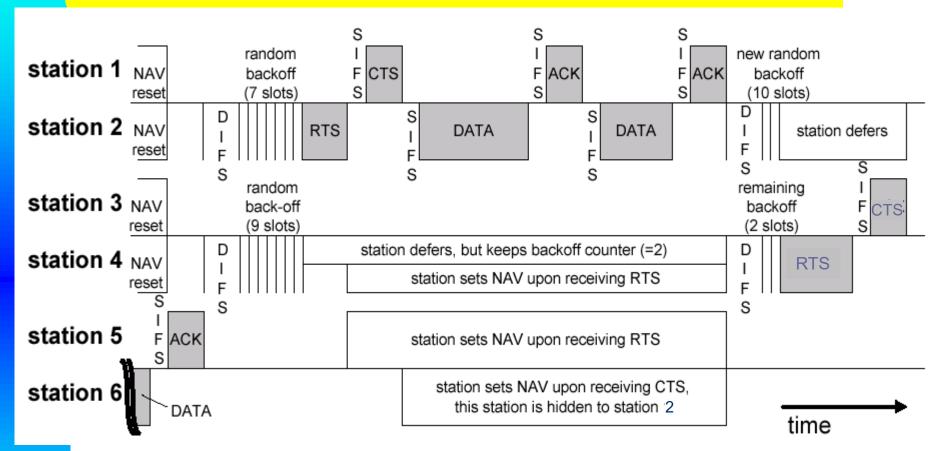

Mobile and Wireless Networks


Multiple Access Protocols and IEEE 802.11 Networks

PART 2

- ➤ Always SIFS<DIFS
- ➤ Updating of NAVs (Network Allocation Vectors) very important through RTS/CTS/data packets to use power saving

Example of DCF transmission

CW doubles after each collision

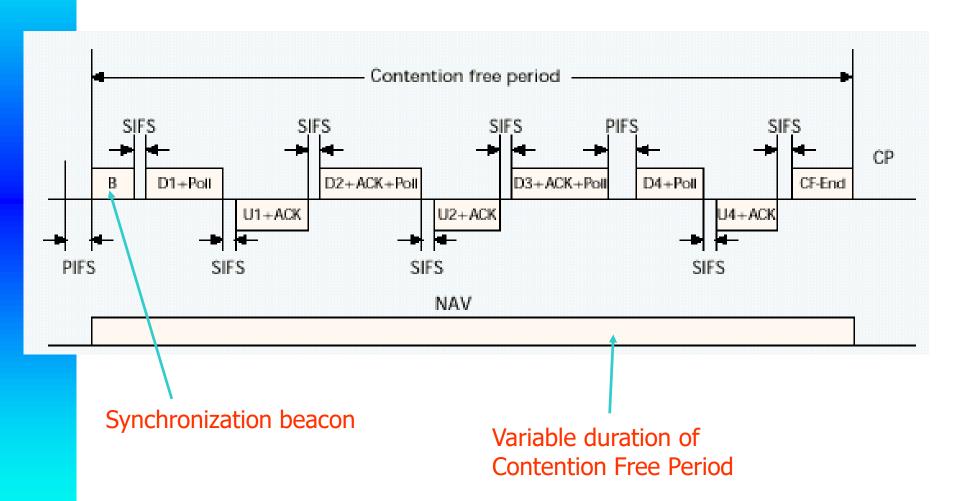
- Initial CW -> 3 (backoff 0-3)
- CW after Collision 1 → 7 (backoff 0-7)
- CW after Collision 2 → 15 (backoff 0-15)
- CW after Collision 3 → 31 (backoff 0-31)
- CW after Collision 4 → 63 (backoff 0-63)

How the Contention Window works

- Whenever a backoff occurs the backoff time is uniformly chosen in the range [0, W-1]
- After each unsuccessful transmission the backoff windows size is doubled, up to a maximum value
- Once the backoff window size reaches its maximum value it will stay at that value until it is reset
- The value of W will be reset after every successful transmission of a data or RTS packet, or when a retry counter reaches its limit

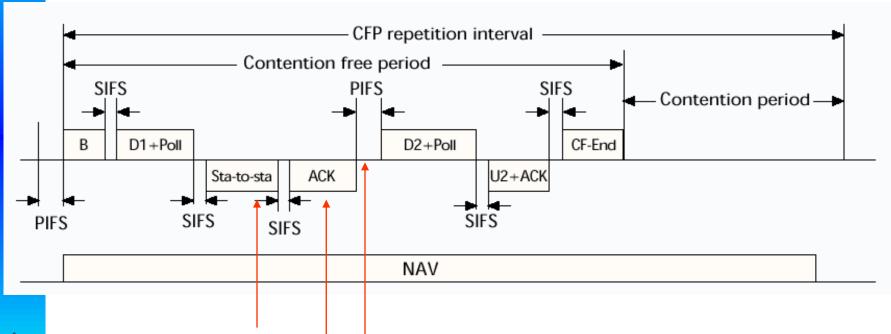
Disadvantages of DCF

- Unpredictable collision number
- Unpredictable delay of successful transmission
- Unpredictable throughput
- Uncontrolled selection of station to transmit


And one advantage:

Low transmission delay and good performance for low traffic

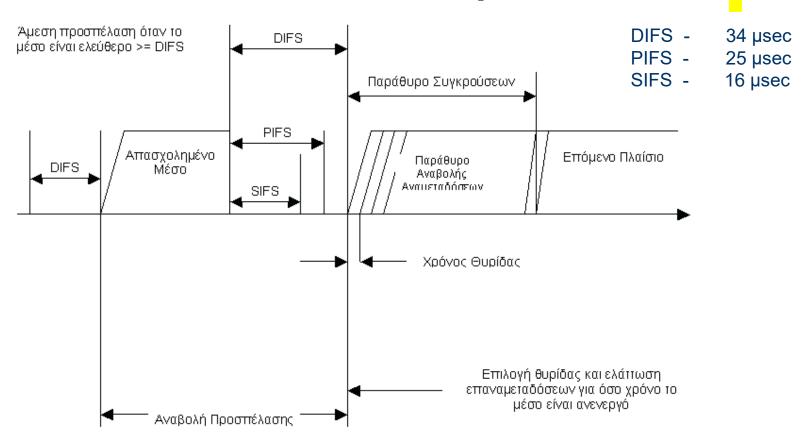
Point Coordination Function (I)


- ✓ Activated by the AP whenever it decides to switch to contention-free period (e.g. when it observes large number of collisions)
- ✓ As a general rule, DCF for low traffic, PCF for high traffic
- ✓ In this mode the AP is referred to as Point Coordinator
- ✓ It has priority compared to DCF because it is activated for idle period PIFS<DIFS
 </p>

Point Coordination Function (II)

Point Coordination Function (III)

If a Station wants to transmit to another station during a CFP (contention-free period)



- When it is time to transmit, a STA chooses to transmit to aniother STA in the same BSS.
- ◇ When the other STA receives data, replies with DCF Ack to the first STA
- AP waits for time equal to PIFS before continuing to the next STA (why?)

Main restrictions of PCF regarding QoS

- ✓ Terminals cannot send their requirements to PCF
- ✓ AP has no way to interrupt an ongoing transmission to send the synchronization beacon* and pass to PCF mode
- ✓ Poll does not set the time the channel is given to a STA, which means that the STA can keep the channel for the maximum allowed time*
- * Maximum packet (MPDU) allowed 4095 bytes = 32760 bits = 32,76 msec (for a 1Mbps channel)

Inter-Frame Spaces

- Inter frame spacing required for MAC protocol traffic
 - SIFS = Short interframe space
 - PIFS = PCF interframe space
 - DIFS = DCF interframe space
- Back-off timer expressed in terms of number of time slots

Security in 802.11

When encryption and/or authentication is required, there things are important

- The actual needs of the user and how they cost
- Easy to use mechanisms
- And governmental restrictions in encryption methods, especially for exported products

Wired Equivalent Privacy (WEP) Protocol

- Reasonably efficient, compared to cost and actual needs it covers
- «Auto-synchronized» (STAs in and out easily)
- Low computing needs
- Optional in implementation
- Covers both encryption and authentication
- Use of the same key for both encryption and authentication (disadvantage)

Encryption

- Based on a secret key of 40 bits, statically stored in all stations
- The key passes through a bit generator to produce a bit sequence based on this
- The bit sequence is XORed with the data to be transmitted
- The output of the XOR is transmitted to the channel

Encryption example

Let binary 2 (00000010) to be the encryption key. The key is XORed with the text we want to transmit, in our case the simple "HI"

	\mathbf{H}	I	Initial text
	$0\;1\;0\;0\;1\;0\;0\;0$	$0\; 1\; 0\; 0\; 1\; 0\; 0\; 1$	
XOR	$0\; 0\; 0\; 0\; 0\; 0\; 1\; 0$	$0\; 0\; 0\; 0\; 0\; 0\; 1\; 0$	Encryption key
	$0\;1\;0\;0\;1\;0\;1\;0$	$0 \; 1 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \; 1$	Encrypted text

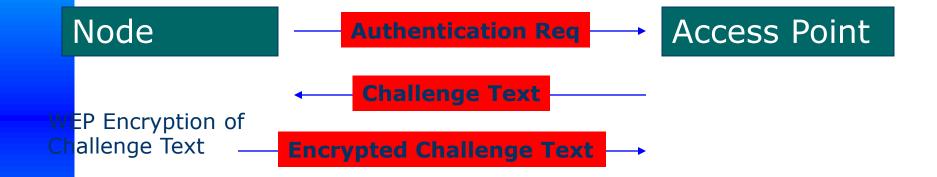
When the encrypted text reaches the receiver, it passes through the XOR again with the same key to recover the initial text

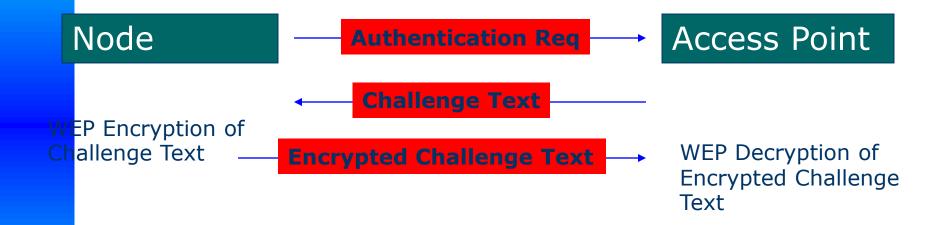
	$0 \; 1 \; 0 \; 0 \; 1 \; 0 \; 1 \; 0$	$0 \; 1 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \; 1$	Encrypted text
XOR	$0\ 0\ 0\ 0\ 0\ 0\ 1\ 0$	$0\; 0\; 0\; 0\; 0\; 0\; 1\; 0$	Encryption key
	$0 \; 1 \; 0 \; 0 \; 1 \; 0 \; 0 \; 0$	$0\; 1\; 0\; 0\; 1\; 0\; 0\; 1$	
	\mathbf{H}	I	Initial text

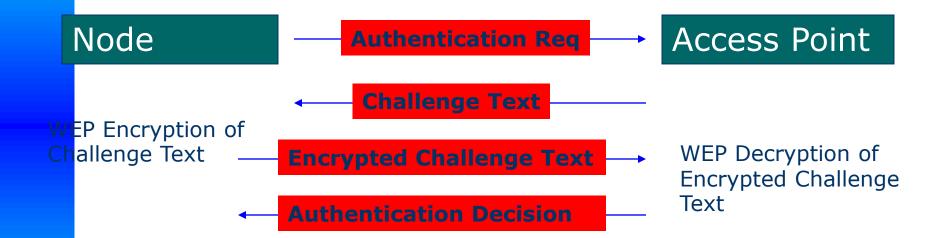
Authentication

• Uses the same secret key as in the case of encryption

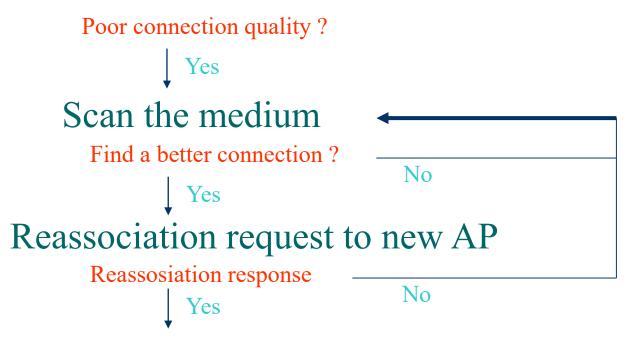
Node

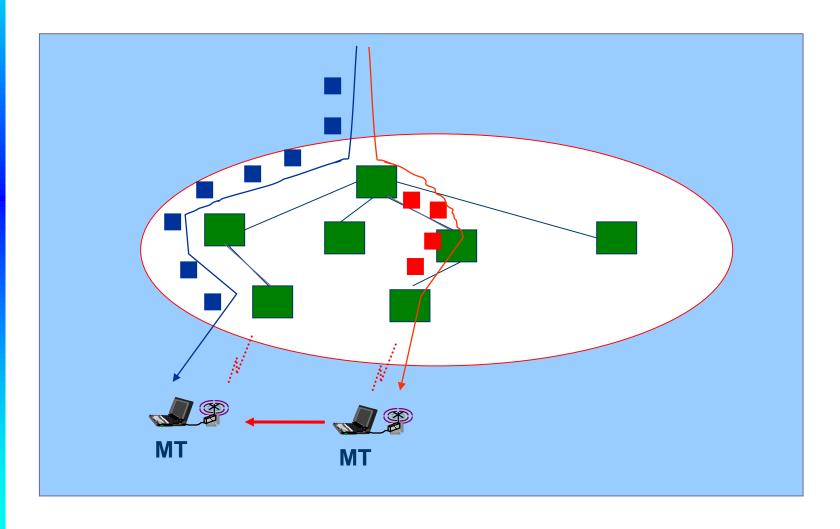

Access Point


Node — Authentication Req → Access Point



WEP Encryption of Challenge Text




Mobility support

A STA associated with a BSS

STA has roamed to a new AP Old AP is notified through DS

No support for the packets that are lost during handover

Extensions of IEEE 802.11

EEE 802.11 Group Standards

The original 1 Mbit/s and 2 Mbit/s , 2.4 GHz RF and IR standard (1999)
54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
Enhancements to 802.11 to support 5.5 and 11 Mbit/s (1999)
Bridge operation procedures; included in the IEEE 802.1D standard (2001)
International (country-to-country) roaming extensions (2001)
Enhancements: QoS, including packet bursting (2005)
Inter-Access Point Protocol (2003) Withdrawn February 2006
54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)
Enhanced security (2004)
Extensions for Japan (2004)

IEEE 802.11 Group Standards Cont.

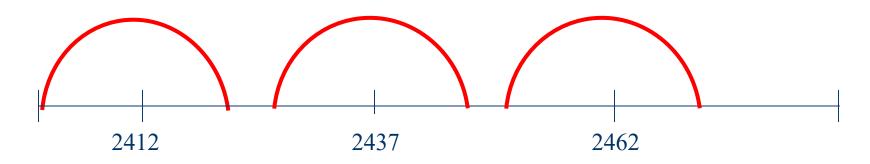
IEEE 802.11k	Radio resource measurement enhancements			
IEEE 802.11I	(reserved and will not be used)			
IEEE 802.11m	Maintenance of the standard; odds and ends.			
IEEE 802.11n	Higher throughput improvements using MIMO (multiple input, multiple output antennas)			
IEEE 802.11o	(reserved and will not be used)			
IEEE 802.11p	WAVE - Wireless Access for the Vehicular Environment (such as ambulances and passenger cars)			
IEEE 802.11q	(reserved and will not be used, can be confused with 802.1Q VLAN trunking)			
IEEE 802.11r	Fast roaming Working "Task Group r"			
IEEE 802.11s	ESS Mesh Networking			
IEEE 802.11T	Wireless Performance Prediction (WPP) - test methods and metrics Recommendation			
IEEE 802.11u	Interworking with non-802 networks (for example, cellular)			
IEEE 802.11v	Wireless network management			
IEEE 802.11w	Protected Management Frames			
IEEE 802.11x	(reserved and will not be used)			
IEEE 802.11y	3650-3700 Operation in the U.S.			

Physical layer extensions

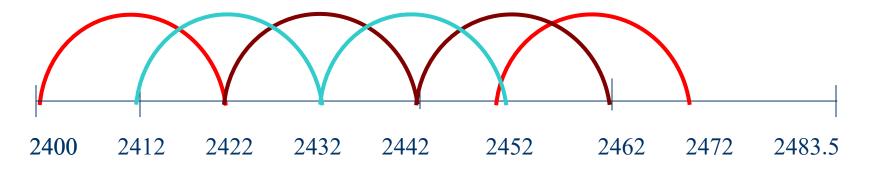
IEEE 802.11b

- compatible MAC as in 802.11
- larger data rates in 2.4 GHz (11Mbps)
- Direct Sequence Spread Specrtum (FDM)

IEEE 802.11a

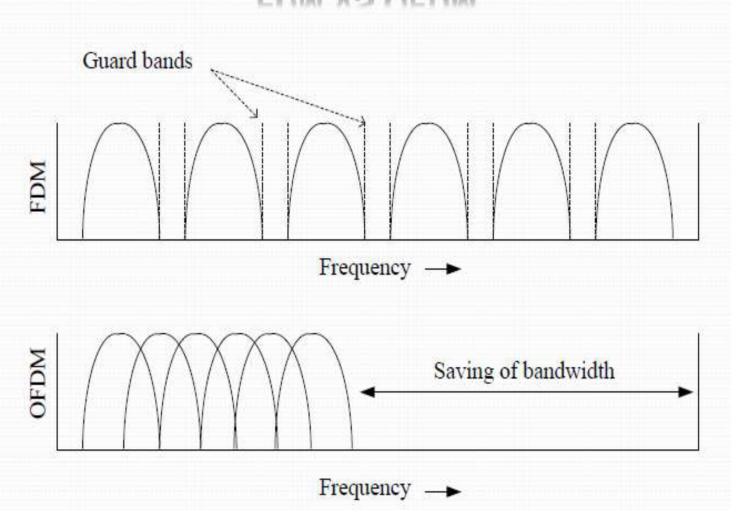

- compatible MAC as in 802.11
- 5 GHz band
- OFDM (Orthogonal Frequency Division Multiplexing)
- data rates up to 54 Mbps

IEEE 802.11g

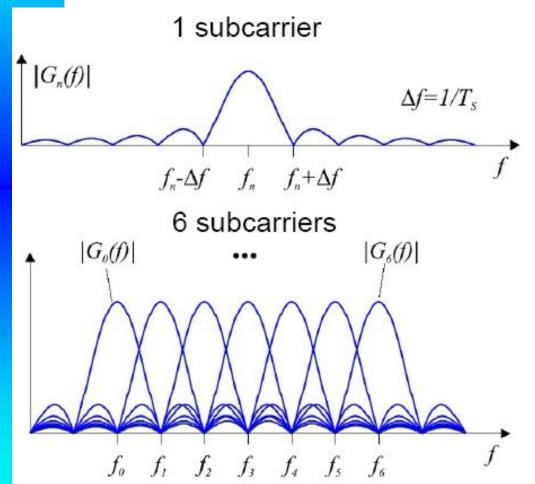

- compatible MAC as in 802.11
- larger data rates at 2.4 GHz (up to 54Mbps)
- OFDM (Orthogonal Frequency Division Multiplexing)

WiFi Channels

Non overlapping channels



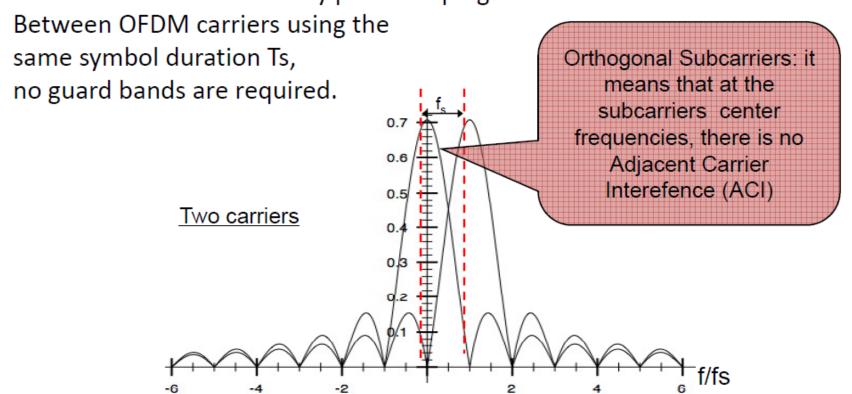
Overlapping channels



OFDM

FRM VS OFRM

OFDM

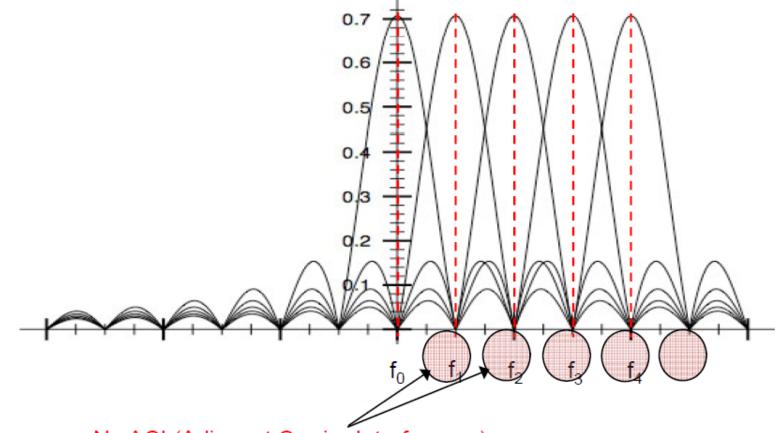


- Improved spectral efficiency
- Reduce ISI effect by multipath

OFDM: Orthogonal Frequency Division Multi-Carrier

Thus OFDM simply places the next carrier exactly in the first null point of the previous one.

With this we don't need any pulse-shaping.



Spectrum Overlapping of multiple OFDM carriers

$$f_n = f_0 + nf_s = f_0 + n \frac{1}{T_s}$$

power density

$$n = \dots -1,0,1,2\dots$$

No ACI (Adjacent Carrier Interference)

Cha racteristics	802.11	802.11b	802.11a	802.11g
M odulation	FH/DSSS	DSSS	OFDM	OFDM
Carrier Frequency	2.4 GHz	2.4 GHz	5 GHz	2.4 GHz
Max Physical Rate	2 Mb/s	11 Mb/s	54 Mb/s	54 Mb/s
Max Data Rate, Layer 3	1.2 Mb/s	5 Mb/s	32 Mb/s	32 Mb/s
Medium Access Control / Media Sharing	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA
Connectivity	Connless	Connless	Connless	Connless
Multicast	Yes	Yes	Yes	Yes

Other 802.11 extensions

802.11f

Allows communication between neighboring APs to reduce handover delay

802.11h

Allows coexistence with other standards at 5GHz (e.g., HiperLAN/2) (Dynamic Frequency Selection – DFS)

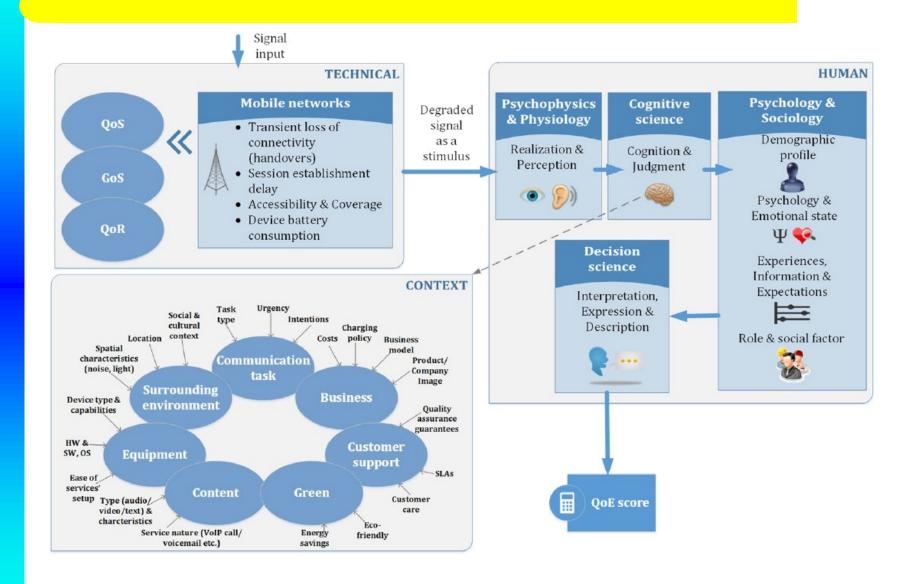
802.11i

Security extensions

802.11e

QoS improvements through new MAC capabilities

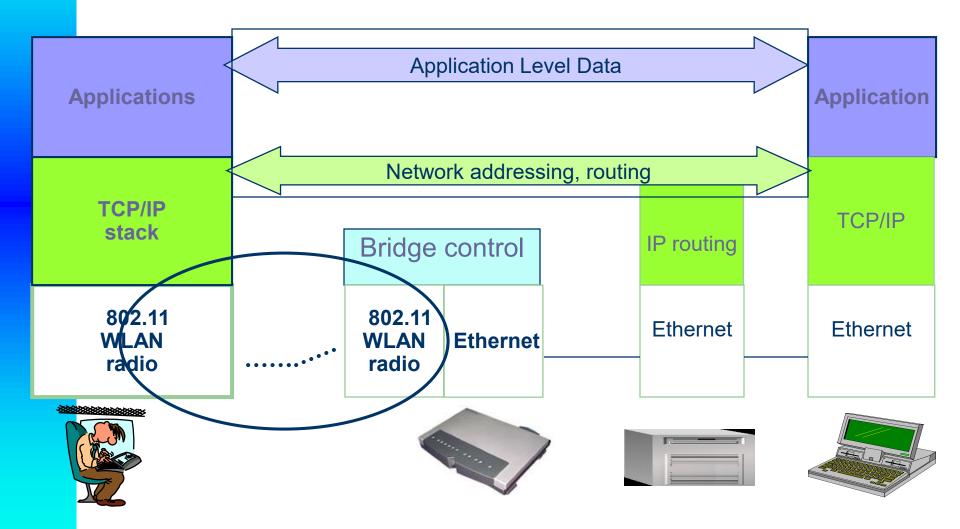
IEEE 802.11e


What QoS means

- Quality of Service QoS: The «efficient» data transmission resulting
 «satisfactory» operation of a network application as it is perceived by the user
- What «satisfactory» operations means? Usually subjective and depends on the user preferences, and specific needs
- What **«efficient»** transmission means? Is the data transmission that satisfies specific quality of **service parameters**, extracted based on the **«efficient»** operation of a network application
- Typical QoS parameters:
 - mean end-to-end delay
 - maximum end-to-end delay
 - maximum delay jitter
 - mean packet error rate

QoS guarantees

- Based on the type of traffic, and user needs and preferences, QoS parameters are extracted.
- Real-time applications (voice, video) have strict requirements for low mean and max delay (100-200 msec end-to-end), and looser requirements for mean packet error rate (e.g., 10⁻³).
- Non-real-time applications (email, file transfer) have strict requirements for packet errors, but looser requirements for delay (e.g., a few seconds).
- The target for QoS parameters are shared per link.
- The main target of the layer 2 (Data-Link) protocols is to guarantee the target values of the QoS parameters per data flow.
- So the MAC protocol at 802.11 has to guarantee the target QoS values in the WiFi radio interface.


Quality of experience - QoE

Quality of experience - QoE

Aspect	Quality Influence Factors	
Mobile networks	Vertical and horizontal handovers Battery consumption Session establishment delay	Accessibility Coverage
Service	Call setup success ratio Blocking probability Call setup time	Call cut-off ratio Availability & Reliability
Transport / Network	Round trip / one-way delay Jitter Packet loss ratio Delay burstiness distribution	Loss burstiness distribution Bottleneck bandwidth Congestion period
Physical	SNR / SIR / SINR Bit rate BLER Outage probability Packet / Symbol / Bit Error Probability Outage capacity	Ergodic capacity / rate Throughput Diversity order / coding gain Area spectral efficiency Energy efficiency

Quality of experience - QoE

