
Computers in Industry 63 (2012) 148–167
A comparative survey of business process similarity measures

Michael Becker a,*, Ralf Laue b

a Department of Business Information Systems, University of Leipzig, Germany
b University of Applied Sciences of Zwickau, Germany

A R T I C L E I N F O

Article history:

Received 26 November 2011

Accepted 29 November 2011

Available online 17 January 2012

Keywords:

Survey

Business process model

Similarity measures

A B S T R A C T

Similarity measures for business process models have been suggested for different purposes such as

measuring compliance between reference and actual models, searching for related models in a

repository, or locating services that adhere to a specification given by a process model. The aim of our

article is to provide a comprehensive survey on techniques to define and calculate such similarity

measures.

As the measures differ in many aspects, it is an interesting question how different measures rank

‘‘similarity’’ within the same set of models. We investigated, how different kinds of changes in a model

influence the values of different similarity measures that have been published in academic literature.

Furthermore, we identified eight properties that a similarity measure should have from a theoretical

point of view and analysed how these properties are fulfilled by the different measures. Our results show

that there are remarkable differences among existing measures.

We give some recommendations which type of measure is useful for which kind of application.

� 2011 Elsevier B.V. All rights reserved.

Contents lists available at SciVerse ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d
1. Introduction

Business process models, or just process models (PMs), are
nowadays a common approach to analyse existing business
processes and to create new processes in a structured way. They
are used for purposes like supporting communication in organisa-
tions, documentation in projects, and training of employees [1].
This wide area of application has led to the existence of a
tremendous amount of PMs. Large scale enterprises often own
process repositories consisting of hundreds or even thousands of
models [2], usually developed by different persons. A variety of
techniques to manage these repositories are conceivable. They
range from intelligent process repositories [3] to similarity search
over the models.

So far, several approaches that follow the latter idea have been
proposed. They aim to find PMs in a PM repository that are similar
to a given query model. For this purpose, there is a need of a
similarity measure that quantifies the similarity between models.

The goal of our article is to provide a comprehensive survey on
techniques to define and calculate similarity measures between
PMs. Furthermore, we will study the question how the different
measures rank ‘‘similarity’’ within the same set of PMs. In our
study, we investigated how different kinds of changes in a PM
* Corresponding author.

E-mail addresses: michael.becker@uni-leipzig.de (M. Becker),

ralf.laue@fh-zwickau.de (R. Laue).

0166-3615/$ – see front matter � 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2011.11.003
influence the values of different similarity measures that have
been published in academic literature.

The general method for comparing two PMs consists of two
steps: First, activity nodes in one model that correspond to activity
nodes in the other model must be identified. In particular, if the
models have been created in different organisations or if they
describe a business process on different levels of detail, this can
become a non-trivial task. This first step is, however, not in the
focus of our article. We assume that a mapping between
corresponding activity nodes in the process models to compare
has been established, either by using one of the existing algorithms
or based on experts’ judgment. The interested reader can find a
discussion of different mapping techniques in [4–6]. More general
techniques that map model fragments instead of single nodes to
each other are discussed in [7]. Once a mapping between the
activities has been established, measures of similarity between the
models can be computed in step two.

After explaining some basic concepts and symbols in Section 2,
we will discuss desirable properties that a similarity measure
should have in Section 3. The methods used in our literature survey
and the applications for similarity measures that have been
suggested in the literature are presented in Section 4. To facilitate
comparability of the analysed measures, we calculate similarity
between an example model and its variations which we present in
Section 5. Following, in Section 6, we discuss the measures we have
found in the literature. For each measure, we analyse which of the
properties discussed in Section 3 are fulfilled, and we compute
the similarity between our example model and its variants. From

http://dx.doi.org/10.1016/j.compind.2011.11.003
mailto:michael.becker@uni-leipzig.de
mailto:ralf.laue@fh-zwickau.de
http://www.sciencedirect.com/science/journal/01663615
http://dx.doi.org/10.1016/j.compind.2011.11.003

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 149
the observations made for the different measures, we give some
recommendations which kind of measure is more or less useful for
which purpose in Section 7. Finally, Section 8 concludes the paper.

2. Preliminaries

2.1. Business process models as graphs

Throughout this article, let M0 be the model that should be
compared with a set of other models. We will refer to these models
as M1 (when discussing the comparison of M0 with a single model)
and M2, . . . (when discussing the comparison of M0 with more than
one model).

Each such model can be described as a directed graph (N, E) with
the set N of nodes and the set E of edges. A � N is the subset of
nodes that have a textual label assigned. Depending on the
modelling language, this set can include either activities (i.e. the
tasks that have to be executed in a business process) or activities
and events. Without loss of generality, in this article we will refer
to the members of A as ‘‘activities’’ unless a separate discussion of
events is necessary. We will use the notation (Ni, Ei) (where i = 0, 1,
. . .) for describing a model Mi as a graph. The set of activities of (Ni,
Ei) is denoted by Ai.

Other than activity and event nodes, process models can also
include connectors (called ‘‘gateways’’ in the language BPMN)
which are used to model parallel executions or choices among
paths.

Fig. 1 shows two example process models PM0 (above) and PM1,
modelled in the Business Process Modeling Notation [8]. In this
notation, start and end events are depicted by circles, activities by
rounded rectangles and ‘‘choice nodes’’ (a gateway that allows to
chose exactly one of the outgoing arcs for further processing) by
the symbol ^. All those elements belong to the set of nodes of a
model.

The example model PM0 of Fig. 1 can be expressed as a graph as
follows:

PM0 ¼ðN0; E0Þ¼ðfm0; m1; m2; m3; m4; m5; m6g; fðm0; m1Þ; ðm1; m2Þ;
ðm2; m3Þ; ðm3; m4Þ; ðm4; m2Þ; ðm4; m5Þ; ðm5; m6ÞgÞ

Furthermore, we define the set �n of the preceding nodes for a
node n 2 N as
�n = {m 2 N such that (m, n) 2 E} and analogously the set n� of

the succeeding nodes of a node n 2 N as
n � = {m 2 N such that (n, m) 2 E}.

2.2. Trace, set of traces

A process model (N, E) describes the temporal relations
between possible executions of the activities A � N. For example,
if A � A 3 (aI, aII) 2 E, this means that the execution of activity aI is
followed by the execution of activity aII. A trace (also called firing
Fig. 1. Two simple e
sequence in the domain of Petri nets) of (N, E) is a finite or infinite
sequence of activities from the set A, denoting the order in which
the execution of activities from A starts in an instance of the
process. For example, the trace ha1, a2, a1i means that the process is
instantiated by starting activity a1. At a later point of time, a2 starts,
and even later the execution of a1 is started for a second time. The
length of a trace s is the number of its elements (or 1) and will be
denoted by len(s). We will use the symbol S(M) to denote the set of
all possible traces of a PM M.

In the upper example model PM0 of Fig. 1, possible traces are:
hm0, m1, m2, m3, m4, m5, m6i as well as hm0, m1, m2, m3, m4, m2,

m3, m4, m5, m6i (m3 is repeated once), hm0, m1, m2, m3, m4, m2, m3,
m4, m2, m3, m4, m5, m6i (m3 is repeated twice), etc. As the activity
m3 can be repeated arbitrary often, S(PM0) is an infinite set. The set
of traces of the lower model PM1 of Fig. 1 contains exactly one
trace, hn0, n1, n2, n3, n4, n5i.

Traces of process models can be represented as a string, i.e. a
sequence of symbols. Based on this representation, it is possible to
calculate the longest common subsequence. The longest common
subsequence of two strings is a subsequence of both strings that
contains the maximum number of symbols (preserving the symbol
order). For example for the strings ‘‘123456’’ and ‘‘1x2y3z’’, the
longest common subsequence is ‘‘123’’. A more formal definition
and algorithms for calculating longest common subsequences can
be found in [9].

We denote the length of the longest common subsequence of
traces s1 and s2 as len(lcs(s1, s2)).

2.3. Mapping function

In most approaches, the algorithm for calculating similarity
measures starts with establishing a mapping between the nodes in
M0 and M1. Such a mapping describes which activity in M1

‘‘corresponds’’ to an activity in M0. Formally, a mapping is
described by a partial function that assigns nodes of M0 = (N0,
E0) to the ‘‘corresponding’’ nodes of M1 = (N1, E1). Throughout this
article, we will denote this mapping function with map : N0! N1.
In many approaches, only the activities are mapped. In these cases,
we have a mapping function map : A0! A1. While some
approaches require map to be injective, others do not.

For the models shown in Fig. 1, a reasonably defined mapping
function map : PM0! PM1 could be: map(m0) = n0, map(m1) = n1,
map(m3) = n2, map(m5) = n3, map(m6) = n5. In this case, map is
neither total nor injective.

map is either defined by human judgment or automatically by
making use of a function corr : N0 � N1! [0, 1] that quantifies the
correspondence (or similarity) between single nodes. The basic
idea is to define map such that the values of corr(n, map(n)) are
close to 1 for many nodes n.

We regard two models M0 and M1 as equivalent to each other
(symbol: M0 � M1), iff map is a graph isomorphism of M0 and M1,
i.e. map is bijective and (n, m) 2 E0, (map(n), map(m)) 2 E1.
xample models.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167150
2.4. Distance and similarity measures, further symbols

Let M be the set of process models. A distance measure dist is a
function dist : M � M ! Rþ [f0g.

A similarity measure is a function sim : M � M ! [0, 1]. The
formula

simðx; yÞ ¼ 1

1 þ distðx; yÞ (1)

can be used for transforming a distance measure into a
similarity measure or vice versa.

In Section 6, we will discuss several alternatives to define the
functions map, corr, dist and sim, i.e. in each subsection those
functions will be defined differently.

Throughout this article, the symbol # K will be used to denote
the number of elements of a set K.

3. Desirable properties of distance and similarity measures

Santini and Jain [10] point out that a number of dissimilarity
measures proposed in the literature assume that those measures
are distance measures in a metric space. (M, dist), the set of all
process models M with a distance measure dist, becomes a metric
space, if the following properties hold:

Property 1 dist(M0, M1) � 0 8 M0, M1 2 M (non-negativity)
Property 2 dist(M0, M1) = dist(M1, M0) 8 M0, M1 2 M (symmetry)
Property 3 dist(M0, M1) = 0 , M0 � M1

Property 4 dist(M0, M2) � dist(M0, M1) + dist(M1, M2) (triangle
inequality)

For measuring the ‘‘dissimilarity’’ distance between PMs, it is
reasonable to require Property 1 and Property 2. Property 3 that
says that the distance between two models is 0 only if the models
are identical is too strict for certain application areas. The same set
of traces S(M) (i.e. the same set of possible executions of activities
of a model M) can be modelled in different ways. For example, the
model shown in Fig. 3(a) (see Section 5) has the same set of traces
as the model shown in Fig. 3(b). A distance measure that calculates
the distance between both models as 0 would correctly describe
the fact that both models show exactly the same business process.
A more relaxed requirement is that dist(M0, M1) is 0, iff both models
have the same set of traces.

For our purposes, the set of traces S(M0) and S(M1) are
considered as being the same (symbol: S(M0) � S(M1)) if hs1, s2,
. . . i 2 S(M0) implies that hmap(s1), map(s2), . . . i 2 S(M1) and vice
Fig. 2. Models with corresponding labels; the labels indicate th
versa, ht1, t2, . . . i 2 S(M1) implies that there is a hs1, s2, . . . i 2 S(M0)
such that map(si) = ti 8 i.

With this interpretation of equality between sets of
traces, Property 3 can be substituted by the less strict
requirement:

Property 3a:
dist(M0, M1) = 0 , S(M0) � S(M1).
Property 4, the triangle inequality, is not essential for

measuring the dissimilarity (distance) between PMs (or for
(dis)similarity measures in general, see [11]). Therefore, we will
not examine the suggested measures with respect to this property.
It is a useful property anyway, because a distance measure that
fulfils all four properties given above allows to organise a PM
repository using data structures in which the search for similar
models is very fast [12].

From an information-theoretic discussion of the concept of
similarity (see [11,13]), one more requirement for a similarity
measure can be derived: Such a measure should take into
consideration both the commonality between two models and
their differences (Property 5). For example, we would not get a
good similarity measure by just counting the number of activities
that are shared among two models without relating this number to
the overall number of activities in the models: If two models with
20 nodes have 15 node names in common, it would be reasonable
to say that they are more similar to each other than two models
with 200 nodes from which 15 node names can be found in both
models.

As mentioned before, the definition of the function map :
A0! A1 is outside the main focus of this article. We just assume
that such a mapping has been established. The approaches
that calculate map automatically start with a function
corr : A0 � A1! [0, 1] which quantifies the similarity between
activities. It would be a desirable property of a similarity measure
sim : M � M ! [0, 1] if the information gained from the similarity
measure corr : A0 � A1! [0, 1] between activities would be
considered in the calculation of the similarity measure sim

between the models as a whole (Property 6). This is illustrated
in Fig. 2, showing three sequential models M0, M1 and M2 with four
activities and the mappings between them (as dotted arrows).
Assume that

1 ¼ corrð‘‘confirm draft‘‘; ‘‘confirm draft‘‘Þ
> corrð‘‘confirm draft‘‘; ‘‘dismiss draft‘‘Þ

and that
at M2 should be regarded as more similar to M0 than M1.

Table 1
Summary of the properties for distance measures defined in Section 3.

1 Distance measure is non-negative

2 Distance measure is symmetric

3 Distance measure is 0 only if the models are the same

(up to mapping by map)

3a Distance measure is 0 only if the models have the same

set of traces (up to mapping by map)

4 Distance measure fulfils the triangle inequality

5 Distance measure considers both commonalities and differences

6 Distance measure takes similarity measure between

activities into account

7 Distance measure is defined for arbitrary process models

8 Distance measure can be computed efficiently

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 151
1 > corrð‘‘sign draft contract‘‘; ‘‘sign contract‘‘Þ
¼ corrð‘‘sign draft contract‘‘; ‘‘archive draft contract‘‘Þ

(which could be the result of corr defined as a simple word-by-
word comparison). In such a case, it would be desirable that the
result that the activities in M2 are more similar to the activities in
M0 than those in M1 would not ‘‘get lost’’ when the similarity
measure sim is calculated, i.e. we would prefer to have sim(M0,
M1) < sim(M0, M2) instead of sim(M0, M1) = sim(M0, M2).

Furthermore, it is reasonable to require that a distance or
similarity measure can be applied for comparing arbitrary PMs
without imposing additional syntax restrictions (such as that the
model must not contain loops) (Property 7). And last but not least,
there is another requirement that is related to the computational
complexity of the calculation of dist or sim. In simple terms, it
should be possible to calculate the values of distance / similarity
measures efficiently (Property 8). Approaches that require the
calculation of the whole set of traces of a PM often would not fulfil
this requirement.
Table 2
Analysed works and their application area.

Measure Simplify changes Merge processes Facilitate reuse Manage re

6.1.1 � � �
6.1.2 � �

6.1.3 �
6.1.4 �
6.1.5a �
6.1.5b �

Measure Simplify changes Merge processes Facilitate reuse Manage re

6.2.1a � �

6.2.1b

6.2.2 �
6.2.3 �
6.2.4 �

6.2.5 �
6.2.6 � �

Measure Simplify changes Merge processes Facilitate reuse Manage re

6.3.1a �
6.3.1b �
6.3.2 �
6.3.3 �
6.3.4 � �

6.3.5

Measure Simplify changes Merge processes Facilitate reuse Manage re

6.4.1

6.4.2 �

6.4.3
Table 1 gives a short overview of the properties defined in this
section.

4. Literature research

4.1. Methods of the literature research

The findings we present in this article are based on an extensive
literature review conducted between March 2010 and May 2011.
According to the taxonomy given in [14], our review can be
classified as follows:

- Scope: state-of-the-art presentation concerning approaches to
calculate PM similarity

- Focus: comprehend research methods and technologies
- Goal: summarise findings
- Organisation: conceptual using the different types of similarity

measures established in Section 6.1 to 6.5
- Perspective: neutral
- Audience: specialised scholars can identify similarities and

differences between existing approaches to calculate PM
similarity

- Coverage: exhaustive

The central starting points for our survey were the digital
libraries of ACM, IEEE, Springer, and Elsevier (SciVerse ScienceDir-
ect). We have searched for approaches to calculate similarity
between process models using the search terms ‘‘process model’’
and ‘‘similarity’’. Based on titles and abstracts and, if necessary, by
reviewing the full paper, we identified 25 academic works
published between 2004 and 2011 as relevant for our survey.
This way, we received all papers but [12] which was only available
at the authors’ personal website.
positories Automate execution Assure compliance Discover services

�

positories Automate execution Assure compliance Discover services

�
�

�

�

positories Automate execution Assure compliance Discover services

�
�

positories Automate execution Assure compliance Discover services

�
�
� �

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167152
4.2. Application spectrum for similarity measures

Calculating similarity between PMs is a task performed in a
wide range of applications concerning business process manage-
ment. In the literature we have surveyed, several applications for
similarity measures have been suggested. They can be grouped
into seven categories: ‘‘simplify changes’’, ‘‘merge processes’’,
‘‘facilitate reuse’’, ‘‘manage PM repositories’’, ‘‘automate process
execution’’, ‘‘assure compliance with normative models’’, and
‘‘discover services’’. It should be noted that these activities are not
independent from each other. For example, simplifying changes is
closely connected to managing process variants. In the following,
each of these groups is presented in more detail, while Table 2
shows a summary of the application areas suggested by the various
authors for their measures. Table 2 can serve as a first guide for
studying the different measures which will be introduced in detail
in Section 6.

4.2.1. Simplify changes in process variants

Organisations can react on changing customer requirements by
adapting existing processes. In doing so, various related models are
established that are all more or less similar to each other. To
simplify management and facilitate reuse of these process variants,
it is necessary to establish a measure that captures their similarity.
Therefore, it is possible to react on new user requirements by
searching for process variants that satisfied similar requirements
in the past.

4.2.2. Merge processes

Merging PMs is a common activity executed in the case of
company mergers and in collaborations beyond company
borders. When business units of different organisations are
consolidated, it can be assumed that process overlaps exist. For
example, [15] reported of an organisation having several
subsidiaries where every subsidiary managed its own ERP
system resulting in more than 200,000 PMs. During integration
it is necessary to integrate these systems and to identify process
overlaps.
Fig. 3. Initial model V0 and variants V1 . . . V7. (a) V0: Original BPMN model. (b) V1: Mode

Model with additional activities. (e) V4: Model with modified control flow. (f) V5: Model w

(h) V7: Model with activity 5 moved inside the second control block.
4.2.3. Facilitate reuse

A cross-sectional goal that can be achieved by targeting various
other application areas for similarity calculations is to facilitate
reuse of PMs. Similar to reusing components in software
engineering (see e.g. [16] for code reuse), reusing PMs promises
to reduce time and costs. Therefore, it is necessary to find existing
PMs and reuse them in the right context.

4.2.4. Manage PM repositories

Due to the vast amount of existing PMs, organisations usually
store these models in process repositories. These repositories
provide various functions, such as adding and removing models,
annotating models and searching for models [3]. Before new
models can be added to a repository, it is useful to check whether
similar or even identical models are already stored in the
repository. Furthermore, repositories are useless without efficient
querying (provided by similarity searches) and browsing facilities.

4.2.5. Automate process execution

Automation is usually concerned in SOA applications. During
execution, services may be called depending on user requirements
established at runtime. Furthermore, existing services may fail, e.g.
due to a computer failure. In this case, it may be necessary to find
similar services that are able to provide the same or similar
functionality.

4.2.6. Assure compliance with normative models

Reference models are a common approach to improve the
process of developing new PMs [17]. Based on a given reference
process, application specific processes can be established. Refer-
ence models often contain necessary legal requirements for
specific domains. Therefore, it is often necessary to measure the
compliance degree between a given reference model and its
application specific implementation.

4.2.7. Discover services

Closely connected to the goal of automation is service
discovery. In SOA applications, one common task is to search for
l with same set of traces as V0. (c) V2: Model with modified connector types. (d) V3:

ith a modified control flow. (g) V6: Model with a modified order of activities 5 and 6.

Table 3
Adherence to properties and similarity values of [22].

Similarity score based on common activity names [22]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – yes 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00

1 https://sourceforge.net/projects/prom-similarity/

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 153
services satisfying specific user requirements. If this task can be
automated it is possible to call services dynamically and to make
reuse of existing services possible.

5. Model changes

The approach followed in our survey is as follows: Starting from
a moderately sized model V0 (shown in Fig. 3(a)), we apply
different change operations as described in [18–20], resulting in
seven variants of the original PM. We selected the model variants
such that the control-flow related change operations from [18–20]
are represented. For the various similarity measures discussed in
this survey, we compute the similarity between the original model
V0 (Fig. 3(a)) and each of its variants V1, . . ., V7. If the original
authors of a measure described it as a distance measure rather than
a similarity measure, we use Eq. (1) for transforming the distance
measure into a similarity measure.

The model variants are shown in Fig. 3 as PMs in the Business
Process Modeling Notation [8]. The process V0 starts with
executing activity 1. After executing this activity, exactly one of
the activities 2, 3 or 4 is performed (based on certain decision that
is not explicitly described in the model). Afterwards, the activities
5 and 6 are executed one or more times, followed by exactly one of
the activities 7 or 8. Finally, the process instance terminates after
executing activity 9.

First, we modify the original model V0 of Fig. 3(a) by splitting
the XOR connectors into more than one connector (see Fig. 3(b)).
Note that S(V1) = S(V0). Next, we change the types of connectors:
In model variant V2 (Fig. 3(c)), all XOR connectors (^) have been
replaced by inclusive OR connectors (). This means that in the
blocks with the three activities 2, 3 and 4 and the two activities 7
and 8, one or more of the activities can be performed in parallel.

In variant V3 (Fig. 3(d)), four additional activities A, B, C and D
have been added to the original model.

Model variant V4 (Fig. 3(e)) has exactly the same nodes as V0,
but one arc has been added while another one has been deleted.
This means that in V4, it is possible to skip all activities but 1
and 9, and there is no loop allowing activities 5 and 6 to be
executed more than once. Variant V5 (Fig. 3(f)) contains the same
activities as V0, but no connectors at all. The order of the activities
does not correspond to the order in which the activities occur in
traces of V0. In model variant V6 (Fig. 3(g)), the order of activities
5 and 6 has been changed. Finally, in model variant V7, (Fig. 3(h)),
activity 5 has been moved inside the second conditional control
block.

6. Measures

In this section we present the analysed approaches for calculating
similarity between PMs in detail. The approaches were identified
based on the literature survey illustrated in Section 4.

In Section 6.1 we analyse approaches based on correspondences
between the elements of a process model. Since process models can
be represented as graphs as shown in Section 2.1, it is a reasonable
idea to study the applicability of graph algorithms on similarity
calculation. Approaches following this idea are presented in
Section 6.2. Similarity measures considering the dependencies
between activities in a PM, e.g. the order of their occurrence are
shown in Section 6.3. Finally, we present approaches that are based
on the set of traces (see Section 2.2) in Section 6.4.

Every presentation is enriched by a table containing information
about the adherence to the properties in Section 3 and the absolute
similarity values for the similarity between model V0 and the models
V1 . . . V7 from Section 5. Furthermore, we give a brief explanation of
the parameters and (if necessary) adaptations used in our
calculation of the similarity values and discuss each measure.

To enhance the reproducibility of our findings we developed a
publicly available1 application. It is based on the well-known ProM
framework for process mining [21] and provides an extensible API.
Currently, 15 of the presented measures are implemented, and we
will add missing measures in the future. Using this application, it is
possible to analyse the impact of various parameters when
calculating similarity (e.g. size of models, amount of text in
models). The source code contains detailed comments on the
parameters and strategies for those measures whose original
description allows some degree of freedom in the implementation.

6.1. Correspondence between nodes and edges in the PM

6.1.1. Similarity score based on common activity names

Akkiraju and Ivan [22] measure similarity of process models
solely based on the number of equally labelled activities, i.e. on the
number of activities that occur in both models. The so called
semantic similarity score between model M0 with the set of
activities A0 and model M1 with the set of activities A1 is defined as
sim(M0, M1) = 2 � (# (A0 \ A1)/(# A0 + # A1)).

Any two of the example models Vi (with the only exception V3)
have a similarity score of 2 � (9/(9 + 9)) = 1 irrespective of the
calculation order.

Calculation settings and results: Table 3 shows the results of the
similarity calculations between model V0 and models V1 . . . V7

according to [22] as well as the adherence of this measure to the
properties given in Section 3. The results were obtained by using
the labels of activities as activity names.

Discussion: While this similarity measure is very simple and fast
to compute, its major drawback is that changing the structure of
processes (e.g. changing the order of activities or inserting
connectors) does not influence the similarity measure in any
way. Furthermore, its application is limited to a domain with
controlled vocabulary (as the authors of [22] state, too). The
approach fails both in multilingual and in inter-organisational
environments due to different vocabularies. In Section 6.1.3 we
discuss a similar approach avoids the restriction of activity labels
to a controlled vocabulary.

6.1.2. Label matching similarity

Dijkman et al. study several similarity measures in [4]. The first
and simplest one is called label matching similarity. It builds on a
function corr that calculates a label-based similarity score between
nodes in A0 and A1. The mapping function map : M0! M1 is defined
such that

P
x 2 A0

corrðx; mapðxÞÞ takes its maximum value. Option-

ally, a threshold can be used that disregards a similarity score if
corr(x, y) is smaller than a given value. This means that instead of
corr, the function

https://sourceforge.net/projects/prom-similarity/

Table 5
Adherence to properties and similarity values of [6].

Syntactic, linguistic and structural similarity of activity labels [6]

Adherence to property . . . 1 – yes 2 – no 3 – no 3a – no 5 – yes 6 – yes 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4
Adherence to properties and similarity values of [4].

Label matching similarity [4]

Adherence to property . . . 1 – yes 2 – no 3 – no 3a – no 5 – yes 6 – yes 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167154
corr0ðx; yÞ ¼
corrðx; yÞ if corrðx; yÞ � threshold;

0 otherwise

8<
:

is used.
The label matching similarity is defined as simðM0; M1Þ ¼

2
P

x 2 A0
corrðx;mapðxÞÞ

#A0þ#A1
.

Calculation settings and results: To establish correspondences
between nodes, we use the Levenshtein string edit distance [23] as
function corr. Furthermore, to match two activities, we use a
threshold of 0.5. Since we only have single-letter words in our
example models the resulting similarities between individual
activities is either 0 or 1. The resulting similarity values are shown
in Table 4.

Discussion: As can be seen from Table 4, the similarity values for
the approach proposed by [4] match with the results established
by [22] (Section 6.1.1) This is due to the fact that the measure of [4]
also does not take into account any information about the order of
nodes. For example, sim(V0, V5) would be 1 while sim(V0, V3) would
be 18

21 < 1 only – a result that is counter-intuitive if we are
interested in the similarity of the modelled behaviour.

6.1.3. Syntactic, linguistic and structural similarity of activity labels

Ehrig et al. [6] measure the similarity of PMs based on so-called
semantic business process models - predicate transition Petri nets
transformed in an ontological representation.

Let A0 ¼ fa0
1; a0

2; . . . a0
#A0
g and A1 ¼ fa1

1; a1
2; . . . a1

#A1
g be the sets of

activities of the models. Ehrig et al. describe three measures for
similarity between the label of an activity a0 2 A0 and the label of
an activity a1 2 A1.

First, the Levenshtein string edit distance [23] is used to calculate
the syntactic similarity. Second, linguistic similarity handles syno-
nyms in element labels using WordNet [24] and takes the meaning
of the words in the label into account. Finally, structural similarity

compares the context (such as attribute names and values or
succeeding nodes) of single activities. The similarity measure
corr(a0, a1) between activity a0 2 A0 and activity a1 2 A1 is aggregated
by the weighted combination of the three similarity types.

The similarity of the models as a whole is calculated as

simðM0; M1Þ ¼ 1

#A0

X#A0

i¼1

max
j¼1;...#A1

corrða0
i ; a1

j Þ (2)

Calculation settings and results: Table 5 contains the similarity
values for our variants. We defined map such that activities having
the same label are mapped to each other. Since the activity labels of
the variants shown in Fig. 3 are single-letter words, there is (with
the exception of variant V3) always a pair of activities with a
syntactic similarity of 1. This results in the fact that linguistic and
structural similarity is not taken into account. By using a non-
injective mapping, sim(V0, V3) would be higher because we could
establish a mapping map such that map(1) = (1, A), map(5) = (B, 5),
map(6) = (6, C), and map(9) = (D, 9).

Discussion: The approach of Ehrig et al. focuses to a great extent
on the similarity of activity labels. Structural similarity is only
taken into account if labels are not equal or if they are not
synonyms of each other. Resulting from this, PMs with the same
activity names will always have similarity 1 independently from
any structural changes.

Following Eq. (2), the approach of Ehrig et al. maps the activities
of A0 to activities of A1 and ignores activities in A1 that are not
contained in A0. This results in a similarity of 1 when comparing V0

with V3 (activities A, B, C, and D are ignored). On the other hand,
sim(V3, V0) is not 1 but 9/13 because nine activities are matched with
a similarity of 1 and the additional four activities are not matched
and have a similarity of 0 (assuming a one-to-one-mapping). This
means that Property 2 is violated – the measure is not symmetric.
We believe the value of [6] lies more in a discussion of concepts to
define the mapping function map between activities than in the
definition of similarity measures between PMs as a whole.

6.1.4. Feature-based similarity estimation

Yan et al. [25] address the problem of searching a collection of
PMs for models that are similar to a query model. They point out
that it is inefficient to compare each model in the collection with
the query model. As a solution, Yan et al. suggest to build
computational efficient indices for quickly finding models that
have many features in common with the query model. In this
procedure, features are defined as activity labels as well as the
position that a node has within the structure of the PM graph.

First, the Levenshtein string edit distance [23] is used for
computing the similarity of activity labels. Second, the role of the
nodes is taken into account which is defined for each node as
shown in Table 6. For a node x, roles(x) is the set of all roles for x. It is
possible that a node can have more roles at once, for example being
a split as well as a join.

For two PM M0 = (N0, E0) and M1 = (N1, E1), structural similarity

corrstr between two nodes n 2 N0, m 2 N1 is calculated as follows:

corrstrðn; mÞ

¼

1 if N0 ¼ fng ^ N1 ¼ fmg
1 	 j#n� 	 #m�j

2ð#n� þ #m�Þ if start 2 rolesðnÞ \ rolesðmÞ ^

if stop =2 rolesðnÞ \ rolesðmÞ;
1 	 j#�n 	 #�mj

2ð#�n þ #�mÞ if stop 2 rolesðnÞ \ rolesðmÞ ^

if start =2 rolesðnÞ \ rolesðmÞ;
1 	 j#n� 	 #m�j

2ð#n� þ #m�Þ	
j#�n 	 #�mj

2ð#�n þ #�mÞ otherwise:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The similarity of nodes (both similarity of activity labels as
structural similarity as defined by the above formula) is used for
establishing the mapping function map that assigns nodes from N1

Table 6
Roles for activity nodes in a PM.

Role Incoming edges Outgoing edges

start 0

stop 0

regular 1 1

split �2

join �2

Fig. 4. Three methods to transform model M0 from Fig. 3(a) into its approximation

graph.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 155
to ‘‘similar’’ nodes in N0. A mapping between n 2 N0 and m 2 N1 is
established if and only if the values for label similarity and
structural similarity between n and m are greater than some cutoff
value.

Yu et al. derive the similarity measure sim for PMs from this
function map by relating the number of nodes with a match to the
overall number of nodes in the models to compare.

Calculation settings and results: Table 7 shows the results of the
similarity calculations between model V0 and the variants V1 . . . V7.
As proposed by [25], we use different threshold values to match
individual nodes with each other. Two nodes are matched, if their
labels are similar to a high degree (a threshold of 0.8) or if their
roles are similar and their labels are similar to a medium degree
(thresholds of 1.0 for role similarity and 0.2 for label similarity). In
their work, Yan et al. identify so-called discriminative roles. A role
is discriminative, if the number of nodes having this role is small
enough compared to the overall number of nodes in a process
model collection. However, we do not take discriminative power
into account, since we only have a small number of process
variants.

Discussion: As the routing effects of connectors (XOR, AND, OR)
in a model are ignored, the same problems as discussed in
Section 6.1.1 and 6.1.3 can be observed. However, the aim of Yan
et al. is not to find ‘‘similar’’ models (with the meaning of ‘‘similar
behaviour’’), but rather ‘‘related’’ models. Given the fact that they
present a fast implementation of their algorithm, the benefit of the
approach is that it can be used as a first step to filter potentially
relevant models from a large model collection. In a second step, it is
possible to calculate similarity measures only for those models
from the collection that have not been disregarded as irrelevant.

6.1.5. Percentage of common nodes and edges in the graph

Similar to the label matching similarity measures discussed in
the previous subsections, Minor et al. [26] suggest a measure that
relates the number of nodes and edges that can be found in both
M0 = (N0, E0) and M1 = (N1, E1) to the overall number of nodes and
edges in both models. As the purpose of the work by Minor et al. is
to compare models that are adapted versions of a ‘‘template’’
model, it can be assumed that two nodes can be regarded as
identical if and only if they have exactly the same label. This means
that the Function map is simply the identity.

For a strictly sequential PM (i.e. one which has only activities,
but no split or join nodes), the similarity measure is defined as:

simðx; yÞ ¼ 1 	#ðN0nN1Þ þ #ðN1nN0Þ þ #ðE0nE1Þ þ #ðE1nE0Þ
#N0 þ #N1 þ #E0 þ #E1

(3)

For the general case of a PM with split and join nodes, three
methods for transforming the PM in another graph (called
Table 7
Adherence to properties and similarity values of [25].

Feature-based similarity estimation [25]

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 1.00 1.00
approximation graph) are suggested in [26]. Method 1 simply
ignores the splits and joins. Method 2 adds the types of splits and
joins that can be found along a path from one activity to another as
attributes to the arcs between activities. Method 3 uses exactly one
‘‘artificial’’ node per type of split- or join node, regardless of the
number of occurrences of this kind of split- or join node in the PM.
Fig. 4 illustrates the three methods of transforming a PM into its
approximation graph for our example model V0. After transforming
the original PM, Eq. (3) is used for comparing the approximation
graphs.

A similar approach is presented by Huang et al. in [27]. First, the
function corr is calculated; Huang et al. do not suggest any specific
corr-measure. Let A0 ¼ fa0

1; a0
2; . . . a0

#A0
g and A1 ¼ fa1

1; a1
2; . . . a1

#A1
g

be the sets of activities of the models to compare and E0 ¼
fe0

1; e0
2; . . . e0

#E0
g and E1 ¼ fe1

1; e1
2; . . . e1

#E1
g the sets of its edges.

The overall similarity between the activity sets A0 and A1 is then
defined as:

P#A0

i¼1 max j¼1;...;#A1
ðcorrða0

i ; a1
j ÞÞ þ

P#A1

j¼1 maxi¼1;...;#A0
ðcorrða0

i ; a1
j ÞÞ

#A0 þ #A1

(4)

Second, the PMs to compare are transformed into a weighted
graph representation similar to method 2 illustrated in Fig. 4.
However, instead of labelling edges with the respective
connector type, weights are assigned to edges. Outgoing edges
resulting from XOR-splits are assigned with the weight of 1

#x�.
This weight is added to edges until the next XOR-join. The
transformation of V0 from Fig. 3(a) into a weighted graph is
shown in Fig. 5.

The similarity of two edges eI = (aI, bI) and eII = (aII, bII) is based
on the similarity of the linked activities and defined as:

simedððaII; bIIÞ; ðaII; bIIÞÞ ¼ corrðaI; bIÞ þ corrðaII; bIIÞ
2

(5)
3a – no 5 – yes 6 – yes 7 – yes 8 – yes

V3 V4 V5 V6 V7

0.82 1.00 1.00 1.00 1.00

Fig. 5. Weighted graph representation of V0 in Fig. 3(a).

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167156
The similarity of all edges (using w0
1 and w1

j as the weights of the
edges e0

i 2 E0 and e1
j 2 E1) is defined as:

P#E0

i¼1 maxe1
j
2 E1
ðw0

i � w1
j � simedðe0

i ; e1
j ÞÞ

þ
P#E1

i¼1 maxe0
j
2 E0
ðw1

i � w0
j � simedðe1

i ; e0
j ÞÞ

#E0 þ #E1
(6)

The overall similarity between two process models is defined as
a weighted sum of the similarity between activities as defined by
Eq. 4 and the similarity between edges as defined by Eq. 6.

Calculation settings and results: Table 8 shows the results of the
similarity calculations between models V0 and V1 . . . V7 when using
method 1 for transforming a PM into a graph. Thus, we do not take
types of connectors into account and focus solely on equivalence of
activities and edges between these activities. Taking the type of
connectors into account would result in a lower values for sim(V0,
V1) and sim(V0, V2). The value sim(V0, V3) would be higher, since
connectors would be included in the calculation.

In the approach of Huang et al., some difficulties occur. While
they specify weights for XOR and AND connectors, OR connectors
are not taken into account. Therefore, we have used an approach
similar to 6.3.1 and weight edges resulting from OR connectors
with 1

2.
Discussion: An obvious shortcoming of the approach by Minor

et al. using approximation method 1 is that any information about
the control flow routing constructs in the model is lost in the
transformation: A parallel execution of two activities will be
covered in the same way as an exclusive choice among those
activities. Methods 2 and 3 have another severe problem: They
unite for example all XOR-joins that can be found in a model in the
same edge label (method 2) or in the same node (method 3). For
example, the model variant V4 (Fig. 3(e)) will be transformed into
the same approximation graph as the model V0 (Fig. 3(b)).
Consequently, the similarity between both models will be 1
despite of the fact that both models show clearly different
behaviours.

As can be seen in the Table 9 the similarity values following the
approach presented in [27] are very close to each other. This is due
to the fact, that the approach allows an n:m mapping of edges
based on the simple comparison of their connected nodes.
However, the decisive disadvantage of the approach from [27] is
that it does not calculate a similarity of 1 for equivalent models.
Table 8
Adherence to properties and similarity values of [26].

Similarity based on common nodes and edges [26] (using approximation method 1)

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 1.00 1.00

Table 9
Adherence to properties and similarity values of [27].

Similarity score based on common nodes and weighted edges [27]

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

0.60 0.60 0.63
This drawback results from the multiplication of weights (which is
1 only for sequential activities). Accordingly, this approach ranks
model V5 as very similar, since all the weights in this model are 1.

6.2. Edit distance between graphs

6.2.1. Graph edit distance similarity

Dijkman et al. [4,28] try to capture structural similarity as
follows: As described in Section 6.1.2, they derive a mapping
function map from a function corr that measures the similarities
between nodes in A0 and nodes in A1. The nodes a0 2 A0 for which
map(a0) is not defined and the nodes a1 2 A1 for which there is no
a0 2 A0 such that map(a0) = a1 are regarded as ‘‘inserted or deleted
nodes’’ (because they appear in one model and not in the other
one). Similarly, an edge (x, y) 2 E0 is called ‘‘inserted or deleted
edge’’ if either map(x) or map(y) is undefined or (map(x),
map(y)) =2 E1. Inserted or deleted edges in E1 are defined
analogously. With sn being the set of inserted or deleted nodes
and se being the set of inserted or deleted edges, Dijkman et al.
define a graph edit distance as:

distðM0; M1Þ ¼ #sn þ #se þ 2
X

a 2 A0 ;mapðaÞ is defined

corrða; mapðaÞÞ:

By dividing the terms in the above sum by the total numbers of
nodes, arcs and nodes that are not inserted or deleted nodes resp.,
three quotients can be derived. A similarity measure called graph
edit distance similarity is calculated as the weighted average of
these three quotients.

The idea of a graph-edit distance is also used for comparing
processes by Grigori et al. [29]. They use a distance measure for
searching a service repository for services that match a given
query. The basic ideas for the measure are the same as described
above; but two remarkable differences should be noted: First,
Grigori et al. do not relate the number of change operations to the
graph size and thus violate Property 5. And second, the approach
supports a non-injective mapping function map which is helpful
when models on different levels of abstraction have to be
compared.

Calculation settings and results: For the similarity calculation
according to [4] we used the approach presented in [28]. In doing
so, process models are transformed to graph models where
connectors are removed and ignored. If connectors are taken into
account, sim(V0, V1) and sim(V0, V2) will be lower (Dijkman et al.
state it even may be ‘‘too low’’). Similarity between individual
nodes (the function corr) is defined by the Levenshtein string edit
distance. As proposed in [4], it is possible to assign individual
weights to the summands resulting in different significance for
substituted nodes, added and deleted nodes, and added and
deleted edges. In our calculation we assign a weight of 1 to every
3a – no 5 – yes 6 – yes 7 – yes 8 – yes

V3 V4 V5 V6 V7

0.40 0.95 0.58 0.76 0.79

3a – no 5 – yes 6 – yes 7 – yes 8 – yes

V3 V4 V5 V6 V7

0.48 0.58 0.63 0.59 0.56

Table 10
Adherence to properties and similarity values of [4].

Graph edit distance [4]

Adherence to property . . . 1 – yes 2 – yes 3 – yes 3a – no 5 – yes 6 – yes 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.63 0.97 0.73 0.86 0.88

Table 11
Adherence to properties and similarity values of [29].

Graph edit distance [29]

Adherence to property . . . 1 – yes 2 – yes 3 – yes 3a – no 5 – no 6 – no 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 0.05 0.04 0.20 0.33 0.03 0.33 0.17

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 157
component of the calculation resulting in the following equation:

simðM0; M1Þ ¼ 1 	
#sn

#A0þ#A1
þ #se

#E0þ#E1
þ

2�
P

a 2 A0
ð1	corrða;mapðaÞÞÞ

#A0þ#A1	#sn

3
(7)

In Table 11, the similarity values for the approach presented
in [29] are shown. To calculate similarity, we make use of the
following edit operations, where the last two edit operations result
from the possibility to establish non-injective mappings:

- substitute the label of a node
- substitute the label of an edge
- delete a node, connect preceding with succeeding nodes of the

deleted node
- delete an edge
- insert an edge
- split a node into two nodes
- combine two nodes into a single one

Discussion: Table 10 shows the similarity values established by
the calculation given above and the adherence to the properties
given in Section 3. Since we transform PMs into their graph
representation using method 1 from Fig. 4, sim(V0, V1) = 1 and
sim(V0, V2) = 1, too.

Since the approach of Grigori et al. considers connectors and
their types, the values for sim(V0, V1) and sim(V0, V2) are rather low
in comparison to the other similarity values. Due to the possibility
to split a node into two nodes, sim(V0, V3) is high because we only
have to split node 1 into nodes <1, A>, node 5 into nodes <B, 5>,
node 6 into nodes <6, C>, and node 9 into nodes <D, 9>.

6.2.2. Combining activity matching and a graph edit distance

La Rosa et al. [30] discuss the question of comparing process
models stemming from different organisations. Their aim is to
create an integrated model in situations like company mergers or
restructurings. The approach has three steps: In step 1, a mapping
between the activities in M0 and M1 is established, i.e. the mapping
function map is defined for activity nodes based on a function corr

that uses string-similarity measures. In step 2, a mapping between
split and join nodes is found. For this purpose, a measure called
context similarity is calculated. A join (or split) node n0 in M0 is
regarded as similar to a join/split node n1 in M1, if the mappings
Table 12
Adherence to properties and similarity values of [30].

Label similarity and graph edit distance [30]

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 0.81 1.00
(via function map) of functions directly preceding and succeeding
n0 coincide with the functions directly preceding and succeeding
n1. Finally, in step 3, a measure based on a graph-edit distance
between M0 and M1 is calculated.

Calculation settings and results: To calculate similarity between
PMs according to [30], we use a one-to-one-mapping between the
sets of nodes (including activities and connectors). However, the
type of a connector is not taken into account. The only restriction is
that split nodes must not be mapped to join nodes. To calculate
similarity we weight every possible edit operation (substitute
nodes, add and remove nodes and edges) with an equal weight of 1.
The formula to calculate similarity is similar to the one proposed
by Dijkman et al. (see Eq. (7) in Section 6.2.1). However, we do not
only iterate over activities A1 and A2 but over all nodes N1 and N2 in
the PMs.

Discussion: The main difference to the approach of Dijkman
et al. is that the approach of La Rosa et al. does not transform PMs
into their graph representation. Though connectors remain, the
type of connectors is not taken into account. For this reason, we
have sim(V0, V2) = 1, but sim(V0, V1) < 1, i.e. Property 3a does not
hold as can be seen in Table 12.

Even if the algorithm is organised in three steps, the
information about the matching score between corresponding
activities which is calculated in step 1 is not ‘‘lost’’ in later steps;
the results from step 1 are included into the final measure. This
means that the measure fulfils Property 6.

6.2.3. Combining string edit distance and graph edit distance

Another approach that combines the graph-edit distance and
the Levenshtein string edit distance [23] for calculating the
function corr has been published by Kunze and Weske [12]. In
short, the graph-edit distance is the least costly sequence of steps
to insert or remove a node or to replace a node in n 2 M0 by its
counterpart map(n) 2 M1. The cost of inserting or removing a node
or edge is 1, while the cost for replacing activity n by activity
map(n) is defined as the Levenshtein string edit distance between n

and map(n).
Calculation settings and results: To calculate similarity between

PMs we transformed the distance measure of [12] into a similarity
measure using Eq. (1). Kunze and Weske show the application of
their measure on Petri Nets. For our application on generic PMs we
distinguish between different connector types. Therefore, for
3a – no 5 – yes 6 – yes 7 – yes 8 – yes

V3 V4 V5 V6 V7

0.83 0.96 0.62 0.92 0.94

Table 13
Adherence to properties and similarity values of [12].

Combining string edit distance and graph edit distance [12]

Adherence to property . . . 1 – yes 2 – yes 3 – yes 3a – no 5 – no 6 – yes 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 0.05 0.03 0.06 0.33 0.03 0.14 0.20

Table 14
Adherence to properties and similarity values of [31].

Graph-edit distance by high-level change operations [31]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – yes 5 – yes 6 – no 7 – n/a 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 0.79 0.79 0.87 0.33 0.93 0.93

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167158
transforming V0 into V1, we have to add four new connectors and
the respective edges and to transform V0 into V2, we have to
remove the XOR connectors and insert OR connectors. The
resulting similarity values are shown in Table 13.

Discussion: Kunze and Weske show that their distance measure
fulfils Properties 1-4, i.e. it is a metric. This allows storing a set of
models in a repository organized as a metric tree. For searching a
model that is similar to a given query model, it is not necessary to
compare the query model with each model from the repository.
The main benefit from the paper by Kunze and Weske is their
description of the indexing approach based on metric trees which
leads to a remarkable improvement of the search for similar
models within a model repository.

6.2.4. Graph-edit distance by high-level change operations

Li et al. [31] present an approach to calculate similarity between
process models based on so-called high level change operations.
They identify different types of high level change operations such
as inserting an activity between existing activities, deleting an
activity from the model, moving an activity from its original
position to another one, and replacing an activity. A high-level
change operation encapsulates a number of primitive graph-based
operations (deleting an edge, inserting a node etc.). The authors
state that by constructing a PM using high level change operations
only, it can be guaranteed that the PM is sound. Unfortunately, the
paper [31] does not explicitly specify which high-level change
operations are supported by the approach.

A distance measure dist(M0, M1) is defined in [31] as the
minimal number of high-level change operations that is necessary
to transform model M0 = (N0, E0) into model M1 = (N1, E1). A
corresponding similarity measure is introduced as sim(M0,
M1) = 1 	 (dist(M0, M1)/# N0 + # N1 	 # (N0 \ N1)).

Calculation settings and results: For our calculations, we referred
to the set of high-level change operations described in [19]. Table
14 shows the similarity between V0 and the other PMs as well as
the adherence of the measure proposed by Li et al. to the properties
given in Section 3. We identified the necessary amount of change
operations by hand. For example, to transform V0 into V2 we have
to change the types of the four connectors from XOR to OR. Since
we also take start and stop events into account, sim(V0, V2) = 1 	 (4/
(15 + 15 	 11)). The other similarity values are calculated analo-
gously.

Discussion: The similarity measure based on high-level change
operations has been developed in the context of the process-aware
information system ADEPT [32]. This framework allows to
construct sound PMs by starting from an empty model and
repeatedly applying high-level change operations. In this context,
the question about the difference between model variants V0 and
V1 is not relevant, because the construction algorithm would
ensure that only one of the models would occur in practice. A
remarkable property of this measure is that when calculating
sim(V0, V6) and sim(V0, V7), we have to regard only one high-level
change operation. This is different from other similarity measures
based on graph edit distances that we have discussed so far.

6.2.5. Tree edit distance between PMs represented as trees

In [33], Bae et al. transform a PM into an ordered tree. A
sequential PM (without any splits and joins) would become a tree
of depth one; all activities would be leafs that are children of the
root node. A split node in the PM would correspond to a node in the
tree which is parent of several subtrees which correspond to the
outgoing arcs of this split. After translating a PM into a tree this
way, algorithms for comparing trees [34] are used.

Calculation settings and results: Since the original paper does not
describe whether Bae et al. distinguish between different
connector types, we transform our models V0, . . ., V7 into their
graph representation using method 1 from Fig. 4. Therefore,
information about connector types gets lost resulting in sim(V0,
V1) = 1 and sim(V0, V2) = 1, too as can be seen in Table 15. By taking
connectors into account, the similarity between V0 and V1 and V2

respectively would be slightly lower.
Discussion: The approach described in [33] ignores loops in a PM

which is a severe limitation. We cannot agree to the statement
made in [33] that ‘‘cycles are not used in the distance measure
because the cycle does not affect the structure of a process’’.
Additional research would be necessary on extending tree-based
similarity measures to the more general case of expressing PMs
with loops as trees (preliminaries are discussed in [35,36]).

6.2.6. Edit distance between reduced models

Facilitating queries on process model repositories is in the focus
of the approach of Lu and Sadiq in [37]. A query is represented as a
partial process model having the desired process structure, e.g. the
order of activities. Given a query model M0 = (N0, E0) and a process
model M1 = (N1, E1) with the sets A0 � N0 and A1 � N1 of activities,
the mapping map : A0! A1 is established by label equivalence. The
approach is limited by the assumption that A0 � A1.

Similar processes can be in either of two relations with each
other. M1 is equivalent to M0 when A0 = A1 and E0 = E1. M1 is
subsumed by M0 when A0 � A1 and the order of activities in M0 is
preserved in M1. If models are not in any of those relations, they are
not regarded as similar to each other.

To identify the relations it is attempted to transform M1 into the
query graph M0 using graph reduction rules. The reduction rules
can be found in [38]. Simply stated, the reduction first removes
activities from M1 that are not contained in the query graph M0.
After these activities are removed, edges that are not required for
statements about the order of activities are removed, too.
Eventually, M1 will be transformed into a reduced model
Mred

1 ¼ ðNred
1 ; Ered

1 Þ.

Table 15
Adherence to properties and similarity values of [33].

Tree edit distance between PMs represented as trees [33]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.08 0.13 0.06 0.14 0.11

Table 16
Adherence to properties and similarity values of [37].

Edit distance between reduced models [37]

Adherence to property . . . 1 – yes 2 – no 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 1.00 1.00 0.00 0.82 0.82

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 159
A similarity metric is defined as simðM0; M1Þ ¼ #Ered
1
\ E0

#Ered
1

.

Calculation settings and results: To calculate similarity between
PMs according to the approach presented by Lu and Sadiq, we make
use of the algorithm SELECTIVE_REDUCE presented in [38]. This
algorithm only distinguishes between split and join connectors
regardless of the specific connector types (e.g. AND or XOR).

Discussion: The approach of Lu and Sadiq focuses solely on
structural similarity between process models based on the order of
activities. As can be seen in Table 16, we have sim(V0, V1) = 1 and
sim(V0, V2) = 1. This is consistent with the algorithm, since it does
not distinguish between connector types and unnecessary con-
nectors that do not change the possible order of activities are
removed during transformation.

Table 16 also shows that models V3 and V4 get a similarity score
of 1 when compared to model V0. This is straightforward, since
these variants do not change the order of activities. This behaviour
is motivated by the goal of the measure as it is applied during
search in process repositories. However, a drawback that cannot be
ignored is that the measure of Lu and Sadiq does not take the
similarity of activities into account and only counts the amount of
common edges.

6.3. Causal dependencies between activities

6.3.1. Dependency graph comparison

Bae et al. [39,40] build a so-called ‘‘dependency graph’’ for a PM.
The activities of the PM become the nodes in the dependency
graph. In the dependency graph, there is an arc between two
activities if one activity directly depends on data that have to be
produced by another activity, i.e. if one activity is the direct
predecessor of another one. For the dependency graph, it does not
make a difference which type of connector (AND, XOR, inclusive
OR) is located between activities. As an example, the dependency
graph of V0 (which coincides with the dependency graphs of V1 and
V2) is shown as the topmost graph in Fig. 4 on page 17.

The measure that has been suggested in [39,40] for comparing
two dependency graphs ðN0

D; E0
DÞ and ðN1

D; E1
DÞ is defined as

#ðE0
DnE1

DÞ [ðE1
DnE0

DÞ, i.e. the number of arcs that exist in one
dependency graph, but not in the other one. This way, the
(similarity-related) distance between the graphs is measured.

The fact that there is no possibility to deal with the semantic
meaning of the different types of connectors clearly limits the
applicability of this approach. Another shortcoming is illustrated
by model variant V3 (Fig. 3(d)): By adding the activities A, B, C and D
into model V0, we destroyed the majority of ‘‘direct precedence’’
relations. Therefore, the dependency graphs of V0 and V3 have only
one edge (5,6) in common, and the distance measure is equal to the
number of all but one edges in both dependency graphs (i.e.
11þ15=26). On the other hand, the distance measure between V0
and V5 (whose dependency graphs have two common edges) is
10þ6=16 only, which does not meet the intuitive expectation.

In [41], Jung et al. improve the approach with the aim to avoid
the shortcomings mentioned above. At first, they calculate the
execution probability of each activity. If there is no additional
information (for example from process logs), the probability of an
activity that follows an XOR-split with n outgoing arcs is assumed
to be 1

n, and the probability of an activity that follows an OR-split is
assumed to be 1

2 regardless of the number of outgoing arcs (which,
of course, is disputable). The examples in [41] show only the
calculation of execution probabilities for very simple PMs with a
nesting level of at most one and without loops. The general case is
not described in [41], although a generalization does not seem to
be trivial. For comparing two PMs with the activity sets A0 and A1,
two vectors are calculated for each model: The activity vector
includes the execution probabilities of each activity in A0 [A1. If a
model does not include one of these activities, its execution
probability is set to 0. The transition vector contains a value for
each pair of activities from (A0 [A1) � (A0 [A1). Without loss of
generality, we assume that we want to calculate the activity vector
for model M0 which has the activity set A0. The value of the
transition vector component that corresponds to the pair of
activities (aI, aII) is 0 unless activity aI precedes activity aII in some
trace of M0. Otherwise it is the product of the execution
probabilities of aI and aII and the reciprocal of their distance (i.e.
the least number of arcs between aI and aII in the graph M0). For
example, the activity vector av0

of PM M0 in Fig. 3(a) is as follows:

av0
¼ 1 ¼ 1; 2 ¼ 1

3
; 3 ¼ 1

3
; 4 ¼ 1

3
; 5 ¼ 1; 6 ¼ 1; 7 ¼ 1

2
; 8 ¼ 1

2
; 9 ¼ 1

� �

And respectively, the distance vector d1
v0

and transition vector
t1
v0

for activity 1 from M0:

d1
v0
¼ ð2 ¼ 1; 3 ¼ 1; 4 ¼ 1; 5 ¼ 2; 6 ¼ 3; 7 ¼ 4; 8 ¼ 4; 9 ¼ 5Þ

t1
v0
¼ 2 ¼ 1

3
; 3 ¼ 1

3
; 4 ¼ 1

3
; 5 ¼ 1

2
; 6 ¼ 1

3
; 7 ¼ 1

8
; 8 ¼ 1

8
; 9 ¼ 1

5

� �

A similarity measure is defined as the cosine of the angle
between the activity vector of M0 and the activity vector of M1, and
a second similarity measure as the cosine of the angle between
both transition vectors.

Calculation settings and results: The results of the similarity
calculations and the adherence to the properties given in Section 3
for the approach presented in [39] is shown in Table 17. As stated in
the description of the measure, dependency graphs do not
distinguish between different connector types. Thus, to calculate

Table 18
Adherence to properties and similarity values of [41].

Dependency graph comparison [41]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 0.99 0.56 0.85 0.6 0.97 0.82

Table 17
Adherence to properties and similarity values of [39,40].

Dependency graph comparison [39,40]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – yes

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.04 0.33 0.06 0.09 0.10

Fig. 6. The sets of traces of those models are disjoint.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167160
similarity, we transform a given PM into its graph representation
using approximation method 1 from Fig. 4.

To automatically establish the execution probabilities of
activities for the approach of Jung et al., we use the so-called
branch-water algorithm presented in [42]. As described above,
activities following an OR-split are assigned with a probability of 1

2,
activities following an AND-split with a probability of 1, and
activities following an XOR-split with a probability of 1

n where n is
the amount of outgoing arcs. Since Jung et al. do not describe how
cycles should be handled, we remove these cycles from our PMs (as
this is a necessary requirement for the branch-water algorithm).
On the assumption that processes do not run into deadlocks, cycles
have no influence on the execution probabilities of individual
activities. These preparations result in the similarity values shown
in Table 18.

Discussion: Since the approach of Bae et al. in [39] does not
distinguish between connectors, we have sim(V0, V1) = 1 and
sim(V0, V2) = 1. Furthermore, when an additional activity is
introduced into an existing sequence A ! B ! C ! D, a modified
model with a sequence A ! B ! C ! X ! D is regarded as more
similar to the original model than a modified model with a
sequence A ! B ! X ! C ! D.

Besides challenges in handling cycles, the measure of Jung et al.
has additional undesirable properties: Changing an XOR-split with
two outgoing arcs into an OR-split does not change the activity and
transition vector (though [41] mitigates this effect in presence of
execution logs). Furthermore, the consideration of execution
probabilities weights a change of an activity within an AND-
control block as ‘‘more important’’ than a change of an activity
within an XOR-control block.

6.3.2. TAR-similarity

In [15], Zha et al. discuss a naive similarity measure based on
the set of traces S(M0) and S(M1).This measure, which they call
reference similarity, is defined as sim(M0, M1) = (#(TAR0 \ TAR1))/
(#(TAR0 [TAR1)). Zha et al. name two severe problems of this
measure: First, it is not defined for models with loops, because
their sets of traces become infinite. And second, it is too rigid as for
example the sets of traces of the models shown in Fig. 6 do not
share any common trace, i.e. their similarity would be 0.

For these reasons, Zha et al. suggest another measure called
TAR-similarity. It is based on the transition adjacency relation
(TAR). This relation TAR is defined such that a pair (AI, AII) of two
activities belongs to TAR if and only if the model has a trace of the
form h . . . , AI, AII, . . . i, i.e. activity AI is directly followed by activity
AII. Let TAR0 be the TAR-relation for model M0 and TAR1 be the TAR-
relation for M1. The TAR similarity between M0 and M1 is defined as
sim(M0, M1) = (# (TAR0 \ TAR1)/# (TAR0 [TAR1)) (by using this
simple notation, we assume that map is the identity). Because
the number of activities in M0 and M1 is finite, TAR0 and TAR1 are
finite as well, and the measure is defined for all models M0 and M1.
In [15], it was shown that the distance measure that is derived from
the TAR similarity is a distance function in a metric space.

Calculation settings and results: Table 19 shows the resulting
similarity values for the approach presented in [15]. To establish
TAR sets of PMs having only XOR connectors, it is sufficient to
transform these PMs into their graph representation and to use
edges between activities. However, if a model contains AND or OR
connectors as well, it is necessary to calculate the whole set of
possible traces and to extract the TAR sets from these traces.

Discussion: The TAR similarity can be seen as an improvement of
the measure proposed by Bae et al. [39,40] (see Section 6.3.1),
because it distinguishes between different types of splits and joins.
However, just as the measure by Bae et al. it has a handicap that can
be illustrated by a comparison of the models V0, V3 and V5: The
TAR-sets of V0 and V3 have only the element (5,6) in common, while
the TAR-sets of V0 and V5 have two elements in common ((6,5) and
(1,4)). So we have sim(V0, V5) > sim(V0, V3), which would not be the
expected result. The reason for such results lies in the fact that the
TAR relation contains only information about direct precedence. It
should be appealing to include information about the transitive
closure of TAR into the calculation of similarity measures. Instead
of analysing information such as ‘‘activity AI can be followed
directly by activity AII’’, we would also take into account
information such as: ‘‘After executing activity AI, it will be possible
to execute AII later’’. Approaches which use this kind of information
are discussed in the following subsections.

6.3.3. Causal behavioural profiles

Weidlich et al. [43,44] capture the behaviour of a PM by
examining dependencies between the execution of an activity AI

and the execution of activity AII. Such dependencies are expressed
by means of four relations:

- AI and AII are in strict order relation, if and only if it is possible that
AI is executed before AII is executed, but it is not possible that AII is
executed before AI is executed (i.e., there is a trace
h . . . AI . . . AII . . . i but no trace h . . . AII . . . AI . . . i

- AI and AII are in exclusiveness relation, if and only if it is not
possible that both AI and AII are executed in the same process
instance.

Table 19
Adherence to properties and similarity values of [15].

Reference similarity [15]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – yes 5 – yes 6 – no 7 – yes 8 – no

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

not defined (V0 has a loop!)

TAR-similarity [15]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – no

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 0.60 0.04 0.85 0.11 0.41 0.47

Fig. 7. Two models with different sets of traces which have the same causal behavioural profile.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 161
- AI and AII are in observation concurrency relation (alternatively
called ‘‘interleaving order relation’’ in [43]), if and only if it is
possible that AI is executed before AII is executed, and it is also
possible that AII is executed before AI is executed.

- AI and AII are in co-occurrence relation, if and only if in every process
instance for which AI is executed, AII has to be executed as well.

The set of these four relations is called causal behavioural
profile.

For comparing the behaviour modelled by a PM M0 and the
behaviour modelled by another PM M1, at first a mapping between
‘‘corresponding’’ activities in M0 and activities in M1 is established.
This mapping is expressed by means of a correspondence relation

. Other than the function map discussed in Section 2.3, the
correspondence relation
 has to be neither injective nor
functional, i.e. one node in M0 can correspond to multiple nodes
in M1 and vice versa.

Weidlich et al. define a similarity metric (called degree of
consistency in [43,44]) between M0 and M1 based on the following
idea: For each pair of activities in one model for which there are
‘‘corresponding’’ activities in the other model (according to
), it is
checked whether these pairs share the same relations as defined
above (strict order, exclusiveness, observation concurrency and co-
occurrence).

Formally, let A0 � N0 and A1 � N1 be the sets of activities in M0

and M1 resp. Then A
0 is defined as {a 2 A0 : 9 b 2 A1 such that
a
 b}, and A
1 is defined as {b 2 A1 : 9 a 2 A0 such that a
 b}. Note
that because 1:n mappings are allowed, #A
0 is not necessarily
equal to #A
1 . Furthermore, the set of consistent pairs C0� A
0 �
A
0 is defined as all those pairs ðx0; y0Þ 2 A
0 � A
0 for which for all
pairs ðx1; y1Þ 2 A
1 � A
1 with x0
 x1 and y0
 y1, x0 and y0 are in the
same relations (strict order, exclusiveness, observation concurren-
cy and co-occurrence) as their counterparts x1 and y1. C1� A
1 �
A
1 is defined analogously.

Using this formalisation, a similarity measure (called consistency

metric) can be expressed as simðM0; M1Þ ¼ #C0þ#C1
#ðA

0
�A

0
Þþ#ðA

1
�A

1
Þ.

Calculation settings and results: Table 20 shows the similarity
values for the approach of Weidlich et al. with taking strict order
Table 20
Adherence to properties and similarity values of [43].

Causal behavioural profiles [43]

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 1.00 0.93
relations, exclusiveness relations, co-occurrence relations, and
interleaving order relations into account. In [44], an efficient
algorithm for calculating a process models causal behavioural
profile is given. The approach works for sound free-choice Petri
nets, i.e. it cannot be used for comparing unsound business process
models or models containing OR-splits. Therefore, we had to
establish the causal behavioural profile for model variant V2

manually according to the description above. No further adapta-
tions were necessary to calculate the similarity values.

Discussion: As shown in [43], the consistency metric can be
used for searching pairs of models that can be integrated together
into one larger model in order to reduce redundancy in a large
model collection. Another important use case (discussed in [43])
is consistency checking between a PM used as a specification and
a workflow model used as an implementation. Often, the
granularity of the specification differs from the granularity of
the implementation. Therefore, for this use case it is a reasonable
approach to regard only those activities that have a counterpart
in the other model. The others (that do not appear in the pairs of
the
 relation) do not contribute to the calculation of the
consistency metric. For this reason, the consistency metric
between the models in Fig. 7 would be the same for each pair of
models (assuming that a
 b if and only if a and b have the same
label). For other purposes than comparing a specification and an
implementation, this could be an undesirable property of this
measure.

Note that from the fact two models M0 and M1 have the same
causal behavioural profile, it does not follow that S(M0) = S(M1), as
can be seen from the example in Fig. 7.

6.3.4. Causal footprints

Dijkman et al. [4] propose to use causal footprints for capturing
the precedence relations between activities in a PM. A causal
footprint of a PM with the set of activities A is a pair (Llb, Lla). The
first member of this tuple, Llb � (} (A) � A) is called the set of look-
back links. A pair (S, a) belongs to Llb if and only if each occurrence
of activity a in a trace of the PM must be preceded by the
occurrence of an activity that is contained in the set S. For example,
for model V0 in Fig. 3(a), we find:
3a – no 5 – yes 6 – no 7 – no 8 – yes

V3 V4 V5 V6 V7

0.63 0.93 0.22 0.98 0.89

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167162
- ({1}, 6) 2 Llb (every occurrence of 6 must be preceded by the
occurrence of 1),

- ({2, 3, 4}, 6) 2 Llb (every occurrence of 6 must be preceded by the
occurrence of one activity from the set {2, 3, 4}

According to the definition of Llb, we also find that

- ({1, 9}, 6) 2 Llb (every occurrence of 6 must be preceded by the
occurrence of one activity from the set {1, 9}; the presence of ‘‘9’’
is in fact irrelevant, but allowed according to the definition).

Analogously, the set Lla of look-ahead links is defined such that
(A � } (A)) � (a, S) 2 Lla if and only if each occurrence of activity a in
a trace of the PM must be followed by an occurrence of an activity
that is contained in the set S.

For measuring the similarity of two PMs, a similarity measure
for their causal footprints is calculated. For this purpose, the causal
footprints are regarded as documents in a document vector space
[45], a concept that is widely used in the field of information
filtering and information retrieval. Causal footprints (the ‘‘docu-
ments’’) are represented as vectors of index terms. Let’s assume
that we have to calculate the similarity between the causal
footprints of two models M0 = (N0, E0) and M1 = (N1, E1) whose sets
of look-ahead links be L

M0
la and L

M1
la and whose sets of look-back

links be L
M0
lb and L

M1
lb .

The set of index terms is defined as Q ¼ N0 [N1 [L
M0
la [

L
M1
la [L

M0
lb [L

M1
lb , i.e. Q contains all nodes as well as all look-ahead

and look-back link of both M0 and M1. Let l : Q ! N be an indexing
function that assigns a running number to each index term.

The model Mi (i 2 {0, 1}) is represented as a vector
~gi ¼ ðgi

1; gi
2; . . . ; gi

#Q
Þ. In [46], its coordinates are defined as:

gi
lðtÞ ¼

0 if t =2 Ni [LMi

la [LMi

lb

1 if t 2 Ni

1

2lenðtÞ 	 1
if t 2 LMi

la [LMi

lb

8>>>><
>>>>:

where len(t) is the number of set elements in the look-ahead
or look-back link. For example, len(({1}, 12)) = # {1} = 1 and
len(({9, 10, 11}, 12)) = # {9, 10, 11} = 3. This way, a greater weight
is given to the look-back link ({1}, 12), following the rationale that
links with fewer activities in the set are more informative and
therefore more important for the comparison. The similarity of M0

and M1 is calculated as the cosine of the angle between the
corresponding vectors ~g0 and ~g1:

simðM0; M1Þ ¼
~g0 � ~g1

~g0 � ~g1
:

It is easy to see that sim(M0, M1) = 0 unless M0 and M1 share some
common nodes. This means that the above formulae do not explicitly
refertothemappingfunctionmap; it issimplyassumed thatmap is the
identity. In [4], the coordinates are calculated in a more sophisticated
manner. It is assumed that for generating a mapping function map, a
similarity measure corr : N0� N1! [0, 1] that compares nodes in M0

with nodes in M1 has been calculated in a preliminary step (cf.
Section 6.1.2). The values calculated by this similarity function are
preserved when the coordinates of the vectors are calculated. For the
purpose of comparing model M0 with model M1, the model M0 is
represented as a vector ~g0 ¼ ðg0

1 ; g0
2 ; . . . ; g0

#Q
Þ with

g0
lðtÞ ¼

corrðt; mapðtÞÞ if t 2 N0 and mapðtÞ is defined

corrða; mapðaÞÞ
2lenðtÞ 	 1

if LM0

la 3 t ¼ ða; MÞ or LM0

lb 3 t ¼ ðM; aÞ

0 otherwise

8>>>>><
>>>>>:
Calculation settings and results: Using the reference implemen-
tation of Causal Footprints provided as a plug-in to the ProM
framework [21], we calculated the similarity values shown in Table
21.

Discussion: The advantage of the latter approach is that
information about the similarity of nodes (in particular label
similarity) that is included in the measure corr will be preserved in
the similarity measure sim that compares the models. This way, for
the models shown in Fig. 2, the desirable relation s(M0, M2) > s(M0,
M1) can be achieved (if the function corr that compares the activity
labels is good enough), i.e. Property 6 holds.

We see the most remarkable disadvantage of the causal
footprints in the form described in [46,4] in the fact that Lla and
Llb contain a very large number of ‘‘useless’’ elements. For example,
for model V0 in Fig. 3(a), the look-back links ({1}, 6) and ({2, 3, 4}, 6)
contain substantial information about the relationship between
activity 6 and other activities. However, Llb contains additional
pairs such as no less than 29 	 1 pairs ({1} [S, 6) for each subset S

of the set of nodes N. Constructing the vectors in such a high
dimension can become computationally inefficient. A straightfor-
ward improvement of the approach would be to consider only
look-back/look-ahead links for which no ‘‘smaller’’ look-back/look-
ahead link exists. This means that for look-back links, it should be
required that (S, a) 2 Llb implies that there is no S0 � S with (S0,
a) 2 Llb. An analogous requirement should be set for Lla.

Another, less severe, disadvantage lies in the fact that in the
published algorithm for calculating causal footprints OR-connec-
tors are dealt with in the same way as XOR-connectors. Hence, the
change between model variants V0 and V2 will remain undetected;
sim(V0, V2) is 1. A possible solution of this problem would be to
consider other types of look-ahead/look-back links such as L0la as
the set of all pairs (a, S) such that every execution of activity a can

be followed by a state where all activities in S are running in
parallel.

6.3.5. String edit distance of sets of traces

In [47] Wombacher and Rozie compare several approaches to
calculate the similarity of process models based on a comparison of
their sets of traces. First, they analyse the Levenshtein string edit
distance [23] between traces. However, a set of traces of process
models with loops is infinite. Thus, this simple idea is not
applicable.

To handle infinite traces as well, [47] presents a second
approach based on n-grams. These n-grams are defined as sub-
traces of length n.

For example, possible traces from process variant V0 are h1, 2, 3,
4, 5, 6, 7, 8, 9i and h1, 2, 3, 4, 5, 6, 5, 6, 5, 6, 5, 6, 7, 8, 9i. In a trace of
V0, activities 5 and 6 can be repeated arbitrarily often. A bigram
representation of the traces combines tuples of pairs and is { 1, 12,
23, 34, 56, 65, 67, 78, 89, 9 } where symbolises the start and end
of a trace respectively. From the example, we can see that even
infinite traces introduced by cycles can be represented using a
finite set of n-grams [48].

Analogously to the simple approach, the distance between
processes is calculated using the string edit distance. But instead of
analysing specific traces only their n-gram-representation is taken
into account.

Calculation settings and results: Wombacher and Rozie do not
give any information on how to calculate the edit distance.
Therefore, we calculate the minimum possible edit distances
between two bigram representations. Since we only have one-
letter activities, the edit distance between bigrams (a1, b1) and (a2,
b2) is either 0 (map(a1) = a2 and map(b1) = b2), 1 (map(a1) = a2 xor
map(b1) = b2), or 2 (neither a1 nor b1 are mapped to a2 or b2).

Discussion: Using a bigram representation of process models is
similar to the TAR-approach (see Section 6.3.2). As stated there, it

Table 21
Adherence to properties and similarity values of [4].

Causal footprints [4]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – no

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 1.00 0.45 0.80 0.59 0.97 0.84

Table 22
Adherence to properties and similarity values of [47].

Sets of traces as n-grams [47]

Adherence to property . . . 1 – yes 2 – no 3 – no 3a – no 5 – no 6 – no 7 – yes 8 – no

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 0.06 0.05 0.33 0.06 0.17 0.14

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 163
takes only information about direct precedence of activities into
account. Therefore, the similarity values for (V0, V2) and (V0, V3) are
very low in comparison with the other values shown in Table 22.

6.4. Approaches based on the sets of traces

6.4.1. Longest common subsequence of traces

To calculate compliance and maturity of an actual process
model to a reference model, Gerke et al. [49] compare the sets of
traces of both models. In this context, compliance is the extent to
which a process model adheres to ordering rules of activities (e.g.
activity A must always be executed before activity B). Maturity
measures to what extent the process model recalls activities of the
reference model. In order to avoid problems with infinite traces
and infinite sets of traces, it is assumed that the possible
executions are restricted by the constraint that there is a maximum
number of possible repetitions of each loop in a model.

Gerke et al. use a non-injective mapping function
map : N0! N1. By allowing to map more than one element of N0

to the same element of N1, granularity differences between two
models can be handled. Gerke et al. define the compliance degree
cdtrace and the maturity degree mdtrace of two traces s0 and s1 based
on the length of their longest common subsequence (see
Section 2.2) as:

cdtraceðs1; s0Þ ¼ lenðlcsðs0; s1ÞÞ
#s1

mdtraceðs1; s0Þ ¼ lenðlcsðs0; s1ÞÞ
#s0

(8)

The overall compliance and maturity degree between two
models M0 and M1 are calculated by summing up the maximum
compliance and maturity degree of traces.

cdðM1; M0Þ ¼
P

s1 2 SðM1Þmaxs0 2 SðM0Þðcdtraceðs1; s0ÞÞ
#SðM1Þ

mdðM1; M0Þ ¼
P

s0 2 SðM0Þmaxs1 2 SðM1Þðcdtraceðs1; s0ÞÞ
#SðM0Þ

(9)

Calculation settings and results: In our example calculations, we
use the arithmetic mean between compliance degree cd(M1, M0)
Table 23
Adherence to properties and similarity values of [49].

Longest common subsequence of traces [49] (with number of loop cycles=1)

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 1.00 0.86
and maturity degree md(M1, M0) as similarity measure. Addition-
ally, we restricted the amount of iterations to 1. Taking more
iterations into account would result in slightly higher similarity
values between V0 and the other models with iterations (V1, V2, V3,
V6, and V7). Accordingly, similarity values between V0 and V4 and V5

would be slightly lower. The results of our calculations can be seen
in Table 23.

Discussion: By allowing non-injective map functions, the
approach would lead to a similarity measure sim for which for
our example model variants sim(V0, V3) = 1 would hold if map is
constructed accordingly (we could map 1 to (1, A), 5 to (B, 5), 6 to
(6, C), and 9 to (D, 9)). [49] describes only the case that one activity
in a reference model M0 corresponds to more than one activity in
M1. The more general case that n activities in M0 correspond to m

activities in M1 is not discussed, i.e. sim(V3, V0) would not be
defined. It is, however, not difficult to generalize the approach in
order to deal with such cases as well.

Above, we have described only a ‘‘general’’ similarity measure
that compares two models as a whole. The approach described in
[49] supports two more aspects that are important for judging
about the compliance of a model with a given reference model:
First, it allows that only a subset of the reference model is taken
into consideration for the comparison. And second, it is possible to
select subsets of activities in the reference model for which the
order between them is regarded as unimportant for the compari-
son. Both aspects are useful for the purpose of measuring the
compliance of a PM with a given reference model (which is the aim
of Gerke et al. in [49]), although it should be noted that
disregarding the order between some activities has a great
negative influence on the computational complexity.

In order to compare two models M0 and M1, both sets of traces
S(M0) and S(M1) have to be calculated, and each s0 2 S(M0) has to
be compared with each s1 2 S(M1). For models with large sets of
traces, this would not be feasible, i.e. we have to observe a violation
of Property 8.

6.4.2. Similarity based on principal transition sequences

In order to deal with the problems of infinite traces and infinite
sets of traces, Wang et al. [50] limit the (sub)traces to consider in a
comparison between PMs as follows: A trace that does not contain
any activity more than once is considered as a whole. A trace s that
3a – no 5 – yes 6 – no 7 – yes 8 – no

V3 V4 V5 V6 V7

0.79 1.00 0.43 0.93 0.90

Table 24
Adherence to properties and similarity values of [50].

Similarity based on principal transition sequences [50]

Adherence to property . . . 1 – yes 2 – yes 3 – no 3a – no 5 – yes 6 – no 7 – yes 8 – no

Similarity between V0 and . . . V0 V1 V2 V3 V4 V5 V6 V7

1.00 1.00 0.83 0.61 0.84 0.20 0.85 0.83

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167164
contains an activity x more than once has the form s = hsprefix, x,
srepeatable, x, . . . i, where sprefix and srepeatable are sub-traces of s. In
such a case, the sub-traces sprefix and srepeatable are used for the
comparison instead of the complete trace s. In [50] it has been
shown that for each PM the number of (sub)traces derived in this
way is finite.

The similarity between two (sub)traces sI and sII is defined
based on the longest common subsequence as

simtraceðsI; sIIÞ ¼ lenðlcsðsI ;sIIÞÞ
maxðlenðsIÞ;lenðsIIÞÞ

. Based on this formula, the

similarity between two PMs M0 and M1 with the sets of (sub)traces
T0 and T1 selected according to the above description is defined
as

simðM0; M1Þ ¼

P
s 2 T0

maxs0 2 T1
simtraceðs; s0Þ

þ
P

s0 2 T1
maxs 2 T0

simtraceðs0; sÞ
#T0 þ #T1

(10)

Calculation settings and results: The values for the similarity
between V0 and the rest of our example variants according to [50]
is shown in Table 24.

Discussion: The approach from Wang et al. allows to calculate a
similarity measure based on sets of traces even between PMs with
an infinite sets of traces. However, the generation of the sub-traces
to compare still requires a symbolic exploration of the sets of
traces, i.e. Property 8 is not fulfilled.

6.4.3. Similarity of process models based on observed behaviour

De Medeiros et al. [51] present a method to calculate the
similarity of PMs that is based on comparing traces obtained from
actual process executions or by simulation. They point out that
comparing the sets of traces directly leads to problems when a set
of traces becomes infinite and that such a comparison would not
take into account the real world application of processes in practice
where certain traces occur more frequently than others. It could be
added that dealing with the whole sets of traces could become
computationally inefficient if the sets of traces are very large.

De Medeiros et al. define a log L as a set of traces of a PM
together with their occurrence frequency L(s). The frequency of a
trace is used to put more importance to those traces that were
observed more frequently.

A partial trace p(s, k) of a trace s represents the first k activities
in this trace. The set of enabled activities of a model M0 (denoted as
e(M0, p(s, k))) contains all activities that can be executed after the
execution of a partial trace p(s, k), i.e. an activity x belongs to e(M0,
p(s, k)) if and only if there is a trace that has the form hp(s, k), x, . . . i

De Medeiros et al. define two similarity measures: The precision

measure shows the extent to which dependencies between
activities in the second model can be found in the first model as
well. To simplify calculation we first define the precision factor p for
Table 25
Adherence to properties and similarity values of [51].

Similarity based on traces [51] (taking S(M0) as log)

Adherence to property . . . 1 – yes 2 – yes 3 – no

Similarity between V0 and . . . V0 V1 V2

1.00 1.00 0.90
two models M0 and M1 based on a trace s.

pðM0; M1; sÞ ¼
X#s	1

i¼0

#ðeðM0; pðs; iÞÞ \ eðM1; pðs; iÞÞÞ
#eðM1; pðs; iÞÞ (11)

Using this factor it is now possible to define the similarity
measure ‘‘precision’’ between the models M0 and M1 as

simprecisionðM0; M1Þ ¼
P

s 2 L
LðsÞ
#s � pðM0; M1; sÞ

#L
(12)

A second measure, the recall, shows the extent to which
dependencies between activities of the first model can be found in
the second model as well. It is defined in the same way as the
precision measure except the recall factor is divided by the number
of enabled activities in model M0 instead of the number of enabled
activities in M1.

Calculation settings and results: We calculate the similarity of
two process models as the arithmetic mean between recall and
precision. Since logs were not available in our study, we use the
original process models without executing the iteration. For model
V0 we have a set L of six logs:

L ¼ f125679; 125689; 135679; 135689; 145679; 145689g

This leads to the similarity values shown in Table 25. If we would
have executed the iteration once or more than once this would
have resulted in slightly lower similarity values between models
V0 and V4 and V5 and in slightly higher similarity values for the
other models.

Discussion: The approach of de Medeiros et al. uses logs of
executed PMs as input. Therefore, it is only applicable if
information about process execution exists. If no logs are available,
it would be possible to compute logs by randomly simulating the
executions of a PM. Furthermore, the authors themselves state that
the approach is limited to comparing two models with respect to a

given log. For example, if subparts of a model are never executed,
they are not in the log and therefore, differences in these subparts
can not be identified. For this reason, the authors emphasise that
the logs must reflect typical behaviours of the models.

6.5. Similarity of structural complexity metrics

In this subsection, we shortly mention another approach for
defining similarity between PMs that will not be discussed in
detail, because it follows a different understanding of the concept
of similarity.

Melcher and Seese [52] aim to find structurally similar PMs
within model collections by comparing the values of several
complexity metrics for the PMs. The models are clustered such that
3a – no 5 – yes 6 – no 7 – yes 8 – yes

V3 V4 V5 V6 V7

0.33 0.83 0.22 0.72 0.65

Table 26
Similarity measures for our example models.

Similarity between V0 and . . .

V1 V2 V3 V4 V5 V6 V7

Measures based on the correspondence of nodes and edges (not taking into account the control flow)

Percentage of common activity names [22] 1.00 1.00 0.82 1.00 1.00 1.00 1.00

Label matching similarity [4] 1.00 1.00 0.82 1.00 1.00 1.00 1.00

Similarity of activity labels [6] 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Feature-based activity similarity [25] 1.00 1.00 0.82 1.00 1.00 1.00 1.00

Percentage of common nodes and edges [26] 1.00 1.00 0.40 0.95 0.58 0.76 0.79

Node- and link-based similarity [27] 0.60 0.63 0.48 0.58 0.63 0.59 0.56

Measures based on graph edit distances

Graph edit distance [4] 1.00 1.00 0.63 0.97 0.73 0.86 0.88

Graph edit distance [29] 0.05 0.04 0.20 0.33 0.03 0.33 0.17

Label similarity and graph edit distance [30] 0.81 1.00 0.83 0.96 0.62 0.92 0.94

Label similarity and graph edit distance [12] 0.05 0.03 0.06 0.33 0.03 0.14 0.20

Number of high-level change operations [31] 1.00 0.79 0.79 0.87 0.33 0.93 0.93

Comparing PMs represented as trees [33] 1.00 1.00 0.07 0.13 0.06 0.14 0.14

Edit distance between reduced models [33] 1.00 1.00 1.00 1.00 0.00 0.82 0.82

Measures that analyse causal dependencies between activities

Comparing dependency graphs [39,40] 1.00 1.00 0.04 0.33 0.06 0.09 0.10

Comparing dependency graphs [41] 1.00 0.99 0.56 0.85 0.60 0.97 0.82

Reference similarity [15] not defined (V0 has a loop!)

TAR-relationship [15] 1.00 0.60 0.04 0.85 0.11 0.41 0.47

Causal behavioural profiles [43] 1.00 0.93 0.63 0.93 0.22 0.98 0.89

Causal footprints [4] 1.00 1.00 0.45 0.80 0.59 0.97 0.84

Sets of traces as n-grams [47] 1.00 0.06 0.05 0.33 0.06 0.17 0.14

Measures that compare sets of traces or logs

Longest common subsequence of traces [49] 1.00 0.86 0.79 1.00 0.43 0.93 0.90

Similarity based on principal transition sequences [50] 1.00 0.83 0.61 0.84 0.20 0.85 0.83

Similarity based on traces [51] 1.00 0.90 0.33 0.83 0.22 0.72 0.65

Table 27
sim(V0, Vi) is represented by the darkness of the table cells.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 165
PMs with similar metrics values can be identified. While this could
be useful for gaining insights into the distribution of metric values,
it is not possible to draw conclusions about behavioural similarity
or relatedness among PMs. For this reason, the approach will not be
discussed here further.

7. Discussion

Table 26 shows the similarity values we have computed
between our example model V0 and its variants V1 . . . V7. For
measures that can be parametrised by attaching different weights
to factors, we used the most reasonable and simple parameters
(e.g. for a measure which is a weighted sum of three numbers,
every summand has a weight of 1

3). Some results do not comply
with the intuitive understanding of ‘‘PM similarity’’, for example
some measures have sim(V0, V3) < sim(V0, V5).

Table 27 allows a more visual comparison between the
similarity measures. For each measure, the darkness of a cell
represents the order of similarity that the similarity measure
computes between V0 and the model variant. We observe that
some measures based on graph-distance do not agree with the
majority of measures about the value of sim(V0, V1). Also, we can
see that the measures come to very different results about the
similarity between V0 and the models V4, V6 and V7. A rather
surprising observation is that there are measures that regard V5 as
more similar to V0 than at least one other model.

As stated in Section 4.2, similarity measures for PMs have been
proposed for a number of purposes. Our observations give some
first insights which measures are more useful than others for a
given purpose:

The measures discussed in Section 6.1 which do not take into
account the routing constructs in a PM are useful for finding related
models from a repository (and less useful for purposes that make
reference to the model behaviour). An interesting use case for such
rather simple measures has been suggested in [25]: A search for
related models can be used as a first step of a search in a large
repository. It helps to filter out unrelated models such that the
more precise (but also slower) algorithms can be applied to a small
subset of the original search space.

Another similarity measure not taking into account the routing
constructs is the measure suggested by Bae et al. [39]. The
approach is based on a ‘‘dependency graph’’ that documents the
precedence and causality relations between activities. Such an
approach is suitable for modelling languages such as IDEF0 [53]
which show this kind of relations but less useful for languages such

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167166
as BPMN that put focus on advanced control flow constructs as
well.

When models are compared with the aim of discovering
services or measuring conformance, approaches that consider the
actual behaviour of a process execution have to be used. Preference
should be given to the methods described in Section 6.3 that
exploit relationships between activities instead of requiring a
calculation of the whole sets of traces as some approaches
discussed in Section 6.4 do. The reason is that calculating the whole
set of traces of a model can demand large memory and processing
resources. It has to be noted that the approach based on causal
footprints (Section 6.3.4) in its current form is computationally
inefficient as well and cannot be recommended to be used in the
context of large PM repositories. Though we use the reference
implementation of the causal footprints, it takes about 5 seconds to
compute similarity between the eight process variants using our
ProM plugin. All other measures calculate these similarity values in
less than 1 second.

Processing speed can be less important if only two models have
to be compared, for example to measure conformance. In such
cases, using approaches that require to calculate the sets of traces
can be an option.

Some applications require to compare PMs that have been
designed on different levels of granularity. For example, this can be
the case if the conformance between a PM serving as a specification
and the actual implementation in a workflow system have to be
compared. In such cases, it is recommended to use a measure that
finds a similarity even between such models. In particular, the
approaches of Lu and Sadiq [38] (see Section 6.2.6), Weidlich et al.
[43] (see Section 6.3.3), Gerke et al. [49] (see Section 6.4.1) and
Grigori et al. [29] (see Section 6.2.1) support such use cases.

Although not extensively discussed in our article, it should be
noted that the quality of the mapping between the nodes (the
function map) has a significant contribution to the quality of a
similarity measure. In particular, regarding nodes as corresponding
to each other only if they have exactly the same label is reasonable
only in a few special application areas such as comparing models
that have been derived from the same template.

8. Conclusion

The aim of this survey was to discuss the different concepts for
defining similarity measures for PMs.

We elaborated a number of desirable properties for PM
similarity measures and analysed 23 similarity measures that
have been described in the literature with respect to those
properties. Also, we computed the similarity between example
models using the different similarity measures. The results show
that hardly a measure fulfils all desirable properties. Furthermore,
it can be seen that different similarity measures rank the similarity
between PMs very differently. We conclude that there is not a
single ‘‘perfect’’ similarity measure. Instead, we gave some
recommendations for the selection of an appropriate similarity
measure for different use cases.

We are not aware of any other work that aims to give a
comprehensive overview about existing PM similarity measures.
We hope that our article is a contribution that helps to improve
similarity measures and to promote their practical application.

References

[1] Gulla, J.A. Brasethvik,T. On the challenges of business modeling in large-scale
reengineering projects, in: IEEE International Conference on Requirements Engi-
neering, 2000, p. 17.

[2] Dumas, M. Garcı́a-Bañuelos, L. Dijkman,R. Similarity search of business process
models, IEEE Data Engineering Bulletin 32 (2009) 23–28.
[3] Z. Yan, R. Dijkman, P. Grefen, Business process model repositories—framework
and survey, Working Papers 292, Technische Universiteit Eindhoven, Eindhoven,
2009.

[4] Dijkman, R. Dumas, M. van Dongen, B. Käärik, R. Mendling,J. Similarity of business
process models: metrics and evaluation, Information Systems 36 (2011) 498–516.

[5] Weidlich, M. Dijkman, R.M. Mendling,J. The ICoP framework: identification of
correspondences between process models, in: Proceedings of the 22nd Interna-
tional Conference of Advanced Information Systems Engineering, CAiSE 2010,
Hammamet, Tunisia, vol. 6051 of LNCS, Springer, (2010), pp. 483–498.

[6] Ehrig, M. Koschmider, A. Oberweis,A. Measuring similarity between semantic
business process models, in: Proceedings of the Fourth Asia-Pacific Conference on
Conceptual modelling, vol. 67, 2007, pp. 71–80.

[7] Niemann, M. Siebenhaar, M. Eckert, J. Steinmetz,R. Process model analysis using
related cluster pairs, in: Proceedings of the 1st International Workshop Process in
the Large (IW-PL’10), Hoboken, NJ, September 2010, 2010.

[8] Object Management Group Business Process Model and Notation, Version 2.0,
2011.

[9] Bergroth, L. Hakonen, H. Raita,T. A survey of longest common subsequence
algorithms, in: Proceedings of the International Symposium on String Processing
and Information Retrieval, 2000, p. 39.

[10] Santini, S. Jain,R. Similarity measures, IEEE Transactions on Pattern Analysis and
Machine Intelligence 21 (1999) 871–883.

[11] Lin,D. An information-theoretic definition of similarity, in: Proceedings of the
15th International Conference on Machine Learning, 1998, pp. 296–304.

[12] Kunze, M. Weske,M. Metric trees for efficient similarity search in process model
repositories., in: Proceedings of the 1st International Workshop Process in the
Large (IW-PL’10), Hoboken, NJ, September 2010, 2010.

[13] Tversky,A. Features of similarity, Psychological Review 84 (1977) 327–352.
[14] Brocke, J.V. Simons, A. Niehaves, B. Riemer, K. Plattfaut, R. Cleven,A. Reconstruct-

ing the giant: on the importance of rigour in documenting the literature search
process., in: Proceedings of the 17th European Conference On Information
Systems, Verona, 2009, pp. 2206–2217.

[15] Zha, H. Wang, J. Wen, L. Wang, C. Sun,J. A workflow net similarity measure based
on transition adjacency relations, Computers in Industry 61 (2010) 463–471.

[16] Reiss,S.P. Semantics-based code search, in: ICSE ’09: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering, IEEE Computer Society,
Washington, DC, USA, (2009), pp. 243–253.

[17] P. Fettke, P. Loos, J. Zwicker, Business process reference models: survey and
classification, In: C. Bussler, A. Haller (Eds.), Business Process Management
Workshops, Vol. 3812 of Lecture Notes in Computer Science, Springer, Berlin/
Heidelberg, 2006, pp. 469–483.

[18] Dijkman,R. A classification of differences between similar business processes, in:
Proceedings of the 11th IEEE International Enterprise Distributed Object Com-
puting Conference, IEEE Computer Society, Washington, DC, USA, (2007), pp. 37–
50.

[19] Weber, B. Reichert, M. Rinderle-Ma,S. Change patterns and change support
features—enhancing flexibility in process-aware information systems, Data
and Knowledge Engineering 66 (2008) 438–466.

[20] M. Weidlich, A.P. Barros, J. Mendling, M. Weske, Vertical alignment of process
models—how can we get there? In: Proceedings of the 10th International Work-
shop on Enterprise, Business-Process and Information Systems Modeling, Vol. 29
of LNBIP, Springer, 2009, pp. 71–84.

[21] van Dongen, B. de Medeiros, A. Verbeek, H. Weijters, A. van der Aalst,W. The prom
framework: a new era in process mining tool support, in: CiardoG. , DarondeauP.
(Eds.), Applications and Theory of Petri Nets 2005. Vol. 3536 of Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, 2005, pp. 1105–1116.

[22] Akkiraju, R. Ivan,A. Discovering business process similarities: an empirical study
with SAP best practice business processes, in: Proceedings of the 8th International
Conference on Service-Oriented Computing. Vol. 6470 of LNCS, 2010, pp. 515–
526.

[23] Levenshtein,V.I. Binary codes capable of correcting deletions, insertions and
reversals, Soviet Physics Doklady 10 (1966) 707.

[24] Miller,G.A. Wordnet: a lexical database for English, Communications of the ACM
38 (1995) 39–41.

[25] Yan, Z. Dijkman, R.M. Grefen,P. Fast business process similarity search with
feature-based similarity estimation, in: On the Move to Meaningful Internet
Systems - Confederated International Conferences Proceedings 2010, Part I.
Vol. 6426 of LNCS., Springer, 2010, pp. 60–77.

[26] Minor, M. Tartakovski, A. Bergmann,R. Representation and structure-based
similarity assessment for agile workflows, in: Proceedings of the 7th International
Conference on Case-Based Reasoning, Springer, 2007, pp. 224–238.

[27] K. Huang, Z. Zhou, Y. Han, G. Li, J. Wang, An algorithm for calculating process
similarity to cluster open-source process designs, In: Grid and Cooperative
Computing 2004 Workshops, Springer, 2004, pp. 107–114.

[28] Dijkman, R. Dumas, M. Garcı́a-Bañuelos,L. Graph matching algorithms for busi-
ness process model similarity search, in: Proceedings of the Business Process
Management. Vol. 5701 of LNCS, Springer, 2009, pp. 48–63.

[29] Grigori, D. Corrales, J.C. Bouzeghoub, M. Gater,A. Ranking BPEL processes for
service discovery, IEEE Transactions on Services Computing 3 (2010) 178–192.

[30] Rosa, M.L. Dumas, M. Uba, R. Dijkman,R.M. Merging business process models, in:
Proceedings of the Confederated International Conferences On the Move to
Meaningful Internet Systems, 2010, Part I. Vol. 6426 of LNCS, Springer, 2010,
pp. 96–113.

[31] Li, C. Reichert, M. Wombacher,A. On measuring process model similarity based on
high-level change operations, in: Proceedings of the 27th International Confer-
ence on Conceptual Modeling, Springer, 2008, pp. 248–264.

M. Becker, R. Laue / Computers in Industry 63 (2012) 148–167 167
[32] Reichert, M. Dadam,P. ADEPT flex-supporting dynamic changes of workflows
without losing control, Journal of Intelligent Information Systems 10 (1998) 93–
129.

[33] J. Bae, J. Caverlee, L. Liu, H. Yan, Process mining by measuring process block
similarity, In: Proceedings of the Business Process Management Workshops 2006,
Vol. 4103 of LNCS, Springer, 2006, pp. 141–152.

[34] Bille,P. A survey on tree edit distance and related problems, Theoretical Computer
Science 337 (2005) 217–239.

[35] Vanhatalo, J. Völzer, H. Koehler,J. The refined process structure tree, in: Proceed-
ings of the 6th International Conference on Business Process Management (BPM),
2008, Milan, Italy, September 2–4, 2008. Vol. 5240 of Lecture Notes in Computer
Science, Springer, 2008, pp. 100–115.

[36] Gerth, C. Luckey, M. Küster, J.M. Engels,G. Detection of semantically equivalent
fragments for business process model change management, in: Proceedings of the
2010 IEEE International Conference on Services Computing. SCC’10, IEEE Com-
puter Society, Washington, DC, USA, (2010), pp. 57–64.

[37] R. Lu, S.W. Sadiq, On the discovery of preferred work practice through business
process variants, ER, 2007, pp. 165–180.

[38] R. Lu, S. Sadiq, On managing process variants as an information resource,
Technical report, The University of Queensland, School of Information Technology
and Electrical Engineering, 2006.

[39] Bae, J. Liu, L. Caverlee, J. Rouse,W.B. Process mining, discovery, and integration
using distance measures, in: Proceedings of the IEEE International Conference on
Web Services, 2006, pp. 479–488.

[40] Bae, J. Liu, L. Caverlee, J. Zhang, L.J. Bae,H. Development of distance measures for
process mining, discovery and integration, International Journal of Web Services
Research 4 (2007) 1–17.

[41] Jung, J.Y. Bae, J. Liu,L. Hierarchical clustering of business process models,
International Journal of Innovative Computing, Information and Control 5
(2009) 1–11.

[42] Bae, J. Bae, H. Kang, S.H. Kim,Y. Automatic control of workflow processes using
ECA rules, IEEE Transactions on Knowledge and Data Engineering 16 (2004)
1010–1023.

[43] Weidlich, M. Mendling, J. Weske,M. Efficient consistency measurement based on
behavioural profiles of process models, IEEE Transactions on Software Engineer-
ing 99 (2010).

[44] Weidlich, M. Polyvyanyy, A. Mendling, J. Weske,M. Efficient computation of
causal behavioural profiles using structural decomposition, in: Proceedings of the
31st International Conference on Applications and Theory of Petri Nets (PETRI
NETS 2010), Braga, Portugal, June 21–25, 2010. Vol. 6128 of Lecture Notes in
Computer Science, Springer, 2010, pp. 63–83.

[45] Salton, G. Wong, A. Yang,C.S. A vector space model for automatic indexing,
Communications of the ACM 18 (1975) 613–620.

[46] van Dongen, B. Dijkman, R. Mendling,J. Measuring similarity between business
process models, in: Proceedings of the Advanced Information Systems Engineer-
ing. Vol. 5074 of LNCS, Springer, 2008, pp. 450–464.

[47] Wombacher, A. Rozie,M. Evaluation of workflow similarity measures in service
discovery, in: Proceedings of the Service Oriented Electronic Commerce: Proceed-
ings zur Konferenz im Rahmen der Multikonferenz Wirtschaftsinformatik. Vol. 80
of LNI, GI, 2006, pp. 51–71.
[48] Mahleko, B. Wombacher, A. Fankhauser,P. Process-annotated service discovery
facilitated by an n-gram-based index, in: proceedings of the 2005 IEEE Interna-
tional Conference on e-Technology, e-Commerce and e-Service on e-Technology,
e-Commerce and e-Service. EEE’05, IEEE Computer Society, Washington, DC, USA,
(2005), pp. 2–8.

[49] Gerke, K. Cardoso, J. Claus,A. Measuring the compliance of processes with
reference models, in: Proceedings of the Confederated International Conferences
2009 On the Move to Meaningful Internet Systems, Part I, Springer, 2009, pp. 76–
93.

[50] Wang, J. He, T. Wen, L. Wu, N. ter Hofstede, A.H.M. Su,J. A behavioral similarity
measure between labeled petri nets based on principal transition sequences -
(short paper), in: Proceedings of the Confederated International Conferences On
the Move to Meaningful Internet Systems -2010. Part I. Vol. 6426 of LNCS,
Springer, 2010, pp. 394–401.

[51] Alves de Medeiros, A.K. van der Aalst, W.M.P. Weijters,A.J.M.M. Quantifying
process equivalence based on observed behavior, Data and Knowledge Engineer-
ing 64 (2008) 55–74.

[52] Melcher, J. Seese,D. Visualization and clustering of business process collections
based on process metric values, in: International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 2008, 572–575.

[53] Draft Federal Information Processing Standards Publication 183, Integration
Definition for Function Modeling (IDEF0), 1993.

Michael Becker (born in 1982) studied computer

science at the University of Leipzig, Germany. After

graduating, he worked at the chair of Telematics and E-

Business. Since 2010, he is associated with the

department of Business Information Systems at the

University of Leipzig. His research interests include

connecting software and service engineering and

business process management. In addition to his

scientific activities, he works as a Typo3 consultant.

Ralf Laue (born in 1968) studied mathematics at the

University of Leipzig, Germany. After graduating, he

worked as a system programmer before returning to

the University of Leipzig in 2003. He obtained a PhD in

computer science in 2010. Since 2011, he is a full

professor for software engineering at the University of

Applied Sciences in Zwickau, Germany. His research

interests include the application of formal methods on

business process models and understandability of

visual models.

	A comparative survey of business process similarity measures
	Introduction
	Preliminaries
	Business process models as graphs
	Trace, set of traces
	Mapping function
	Distance and similarity measures, further symbols

	Desirable properties of distance and similarity measures
	Literature research
	Methods of the literature research
	Application spectrum for similarity measures
	Simplify changes in process variants
	Merge processes
	Facilitate reuse
	Manage PM repositories
	Automate process execution
	Assure compliance with normative models
	Discover services

	Model changes
	Measures
	Correspondence between nodes and edges in the PM
	Similarity score based on common activity names
	Label matching similarity
	Syntactic, linguistic and structural similarity of activity labels
	Feature-based similarity estimation
	Percentage of common nodes and edges in the graph

	Edit distance between graphs
	Graph edit distance similarity
	Combining activity matching and a graph edit distance
	Combining string edit distance and graph edit distance
	Graph-edit distance by high-level change operations
	Tree edit distance between PMs represented as trees
	Edit distance between reduced models

	Causal dependencies between activities
	Dependency graph comparison
	TAR-similarity
	Causal behavioural profiles
	Causal footprints
	String edit distance of sets of traces

	Approaches based on the sets of traces
	Longest common subsequence of traces
	Similarity based on principal transition sequences
	Similarity of process models based on observed behaviour

	Similarity of structural complexity metrics

	Discussion
	Conclusion
	References

