Applications to Queueing Theory
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Applications to Queueing Theory: M/G/1 Queue

M/G/1:

Arrival Process: Memoryless (Poisson arrival or exponential
(geometric) interarrivals

Service Process: Generally-dis‘rribufed service times

Number of servers: 1
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Applications to Queueing Theory: M/G/1 Queue

l arrival
l

departure (service completion time) exp

H | ——
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X(t): Number of customers in the system (queue and under service)

Consider a specific subset of times {te } only. That means that we embed
X(t) on times { t- } . We do not look at X(t) at times other than in { te }.

X(te) is the process X(t) embedded at times { t. }.
X(t) is not a MC. Why?
If { te } = { times of customer departure }, then X(t¢) is a MC. Why?
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Applications to Queueing Theory: M/G/1 Queue

N, (w) : number of arrivals during the time interval [0,¢].
Z,(w),Z,(w),...: service times of customers who depart first, second, ...
Y (@) : number of customers in the system (waiting or being served at time )

Assumptions:
& N={N;t>0}0 P(a)

& Z,,Z,,. iid.O0O¢

= Consider the future of ¥ from a time 7 of a departure onward.

= Define X, as the number of customers in the system just after the instant of the
n™ departure. (X, is a SP embedded at departure times)

Theorem: X is a MC with the transition matrix

Db 94 9 49 . 1 A . :
Distribution of arrivals over a service time
b 94 9 49
w & (at)
e L S Y g.=[ - (7) dg(t), k=0,1,...
Cly @f 200 k!
9
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Proof: We need to show RIX B e I PR i X

q; i=0,7>0
NSy i e S
0 otherwise

= Let T the time of the n" departure.

= Let Z=7,, theservice time of the n+1 customer.
X, +(N;,,—N,)-1, X, >0 ) )
(Then' Py s = (S:arrival time of the n+1 customer )
Ns,z = Ns, X,=0

Using Poisson properties: ~ P{N,,, - N, =k|X,,..X;T} = P{N, =k}

Distribution of arrivals over a service time e (aZ) e (an)*

¢, =P{N, =k} =E[P{N, :k|Z}]:E{ T }:jﬁ 490
= =0 P{Xn+1:j‘XnZO}ZP{NS+Z_NS:j}:P{NZ:j}:qj
= >0 P{X,, =jlX,=i}=P{N,,,—N,=j+1-i}

91> ] 2l

=P{Nz=j+1—i}=jL T 4]

M105 - AvéAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2024

Applications to Queueing Theory: M/G/1 Queue

The MC X is irreducible and aperiodic. If »~~ Mean number of arrivals
r=E[N,]=aE[Z]=ab OVer a mean service time

Then (intuitively based on queue evolution/growth, also rigorously proven)
= If »>1 all states are transient

= If r <1 all states are recurrent non-null.

= If r =1 all states are recurrent null

Notation:
n = 1- gy — "+ —q, (prob arrivals over a service time exceed k; summing them we get r, next)

L VO+V1+-~~=(q1+q2+q3+-~~)+(q2+q3+~-~)+(q3+-~~)+~~

= q, +2q, +3q; +--- (this is the definition of the mean r of the distr of arrivals over a service time)

Proposition: The chain X is recurrent non-null aperiodic if and only if » <1.

Proof: We need to show that

T=m-P, r-1=1
Ty = Todo + 719, 9, = ol
Zie Zody + 70q, + 724, £ T, = Toh +mn
T, = Tyt MG, t 7q, + T4, gy = T LTt TOh
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Applications to Queueing Theory: M/G/1 Queue

Summing all equations (g, =1—r,, r=r,+n+r+--)

A=r)-Y 7, = mrt G =n)) 7
J=1 Jj=1

; = r - 1
If <1, then we obtain 2711.:—7:0 = Zﬂjz—ﬂo
= 1-r s 1-r

The condition 7-1=1 is satisfied with 7, =1-r

Theorem: The limits 7z(j)=1im, , P"(i,) exist Vj e E and are independent of the

initial state i.
e If r>1,then 7(j)=0, Vj.
o If r<1,then

7(0)

I
[
|
=3

(1) = (li=r) L

z(G+1) = (1r)i(1] DT s

where S, is the set of all & -tuples a=(a,,...,a,) of integers a, 21 with @, +---q, = j
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Applications to Queueing Theory: G/M/1 Queue

5/M/1:

Arrival Process: Generally—dis‘rribufed arrival times

Service Process: Memoryless (exponential (geometric)
service times)

Number of servers: 1
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Applications o Queueing Theory{ 6/M/1 Queue

arrival

l departure (service completion time)
exp

H e
S iR R I

X(t): Number of customers in the system (queue and under service)

Consider a specific subset of times {te } only. That means that we embed
X(t) on times { t- } . We do not look at X(t) an times other than in { te }.

X(te) is the process X(t) embedded at times { t. }.

X(t) is not a MC.

If { te } = { times of custome, then X(te) is a MC.
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Applications to Queuing Theory: 6/M/1 Queue

Exponentially distributed service times [ exp(a)
i.i.d. interarrival times [] ¢ .

—at n
. ' at
In this case ¢, = .fo (' )
n

d¢(t)|<— Distribution of services over an interarrival tim¢g

is the probability that the server completes exactly n services during an interarrival
time (provided that there are that many customers).

Define: r, = q,,,+q,., +*

i
r=D NG = h

r_is the expected number of services which the server is capable of completing during

an iterarrival time. It can be proved that

= 7 >1 Server can keep up with arrivals (recurrent)
= <1 Queue size increases to infinity (transient)

If 'X}f is the number of customers present in the system just before the time 7, |of the

n'™ arrival, then

% 4o
. . : : a | fadh G
Theorem: X* ={X’;ne N} isaMC with £ ={0,1,2,..} , P =

n 4% 4 9
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Applications to Queuing Theory: 6/M/1 Queue

Proof: Let M, be the number of services completed during the n+1" interarrival
time [7,,T,,,) . Then,
XE

n+l

e X: +17Mn+1

But M, , is conditionally independent of the past history before 7, given the present
number X; . If Z = T,

n+l
e—aZ(az)k

X +1>k
K

© —aZ m
P{M,., =k|X:,Z}= Zﬂ Xt +l=k (%

m=k m!

0 otherwise

Taking expectations with respect to Z , which is independent of X, we obtain
q, k<i
P{M,, =k|X; =i}={n_, k=itl
0  otherwise

Equation X7, = X! +1- M, and the previous one provide matrix P*
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Applications to Queuing Theory: 6/M/1 Queue

Theorem: X° is recurrent non-null if and only if » >1.If r > 1,
7 (j) = lim (G, /) = lim P*LX; = j| X; =i}

and
(N=>1-ppF, V=10V 108"
where £ is the unique number satisfying
B=d,+aB+q,p +
If <1 then z°(j)=0 forall j.

Proof: X* is recurrent non-null if and only if
v=v-P*, v-l=1
has a solution.

ost= aQWwe t @Yo t gV, +
S NG V

+ gV, +

210 SO, a0 O g R ORI r Cl
Vol ok IEHENG 1, SSRGS
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Applications to Queueing Theory: M/M/1 Queue

arrival exp

l departure (service completion time)
exp exp exp exp exp

— [ E—

ex| HI I
l ‘—p’" exp 1" exp exp

P S -
exp —

X(t): Number of customers in the system (queue and under service)

X(t) is a MC. Why?
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Special case M/M/1

We can consider this queue as a special case of M/G/1 or G/M/1. In the sequel we use
G/M/1. Now the interarrival distribution is given by:

pt)=1—-e*, t20

To compute the limiting distribution of X*® (queue size just before the n™ arrival, we find
first S, where

S k © k[* e (a) 5 _a £ Lo =
/’7:2%/3 - Zk=oﬂ J.o k!t Aedt = J.o e P e dt = /1+a{aﬁ
k=0

The previous equation becomes f = > or (1-p)(A-ab)=0
A+a—-af

with solutions =1 and|=2. When r =% >1, the smallest solution is 8 = &
a

) et Y
So we have hmP{Xn ZJ} =11——1—=1> =108
n—oo a a
. ; 2 AN P . :
It turns out that hmP{Y, =/} =1-—| —|, Jj=0,1,...for the queue size Y, attime ¢.
t—o a a

. FATOAY
and lim P{Xﬂ = ]} = (1 - —J(—j p Jj =0,1,...for the queue size X, just after the n™ departure.
n—o0 a a
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