Mobile and Wireless Networks

IP over wireless

OSI Model

OSI Model

Fig: Communication & Interfaces in the OSI model

ISO 7-Layer Model

Data Transmission in the OSI Reference Model

Reference model - TCP/IP

Reference Model ISO/OSI

- presentation: cryptography, compression, description of application data
- session: synchronizing of data exchange, different flows per application
- Internet does not support these two layers
- If needed, they are supported at the application layers

FTP, SMTP, HTTP	
transport: transfer of application messages end- to-end	application
network: routing of datagrams from source to destination	transport
 > IP, routing protocols 	network
link: transfer of data between neighboring nodes in the network	link
PPP, Ethernet, 802.11 (WiFi)	
physical: bits "over the line"	physical

Internet Protocol Stack

- application: support of network applications

Reference model - TCP/IP

Συστήματα Κινητών και Προσωπικών Επικοινωνιών

Protocol "Layers"

Networks are complicated!

- Many "pieces":
 - > Hosts
 - Routers
 - Links of different types
 - > Applications
 - > Protocols
 - > Hardware, software

Question:

How to organize such a complicated system

Why we call them IP networks?

Problems of IP in wireless and mobile networks

- 1. Low performance in wireless environments
 - > No error avoidance, detection or correction
- 2. "Best Effort" (no QoS guarantees)
 - No prioritization of traffic
- 3. No mobility support
 - Routing based on the (static) IP address

1. Low performance in wireless environments

- No error correction in IP
- Based on anything provided by TCP/UDP or application

TCP

- Designed for non-real-time applications
- Corrects errors through retransmissions
- TCP translates loss of packets as congestion to the route

UDP

- Designed for real-time applications
- No error correction

TCP operation

Figure 6.9 Typical TCP sawtooth pattern.

Loss of packet due to congestion Reduction of cwnd Reduction of data traffic

2. «Best Effort»

- All types of information are formed as IP packets and sent to the network
- IP does not have mechanism to guarantee quality characteristcs for each traffic flow (delay, packet loss, etc.)
- Only UDP or TCP traffic is not enough
- The need for QoS guarantees is much bigger due to the low capacity and high error rate
- Conclusion: Traditional protocols like Ethernet is insufficient.

Radio Resource Management

- Multiple Access Control protocols
- Used mainly for uplink
- Trade-off between complexity and efficiency

3. IP does not support mobility

- Packet routing in based an a static scheme of IP addresses
- A static address depends on the static connection point of the terminal to the network
- If the connection point changes without change of address the packets are routed to the old connection point
- But of the address changes how this can be communicated to the rest of the world?
- Impossible to inform the network each time a terminal changes its connection point

IP Header

ver. TOS total length	
IP ID offset	
TTL protocol checksum	IP
32 bit Source IP address	
32 bit Destination IP address	
Options	
Source Port Destination Port T	CP/UDP

IP routing

Mobile IP

Mobile IP terminology

Mobile IP – Registration

Mobile IP - Operation

IP-in-IP Tunneling

- IP packet is encapsulated into a new IP packet
 - Destination = care-of-address
 - Source = address of home agent
 - Data = original IP packet

Mobile IP drawbacks

Triangular routing

- Solution: Route optimization
- Firewalls: No direct reverse link possible
 Solution: Reverse tunneling

Mobile IP – Route Optimization

Mobile IP – Reverse tunnel

Mobile IP – Reverse tunnel

