The IEEE 802.11 family of standards

continued

Extensions introduced by 802.11e

• AP is called Hybrid Coordinator (HC) implementing Hybrid Coordination Function (HCF) that includes two modes of operation:

•EDCA (Enhanced Distributed Coordination Access): Different traffic classes in DCF with different behavior and medium access probabilities

• HCCA (HCF Control Channel Access): Improving weaknesses of PCF (beacon transmission, controlled reservation time, queue size information)

EDCA

(Enhanced Distributed Coordination Access)

- CSMA/CA and Exponential Backoff
- Four Access Categories (ACs) within one station

EDCA

(Enhanced Distributed Coordination Access)

Figure 4. [3] Legacy 802.11 station and 802.11e station with four ACs within one station.

Inter Frame Space και Contention Window

Inter Frame Space και Contention Window

Contention in EDCA

Contention in EDCA

EDCA performance

Transmission Opportunity (TXOP)

- A <u>TXOP</u> is defined by a starting time and a maximum duration.
- Two types of TXOP: EDCA TXOP and Polled TXOP.
 - An EDCF TXOP begins when the wireless medium is determined to be available under the EDCA rules, and the length of TXOP is specified in beacon frames.
 - An Polled TXOP begins when a QSTA receives a QoS(+)CF-Poll from HC, and the length of TXOP is specified in the QoS(+)CF-Poll. 10

HCF Controlled Access – Introduction

- Differences between hybrid coordinator (HC) and point coordinator (PC):
 - HC can poll QSTAs in both CP and CFP
 - HC grants a polled TXOP to one QSTA, which restricts the duration of the QSTA's access to the medium.

Figure 62c—CAP/CFP/CP periods

HCCA (HCF Control Channel Access)

Transmission Opportunity

Reservation with HCCA

Field "Queue Size"

Reservation with HCCA

Reservation with HCCA

Factors Affecting Wireless QoS

- > QoS of wireless network is affected by the following:
 - Attenuation,
 - > Multi-path interference,
 - Spectrum interference: for example interferences from neighboring cells,
 - Noise: Noise sources can be natural and man-made such as radio, TV and other radio-frequency transmission,
 - Mobility: affects hand-over and resource utilization, management,
 - Limited capacity: resources are costly.
- > Higher error rates are typical

Core Network QoS Components

Admission Control: Limits number of flows admitted into the network so that each individual flow obtains its desired QoS.

> Scheduling:

- Scheduling affects delay, jitter and loss rate.
- > Allows protection against misbehaving flows.
- > Takes into account traffic and channel conditions

Traffic Scheduling in 802.11e

IEEE 802.11 Physical Layer Enhancements

802.11 PHY enhancements

	Wi-Fi 4	Wi-Fi 5	Wi-Fi 6	Wi-Fi 6E	Wi-Fi 7
Launch date	2007	2013	2019	2021	2024 (expected)
IEEE standard	802.11n	802.11ac	802	.11ax	802.11be
Max data rate	1.2 Gbps	3.5 Gbps	9.6	Gbps	46 Gbps
Bands	2.4 GHz, 5 GHz	5 GHz	2.4 GHz, 5 GHz	6 GHz	2.4 GHz, 5 GHz, 6 Hz
Channel size	20, 40 MHz	20, 40, 80 80+80, 160 MHz	20, 40, 80 80+80, 160 MHz		Up to 320 MHz
Modulation	64-QAM	256-QAM	1024-QAM		4096-QAM
МІМО	4×4 MIMO	4×4 MIMO, DL MU- MIMO	8×8 UL/DL MU-MIMO		16×16 UL/DL MU-MIMO

802.11 PHY enhancements

802.11 PHY and MAC

OFDM vs FDM

- > FDM
 - Non-overlapping subchannels
 - > Wastage of bandwidth necessary to separate subchannels

> OFDM

- > Overlapping but orthogonal subchannels
- Carefully chosen subchannels at the peak of each subcarrier, all other subcarriers are zero

OFDM subcarriers

> How to spread information over the subcarriers?

> Example with 8 subcarriers

0	1
1	0
• 0	0
0	1
1	0
1	1
0	0
1	1
	0 1 0 0 1 1 0 1 1 0 1

Step 1: Serial to parallel

Step 2: Modulate bits on each subcarrier

Step 2: Modulate bits on each subcarrier

Why OFDM?

- Frequency selective fading
 - Some frequencies within the channel fade severely
 - > These frequencies are uncorrelated

Why OFDM?

- Frequency selective affects only some subcarriers in OFDM
 - Lower bit error rate

OFDM Block Diagram

Transmitter

Interleaving

- Process of mapping the incoming data bits to subcarriers
 - > In practice, serial to parallel interleaving is not round-robin
- General rule
 - > Map the consecutive bits to subcarriers far away from each other
 - Reduces the probability of consecutive bits being dropped due to fading in nearby subcarriers – improves FEC performance

Error control - Parity checking

single bit parity:

 detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

Modulation

> 802.11a supports following modulation schemes

Modulation	Bits per symbol
BPSK	1
QPSK	2
16-QAM	4
64-QAM	6

> More bits per symbol = More delay before transmission of a single symbol

Block Interleaving

- > 802.11a example
 - > 48 subcarriers
 - Modulation chosen 64 QAM (6 bits per symbol)
- > Interleaver buffer size = $48 \times 6 = 288$ bits

0, 1, 0, ..., 1

 $b_1,\,b_2,\,b_3,\,\ldots\,,\,b_{288}$

More complex versions of block interleavers can be used /

Subcarrier Modulation

Subcarrier symbol _____

		-				
	b ₂₄₁	b ₂₄₂			b ₂₈₈	
	b ₁₉₃	b ₁₉₄			b ₂₄₀	
	b ₁₄₅	b ₁₄₆			b ₁₉₂	
	b ₉₇	b ₉₈	 		b ₁₄₄	
	b ₄₉	b ₅₀	 		b ₉₆	
	b ₁	b ₂			b ₄₈	
	C ₁	C ₂			C ₄₈	
	ļ				Ţ	
•••				0 0 0 0 0 0		
•••				● ● ● ● ● ● ● ●		
					-	

Final transmission

Combine subcarriers

0, 1, 0, ..., 1

 $b_1,\,b_2,\,b_3,\,\ldots\,,\,b_{288}$

Modulation	Coding rate	Coded bits per subcarrier symbol	Coded bits per OFDM symbol	Data bits per OFDM symbol	Data rate (Mbps)
BPSK	1/2				
BPSK	3/4				
QPSK	1/2				
QPSK	3/4				
16-QAM	1/2				
16-QAM	3/4				
64-QAM	2/3				
64-QAM	3/4				

Modulation	Coding rate	Coded bits per subcarrier symbol	Coded bits per OFDM symbol	Data bits per OFDM symbol	Data rate (Mbps)
BPSK	1/2	1			
BPSK	3/4	1			
QPSK	1/2	2			
QPSK	3/4	2			
16-QAM	1/2	4			
16-QAM	3/4	4			
64-QAM	2/3	6			
64-QAM	3/4	6			

Modulation	Coding rate	Coded bits per subcarrier symbol	Coded bits per OFDM symbol	Data bits per OFDM symbol	Data rate (Mbps)
BPSK	1/2	1	48		
BPSK	3/4	1	48		
QPSK	1/2	2	96		
QPSK	3/4	2	96		
16-QAM	1/2	4	192		
16-QAM	3/4	4	192		
64-QAM	2/3	6	288		
64-QAM	3/4	6	288		

Modulation	Coding rate	Coded bits per subcarrier symbol	Coded bits per OFDM symbol	Data bits per OFDM symbol	Data rate (Mbps)
BPSK	1/2	1	48	24	
BPSK	3/4	1	48	36	
QPSK	1/2	2	96	48	
QPSK	3/4	2	96	72	
16-QAM	1/2	4	192	96	
16-QAM	3/4	4	192	144	
64-QAM	2/3	6	288	192	
64-QAM	3/4	6	288	216	

Modulation	Coding rate	Coded bits per subcarrier symbol	Coded bits per OFDM symbol	Data bits per OFDM symbol	Data rate (Mbps)
BPSK	1/2	1	48	24	6
BPSK	3/4	1	48	36	9
QPSK	1/2	2	96	48	12
QPSK	3/4	2	96	72	18
16-QAM	1/2	4	192	96	24
16-QAM	3/4	4	192	144	36
64-QAM	2/3	6	288	192	48
64-QAM	3/4	6	288	216	54

Demodulation

- Received symbols depend on channel variations
 - Multi-path common reason behind amplitude and phase changes

Inter-symbol interference

Receiver

Demodulation

- Hard decision
 - Calculate the distance to the constellation points, pick the one with the lowest distance
 - > Can be overly conservative

Demodulation

- Soft decision
 - For the received symbol, calculate its distance to the nearby constellation points
 - > Use the distance to associate a probability to the constellation point
 - Combine the probabilities with FEC decoding to minimize errors

RSS, SNR and SINR

- Commonly used measures of channel quality
- RSS Received Signal Strength
 - Measured in dBm
 - > Often available through RSSI register on WiFi chipsets
- SNR Signal to Noise Ratio (S/N)
 - Measured in dB
 - Ratio of RSS and measured noise, available or can be derived
- SINR Signal to Noise and Interference Ratio (S/I+N)
 - Measured in dB
 - Considers how much interference is caused by other transmissions
 - Very useful metric but difficult to measure

Receiver sensitivity

- Better signal strength (higher SNR) ensures lower inter-symbol interference (ISI)
- 802.11 standards associate a receiver sensitivity with each modulation and data rate

	Modulation	Data rate (Mbps)	Receiver sensitivity (dBm)
	BPSK	6	-82
	BPSK	9	-81
802.11a	QPSK	12	-79
	QPSK	18	-77
	16-QAM	24	-74
	16-QAM	36	-70
	64-QAM	48	-66
	64-QAM	54	-65

OFDM in 802.11ac

- > 802.11ac introduces the use of 256 QAM
 - > 256 QAM 8 bits per symbol

Modulation	Coding rate	Receiver sensitivity (dBm)
BPSK	1/2	-82
QPSK	1/2	-79
QPSK	3/4	-77
16-QAM	1/2	-74
16-QAM	3/4	-70
64-QAM	2/3	-66
64-QAM	3/4	-65
64-QAM	5/6	-64
256-QAM	3/4	-59
256-QAM	5/6	-57

OFDM in 802.11ac

- > 802.11ac uses wider channel widths
 - > 20, 40, 80 and 160 MHz
 - More subcarriers for OFDM

Channel width (MHz)	OFDM subcarriers
20	52
40	108
80	234
160	468

 For higher data rates, 160 MHz channel width and 256 QAM modulation can be used