
Machine Learning
A Bayesian and Optimization Perspective

Academic Press, 2015

Sergios Theodoridis1

1Dept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Winter 2015, Version II

Chapter 6
The Least-Squares Family

Sergios Theodoridis, University of Athens. Machine Learning, 1/37

Least-Squares Linear Regression: A Geometric Perspective

• Our starting point is the regression model. Condider a set of
observations,

yn = θTxn + ηn, n = 1, 2, . . . , N, yn ∈ R, xn ∈ Rl, θ ∈ Rl,

where ηn denotes the (unobserved) values of a zero mean noise source.

• The task is to obtain an estimate of the unknown parameter vector, θ,
so that

θ̂LS = arg min
θ

N∑
n=1

(yn − θTxn)2.

We have assumed that our data have been centered around their sample
means; alternatively, the intercept, θ0, can be absorbed in θ with a
corresponding increase in the dimensionality of xn.

• Define,

y = [y1, . . . , yN]T ∈ RN , X := [x1, . . . ,xN]T ∈ RN×l.

Then, the optimizing task can equivalently be written as,

θ̂LS = arg min
θ
‖e‖2, where e := y −Xθ,

and ‖ · ‖2 denotes the square Euclidean norm, which measures the
distance between the respective vectors in RN , i.e., y and Xθ.

Sergios Theodoridis, University of Athens. Machine Learning, 2/37

Least-Squares Linear Regression: A Geometric Perspective

• Our starting point is the regression model. Condider a set of
observations,

yn = θTxn + ηn, n = 1, 2, . . . , N, yn ∈ R, xn ∈ Rl, θ ∈ Rl,

where ηn denotes the (unobserved) values of a zero mean noise source.

• The task is to obtain an estimate of the unknown parameter vector, θ,
so that

θ̂LS = arg min
θ

N∑
n=1

(yn − θTxn)2.

We have assumed that our data have been centered around their sample
means; alternatively, the intercept, θ0, can be absorbed in θ with a
corresponding increase in the dimensionality of xn.

• Define,

y = [y1, . . . , yN]T ∈ RN , X := [x1, . . . ,xN]T ∈ RN×l.

Then, the optimizing task can equivalently be written as,

θ̂LS = arg min
θ
‖e‖2, where e := y −Xθ,

and ‖ · ‖2 denotes the square Euclidean norm, which measures the
distance between the respective vectors in RN , i.e., y and Xθ.

Sergios Theodoridis, University of Athens. Machine Learning, 2/37

Least-Squares Linear Regression: A Geometric Perspective

• Our starting point is the regression model. Condider a set of
observations,

yn = θTxn + ηn, n = 1, 2, . . . , N, yn ∈ R, xn ∈ Rl, θ ∈ Rl,

where ηn denotes the (unobserved) values of a zero mean noise source.

• The task is to obtain an estimate of the unknown parameter vector, θ,
so that

θ̂LS = arg min
θ

N∑
n=1

(yn − θTxn)2.

We have assumed that our data have been centered around their sample
means; alternatively, the intercept, θ0, can be absorbed in θ with a
corresponding increase in the dimensionality of xn.

• Define,

y = [y1, . . . , yN]T ∈ RN , X := [x1, . . . ,xN]T ∈ RN×l.

Then, the optimizing task can equivalently be written as,

θ̂LS = arg min
θ
‖e‖2, where e := y −Xθ,

and ‖ · ‖2 denotes the square Euclidean norm, which measures the
distance between the respective vectors in RN , i.e., y and Xθ.

Sergios Theodoridis, University of Athens. Machine Learning, 2/37

Least-Squares Linear Regression: A Geometric Perspective

• Let us denote as xc1, . . . ,x
c
l ∈ RN the columns of X, i.e.,

X = [xc1, . . . ,x
c
l].

Then we can write,

ŷ := Xθ =

l∑
i=1

θix
c
i , and e = y − ŷ.

Obviously, ŷ represents a vector that lies in the span{xc1, . . . ,xcl }.
Thus, our task is equivalent with selecting θ so that the error vector
between y and ŷ to have minimum norm.

• According to the Euclidean theorem of orthogonality, this is achieved if
ŷ is chosen as the orthogonal projection of y onto the
span{xc1, . . . ,xcl }.

Sergios Theodoridis, University of Athens. Machine Learning, 3/37

Least-Squares Linear Regression: A Geometric Perspective

• Let us denote as xc1, . . . ,x
c
l ∈ RN the columns of X, i.e.,

X = [xc1, . . . ,x
c
l].

Then we can write,

ŷ := Xθ =

l∑
i=1

θix
c
i , and e = y − ŷ.

Obviously, ŷ represents a vector that lies in the span{xc1, . . . ,xcl }.
Thus, our task is equivalent with selecting θ so that the error vector
between y and ŷ to have minimum norm.

• According to the Euclidean theorem of orthogonality, this is achieved if
ŷ is chosen as the orthogonal projection of y onto the
span{xc1, . . . ,xcl }.

The LS estimate is chosen so that ŷ to be the orthogonal projection of
y onto the span {xc

1,x
c
2}; that is, the columns of X.

Sergios Theodoridis, University of Athens. Machine Learning, 3/37

Least-Squares Linear Regression: A Geometric Perspective

• From the theory of projections, it is known that the projection of
a vector y onto the space spanned by the columns of an RN×l

matrix, X, is given by

ŷ = X(XTX)−1XTy,

assuming that XTX is invertible.

• The Moore-Penrose pseudo-inverse: Let X be a tall matrix; its
pseudo inverse matrix is defined by

X† := (XTX)−1XT .

• Employing the previous definition, we can write

θ̂LS = X†y.

• Note that the pseudo-inverse is a generalization of the notion of
the inverse of a square matrix. Indeed, if X is square, then it is
readily seen that the pseudo inverse coincides with X−1. For
complex data, the only difference is that transposition is replaced
by the Hermitian one.

Sergios Theodoridis, University of Athens. Machine Learning, 4/37

Least-Squares Linear Regression: A Geometric Perspective

• From the theory of projections, it is known that the projection of
a vector y onto the space spanned by the columns of an RN×l

matrix, X, is given by

ŷ = X(XTX)−1XTy,

assuming that XTX is invertible.

• The Moore-Penrose pseudo-inverse: Let X be a tall matrix; its
pseudo inverse matrix is defined by

X† := (XTX)−1XT .

• Employing the previous definition, we can write

θ̂LS = X†y.

• Note that the pseudo-inverse is a generalization of the notion of
the inverse of a square matrix. Indeed, if X is square, then it is
readily seen that the pseudo inverse coincides with X−1. For
complex data, the only difference is that transposition is replaced
by the Hermitian one.

Sergios Theodoridis, University of Athens. Machine Learning, 4/37

Least-Squares Linear Regression: A Geometric Perspective

• From the theory of projections, it is known that the projection of
a vector y onto the space spanned by the columns of an RN×l

matrix, X, is given by

ŷ = X(XTX)−1XTy,

assuming that XTX is invertible.

• The Moore-Penrose pseudo-inverse: Let X be a tall matrix; its
pseudo inverse matrix is defined by

X† := (XTX)−1XT .

• Employing the previous definition, we can write

θ̂LS = X†y.

• Note that the pseudo-inverse is a generalization of the notion of
the inverse of a square matrix. Indeed, if X is square, then it is
readily seen that the pseudo inverse coincides with X−1. For
complex data, the only difference is that transposition is replaced
by the Hermitian one.

Sergios Theodoridis, University of Athens. Machine Learning, 4/37

Least-Squares Linear Regression: A Geometric Perspective

• From the theory of projections, it is known that the projection of
a vector y onto the space spanned by the columns of an RN×l

matrix, X, is given by

ŷ = X(XTX)−1XTy,

assuming that XTX is invertible.

• The Moore-Penrose pseudo-inverse: Let X be a tall matrix; its
pseudo inverse matrix is defined by

X† := (XTX)−1XT .

• Employing the previous definition, we can write

θ̂LS = X†y.

• Note that the pseudo-inverse is a generalization of the notion of
the inverse of a square matrix. Indeed, if X is square, then it is
readily seen that the pseudo inverse coincides with X−1. For
complex data, the only difference is that transposition is replaced
by the Hermitian one.

Sergios Theodoridis, University of Athens. Machine Learning, 4/37

Statistical Properties of the LS Estimator

• Assume that there exists a true (yet unknown) parameter/weight
vector, θo, that generates the output (dependent) random variables
(stacked in a random vector y ∈ RN), according to the model,

y = Xθo + η,

where η is a zero mean noise vector. Observe that, we have assumed
that X is fixed and not random; that is, the randomness underlying the
output variables, y, is due solely to the noise. Under the previously
stated assumptions, the following properties hold:

• The LS Estimator is Unbiased: The LS estimator for the parameters is
given by,

θ̂LS = (XTX)−1XTy,

= (XTX)−1XT (Xθo + η) = θo + (XTX)−1XTη, (1)

or
E[θ̂LS] = θo + (XTX)−1XTE[η] = θo,

which proves the claim.

Sergios Theodoridis, University of Athens. Machine Learning, 5/37

Statistical Properties of the LS Estimator

• Assume that there exists a true (yet unknown) parameter/weight
vector, θo, that generates the output (dependent) random variables
(stacked in a random vector y ∈ RN), according to the model,

y = Xθo + η,

where η is a zero mean noise vector. Observe that, we have assumed
that X is fixed and not random; that is, the randomness underlying the
output variables, y, is due solely to the noise. Under the previously
stated assumptions, the following properties hold:

• The LS Estimator is Unbiased: The LS estimator for the parameters is
given by,

θ̂LS = (XTX)−1XTy,

= (XTX)−1XT (Xθo + η) = θo + (XTX)−1XTη, (1)

or
E[θ̂LS] = θo + (XTX)−1XTE[η] = θo,

which proves the claim.

Sergios Theodoridis, University of Athens. Machine Learning, 5/37

Statistical Properties of the LS Estimator

• Covariance Matrix of the LS Estimator: Let, in addition to the previously
adopted assumptions, that

E[ηηT] = σ2
ηI.

That is, the source generating the noise samples is white. By the definition of
the covariance matrix, we get

Σθ̂LS
= E

[
(θ̂LS − θo)(θ̂LS − θo)T

]
,

and substituting θ̂LS − θo from (1), we obtain

Σθ̂LS
= E

[
(XTX)−1XTηηTX(XTX)−1

]
= (XTX)−1XTE[ηηT]X(XTX)−1

= σ2
η(X

TX)−1. (2)

• Note that, for large values of N , we can write

XTX =
N∑
n=1

xnx
T
n ≈ NΣx, where Σx := E[xnxTn] ≈

1

N

N∑
n=1

xnx
T
n

• Thus, for large values of N , we can write

Σθ̂LS
≈
σ2
η

N
Σ−1
x .

Sergios Theodoridis, University of Athens. Machine Learning, 6/37

Statistical Properties of the LS Estimator

• Covariance Matrix of the LS Estimator: Let, in addition to the previously
adopted assumptions, that

E[ηηT] = σ2
ηI.

That is, the source generating the noise samples is white. By the definition of
the covariance matrix, we get

Σθ̂LS
= E

[
(θ̂LS − θo)(θ̂LS − θo)T

]
,

and substituting θ̂LS − θo from (1), we obtain

Σθ̂LS
= E

[
(XTX)−1XTηηTX(XTX)−1

]
= (XTX)−1XTE[ηηT]X(XTX)−1

= σ2
η(X

TX)−1. (2)

• Note that, for large values of N , we can write

XTX =

N∑
n=1

xnx
T
n ≈ NΣx, where Σx := E[xnxTn] ≈

1

N

N∑
n=1

xnx
T
n

• Thus, for large values of N , we can write

Σθ̂LS
≈
σ2
η

N
Σ−1
x .

Sergios Theodoridis, University of Athens. Machine Learning, 6/37

Statistical Properties of the LS Estimator

• Covariance Matrix of the LS Estimator: Let, in addition to the previously
adopted assumptions, that

E[ηηT] = σ2
ηI.

That is, the source generating the noise samples is white. By the definition of
the covariance matrix, we get

Σθ̂LS
= E

[
(θ̂LS − θo)(θ̂LS − θo)T

]
,

and substituting θ̂LS − θo from (1), we obtain

Σθ̂LS
= E

[
(XTX)−1XTηηTX(XTX)−1

]
= (XTX)−1XTE[ηηT]X(XTX)−1

= σ2
η(X

TX)−1. (2)

• Note that, for large values of N , we can write

XTX =

N∑
n=1

xnx
T
n ≈ NΣx, where Σx := E[xnxTn] ≈

1

N

N∑
n=1

xnx
T
n

• Thus, for large values of N , we can write

Σθ̂LS
≈
σ2
η

N
Σ−1
x .

Sergios Theodoridis, University of Athens. Machine Learning, 6/37

Statistical Properties of the LS Estimator

• In other words, under the adopted assumptions, the LS estimator is not
only unbiased but its covariance matrix tends asymptotically to zero.
That is, with high probability, the estimate θ̂LS , which is obtained via a
large number of measurements, will be close to the true value, θo.

• Viewing it slightly differently, note that the LS solution tends to the
MSE solution, which is discussed in Chapter 3. Indeed, for the case of
centered data,

lim
N→∞

1

N

N∑
n=1

xnx
T
n = Σx,

and

lim
N→∞

1

N

N∑
n=1

xnyn = E[xy] = p.

Moreover, we know that for the linear regression modeling case, the
normal equations, Σxθ = p, result in the solution θ = θo.

• The LS Estimator is BLUE in the Presence of White Noise: Let θ̂ be
any other linear unbiased estimator. Under the white noise
assumption, the following holds true:

E
[
(θ̂− θo)T (θ̂− θo)

]
≥ E

[
(θ̂LS − θo)T (θ̂LS − θo)

]
.

Sergios Theodoridis, University of Athens. Machine Learning, 7/37

Statistical Properties of the LS Estimator

• In other words, under the adopted assumptions, the LS estimator is not
only unbiased but its covariance matrix tends asymptotically to zero.
That is, with high probability, the estimate θ̂LS , which is obtained via a
large number of measurements, will be close to the true value, θo.

• Viewing it slightly differently, note that the LS solution tends to the
MSE solution, which is discussed in Chapter 3. Indeed, for the case of
centered data,

lim
N→∞

1

N

N∑
n=1

xnx
T
n = Σx,

and

lim
N→∞

1

N

N∑
n=1

xnyn = E[xy] = p.

Moreover, we know that for the linear regression modeling case, the
normal equations, Σxθ = p, result in the solution θ = θo.

• The LS Estimator is BLUE in the Presence of White Noise: Let θ̂ be
any other linear unbiased estimator. Under the white noise
assumption, the following holds true:

E
[
(θ̂− θo)T (θ̂− θo)

]
≥ E

[
(θ̂LS − θo)T (θ̂LS − θo)

]
.

Sergios Theodoridis, University of Athens. Machine Learning, 7/37

Statistical Properties of the LS Estimator

• In other words, under the adopted assumptions, the LS estimator is not
only unbiased but its covariance matrix tends asymptotically to zero.
That is, with high probability, the estimate θ̂LS , which is obtained via a
large number of measurements, will be close to the true value, θo.

• Viewing it slightly differently, note that the LS solution tends to the
MSE solution, which is discussed in Chapter 3. Indeed, for the case of
centered data,

lim
N→∞

1

N

N∑
n=1

xnx
T
n = Σx,

and

lim
N→∞

1

N

N∑
n=1

xnyn = E[xy] = p.

Moreover, we know that for the linear regression modeling case, the
normal equations, Σxθ = p, result in the solution θ = θo.

• The LS Estimator is BLUE in the Presence of White Noise: Let θ̂ be
any other linear unbiased estimator. Under the white noise
assumption, the following holds true:

E
[
(θ̂− θo)T (θ̂− θo)

]
≥ E

[
(θ̂LS − θo)T (θ̂LS − θo)

]
.

Sergios Theodoridis, University of Athens. Machine Learning, 7/37

Statistical Properties of the LS Estimator

• Proof: Indeed, from the respective definitions we have

θ̂ := Hy⇒ θ̂ = H(Xθo + η) = HXθo +Hη.

However, since θ̂ is unbiased, then the previous equation implies that,
HX = I and

θ̂− θo = Hη.

• Thus,

Σθ̂ := E
[
(θ̂− θo)(θ̂− θo)T

]
= σ2

nHH
T ,

• However, taking into account that HX = I, it is easily checked out
that

σ2
nHH

T = σ2
n(H −X†)(H −X†)T + σ2

n(XTX)−1,

where X† is the respective pseudo-inverse matrix,

• Since σ2
n(H −X†)(H −X†)T is a semidefinite matrix, its trace is also

nonnegative and the claim has been proved, i.e.,

trace{σ2
nHH

T } ≥ trace{σ2
n(XTX)−1}.

with equality only if H = X† = (XTX)−1XT .

Sergios Theodoridis, University of Athens. Machine Learning, 8/37

Statistical Properties of the LS Estimator

• Proof: Indeed, from the respective definitions we have

θ̂ := Hy⇒ θ̂ = H(Xθo + η) = HXθo +Hη.

However, since θ̂ is unbiased, then the previous equation implies that,
HX = I and

θ̂− θo = Hη.

• Thus,

Σθ̂ := E
[
(θ̂− θo)(θ̂− θo)T

]
= σ2

nHH
T ,

• However, taking into account that HX = I, it is easily checked out
that

σ2
nHH

T = σ2
n(H −X†)(H −X†)T + σ2

n(XTX)−1,

where X† is the respective pseudo-inverse matrix,

• Since σ2
n(H −X†)(H −X†)T is a semidefinite matrix, its trace is also

nonnegative and the claim has been proved, i.e.,

trace{σ2
nHH

T } ≥ trace{σ2
n(XTX)−1}.

with equality only if H = X† = (XTX)−1XT .

Sergios Theodoridis, University of Athens. Machine Learning, 8/37

Statistical Properties of the LS Estimator

• Proof: Indeed, from the respective definitions we have

θ̂ := Hy⇒ θ̂ = H(Xθo + η) = HXθo +Hη.

However, since θ̂ is unbiased, then the previous equation implies that,
HX = I and

θ̂− θo = Hη.

• Thus,

Σθ̂ := E
[
(θ̂− θo)(θ̂− θo)T

]
= σ2

nHH
T ,

• However, taking into account that HX = I, it is easily checked out
that

σ2
nHH

T = σ2
n(H −X†)(H −X†)T + σ2

n(XTX)−1,

where X† is the respective pseudo-inverse matrix,

• Since σ2
n(H −X†)(H −X†)T is a semidefinite matrix, its trace is also

nonnegative and the claim has been proved, i.e.,

trace{σ2
nHH

T } ≥ trace{σ2
n(XTX)−1}.

with equality only if H = X† = (XTX)−1XT .

Sergios Theodoridis, University of Athens. Machine Learning, 8/37

Statistical Properties of the LS Estimator

• Proof: Indeed, from the respective definitions we have

θ̂ := Hy⇒ θ̂ = H(Xθo + η) = HXθo +Hη.

However, since θ̂ is unbiased, then the previous equation implies that,
HX = I and

θ̂− θo = Hη.

• Thus,

Σθ̂ := E
[
(θ̂− θo)(θ̂− θo)T

]
= σ2

nHH
T ,

• However, taking into account that HX = I, it is easily checked out
that

σ2
nHH

T = σ2
n(H −X†)(H −X†)T + σ2

n(XTX)−1,

where X† is the respective pseudo-inverse matrix,

• Since σ2
n(H −X†)(H −X†)T is a semidefinite matrix, its trace is also

nonnegative and the claim has been proved, i.e.,

trace{σ2
nHH

T } ≥ trace{σ2
n(XTX)−1}.

with equality only if H = X† = (XTX)−1XT .

Sergios Theodoridis, University of Athens. Machine Learning, 8/37

Statistical Properties of the LS Estimator

• The LS Estimator Achieves the Cramer-Rao Bound for White
Gaussian Noise: The concept of the Cramer-Rao lower bound is
discussed in Chapter 3. There, it has been stated that, under the
zero mean Gaussian noise with covariance matrix Σn, the
efficient estimator is given by

θ̂ = (XTΣ−1n X)−1XTΣ−1n y,

which for Σn = σ2nI coincides with the LS estimator.

• In other words, under the white Gaussian noise assumption, the
LS estimator becomes Minimum Variance Unbiased Estimator.
This is a strong result. No other unbiased estimator (not
necessarily linear) will do better than the LS one. Note that this
result holds true not asymptotically, but also for finite number of
samples N . If one wishes to decrease further the Mean Square
Error (MSE), then a biased estimator, e.g., via regularization, has
to be considered.

Sergios Theodoridis, University of Athens. Machine Learning, 9/37

Statistical Properties of the LS Estimator

• The LS Estimator Achieves the Cramer-Rao Bound for White
Gaussian Noise: The concept of the Cramer-Rao lower bound is
discussed in Chapter 3. There, it has been stated that, under the
zero mean Gaussian noise with covariance matrix Σn, the
efficient estimator is given by

θ̂ = (XTΣ−1n X)−1XTΣ−1n y,

which for Σn = σ2nI coincides with the LS estimator.

• In other words, under the white Gaussian noise assumption, the
LS estimator becomes Minimum Variance Unbiased Estimator.
This is a strong result. No other unbiased estimator (not
necessarily linear) will do better than the LS one. Note that this
result holds true not asymptotically, but also for finite number of
samples N . If one wishes to decrease further the Mean Square
Error (MSE), then a biased estimator, e.g., via regularization, has
to be considered.

Sergios Theodoridis, University of Athens. Machine Learning, 9/37

Statistical Properties of the LS Estimator

• Asymptotic Distribution of the LS Estimator: We have already seen
that the LS estimator is unbiased and that its covariance matrix is
(approximately, for large values of N) inversely proportional to N .
Thus, as N −→∞, the variance around the true value, θo, is becoming
increasingly small.

• Furthermore, there is a stronger result, which provides the distribution
of the LS estimator for large values of N . Under some general
assumptions, e.g., independence of successive observation vectors and
that the white noise source is independent of the input, and mobilizing
the central limit theorem, it can be shown, that

√
N(θ̂LS − θ0) −→ N (0, σ2

ηΣ
−1
x),

where the limit is meant to be in distribution. Alternatively, for large
values of N , we can write that

θ̂LS ∼ N (θ0,
σ2
η

N
Σ−1x).

In other words, the LS parameter estimator is asymptotically distributed
according to the normal distribution.

Sergios Theodoridis, University of Athens. Machine Learning, 10/37

Statistical Properties of the LS Estimator

• Asymptotic Distribution of the LS Estimator: We have already seen
that the LS estimator is unbiased and that its covariance matrix is
(approximately, for large values of N) inversely proportional to N .
Thus, as N −→∞, the variance around the true value, θo, is becoming
increasingly small.

• Furthermore, there is a stronger result, which provides the distribution
of the LS estimator for large values of N . Under some general
assumptions, e.g., independence of successive observation vectors and
that the white noise source is independent of the input, and mobilizing
the central limit theorem, it can be shown, that

√
N(θ̂LS − θ0) −→ N (0, σ2

ηΣ
−1
x),

where the limit is meant to be in distribution. Alternatively, for large
values of N , we can write that

θ̂LS ∼ N (θ0,
σ2
η

N
Σ−1x).

In other words, the LS parameter estimator is asymptotically distributed
according to the normal distribution.

Sergios Theodoridis, University of Athens. Machine Learning, 10/37

The Recursive Least-Squares Algorithm

• Our focus now turns in presenting a celebrated online algorithm for
obtaining the LS solution. To this end, the special structure of XTX
will be taken into account, that leads to substantial computational
savings.

• Moreover, when dealing with time recursive (online) techniques, one can
also care for time variations of the statistical properties of the involved
data. In our formulation, we will allow for such applications and the LS
cost will be slightly modified so that to be able to accommodate time
varying environments.

• We are going to bring into our notation explicitly the time index, n.
Also, we will assume that the time starts at n = 0 and the received
observations are (yn,xn), n = 0, 1, 2, To this end, let us denote
the input matrix, at time n, as

XT
n = [x0,x1, . . . ,xn].

• The Exponentially Weighted Least-Squares (EWLS) cost function is
defined as,

J(θ) :=

n∑
i=0

βn−i(yi − θTxi)2 + λβn+1‖θ‖2, (3)

where β, 0 < β ≤ 1 is a user-defined parameter, very close to unity.

Sergios Theodoridis, University of Athens. Machine Learning, 11/37

The Recursive Least-Squares Algorithm

• Our focus now turns in presenting a celebrated online algorithm for
obtaining the LS solution. To this end, the special structure of XTX
will be taken into account, that leads to substantial computational
savings.

• Moreover, when dealing with time recursive (online) techniques, one can
also care for time variations of the statistical properties of the involved
data. In our formulation, we will allow for such applications and the LS
cost will be slightly modified so that to be able to accommodate time
varying environments.

• We are going to bring into our notation explicitly the time index, n.
Also, we will assume that the time starts at n = 0 and the received
observations are (yn,xn), n = 0, 1, 2, To this end, let us denote
the input matrix, at time n, as

XT
n = [x0,x1, . . . ,xn].

• The Exponentially Weighted Least-Squares (EWLS) cost function is
defined as,

J(θ) :=

n∑
i=0

βn−i(yi − θTxi)2 + λβn+1‖θ‖2, (3)

where β, 0 < β ≤ 1 is a user-defined parameter, very close to unity.

Sergios Theodoridis, University of Athens. Machine Learning, 11/37

The Recursive Least-Squares Algorithm

• Our focus now turns in presenting a celebrated online algorithm for
obtaining the LS solution. To this end, the special structure of XTX
will be taken into account, that leads to substantial computational
savings.

• Moreover, when dealing with time recursive (online) techniques, one can
also care for time variations of the statistical properties of the involved
data. In our formulation, we will allow for such applications and the LS
cost will be slightly modified so that to be able to accommodate time
varying environments.

• We are going to bring into our notation explicitly the time index, n.
Also, we will assume that the time starts at n = 0 and the received
observations are (yn,xn), n = 0, 1, 2, To this end, let us denote
the input matrix, at time n, as

XT
n = [x0,x1, . . . ,xn].

• The Exponentially Weighted Least-Squares (EWLS) cost function is
defined as,

J(θ) :=

n∑
i=0

βn−i(yi − θTxi)2 + λβn+1‖θ‖2, (3)

where β, 0 < β ≤ 1 is a user-defined parameter, very close to unity.

Sergios Theodoridis, University of Athens. Machine Learning, 11/37

The Recursive Least-Squares Algorithm

• Our focus now turns in presenting a celebrated online algorithm for
obtaining the LS solution. To this end, the special structure of XTX
will be taken into account, that leads to substantial computational
savings.

• Moreover, when dealing with time recursive (online) techniques, one can
also care for time variations of the statistical properties of the involved
data. In our formulation, we will allow for such applications and the LS
cost will be slightly modified so that to be able to accommodate time
varying environments.

• We are going to bring into our notation explicitly the time index, n.
Also, we will assume that the time starts at n = 0 and the received
observations are (yn,xn), n = 0, 1, 2, To this end, let us denote
the input matrix, at time n, as

XT
n = [x0,x1, . . . ,xn].

• The Exponentially Weighted Least-Squares (EWLS) cost function is
defined as,

J(θ) :=

n∑
i=0

βn−i(yi − θTxi)2 + λβn+1‖θ‖2, (3)

where β, 0 < β ≤ 1 is a user-defined parameter, very close to unity.

Sergios Theodoridis, University of Athens. Machine Learning, 11/37

The Recursive Least-Squares Algorithm

• The exponentially weighted squared error cost function involves two
user-defined parameters, namely:

The forgetting factor, 0 < β ≤ 1. The purpose of its presence is to
assist the cost function to slowly forget past data samples, by
weighting heavier the more recent observations. This will equip the
algorithm with the agility to track changes.
The regularization-related parameter λ. Starting from time n = 0,
we are forced to introduce regularization. During the initial period,
i.e., n < l − 1, the corresponding system of equations will be
underdetermined and XT

nXn is not invertible. Indeed, we have
that,

XT
nXn =

n∑
i=0

xix
T
i .

In other words, XT
nXn is the sum of rank one matrices. Hence,

for n < l − 1 its rank is necessarily less than l, and it cannot be
inverted. For larger values of n, it can become full rank, provided
that at least l of the input vectors are linearly independent, which
is usually assumed to be the case. For large values of n,
regularization is not necessary; this is the reason of the presence of
βn+1, which tends to zero.

Sergios Theodoridis, University of Athens. Machine Learning, 12/37

The Recursive Least-Squares Algorithm

• The exponentially weighted squared error cost function involves two
user-defined parameters, namely:

The forgetting factor, 0 < β ≤ 1. The purpose of its presence is to
assist the cost function to slowly forget past data samples, by
weighting heavier the more recent observations. This will equip the
algorithm with the agility to track changes.
The regularization-related parameter λ. Starting from time n = 0,
we are forced to introduce regularization. During the initial period,
i.e., n < l − 1, the corresponding system of equations will be
underdetermined and XT

nXn is not invertible. Indeed, we have
that,

XT
nXn =

n∑
i=0

xix
T
i .

In other words, XT
nXn is the sum of rank one matrices. Hence,

for n < l − 1 its rank is necessarily less than l, and it cannot be
inverted. For larger values of n, it can become full rank, provided
that at least l of the input vectors are linearly independent, which
is usually assumed to be the case. For large values of n,
regularization is not necessary; this is the reason of the presence of
βn+1, which tends to zero.

Sergios Theodoridis, University of Athens. Machine Learning, 12/37

The Recursive Least-Squares Algorithm

• The exponentially weighted squared error cost function involves two
user-defined parameters, namely:

The forgetting factor, 0 < β ≤ 1. The purpose of its presence is to
assist the cost function to slowly forget past data samples, by
weighting heavier the more recent observations. This will equip the
algorithm with the agility to track changes.
The regularization-related parameter λ. Starting from time n = 0,
we are forced to introduce regularization. During the initial period,
i.e., n < l − 1, the corresponding system of equations will be
underdetermined and XT

nXn is not invertible. Indeed, we have
that,

XT
nXn =

n∑
i=0

xix
T
i .

In other words, XT
nXn is the sum of rank one matrices. Hence,

for n < l − 1 its rank is necessarily less than l, and it cannot be
inverted. For larger values of n, it can become full rank, provided
that at least l of the input vectors are linearly independent, which
is usually assumed to be the case. For large values of n,
regularization is not necessary; this is the reason of the presence of
βn+1, which tends to zero.

Sergios Theodoridis, University of Athens. Machine Learning, 12/37

The Recursive Least-Squares Algorithm

• Minimizing the EWLS cost results in,

Φnθn = pn,

where,

Φn =

n∑
i=0

βn−ixix
T
i + λβn+1I,

and
pn =

n∑
i=0

βn−ixiyi,

which for β = 1 coincides with the ridge regression.

• Time-Iterative computations of Φn, pn: It turns out that

Pn := Φ−1n , (4)

Pn = β−1Pn−1 − β−1Knx
T
nPn−1, (5)

Kn :=
β−1Pn−1xn

1 + β−1xTnPn−1xn
. (6)

Kn is known as the Kalman gain.

Sergios Theodoridis, University of Athens. Machine Learning, 13/37

The Recursive Least-Squares Algorithm

• Minimizing the EWLS cost results in,

Φnθn = pn,

where,

Φn =

n∑
i=0

βn−ixix
T
i + λβn+1I,

and
pn =

n∑
i=0

βn−ixiyi,

which for β = 1 coincides with the ridge regression.

• Time-Iterative computations of Φn, pn: It turns out that

Pn := Φ−1n , (4)

Pn = β−1Pn−1 − β−1Knx
T
nPn−1, (5)

Kn :=
β−1Pn−1xn

1 + β−1xTnPn−1xn
. (6)

Kn is known as the Kalman gain.

Sergios Theodoridis, University of Athens. Machine Learning, 13/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

Φn = βΦn−1 + xnx
T
n ,

and
pn = βpn−1 + xnyn.

• Recall Woodburry’s matrix inversion formula,

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1.

Plugging it in the first of the above, we obtain (5) and (6).

• Also, rearranging the terms in (6), we get

Kn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
xn,

and taking into account (5) results in

Kn = Pnxn.

• Time Updating of θn: Following similar arguments as before, we obtain

θn = θn−1 +Knen,

where
en := yn − θTn−1xn.

Sergios Theodoridis, University of Athens. Machine Learning, 14/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

Φn = βΦn−1 + xnx
T
n ,

and
pn = βpn−1 + xnyn.

• Recall Woodburry’s matrix inversion formula,

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1.

Plugging it in the first of the above, we obtain (5) and (6).

• Also, rearranging the terms in (6), we get

Kn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
xn,

and taking into account (5) results in

Kn = Pnxn.

• Time Updating of θn: Following similar arguments as before, we obtain

θn = θn−1 +Knen,

where
en := yn − θTn−1xn.

Sergios Theodoridis, University of Athens. Machine Learning, 14/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

Φn = βΦn−1 + xnx
T
n ,

and
pn = βpn−1 + xnyn.

• Recall Woodburry’s matrix inversion formula,

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1.

Plugging it in the first of the above, we obtain (5) and (6).

• Also, rearranging the terms in (6), we get

Kn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
xn,

and taking into account (5) results in

Kn = Pnxn.

• Time Updating of θn: Following similar arguments as before, we obtain

θn = θn−1 +Knen,

where
en := yn − θTn−1xn.

Sergios Theodoridis, University of Athens. Machine Learning, 14/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

Φn = βΦn−1 + xnx
T
n ,

and
pn = βpn−1 + xnyn.

• Recall Woodburry’s matrix inversion formula,

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1.

Plugging it in the first of the above, we obtain (5) and (6).

• Also, rearranging the terms in (6), we get

Kn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
xn,

and taking into account (5) results in

Kn = Pnxn.

• Time Updating of θn: Following similar arguments as before, we obtain

θn = θn−1 +Knen,

where
en := yn − θTn−1xn.

Sergios Theodoridis, University of Athens. Machine Learning, 14/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

θn = Φ−1n pn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
βpn−1 +

Pnxnyn

= θn−1 −Knx
T
nθn−1 +Knyn

= θn−1 −Kn

(
yn − θTn−1xn

)
,

which proves the claim.

• All the necessary recursions have been derived. Note that the
essence behind the derivations lies in a) expressing the quantities
at time n in terms of their counterparts at time n− 1 and b) the
use of the matrix inversion lemma.

• The last time update recursion for the LS solution, has the typical
form of

New=Old+Error-Related Correction Term.

Sergios Theodoridis, University of Athens. Machine Learning, 15/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

θn = Φ−1n pn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
βpn−1 +

Pnxnyn

= θn−1 −Knx
T
nθn−1 +Knyn

= θn−1 −Kn

(
yn − θTn−1xn

)
,

which proves the claim.

• All the necessary recursions have been derived. Note that the
essence behind the derivations lies in a) expressing the quantities
at time n in terms of their counterparts at time n− 1 and b) the
use of the matrix inversion lemma.

• The last time update recursion for the LS solution, has the typical
form of

New=Old+Error-Related Correction Term.

Sergios Theodoridis, University of Athens. Machine Learning, 15/37

The Recursive Least-Squares Algorithm

• Proof: By the respective definitions, we have that

θn = Φ−1n pn =
(
β−1Pn−1 − β−1Knx

T
nPn−1

)
βpn−1 +

Pnxnyn

= θn−1 −Knx
T
nθn−1 +Knyn

= θn−1 −Kn

(
yn − θTn−1xn

)
,

which proves the claim.

• All the necessary recursions have been derived. Note that the
essence behind the derivations lies in a) expressing the quantities
at time n in terms of their counterparts at time n− 1 and b) the
use of the matrix inversion lemma.

• The last time update recursion for the LS solution, has the typical
form of

New=Old+Error-Related Correction Term.

Sergios Theodoridis, University of Athens. Machine Learning, 15/37

The RLS Algorithm

• The RLS Algorithm

Initialize

θ−1 = 0; any other value is also possible.
P−1 = λ−1I; λ a user-defined variable.
Select β; close to 1.

For n = 0, 1, . . . Do

en = yn − θTn−1xn
zn = Pn−1xn
Kn = zn

β+xT
nzn

θn = θn−1 +Knen
Pn = β−1Pn−1 − β−1Knz

T
n

End For

• The complexity of the RLS algorithm is of the order O(l2) per iteration,
due to the matrix-product operations. That is, there is an order of
magnitude difference compared to the LMS and the other gradient
descent-based schemes. In other words, the RLS does not scale well
with dimensionality. Fast versions of the RLS algorithm, of complexity
O(l), have also been derived for the case where the input is a random
processes and are briefly discussed in the text.

Sergios Theodoridis, University of Athens. Machine Learning, 16/37

The RLS Algorithm

• The RLS Algorithm

Initialize

θ−1 = 0; any other value is also possible.
P−1 = λ−1I; λ a user-defined variable.
Select β; close to 1.

For n = 0, 1, . . . Do

en = yn − θTn−1xn
zn = Pn−1xn
Kn = zn

β+xT
nzn

θn = θn−1 +Knen
Pn = β−1Pn−1 − β−1Knz

T
n

End For

• The complexity of the RLS algorithm is of the order O(l2) per iteration,
due to the matrix-product operations. That is, there is an order of
magnitude difference compared to the LMS and the other gradient
descent-based schemes. In other words, the RLS does not scale well
with dimensionality. Fast versions of the RLS algorithm, of complexity
O(l), have also been derived for the case where the input is a random
processes and are briefly discussed in the text.

Sergios Theodoridis, University of Athens. Machine Learning, 16/37

The RLS Algorithm

• The RLS algorithm shares similar numerical behaviour with the
Kalman filter, which is discussed in Chapter 4. Pn may loose its
positive definite and symmetric nature, which then leads the
algorithm to divergence. To remedy such a tendency, a number of
versions have been developed and discussed in the text.

• The choice of λ in the initialization step needs special
consideration. The related theoretical analysis suggests that λ
has a direct influence on the convergence speed and it should be
chosen so that to be a small positive for high Signal-to-Noise
(SNR) ratios and a large positive constant for low SNRs.

• The main advantage of the RLS is that it converges to the steady
state much faster than the LMS and the rest of the members of
the gradient-descent family. This can be justified by the fact that
the RLS can been seen as an offspring of Newton’s iterative
optimization method.

Sergios Theodoridis, University of Athens. Machine Learning, 17/37

The RLS Algorithm

• The RLS algorithm shares similar numerical behaviour with the
Kalman filter, which is discussed in Chapter 4. Pn may loose its
positive definite and symmetric nature, which then leads the
algorithm to divergence. To remedy such a tendency, a number of
versions have been developed and discussed in the text.

• The choice of λ in the initialization step needs special
consideration. The related theoretical analysis suggests that λ
has a direct influence on the convergence speed and it should be
chosen so that to be a small positive for high Signal-to-Noise
(SNR) ratios and a large positive constant for low SNRs.

• The main advantage of the RLS is that it converges to the steady
state much faster than the LMS and the rest of the members of
the gradient-descent family. This can be justified by the fact that
the RLS can been seen as an offspring of Newton’s iterative
optimization method.

Sergios Theodoridis, University of Athens. Machine Learning, 17/37

The RLS Algorithm

• The RLS algorithm shares similar numerical behaviour with the
Kalman filter, which is discussed in Chapter 4. Pn may loose its
positive definite and symmetric nature, which then leads the
algorithm to divergence. To remedy such a tendency, a number of
versions have been developed and discussed in the text.

• The choice of λ in the initialization step needs special
consideration. The related theoretical analysis suggests that λ
has a direct influence on the convergence speed and it should be
chosen so that to be a small positive for high Signal-to-Noise
(SNR) ratios and a large positive constant for low SNRs.

• The main advantage of the RLS is that it converges to the steady
state much faster than the LMS and the rest of the members of
the gradient-descent family. This can be justified by the fact that
the RLS can been seen as an offspring of Newton’s iterative
optimization method.

Sergios Theodoridis, University of Athens. Machine Learning, 17/37

Newton’s Iterative Minimization Method

• The steepest descent optimization scheme is discussed in Chapter 5.
There, it is stated that the members of this family exhibit linear
convergence rate and a heavy dependence on the condition number of
the Hessian matrix associated with the cost function. The heart of the
gradient descent schemes beats around a first order Taylor’s expansion
of the cost function.

• Newton’s method is a way to overcome this dependence on the
condition number and at the same time improve upon the rate of
convergence towards the solution. Let us proceed with a second order
Taylor’s expansion of the cost, i.e.,

J
(
θ(i−1) + ∆θ(i)

)
= J

(
θ(i−1)

)
+
(
∇J
(
θ(i−1)

))T
∆θ(i) +

1

2

(
∆θ(i)

)T∇2J
(
θ(i−1)

)
∆θ(i).

• Assuming ∇2J
(
θ(i−1)

)
to be positive definite (this is always the case if

J(θ) is a strictly convex function), the above is a convex quadratic
function w.r. to the step ∆θ(i); the latter is computed so that to
minimize the above second order approximation.

Sergios Theodoridis, University of Athens. Machine Learning, 18/37

Newton’s Iterative Minimization Method

• The steepest descent optimization scheme is discussed in Chapter 5.
There, it is stated that the members of this family exhibit linear
convergence rate and a heavy dependence on the condition number of
the Hessian matrix associated with the cost function. The heart of the
gradient descent schemes beats around a first order Taylor’s expansion
of the cost function.

• Newton’s method is a way to overcome this dependence on the
condition number and at the same time improve upon the rate of
convergence towards the solution. Let us proceed with a second order
Taylor’s expansion of the cost, i.e.,

J
(
θ(i−1) + ∆θ(i)

)
= J

(
θ(i−1)

)
+
(
∇J
(
θ(i−1)

))T
∆θ(i) +

1

2

(
∆θ(i)

)T∇2J
(
θ(i−1)

)
∆θ(i).

• Assuming ∇2J
(
θ(i−1)

)
to be positive definite (this is always the case if

J(θ) is a strictly convex function), the above is a convex quadratic
function w.r. to the step ∆θ(i); the latter is computed so that to
minimize the above second order approximation.

Sergios Theodoridis, University of Athens. Machine Learning, 18/37

Newton’s Iterative Minimization Method

• The steepest descent optimization scheme is discussed in Chapter 5.
There, it is stated that the members of this family exhibit linear
convergence rate and a heavy dependence on the condition number of
the Hessian matrix associated with the cost function. The heart of the
gradient descent schemes beats around a first order Taylor’s expansion
of the cost function.

• Newton’s method is a way to overcome this dependence on the
condition number and at the same time improve upon the rate of
convergence towards the solution. Let us proceed with a second order
Taylor’s expansion of the cost, i.e.,

J
(
θ(i−1) + ∆θ(i)

)
= J

(
θ(i−1)

)
+
(
∇J
(
θ(i−1)

))T
∆θ(i) +

1

2

(
∆θ(i)

)T∇2J
(
θ(i−1)

)
∆θ(i).

• Assuming ∇2J
(
θ(i−1)

)
to be positive definite (this is always the case if

J(θ) is a strictly convex function), the above is a convex quadratic
function w.r. to the step ∆θ(i); the latter is computed so that to
minimize the above second order approximation.

Sergios Theodoridis, University of Athens. Machine Learning, 18/37

Newton’s Iterative Minimization Method

• The minimum results by equating the corresponding gradient to 0, i.e.,

∆θ(i) = −
(
∇2J

(
θ(i−1)

))−1
∇J
(
θ(i−1)

)
.

Note that this is indeed a descent direction, because

∇TJ
(
θ(i−1)

)
∆θ(i) = −∇TJ

(
θ(i−1)

)
∇2J

(
θ(i−1)

)
∇J
(
θ(i−1)

)
< 0,

due to the positive definite nature of the Hessian. Equality to zero is
achieved only at a minimum.

• Thus, the iterative scheme takes the following form:

θ(i) = θ(i−1) − µi
(
∇2J

(
θ(i−1)

))−1∇J(θ(i−1))

Sergios Theodoridis, University of Athens. Machine Learning, 19/37

Newton’s Iterative Minimization Method

• The minimum results by equating the corresponding gradient to 0, i.e.,

∆θ(i) = −
(
∇2J

(
θ(i−1)

))−1
∇J
(
θ(i−1)

)
.

Note that this is indeed a descent direction, because

∇TJ
(
θ(i−1)

)
∆θ(i) = −∇TJ

(
θ(i−1)

)
∇2J

(
θ(i−1)

)
∇J
(
θ(i−1)

)
< 0,

due to the positive definite nature of the Hessian. Equality to zero is
achieved only at a minimum.

• Thus, the iterative scheme takes the following form:

θ(i) = θ(i−1) − µi
(
∇2J

(
θ(i−1)

))−1∇J(θ(i−1))

Sergios Theodoridis, University of Athens. Machine Learning, 19/37

Newton’s Iterative Minimization Method

• The minimum results by equating the corresponding gradient to 0, i.e.,

∆θ(i) = −
(
∇2J

(
θ(i−1)

))−1
∇J
(
θ(i−1)

)
.

Note that this is indeed a descent direction, because

∇TJ
(
θ(i−1)

)
∆θ(i) = −∇TJ

(
θ(i−1)

)
∇2J

(
θ(i−1)

)
∇J
(
θ(i−1)

)
< 0,

due to the positive definite nature of the Hessian. Equality to zero is
achieved only at a minimum.

• Thus, the iterative scheme takes the following form:

θ(i) = θ(i−1) − µi
(
∇2J

(
θ(i−1)

))−1∇J(θ(i−1))
According to Newton’s method, a local quadratic approximation of the
cost function is considered, and the correction pushes the new estimate
towards the minimum of this approximation. If the cost function is
quadratic, then convergence can be achieved in one step.

Sergios Theodoridis, University of Athens. Machine Learning, 19/37

Newton’s Iterative Minimization Method

• The presence of the Hessian in the correction term remedies, to a
large extent, the influence of the condition number of the Hessian
matrix on the convergence.

• The convergence rate for Newton’s method is, in general, high
and it becomes quadratic close to the solution. Assuming θ∗ to
be the minimum, quadratic convergence means that at each
iteration, i, the deviation from the optimum value follows the
pattern:

ln ln
1

||θ(i) − θ∗||2
∝ i

• In contrast, for the linear convergence, the iterations approach
the optimal according to:

ln
1

||θ(i) − θ∗||2
∝ i.

• The RLS algorithm can be rederived following Newton’s iterative
scheme applied to the MSE and adopting stochastic
approximation arguments.

Sergios Theodoridis, University of Athens. Machine Learning, 20/37

Newton’s Iterative Minimization Method

• The presence of the Hessian in the correction term remedies, to a
large extent, the influence of the condition number of the Hessian
matrix on the convergence.

• The convergence rate for Newton’s method is, in general, high
and it becomes quadratic close to the solution. Assuming θ∗ to
be the minimum, quadratic convergence means that at each
iteration, i, the deviation from the optimum value follows the
pattern:

ln ln
1

||θ(i) − θ∗||2
∝ i

• In contrast, for the linear convergence, the iterations approach
the optimal according to:

ln
1

||θ(i) − θ∗||2
∝ i.

• The RLS algorithm can be rederived following Newton’s iterative
scheme applied to the MSE and adopting stochastic
approximation arguments.

Sergios Theodoridis, University of Athens. Machine Learning, 20/37

Newton’s Iterative Minimization Method

• The presence of the Hessian in the correction term remedies, to a
large extent, the influence of the condition number of the Hessian
matrix on the convergence.

• The convergence rate for Newton’s method is, in general, high
and it becomes quadratic close to the solution. Assuming θ∗ to
be the minimum, quadratic convergence means that at each
iteration, i, the deviation from the optimum value follows the
pattern:

ln ln
1

||θ(i) − θ∗||2
∝ i

• In contrast, for the linear convergence, the iterations approach
the optimal according to:

ln
1

||θ(i) − θ∗||2
∝ i.

• The RLS algorithm can be rederived following Newton’s iterative
scheme applied to the MSE and adopting stochastic
approximation arguments.

Sergios Theodoridis, University of Athens. Machine Learning, 20/37

Steady State Performance of the RLS

• Compared to the stochastic gradient techniques, we do not have to
worry whether RLS converges and where it converges. The RLS
computes the exact solution of the EWLS minimization task in an
iterative way. Asymptotically and for β = 1, λ = 0) solves the MSE
optimization task.

• However, we have to consider its steady state performance for β 6= 1.
Even for the stationary case, β 6= 1 results in an excess MSE. To this
end, we adopt the same setting as that which is followed in Chapter 5.

• We adopt the following model for generating the data,

yn = θTo,nxn + ηn,

and
θo,n = θo,n−1 +ωn, with E[ωnω

T
n] = Σω.

where ηn are the noise samples, i.i.d drawn, of variance σ2
η.

• A performance index is related to the excess MSE with respect to the
optimal MSE estimator, for each time instant, n. Since the MSE
estimator is the optimal one, it results in the minimum MSE error, Jmin.
The estimator associated with the RLS, minimizing the EWLS, will
result in higher MSE, by an amount Jexc.

Sergios Theodoridis, University of Athens. Machine Learning, 21/37

Steady State Performance of the RLS

• Compared to the stochastic gradient techniques, we do not have to
worry whether RLS converges and where it converges. The RLS
computes the exact solution of the EWLS minimization task in an
iterative way. Asymptotically and for β = 1, λ = 0) solves the MSE
optimization task.

• However, we have to consider its steady state performance for β 6= 1.
Even for the stationary case, β 6= 1 results in an excess MSE. To this
end, we adopt the same setting as that which is followed in Chapter 5.

• We adopt the following model for generating the data,

yn = θTo,nxn + ηn,

and
θo,n = θo,n−1 +ωn, with E[ωnω

T
n] = Σω.

where ηn are the noise samples, i.i.d drawn, of variance σ2
η.

• A performance index is related to the excess MSE with respect to the
optimal MSE estimator, for each time instant, n. Since the MSE
estimator is the optimal one, it results in the minimum MSE error, Jmin.
The estimator associated with the RLS, minimizing the EWLS, will
result in higher MSE, by an amount Jexc.

Sergios Theodoridis, University of Athens. Machine Learning, 21/37

Steady State Performance of the RLS

• Compared to the stochastic gradient techniques, we do not have to
worry whether RLS converges and where it converges. The RLS
computes the exact solution of the EWLS minimization task in an
iterative way. Asymptotically and for β = 1, λ = 0) solves the MSE
optimization task.

• However, we have to consider its steady state performance for β 6= 1.
Even for the stationary case, β 6= 1 results in an excess MSE. To this
end, we adopt the same setting as that which is followed in Chapter 5.

• We adopt the following model for generating the data,

yn = θTo,nxn + ηn,

and
θo,n = θo,n−1 +ωn, with E[ωnω

T
n] = Σω.

where ηn are the noise samples, i.i.d drawn, of variance σ2
η.

• A performance index is related to the excess MSE with respect to the
optimal MSE estimator, for each time instant, n. Since the MSE
estimator is the optimal one, it results in the minimum MSE error, Jmin.
The estimator associated with the RLS, minimizing the EWLS, will
result in higher MSE, by an amount Jexc.

Sergios Theodoridis, University of Athens. Machine Learning, 21/37

Steady State Performance of the RLS

• Compared to the stochastic gradient techniques, we do not have to
worry whether RLS converges and where it converges. The RLS
computes the exact solution of the EWLS minimization task in an
iterative way. Asymptotically and for β = 1, λ = 0) solves the MSE
optimization task.

• However, we have to consider its steady state performance for β 6= 1.
Even for the stationary case, β 6= 1 results in an excess MSE. To this
end, we adopt the same setting as that which is followed in Chapter 5.

• We adopt the following model for generating the data,

yn = θTo,nxn + ηn,

and
θo,n = θo,n−1 +ωn, with E[ωnω

T
n] = Σω.

where ηn are the noise samples, i.i.d drawn, of variance σ2
η.

• A performance index is related to the excess MSE with respect to the
optimal MSE estimator, for each time instant, n. Since the MSE
estimator is the optimal one, it results in the minimum MSE error, Jmin.
The estimator associated with the RLS, minimizing the EWLS, will
result in higher MSE, by an amount Jexc.

Sergios Theodoridis, University of Athens. Machine Learning, 21/37

Steady State Performance of the RLS

• The resulting excess MSE, Jexc, for the RLS is given below together
with that of the LMS, for the sake of comparison.

Algorithm Excess MSE, Jexc, at Steady-state.
LMS 1

2µσ
2
ηTrace{Σx}+ 1

2µ
−1Trace{Σω}

RLS 1
2 (1− β)σ2

ηl + 1
2 (1− β)−1Trace{ΣωΣx}

Table: The Steady State Excess MSE, for small values of µ and β. For
stationary environments, Σω is set equal to zero.

• According to the table, the following remarks are in order:

For stationary environments, the performance of the RLS is
independent of input data covariance matrix, Σx. Of course, if one
knows that the environment is stationary then ideally β = 1 should
be the choice. Yet, for β = 1, the algorithm has stability problems.
Note that for small µ and β ' 1, there is an “equivalence” of
µ ' 1− β, for the two parameters in the LMS and RLS. That is,
larger values of µ are beneficial to the tracking performance of
LMS, while smaller values of β need for faster tracking of the RLS;
this is expected since the algorithm forgets the past.

Sergios Theodoridis, University of Athens. Machine Learning, 22/37

Steady State Performance of the RLS

• The resulting excess MSE, Jexc, for the RLS is given below together
with that of the LMS, for the sake of comparison.

Algorithm Excess MSE, Jexc, at Steady-state.
LMS 1

2µσ
2
ηTrace{Σx}+ 1

2µ
−1Trace{Σω}

RLS 1
2 (1− β)σ2

ηl + 1
2 (1− β)−1Trace{ΣωΣx}

Table: The Steady State Excess MSE, for small values of µ and β. For
stationary environments, Σω is set equal to zero.

• According to the table, the following remarks are in order:

For stationary environments, the performance of the RLS is
independent of input data covariance matrix, Σx. Of course, if one
knows that the environment is stationary then ideally β = 1 should
be the choice. Yet, for β = 1, the algorithm has stability problems.
Note that for small µ and β ' 1, there is an “equivalence” of
µ ' 1− β, for the two parameters in the LMS and RLS. That is,
larger values of µ are beneficial to the tracking performance of
LMS, while smaller values of β need for faster tracking of the RLS;
this is expected since the algorithm forgets the past.

Sergios Theodoridis, University of Athens. Machine Learning, 22/37

Steady State Performance of the RLS

• The resulting excess MSE, Jexc, for the RLS is given below together
with that of the LMS, for the sake of comparison.

Algorithm Excess MSE, Jexc, at Steady-state.
LMS 1

2µσ
2
ηTrace{Σx}+ 1

2µ
−1Trace{Σω}

RLS 1
2 (1− β)σ2

ηl + 1
2 (1− β)−1Trace{ΣωΣx}

Table: The Steady State Excess MSE, for small values of µ and β. For
stationary environments, Σω is set equal to zero.

• According to the table, the following remarks are in order:

For stationary environments, the performance of the RLS is
independent of input data covariance matrix, Σx. Of course, if one
knows that the environment is stationary then ideally β = 1 should
be the choice. Yet, for β = 1, the algorithm has stability problems.
Note that for small µ and β ' 1, there is an “equivalence” of
µ ' 1− β, for the two parameters in the LMS and RLS. That is,
larger values of µ are beneficial to the tracking performance of
LMS, while smaller values of β need for faster tracking of the RLS;
this is expected since the algorithm forgets the past.

Sergios Theodoridis, University of Athens. Machine Learning, 22/37

Steady State Performance of the RLS

• The minimum values for the excess MSE, corresponding to the optimal
set up of the parameters, µ and β, for the LMS and RLS, respectively,
is easily shown to obey the following,

JLMS
min

JRLS
min

=

√
Trace{Σx}Trace{Σω}

lTrace{ΣωΣx}
.

This ratio depends on Σω and Σx. Sometimes LMS tracks better, yet
in other problems RLS is the winner. Having said that, it must be
pointed out that the RLS always converges to the steady-state faster
and the difference in the rate, compared to the LMS, increases with the
condition number of the input covariance matrix. Recall that, the
steady-state of an online algorithm has been reached if the parameter
error covariance matrix does not change with time.

• Dealing with the analysis of online algorithms is a mathematically tough
task, and the previous reported results have to be considered as a first
and a rough justification of what is experimentally observed in practice;
they are results obtained under a set of strong, and sometimes
unrealistic, assumptions. Some further discussion on these issues is
provided in the text.

Sergios Theodoridis, University of Athens. Machine Learning, 23/37

Steady State Performance of the RLS

• The minimum values for the excess MSE, corresponding to the optimal
set up of the parameters, µ and β, for the LMS and RLS, respectively,
is easily shown to obey the following,

JLMS
min

JRLS
min

=

√
Trace{Σx}Trace{Σω}

lTrace{ΣωΣx}
.

This ratio depends on Σω and Σx. Sometimes LMS tracks better, yet
in other problems RLS is the winner. Having said that, it must be
pointed out that the RLS always converges to the steady-state faster
and the difference in the rate, compared to the LMS, increases with the
condition number of the input covariance matrix. Recall that, the
steady-state of an online algorithm has been reached if the parameter
error covariance matrix does not change with time.

• Dealing with the analysis of online algorithms is a mathematically tough
task, and the previous reported results have to be considered as a first
and a rough justification of what is experimentally observed in practice;
they are results obtained under a set of strong, and sometimes
unrealistic, assumptions. Some further discussion on these issues is
provided in the text.

Sergios Theodoridis, University of Athens. Machine Learning, 23/37

Steady State Performance of the RLS

• The minimum values for the excess MSE, corresponding to the optimal
set up of the parameters, µ and β, for the LMS and RLS, respectively,
is easily shown to obey the following,

JLMS
min

JRLS
min

=

√
Trace{Σx}Trace{Σω}

lTrace{ΣωΣx}
.

This ratio depends on Σω and Σx. Sometimes LMS tracks better, yet
in other problems RLS is the winner. Having said that, it must be
pointed out that the RLS always converges to the steady-state faster
and the difference in the rate, compared to the LMS, increases with the
condition number of the input covariance matrix. Recall that, the
steady-state of an online algorithm has been reached if the parameter
error covariance matrix does not change with time.

• Dealing with the analysis of online algorithms is a mathematically tough
task, and the previous reported results have to be considered as a first
and a rough justification of what is experimentally observed in practice;
they are results obtained under a set of strong, and sometimes
unrealistic, assumptions. Some further discussion on these issues is
provided in the text.

Sergios Theodoridis, University of Athens. Machine Learning, 23/37

Comparative Performance of the RLS: Some Simulation Examples

• Stationary Environment: The focus of this example is to demonstrate the
comparative performance, with respect to the convergence rate of the RLS,
the NLMS and the APA algorithms, which are discussed in Chapter 5. To this
end, data were generated according to the regression model

yn = θTo xn + ηn,

where θo ∈ R200. Its elements are generated randomly according the
normalized Gaussian. The noise samples are i.i.d generated via the zero mean
Gaussian with variance equal to σ2

η = 0.01. The elements of the input vector
are also i.i.d. generated via the normalized Gaussian. Using the generated
samples (yn,xn), n = 0, 1, . . ., as the training sequence, the convergence
curves of the figure shown below are obtained.

Sergios Theodoridis, University of Athens. Machine Learning, 24/37

Comparative Performance of the RLS: Some Simulation Examples

• Stationary Environment: The focus of this example is to demonstrate the
comparative performance, with respect to the convergence rate of the RLS,
the NLMS and the APA algorithms, which are discussed in Chapter 5. To this
end, data were generated according to the regression model

yn = θTo xn + ηn,

where θo ∈ R200. Its elements are generated randomly according the
normalized Gaussian. The noise samples are i.i.d generated via the zero mean
Gaussian with variance equal to σ2

η = 0.01. The elements of the input vector
are also i.i.d. generated via the normalized Gaussian. Using the generated
samples (yn,xn), n = 0, 1, . . ., as the training sequence, the convergence
curves of the figure shown below are obtained.

The curves show the average mean square in dBs (10 log10(e
2
n)),

averaged over 100 different realizations of the experiments, as a
function of the time index n. The parameters used for the involved
algorithms are: a) For he NLMS, we used µ = 1.2 and δ = 0.001,
b) for the APA, we used µ = 0.2, δ = 0.001 and q = 30 and c)
for the RLS β = 1 and λ = 0.1. The parameters for the NLMS
and the APA were chosen so that both algorithms to converge to the
same error floor.
Observe that the the RLS converges faster and at lower error floor.

Sergios Theodoridis, University of Athens. Machine Learning, 24/37

Comparative Performance of the RLS: Some Simulation Examples

• Rayleigh fading channels: This example focusses on the comparative
tracking performance of the RLS and NLMS. Our goal is to demonstrate
some cases, where the RLS fails to do as good as the NLMS. Of course,
it has to be kept in mind that, according to the theory, the comparative
performance is very much dependent on the specific application.

• For the needs of our example, data were generated according to the
model,

yn = xTnθo,n + ηn, where θo,n = αθo,n−1 + ωn, θo,n ∈ R5

• It turns out that such a time varying model is closely related to what is
known in communications as a Rayleigh fading channel, if the
parameters comprising θo are thought to represent the impulse response
of such a channel. Rayleigh fading channels are very common and can
adequately model a number of transmission channels in wireless
communications. Playing with the parameters α and the variance of the
corresponding noise source, ω, one can achieve fast or slow time
varying scenarios. In our case, we chose α = 0.97 and the noise
followed a Gaussian distribution of zero mean and covariance matrix
Σω = 0.1I. This choice corresponds to a fast fading channel. The
comparative performance curves are shown in the next figure.

Sergios Theodoridis, University of Athens. Machine Learning, 25/37

Comparative Performance of the RLS: Some Simulation Examples

• Rayleigh fading channels: This example focusses on the comparative
tracking performance of the RLS and NLMS. Our goal is to demonstrate
some cases, where the RLS fails to do as good as the NLMS. Of course,
it has to be kept in mind that, according to the theory, the comparative
performance is very much dependent on the specific application.

• For the needs of our example, data were generated according to the
model,

yn = xTnθo,n + ηn, where θo,n = αθo,n−1 + ωn, θo,n ∈ R5

• It turns out that such a time varying model is closely related to what is
known in communications as a Rayleigh fading channel, if the
parameters comprising θo are thought to represent the impulse response
of such a channel. Rayleigh fading channels are very common and can
adequately model a number of transmission channels in wireless
communications. Playing with the parameters α and the variance of the
corresponding noise source, ω, one can achieve fast or slow time
varying scenarios. In our case, we chose α = 0.97 and the noise
followed a Gaussian distribution of zero mean and covariance matrix
Σω = 0.1I. This choice corresponds to a fast fading channel. The
comparative performance curves are shown in the next figure.

Sergios Theodoridis, University of Athens. Machine Learning, 25/37

Comparative Performance of the RLS: Some Simulation Examples

• Rayleigh fading channels: This example focusses on the comparative
tracking performance of the RLS and NLMS. Our goal is to demonstrate
some cases, where the RLS fails to do as good as the NLMS. Of course,
it has to be kept in mind that, according to the theory, the comparative
performance is very much dependent on the specific application.

• For the needs of our example, data were generated according to the
model,

yn = xTnθo,n + ηn, where θo,n = αθo,n−1 + ωn, θo,n ∈ R5

• It turns out that such a time varying model is closely related to what is
known in communications as a Rayleigh fading channel, if the
parameters comprising θo are thought to represent the impulse response
of such a channel. Rayleigh fading channels are very common and can
adequately model a number of transmission channels in wireless
communications. Playing with the parameters α and the variance of the
corresponding noise source, ω, one can achieve fast or slow time
varying scenarios. In our case, we chose α = 0.97 and the noise
followed a Gaussian distribution of zero mean and covariance matrix
Σω = 0.1I. This choice corresponds to a fast fading channel. The
comparative performance curves are shown in the next figure.

Sergios Theodoridis, University of Athens. Machine Learning, 25/37

Comparative Performance of the RLS: Some Simulation Examples

• For the RLS (gray), the forgetting factor was set equal to β = 0.995
and for the NLMS (red), µ = 0.5 and δ = 0.001. Such a choice resulted
in the best performance, for both algorithms, after extensive
experimentation. The curves are the result of averaging out over 200
independent runs. For this fast fading channel case, the RLS fails to
track it, in spite of its very fast initial convergence, compared to the
NLMS.

Sergios Theodoridis, University of Athens. Machine Learning, 26/37

Comparative Performance of the RLS: Some Simulation Examples

• The following figures show the resulting curves for a medium (a) and a
slow (b) time varying channels, corresponding to Σω = 0.01I and
Σω = 0.001I respectively.

(a) (b)

MSE curves as a function of iteration for a) a medium and b) a slow time varying parameter model. The red
curve corresponds to the NLMS and the gray one to the RLS.

Sergios Theodoridis, University of Athens. Machine Learning, 27/37

Singular Value Decomposition

• Singular Value Decomposition: The Singular Value Decomposition
(SVD) of a matrix is one among the most powerful tools in linear
algebra. We start by considering the general case.

• Let X be an m× l matrix and allow its rank, r, not to be necessarily
full, i.e., r ≤ min(m, l).

• Then, there exist orthogonal matrices, U and V , of dimensions m×m
and l × l, respectively, so that

X = U

[
D O
O O

]
V T

where D is an r × r diagonal matrix with elements σi =
√
λi, known as

the singular values of X, where λi, i = 1, 2, . . . , r, are the nonzero
eigenvalues of XXT ; matrices denoted as O comprise zero elements
and are of appropriate dimensions.

• Taking into account the zero elements in the diagonal matrix, the
previous matrix factorization can be rewritten as

X = UrDV
T
r =

r∑
i=1

σiuiv
T
i , (7)

where

Ur := [u1, . . . ,ur] ∈ Rm×r, Vr := [v1, . . . ,vr] ∈ Rl×r. (8)

Sergios Theodoridis, University of Athens. Machine Learning, 28/37

Singular Value Decomposition

• Singular Value Decomposition: The Singular Value Decomposition
(SVD) of a matrix is one among the most powerful tools in linear
algebra. We start by considering the general case.

• Let X be an m× l matrix and allow its rank, r, not to be necessarily
full, i.e., r ≤ min(m, l).

• Then, there exist orthogonal matrices, U and V , of dimensions m×m
and l × l, respectively, so that

X = U

[
D O
O O

]
V T

where D is an r × r diagonal matrix with elements σi =
√
λi, known as

the singular values of X, where λi, i = 1, 2, . . . , r, are the nonzero
eigenvalues of XXT ; matrices denoted as O comprise zero elements
and are of appropriate dimensions.

• Taking into account the zero elements in the diagonal matrix, the
previous matrix factorization can be rewritten as

X = UrDV
T
r =

r∑
i=1

σiuiv
T
i , (7)

where

Ur := [u1, . . . ,ur] ∈ Rm×r, Vr := [v1, . . . ,vr] ∈ Rl×r. (8)

Sergios Theodoridis, University of Athens. Machine Learning, 28/37

Singular Value Decomposition

• Singular Value Decomposition: The Singular Value Decomposition
(SVD) of a matrix is one among the most powerful tools in linear
algebra. We start by considering the general case.

• Let X be an m× l matrix and allow its rank, r, not to be necessarily
full, i.e., r ≤ min(m, l).

• Then, there exist orthogonal matrices, U and V , of dimensions m×m
and l × l, respectively, so that

X = U

[
D O
O O

]
V T

where D is an r × r diagonal matrix with elements σi =
√
λi, known as

the singular values of X, where λi, i = 1, 2, . . . , r, are the nonzero
eigenvalues of XXT ; matrices denoted as O comprise zero elements
and are of appropriate dimensions.

• Taking into account the zero elements in the diagonal matrix, the
previous matrix factorization can be rewritten as

X = UrDV
T
r =

r∑
i=1

σiuiv
T
i , (7)

where

Ur := [u1, . . . ,ur] ∈ Rm×r, Vr := [v1, . . . ,vr] ∈ Rl×r. (8)

Sergios Theodoridis, University of Athens. Machine Learning, 28/37

Singular Value Decomposition

• Singular Value Decomposition: The Singular Value Decomposition
(SVD) of a matrix is one among the most powerful tools in linear
algebra. We start by considering the general case.

• Let X be an m× l matrix and allow its rank, r, not to be necessarily
full, i.e., r ≤ min(m, l).

• Then, there exist orthogonal matrices, U and V , of dimensions m×m
and l × l, respectively, so that

X = U

[
D O
O O

]
V T

where D is an r × r diagonal matrix with elements σi =
√
λi, known as

the singular values of X, where λi, i = 1, 2, . . . , r, are the nonzero
eigenvalues of XXT ; matrices denoted as O comprise zero elements
and are of appropriate dimensions.

• Taking into account the zero elements in the diagonal matrix, the
previous matrix factorization can be rewritten as

X = UrDV
T
r =

r∑
i=1

σiuiv
T
i , (7)

where

Ur := [u1, . . . ,ur] ∈ Rm×r, Vr := [v1, . . . ,vr] ∈ Rl×r. (8)

Sergios Theodoridis, University of Athens. Machine Learning, 28/37

Singular Value Decomposition

• The figure below offers a schematic illustration of the SVD factorization
of an m× l matrix of rank r.

The m× l matrix X, of rank r ≤ min(m, l), factorizes in terms of the matrices Ur ∈ Rm×r , Vr ∈ Rl×r

and the r × r diagonal matrix D.

• It turns out that, ui ∈ Rm, i = 1, 2, . . . , r, known as left singular
vectors, are the eigenvectors corresponding to the nonzero eigenvalues of
XXT , and vi ∈ Rl, i = 1, 2, . . . , r, are the eigenvectors associated with
the nonzero eigenvalues of XTX and they are known as right singular
vectors. Note that both, XXT and XTX, share the same eigenvalues.

Sergios Theodoridis, University of Athens. Machine Learning, 29/37

Singular Value Decomposition

• The figure below offers a schematic illustration of the SVD factorization
of an m× l matrix of rank r.

The m× l matrix X, of rank r ≤ min(m, l), factorizes in terms of the matrices Ur ∈ Rm×r , Vr ∈ Rl×r

and the r × r diagonal matrix D.

• It turns out that, ui ∈ Rm, i = 1, 2, . . . , r, known as left singular
vectors, are the eigenvectors corresponding to the nonzero eigenvalues of
XXT , and vi ∈ Rl, i = 1, 2, . . . , r, are the eigenvectors associated with
the nonzero eigenvalues of XTX and they are known as right singular
vectors. Note that both, XXT and XTX, share the same eigenvalues.

Sergios Theodoridis, University of Athens. Machine Learning, 29/37

Singular Value Decomposition

• Proof: By the respective definitions, we have

XXTui = λiui, i = 1, 2, . . . , r, (9)

and
XTXvi = λivi, i = 1, 2, . . . , r. (10)

• Moreover, since XXT and XTX are symmetric matrices, it is known
from linear algebra that their eigenvalues are real and the respective
eigenvectors are orthogonal, which can then be normalized to unit
norm to become orthonormal. It is a matter of simple algebra to show
from (9) and (10) that,

ui =
1

σi
Xvi, i = 1, 2, . . . , r. (11)

• Thus, we can write that
r∑
i=1

σiuiv
T
i = X

r∑
i=1

viv
T
i = X

l∑
i=1

viv
T
i = XV V T ,

where we used the fact that for eigenvectors corresponding to
σi = 0 (λi = 0), i = r + 1, . . . , l, Xvi = 0. However, due to the
orthonormality of vi, V V

T = I and the claim in (7) has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 30/37

Singular Value Decomposition

• Proof: By the respective definitions, we have

XXTui = λiui, i = 1, 2, . . . , r, (9)

and
XTXvi = λivi, i = 1, 2, . . . , r. (10)

• Moreover, since XXT and XTX are symmetric matrices, it is known
from linear algebra that their eigenvalues are real and the respective
eigenvectors are orthogonal, which can then be normalized to unit
norm to become orthonormal. It is a matter of simple algebra to show
from (9) and (10) that,

ui =
1

σi
Xvi, i = 1, 2, . . . , r. (11)

• Thus, we can write that
r∑
i=1

σiuiv
T
i = X

r∑
i=1

viv
T
i = X

l∑
i=1

viv
T
i = XV V T ,

where we used the fact that for eigenvectors corresponding to
σi = 0 (λi = 0), i = r + 1, . . . , l, Xvi = 0. However, due to the
orthonormality of vi, V V

T = I and the claim in (7) has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 30/37

Singular Value Decomposition

• Proof: By the respective definitions, we have

XXTui = λiui, i = 1, 2, . . . , r, (9)

and
XTXvi = λivi, i = 1, 2, . . . , r. (10)

• Moreover, since XXT and XTX are symmetric matrices, it is known
from linear algebra that their eigenvalues are real and the respective
eigenvectors are orthogonal, which can then be normalized to unit
norm to become orthonormal. It is a matter of simple algebra to show
from (9) and (10) that,

ui =
1

σi
Xvi, i = 1, 2, . . . , r. (11)

• Thus, we can write that
r∑
i=1

σiuiv
T
i = X

r∑
i=1

viv
T
i = X

l∑
i=1

viv
T
i = XV V T ,

where we used the fact that for eigenvectors corresponding to
σi = 0 (λi = 0), i = r + 1, . . . , l, Xvi = 0. However, due to the
orthonormality of vi, V V

T = I and the claim in (7) has been proved.

Sergios Theodoridis, University of Athens. Machine Learning, 30/37

Pseudo-inverse Matrix and SVD

• Let us now elaborate on the SVD expansion, in the context of the LS method.
By the definition of the pseudoinverse, X†, and assuming the N × l (N > l)
data matrix to be full column rank (r = l), then employing the SVD
factorization of X, in the respective definition of the pseudoinverse, we get,

ŷ = Xθ̂LS = XX†y = X(XTX)−1XTy = UlU
T
l y = [u1, . . . ,ul]

u
T
1 y
...

uTl y

 ,
or

ŷ =

l∑
i=1

(uTi y)ui. (12)

This is the projection of y onto the column space of X, i.e.,
span{xc1, . . . ,xcl }, described via the orthonormal basis, {u1, . . . ,ul}.

Sergios Theodoridis, University of Athens. Machine Learning, 31/37

Pseudo-inverse Matrix and SVD

• Let us now elaborate on the SVD expansion, in the context of the LS method.
By the definition of the pseudoinverse, X†, and assuming the N × l (N > l)
data matrix to be full column rank (r = l), then employing the SVD
factorization of X, in the respective definition of the pseudoinverse, we get,

ŷ = Xθ̂LS = XX†y = X(XTX)−1XTy = UlU
T
l y = [u1, . . . ,ul]

u
T
1 y
...

uTl y

 ,
or

ŷ =

l∑
i=1

(uTi y)ui. (12)

This is the projection of y onto the column space of X, i.e.,
span{xc1, . . . ,xcl }, described via the orthonormal basis, {u1, . . . ,ul}.

Sergios Theodoridis, University of Athens. Machine Learning, 31/37

Pseudo-inverse Matrix and SVD

• Let us now elaborate on the SVD expansion, in the context of the LS method.
By the definition of the pseudoinverse, X†, and assuming the N × l (N > l)
data matrix to be full column rank (r = l), then employing the SVD
factorization of X, in the respective definition of the pseudoinverse, we get,

ŷ = Xθ̂LS = XX†y = X(XTX)−1XTy = UlU
T
l y = [u1, . . . ,ul]

u
T
1 y
...

uTl y

 ,
or

ŷ =

l∑
i=1

(uTi y)ui. (12)

This is the projection of y onto the column space of X, i.e.,
span{xc1, . . . ,xcl }, described via the orthonormal basis, {u1, . . . ,ul}.

The eigenvectors u1,u2, form an orthonormal basis, in
span{xc

1,x
c
2}; that is, the column space of X.

Sergios Theodoridis, University of Athens. Machine Learning, 31/37

Pseudo-inverse Matrix and SVD

• Moreover, it is easily shown that we can write,

X† = (XTX)−1XT = VlD
−1UTl =

l∑
i=1

1

σi
viu

T
i .

• As a matter of fact, this is in line with the more general definition of a
pseudo-inverse in linear algebra, including matrices which are not full rank
(i.e., XTX is not invertible), namely

X† := VrD
−1UTr =

r∑
i=1

1

σi
viu

T
i .

• Pseudoinverse of a fat matrix: Using the above more general definition, it can
be readily shown that the pseudoinverse of a fat matrix, i.e., N < l, is given
by

X† = XT (XXT)−1.

• The pseudoinverse of a fat matrix has an interesting implication. Given the
linear system with less equations than unknowns,

Xθ = y, X ∈ RN×l, θ ∈ Rl, y ∈ RN , N < l,

it is known to have infinite many solutions. However, the solution that has
the least Euclidean norm is given by,

θ̂ = X†y.

Equivalently, θ̂ solves the following constrained optimization task:

minimize ||θ||2, s.t. Xθ = y.

Sergios Theodoridis, University of Athens. Machine Learning, 32/37

Pseudo-inverse Matrix and SVD

• Moreover, it is easily shown that we can write,

X† = (XTX)−1XT = VlD
−1UTl =

l∑
i=1

1

σi
viu

T
i .

• As a matter of fact, this is in line with the more general definition of a
pseudo-inverse in linear algebra, including matrices which are not full rank
(i.e., XTX is not invertible), namely

X† := VrD
−1UTr =

r∑
i=1

1

σi
viu

T
i .

• Pseudoinverse of a fat matrix: Using the above more general definition, it can
be readily shown that the pseudoinverse of a fat matrix, i.e., N < l, is given
by

X† = XT (XXT)−1.

• The pseudoinverse of a fat matrix has an interesting implication. Given the
linear system with less equations than unknowns,

Xθ = y, X ∈ RN×l, θ ∈ Rl, y ∈ RN , N < l,

it is known to have infinite many solutions. However, the solution that has
the least Euclidean norm is given by,

θ̂ = X†y.

Equivalently, θ̂ solves the following constrained optimization task:

minimize ||θ||2, s.t. Xθ = y.

Sergios Theodoridis, University of Athens. Machine Learning, 32/37

Pseudo-inverse Matrix and SVD

• Moreover, it is easily shown that we can write,

X† = (XTX)−1XT = VlD
−1UTl =

l∑
i=1

1

σi
viu

T
i .

• As a matter of fact, this is in line with the more general definition of a
pseudo-inverse in linear algebra, including matrices which are not full rank
(i.e., XTX is not invertible), namely

X† := VrD
−1UTr =

r∑
i=1

1

σi
viu

T
i .

• Pseudoinverse of a fat matrix: Using the above more general definition, it can
be readily shown that the pseudoinverse of a fat matrix, i.e., N < l, is given
by

X† = XT (XXT)−1.

• The pseudoinverse of a fat matrix has an interesting implication. Given the
linear system with less equations than unknowns,

Xθ = y, X ∈ RN×l, θ ∈ Rl, y ∈ RN , N < l,

it is known to have infinite many solutions. However, the solution that has
the least Euclidean norm is given by,

θ̂ = X†y.

Equivalently, θ̂ solves the following constrained optimization task:

minimize ||θ||2, s.t. Xθ = y.

Sergios Theodoridis, University of Athens. Machine Learning, 32/37

Pseudo-inverse Matrix and SVD

• Moreover, it is easily shown that we can write,

X† = (XTX)−1XT = VlD
−1UTl =

l∑
i=1

1

σi
viu

T
i .

• As a matter of fact, this is in line with the more general definition of a
pseudo-inverse in linear algebra, including matrices which are not full rank
(i.e., XTX is not invertible), namely

X† := VrD
−1UTr =

r∑
i=1

1

σi
viu

T
i .

• Pseudoinverse of a fat matrix: Using the above more general definition, it can
be readily shown that the pseudoinverse of a fat matrix, i.e., N < l, is given
by

X† = XT (XXT)−1.

• The pseudoinverse of a fat matrix has an interesting implication. Given the
linear system with less equations than unknowns,

Xθ = y, X ∈ RN×l, θ ∈ Rl, y ∈ RN , N < l,

it is known to have infinite many solutions. However, the solution that has
the least Euclidean norm is given by,

θ̂ = X†y.

Equivalently, θ̂ solves the following constrained optimization task:

minimize ||θ||2, s.t. Xθ = y.

Sergios Theodoridis, University of Athens. Machine Learning, 32/37

Pseudo-inverse Matrix and SVD

• Moreover, it is easily shown that we can write,

X† = (XTX)−1XT = VlD
−1UTl =

l∑
i=1

1

σi
viu

T
i .

• As a matter of fact, this is in line with the more general definition of a
pseudo-inverse in linear algebra, including matrices which are not full rank
(i.e., XTX is not invertible), namely

X† := VrD
−1UTr =

r∑
i=1

1

σi
viu

T
i .

• Pseudoinverse of a fat matrix: Using the above more general definition, it can
be readily shown that the pseudoinverse of a fat matrix, i.e., N < l, is given
by

X† = XT (XXT)−1.

• The pseudoinverse of a fat matrix has an interesting implication. Given the
linear system with less equations than unknowns,

Xθ = y, X ∈ RN×l, θ ∈ Rl, y ∈ RN , N < l,

it is known to have infinite many solutions. However, the solution that has
the least Euclidean norm is given by,

θ̂ = X†y.

Equivalently, θ̂ solves the following constrained optimization task:

minimize ||θ||2, s.t. Xθ = y.

Sergios Theodoridis, University of Athens. Machine Learning, 32/37

Ridge Regression

• By definition, in ridge regression, the minimizer results as

θ̂R = arg min
θ

{
‖y −Xθ‖2 + λ‖θ‖2

}
,

where λ is a user-defined parameter that controls the importance of the
regularizing term.

• Taking the gradient w.r. to θ and equating to zero results in

θ̂R = (XTX + λI)−1XTy.

• Looking at the above equation, we readily observe a) its stabilizing’’
effect from the numerical point of view, when XTX has large condition
number and b) its biasing effect on the (unbiased) LS solution. Note
that ridge regression provides a solution even if XTX is not invertible,
as it is the case when N < l.

• Assuming a full column rank matrix, X, we obtain,

ŷ = Xθ̂R = UlD(D2 + λI)−1DUTl y,

or

ŷ =

l∑
i=1

σ2
i

λ+ σ2
i

(uTi y)ui. (13)

Sergios Theodoridis, University of Athens. Machine Learning, 33/37

Ridge Regression

• By definition, in ridge regression, the minimizer results as

θ̂R = arg min
θ

{
‖y −Xθ‖2 + λ‖θ‖2

}
,

where λ is a user-defined parameter that controls the importance of the
regularizing term.

• Taking the gradient w.r. to θ and equating to zero results in

θ̂R = (XTX + λI)−1XTy.

• Looking at the above equation, we readily observe a) its stabilizing’’
effect from the numerical point of view, when XTX has large condition
number and b) its biasing effect on the (unbiased) LS solution. Note
that ridge regression provides a solution even if XTX is not invertible,
as it is the case when N < l.

• Assuming a full column rank matrix, X, we obtain,

ŷ = Xθ̂R = UlD(D2 + λI)−1DUTl y,

or

ŷ =

l∑
i=1

σ2
i

λ+ σ2
i

(uTi y)ui. (13)

Sergios Theodoridis, University of Athens. Machine Learning, 33/37

Ridge Regression

• By definition, in ridge regression, the minimizer results as

θ̂R = arg min
θ

{
‖y −Xθ‖2 + λ‖θ‖2

}
,

where λ is a user-defined parameter that controls the importance of the
regularizing term.

• Taking the gradient w.r. to θ and equating to zero results in

θ̂R = (XTX + λI)−1XTy.

• Looking at the above equation, we readily observe a) its stabilizing’’
effect from the numerical point of view, when XTX has large condition
number and b) its biasing effect on the (unbiased) LS solution. Note
that ridge regression provides a solution even if XTX is not invertible,
as it is the case when N < l.

• Assuming a full column rank matrix, X, we obtain,

ŷ = Xθ̂R = UlD(D2 + λI)−1DUTl y,

or

ŷ =

l∑
i=1

σ2
i

λ+ σ2
i

(uTi y)ui. (13)

Sergios Theodoridis, University of Athens. Machine Learning, 33/37

Ridge Regression

• By definition, in ridge regression, the minimizer results as

θ̂R = arg min
θ

{
‖y −Xθ‖2 + λ‖θ‖2

}
,

where λ is a user-defined parameter that controls the importance of the
regularizing term.

• Taking the gradient w.r. to θ and equating to zero results in

θ̂R = (XTX + λI)−1XTy.

• Looking at the above equation, we readily observe a) its stabilizing’’
effect from the numerical point of view, when XTX has large condition
number and b) its biasing effect on the (unbiased) LS solution. Note
that ridge regression provides a solution even if XTX is not invertible,
as it is the case when N < l.

• Assuming a full column rank matrix, X, we obtain,

ŷ = Xθ̂R = UlD(D2 + λI)−1DUTl y,

or

ŷ =

l∑
i=1

σ2
i

λ+ σ2
i

(uTi y)ui. (13)

Sergios Theodoridis, University of Athens. Machine Learning, 33/37

Ridge Regression

• Comparing (13) and (12), we observe that the components of the
projection of y onto the span{u1, . . . ,ul} (span{xc1, . . . ,xcl }) are
shrunk with respect to their LS counterpart. Moreover, the shrinking
level depends on the singular values, σi; the smaller the value of σi is
the higher the shrinkage of the corresponding component becomes.
This has the following interesting geometric interpretation.

• Recall that XTX is a scaled version of the sample covariance matrix for
centered regressors. Also, by the definition of the vi’s, we have,

(XTX)vi = σ2
i vi, i = 1, 2, . . . , l,

and in a compact form,

(XTX)Vl = Vldiag{σ2
1 , . . . , σ

2
l } ⇒

(XTX) = VlD
2V Tl =

l∑
i=1

σ2
i viv

T
i .

• From the last equation, note that, the (scaled) sample covariance
matrix is written as a sum of rank one matrices, viv

T
i , each one

weighted by the square of respective singular value, σ2
i .

Sergios Theodoridis, University of Athens. Machine Learning, 34/37

Ridge Regression

• Comparing (13) and (12), we observe that the components of the
projection of y onto the span{u1, . . . ,ul} (span{xc1, . . . ,xcl }) are
shrunk with respect to their LS counterpart. Moreover, the shrinking
level depends on the singular values, σi; the smaller the value of σi is
the higher the shrinkage of the corresponding component becomes.
This has the following interesting geometric interpretation.

• Recall that XTX is a scaled version of the sample covariance matrix for
centered regressors. Also, by the definition of the vi’s, we have,

(XTX)vi = σ2
i vi, i = 1, 2, . . . , l,

and in a compact form,

(XTX)Vl = Vldiag{σ2
1 , . . . , σ

2
l } ⇒

(XTX) = VlD
2V Tl =

l∑
i=1

σ2
i viv

T
i .

• From the last equation, note that, the (scaled) sample covariance
matrix is written as a sum of rank one matrices, viv

T
i , each one

weighted by the square of respective singular value, σ2
i .

Sergios Theodoridis, University of Athens. Machine Learning, 34/37

Ridge Regression

• Comparing (13) and (12), we observe that the components of the
projection of y onto the span{u1, . . . ,ul} (span{xc1, . . . ,xcl }) are
shrunk with respect to their LS counterpart. Moreover, the shrinking
level depends on the singular values, σi; the smaller the value of σi is
the higher the shrinkage of the corresponding component becomes.
This has the following interesting geometric interpretation.

• Recall that XTX is a scaled version of the sample covariance matrix for
centered regressors. Also, by the definition of the vi’s, we have,

(XTX)vi = σ2
i vi, i = 1, 2, . . . , l,

and in a compact form,

(XTX)Vl = Vldiag{σ2
1 , . . . , σ

2
l } ⇒

(XTX) = VlD
2V Tl =

l∑
i=1

σ2
i viv

T
i .

• From the last equation, note that, the (scaled) sample covariance
matrix is written as a sum of rank one matrices, viv

T
i , each one

weighted by the square of respective singular value, σ2
i .

Sergios Theodoridis, University of Athens. Machine Learning, 34/37

Ridge Regression

• Let us now define,

qj := Xvj =

x
T
1 vj
...

xT
Nvj

 ∈ RN , j = 1, 2, . . . , l. (14)

• Note that qj is a vector in the column space of X. Moreover, the
respective square norm of qj is given by,

N∑
n=1

q2j (n) = qTj qj = vTj X
TXvj = vTj

(
l∑

i=1

σ2i viv
T
i

)
vj = σ2j ,

due to the orthonormality of the vj ’s.
• That is, σ2j is equal to the (scaled) sample variance of the

elements of qj . However, by the definition in (14), this is the
sample variance of the projections of the input vectors
(regressors), xn, n = 1, 2, . . . , N , along the direction vj . The
larger the value of σj is the larger the spread of the (input) data
along the respective direction becomes. This is geometrically
shown in the figure of the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 35/37

Ridge Regression

• Let us now define,

qj := Xvj =

x
T
1 vj
...

xT
Nvj

 ∈ RN , j = 1, 2, . . . , l. (14)

• Note that qj is a vector in the column space of X. Moreover, the
respective square norm of qj is given by,

N∑
n=1

q2j (n) = qTj qj = vTj X
TXvj = vTj

(
l∑

i=1

σ2i viv
T
i

)
vj = σ2j ,

due to the orthonormality of the vj ’s.
• That is, σ2j is equal to the (scaled) sample variance of the

elements of qj . However, by the definition in (14), this is the
sample variance of the projections of the input vectors
(regressors), xn, n = 1, 2, . . . , N , along the direction vj . The
larger the value of σj is the larger the spread of the (input) data
along the respective direction becomes. This is geometrically
shown in the figure of the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 35/37

Ridge Regression

• Let us now define,

qj := Xvj =

x
T
1 vj
...

xT
Nvj

 ∈ RN , j = 1, 2, . . . , l. (14)

• Note that qj is a vector in the column space of X. Moreover, the
respective square norm of qj is given by,

N∑
n=1

q2j (n) = qTj qj = vTj X
TXvj = vTj

(
l∑

i=1

σ2i viv
T
i

)
vj = σ2j ,

due to the orthonormality of the vj ’s.
• That is, σ2j is equal to the (scaled) sample variance of the

elements of qj . However, by the definition in (14), this is the
sample variance of the projections of the input vectors
(regressors), xn, n = 1, 2, . . . , N , along the direction vj . The
larger the value of σj is the larger the spread of the (input) data
along the respective direction becomes. This is geometrically
shown in the figure of the next slide.

Sergios Theodoridis, University of Athens. Machine Learning, 35/37

Ridge Regression

• The figure illustrates the geometry of the left eigenvectors resulting
from the SVD of a matrix.

The singular vector v1, which is associated with the the singular value σ1 > σ2, points to the direction where
most of the (variance) activity in the data space happens. The variance in the direction of v2 is smaller.

• Moreover, a consequence of (11) (ui = 1
σi
Xvi) is that

qj = Xvj = σjuj .

In other words, uj points in the direction of qj . Thus, (13) suggests
that while projecting y onto the column space of X, the directions, uj ,
associated with larger values of variance are weighted more heavily
than the rest. Ridge regression respects and assigns higher weights to
the more informative directions, where most of the data “activity” takes
place.

Sergios Theodoridis, University of Athens. Machine Learning, 36/37

Ridge Regression

• The figure illustrates the geometry of the left eigenvectors resulting
from the SVD of a matrix.

The singular vector v1, which is associated with the the singular value σ1 > σ2, points to the direction where
most of the (variance) activity in the data space happens. The variance in the direction of v2 is smaller.

• Moreover, a consequence of (11) (ui = 1
σi
Xvi) is that

qj = Xvj = σjuj .

In other words, uj points in the direction of qj . Thus, (13) suggests
that while projecting y onto the column space of X, the directions, uj ,
associated with larger values of variance are weighted more heavily
than the rest. Ridge regression respects and assigns higher weights to
the more informative directions, where most of the data “activity” takes
place.

Sergios Theodoridis, University of Athens. Machine Learning, 36/37

Principal Components Regression

• Thus, the effect of the ridge regression is to enforce a shrinking rule, which
decreases the contribution of the less important of the components, ui, in the
respective summation. This can be considered as a soft shrinkage rule.

• An alternative path is to adopt a hard thresholding rule and keep only the,
say, m most significant directions, known as the principal axes or directions,
and forget the rest by setting the respective weights equal to zero.
Equivalently, we can write

ŷ =
m∑
i=1

θ̂iui, where θ̂i = u
T
i y, i = 1, 2, . . . ,m.

• Furthermore, recalling ui =
1
σi
Xvi ((11)) we have that,

ŷ =

m∑
i=1

θ̂i
σi
Xvi,

or equivalently, the weights for the expansion of the solution in terms of the
input data can be expressed as

θ =
m∑
i=1

θ̂i
σi
vi.

• In other words, the prediction ŷ is performed in a subspace of the column
space of X, which is spanned by the m principal axes; that is, the subspace
where most of the data activity, from the variance point of view, takes place.
Such a rationale forms the basis of what is known as dimensionality reduction.

Sergios Theodoridis, University of Athens. Machine Learning, 37/37

Principal Components Regression

• Thus, the effect of the ridge regression is to enforce a shrinking rule, which
decreases the contribution of the less important of the components, ui, in the
respective summation. This can be considered as a soft shrinkage rule.

• An alternative path is to adopt a hard thresholding rule and keep only the,
say, m most significant directions, known as the principal axes or directions,
and forget the rest by setting the respective weights equal to zero.
Equivalently, we can write

ŷ =
m∑
i=1

θ̂iui, where θ̂i = u
T
i y, i = 1, 2, . . . ,m.

• Furthermore, recalling ui =
1
σi
Xvi ((11)) we have that,

ŷ =

m∑
i=1

θ̂i
σi
Xvi,

or equivalently, the weights for the expansion of the solution in terms of the
input data can be expressed as

θ =
m∑
i=1

θ̂i
σi
vi.

• In other words, the prediction ŷ is performed in a subspace of the column
space of X, which is spanned by the m principal axes; that is, the subspace
where most of the data activity, from the variance point of view, takes place.
Such a rationale forms the basis of what is known as dimensionality reduction.

Sergios Theodoridis, University of Athens. Machine Learning, 37/37

Principal Components Regression

• Thus, the effect of the ridge regression is to enforce a shrinking rule, which
decreases the contribution of the less important of the components, ui, in the
respective summation. This can be considered as a soft shrinkage rule.

• An alternative path is to adopt a hard thresholding rule and keep only the,
say, m most significant directions, known as the principal axes or directions,
and forget the rest by setting the respective weights equal to zero.
Equivalently, we can write

ŷ =
m∑
i=1

θ̂iui, where θ̂i = u
T
i y, i = 1, 2, . . . ,m.

• Furthermore, recalling ui =
1
σi
Xvi ((11)) we have that,

ŷ =

m∑
i=1

θ̂i
σi
Xvi,

or equivalently, the weights for the expansion of the solution in terms of the
input data can be expressed as

θ =
m∑
i=1

θ̂i
σi
vi.

• In other words, the prediction ŷ is performed in a subspace of the column
space of X, which is spanned by the m principal axes; that is, the subspace
where most of the data activity, from the variance point of view, takes place.
Such a rationale forms the basis of what is known as dimensionality reduction.

Sergios Theodoridis, University of Athens. Machine Learning, 37/37

Principal Components Regression

• Thus, the effect of the ridge regression is to enforce a shrinking rule, which
decreases the contribution of the less important of the components, ui, in the
respective summation. This can be considered as a soft shrinkage rule.

• An alternative path is to adopt a hard thresholding rule and keep only the,
say, m most significant directions, known as the principal axes or directions,
and forget the rest by setting the respective weights equal to zero.
Equivalently, we can write

ŷ =
m∑
i=1

θ̂iui, where θ̂i = u
T
i y, i = 1, 2, . . . ,m.

• Furthermore, recalling ui =
1
σi
Xvi ((11)) we have that,

ŷ =

m∑
i=1

θ̂i
σi
Xvi,

or equivalently, the weights for the expansion of the solution in terms of the
input data can be expressed as

θ =
m∑
i=1

θ̂i
σi
vi.

• In other words, the prediction ŷ is performed in a subspace of the column
space of X, which is spanned by the m principal axes; that is, the subspace
where most of the data activity, from the variance point of view, takes place.
Such a rationale forms the basis of what is known as dimensionality reduction.

Sergios Theodoridis, University of Athens. Machine Learning, 37/37

