only the first branch with a true
condition is executed. If no condition evaluates to true, then a default choice can be specified
using the else branch.

<if name="isOrderBiggerThan5000Dollars">
 <condition>
 $order > 5000
 </condition>
 <invoke name="calculateTenPercentDiscount" ... />
 <elseif>
 <condition>
 $order > 2500
 </condition>
 <invoke name="calculateFivePercentDiscount" ... />
 </elseif>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 13 of 66

 <else>
 <reply name="sendNoDiscountInformation" ... />
 </else>
</if>
Example 3-11: If-else activity.

3.4.3. Repetitive Activities

BPEL offers three activities that allow the repeated execution of a piece of business logic. One of
these activities is the while activity. The while activity is a structured activity, i.e. it has a
child nested within. The while activity allows you to repeatedly execute the child activity as
long as a given condition evaluates to true. The condition is specified on the while activity and
gets evaluated at the beginning of each iteration, which means consequently that the body of the
while activity might not be executed at all (if the condition does not evaluate to true at all).

<while>
 <condition>
 $iterations > 3
 </condition>
 <invoke name="increaseIterationCounter" ... />
</while>
Example 3-12: While activity.

In contrast, the repeatUntil activity has the difference that the body of the activity is
performed at least once, since the condition is evaluated at the end of each iteration.

<repeatUntil>
 <invoke name="increaseIterationCounter" ... />
 <condition>
 $iterations > 3
 </condition>
</repeatUntil>
Example 3-13: RepeatUntil activity.

The third activity in the group of repetitive activities is the forEach activity. In its default
behavior, the forEach activity iterates sequentially N times over a given set of activities. A
use-case that can be imagined is that it iterates over an incoming order message where the order
message consists of N order items. Technically, the forEach activity iterates its child scope
activity exactly N times where N equals the finalCounterValue minus the
startCounterValue plus 1.

<forEach parallel="no" counterName="N" ...>
 <startCounterValue>1</startCounterValue>
 <finalCounterValue>5</finalCounterValue>
 <scope>
 <documentation>check availability of each item ordered</documentation>
 <invoke name="checkAvailability" ... />
 </scope>
</forEach>
Example 3-14: ForEach activity (serial).

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 14 of 66

There are two variants forEach activity: sequential and parallel, as specified by the parallel
attribute. The parallel variant is discussed in more detail in section 4.3.

One restriction applies to the forEach activity, as it is shown in the example: All other
structured activities introduced so far can have any arbitrary activity as its child activity, whereas
the forEach activity can only have a scope (see Section 3.1).

3.4.4. Parallel Processing

So far, you have been introduced to various concepts how business processes can be structured in
a sequential fashion. However, often it is desirable or even necessary to execute things in
parallel. For this purpose, BPEL offers the flow activity. Note that besides the flow activity, the
parallel variant of forEach activity and event handlers allow multiple instances of its child
activity to run in parallel – they are discussed later.

In the following example, a set of three activities (checkFlight, checkHotel and checkRentalCar)
are executed in parallel, i.e. their corresponding web services would be invoked concurrently. All
three activities are started concurrently when the flow activity starts.

<flow ...>
 <links> ... </links>
 <documentation>
 check availability of a flight, hotel and rental car concurrently
 </documentation>
 <invoke name="checkFlight" ... />
 <invoke name="checkHotel" ... />
 <invoke name="checkRentalCar" ... />
</flow>
Example 3-15: Flow activity.

Sometimes, even in a mainly parallel process, it is necessary to synchronize between some of
these activities. Let’s assume a fourth activity, bookFlight, is added to the example given above.
If you would just add this activity to the flow activity, it would also be executed in parallel
when the flow activity starts. However, booking a flight makes only sense after you checked
that there is actually one available. Therefore, you can add a link between these two activities.
Adding a link introduces a control dependency which means that the activity which is the target
of the link will only be executed if the activity that is the source of the link has completed. The
corresponding BPEL would look as follows:

<flow ...>
 <links>
 <link name="checkFlight-To-BookFlight" />
 </links>
 <documentation>
 check availability of a flight, hotel and rental car concurrently
 </documentation>
 <invoke name="checkFlight" ...>
 <sources>
 <source linkName="checkFlight-To-BookFlight" />
 </sources>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 15 of 66

 </invoke>

 <invoke name="checkHotel" ... />
 <invoke name="checkRentalCar" ... />
 <invoke name="bookFlight" ...>
 <targets>
 <target linkName="checkFlight-To-BookFlight" />
 </targets>
 </invoke>
</flow>
Example 3-16: Flow activity with links.

The semantics of link elements are richer then indicated in this little example. A link can have
a transition condition associated with it which influences its status. If no
transitionCondition is specified, the status of the link is true. If a
transitionCondition is specified, it will set the status of the link. Take a look at the
following example:

<flow ...>
 <links>
 <link name="request-to-approve" />
 <link name="request-to-decline" />
 </links>
 <receive name="ReceiveCreditRequest"
 createInstance="yes"
 partnerLink="creditRequestPLT"
 operation="creditRequest"
 variable="creditVariable">
 <sources>
 <source linkName="request-to-approve">
 <transitionCondition>
 $creditVariable/value < 5000
 </transitionCondition>
 </source>
 <source linkName="request-to-decline">
 <transitionCondition>
 $creditVariable/value >= 5000
 </transitionCondition>
 </source>
 </sources>
 </receive>
 <invoke name="approveCredit" ...>
 <targets>
 <target linkName="request-to-approve" />
 </targets>
 </invoke>
 <invoke name="declineCredit" ...>
 <targets>
 <target linkName="request-to-decline" />
 </targets>
 </invoke>
</flow>
Example 3-17: Flow activity with links and transition conditions.

The link request-to-approve has a transition condition that checks if the part value of variable
creditVariable has a value that is less than 5000. If that is the case, the link status of the request-
to-approve link will be set to true, otherwise to false. Since the transition condition of the

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 16 of 66

request-to-decline link is the exact opposite (greater than or equal to 5000), this means that
exactly one of the two successor activities approveCredit or declineCredit will be executed.

Transition conditions offer a mechanism to split the control flow based on certain conditions.
Therefore, a mechanism to merge it again must be offered, too. BPEL does that with join
conditions. Join conditions are associated with activities, usually if the activities have any
incoming links. A joinCondition specifies for an activity something like a “start condition”,
e.g. all incoming links must have the status of true in order for the activity to execute, or at
least one incoming link must have the status true. The following example illustrates this:

<flow ...>
 <links>
 <link name="request-to-approve" />
 <link name="request-to-decline" />
 <link name="approve-to-notify" />
 <link name="decline-to-notify" />
 </links>
 <receive name="ReceiveCreditRequest"
 createInstance="yes"
 partnerLink="creditRequestPLT"
 operation="creditRequest"
 variable="creditVariable">
 <sources>
 <source linkName="request-to-approve">
 <transitionCondition>
 $creditVariable/value < 5000
 </transitionCondition>
 </source>
 <source linkName="request-to-decline">
 <transitionCondition>
 $creditVariable/value >= 5000
 </transitionCondition>
 </source>
 </sources>
 </receive>
 <invoke name="approveCredit" ...>
 <source linkName="approve-to-notify" />
 <targets>
 <target linkName="request-to-approve" />
 </targets>
 </invoke>
 <invoke name="declineCredit" ...>
 <source linkName="approve-to-notify" />
 <targets>
 <target linkName="request-to-decline" />
 </targets>
 </invoke>
 <reply name="notifyApplicant" ...>
 <targets>
 <joinCondition>
 $approve-to-notify or $decline-to-notify
 </joinCondition>
 <target linkName="approve-to-notify" />
 <target linkName="decline-to-notify" />
 </targets>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 17 of 66

 </invoke>

 </reply>
</flow>
Example 3-18: Flow activity with links, transition conditions and join conditions.

Let’s imagine that an error occurs in activity approveCredit, the outgoing link of this activity
(which is link approve-to-notify) will be set to false by the execution environment. This may
lead to a situation where the join condition is evaluated to false as well. WS-BPEL provides
two mechanisms for dealing with false join conditions. By default, a joinFailure fault is thrown
that may be caught by an appropriate fault handler (see also section 3.4.6). Alternatively, when
the attribute suppressJoinFailure on the process or an enclosing activity is set to yes,
the activity associated with the false join condition is skipped and the false link status is
propagated along links leaving that activity. In other words, a false link status will be
propagated transitively along entire paths formed by successive links until a join condition is
reached that evaluates to true. This approach is called Dead-Path Elimination (DPE).

3.4.5. Data Manipulation

In the previous sections it has been shown how business data can be received into a process (see
section 3.4.1). However, in real-life business processes, this data sometimes needs to be split up
in various parts, or joined from various sources. Imagine an input message to a process which
contains multiple parts:

• the name of the customer
• an article number of the item that is ordered
• a shipping address
• credit card information (number, expiration date etc.)

Now also imagine that your enterprise is set up in a way that you have a department that handles
the shipping, one that handles the availability, and you have a business partner that checks the
validity of credit cards. Now you can easily imagine that the partner service that checks for credit
cards doesn’t really care for what the customer ordered, it only cares for the name of the
customer, and for the credit card information. What your process would need to do is: take these
two information parts out of the input message of the process, assemble a new message just
containing of these two parts, and then use this new message as the input message for the
creditCardCheck Service. Analogous examples can be set up with the name shipping department
etc. It becomes apparent that a mechanism for data manipulation is needed within BPEL
Business processes.

BPEL therefore offers the assign activity. The assign activity contains one or more copy
operations. Each copy operation has a from–spec and a to–spec, indicating the source and
target elements where data gets copied from and to, respectively. In the following example, a
whole variable gets copied into another variable of the same data type:

<assign>
 <copy>
 <from variable="TimesheetSubmissionFailedMessage" />
 <to variable="EmployeeNotificationMessage" />
 </copy>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 18 of 66

</assign>

Example 3-19: Assign activity.

However, the textual example above showed that is not sufficient, often you want only to copy
parts of a variable into another variable, or even parts of a variable into a part of another variable.
Therefore, you need a mean to reference such parts. One of the goals of BPEL was not to
reinvent yet another XML-based data manipulation language, but to reuse other standard like
XPath and XSLT in order to achieve this.

<assign>
 <copy>
 <from variable="Input" part="operation1Parameter">
 <query>
 creditCardInformation
 </query>
 </from>
 <to variable="CreditCardServiceInput" />
 </copy>
</assign>
Example 3-20: Assign activity with query language attribute.

As it can be seen in the example, when addressing a part of a variable, a query language can be
specified in order to do this. XPath 1.0 is used in the example, as indicated in the queryLanguage
attribute of the query element. (Note: XPath 1.0 is the default expression and query language in
WS-BPEL 2.0. Typically users do not explicitly specify the usage of XPath 1.0 in their process
definition through queryLanguage or expressionLanguage attribute.)

You can not only assign from a variable or a part of a variable to another variable (or its parts),
but also from one of the following:

Variable Property:
 <from>
 bpel:getVariableProperty("Input", "a:orderNo")
 </from>

Partner Link / EPR:
 <from partnerLink="Supplier"/>, see also section 3.2

Expression:
 <from>count($po/poline)</from>

3.4.6. Exception Handling

So far, almost all explained concepts, along with the given examples, assumed that everything
goes fine when executing a business process. In reality, a language like BPEL must be able to
cope with exceptional situations, e.g. calling a web service that is currently unavailable. In other
words, a mechanism to detect that such an exceptional situation occurred must be offered, and
also means to handle such situation must be provided.

BPEL therefore offers the concept of fault handlers. A fault handler can be attached to a scope
(see section 4.1.2 for more details), a process, or, as outlined in section 3.4.1, even directly as
WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 19 of 66

a shorthand notation on an invoke activity. In this section, we deal with the fault handling on
process level only.

A fault handler gets installed as soon as the scope, it is associated to, gets started. As an example,
the process level fault handler gets installed when the process starts. If the process completes
normally, the installed fault handler then gets discarded, but if a fault situation occurs, that fault
gets propagated to the fault handler.

<faultHandlers>
 <catch faultName="BookOutOfStockException"
 faultVariable="BookOutOfStockVariable">
 ...
 </catch>
 <catchAll>...</catchAll>
</faultHandlers>
Example 3-21: Fault handler for a process.

As it can be seen in the example, a fault handler can have two types of children: One or more
catch constructs, and at most one catchAll. Each catch construct then has to provide an
activity (indicated by the “…” in the example) that performs exception handling for a specific
type of error condition. In the given example, you call a checkAvailability web service for books
to see whether a book that was ordered is in stock, and the response of the web service might be
to throw a BookOutOfStockException (which would have be declared on the WSDL interface of
that service).

A catch construct has optional additional attributes: a faultName that refers to the name of
the fault that should get caught, and a faultVariable attribute. When faultVariable
attribute is used, either faultMessageType or faultElement attribute must be specified.
The faultVariable would point to a variable locally declared within the catch construct
based on the faultMessageType or faultElement attribute.

Optionally, the fault hander can end with a catchAll construct. The intention is to provide a
mean for default fault handling, e.g. if the checkAvailability web service would not only throw a
BookOutOfStockException, but also a BookOutOfPrintException and a
BookTitleNotFoundException. If you don’t want to distinguish the error handling of the latter
two, you would just fill the catchAll with the appropriate exception handling activities.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 20 of 66

4. Advanced Concepts I
4.1. Refining the Process Structure
In BPEL, you may structure your business process into a hierarchy of nested scopes. Each scope
can have its own definitions of variables, partner links, message exchanges, correlation sets, and
handlers. This limits the visibility of these definitions to the enclosed activities and provides the
context in which they are executed. The outermost context is the process definition itself.

Two constructs of the BPEL language require the use of scopes. The primary activity in the
onEvent event handler and in the forEach activity must be a scope. These scopes own the
definition of the event handler variable and the loop counter variable (the counterName
attribute of the forEach activity in section 3.4.3), respectively. In the event handler case, the
enclosed scope may also own the definition of the partner link, message exchange, or correlation
set definition used by the event handler.

If an invoke activity contains the definition of a fault handler or compensation handler then it
is equivalent to an implicit scope immediately enclosing the invoke activity. This implicit
scope activity assumes the name of the invoke activity it encloses, its
suppressJoinFailure attribute and its sources and targets elements (see section
3.4.4).

4.1.1. Lifecycle of a Scope

A scope can be used like a regular activity, for example, as a child element of a loop. The
lifecycle of a scope begins with the following initialization sequence for entities defined locally
within the scope:

• Initialize variables and partner links
• Instantiate correlation sets
• Install fault handlers, termination handler, and event handlers

The steps listed above are performed in an all-or-nothing fashion, that is, either all succeed or the
fault bpel:scopeInitializationFailure is thrown to the parent scope. After scope
initialization, the primary activity of the scope is executed and all event handlers are enabled in
parallel, except an initial start activity which is executed before event handlers are enabled.

A scope finishes its work either successfully or unsuccessfully – three cases must be
distinguished:

• [Normal completion] If the primary activity completes without throwing a fault and no
orphaned inbound message activities are detected then all event handlers are disabled
(running event handler instance are allowed to finish), the compensation handler is
installed. The scope finishes successfully.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 21 of 66

• [Internal fault] If a fault is thrown within the scope then all other running activities and
event handler instances within the scope are terminated and a matching fault handler (see
section 3.4.6) is executed. The scope finishes unsuccessfully.

• [External termination] If a running scope received a termination signal (because of an
external fault or completion condition) then all other running activities and event handler
instances within the scope are terminated. The scope finishes unsuccessfully.

The following sections describe the different types of handlers in more detail.

4.1.2. Scoped Fault Handling

BPEL fault handlers for processes have been introduced in section 3.4.6. They may also be
associated with a scope in order to deal with exceptional situations more locally to the place
where they occurred.

<scope>
 <faultHandlers>
 <catch faultName="xyz:anExpectedError">...</catch>
 <catchAll><!-- deal with other errors -->
 ...
 </catchAll>
 </faultHandlers>
 <sequence>
 <!-- do work -->
 </sequence>
</scope>
Example 4-1: Scoped fault handling.

When a fault happens within a scope then the scope completes unsuccessfully. Before the
scope’s processing ends, a local fault handler can deal with the fault. Fault handlers may
themselves throw new faults or rethrow the fault they caught to the next enclosing scope, or to
the process if no more enclosed scope is present.

4.1.3. Terminating Running Work

Before a fault handler actually begins its processing, all other running work within its associated
scope is terminated. Structured activities are terminated, and the termination is propagated into
their contained activities. Some basic activities (assign, empty, throw, rethrow, exit)
are allowed to complete while others are interrupted.

Scopes themselves may influence their termination behavior. Typical use cases include
performing cleanup work or sending a message to a business partner. After terminating the
scope’s primary activity and all running event handler instances, the scope’s (custom or default)
terminationHandler is executed.

<scope>
 <terminationHandler>
 <!-- clean up resources in case of forced termination -->
 </terminationHandler>
 <sequence>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 22 of 66

 <!-- do work -->
 </sequence>
</scope>
Example 4-2: Termination handling.

Custom termination handlers can contain any BPEL activities, including compensate and
compensateScope. They cannot propagate faults to their enclosing business logic because
the termination was either caused by another fault or by a completion condition of a forEach
activity.

4.1.4. Undoing Completed Work

Business processes typically represent long-running work which cannot be completed within a
single atomic transaction. Already committed ACID transactions create persistent effects before
the process is completed. Application-specific compensation steps undo these effects when
required. In a BPEL scope, the language construct for reversing previously completed process
steps is the compensationHandler. It can be invoked after successful completion of its
associated scope, using the compensate or compensateScope activities.

<scope name="S1">
 <faultHandlers>
 <catchAll>
 <compensateScope target="S2" />
 </catchAll>
 </faultHandlers>
 <sequence>
 <scope name="S2">
 <compensationHandler>
 <!-- undo work -->
 </compensationHandler>
 <!-- do some work -->
 </scope>
 <!-- do more work -->
 <!-- a fault is thrown here; results of S2 must be undone -->
 </sequence>
</scope>
Example 4-3: Compensation handling.

A scope’s compensation handler has visibility to the current state of the process instance. The
state of a successfully completed scope is saved such that a compensation handler can “continue”
working on it later. The state of enclosing scopes is shared with other concurrent work, so all
concurrency and isolation considerations (see section 4.8) apply to compensation handlers in the
same way as for the primary activity of a scope.

Compensation handlers are invoked by the compensate or compensateScope activity,
which may reside in a fault handler, compensation handler, or termination handler (together
referred to as FCT-handlers) of an immediately enclosing scope. A compensate activity
causes the compensation handler of all successfully completed and not yet compensated child
scopes to be executed in default order. A compensateScope activity causes the compensation
handler of one specified successfully completed scope to be executed. If a compensation
handler’s associated scope is contained in a repeatable construct or event handler then multiple

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 23 of 66

compensation handler instances exist – each one associated with a corresponding scope instance.
Finally, each compensation handler instance may in turn cause compensation handlers of nested
scopes to be invoked. The set of all compensation handler instances invoked by one
compensate or compensateScope activity is called a compensation handler instance
group.

If a fault is thrown in a compensation handler then the fault is propagated to the scope containing
the compensate or compensateScope activity that invoked the compensation handler
instance group. Before the corresponding fault handler begins its work, the termination of all
running work includes all still running compensation handlers of the group.

4.1.5. Event Handling

Each scope as well as the process itself may define event handlers. They are used to process Web
service request messages arriving in parallel to the primary activity of the scope or process. As
one of multiple advanced interaction scenarios, event handlers are described in section 4.2.3.

4.2. Advanced Web Service Interactions
In the previous chapter, we explained how the receive activity is used to perform a blocking
wait for a particular incoming message. There are also scenarios where the behavior of a
business process is more complex. In some cases, one out of a set of different messages will
arrive. In other cases, multiple incoming messages are expected before further steps in the
business logic can be performed. Sometimes messages arrive in parallel to the main flow of the
business process. All of these scenarios can be modeled using BPEL constructs. In the
specification, these constructs are jointly referred to as inbound message activities (IMA). In the
following section, we will discuss each construct in detail.

4.2.1. Selective Event Processing

In the first advanced scenario, there is a set of multiple suitable messages where each one of
them can trigger subsequent steps in the business process. Optionally, one is able to specify the
behavior for the exceptional case where none of these expected messages arrive within a certain
amount of time. The pick activity contains one or more onMessage elements and zero or
more onAlarm elements. Each onMessage element points to a Web service operation
exposed by the business process and to a variable that holds the received message. Each
onAlarm element has a specified point in time or a time interval. Both elements contain the
business logic to be performed when the specified message or timeout event occurs.

<pick>
 <onMessage partnerLink="buyer"
 operation="inputLineItem"
 variable="lineItem">
 <!-- activity to add line item to order -->
 </onMessage>
 <onMessage partnerLink="buyer"
 operation="orderComplete"
 variable="completionDetail">

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 24 of 66

 <!-- activity to perform order completion -->
 </onMessage>
 <onAlarm>
 <for>'P3DT10H'</for>
 <!-- handle timeout for order completion -->
 </onAlarm>
</pick>
Example 4-4: The pick activity.

A pick activity with two onMessage branches and one onAlarm branch is shown in the
previous example. Either the inputLineItem operation, the orderComplete operation, or the
expiration of the timeout interval of 3 days and 10 hours will cause the associated activity to be
processed and the pick activity to complete. The first event to occur triggers the associated
logic. Only one event is processed, that is, the pick activity completes when the business logic
associated with this event has been processed.

Similar to the receive activity; createInstance=”yes” can be specified for the pick
activity in order to cause a new process instance to be created upon the receipt of message. Note
that a new process instance can only be created by receiving a message and not with an
onAlarm specification.

4.2.2. Multiple Event Processing

In the previous section, we showed how one message can be received when there are multiple
possible choices. We now take a look at a scenario where more than one message is needed to
trigger subsequent steps. Consider a broker’s business process that does its work after both a
buyer and a seller have reached agreement on a particular trade. Both trading partners inform the
broker who then initiates the settlement. The broker process waits for a message from both
partners without knowing which one arrives first.

<flow>
 <links>
 <link name="buyToSettle" />
 <link name="sellToSettle" />
 </links>
 <receive name="receiveBuyerInformation" createInstance="yes" ...>
 <sources>
 <source linkName="buyToSettle" />
 </sources>
 <correlations>
 <correlation set="tradeID" initiate="join" />
 </correlations>
 </receive>
 <receive name="receiveSellerInformation" createInstance="yes" ...>
 <sources>
 <source linkName="sellToSettle" />
 </sources>
 <correlations>
 <correlation set="tradeID" initiate="join" />
 </correlations>
 </receive>
 <invoke name="settleTrade" ...>
 <targets>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 25 of 66

 <joinCondition>$buyToSettle and $sellToSettle</joinCondition>
 <target linkName="buyToSettle" />
 <target linkName="sellToSettle" />
 </targets>
 </invoke>
 ...
</flow>
Example 4-5: Multiple start activities.

You noticed two receive activities with the createInstance=”yes” attribute shown in
the above example. Such activities are also called start activities. In our broker scenario, we
certainly don’t want to create two different process instances. Both messages from buyer and
seller must be processed by the same one business process instance. Exactly this is achieved by
using two start activities. If both incoming messages fit to the respective receive activity and
both are designated for the same business process instance then the second message will not
create a new process instance. In a subsequent section, we explain how messages are correlated
with particular process instance. Although there are two start activities, only the first message
actually causes a process instance to be created and the second one will be received by the same
instance. After both receive activities have been executed, processing of the broker’s business
logic continues at the settleTrade activity that joins the two parallel control flow branches into
one.

4.2.3. Concurrent Event Processing

So far, we only talked about activities that perform a blocking wait until a certain message or
timeout event occurs. However, it is not always possible or appropriate to interrupt the business
logic. Consider a purchase order process that is initiated by a buyer’s purchase request message.
The order may be completely processed without further interaction; ultimately the goods are
shipped and the invoice is returned to the buyer. In some cases, however, the buyer wants to
inquire the status of the purchase order, modify or even cancel the order while it is being
processed. Such interactions can not be expected to happen only at particular points in the order
processing. The business process must be enabled to accept requests to arrive in parallel to its
“normal” flow of control. In BPEL, this kind of asynchronous execution is called event handling.

<process name="purchaseOrderProcess" ...>
 ...
 <eventHandlers>
 <onEvent partnerLink="purchasing"
 operation="queryOrderStatus" ...>
 <scope>...</scope>
 </onEvent>
 <onEvent partnerLink="purchasing"
 operation="cancelOrder" ...>
 <scope>...</scope>
 </onEvent>
 </eventHandlers>
 ...
</process>
Example 4-6: Event handlers.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 26 of 66

Event handlers are associated with the whole process or a scope. They are enabled when their
associated scope is initialized and disabled when their associated scope terminates. When

enabled, any number of events may occur. They are processed in parallel to the scope’s primary
activity and in parallel to each other. Message events also represent Web services operations
exposed by a process and are modeled as onEvent elements. Timer events are modeled as
onAlarm elements, similar to pick activities. In event handlers, timer events can be processed
multiple times. Event handlers can never be used to create new process instances, so message
events are always received by a process instance that is already active.

4.2.4. Message Correlation

In the previous sections, we have seen several scenarios in which a process receives more than
one message or exposes (“implements”) more than one Web service operation. Some of the
associated inbound message activities can be used to created new process instances; others are
used to model situations where a running process instance receives additional requests.

If a Web service request message does not lead to the creation of a new process instance, how
does it “find” the running process instance it is designated for? You may be aware of stateful
Web service implementations where the target instance of the stateful service is identified
reference parameters of WS-Addressing [WS-Addressing] endpoint references. This mechanism
may also be used to identify process instances but BPEL does not mandate this approach. BPEL
provides a portable correlation mechanism called correlation sets.

The major observation behind this concept is the fact that most messages exchanged between
business processes and the outside world already carry the key data required to uniquely identify
a process instance. For example, consider again a purchase order process. The customer sending
a purchase order is usually identified by a customer id. What if multiple orders submitted by this
customer are in progress? In this case, one would also associate an order number with each order.
Typically such correlation data is always part of the message payload. BPEL allows defining
properties that represent pieces of correlation information. The BPEL implementation is made
aware of these properties and their location in a message by using property alias definitions.
Finally, each inbound message activity can be associated with a set of properties that together
correlate an inbound request with a unique process instance.

<wsdl:definitions ...>
 ...
 <wsdl:message name="sendPOResponse">
 <wsdl:part name="confirmation"
 element="po:sendPurchaseOrderResponse" />
 </wsdl:message>
 <wsdl:message name="queryPORequest">
 <wsdl:part name="query" element="po:queryPurchaseOrderStatus" />
 </wsdl:message>
 <wsdl:message name="cancelPORequest">
 <wsdl:part name="cancellation" element="po:cancelPurchaseOrder" />
 </wsdl:message>
 ...

 <vprop:property name="customerID" type="xsd:string" />
 <vprop:property name="orderNumber" type="xsd:int" />

 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:sendPOResponse" part="confirmation">

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 27 of 66

 <bpel:query>CID</bpel:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:sendPOResponse" part="confirmation">
 <bpel:query>Order</bpel:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:queryPORequest" part="query">
 <bpel:query>CID</bpel:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:queryPORequest" part="query">
 <bpel:query>Order</bpel:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:customerID"
 messageType="tns:cancelPORequest" part="cancellation">
 <bpel:query>CID</bpel:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:orderNumber"
 messageType="tns:cancelPORequest" part="cancellation">
 <bpel:query>Order</bpel:query>
 </vprop:propertyAlias>
 ...

</wsdl:definitions>
Example 4-7: Correlation property and property alias definitions.

The definition of the WSDL messages that carry correlation data is shown above. The two
correlation properties are used to uniquely identify a process instance for a particular purchase
order. For each WSDL message and each property, property alias definitions specify where the
property can be located within the message.

<process name="purchaseOrderProcess" ...>
 <correlationSets>
 <correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber" />
 </correlationSets>

 ...
 <eventHandlers>
 <onEvent partnerLink="purchasing"
 operation="queryPurchaseOrderStatus" ...>
 <correlations>
 <correlation set="PurchaseOrder" initiate="no" />
 </correlations>
 <scope>...</scope>
 </onEvent>
 <onEvent partnerLink="purchasing"
 operation="cancelPurchaseOrder" ...>
 <correlations>
 <correlation set="PurchaseOrder" initiate="no" />
 </correlations>
 <scope>...</scope>
 </onEvent>
 </eventHandlers>
 ...

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 28 of 66

 <sequence>

 <receive partnerLink="purchasing"
 operation="sendPurchaseOrder" ...
 createInstance="yes">
 </receive>
 ...
 <reply partnerLink="purchasing"
 operation="sendPurchaseOrder" ...>
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes" />
 </correlations>
 </reply>
 ...
 <!-- process the purchase order -->
 ...
 </sequence>
</process>
Example 4-8: Correlation sets.

In the process shown above, the process instance is created by receiving a new purchase order.
The receipt of the purchase order is confirmed by returning a reply. This reply message contains
the correlation information that must be presented in subsequent requests that are targeted at this
process instance. Each event handler therefore refers to the same correlation set. The correlation
set is initiated when the purchase order confirmation reply is sent. It is immutable after that point
in time and identifies this process instance. The event handlers for purchase order status inquiries
and purchase order cancellation specify initiate=”no”. When these operations are invoked,
the correlation set properties (customerId and orderNumber) must have exactly the same values
as in the reply activity, otherwise, the request can not be correlated with the correct process
instance.

4.2.5. Concurrent Message Exchanges

Each inbound message activity, that is, receive, onMessage, or onEvent, may have an
associated reply activity in order to implement a WSDL request-response operation. If a
process has multiple receive and reply activities that point to the same partner link and
WSDL operation then the association between individual receive and reply activities is
ambiguous. In this case, you use the messageExchange attribute to establish the relationship.

<process ...>
 ...
 <messageExchanges>
 <messageExchange name="receiveBuyerInformation" />
 <messageExchange name="receiveSellerInformation" />
 </messageExchanges>
 ...
 <flow>
 ...
 <receive messageExchange="receiveBuyerInformation"
 partnerLink="tradingPartner"
 operation="tradingPartnerInfo" ... />
 <receive messageExchange="receiveSellerInformation"
 partnerLink="tradingPartner"
 operation="tradingPartnerInfo" ... />
 ...

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 29 of 66

 <reply messageExchange="receiveBuyerInformation"

 partnerLink="tradingPartner"
 operation="tradingPartnerInfo" ... />
 <reply messageExchange="receiveSellerInformation"
 partnerLink="tradingPartner"
 operation="tradingPartnerInfo" ... />
 ...
 </flow>
</process>
Example 4-9: Explicit message exchange declarations.

Two receive-reply pairs point to the same partner link and Web service operation, shown in
the previous example. In order to disambiguate the relationship between these activities, message
exchanges have been declared explicitly and referenced on the respective receive and reply
activities.

Consider a message exchange and/or a partner link defined within a scope. If an inbound
message activity (IMA, receive, pick/onMessage, eventHandlers/onEvent)
referencing such a message exchange or partner link has been executed but the associated reply
activity has not been executed when the scope ends then the IMA is called orphaned. If an
orphaned IMA is detected then a bpel:missingReply standard fault is thrown.

4.3. More Parallel Processing
Earlier, we introduced different forms of repetitive processing – the while, repeatUntil,
and forEach activities. In addition to these sequential loops, there is a variation of the
forEach activity. Instead of performing each loop iteration in a sequence, all loop iterations are
started at the same time and processed in parallel. Besides the flow activity and event handlers,
this is the third form of parallel processing in BPEL.

Scenarios where the parallel forEach activity is useful include cases where sets of independent
data are processed or where independent communication with different partners can be
performed in parallel. The main difference compared to the flow activity is that the number of
parallel branches is not known at modeling time, so a parallel forEach behaves like a flow
with N similar child activities not constrained by links. The specified counter variable is used to
iterate through a number of parallel branches, controlled by a start value and a final value. It can
be used for indexed access to a specific element when a set of elements is defined having the
values of the XML schema minOccurs and maxOccurs attributes greater than one.

The forEach activity allows specifying a completion condition. You would use it if not all
branches are required to complete, for example, when parallel requests are sent out and a
sufficiently large subset of the recipients have responded.

In the following example, we show how the forEach activity can be used. The example has the
following structure:

• Obtain a list of business partners (Endpoint References)
• Initialize a list of quotes
• For each business partner EPR, perform the following in parallel:

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 30 of 66

o Assign the EPR to a partner link local to the forEach scope

o Send out a request for a quote
o Receive quote

• Leave the parallel forEach when 50% of the responses have arrived
• Work with the received quotes

The example uses an XSL transformation “initQuotes.xsl” in order to initialize the output
variable for the list of quotes: for each partnerEPR, an empty quote element is created.

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sref="http://docs.oasis-open.org/wsbpel/2.0/serviceref"
 xmlns:bo="http://example.com/bo">
 <xsl:template match="bo:partnerEPRs">
 <foo:responses>
 <xsl:for-each select="sref:service-ref">
 <bo:quote />
 </xsl:for-each>
 </foo:responses>
 </xsl:template>
</xsl:transform>
Example 4-10: XSL transformation used in the forEach activity.

The WS-BPEL code looks as follows:

<invoke name="retrieveBusinessPartners"
 partnerLink="localDirectory"
 operation="retrieveBusinessPartners"
 inputVariable="filterCriteria"
 outputVariable="partnerEPRs" />

<assign><!-- initialize list of quotes -->
 <copy>
 <from>
 bpel:doXslTransform("initQuotes.xsl",$partnerEPRs)
 </from>
 <to>$quotes</to>
 </copy>
</assign>

<forEach parallel="yes" countername="n">
 <startCounterValue>1</startCounterValue>
 <finalCounterValue>
 count($partnerEPRs/sref:service-ref)
 </finalCounterValue>
 <completionCondition>
 <branches>ceiling(0.5*count($partnerEPRs/sref:service-ref))</branches>
 </completionCondition>
 <scope>
 <partnerLinks>
 <partnerLink name="address" partnerLinkType="..."
 partnerRole="..." myRole="..." />
 </partnerLinks>

 <sequence>
 <assign><!-- get one business partner’s EPR -->

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 31 of 66

 <copy>

 <from>$partnerEPRs[$n]</from>
 <to partnerLink="address" />
 </copy>
 </assign>

 <invoke name="requestQuote"
 partnerLink="address"
 operation="requestQuote"
 inputVariable="quoteRequest" />

 <receive name="receiveQuote"
 partnerLink="address"
 operation="receiveQuote"
 variable="quote" />

 <assign>
 <copy>
 <from variable="quote" />
 <to>$quotes[$n]</to>
 </copy>
 </assign>
 </sequence>

 </scope>
</forEach>

<!-- ... work with the list of received quotes ... -->
Example 4-11: ForEach activity (parallel).

4.4. Delayed Execution
In some situations, the execution of the business logic cannot continue immediately. The process
has to wait for a specified time period or until a certain point in time is reached. The wait
activity indicates that processing will be suspended. Note that concurrent branches in the process
are not affected.

<wait><!-- wait for three days and ten hours to go by ... -->
 <for>'P3DT10H'</for>
</wait>
Example 4-12: Wait activity.

Duration-valued or deadline-valued XPath expressions can be specified in the wait activity. If a
point in time is specified that has already passed, or if a zero or negative duration is specified,
then the wait activity completes immediately.

4.5. Immediately Ending a Process
When a process encounters exceptional situations, it may deal with them using fault handling,
termination handling, and compensation handling mechanisms introduced earlier. In case of
unexpected severe failures, there may not always be a reasonable way of dealing with them. The
exit activity can be used to immediately end all currently running activities, on all parallel
branches, without involving any termination handling, fault handling, or compensation behavior.
WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 32 of 66

<if>
 <condition>...</condition><!-- the good case -->
 ...
 <elseif>
 <condition>...</condition><!-- handle expected error -->
 ...
 </elseif>
 ...
 <else><!-- unexpected error – unable to handle ... -->
 <exit />
 </else>
</if>
Example 4-13: Exit activity.

When using the exit activity, you must be aware that any open conversations are also affected,
that is, other partners interacting with the process may be waiting for a response that will never
arrive.

4.6. Doing Nothing
The empty activity is used to specify that no action is to be taken, that is, this is the BPEL
rendering of a no-op activity. This activity is used for fault handlers that consume a fault without
acting on it. Other use cases for the empty activity include synchronization points in a flow, or
placeholders for activities that are to be added later.

<empty>
 <targets>
 <target linkName="left-branch" />
 <target linkName="right-branch" />
 </targets>
</empty>
Example 4-14: Empty activity.

4.7. Data Validation
A business process receives data from partners via inbound message activities. The assign
activity introduced earlier provides means for simple data manipulation. The result of such
updates performed on BPEL variables cannot always be guaranteed to be valid according to the
WSDL message or XML schema type/element with which the variable is declared. In case of
complex-typed variables, multiple assignment steps may be required to create a value, so it may
not even be avoidable that intermediate results are not valid. In order to make sure that variable
contents are valid according to the variable declaration, BPEL provides two explicit approaches
– the validate activity and the validate attribute of the assign activity.

<scope>
 <faultHandlers>
 <catch faultName="bpel:invalidVariables">
 <reply name="invalidPurchaseOrder" ... />
 </catch>
 </faultHandlers>
 <sequence>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 33 of 66

 <receive name="receivePurchaseOrder" variable="purchaseOrder" ... />
 ...
 <validate name="validatePurchaseOrder" variables="purchaseOrder" />
 <reply name="acknowledgeReceipt" ... />
 ...
 </sequence>
</scope>
Example 4-15: Validate activity.

The validate activity validates a list of specified variables against their corresponding XML
definition. If the validate attribute of the assign activity is set to "yes" then the assign
activity validates all the variables being modified by the activity. In case of a WSDL message
variable, each message part is validated. The standard fault bpel:invalidVariables is
thrown, if one of the variables is invalid against its corresponding XML definition.

Explicit variable validation at runtime implies additional resource consumption that is not always
desirable. It may be necessary to validate certain variables during a test phase or in exceptional
situations without modifying the business process each time. For this purpose, the BPEL
implementation may provide means to turn on/off explicit validation.

4.8. Concurrent Data Manipulation
We have discussed several different ways for modeling concurrent behavior in earlier sections.
The process model may contain a fixed number of parallel activities in a flow activity or a
variable number of concurrent branches in a forEach activity or event handler instances. It is
not new news that one should be careful when such parallel activities access the same global
data.

The BPEL scope provides an approach for controlling global data access. Consider multiple
scopes containing activities reading or updating the same variables. When the attribute
isolated is set to “yes” on each of these scopes then they no longer step on each other’s
feet. If activities in concurrent scopes access shared variables then these accesses are protected in
the same way as if all such activities within one scope are completed before any in another
scope.

<process ...>
 <variables>
 <variable name="global" element="..." />
 </variables>
 <flow>
 <scope name="S1" isolated="yes">
 <sequence>
 ...
 <invoke ... outputVariable="global" />
 ...
 </sequence>
 </scope>
 <scope name="S2" isolated="yes">
 <sequence>
 ...
 <assign>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 34 of 66

 <copy>
 <from>...</from>
 <to variable="global" />
 </copy>
 </assign>
 ...
 </sequence>
 </scope>
 </flow>
</process>
Example 4-16: Isolated scopes accessing a global variable.

The same isolation semantics applies to variable accesses via properties and to endpoint
reference assignments from and to partner links.

The isolation domain of a scope also includes the execution of event handlers, fault handlers, and
termination handlers. A compensation handler of an isolated scope is also isolated.

If a isolated scope contains child scopes then these child scopes must have their isolated
attribute set (or defaulted) to "no". Access to shared variables from within such child scopes is
controlled by their enclosing isolated scope.

4.9. Dynamic Business Partner Resolution
Before a BPEL partner link can be used to invoke a partner’s Web service operation, the partner
link must be associated with a concrete Web service endpoint address. This can be done during
the deployment of the process (which is out of scope of the BPEL specification), or dynamically
at runtime.

A variant of the BPEL assign activity is used to assign an endpoint reference to a partner link.
Endpoint references can be those defined in [WS-Addressing], enclosed by a neutral container
element sref:service-ref.

<sref:service-ref
 reference-scheme="http://www.w3.org/2005/08/addressing">
 <wsa:EndpointReference
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 </wsa:EndpointReference>
</sref:service-ref>
Example 4-17: Service reference.

Note that the optional reference-scheme attribute would need to be used when the child
element of the sref:service-ref is ambiguous.

Let’s have a look at an example. Consider a process that receives an endpoint reference which is
then used for a later invocation of a Web service.

<process name="purchaseOrderProcess" ...>
 <partnerLinks>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 35 of 66

 <partnerLink name="myCustomer"

 partnerLinkType="lns:purchaseOrderLT"
 myRole="purchaseOrderService" />
 partnerRole="customer"/>
 </partnerLinks>
 ...
 <receive partnerLink="myCustomer"
 operation="sendPurchaseOrder"
 variable="purchaseOrder" />
 ...
 <assign>
 <copy>
 <from>$purchaseOrder/callback</from>
 <to partnerLink="myCustomer" />
 </copy>
 </assign>
 ...
 <invoke partnerLink="myCustomer"
 operation="sendInvoice"
 variable="invoice" />
 ...
</process>
Example 4-18: Endpoint reference assignment to a partner link.

In the example above, a purchase order process exposes a one-way operation for submitting an
order. The order contains an endpoint reference (wrapped in a sref:service-ref element)
that points to another one-way operation provided by the caller. After assigning this endpoint
reference to the partner role side of the partner link associated with the caller, the callback
operation can be invoked in order to return an invoice.

Now what would it look like if the calling application is itself implemented as a BPEL process?
This customer process has to submit a purchase order, containing a callback endpoint reference.
In addition, it has to provide the callback operation itself in order to receive the invoice.

<process name="customerProcess" ...>
 <partnerLinks>
 <partnerLink name="myPurchaseOrderService"
 partnerLinkType="lns:purchaseOrderLT"
 partnerRole="purchaseOrderService" />
 myRole="customer"/>
 </partnerLinks>
 ...
 <assign>
 <copy>
 <from partnerLink="myPurchaseOrderService"
 endpointReference="myRole" />
 <to>$purchaseOrder/callback</to>
 </copy>
 </assign>
 ...
 <invoke partnerLink="myPurchaseOrderService"
 operation="sendPurchaseOrder"
 variable="purchaseOrder" />
 ...
 <receive partnerLink="myPurchaseOrderService"
 operation="sendInvoice"

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 36 of 66

 variable="invoice" />

 ...
</process>
Example 4-19: Endpoint reference assignment from a partner link.

The customer process is shown in the previous example. The endpoint reference pointing to the
callback operation is assigned to an element contained in the purchase order request. It is then
sent to the purchase order service, which eventually uses this endpoint reference to return the
invoice.

Note that in this example, it is required that the callback operation is performed on the same
customer’s process instance that submitted the purchase order in the first place. This may either
be done by using BPEL correlation sets. Alternatively, the implementation may choose to use
stateful endpoint references carrying instance identification information, for example, within a
WS-Addressing ReferenceParameters element.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 37 of 66

5. Advanced Concepts II
5.1. Language Extensibility
BPEL is extensible. Every BPEL implementation may support BPEL processes containing
expression languages and/or query languages other than XPath 1.0 which is mandated by the
BPEL specification. Moreover, a BPEL implementation may support adding XML elements
and/or attributes of non-BPEL namespaces to a BPEL process.

5.1.1. Expression Languages and Query Languages

For the purpose of data access and data manipulation, many elements in BPEL contain an
expression or query. By default, this is specified as an XPath 1.0 literal. Note that XPath 1.0 is
not only the default but also the only expression/query language mandated by BPEL.

In the example below, a boolean XPath expression "$counter < 42" is used in a
condition in order to determine whether a while loop performs another iteration.

<while>
 <condition>$counter < 42</condition>
 ...
</while>
Example 5-1: Condition with XPath 1.0 expression.

Alternatively, the BPEL implementation may support other expression languages or query
languages. As an example, consider a boolean expression written in Java. For simplification, we
just use "http://www.example.com/java" as the value of the expressionLanguage
attribute and assume that the value of the BPEL variable counter is represented by the Java
variable of the same name.

<while>
 <condition expressionLanguage="http://www.example.com/java">
 counter < 42
 </condition>
 ...
</while>
Example 5-2: Condition with Java expression.

5.1.2. Elements and Attributes of Other Namespaces

Elements and attributes of XML namespaces other than those provided by BPEL itself can be
added to almost every element of a BPEL process. In the following example, the invoke
activity has been extended with an element used for rendering the invoke activity in a process
modeling tool.

<process name="purchaseOrderProcess" ...
 xmlns:tool="http://example.com/bpel/editorElements">

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 38 of 66

 ...

 <invoke partnerLink="shipping"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <documentation>decide on shipper</documentation>
 <tool:myIcon>shipping/requestShipping.gif</tool:myIcon>
 </invoke>

 ...
</process>
Example 5-3: Extension without runtime semantics.

In order to avoid ambiguities with respect to the XML schema definition for BPEL, certain
language extension points require the use of explicit BPEL wrapper elements, such as
extensionActivity and extensionAssignOperation. Another explicit wrapper for
elements from a namespace other than BPEL – literal – is used to wrap literal XML data
elements in assignments to BPEL variables.

The following example shows a non-standard activity used to perform a user interaction; it is
wrapped in a BPEL extensionActivity element.

<process name="purchaseOrderProcess" ...
 xmlns:user="http://example.com/bpel/userInteractions">
 ...

 <if>
 <condition>$amount > 1000000</condition>
 <extensionActivity>
 <user:userInteraction type="user:approval">
 <user:userResolution role="manager" />
 </user:userInteraction>
 </extensionActivity>
 </if>

 ...
</process>
Example 5-4: Extension with runtime semantics.

BPEL provides a declaration element for the extension namespace used to specify whether the
extension elements must be understood by a BPEL implementation. The example below refers to
the two previously introduced extension namespaces. Some of these extension elements
(namespace prefixed with tool) are used in a BPEL process editor only and carry no particular
runtime semantics, therefore, they can declared as mustUnderstand="no" and ignored
when the process is executed. Other extension elements (namespace prefixed with user)
represent an integral part of the business logic and are declared as mustUnderstand="yes"
such that the process must be rejected if a BPEL implementation doesn’t know how to interpret
them.

<process ...
 xmlns:tool="http://example.com/bpel/editorElements"
 xmlns:user="http://example.com/bpel/userInteractions">

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 39 of 66

 <extensions>
 <extension namespace="http://example.com/bpel/editorElements"
 mustUnderstand="no" />
 <extension namespace="http://example.com/bpel/userInteractions"
 mustUnderstand="yes" />
 </extensions>

 ...
</process>
Example 5-5: Extension declarations.

5.2. Abstract Processes
Abstract processes describe process behavior partially without covering every detail of
execution. An Abstract Process can be “implemented” by a set of executable processes. The
“implementation” is also known as executable completion. Elements and attributes of an
executable process may be hidden in an Abstract Process, by either just omitting them or by
replacing them with opaque constructs. The common language constructs of abstract and
executable processes have the same semantics.

Usage patterns include

• Abstraction – using an Abstract Process for showing only certain aspects of an executable
process, for example, external interactions using a particular partner link.

• Refinement – using an Abstract Process as a starting point for developing an executable
process.

• Protocol matching – using Abstract Processes for determining whether processes
provided by two business partners can interact with each other, potentially in a
conversation involving multiple steps.

The following sections describe two key Abstract Process concepts: the Common Base and
Abstract Process Profiles. The Common Base defines the basic syntax requirements for all
Abstract Processes. Abstract Process Profiles specify the allowed subset of the Common Base
and allowed executable completions.

5.2.1. The Common Base

The Common Base provides the syntax rules for Abstract Processes. An Abstract Process may
contain the same language constructs as an executable process. In addition, constructs of an
executable process may be omitted or replaced by explicit opaque tokens, according to the
constraints defined in the specified Abstract Process Profile. The Common Base defines four
types of opaque tokens: activities, expressions, attributes and from-specs.

The example snippet below shows a receive activity in an Abstract Process where both the
operation and the variable of a corresponding executable process are replaced by an opaque
token.

<receive partnerLink="shippingRequester"

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 40 of 66

 operation="##opaque"

 variable="##opaque" />
Example 5-6: Abstract receive activity.

5.2.2. Abstract Process Profile for Observable Behavior

The externally observable behavior of a business process is the sequence of inbound and
outbound interactions with other partners. An Abstract Process may only contain such external
interactions referring to a particular partner link and thereby define the contract of the business
process with e.g. another enterprise. An executable process must then adhere to this contract – it
could be modeled by refining the Abstract Process according to the executable completion rules
defined in this profile.

As an example scenario, consider the following sequence of steps. The result is a pair of
executable processes EP1 and EP2 that are compatible in the sense that every outbound
interaction in one process has a corresponding inbound operation in the other process.

We begin with an executable process EP1.

<process name="purchaseOrderProcess" ...
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
 myRole="purchaseService" />
 ...
 </partnerLinks>

 <sequence>
 <receive partnerLink="purchasing"
 operation="sendPurchaseOrder"
 variable="PO"
 createInstance="yes" />

 <flow>
 ... shipping, invoicing and scheduling ...
 </flow>

 <invoke partnerLink="purchasing"
 operation="returnInvoice"
 inputVariable="invoice" />
 </sequence>
</process>
Example 5-7: Executable process EP1.

A corresponding Abstract Process AP1 is created such that EP1 is a valid executable completion
of AP1. Activities of EP1 not relevant for the externally observable behavior over one partner
link of EP1 are omitted or replaced by opaque activities. In this case, we replace the flow by an
opaque activity.

<process name="purchaseOrderProcess" ...
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
 abstractProcessProfile="http://docs.oasis-
open.org/wsbpel/2.0/process/abstract/ap11/2006/08">

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 41 of 66

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
 myRole="purchaseService" />
 ...
 </partnerLinks>

 <sequence>
 <receive partnerLink="purchasing"
 operation="sendPurchaseOrder"
 variable="PO"
 createInstance="yes" />

 <opaqueActivity>
 ... shipping, invoicing and scheduling ...
 </opaqueActivity>

 <invoke partnerLink="purchasing"
 operation="returnInvoice"
 inputVariable="invoice" />
 </sequence>
</process>
Example 5-8: Abstract process AP1, created from executable process EP1.

For the Abstract Process AP1, a compatible Abstract Process AP2 is created by mirroring all
inbound and outbound activities of AP1 to corresponding outbound and inbound activities of
AP2, respectively.

<process name="customerProcess" ...
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
 abstractProcessProfile="http://docs.oasis-
open.org/wsbpel/2.0/process/abstract/ap11/2006/08">

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
 myRole="customer" />
 ...
 </partnerLinks>

 <sequence>
 <opaqueActivity>... create process instance ...</opaqueActivity>

 <invoke partnerLink="purchasing"
 operation="sendPurchaseOrder"
 inputVariable="PO" />

 <opaqueActivity>... do other work ...</opaqueActivity>

 <receive partnerLink="purchasing"
 operation="returnInvoice"
 variable="invoice" />
 </sequence>
</process>
Example 5-9: Abstract process AP2, compatible with Abstract Process AP1.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 42 of 66

Finally, the Abstract Process AP2 is then handed out to a customer who refines it to a valid
executable completion EP2. Note that the added start activity uses a different partner link.

<process name="customerProcess" ...
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
 myRole="customer" />
 ...
 </partnerLinks>

 <sequence>
 <receive partnerLink="internal" ... createInstance="yes" />

 <invoke partnerLink="purchasing"
 operation="sendPurchaseOrder"
 inputVariable="PO" />

 <sequence>... prepare additional orders ...</sequence>

 <receive partnerLink="purchasing"
 operation="returnInvoice"
 variable="invoice" />
 </sequence>
</process>
Example 5-10: Executable process EP2, created from Abstract Process AP2.

5.2.3. Abstract Process Profile for Templates

Templates are Abstract Processes with explicit opaque extension points. The main usage
scenario is to allow process developers to complete execution details at these extension points at
a later point in time. It is particularly useful to separate works between process analysts and
process developers. While the former can focus the higher business flow design, the latter can
focus the system concern of the process execution (for example, atomic transaction and system
failure recovery). An Abstract Process template can be used as a mean to round-tripping the
changes from both sides as well.

If a start activity is hidden in a template then it is represented by an opaque activity with the
template:createInstance="yes" attribute.

For further details, please see section “13.4. Abstract Process Profile for Templates” and the
example of an Abstract Process based on template profile in section “15.2. Ordering Service” in
WS-BPEL 2.0 specification [WS-BPEL 2.0].

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 43 of 66

6. Using WS-BPEL
6.1. Applying WS-BPEL to our scenario
This section proceeds step-by-step through the process of developing a WS-BPEL definition that
describes a case study scenario outlined below.

6.1.1. Introduction

The case study in this primer follows the step-by-step process which a consulting firm named
Perspective Technology Corp. (hereafter referred to as “PTC”) uses to build a WS-BPEL process
definition for their new Timesheet Submission business process.

When a consultant submits a timesheet, four services are used to process it. A timesheet typically
contains a number of entries corresponding to the time spent by a consultant working for a client.
Each of these entries is validated with the Timesheet service. PTC employs consultants of
varying skills/grades, on which their rates are based. The Employee service is used to access
detailed information on a consultant in order to determine rates. PTC then sends an invoice(s) to
the client(s) and notifies a payment receivable service for follow-up. The Timesheet Submission
process finally sends a reply back to the consultant.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 44 of 66

6.1.2. The TimesheetSubmission Process

Prior to walking through the development of the WS-BPEL, the process definition in its entirety
is shown below to provide the context for the scenario.

<process name="TimesheetSubmission"
 targetNamespace="http://www.xmltc.com/ptc/process/"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable/"
 xmlns:bpl="http://www.xmltc.com/ptc/process/"
 xmlns:emp="http://www.xmltc.com/ptc/employee/"
 xmlns:inv="http://www.xmltc.com/ptc/invoice/"
 xmlns:tst="http://www.xmltc.com/ptc/timesheet/"
 xmlns:not="http://www.xmltc.com/ptc/notification/">

 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:TimesheetSubmissionType"
 myRole="TimesheetSubmissionServiceProvider" />
 <partnerLink name="Invoice"
 partnerLinkType="inv:InvoiceServiceType"
 partnerRole="InvoiceServiceProvider" />

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 45 of 66

 <partnerLink name="Timesheet"

 partnerLinkType="tst:TimesheetServiceType"
 partnerRole="TimesheetServiceProvider" />
 <partnerLink name="Employee"
 partnerLinkType="emp:EmployeeServiceType"
 partnerRole="EmployeeServiceProvider" />
 <partnerLink name="Notification"
 partnerLinkType="not:NotificationServiceType"
 partnerRole="NotificationServiceProvider" />
 </partnerLinks>

 <variables>
 <variable name="ClientSubmission"
 messageType="bpl:receiveSubmitMessage" />
 <variable name="EmployeeHoursRequest"
 messageType="emp:getWeeklyHoursRequestMessage" />
 <variable name="EmployeeHoursResponse"
 messageType="emp:getWeeklyHoursResponseMessage" />
 <variable name="EmployeeHistoryRequest"
 messageType="emp:updateHistoryRequestMessage" />
 <variable name="EmployeeHistoryResponse"
 messageType="emp:updateHistoryResponseMessage" />
 ...
 </variables>

 <scope name="mainScope">
 <faultHandlers>
 <catch faultName="SomethingBadHappened"
 faultVariable="TimesheetFault" faultElement="...">
 ...
 </catch>
 <catchAll>
 <compensateScope target="invoiceSubmissionScope" />
 </catchAll>
 </faultHandlers>
 <sequence>
 <receive name="receiveInput"
 partnerLink="client"
 operation="Submit"
 variable="ClientSubmission"
 createInstance="yes" />
 ...
 <assign>
 <copy>
 <from variable="EmployeeData" part="grade">
 <query>employeeGradeInformation</query>
 </from>
 <to variable="EmployeeRateInput />
 </copy>
 </assign>
 ...
 <flow>
 <links>
 <link name="timesheetEntriesApproval" />
 <link name="timesheetExpensesApproval" />
 </links>
 <receive name="receiveEntriesApproval" ...>
 <sources>
 <source linkName="timesheetEntriesApproval" />

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 46 of 66

 </sources>
 <correlations>
 <correlation set="tradeID" initiate="no" />
 </correlations>
 </receive>
 <receive name="receiveExpensesApproval" ...>
 <sources>
 <source linkName="timesheetExpensesApproval" />
 </sources>
 <correlations>
 <correlation set="timesheetID" initiate="no" />
 </correlations>
 </receive>
 <scope name="invoiceSubmissionScope">
 <targets>
 <joinCondition>
 $timesheetEntriesApproval and
 $timesheetExpensesApproval
 </joinCondition>
 <target linkName="timesheetEntriesApproval" />
 <target linkName="timesheetExpensesApproval" />
 </targets>
 <compensationHandler>
 <invoke name="withdrawInvoiceSubmission" ... />
 </compensationHandler>
 <invoke name="submitInvoice" ... />
 </scope>
 ...
 </flow>
 ...
 <invoke name="retrieveMonthlyAccountingPostDateTime"
 partnerLink="AccountingService"
 operation="getMonthlyPostDate"
 inputVariable="monthAndYear"
 outputVariable="monthlyPostDateTime" />
 <wait>
 <until>$monthlyPostDateTime</until>
 </wait>
 <invoke partnerLink="AccountingService"
 operation="postAccountingEntries"
 inputVariable="accountingEntries" />

 <invoke name="ValidateWeeklyHours"
 partnerLink="Employee"
 operation="GetWeeklyHoursLimit"
 inputVariable="EmployeeHoursRequest"
 outputVariable="EmployeeHoursResponse" />
 ...
 <assign>
 <copy>
 <from variable="TimesheetSubmissionFailedMessage" />
 <to variable="EmployeeNotificationMessage" />
 </copy>
 <copy>
 <from variable="TimesheetSubmissionFailedMessage" />
 <to variable="ManagerNotificationMessage" />
 </copy>
 </assign>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 47 of 66

 ...
 <reply partnerLink="client"
 operation="SubmitTimesheet"
 variable="TimesheetSubmissionResponse" />
 ...
 </sequence>
 </scope>

</process>
Example 6-1: The TimesheetSubmission process.

6.1.3. Getting Started: Defining the process element

Before writing the WS-BPEL process definition, a WS-BPEL target namespace URI for it needs
to be defined. The WS-BPEL process definition can then be started with the following skeleton:

<process name="TimesheetSubmission"
 targetNamespace="http://www.xmltc.com/ptc/process/"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable/"
 xmlns:bpl="http://www.xmltc.com/ptc/process/"
 xmlns:emp="http://www.xmltc.com/ptc/employee/"
 xmlns:inv="http://www.xmltc.com/ptc/invoice/"
 xmlns:tst="http://www.xmltc.com/ptc/timesheet/"
 xmlns:not="http://www.xmltc.com/ptc/notification/">

 <partnerLinks>
 ...
 </partnerLinks>
 <variables>
 ...
 </variables>
 <sequence>
 ...
 </sequence>
 ...
</process>
Example 6-2: A skeleton process definition.

At this point, one can start defining the TimesheetSubmission process.

6.1.4. Defining partnerLinks

The TimesheetSubmission process will interact with other parties during execution, so it is good
to start with defining the partnerLink definitions in the partnerLinks section.

The four partnerLink definitions shown below correspond to the consumer of the Timesheet
Submission process (client), as well as the providers of invoicing (Invoice), timesheet data
(Timesheet), employee data (Employee), and notification services (Notification).

<partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:TimesheetSubmissionType"
 myRole="TimesheetSubmissionServiceProvider" />

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 48 of 66

 <partnerLink name="Invoice"

 partnerLinkType="inv:InvoiceServiceType"
 partnerRole="InvoiceServiceProvider" />
 <partnerLink name="Timesheet"
 partnerLinkType="tst:TimesheetServiceType"
 partnerRole="TimesheetServiceProvider" />
 <partnerLink name="Employee"
 partnerLinkType="emp:EmployeeServiceType"
 partnerRole="EmployeeServiceProvider" />
 <partnerLink name="Notification"
 partnerLinkType="not:NotificationServiceType"
 partnerRole="NotificationServiceProvider" />
</partnerLinks>
Example 6-3: The partnerLinks construct containing one partnerLink for an invoking external partner and
four partnerLinks for partners invoked by the process service.

6.1.5. Defining partnerLinkTypes

In Example 7-2, each partnerLink contains a partnerLinkType attribute, which references a
partnerLinkType. In the below example WSDL, the partnerLinkType represents the interaction
between the timesheet submission process and the employee data service:

<definitions name="Employee"
 targetNamespace="http://www.xmltc.com/ptc/employee/wsdl/"
 xmlns:emp="http://www.xmltc.com/ptc/employee/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype/" ...>
 ...
 <plnk:partnerLinkType name="EmployeeServiceType">
 <plnk:role name="EmployeeServiceProvider"
 portType="emp:EmployeeInterface" />
 </plnk:partnerLinkType>
 ...
</definitions>
Example 6-4: The employee data service WSDL definition containing partnerLinkType definitions.

The below example WSDL, the partnerLinkType represents the interaction between the
timesheet submission process and the notification service:

<definitions name="Notification"
 targetNamespace="http://www.xmltc.com/ptc/notification/wsdl/"
 xmlns:not="http://www.xmltc.com/ptc/notification/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype/" ...>
 ...
 <plnk:partnerLinkType name="NotificationServiceType">
 <plnk:role name="NotificationServiceProvider"
 portType="not:NotificationInterface" />
 </plnk:partnerLinkType>
 ...
</definitions>
Example 6-5: The notification service WSDL definition containing partnerLinkType definitions.

6.1.6. Defining variables

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 49 of 66

At this point, one needs to decide how state is maintained between message exchanges, in the
Variables section. The data variables that are globally used by the process to store state
information, along with any other state information to be maintained for the process logic itself,
are defined here.

In the example below, variable elements for WSDL message types are defined using
messageType. The type, or element attributes could likewise be used, to define variables for
simple/complex XML Schema types or for XML Schema elements, respectively.

<variables>
 <variable name="ClientSubmission"
 messageType="bpl:receiveSubmitMessage" />
 <variable name="EmployeeHoursRequest"
 messageType="emp:getWeeklyHoursRequestMessage" />
 <variable name="EmployeeHoursResponse"
 messageType="emp:getWeeklyHoursResponseMessage" />
 <variable name="EmployeeHistoryRequest"
 messageType="emp:updateHistoryRequestMessage" />
 <variable name="EmployeeHistoryResponse"
 messageType="emp:updateHistoryResponseMessage" />
 ...
</variables>
Example 6-6: The variables section hosting a selection of the variable elements used by the Timesheet
Submission process.

6.1.7. Using getVariableProperty function

Next, one will need to process data stored in or associated with variables. The
bpel:getVariableProperty function is used here to retrieve property values from variables. For
example, in the Timesheet Submission process, the employee’s grade needs to be extracted from
the EmployeeHistoryResponse value. The getVariableProperty function is used in this case as
follows:

 bpel:getVariableProperty("EmployeeHistoryResponse", "emp:grade")
Example 6-7: Using bpel:getVariableProperty() to extract an employee’s grade from the
EmployeeHistoryResponse value in a Timesheet Submission process.

6.1.8. Defining Process Logic

Now that partners and global variables have been specified, the Timesheet Submission process
needs to do some meaningful work with them. Here, WS-BPEL constructs that structure process
logic to express control patterns, handling of faults and external events, and coordination of
message exchanges will be used in the following sections.

6.1.9. Defining a sequence activity

In the Timesheet Submission process, activities need to be organized so that they are executed in
a pre-defined, sequential order, using the Sequence activity.

<sequence>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 50 of 66

 <receive>...</receive>
 <assign>...</assign>
 <invoke>...</invoke>
 <reply>...</reply>
</sequence>
Example 6-8: A sequence activity containing some activity elements provided by WS-BPEL. WS-BPEL
provides numerous activities that can be used to express process logic within a process definition.

6.1.10. Defining an if activity

In the Timesheet Submission process, conditional behavior is needed for certain activities to
decide between two or more branches, using the If activity. In this case, which checks an
employee’s grade for performing specific logic, the condition is exercised using data extracted
by the bpel:getVariableProperty() function:

<if name="isEmployeeGradeGreaterThan10">
 <condition>
 bpel:getVariableProperty("EmployeeHistoryResponse","emp:grade") > 10
 </condition>
 <invoke name="calculateSurcharge" ... />
 <else>
 <reply name="sendNoSurchargeInformation" ... />
 ...
 </else>
</if>
Example 6-9: An if activity containing conditions for evaluating a branch to process billing surcharges for
employees above grade "10", using the getVariableProperty function.

In the next case, which checks the hourType for a Timesheet Submission, the condition is
exercised using a WS-BPEL function:

<if name="isAdministriativeHours">
 <condition>$EmployeeHoursResponse/hourType = 6</condition>
 <invoke name="validateAdministrativeHours" ... />
 <else>
 <reply name="processNoAdministrativeHours" ... />
 ...
 </else>
</if>
Example 6-10: An if activity containing conditions for evaluating a branch to process hour limits for
administrative tasks.

6.1.11. Defining a while activity

In the Timesheet Submission process, certain bits of process logic will need to be repeatedly
executed, using the While activity. In this case, invoice validation is repeatedly performed as
long as the defined invoice status condition is met.

<while>
 <condition>
 bpel:getVariableProperty("InvoiceStatusResponse","inv:status")
 < 9
 </condition>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 51 of 66

 <sequence>
 <invoke name="invoiceValidation" ... />
 <receive name="receiveInvoiceValidation"
 partnerLink="InvoiceValidation"
 operation="returnInvoiceValidation"
 variable="InvoiceStatusResponse" />
 </sequence>
</while>
Example 6-11: A while activity containing a condition for evaluating the invoice status for a timesheet
submission, and processing invoice validation as long as the status is not "9".

It is important to reiterate that the condition is evaluated at the beginning of each While iteration;
as such, the body of the while may not be executed at all, if the condition never holds. The
variable must have been initialized or an error will occur.

6.1.12. Defining a repeatUntil activity

If the body of the activity must be performed at least once, the repeatUntil activity would be used
in place of while. In this case, timesheet validation needs to be performed at least once, then
repeatedly depending on completion status.

<repeatUntil>
 <sequence>
 <invoke name="timesheetValidation" ... />
 <receive name="receiveValidation"
 partnerLink="TimesheetValidation"
 operation="returnTimesheetValidation"
 variable="TimesheetStatusResponse" />
 </sequence>
 <condition>
 bpel:getVariableProperty(
 "TimesheetStatusResponse","tst:completionStatus") < 5
 </condition>
</repeatUntil>
Example 6-12: A repeatUntil activity processing timesheet completion validation, containing a condition for
evaluating the timesheet completion status for a timesheet submission until the status is updated to "5".

6.1.13. Defining a forEach activity

In the Timesheet Submission process, each timesheet record entry is required to validate
employee grade and expense type for the client receiving the service (which may restrict certain
types for certain employee grades), using the forEach activity.

For this example, the Timesheet Submission process obtains the list of timesheet expense entries,
and for each entry, perform the following in parallel:

• Assign the EPR to a partner link local to the forEach scope
• Send out a request for validation
• Receive a boolean response
• Leave the parallel forEach when all responses have arrived

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 52 of 66

<invoke name="retrieveExpenseList"

 partnerLink="TimesheetService"
 operation="query"
 inputVariable="filterCriteria"
 outputVariable="expenseList" />

<forEach parallel="yes" countername="n">
 <startCounterValue>1</startCounterValue>
 <finalCounterValue>
 count($expenseList.payload/expenseItem)
 </finalCounterValue>
 <scope>
 <partnerLinks>
 <partnerLink name="ExpenseValidation"
 partnerLinkType="exp:ExpenseValidationType"
 partnerRole="ExpenseValidationProvider" myRole="consumer" />
 </partnerLinks>
 <variables>
 <variable name="expenseDetailsMsg" element="..." />
 <variable name="validated" element="..." />
 </variables>
 <sequence>
 <assign>
 <copy>
 <from>
 $expenseList.payload/expenseItem[$n]/validatorEPR
 </from>
 <to partnerLink="ExpenseValidation" />
 </copy>
 <copy>
 <from>
 $expenseList.payload/expenseItem[$n]/expenseDetails
 </from>
 <to variable="expenseDetailMsg" />
 </copy>
 </assign>
 <invoke name="requestValidation"
 partnerLink="ExpenseValidation"
 operation="validateExpense"
 inputVariable="expenseDetailMsg" />
 <receive name="receiveValidation"
 partnerLink="ExpenseValidation"
 operation="returnValidation"
 variable="validated" />
 <assign>
 <copy>
 <from variable="validated" />
 <to>$expenseList.payload/expenseItem[$i]/validation</to>
 </copy>
 </assign>
 </sequence>
 </scope>
</forEach>

... work with received validations ...

Example 6-12: A forEach performing validation on a list of timesheet expense entries, where all validations
must be completed before proceeding.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 53 of 66

In this example, the forEach activity iterates the child scope for the number of expense entries
returned by the retrieveExpenseList service. As forEach iterates its child scope
(finalCounterValue - startCounterValue) + 1 times, the startCounterValue is set to 1 and the
finalCounterValue is set to the count() of expense entries. No completionCondition is set since it
is desired that all branches of the parallel complete before proceeding.

6.1.14. Defining assign activities

In the Timesheet Submission process, data returned from interactions with partners will need to
be copied to variables so that the process can manipulate them, using Assign. In this case,
timesheet submission messages (reflecting submission failures) are copied to notification
messages (to be sent to their respective recipients).

<assign>
 <copy>
 <from variable="TimesheetSubmissionFailedMessage" />
 <to variable="EmployeeNotificationMessage" />
 </copy>
 <copy>
 <from variable="TimesheetSubmissionFailedMessage" />
 <to variable="ManagerNotificationMessage" />
 </copy>
</assign>
Example 6-14: Within the assign construct, the contents of the TimesheetSubmissionFailedMessage variable
are copied to two different message variables.

Note that <copy> can process a variety of data transfer functions (for example, only a part of a
message can be extracted and copied into a variable). Also, from and to elements can contain
optional part and query attributes, allowing for specific parts or values of the variable to be
referenced.

New data can also be constructed and inserted using expressions in assign – these expressions
can operate on variables, properties and constants to produce a new value.

In the next case, the Timesheet Submission process needs to determine the pay rate (which varies
per scale based upon employee grade), where grade is a part of the EmployeeData variable. Here,
the grade is referenced using an XPath 1.0 query:

<assign>
 <copy>
 <from variable="EmployeeData" part="grade">
 <query>employeeGradeInformation</query>
 </from>
 <to variable="EmployeeRateInput" />
 </copy>
</assign>
Example 6-15: Within the assign construct, the grade part of the EmployeeData variable is copied to an input
message used for rate calculation. .

6.1.15. Interacting with Partners

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 54 of 66

Through the previous sections, one has dealt with how to structure the business logic for the
Timesheet Submission process. The process will need to interact with partners to perform
various services external to the process logic. The following sections cover how this is done in
the Timesheet Submission process.

6.1.16. Defining an invoke activity

The Timesheet Submission process needs to invoke external services, such as for validating
hours submitted for a weekly timesheet, via the Invoke activity.

<invoke name="ValidateWeeklyHours"
 partnerLink="Employee"
 operation="GetWeeklyHoursLimit"
 inputVariable="EmployeeHoursRequest"
 outputVariable="EmployeeHoursResponse" />
Example 6-16: The invoke activity, identifying the target partner service details, for accessing the limit on
weekly hours for an employee from the employee data service.

6.1.17. Defining a receive activity

Above, the Timesheet Submission process defined a relationship with an consumer service,
through the "client" partnerLink, and as such expects to receive requests from that consumer to
begin processing. As such, a Receive activity is specified to process those requests.

<receive name="receiveInput"
 partnerLink="client"
 operation="Submit"
 variable="ClientSubmission"
 createInstance="yes" />
Example 6-17: The receive activity used in the Timesheet Submission Process definition to indicate the client
partner service responsible for launching the process with the submission of a timesheet document.

6.1.18. Defining a reply activity

In the Timesheet Submission process, data that is processed will be returned to the consumer in a
synchronous exchange, using the Reply activity.

<reply partnerLink="client"
 operation="SubmitTimesheet"
 variable="TimesheetSubmissionResponse" />
Example 6-16: A companion reply to the receive in Example 7-15 above.

6.1.19. Elaborating and Refining Process Logic

Through the previous sections, one has covered basic structuring of the Timesheet Submission
business logic and interacting with partners to perform services external to that logic. The
behavior of the process will require addressing cases where messages are processed selectively,
multiple messages are processed in parallel (say, by the same process instance), external services
are performed in parallel (either by branching or through a loop condition), process execution is

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 55 of 66

delayed, process execution is immediately ended, and/or exception conditions are handled. These
are covered in the following sections.

6.1.20. Defining a pick activity

The Timesheet Submission process is required to loop through the input of individual timesheet
entries, used to produce a complete timesheet record, whose completion is controlled by a
timeout event, using the Pick activity.

In this case, the Timesheet Submission process uses a pick activity to loop through the input of
entries for the timesheet record, along with a timeout for timesheet completion as enabled by the
<onAlarm> event.

<pick>
 <onMessage partnerLink="Timesheet"
 operation="inputTimesheetEntry"
 variable="timesheetEntry">
 </onMessage>
 <onMessage partnerLink="Timesheet"
 operation="timesheetComplete"
 variable="completionDetail">
 </onMessage>
 <onAlarm>
 <for>'P0DT12H'</for>
 </onAlarm>
</pick>
Example 6-18: A loop and timeout pick activity for the Timesheet Submission process. The loop completion is
set to timeout in 12 hours in the date time expression specified in the onAlarm.

6.1.21. Defining a flow activity

In the Timesheet Submission process, an invoice can only be submitted once both the timesheet
entries and the timesheet expenses have been approved, each in parallel by different signature
authorities. When the Timesheet Submission process has completed pre-processing timesheet
entries, it submits these for approval to its appropriate authority (e.g. a Project Manager), and
when it has completed pre-processing expenses, it submits these for approval to its appropriate
authority (e.g. a direct-reports Manager). These approval submissions are asynchronous. Once
these submissions are processed, both authorities essentially inform the Timesheet Submission
process that they have approved their respective line items, and the process then initiates the
invoice submission. This parallel processing is performed using the Flow activity.

The Timesheet Submission process starts two Invoke activities concurrently when the flow starts
– the TimesheetEntriesSignatory and the TimesheetExpensesSignatory – both of which are one-
way operations. The completion of the flow occurs after both the TimesheetEntriesSignatory and
the TimesheetExpensesSignator have been invoked.

<flow>
 <documentation>
 process the timesheet entries and expenses sign-offs concurrently
 </documentation>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 56 of 66

 <invoke partnerLink="TimesheetEntriesSignatory" ... />

 <invoke partnerLink="TimesheetExpensesSignatory" ... />
</flow>
Example 6-19: A flow processing the timesheet entries and expenses sign-offs.

Now the Timesheet Submission process needs to wait for a message from both partners without
knowing which one arrives first. As such another flow is defined for the process to handle the
asynchronous replies/notifications, represented as receives. The synchronization dependencies
between these concurrent receives are expressed by links which connect them.

<flow>
 <links>
 <link name="timesheetEntriesApproval" />
 <link name="timesheetExpensesApproval" />
 </links>

 <receive name="receiveEntriesApproval" ...>
 <sources>
 <source linkName="timesheetEntriesApproval" />
 </sources>
 </receive>
 <receive name="receiveExpensesApproval" ...>
 <sources>
 <source linkName="timesheetExpensesApproval" />
 </sources>
 </receive>
 <scope name="invoiceSubmissionScope">
 <targets>
 <joinCondition>
 $timesheetEntriesApproval and $timesheetExpensesApproval
 </joinCondition>
 <target linkName="timesheetEntriesApproval" />
 <target linkName="timesheetExpensesApproval" />
 </targets>
 <compensationHandler>
 <invoke name="withdrawInvoiceSubmission" ... />
 </compensationHandler>
 <invoke name="submitInvoice" ... />
 </scope>
 ...
</flow>
Example 6-20: A flow using multiple receives to process timesheet entries and expenses approval, and to then
perform invoice submission.

Managing the waiting for a message from both partners is achieved by using two receive
activities. Both messages from the timesheet entries signatory and the timesheet expenses
signatory are processed by the same business process instance.

<flow>
 <links>
 <link name="timesheetEntriesApproval" />
 <link name="timesheetExpensesApproval" />
 </links>

 <receive name="receiveEntriesApproval" ...>
 <sources>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 57 of 66

 <source linkName="timesheetEntriesApproval" />

 </sources>
 <correlations>
 <correlation set="tradeID" initiate="no" />
 </correlations>
 </receive>
 <receive name="receiveExpensesApproval" createInstance="yes" ...>
 <sources>
 <source linkName="timesheetExpensesApproval" />
 </sources>
 <correlations>
 <correlation set="timesheetID" initiate="no />
 </correlations>
 </receive>
 <scope name="invoiceSubmissionScope">
 <targets>
 <joinCondition>
 $timesheetEntriesApproval and $timesheetExpensesApproval
 </joinCondition>
 <target linkName="timesheetEntriesApproval" />
 <target linkName="timesheetExpensesApproval" />
 </targets>
 <compensationHandler>
 <invoke name="withdrawInvoiceSubmission" ... />
 </compensationHandler>
 <invoke name="submitInvoice" ... />
 </scope>
 ...
</flow>
Example 6-21: The flow from 6-19 adding correlation to ensure the messages from both receives are
processed by the same process instance.

6.1.22. Defining a wait activity

The Timesheet Submission process, in some situations, needs to suspend processing until a
certain point in time, using the Wait activity to specify an intentional delay for a certain period of
time (duration) or until a certain deadline is reached.

In this case, a sub-process is invoked (one-way) which handles reconciling submitted invoices
and expense reports in the accounting records. This sub-process has a branch which posts all of
these entries at the end of the month:

<invoke name="retrieveMonthlyAccountingPostDateTime"
 partnerLink="AccountingService"
 operation="getMonthlyPostDate"
 inputVariable="monthAndYear"
 outputVariable="monthlyPostDateTime" />

<wait>
 <documentation>
 The monthlyPostDateTime is a deadline expression,
 e.g. '2006-11-30T22:00+01:00'
 </documentation>
 <until>$monthlyPostDateTime</until>
</wait>

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 58 of 66

<invoke partnerLink="AccountingService"

 operation="postAccountingEntries"
 inputVariable="accountingEntries" />
Example 6-22: A wait (using the response from the above invoke to populate its deadline criterion in until)
defined for a sub-process of the Timesheet Submission process for posting accounting data at the end of a
particular month.

6.1.23. Defining faultHandlers - catch, and catchAll

The Timesheet Submission process will need to address error conditions at the process level,
using the FaultHandlers.

In this case, faultHandlers are used to catch specific faults and provide exception handling for the
error conditions, along with a catchall element to house default error handling activities.

<faultHandlers>
 <catch faultName="SomethingBadHappened"
 faultVariable="TimesheetFault" faultElement="...">
 ...
 </catch>
 <catchAll>...</catchAll>
</faultHandlers>
Example 6-23: The faultHandlers section, hosting catch and catchAll child constructs, specified for timesheet
service faults.

6.1.24. Defining a validate activity

The Timesheet Submission process will need to address the validation of data, in this case with
timesheet entries. In order to make certain that variable contents are valid according to the
variable declaration, the Validate activity is used.

<scope>
 <faultHandlers>
 <catch faultName="bpel:invalidVariables">
 <reply name="invalidTimesheetSubmission" ... />
 </catch>
 </faultHandlers>

 <sequence>
 <receive name="receiveTimesheetEntry" variable="timesheetEntry" ... />
 <validate name="validateTimesheetEntry"
 variables="timesheetEntry" />
 ...
 <reply name="acknowledgeReceipt" ... />
 ...
 </sequence>
</scope>
Example 6-24: A validate defined for validating timesheet entries.

6.1.25. Defining a compensationHandler

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 59 of 66

The Timesheet Submission process will need to address the case where under certain error
conditions; the submission of an invoice to a client needs to be undone. In this case a
compensation steps need to be perform to undo this action.

<scope name="mainScope">
 <faultHandlers>
 <catchAll>
 <compensateScope target="invoiceSubmissionScope" />
 </catchAll>
 </faultHandlers>
 <sequence>
 ...
 <scope name="invoiceSubmissionScope">
 ...
 <compensationHandler>
 <invoke name="withdrawInvoiceSubmission" ... />
 </compensationHandler>
 <invoke name="submitInvoice" ... />
 </scope>
 ...
 <!-- do additional work -->
 <!-- a fault is thrown here;
 results of invoiceSubmissionScope must be undone -->
 </sequence>
</scope>
Example 6-25: A compensationHandler to undo invoicing in the case of a downstream fault.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 60 of 66

7. What’s new in WS-BPEL 2.0
As a result of the OASIS Technical Committee’s issues process, the original BPEL4WS 1.1
specification has received several updates. The following list summarizes the major changes that
have been incorporated in the WS-BPEL 2.0 specification.

Data Access

• Variables can now be declared using XML schema complex types
• XPath expressions are simplified by using the ‘$’ notation for variable access, for

example, $myMsgVar.part1/po:poLine[@lineNo=3]
• Access to WSDL messages has been simplified by mapping directly mapping WSDL

message parts to XML schema element/type variables
• Several clarifications have been added to the description of the <assign> activity’s

<copy> semantics
• The keepSrcElementName option has been added to <copy> in order to support

XSD substitution groups or choices
• The ignoreMissingFromData has been added to automatically some of <copy>

operation, when the from data is missing.
• An extension operation has been added to the <assign> activity
• A standardized XSLT 1.0 function has been added to XPath expressions
• The ability to validate XML data has been added, both as an option of the <assign>

activity and as a new <validate> activity
• Variable initialization as part the of variable declaration has been added

Scope Model

• New scope snapshot semantics have been defined
• Fault handling during compensation has been clarified
• The interaction between scope isolation and control links have been clarified
• Enrichment of fault catching model
• A <rethrow> activity has been added to fault handlers
• The <terminationHandler> has been added to scopes
• The exitOnStandardFault option has been added to processes and scopes

Message Operations

• The join option has been added to correlation sets in order to allow multiple
participants to rendezvous at the same process with a deterministic order

• Partner link can now be declared local to a scope
• The initializePartnerRole option has been added to specify whether an

endpoint reference must be bound to a partner link during deployment
• The messageExchange construct has been added to pair up concurrent <receive>

and <reply> activities

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 61 of 66

New Activities

• Added serial and parallel <forEach> with optional completion condition
• Added <repeatUntil>
• Added new extension activity
• Changed <switch> to <if>-<elseif>-<else>
• Changed <terminate> to <exit>
• Differentiate different cases of <compensate> by renaming them to <compensate>

and <compensateScope>

Miscellaneous Changes

• Added repeatEvery alarm feature to event handlers
• Clarified resources resolution (e.g. variable, partner link) for event handlers
• Added formal <documentation> support
• Added extension namespace declarations in order to specify what extension must be

understood
• Add <import> support to import WSDL and XSD formally

Abstract Processes

• Clarified Abstract Process usage patterns
• Introduced Abstract Profiles to address different needs in Abstract Processes, and two

profiles “Observable Behavior” and “Process Template” listed in the specification

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 62 of 66

8. Summary
8.1. Benefits of WS-BPEL
WS-BPEL provides the orchestration service layer for Service Oriented Architecture (SOA) by
which the following benefits can be realized:

• Industry standard language for expressing business processes: As With its rich and
comprehensive semantics, WS-BPEL represents a standard which has undergone rigorous
development by the industry toward addressing complex requirements, resulting in a
comprehensive orchestration solution.

• Leverage a common skill set and language: Standards enable lower total cost of
ownership through knowledge portability - instead of using complex proprietary
technologies, WS-BPEL enables best practices, patterns, experience and training to be
leveraged from a variety of vendors, as well as access to resources knowledgeable in the
WS-BPEL model and technology.

• Abstracts business logic and responsibility: Application and business services can be
designed to be process-agnostic and reusable. The business process assumes the
management and coordination of state, freeing constituent services from a number of
design constraints. Additionally, the business process logic is centralized in one location,
as opposed to being distributed across and embedded within multiple services.

• Designed to fit naturally into the Web services stack: In WS-BPEL a business processes
interact with services through Web services invocations, and are themselves externalized
as Web services. This recursive composition enables a BPEL process to leverage the
interoperability provided by the lower levels of the Web Services stack, such as WSDL,
SOAP, and WS-Addressing.

• Expressed entirely in XML: As WS-BPEL business processes are expressed in XML,
they are human-readable and can be used by any XML processing facilities, enabling
them to be produced and consumed within the XML stack.

• Uses and extends WSDL 1.1: WS-BPEL uses and extends WSDL to both provide and
consume Web services in an abstract way, using WSDL to define service interfaces.

• Uses XML Schema 1.0 type definitions for the data model
• Portable across platform and vendor: WS-BPEL provides for standards-based platforms

which reduce vendor lock-in and facilitate migration from one vendor platform to
another. WS-BPEL processes will run on any WS-BPEL-compliant engine.

Interoperable between interacting processes: Many deployments will have multiple orchestration
platforms due to embedding in tools and applications, organizational purchases, etc. WS-BPEL
provides a common standard which provides for interoperability between the different platforms
and the processes that execute on them.

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 63 of 66

Appendices

A. References
[BPEL4WS 1.1] BEA, IBM, Microsoft, SAP and Siebel, “Business Process Execution

Language for Web Services Version 1.1”, S. Thatte, et al., May 2003.
http://www.oasis-
open.org/committees/download.php/2046/BPEL%20V1-
1%20May%205%202003%20Final.pdf

[Infoset] W3C Recommendation, “XML Information Set (Second Edition)”, J.
Cowan, R. Tobin, February 4, 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204

[RFC 2119] IETF, “Key words for use in RFCs to Indicate Requirement Levels”,
RFC 2119, S. Bradner, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[RFC 2396] IETF, “Uniform Resource Identifiers (URI): Generic Syntax”, RFC
2396, T. Berners-Lee, R. Fielding, L. Masinter, August 1998.
http://www.ietf.org/rfc/rfc2396.txt

[Sagas] Garcia-Molina H. and Kenneth Salem, "SAGAS", Proceedings of the
ACM SIGMOD International Conference on Management of Data,
pages 249--259, May 1987.

[SOAP 1.1] W3C Note, “Simple Object Access Protocol (SOAP) 1.1”, D. Box, D.
Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, D. Winer, May 8, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[Trends] Traiger I. L., "Trends in System Aspects of Database Management",
Proceeding of the 2nd International Conference on Database (ICOD-
2), pages 1-21, Wiley & Sons, 1983.

[UDDI] OASIS, “UDDI Version 3.0.2”, L. Clement, A. Hately, C. V. Riegen,
T. Rogers, October 19, 2004. http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm

[WS-Addressing] W3C, “Web Services Addressing 1.0 - Core”, Martin Gudgin, Marc
Hadley, Tony Rogers, May 9, 2006.
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 64 of 66

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www.oasis-open.org/committees/download.php/2046/BPEL V1-1 May 5 2003 Final.pdf
http://www.oasis-open.org/committees/download.php/2046/BPEL V1-1 May 5 2003 Final.pdf
http://www.oasis-open.org/committees/download.php/2046/BPEL V1-1 May 5 2003 Final.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WS-BPEL 2.0] Web service business Process Execution Language Version 2.0
Specification, OASIS Standard, 11 April 2007, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[WSDL 1.1] W3C Note, “Web Services Definition Language (WSDL) 1.1”, E.
Christensen, F. Curbera, G. Meredith, S. Weerawarana, March 15,
2001. http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WSFL] IBM, “Web Service Flow Language (WSFL 1.0)”, F. Leymann, May
2001. http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[WS-I Basic Profile 1.1 Errata] Web Services Interoperability Organization, “Basic Profile
Version 1.1 Errata”, Revision 1.8, A. Karmarkar , October 25, 2005.
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata-2005-10-25.html

[WS-I Basic Profile] Web Services Interoperability Organization, “Basic Profile Version
1.1", K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P.
Yendluri, April 16, 2004.
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[XLANG] Microsoft, “XLANG Web Services for Business Process Design”, S.
Thatte, 2001. http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

[XML Namespace] W3C Recommendation , “Namespaces in XML”, T. Bray, D.
Hollander, A. Layman, January 14, 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114

[XML Schema Part 1] W3C Recommendation, “XML Schema Part 1: Structures Second
Edition”, H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn,
October 28, 2004. http://www.w3.org/TR/2004/REC-xmlschema-1-
20041028/

[XML Schema Part 2] W3C Recommendation, “XML Schema Part 2: Datatypes Second
Edition”, P. V. Biron, A. Malhotra, October 28, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[XMLSpec] W3C Recommendation, “Extensible Markup Language (XML) 1.0
(Third Edition)", T. Bray, J. Paoli, C. M. Sperberg-McQueen, E.
Maler, F. Yergeau, February 4, 2004.
http://www.w3.org/TR/2004/REC-xml-20040204

[XPATH 1.0] W3C Recommendation, “XML Path Language (XPath) Version 1.0”,
J. Clark, S. DeRose, November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 65 of 66

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.w3c.org/tr/wsdl
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-errata-2005-10-25.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/xpath
http://www.w3.org/TR/1999/REC-xpath-19991116

WS-BPEL 2.0 Primer 9 May 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 66 of 66

[XSLT 1.0] W3C Recommendation, “XSL Transformations (XSLT) Version 1.0”,
J. Clark, November 16, 1999. http://www.w3.org/TR/1999/REC-xslt-
19991116

B. Acknowledgements
The authors of this Primer would like to extend their thanks and appreciation to Thomas Erl for
contributing sections of his book "Service-Oriented Architecture: Concepts, Technology, and
Design" to this effort.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116

	Appendices

